
June 26, 2008 1

Serban Gheorghe

Vice-President, Software Technology

Edgewater Computer Systems Inc.

serban.gheorghe@edgewater.ca

RTEdge
TM

Platform Overview

Copyright ® 2008 Edgewater Computer

Systems, Inc. All rights reserved

June 26, 2008 Edgewater Computer Systems, Inc.

2

Outline

 What is RTEdge

 RTEdge domain focus:

 The Critical Real-Time Problem Space

 RTEdge approach to proof based engineering

 Core Concepts of the RTEdge Modeling Subset

 AADL, UML2 and MARTE roots

Edgewater Computer Systems, Inc.

3

What is RTEdge

 A development platform for a sub-class of real-time embedded systems

 Discrete event, reactive or command/control systems

 Mix of hard real-time constraints, soft real-time constraints and best effort
 Degrees of proof for timing constraints range from high assurance to no assurance

 Distributed over multiple processors linked with communication channels
 Multiple connected hardware resources, multiple connected schedulability domains

 End-to-end deadline guarantees over multiple computing resources and
communication resources

 Safety critical or mission critical concerns
 Requires high assurance correctness proof for a key subset of behaviors

 RTEdgeTM is Edgewater’s tools framework for proof based engineering of real-
time distributed embedded safety/mission critical applications

 Release 1.1 Limited Availability is currently deployed in technology trials

 Release 1.2 General Availability is in final testing

June 26, 2008

Edgewater Computer Systems, Inc. 44

RTEdge
TM

Platform Components

Model Driven Real-Time System Development

 Eclipse based open platform

Virtual Time

Development Platform

RTEdge Meta Model
RTEdge Modeling Subset

● RT Component engineering

● Discrete event flows with time constraints

● Schedulability analysis (DMS) support

● Multi-node allocation support

Code Generator

Application

code

RT Edge Executive

Virtual Time

Simulation Kernel

GP OS (Linux)

Target CPU

RT

Debugger

Hardware

Simulation

Application

code

RT Edge Executive

Real Time OS

Target CPU

RT

Debugger

Real Time

Target Platform

Execution

Semantic
Equivalence

Target Adapter

Model

Debug Info

Execution

Times

Debug Info

Execution

Times

State Machine

Editor
Structure Diagram

Editors
Schedulability

Analysis
Model Checker

Interface
DOORS link

June 26, 2008

Flow and Deadline Analysis

 Model analyzer computes all event flows through model

and computes worst case response times ensuring

deadlines are met

 Priorities assigned based on Deadline Monotonic Analysis

 Ceiling Priority Protocol for shared resource access

 Global Worst Case Response time analysis

Copyright ® 2008 Edgewater Computer

Systems, Inc. All rights reserved 5

Build Perspective

Copyright ® 2008 Edgewater Computer

Systems, Inc. All rights reserved 6

 Automatic code generation and compiler

ensures code matches the model

Debug Perspective

Copyright ® 2008 Edgewater Computer

Systems, Inc. All rights reserved 7

 Integrated debugger exposes runtime

application and reduces test time

Edgewater Computer Systems, Inc. 8

RTEdge tools framework design

goals
 Temporal correctness - static proof via mathematical analysis

 Functional correctness – degrees of formal specification and static
compliance analysis

 Achieve substantially higher Processor and Bandwidth average
utilization than current synchronous design approaches
 Preemptive Priority processor scheduling policy

 Priority queues based access to communication channels

 Support for Edgewater E1553TM data bus, future support for other
communication technologies

 Component centric, processor independent approach, results in
portable applications
 Systematic separation of mandated temporal constraints from constraints

introduced by allocation to target platforms

 Core requirements for the RTEdge platform driven and validated by
the USAF Aeronautical Systems Centre

June 26, 2008

Edgewater Computer Systems, Inc. 9

Outline

 What is RTEdge

 RTEdge domain focus:

