

CORBA and Web Services

PJ Murray and Elizabeth Golluscio

Cape Clear Software

Web Services Software

WWW.CAPECLEAR.COM

CORBA and Web Services

CORBA and Web Services (July 2002)

Copyright © 2002 Cape Clear Software Limited, including this documentation, all
demonstrations, and all software. All rights reserved. The document is not intended for
production and is furnished as is without warranty of any kind. All warranties on this
document are hereby disclaimed including the warranties of merchantability and fitness
for a particular purpose.

Trademarks

Cape Clear, CapeConnect, and CapeStudio are trademarks of Cape Clear Software in the
United States and other countries.

Microsoft, Windows, the Windows logo, and the .NET logo are trademarks or registered
trademarks of Microsoft Corporation in the United States, other countries, or both.

Sun, Java, Enterprise JavaBeans, EJB, J2EE, and all Java-based trademarks or logos are
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

CORBA is a trademark of the Object Management Group (OMG).

VisiBroker is a registered trademark of Borland Corporation.

IBM is a registered trademark of International Business Machines Corp. in the United
States and other countries.

Other company, product, and service names mentioned in this document may be
trademarks or service marks of others.

 Copyright 2002, Cape Clear Software Page 2 of 20

CORBA and Web Services

Contents

The Emergence of Web Services 4

Web Services Standards 4

XML 4

WSDL 5

SOAP 5

UDDI 6

CORBA and Web Services 6

Comparing Technologies 7

Building Web Services from CORBA 8

Development 9

Runtime 11

Business Value from Web Services 15

Conclusions 16

Further Reading 16

Terminology 17

 Copyright 2002, Cape Clear Software Page 3 of 20

CORBA and Web Services

The Emergence of Web Services
Web Services have attracted a lot of attention over the past year as a means of

building and deploying software to simplify development and systems integration.

Web Services are ideal for application integration of internal systems or for

linking software over the Internet. Web Services technologies are based on open

standards recommended by the World Wide Web Consortium (W3C). The

standards enjoy unprecedented industry support from major IT suppliers such as

IBM, Microsoft, and Sun Microsystems along with the main CORBA vendors, such

as Borland and IONA Technologies. An example of a Web Service is a bank

exposing its credit card validation service to partners for use in their electronic

business applications. There are examples of live Web Services at

www.xmethods.com and www.capescience.com.

Web Services Standards

The key Web Services standards are WSDL, SOAP, and UDDI, which are all based

on XML. These standards have been driven by the desire of businesses to find

standardized ways of working over the ubiquitous infrastructure (for example,

TCP/IP, HTTP, and HTTPS) already in place within organizations. The underlying

technology itself is not particularly new, rather it is the result of a number of

trends in Internet use and distributed computing technology. Perhaps the most

significant aspect of these standards is their very widespread industry

acceptance, which displays a level of cooperation that is unprecedented in the IT

industry. Even with the support of hundreds of software vendors, the Common

Object Request Broker Architecture (CORBA) suffered because Microsoft

developed a proprietary alternative, with its COM/DCOM solution. Just as SQL

became the standard “grammar” for data, Web Services will become the standard

grammar for integration. As such, Web Services will turn the Internet into a

reliable and easy-to-use application integration bus, bringing integration

capabilities to the mainstream developer. Historically, systems integration was an

option only for highly skilled and highly budgeted organizations.

XML

Extensible Markup Language (XML) promises to simplify and lower the cost of

data interchange and Web publishing. XML is predicted to play a dominant role as

a data interchange format in business-to-business (B2B) Web applications, such

as e-commerce and enterprise application integration (EAI). XML is the key to all

the other Web Services standards, because it represents a truly interoperable

data representation, allowing disparate applications to communication across the

 Copyright 2002, Cape Clear Software Page 4 of 20

enterprise or the Internet.

CORBA and Web Services

WSDL

Web Services Description Language (WSDL) is the metadata language that

defines how service providers and service requesters communicate with Web

Services applications. WSDL is an XML schema that describes network services as

collections of communication endpoints that are capable of exchanging

messages. WSDL service definitions provide documentation for distributed

systems and automate the details involved in communications between

applications. Like XML, WSDL is extensible to allow for the description of

endpoints and their messages, regardless of what message formats or network

protocols are used for communication. WSDL provides the flexibility to define

software components that are written in the CORBA, Java/J2EE, or .NET

programming models. This layer of abstraction allows SOAP access to

applications written on different operating systems, programming languages, and

implementation models.

