
IBM Rational

© 2007 IBM Corporation

Model-Driven Development for Real-Time and 
Embedded Systems

Bran Selic
Malina Software Corp. and IBM Canada

selic@acm.org 



IBM Rational

© 2003 IBM Corporation2

Outline

 Introduction: Model-Driven Development and UML

 On Software Physics and Software Platforms

 MARTE: Combining Software Physics with MDD

 Summary and Conclusions



IBM Rational

© 2003 IBM Corporation3

QoS-Constrained Systems

 Software systems whose functional correctness 
critically depends on meeting one or more quality of 
service (QoS) requirements
– Performance, throughput, energy consumption, reliability, etc.
– Usually real-time embedded systems but not exclusively (e.g., 

financial trading systems, gaming/simulation systems)

 Some key design and development challenges of QoS-
constrained systems:
– Coping with the complexity of the physical world
– Meeting QoS requirements cost effectively in the face of 

technological and resource limitations



IBM Rational

© 2003 IBM Corporation4

Fred Brooks on Complexity

 [From: F. Brooks, “The Mythical Man-Month”, Addison 
Wesley, 1995]

 Essential complexity
– inherent to the problem 
– cannot be eliminated by technology or technique
– e.g., the algorithmic complexity of the “traveling salesman” 

problem

 Accidental complexity
– due to use of inappropriate technologies or methods
– e.g., building a skyscraper without modern power tools



IBM Rational

© 2003 IBM Corporation5

Model-Based Engineering: Coping with Complexity

 Engineering model: A reduced representation of some system that 
highlights its properties of interest from a given viewpoint

• We don’t see everything 
at once – only the important
stuff (abstraction)

• Useful models present key 
information in a manner
that supports 
understanding and 
reasoning about a system



IBM Rational

© 2003 IBM Corporation6

Model-Driven Development (MDD) of Software
 An approach to software development in which models play an 

indispensable role

 Based on two time-proven engineering methods:

switch (state) {
   case‘1:action1;
          newState(‘2’);
          break;
   case‘2:action2;
          newState(‘3’);
          break;
   case’3:action3;
          newState(‘1’);
          break;}

(2) AUTOMATION

S1

S3

S2

e1/action1
e2/action2

e3/action3

switch (state) {
   case‘1:action1;
          newState(‘2’);
          break;
   case‘2:action2;
          newState(‘3’);
          break;
   case’3:action3;
          newState(‘1’);
          break;}

(1) ABSTRACTION
S1

S3

S2

e1/action1
e2/action2

e3/action3

Realm of 
modeling
languages 
(e.g., UML)

Realm of 
tools



IBM Rational

© 2003 IBM Corporation7

MDD: The Need for Automation
 The accidental complexity of QoS-aware systems can be 

greatly mitigated by the appropriate use of computer-
based automation

S1

S3

S2

e1/action1
e2/action2

e3/action3 switch (state) {
   case‘1:action1;
          newState(‘2’);
          break;
   case‘2:action2;
          newState(‘3’);
          break;
   case’3:action3;
          newState(‘1’);
          break;}

NotStarted

Started

start

St1 St2

…and what about advanced
modeling languages??

Automatic code generation

BUG

BUG



IBM Rational

© 2003 IBM Corporation8

UML 2: A Standardized Language for MDD
 UML 2 was motivated by the idea of MDD

– Needed a semantically more precise form of UML
 Designed as a “family” of modeling languages

– Controlled ambiguity: semantic variation points
• e.g., scheduling policy, type consistency, polymorphism rules

– Language specialization achieved by providing domain-specific 
constraints for semantic variation = profile

– Advantages:
• Reuse of base language tooling infrastructure
• Reuse of base language knowledge and experience
• Reuse of base language design

– Example: ITU-T SDL language for telecom (Z.100)
• Specified as a UML profile (Z.109)



