Semantics for Service Oriented Architectures

Elisa Kendall
Sandpiper Software

OMG Burlingame Technical Meeting
December 6, 2005
The Semantic Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

-- Tim Berners-Lee
Level Setting

An ontology specifies a rich description of the

- Terminology, concepts, nomenclature
- Properties explicitly defining concepts
- Relations among concepts (hierarchical and lattice)
- Rules distinguishing concepts, refining definitions and relations (constraints, restrictions, regular expressions)

relevant to a particular domain or area of interest.
MDA from the KR Perspective

- EII/ESB solutions rely on strict adherence to agreements based on common information models that take weeks or months to build
- Modifications to the interchange agreements are costly and time consuming
- Today, the analysis and reasoning required to align multiple parties’ information models has to be done by people
- Machines display only syntactic information models and informal text describing the semantics of the models
- Without formal semantics, machines cannot aid the alignment process
- Translations from each party’s syntactic format to the agreed-upon common format have to be hand-coded by programmers
- MOF® and MDA® provide the basis for automating the syntactic transformations
MOF and KR Together

- MOF technology streamlines the mechanics of managing models as XML documents, Java objects, CORBA objects

- Knowledge Representation supports reasoning about resources
 - Supports semantic alignment among differing vocabularies and nomenclatures
 - Enables consistency checking and model validation, business rule analysis
 - Allows us to ask questions over multiple resources that we could not answer previously
 - Enables policy-driven applications to leverage existing knowledge and policies to solve business problems
 - Detect inconsistent financial transactions
 - Support business policy enforcement
 - Facilitate next generation network management and security applications
 while integrating with existing RDBMS and OLAP data stores

- MOF provides no help with reasoning

- KR is not focused on the mechanics of managing models or metadata

- Complementary technologies - despite some overlap
Ontologies for Web Services

- Ontologies provide a common vocabulary and definition of rules for use by independently developed services.
- Companies and organizations sharing common services can declaratively specify the behaviors, policies and agreements relevant to their usage.
- Through ontology composition, mapping and vocabulary brokering for participating resources and services, independently developed services can share information and processes consistently, accurately, and completely.
OWL-S: Enabling Infrastructure for Web Services

- Emerging work based on research from the DARPA/DAML program in DAML-S (2000/2001 - SRI, Stanford, CMU)

- **OWL-S** – an ontology that sits at the application level, above WSDL, and describes *what* is being exchanged and *why*, not just the *how*

- **OWL-S** enables
 - *discovery* – of services that meet particular requirements and adhere to specified constraints
 - *invocation* – and execution by agents or other services
 - *interoperation* – through specification of the appropriate vocabularies (semantics) and message parameter translation as required based on service specifications
 - *composition* – automated service composition and interoperation to provide new services
 - *verification* – of service properties
 - *execution monitoring* – tracking of execution of complex services and transactions
OWL-S Structure

- Two essential types of knowledge about services
 - The **what**, its capabilities and parameters, through a *ServiceProfile*, which can answer questions such as what does the service require of agents and provide for them
 - The **how**, through a *ServiceModel* that describes the workflow and possible execution paths

- Service profiles are used to request or advertise services with discovery services and capabilities registries, including
 - Descriptions of services and providers
 - Functional behavior
 - Functional attributes

- Service models describe the operation of a web service through a process model of the control and data flow structure of the service

- OWL-S complements WSDL by providing an abstract or application level description lacking in WSDL

- Current specifications available at http://www.daml.org/services/
Semantic Web Services Framework

- Emerged from work in services composition
 - Requiring more expressivity than was available in OWL
 - First order logic approach
 - Based on significant work in logic programming, government funded policy work

- Considered the smorgasbord of relevant standards
 - Web Services Description Language (WSDL) - for specifying input & output message, invocation (W3C)
 - Business Process Execution Language for Web Services (BPEL4WS) - addresses specification of workflows of basic services (OASIS)
 - Choreography Description Language (WS-Choreography) - supports a more global view information exchange from a transaction perspective (W3C)
 - UDDI provides a standard approach for service registration, discovery, and advertizing

- Integrates notions from prior initiatives, builds on DAML-S, OWL-S, WSMO

- Provides rich semantics for greater automation of service discovery, selection and invocation, content transformation, composition, monitoring & recovery, verification
Semantic Web Services Framework
SWSL & SWSO

∞ Semantic Web Services Language (SWSL)
 - SWSL-FOL - first order language for ontology representation, builds on CL
 - SWSL-Rules - logic programming to enable ontology use in reasoning and execution environments

∞ Semantic Web Services Ontology (SWSO)
 - Conceptual model, complete axiomatization expressed in SWSL-FOL
 - Called FLOWS - First-Order Logic Ontology for Web Services
 - Includes model theoretic semantics
 - Ontology translated to SWSL-Rules is slightly more constrained,
 - Called ROWS - Rules Ontology for Web Services

∞ W3C Note (proposal for recommendation made recently), additional references available at
 - http://www.w3.org/Submission/SWSF/
Example Enterprise Framework (DoD)
Current Status

- Several candidate standards recently submitted to W3C (OWL-S, SWSF, WSMO, WSDL-S)
- Workshop on creating a Semantic Web Services working group held Spring 2005
- Draft charter for working group currently under development
- Process is likely to move forward in early 2006, 2 year preliminary timeline to complete standards work
Opportunity for OMG

Potential for extensions to ODM to support
- OWL-S, building on the RDF & OWL metamodels
- SWSF, building on the CL metamodel, with mappings to OWL-S
- Mappings to standardize bindings to WSDL, SOAP