When exposing CORBA back-ends as Web Services, WSDL defines and exposes

the CORBA components, detailing their data types, operations, and parameters.

WSDL provides all the information that a client application needs to build a valid

SOAP invocation. At runtime, this information is mapped by the Web Services

platform onto the CORBA component.

SOAP

Simple Object Access Protocol (SOAP) is a protocol for exchanging information in

a decentralized, distributed environment. It defines a mechanism to pass

commands and parameters between clients and servers. Like Web Services as a

whole, SOAP is independent of the platform, object model, and programming

language being used. The SOAP protocol is XML-based and consists of three

parts:

• An envelope that defines a framework for describing the message

content and how to process it.

• A set of encoding rules for expressing instances of application-defined

data types.

• A convention for representing remote procedure calls and responses.

 Copyright 2002, Cape Clear Software Page 5 of 20

Figure 1: The problem of mapping SOAP and IIOP

CORBA and Web Services

For CORBA users, a key issue is the translation of SOAP requests to IIOP

invocations at runtime. This problem is solved by the new generation of Web

Services platforms.

UDDI

A Universal Description, Discovery, and Integration (UDDI) server is the “meeting

place” for Web Services. An information database of Web Services, it stores

descriptions about companies and the services they offer in a common XML

format. Just as businesses list their products and services in a telephone

directory, UDDI is used to register services that requesters can then discover and

invoke. Web-based applications interact with a UDDI registry using SOAP

messages. Both Microsoft and IBM host public UDDI registries, which are kept in

sync. In addition, several vendors offer commercial implementations for hosting a

“private” UDDI within an intranet environment.

Conceptually, the data in a UDDI registry can be divided into three different types

of telephone directories:

• A white-pages section, which provides business contact information.

• A yellow-pages section, which categorizes businesses and their services.

• A green-pages section, which provides technical information about the

businesses’ services.

A UDDI registry enables an organization to publish its software services, whether

written in a CORBA framework or in any other implementation model. A UDDI

registry is similar to the CosNaming or CosTrader services.

CORBA and Web Services

CORBA, as defined by the Object Management Group (OMG) since 1992, is an

open, vendor-independent architecture and infrastructure for distributed object

technology. It is widely used today as the basis for many mission-critical software

applications. CORBA vendors have progressively added richer quality-of-service

features through the implementation of various CORBA services, like transactions

and security.

While CORBA may be the best solution for certain applications, developers often

face the significant challenge of Web-enabling these systems. Few client-side,

Internet-access products support IIOP. Even if IIOP is available (either pre-

installed or downloaded), it is not firewall-friendly. Because IIOP proxies are not

widely installed on firewalls, these packets may need to be filtered out before

 Copyright 2002, Cape Clear Software Page 6 of 20

reaching their intended server. Additionally, system administrators are reluctant

CORBA and Web Services

to open an IIOP route through the firewall, because it exposes another potential

access point for malicious attacks and complicates filtering.

Another issue faced by organizations is the mismatch between the skills of Web

developers and authors, and the skills required to build CORBA systems. The

typical Web developer may be content using HTML, JavaScript and Visual Basic.

Such developers are often uncomfortable building CORBA clients, which require

advanced Java or C++ skills. The problem is that much of the business logic they

wish to expose, access, or reuse is implemented in CORBA with IDL interfaces!

Because Web Services and CORBA standards are very similar, CORBA users can

feel confident that their technical skills can be easily transferred to this new

development model, which includes WSDL, SOAP and UDDI. More importantly,

CORBA users have the very rare, yet critical, skills necessary to understand the

complexity involved in building distributed systems. Making interface design and

architectural decisions can impact performance, security, and systems

management. These skills, which are essential when conducting Web Services

projects, are typical among CORBA developers and architects.

Comparing Technologies

Similar to CORBA IDL, WSDL contains the abstract definition for a service, which

defines both types and messages. WSDL also contains a concrete section that

defines how the service is contacted, for example, protocol, encoding, and URI

details.

The IIOP specification defines a very efficient binary protocol. SOAP is text-based

and optionally includes type information as part of the message, which simplifies

debugging and traffic monitoring because the message content is human-

readable text. The CORBA IDL type system cannot accommodate certain

requirements, such as DOC or PDF files as part of the message. The SOAP with

Attachments specification allows MIME attachments to be included as part of the

message content.

