
OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 1 / 13

OCEB White Paper
on
Business Rules, Decisions, and PRR

Version 1.1, December 2008

Paul Vincent, co-chair OMG PRR FTF
TIBCO Software

Abstract

The Object Management Group’s work on standards for business rules has led to a
production rules standard - PRR, for Production Rule Representation. This standard
has been developed by a consortium of industry and academic interests under the
auspices of the OMG Business Modeling and Integration Domain Task Force, which
also covers business architecture and process modeling. PRR provides UML
extensions for rule-based behaviors, in particular focusing on the production rules
used commonly to provide BPM and SOA systems with automated decisions via
BREs and BRMSs.

Introduction
Most students of Computer Science will have come across production rules during the
study of the expert systems and knowledge-based systems that were popular in the
1980s and early 1990s. Expert systems such as Mycin and R1 resulted in a whole new
genre of artificial intelligence tools that often represented expert knowledge, for
example about diagnostic problems, as if-then rules that were executed by rules
engines on an as-required basis. Much of this early work also progressed to
knowledge representation research that is now realized through ontology languages
and formal logic representations – a common area of study in today’s AI research
labs.

In order to efficiently represent the expert knowledge and practices required for these
knowledge-based systems, research was carried out into rule execution algorithms and
languages to allow for efficient execution. In particular, it was found that rule
conditions could effectively be compiled into an efficient pattern matching
mechanism called the Rete algorithm. In the 1990s, it was realized that expert and
knowledge-based systems were effectively automating those business rules in
organizations used to automate decisions. The result was a trend for software
developers to embed these Business Rule Engines (BREs) to handle the business logic
in their applications or custom processes. These BREs were mostly Rete-based and
worked in a data-driven, forward chaining manner, whereby the action of some rule
would set some data that resulted in some other rule being fired.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 2 / 13

Rules and Business Rules
UML models have for a long time been constrained through constraint rules defined
with OCL – Object Constraint Language. This is a technical modelling standard for
specifying interrelationship constraints on UML classes. OCL is part of the UML
specification.

However, business rules are defined using business terminology, so SBVR – the
Semantics of Business Vocabulary and Rules standard – was developed. SBVR, as its
name implies, defines a vocabulary for terms and facts as well as the rules that relate
them. SBVR provides a formal mechanism for documenting all business rules relating
to business policy in a formal business-domain language. However, SBVR does not
concern itself with detailed behavioral rules for business operations, processes or
decisions. It is envisaged that SBVR rules would guide or influence the design of
operational processes and decisions, and these processes and decisions would then
enforce or implement these policy rules.

The OMG MDA (Model Driven Architecture) defines various levels of models with
the idea of automated or guided transformations between them. Therefore, a business
or Computation-Independent Model (MDA CIM), such as a term and fact model
defined in SBVR, can in theory be transformed to a UML Class model, and the
associated SBVR policy rules mapped to associated UML OCL constraints, with the
UML Classes and OCL being at the platform-independent model level (MDA PIM).
Such mappings from SBVR are the subject of ongoing research.

The business rules managed in the usual BRMS (Business Rule Management System)
are not generally SBVR type policy rules, but usually represent operational rules and
decisions to drive automated business processes. Such rules are also at the level of the
MDA CIM, but in vendor-specific representations and custom translations to the
respective vendor-specific BRE languages.

BRE rule languages are typically representations of production rules, and represent
behaviours such as methods, Action Languages, scripts, and activity diagrams. Such
rules are vendor-specific and can be represented at the Platform-Specific Model level
(MDA PSM).

Tying the MDA CIM-level concepts together is the OMG BMM (Business
Motivation Model), which provides a structure for describing business means and
ends, and associated strategies, tactics, policies and business rules to drive operational
systems and decisions.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 3 / 13

Figure 1 – The relationship between Business Rules and Production Rules

Business Rules

Documentation Formal Structured
Text

Policy-level
e.g. SBVR

Operational-level
e.g. BRMS

Business Rules

Documentation Formal Structured
Text

Policy-level
e.g. SBVR

Operational-level
e.g. BRMS

Decision Models

Rules Activities

Executable Code

Business Rule statements

Production Rules

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 4 / 13

Production Rules
Production rules represent “if <condition list> then <action list>” statements. For
common production rule engines used as BREs1 these are defined declaratively,
which means they can be defined in any order (as the rule engine will determine
execution order). Usually such rule engines are also typically classed as inference
engines, as they can infer new information. The rule conditions (or LHS - Left Hand
Side) and actions (or RHS - Right Hand Side) are commonly expressed in terms of a
business object model, equivalent to a UML class model, on which the rules are
dependent. One consequence of this is that changes to the structure of the class /
object model may require any dependent rules to be re-factored to suit.