 The Critical Real-Time Problem Space

 RTEdge approach to proof based engineering

 Core Concepts of the RTEdge Modeling Subset

 AADL, UML2 roots and relationship to MARTE

June 26, 2008

Edgewater Computer Systems, Inc. 10

The Evolution of the Real Time Problem

Space

Processor

Latency

Bus

Latency

Radio Channel

Latency

Bus

Latency

Processor

Latency

Processor

Latency

Processor

Latency

End to End Latency

Embedded

Controller

Physical Process

Sensors Actuators

Input Arrival

at time t

Correct output

at time t + d

Event e1= input x Event e2= output y

Sensors Actuators

Task T

e1 arrives at time t e2 arrives at t + d

Real Time

Embedded Controller

Distributed Real

Time

Applications

2008

…to real-time network

applications…

1978

…from control loops…

June 26, 2008

Edgewater Computer Systems, Inc. 11

Current design paradigm limitations

1. Critical Real-Time Avionics Systems design is currently based on total temporal determinism
 Main problems:

 Modern mission applications are Event Driven, unlike traditional Time Driven control loops
 Time division resource allocation IS NOT WORK CONSERVING

 leads to low average utilization of processing capacity and channel bandwidth

 Systems do not scale up
2. Barriers to proving temporal and computational behavior with high assurance stem from

 Informal Specification of required behavior
 The use of multiple languages and formalisms for design and implementation

Pushing through the limits:

 Evolution to Critical Real-Time System design based on priority based scheduling with
mathematically guaranteed deadlines
 See 2005 FAA Schedulability Study (document DOT/FAA/AR-05/27)

 Evolution to a Component centric design practice based on formal Specification Contracts
 Enable high assurance, formal design time proof of meeting certain functional and non-functional

properties deemed to have a safety impact

Other projects in the modeling space with similar goals:
 UML Omega Profile
 COTRE – TOPCASED
 ASSERT (European Space Agency)

June 26, 2008

Edgewater Computer Systems, Inc. 12

Determinism – foundation of Safety Critical

Systems
 Deterministic Computation

 e1(d1) an input event e1carrying data d1

 presented when the system is in the global state S1

 will result always in the same output event en(dn)

 and the same sequence of intermediary events, computation steps and states (i.e. behavior)

Events

Computation

Tasks

State

e1(d1)

S1

T1

e2(d2)

S2

T2 Tn-1

en(dn)

Sn

. . .

 Temporal Determinism
 Total

 all events at pre-defined times
 Selective

 Distinguished events constrained in time

Time t1 t2 tn <D

The essence of Safety Critical Systems design is to SPECIFY without ambiguity

and PROVE with high assurance Computational and Temporal behavior

June 26, 2008

Edgewater Computer Systems, Inc. 13

Outline

 What is RTEdge

 RTEdge domain focus:

 The Critical Real-Time Problem Space

 RTEdge approach to proof based engineering

 Core Concepts of the RTEdge Modeling Subset

 AADL, UML2 roots and relationship to MARTE

June 26, 2008

Edgewater Computer Systems, Inc. 14

Programming Languages “safety subset” approach

 A strategy to improve the Functional and Temporal determinism of programs
written in General Purpose Languages (GPLs)
 Choose a “safety” subset of the language

 Spark83, Spark95, Ravenscar (ADA)

 Misra C, Misra C++

 JSF/C++

 Build Static Analysis tools to enforce subset rules and prove properties
 Spark Examiner, LDRA, etc…

 The “safety subset” strategy pioneered by Spark ADA is very much relevant in a
MDD context:
1. Constrain the state space complexity upfront, at design time

 Assertions, use of simple types, range types, behavior expressed as FSM, constrained inputs

2. Eliminate possibility of expanding or changing the state space at run time
 Eliminate dynamic instantiation, support “mode changes” for controlled state space modification

3. Eliminate language constructs that could impact the validity of static state space
exploration
 Eliminate implementation dependent, ambiguous or non-deterministic constructs, aliasing,

pointers, side effects etc..

4. Introduce Component Interfaces annotated with Specification Contracts
 Component Interface types are separate from Component Implementation types

 Techniques for checking Implementations compliance to the Component Interface Specification are
provided

 Defined composition rules for Composite Structured Classifiers, re-using Specification contracts of the
Parts

5. Define the formal syntax and semantics of the subset

June 26, 2008

Edgewater Computer Systems, Inc. 15

The RTEdge MDD “Correct by Construction”

Approach

 Minimal subset of modeling constructs with precise execution semantics based on AADL
and UML2 => RTEdge Modeling Subset
 Defined such that is Static Analyzable