 Copyright 2002, Cape Clear Software Page 7 of 20

CORBA and Web Services

Figure 2: Tracing a SOAP message, using the free NetTool utility

CORBA IDL is bound to IIOP as a transport mechanism, whereas WSDL uses

SOAP, which is not tied to any specific transport protocol. Typically, SOAP uses

the HTTP protocol, but commercial SOAP implementations already support other

protocols such as HTTPS, SMTP, and JMS. A UDDI registry closely corresponds to

the CORBA Trader Service, yet there are plans for another version of UDDI that

resembles the CORBA Naming Service and will offer a simplified view of its data.

These technical differences are mainly due to the origins of CORBA and its focus

as a solution for industrial-strength applications within private or corporate

networks. Web Services is focused on lightweight, Internet-based services, which

can be reused and combined as required, decoupling clients from the service

implementation. As such, Web Services offer a great opportunity to reuse and

extend CORBA systems.

Building Web Services from CORBA

In Joint CORBA to WSDL/SOAP Interworking RFP Initial Submission

 (OMG Document mars/02-06-03), the OMG outlines “a natural mapping from IDL

to WSDL that is also suitable for a reverse mapping, from the mapped subset of

WSDL back to IDL.” This submission, led by Cape Clear’s Chief Technology Officer

Hugh Grant, has the support of industry leaders such as Fujitsu, Hewlett-Packard,

and IONA Technologies.

Cape Clear’s customers typically want to expose existing CORBA-based logic as

one or more Web Services interfaces. This requires the IDL-to-WSDL tool to

provide full support for complex data-types and user-defined data constructs. It is

not feasible to modify the IDL, because this requires changes to the existing

 Copyright 2002, Cape Clear Software Page 8 of 20

business logic. The following sections describe how the OMG’s proposal to

CORBA and Web Services

integrate Web Services with CORBA logic works in practice, using the CapeStudio

development tool and CapeConnect runtime platform.

When installing CapeStudio and CapeConnect, there is an option to integrate with

a specific CORBA ORB. With this configuration, CapeConnect can expose new and

existing components deployed in the CORBA ORB as Web Services, as depicted in

Figure 3.

Figure 3: Exposing deployed CORBA ORB components as Web

Services

Development

Using CapeStudio, exposing existing application logic developed in CORBA is a

simple process that does not require system redesign. CORBA business logic is

exposed as Web Services using the following steps:

1. Generate WSDL from the new or existing IDL. CapeStudio’s takes an .idl file

as input and creates WSDL for the interface.

The screenshots in Figure 4 illustrate how CapeStudio assists the developer

in deploying a back-end CORBA server as a Web Service. In this case, the IDL

being mapped to WSDL is one of the examples provided with Borland’s

VisiBroker ORB.

 Copyright 2002, Cape Clear Software Page 9 of 20

CORBA and Web Services

Figure 4: The CapeStudio project view, and generating WSDL from

IDL

2. Generate Web Service client proxies and client code. Client applications can

be implemented in the developer’s language of choice, provided that a SOAP

toolkit is available for that language (for example, Microsoft .NET for C#, or

SOAP::Lite for a PERL implementation). CapeStudio can generate Visual

Basic, Java, or JSP clients from the WSDL generated in step 1.

3. Deploy the Web Service. The WSDL generated in step 1 is packaged and

deployed into CapeConnect, using a simple CapeStudio wizard.

Deploying the Web Service is a simple process. From the CapeStudio

Developer Center, you can package and deploy your Web Service, as shown

in Figure 5.

Figure 5: Deploying the Web Service into CapeConnect

 Copyright 2002, Cape Clear Software Page 10 of 20

CORBA and Web Services

Runtime

4. Link SOAP with IIOP requests and responses. At runtime, CapeConnect

translates SOAP client requests into IIOP invocations, using the CORBA

Naming Service (or a stringified IOR) to locate the required object.

5. Optionally, use a UDDI registry. The CapeConnect platform includes a private

UDDI registry that can hold information about Web Services. You can

interrogate the registry to list the available Web Services.

6. Test your Web Service. Use the CapeStudio Web Service Tester (or NetTool,

as shown depicted in Figure 2) to analyze your Web Service.

CapeStudio includes a UDDI Browser to retrieve information from any public or

private UDDI registry. Publishing details of a Web Service to CapeConnect’s

private UDDI is simplified with the UDDI Publisher tool, which is shown in Figure 6.