Production rules are usually organized within rulesets. A ruleset may represent simply
a structure for the convenience of managing the rules, or provide an execution context
(for example with parameters that map onto business terms used in the rules)
representing a program function or method.

Rulesets, or groups of rulesets, can be used as a rule service or decision service, either
invoked directly from a calling application, or as a service such as a web service.
Often this usage is associated with stateless operation of the rule engine – no
information is retained in the rule engine between transactions.

For example, a “determineLoanValue” rule service could require several rulesets
together with a business object model detailing the loanee and associated product,
with the computations defined in the rules’ actions.

Note that because it is often easier to design large rule systems as a sequence of
independent rulesets to be executed in some order, rule engines sometimes extend the
notion of rule execution with mechanisms to orchestrate rulesets – typically called
“ruleflows”.

Another approach is to deploy rulesets in a continuous, event-driven rule engine or
agent for tasks such as CEP (Complex Event Processing). Other UML constructs such
as state models might be used to provide context for rule execution. Modeling the
state of entities over time, and the continuous processing of events, usually requires
stateful operation of the rule engine so that information is retained in the rule engine
between events.

1 Although BRE (Business Rule Engine) is not formally defined, a good definition might be “a rule
engine whose rules are described in terms of a business object model or business terms and facts”.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 5 / 13

Figure 2 – PRR Definition of ProductionRule

Production Rules in Business Processes

For business processes represented in a BPMS (Business Process Management
System), detailing decision logic within the process diagram often obfuscates the core
business processes. Business processes can represent manual (workflow) or
automated tasks, with the commonest form of process representation being BPMN
(Business Process Modeling Notation).

Occasionally subprocess diagrams or graphs will be used to specify re-usable decision
logic. In other cases, separate declarative rules may be preferred, and the process
activity will delegate to a rule service or decision service made up of production rules.
Often, this rule service will return a decision value for a BPMN gateway in order to
influence business process execution or represent a business decision.

Less common but increasingly significant roles for rules in processes include the
selection of business processes, where a rule executes a business process as an action,
and process monitoring, where a rule is used to check the status of running processes.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 6 / 13

Decision Models versus Production Rules

The most common format2 for BPM users to represent business rules is the decision
table. This provides a common set of condition and action statements, with the table
providing different values representing different rules. Some systems map decision
tables to a specific algorithm; others will map them to component production rules.
Similar models are decision trees and decision graphs.

Note that decision models output from Predictive Analytics tools may or may not be
usefully mapped to production rules. One example might be a segmentation model
representing a decision tree segmenting customers for marketing offers, which maps
to a decision tree and thence production rules. Alternatively a model type such as a
neural net representing a face-recognition feature will not usefully map to production
rules. Often such analytics tools generate models in a language called PMML
(Predictive Model Markup Language).

Figure 2 – The Relationship between Decision Models and Production Rules

2 Only anecdotal evidence exists for this. It is likely to be a subject for future research.

Rules Activities

Business Rule statements

Production Rules

Decision Model

Graphical Algorithmic

Linear Cyclic

Decision Table

Decision Tree

Decision Graph

Analytical

Neural Net

Ruleflow

Decision Model

Graphical Algorithmic

Linear Cyclic

Decision Table

Decision Tree

Decision Graph

Analytical

Neural Net

Ruleflow

Executable Code

Decision Models

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 7 / 13

Rationale for a Production Rule Representation

Most rule engine vendors define their own formats for Business Object Models and
(production) rules. In addition UML modeling tools rarely support the notion of
declarative rules outside of OCL class constraints. The UML Production Rule
Representation (PRR) was defined to provide an MDA Platform Independent Model
(PIM) for production rules that would standardize model-driven engineering when
using common BREs.

PRR achieves 2 main goals:
¾ a basic Rule and Ruleset behavior that can be subclassed to other executable rule

types as needed.
¾ a metamodel for the production rules used in BREs3 that use the Rete type of

approach. In addition it provides a non-Rete type to allow for simple rule
definitions as used in many BPM systems’ internal definition of rules.

Figure 3 – PRR definition of ComputerExecutableRule and Ruleset

3 Hereafter, the term BRE is used as a synonym for Rete-driven inferencing production rule system, as
per common usage.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 8 / 13

Figure 3 – ProductionRule vs ComputerExecutableRule

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 9 / 13

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 10 / 13

Figure 5 – The PRR Metamodel

Limitations of PRR 1.0

Ideally, PRR would provide a common language for defining rules against UML
classes and objects, and a common diagramming or rule entry format. The former is a
particular limitation due to the fact that there is no standard script or concrete action
language for use in UML – this is because UML is required to be open to all types of
platform specific languages. For this reason, PRR itself does not provide a complete
answer to a standard rule language for BPMSs.