IBM Rational

© 2003 IBM Corporation9

Example: Adding a Semaphore Concept to UML

«metaclass»
UML::Class

«stereotype»
Semaphore

limit : Integer
getSema : Operation
relSema : Operation

active->size() 
    <= limitlimit <= MAXlimit

Stereotype

Constraints

Iconic
Representation

Base UML 
concept



IBM Rational

© 2003 IBM Corporation10

Example: Using the Stereotype

      «semaphore»

limit = 1
getSema = get
relSema = release

Object

generateXMI()

BinarySem
get ()
release ()

SomeOtherClass
«semaphore»
DijkstraSem

p ()
v ()
      «semaphore»

limit = MAXlimit
getSema = p
relSema = v

«semaphore» 
BinarySem



IBM Rational

© 2003 IBM Corporation11

Example: Using the Stereotype

 It is possible to “unapply” a profile, which leaves just 
the underlying base classes

Object

generateXMI()

BinarySem
get ()
release ()

SomeOtherClass
 

DijkstraSem

p ()
v ()



IBM Rational

© 2003 IBM Corporation12

user1

user2

DBase

unapplyunapply
profileprofile

UML Profiles as a Viewpoint Mechanism
 A profile can be used as an overlay mechanism that can be 

dynamically applied or “unapplied” to provide a domain-specific 
interpretation of a UML model

 Example: viewing a UML model fragment as a queueing network (for 
performance analysis)

user1

user2

DBase

«client»
user1

«client»
user2

«server»
DBase

serviceRate = 10

arrivalRate = 3

arrivalRate = 5

applyapply
profileprofile



IBM Rational

© 2003 IBM Corporation13

UML and QoS

 Standard UML does not provide any standardized 
means for specifying QoS characteristics
– A symptom of a general shortcoming in the software 

engineering culture

 Several profiles related to UML 1.x to deal with this:
– UML Profile for Scheduling, Performance, and Time (SPT)
– UML Profile for Fault Tolerance and Quality of Service

 Most recently: UML Profile for Modeling and Analysis 
of Real-Time and Embedded Systems (MARTE)
– An evolution of SPT for UML 2



IBM Rational

© 2003 IBM Corporation14

Outline

 Introduction: Model-Driven Development and UML

 On Software Physics and Software Platforms

 MARTE: Combining Software Physics with MDD

 Summary and Conclusions



IBM Rational

© 2003 IBM Corporation15

Two Divergent Views

…and a Very Modern One:
“Because [programs] are put together in the context of a set of 
information requirements, they observe no natural limits other 
than those imposed by those requirements. Unlike the world of 
engineering, there are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5) 

May 2002

A Very Ancient View

“All machinery is derived from nature, and is founded on the 
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC



IBM Rational

© 2003 IBM Corporation16

Traditional Engineering Design
ConstructionConstruction

MaterialsMaterials

160,000 kg
160,000 kg

QuantitativeQuantitative
RequirementsRequirementsFunctionalFunctional

RequirementsRequirements

Ξ = cos (η + π/2)
+ ξ∗5

Ξ = cos (η + π/2)
+ ξ∗5

DesignDesign



IBM Rational

© 2003 IBM Corporation17

How Things are Typically Done in Software
FunctionalFunctional

RequirementsRequirements

¬OK

160,000 kg
160,000 kg

QuantitativeQuantitative
RequirementsRequirements

OK

¬OK

ConstructionConstruction
MaterialsMaterials

The concerns are 
serialized with the 
functional ones 
given significantly 
greater priority

The potential 
impact of 
technological 
characteristics on 
design is often 
ignored



IBM Rational

© 2003 IBM Corporation18

What is Software Made of?What is Software Made of?



IBM Rational

© 2003 IBM Corporation19

Ground Station Spacecraft

observer
on offoffon

State?

“on”

“on”

Case Study: Effect of Transmission Delays
 The issue of out-of-date status information



IBM Rational

© 2003 IBM Corporation20

Software Physics: The Great Impossibility Result

It is not possible to guarantee that agreement can be 
reached in finite time over an asynchronous communication 
medium, if the medium is lossy or one of the distributed 
sites can fail
– Fischer, M., N. Lynch, and M. Paterson, “Impossibility of Distributed 

Consensus with One Faulty Process” Journal of the ACM, (32, 2) 
April 1985.