Figure 6: Publishing a Web Service to CapeConnect's UDDI registry

 Copyright 2002, Cape Clear Software Page 11 of 20

CORBA and Web Services

Once deployed, the Web Service is immediately available. CapeStudio’s Web

Service Tester generates sample SOAP requests from the WSDL, allowing quick

verification that the Web Service is functioning correctly.

Figure 7: Testing the Web Service with CapeStudio's Web Service

tester

In the following example, CapeConnect exposes a VisiBroker CORBA server as a

Web Service by generating WSDL from the CORBA IDL. The following CORBA IDL

is input:

// Bank.idl

module Bank {

 interface Account {

 float balance();

 };

 interface AccountManager {

 Account open(in string name);

 };

};

The corresponding WSDL that is generated is:

<?xml version="1.0" encoding="UTF-8" ?>

-

 xmlns http://schemas.xmlsoap.org/wsdl/

xmlns:soap http://schemas.xmlsoap.org/wsdl/soap/

xmlns:tns http://www.capeclear.com/VisiBrokerBankAgentExample.wsdl

xmlns:xsd http://www.w3.org/2001/XMLSchema

xmlns:xsd1 http://www.capeclear.com/VisiBrokerBankAgentExample.xsd
-

< ="VisiBrokerBankAgentExample"
="http://www.capeclear.com/VisiBrokerBankAgentExample.

wsdl" =" "

=" "

=" "

=" "

=" ">

definitions name

targetNamespace

types< >

 Copyright 2002, Cape Clear Software Page 12 of 20

CORBA and Web Services

-

 xmlns:SOAP-ENC http://schemas.xmlsoap.org/soap/encoding/

xmlns:wsdl http://schemas.xmlsoap.org/wsdl/

xmlns:xsd http://www.w3.org/2001/XMLSchema
-
-

-

-

-

-

-
-

-
-

-

-

-

<

="http://www.capeclear.com/VisiBrokerBankAgentExample.
xsd" =" "

=" "

=" ">

xsd:schema

targetNamespace

xsd:complexType name

xsd:sequence

xsd:element name type

xsd:sequence

xsd:complexType

xsd:schema

types

message name

part name type

part name type

message

message name

part name type

message

message name

part name type

message

message name

part name type

message

portType name

operation name parameterOrder

input message

output message

operation

portType

portType name

operation name parameterOrder

input message

output message

operation

portType

binding name

type

soap:binding style

transport

operation name

soap:operation

soapAction

input

< ="CCReference">
< >

< ="reference" ="xsd:string" />
</ >

</ >

</ >

</ >

< ="open">
< ="target" ="xsd1:CCReference" />
< ="name" ="xsd:string" />

</ >

< ="openResponse">
< ="return" ="xsd1:CCReference" />

</ >

< ="balance">
< ="target" ="xsd1:CCReference" />

</ >

< ="balanceResponse">
< ="return" ="xsd:float" />

</ >

< ="Bank.AccountManager">
< ="open" ="target name">

< ="tns:open" />
< ="tns:openResponse" />

</ >

</ >

< ="Bank.Account">
< ="balance" ="target">

< ="tns:balance" />
< ="tns:balanceResponse" />

</ >

</ >

< ="Bank.AccountManagerBinding"
="tns:Bank.AccountManager">

< ="rpc"
="http://schemas.xmlsoap.org/soap/http" />

< ="open">
<

="capeconnect:VisiBrokerBankAgentExample:Bank/AccountManage
r#open" />

< >

 Copyright 2002, Cape Clear Software Page 13 of 20

CORBA and Web Services

-

-

-

-

-

-

-

-

< ="http://schemas.xmlsoap.org/soap/encoding/"
="capeconnect:VisiBrokerBankAgentExample:Bank/AccountManager

" ="encoded" />
</ >

soap:body encodingStyle

namespace

 use

input

output

soap:body encodingStyle

namespace

 use

output

operation

binding

binding name type

soap:binding style

transport

operation name

soap:operation

soapAction

input

soap:body encodingStyle

namespace

use

input

output

soap:body encodingStyle

namespace

use

output

operation

binding

service name

documentation documentation

port binding

name

soap:address location

port

port binding name

soap:address location

port

service

definitions

< >

< ="http://schemas.xmlsoap.org/soap/encoding/"
="capeconnect:VisiBrokerBankAgentExample:Bank/AccountManager