 Includes RT Component Interface Specification Contracts

 Correct by Constructions means
 Predict by Static Analysis at design time

 Static Analysis performed
 incrementally while building the model or

 Global on demand or before execution

 No modeling constructs that can result in unpredictable run time behavior – Computational determinism

 Processor and Communication Channels Schedulability Analtsis - Temporal determinism

 Verify and Enforce design assumptions at execution time

 Same modeling subset used consistently for the whole development cycle to produce
 Specification models with increasing degrees of formality

 High Level Design models with simulation capabilities

 Integration, Build and Execution platform for Implementation Models

 From simple Real Time Components to a System of Systems

The Model is the Specification

The Model is the Design

The Model is the Implementation

June 26, 2008

Edgewater Computer Systems, Inc. 16

Outline

 What is RTEdge

 RTEdge domain focus:

 The Critical Real-Time Problem Space

 RTEdge approach to proof based engineering

 Core Concepts of the RTEdge Modeling Subset

 AADL, UML2 roots and relationship to MARTE

June 26, 2008

Edgewater Computer Systems, Inc. 1717

RTEdge
TM

Modeling Subset Core Concepts

1. RT Component centric modeling
 Atomic units of concurrency with State Machine behavior

2. RT Components composition
 Structured Classifiers

3. Component Interface and Component Implementation type hierarchies
 The “implements” relationship

 Component Interface Inheritance

 Component Implementation Inheritance

 Component Interface Specification Contracts

4. Unified Processor and Channel Resource Scheduling
 Discrete event Flows

 Capsule Interface Flow specification

 Capsule Implementation Flows calculation

 Schedulability Analysis

June 26, 2008

RTEdge basic component

 Atomic Capsule (AC) – the basic Active component
 corresponds to an AADL thread

 with behavior described by FSMs

 with variables declared from a set of elementary types (Misra C types)

 with run to completion State actions expressed as a Misra C function

 Corresponds exactly to a MARTE RtUnit with
 isDynamic = False - all owned SchedulableResources needed for execution

 Only asynchronous messages (Signals) supported through AC Ports
 Ports described by groupings of Signals called Protocols

 Corresponds to MARTE <<SignalSpecification>> interfaces

 … and to AADL bidirectional event data ports

 An optional Protocol State Machine can be associated

 FSMs are a restricted subset of UML2 state machines
 No concurrent (orthogonal) regions, no history states

 Clear separation of states and trigger events into
 Stable States – synchronization points, no state action, accepting only external

signals as triggers

 Transient States – have an entry state action, create an internal action completion
event with an enum return code

 Support operational mode changes, one FSM per mode, same variables

 Explicit data sharing between Atomic Capsules through Data Ports
 Provide/Require access to public AC data

 Support Clock objects and broadcast clock ports

June 26, 2008 Edgewater Computer Systems, Inc. 18

Edgewater Computer Systems, Inc. 1919

Atomic Capsule

RTEdge Atomic Capsule

int timeout_count;

reservation_struct rs;

AC State Machine

S1

/outlist Tout

S2
S2.act

S1.Ti

me+

25

S3
S3.act

res_request/

Init/

Ports

External AC Events
• to/from AC Ports

Internal AC events
• produced/consumed by the

state machine

• activity completion events

• timeout events

Activity Completion Event

Timeout Event

External Event Trigger

out(port2, S1timeout,timeout_count);

out(make_reservation,res_ack,1);

outlist Tout

Events output list

Protocol

reservation_port

port2

res_request

res_ack

External Events

DataSignalDataSignal

integerres_ackReservation

_struct

Res_request

OutputInput

June 26, 2008

Behaviour

 Restricted state machines with embedded Misra C code for actions

 Syntactic access to all possible inter-AC interactions through messages or data sharing

 Can statically explore state space without crossing into the C language domain

Copyright ® 2008 Edgewater Computer

Systems, Inc. All rights reserved 20June 26, 2008

2. RT Structured

Component

 RTEdge Composite Capsule

 Contains Atomic Capsules or other Composite Capsule Parts

 Connectors between compatible ports, behavior emergent from interactions

 Corresponds to AADL thread group, UML2 Structured Classifier, MARTE Structured

Component

Copyright ® 2008 Edgewater Computer

Systems, Inc. All rights reserved 21June 26, 2008

Edgewater Computer Systems, Inc. 22

3. Component Interface and

Component Implementation Types

IMPLEMENTS

• RTEdge supports independent inheritance trees for Interfaces and Implementations