• In many practical systems, the physical platform is a primary 
design constraint that cannot be overcome by layers of 
software

Computer system = software + hardware
• Yet, students are still being taught that “platform concerns” are 

second order issues 



IBM Rational

© 2003 IBM Corporation21

The Dangers of Disregarding Physics

“Time has been systematically removed from theories of 
computation, since it has been viewed as representing the 
annoying property that computations take time.”  

E. Lee, UC Berkeley

 Failure to distinguish between computational theory 
and software engineering practice

 Lack of fundamental quantitative analysis skills
– Basic “back of the envelope” calculation

 Consequences
– 7-second dialtone delay
– 8 GB PC application



IBM Rational

© 2003 IBM Corporation22

Platform

What Software is Made Of

 Platform: 
the full complement of software and hardware required for 
an application program to execute correctly

Software ApplicationSoftware Application

Operating SystemOperating System

HardwareHardware

NB: We currently lack a 
standard means for 
explicitly specifying 
platform requirements 
of software applications



IBM Rational

© 2003 IBM Corporation23

But What About Platform Independence?

 An important and useful notion
– Helps abstract away irrelevant technological detail
– Allows software portability

 But…
– “Things should be made as simple as possible but no simpler” 

(A. Einstein)
– Not all aspects of a platform are necessarily irrelevant

 Platform independence does not imply platform 
ignorance
– There is a way of achieving platform independence that 

accounts for relevant platform characteristics



IBM Rational

© 2003 IBM Corporation24

Software Application 1Software Application 1

PlatformPlatform

Software Application 2Software Application 2

Platforms as Service Providers

 The relationship between applications and platforms can be represented 
as an instance of the client-server pattern
– NB: Most platforms can support multiple independent applications
– Services are often shared by multiple applications

dBase service CPU service Printer service

 To deal with hardware platforms, we must generalize the concept of service to 
include more than just software API-type services:
– CPU (processing) service
– Special device services (e.g., sensors and actuators)
– Storage service, etc.



IBM Rational

© 2003 IBM Corporation25

HardwareHardwareHardwareHardware
LinkLink

NetworkNetwork
Level 4Level 4
Level 5Level 5
Level 6Level 6
Level 7Level 7

Layered Platforms
 In real systems, layering is a complex multi-level and multi-

dimensional relationship
– Cannot be accurately described by simple two-dimensional 

representations

OperatingOperating
systemsystem

Communications
Architecture



IBM Rational

© 2003 IBM Corporation26

Resources, Services, and QoS

 Resource:
– A facility or mechanism with limited capacity required to attain 

some functional objective (e.g., perform a platform service)

 The limited nature of resources is due to the finite 
nature of the underlying hardware platform(s)
– Contention for shared resources is the primary source of 

complexity related to platforms

 The extent to which a particular service is limited in its 
capacity to provide its service (due to the limitations 
of underlying resources) is expressed by its offered 
quality of service (QoS)



IBM Rational

© 2003 IBM Corporation27

Quality of Service

 Quality of Service:

the degree of effectiveness in the provision of a service  

–  e.g. throughput, capacity, response time

 The two perspectives of QoS: 

– offered QoS: the QoS that is available (supply side)

– required QoS: the QoS that is required (demand side)



IBM Rational

© 2003 IBM Corporation28

Offered 
QoS

1 ms Platform

Reconciling Required and Offered QoS
 Key analysis question: Does the service (platform) have the 

capacity to support its clients?
– i.e., does supply meet demand?

ClientClient
(e.g., data base user)(e.g., data base user)

readDB()readDB()

Key question:
(RequiredQoS ≤ OfferedQoS) ?