" ="encoded" />
</ >

</ >

</ >

< ="Bank.AccountBinding" ="tns:Bank.Account">
< ="rpc"

="http://schemas.xmlsoap.org/soap/http" />
< ="balance">

<

="capeconnect:VisiBrokerBankAgentExample:Bank/Account#balan
ce" />

< >

< ="http://schemas.xmlsoap.org/soap/encoding/"
="capeconnect:VisiBrokerBankAgentExample:Bank/Account"

="encoded" />
</ >

< >

< ="http://schemas.xmlsoap.org/soap/encoding/"
="capeconnect:VisiBrokerBankAgentExample:Bank/Account"

="encoded" />
</ >

</ >

</ >

< ="VisiBrokerBankAgentExample">
< >Comments typed in by user.</ >

< ="tns:Bank.AccountManagerBinding"
="Bank.AccountManager">

< ="http://localhost:8080/ccgw/GWXmlServlet" />
</ >

< ="tns:Bank.AccountBinding" ="Bank.Account">
< ="http://localhost:8080/ccgw/GWXmlServlet" />

</ >

</ >

- <!--

Created by CapeStudio on Wed May 01 20:02:57 GMT 2002 See

http://www.capeclear.com for more details

-->

</ >

 Copyright 2002, Cape Clear Software Page 14 of 20

CORBA and Web Services

As shown in this example, WSDL has a very specific syntax and format. One of the

key benefits of CapeStudio is that the WSDL is generated automatically, without

the need to edit the WSDL or source IDL in any way. CapeStudio also includes an

innovative WSDL Editor, which is shown in Figure 8, for viewing and editing WSDL

in a graphical way. The use of CapeStudio’s tools reduces errors and saves

considerable time and effort, both during the learning phase and during

development.

Figure 8: CapeStudio’s WSDL Editor

A more detailed tutorial, based on the TAO ORB, is located at

www.capescience.com/corba.

Business Value from Web Services

Optimistic visionaries predict a day when “millions of Web Services” are

commercially available to businesses (and consumers) for use as the building

blocks for modern software systems, and are used internally or externally.

However, a more practical approach for an initial project involves the reuse of

existing CORBA logic, along with Web Services technology to expose these

systems in a new way. This strategy will shift the focus to Web Services benefits

(and new integration options) rather than on new development efforts.

There are many immediate uses for CORBA-based Web Services:

 Copyright 2002, Cape Clear Software Page 15 of 20

• Enterprise Application Integration (EAI): SOAP can be used to integrate

CORBA logic with other enterprise systems such as J2EE and .NET.

CORBA and Web Services

 Copyright 2002, Cape Clear Software Page 16 of 20

• Deploying applications across firewalls: SOAP (over HTTP or HTTPS) can

be used to integrate applications across firewalls. This is particularly useful

for business partner integration or browser-based, customer-facing

applications.

• Exposing CORBA applications to new users and development teams: ROI is

increased, because mainstream developers (such as JSP or Visual Basic

programmers) develop the client-side application, while specialist CORBA

programmers write the back-end logic.

• Packaged application integration: Web Services support is being added to

many packaged applications. For instance, Cape Clear offers pre-built Web

Services for accessing salesforce.com data.

• Component reuse and customization: The UDDI registry and XSLT support

in CapeConnect enable the publishing and customization of Web Services.

Valuable IT assets can now be reused and customized within the

organization, reducing data duplication and software development.

Conclusions

CORBA and Web Services were developed for different reasons using different

technologies, yet they are complementary in nature. CORBA provides a mature

middleware infrastructure, with robust and scalable features and services, for

building mission-critical systems. Recently, there has been much industry analysis

about the future of Web Services and its potential for IT innovation and new

business models. This should not distract from the fact that Web Services

platforms already provide the necessary technology to leverage existing CORBA

deployments. More importantly, mainstream developers familiar with scripting

language can now access business functionality implemented in CORBA.