A non-normative (i.e. not part of the official standard) expression language for
conditions and actions – PRR OCL, based on OCL – is included in the specification
as an example of a PRR-suitable expression language.

These limitations will likely be addressed in future versions of PRR.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 11 / 13

How PRR Rules Work
PRR’s main goal is to provide a common metamodel for the production rules used in
BREs. The major BRE vendors all support a common modus operandi, whereby rules
are defined4 in terms of rule variables5, conditions and actions.

To explain6 the semantics of PRR rules we must first consider what happens to rules
at runtime. Rules are generally defined in terms of classes (represented in the rule
variables), and the condition statements are Boolean expressions that both filter
instances of the rule variables and act as join statements between them. At runtime,
the business object model is populated with data and events for the use of the rules –
this is termed “working memory”.

Figure 3 – A Production Rule Definition

During execution, the combination of rule variables in the rule definition can be
considered as representing a tuple. Potentially, all possible combinations of rule
variables, instantiated with any instances currently defined in working memory, are
available for rule processing – meaning that 0 to many tuples may be valid. But

4 For programmers familiar with the IF.. THEN.. construct in a conventional 3GL, the main obstacles
to understanding production rules are the declarative definitions and the rule variables.

5 RuleVariables are described differently by vendors, such as rule declarations (TIBCO), variables
(ILOG) and patterns (Blaze).

6 This description of rule engine semantics is not intended to be authoritative, but conceptual enough
for users to understand. In particular we do not describe here rule scheduling (for execution), non-
monotonic reasoning, or conflict resolution.

� Declarative Rule definition
{ Defined in terms of RuleVariables
{ Each tuple of RuleVariables

+ the instantiated rule condition
+ the instantiated rule action
represents a “rule instance”

� Scope / declaration
{ Classes / Events relevant for the rule

� Conditions
{ Filters on declarations
{ Joins across declarations

� Actions
{What to do

for each tuple
that satisfies the conditions…

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 12 / 13

- when any rule variable has no instance in working memory,
then no tuple can be defined and the rule cannot be considered for execution.

- when only 1 instance of each rule variable is in working memory,
then only a single tuple is valid and only 1 rule firing is possible.

Rules will “fire” – i.e. the rule actions will be executed - if the condition expression
holds for the rule and the rule is scheduled to execute (versus any other rules).

Typically, rule engines will execute all tuples for all rules until there are no more to
be processed. Of course, some rule actions may additionally affect working memory
such that new rules and new tuples become valid for processing, and other rules and
tuples become invalid. Rule engines handle this behaviour automatically, adjusting
the schedule of rule firings accordingly.

From the above, it can be seen that production rules for rule engines are not just
program statements, but actually represent patterns that match against instances of
classes at runtime – indeed, a single rule definition can easily execute against 100s or
1000s of objects when such objects are instances of its defined rule variables.
Additionally, the use of efficient algorithms in rule engines ensures that their
execution strategy is extremely efficient, especially when inferencing is required.

Note that for rule or decision services where:

- no inferencing is required in a ruleset,
- only 1 rule can fire,
- few if any rule variables have more than 1 instance at runtime

then the rules may be more efficiently executed as conventional procedural code,
without the use of a rule engine. Some BREs allow, and most BPMSs only support,
such a sequential execution mode. Therefore this model of behavior is also supported
by PRR.

Use Cases for PRR
The main role for PRR, as envisaged at its conception, was to support UML modelers
wanting to exploit rule engines for model-driven engineering, deploying decision
rules to runtime components such as those provided by TIBCO, Ilog or Blaze rule
engines.

The popularity of BPM systems, and the use of UML class models to model business
entities in process modeling, means that PRR is also likely to play a future role in
process management – for example, modeling decision activities.

Another area of rapid adoption is CEP, which combines events with data to identify
patterns and take appropriate decisions and actions. Vendors such as TIBCO use a
production rule engine for this purpose.

OCEB White Paper on Rules, Decisions and PRR, v1.0 pg 13 / 13

Summary

PRR provides a standard production rule metamodel to help marry model-driven
engineering with a standard approach to representing production rules used in rule
engines for business decisions. It is also a tentative first step in modeling behavioral
rules in UML and providing the basis for standardized decision representations for use
alongside BPMN.

* * *

Acknowledgements:
PRR Chairs: Christian de Sainte Marie (ILOG), Paul Vincent (TIBCO)
PRR Contributors have included the following organizations: TIBCO, ILOG,
No Magic, Fair Isaac, Pegasystems, IBM, Sandpiper, LibRT, members of RuleML
Diagrams: produced by Robert Ong of No Magic with MagicDraw

Notes:
Some terms and names in this document may be subject to © and ™ of their
respective owners.