ServiceService
(e.g., data base)(e.g., data base)

readDB()readDB()
Resource Contract

Required 
QoS

2 ms



IBM Rational

© 2003 IBM Corporation29

Resource Contention Issues
 Co-located applications are often designed independently 

– It can be extremely difficult to predict how they will affect each other
– Fortunately, a number of methods have emerged for certain key 

types of QoS (e.g., schedulability analysis, queueing theory)

1 ms Platform

ServiceService
(e.g., data base)(e.g., data base)

readDB()readDB()

Client 1Client 1

Client 2Client 2

Client 3Client 3

2 ms

3 ms

2 ms



IBM Rational

© 2003 IBM Corporation30

Objective: Automating Complex KPI Analyses
 Reduces need for rare and expensive analysis expertise
 Ensures validity of results

UML ModelingUML Modeling
ToolTool

55

3.13.1

44

Model AnalysisModel Analysis
ToolTool

AutomatedAutomated
model transformationmodel transformation

µµ

AutomatedAutomated
inverse transformationinverse transformation

2.52.5

QoS annotationsQoS annotations



IBM Rational

© 2003 IBM Corporation31

Outline

 Introduction: Model-Driven Development and UML

 On Software Physics and Software Platforms

 MARTE: Combining Software Physics with MDD

 Summary and Conclusions



IBM Rational

© 2003 IBM Corporation32

Introducing Physics to MDD: The MARTE Profile
 UML profile for Modeling and Analysis of Real-Time and Embedded 

Systems (MARTE)
– An OMG standard profile, based on UML 2

 Support precise modeling of key RTE  systems phenomena
– Qualitative and quantitative modeling of HW and SW and 

relationships between them

 Supports automated analyses of KPIs of RTE systems
– Schedulability analyses
– Performance analyses

 Also supports specification of complex functional relationships 
between QoS characteristics



IBM Rational

© 2003 IBM Corporation33

Example MARTE Annotations

Sd DataAcquisition

:Controller :Sensor

acquire() { d1<=(1, ms) }

sendData (data) { [(0, ms)..(10, ms)] }

ack()

@t2

{ [d1..30*d1] }

&d1

constraint1= { (t0[i+1] - t0[i]) > (100, ms) }
constraint2= { (t3 when data<5.0) < t2+(30, ms) }

Extended 
duration 

intervals with 
bound « [ ] »  
specification

Instant Interval 
Constraint

Constraint in an 
observation with condition 

expression

Duration expression 
between two sucessive 

occurrences

start() { jitter(t0)<(5, us) }

@t0

{ ]t1..t1+(8, ms)] }

Jitter constraint

@t3

@t1

Slide courtesy of Sebastien Gerard, CEA-LETISlide courtesy of Sebastien Gerard, CEA-LETI



IBM Rational

© 2003 IBM Corporation34

Architecture of the MARTE specification

MARTE domain model

MarteFoundations

MarteAnalysisModelMarteDesignModel

Foundations for RTE systems 
modeling and analysis (e.g., 
time model, resource model)

Specialization formal analyses 
of RTE systems 
(schedulability, performance)

Specialization for precise 
modeling of RTE systems (e.g., 
CPUs, concurrency threads)

(Slide credit of S. Gerard)



IBM Rational

© 2003 IBM Corporation35

Example: Hardware Platform Model

«hwResource»
ProcessingNode

«hwResource»
ProcessingNode

«hwProcessor»
: CPU

«hwProcessor»
: CPU

«hwBus»
: Bus

«hwBus»
: Bus

«hwDMA»
: DMA

«hwDMA»
: DMA

«hwDrive»
: Disk[2]
«hwDrive»

: Disk[2]
«hwRAM»
: RAM

«hwRAM»
: RAM

{isSynchronous = true}

{mips = 5,
nbCores = 2}

{memorySize = (300, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (50, ms)}

{nbChannels = 2}
{isSynchronous = true
isStatic = false}



IBM Rational

© 2003 IBM Corporation36

Example: Allocating an Application to a Platform

«hwResource»
ProcessingNode

«hwResource»
ProcessingNode

«hwProcessor»
: CPU

«hwProcessor»
: CPU

«hwBus»
: Bus

«hwBus»
: Bus

«hwDMA»
: DMA

«hwDMA»
: DMA

«hwDrive»
: Disk[2]
«hwDrive»
: Disk[2]