Further Reading

Papers and articles on XML and CORBA:

http://xml.coverpages.org/xmlAndCORBA.html

www.omg.org/technology/xml/index.htm

Article on SOAP:

http://www.capeclear.com/clear_thinking/soap.shtml

CORBA and Web Services

 Copyright 2002, Cape Clear Software Page 17 of 20

OMG’s Web Services and CORBA information:

http://cgi.omg.org/cgi-bin/doc?mars/02-06-03

http://cgi.omg.org/cgi-bin/doc?mars/2002-06-04

Information on the World Wide Web Consortium (W3C) XML standards:

http://www.w3.org/2000/xp/

Cape Clear’s Developer Network:

http://www.capescience.com

Terminology

application programming interface (API)

The specification of how a programmer writing an application accesses the

behavior and state of classes and objects.

CapeConnect XML engine

The component that converts SOAP messages into RMI or IIOP calls on Java/EJB

or CORBA back-end components. It also converts the results of these calls to

SOAP messages and returns them to the client process.

Common Object Request Broker Architecture (CORBA)

An architecture and specification, defined by the OMG, for creating, distributing,

and managing distributed objects in a network.

deployment

The process whereby software is installed into an operational environment.

Document Object Model (DOM)

A tree of objects with interfaces for traversing the tree and writing an XML

version of it, as defined by the World Wide Web Consortium (W3C) specification.

Document Type Definition (DTD)

A description of the structure and properties of a class of XML files.

Extensible Markup Language (XML)

A flexible way to create common information formats and share both the format

and the data on the World Wide Web, intranets, and elsewhere.

firewall

A functional unit that protects and controls the connection of one network to

other networks. It prevents unwanted or unauthorized communication traffic

CORBA and Web Services

 Copyright 2002, Cape Clear Software Page 18 of 20

from entering the protected network and allows only selected communication

traffic to leave the protected network.

Hypertext Transfer Protocol (HTTP)

The set of rules for exchanging files (text, graphic images, sound, video, and other

multimedia files) on the World Wide Web. The HTTP application protocol is based

on TCP/IP, which underlies information exchange on the Internet.

Microsoft SOAP Toolkit

A Microsoft programming tool that enables developers to use Microsoft Visual

Studio 6.0 to build, expose, and consume Web Services (for example, from Visual

Basic 6 applications).

Remote Procedure Call (RPC)

A protocol for requesting a service from another program, which may be located

on another computer in the network, without having to understand the network

details.

schema

In XML, a conceptual framework that describes the underlying structure of a

collection of elements.

Secure Hypertext Transfer Protocol (HTTPS)

A Web protocol developed by Netscape that encrypts and decrypts user page

requests as well as the pages that are returned by the Web server. See also

Hypertext Transfer Protocol (HTTP).

Simple API for XML (SAX)

An event-driven, serial-access mechanism for accessing XML documents.

Simple Object Access Protocol (SOAP)

An RPC mechanism, based on XML, to access services, objects, and servers in a

platform-independent manner.

Uniform Resource Identifier (URI)

A superset of URL, a URI is a necessary part of the HTTP header in a SOAP

request.

Uniform Resource Locator (URL)

The address of a resource available on the Internet. It contains the name of the

protocol required to access the resource, a domain name identifying a specific

computer on the Internet, and a hierarchical description of the resource.

CORBA and Web Services

 Copyright 2002, Cape Clear Software Page 19 of 20

Universal Description, Discovery, and Integration (UDDI)

A meeting place for Web Services, UDDI is a specification for information

registries of Web Services. A UDDI repository stores descriptions about

companies and the services they offer in a common XML format.

Web Services

Self-describing, self-contained, modular applications that have a WSDL interface

and are accessible via SOAP. Web Services enable developers to integrate

applications using different platforms, object models, or programming languages.

Web Services Description Language (WSDL)

The common language for describing Web Services. It enables service providers

and requestors to communicate with each other, detailing the data types and

operations available.

Web Services Meta Language (WSML)

A language, specific to the Microsoft SOAP Toolkit, that enables developers to

map Web Services to COM objects. When using the Microsoft SOAP Toolkit with

CapeConnect, WSML definitions enable SOAP clients to send and receive complex

data types.

XML Schema Definition (XSD)

The World Wide Web Consortium standard for specifying XML schemas. See also

Extensible Markup Language (XML).

CORBA and Web Services

 Copyright 2002, Cape Clear Software Page 20 of 20

	Contents
	The Emergence of Web Services
	Web Services Standards
	XML
	WSDL
	SOAP
	UDDI

	CORBA and Web Services
	Comparing Technologies

	Building Web Services from CORBA
	Development
	Runtime

	Business Value from Web Services
	Conclusions
	Further Reading
	Terminology