• Capsule Implementations must conform to Capsule Interface Contracts

• Capsule Interface Contracts can have increasing degree of formality

• Flow declarations, Protocol State machines, Assertions

INHERITS

Capsule

Interface

A_proposed

Port A Port B

Port C
Port D

Capsule

Implementation

A_HLD

Port A Port B

Port C

Port D

INHERITS

Capsule

Implementation

A_detailed

Port A Port B

Port C

IMPLEMENTS

HL Model

Detailed

Model

Capsule

Interface

A_SPEC_initial

Port A

Port B

Port C

Dat

a

Signa

l

DataSigna

l integ

er

res_ackReservatio

n

_struct

Res_reque

st

OutputInput

Protocol

June 26, 2008

Edgewater Computer Systems, Inc. 2323

Formal Capsule Specification Support

make_reservatio
n

AC State Machine

S1

outlist Tout

int timeout_count;

reservation_struct rs;

S2
S2.act

+25

S3
S3.act

res_request

init

port2

Atomic Capsule

Ports

DataSignalDataSignal

integerres_ackReservation

_struct

Res_request

OutputInput

Protocol State Machine

Accept

Reject

Res_request

Res_ack

Specification

Capsule

Assertions
-on state variables

-on input/output

values

RTEdge support for Assertions, Protocol State Machines and Spec Capsules

enables Automatic Test Generation and the link to formal Model Checkers

June 26, 2008

Edgewater Computer Systems, Inc. 24

Component Interface Specification

Contracts

 Very high level of specification for RT Components interfaces

 Functional Interface Contracts

 Capsule Ports typed by Protocols (in-out signals, data)

 Protocol State Machine (signal order on a port)

 Data assertions (on signal data)

 Specification Capsules (signal order between different ports, assertions on

public data)

 Temporal Interface Contracts

 Flows – causal event relationship

 intra capsule

 Environmental

 Flows with Deadlines

June 26, 2008

Edgewater Computer Systems, Inc. 25

 A further degree of refinement

 A Capsule Implementation Type is either specified as a Composite Capsule Implementation Type
or an Atomic Capsule

 Composite Capsule Implementation Types are used for specifying component structure

 Capsule Roles – named references to Capsule Interface or Implementation Types

 Atomic Capsules are used for defining behaviour

Specifying Capsule Implementation Types

Capsule Interface

Atomic Capsule

int a;

char b;

IMPLEMENTS
Capsule

Implement

BBIMP
Capsule

Interface

CC

Composite Capsule

Part BB1

Part CC1

June 26, 2008

Edgewater Computer Systems, Inc. 26

 Specifies a causal relationship between an input event and an output or internal event

 A Flow uses processor and/or communications channel resources

 Is the key RTEdge element for schedulability analysis

 User specifies timing information for Independent System Inputs

 period or burst signal specification (interarrival and integration period, optional jitter, phasing)

 deadline for distinguished end of flow events

 RTEdge automatically calculates flows and Worst-Case Response Times based on period, deadline and
other flows contending for the same resources

4. Component Interface and Implementation Flows

Adjust_flow {{Sensor_in, Adjust_ctrl}, P=100ms., D=75ms}

IMPLEMENTS

IF_C1
Adjust_ctrl

Sensor_In

Specified on Capsule Interfaces

B

CC1

A

E

DCC
2

Sensor_In

Adjust_ctrl

Calculated on Capsule Implementations

June 26, 2008

Edgewater Computer Systems, Inc. 27

Concurrent Control Flow Graphs

(CCFG)

• Calculated Causality Graph

rooted in a Independent

System Input

• Used for Worst Case

Response Analysis

• Can calculate a derived

UML Activity Diagram

June 26, 2008

Edgewater Computer Systems, Inc. 2828

End to End Flows and Schedulability Domains

Extended 1553 Bus

Sensors Actuators

Processor

B

C

A

E

D

Processor

B

C

A

E

D

RTEdge Event Flow
RTEdge Event Flow

Channel Flow

End to End Deadline

S1

S2

S3

Schedulability Domains

S1

S2

S3 Processor

Channel

• RTEdge calculates channels and processors schedulability based

on Flow specifications, channel models and run time execution models

• Flows get their priorities re-mapped when they cross schedulability domains

June 26, 2008