«hwRAM»
: RAM

«hwRAM»
: RAM

{isSynchronous = true}

{mips = 5,
nbCores = 2}

{memorySize = (300, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (50, ms)}

{nbChannels = 2}
{isSynchronous = true
isStatic = false}

«hwResource»
ProcessingNode

«hwResource»
ProcessingNode

«hwProcessor»
: CPU

«hwProcessor»
: CPU

«hwBus»
: Bus

«hwBus»
: Bus

«hwDMA»
: DMA

«hwDMA»
: DMA

«hwDrive»
: Disk[2]
«hwDrive»
: Disk[2]

«hwRAM»
: RAM

«hwRAM»
: RAM

{isSynchronous = true}

{mips = 5,
nbCores = 2}

{memorySize = (300, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (50, ms)}

{nbChannels = 2}
{isSynchronous = true
isStatic = false}

«hwResource»
ServerNode
«hwResource»

ServerNode

«hwProcessor»
cpu : CPU

«hwDrive»
disk : Disk[2]

«abstraction»

«abstraction»

«abstraction»

Service access Service access 
point (port)point (port)



IBM Rational

© 2003 IBM Corporation37

Specifying Required QoS with MARTE

 An application can include a spec of an “acceptable 
platform” that defines minimal acceptable QoS values
– Provides platform independence with platform awareness

videoClient
: MyApp

videoClient
: MyApp

videoServer
: VServer

videoServer
: VServer

«resource»
apClientNode

: ClientDomain

«resource»
apClientNode

: ClientDomain

«commMedia»
apNetwork

: NetworkDomain

«commMedia»
apNetwork

: NetworkDomain

«resource»
apSNode

: ServerDomain

«resource»
apSNode

: ServerDomain

cpu : CPU disk : Disk

{memorySize = (20, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (80, ms)}

{memorySize = (20, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (80, ms)}

{mips = 2}{mips = 2}

«allocate» «allocate» «allocate»

Acceptable
Platform



IBM Rational

© 2003 IBM Corporation38

Matching Required and Offered QoS

 This combination of models can be formally analyzed 

videoClient
: MyApp

videoClient
: MyApp

videoServer
: VServer

videoServer
: VServer

«hwResource»
sn

: ServerNode

«hwResource»
sn

: ServerNode

cpu : CPU

disk : Disk[2]

«hwResource»
cn

: ClientNode

«hwResource»
cn

: ClientNode

«hwMedia»
net 

: LAN

«hwMedia»
net 

: LAN

«resource»
apClientNode

: ClientDomain

«resource»
apClientNode

: ClientDomain

«commMedia»
apNetwork

: NetworkDomain

«commMedia»
apNetwork

: NetworkDomain

«resource»
apSNode

: ServerDomain

«resource»
apSNode

: ServerDomain

cpu : CPU disk : Disk

{memorySize = (20, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (80, ms)}

{memorySize = (20, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (80, ms)}

{mips = 2}{mips = 2}

{memorySize = (300, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (50, ms)}

{memorySize = (300, GB),
timing[1] = (, averageAxTime, (5, ms)),
timing[2] = (, maximumAxTime, (50, ms)}

{mips = 5,
nbCores = 2}

«allocate»«allocate»«allocate»«allocate»

«allocate» «allocate» «allocate»

Acceptable
Platform



IBM Rational

© 2003 IBM Corporation39

Outline

 Introduction: Model-Driven Development and UML

 On Software Physics and Software Platforms

 MARTE: Combining Software Physics with MDD

 Summary and Conclusions



IBM Rational

© 2003 IBM Corporation40

Summary and Conclusions

 MDD offers some significant opportunities to advance 
the state of the art of software development
– Use of abstraction (to deal with complexity) and automation (to 

bolster reliability and productivity)

 UML 2 combined with the MARTE profile provides a 
powerful and standardized combination that fully 
opens up the application of MDD to real-time and 
embedded systems
– Ability to specify problems and solutions at higher levels
– Including the ability to be precise about platform-

independence



IBM Rational

© 2003 IBM Corporation41

Questions
selic@acm.org

mailto:selic@acm.org

