
We step inside, push a button and travel to the correct floor. Most of us use elevators
daily without a thought. We never consider the technology behind their operation. But,
each push of the button sends the elevator controller processing millions of lines of code.
Preprogrammed software tells the elevator in what order to stop at floors, when to open
or close the door and if there is a safety-critical issue. The elevator control and monitor-
ing systems are essential in the smooth and safe operation of each elevator.

Motion Control Adopts Advanced Software
Development Process For Production of Elevator
Control Units Using I-Logix' Rhapsody 

Motion Control Engineering Inc., with approxi-
mately $80 million in sales per year, is the largest inde-
pendent manufacturer of elevator control and monitor-
ing systems in the world. Their goal is to build high
quality, non-proprietary "universally maintainable"
equipment. Motion Control Engineering (MCE) is
continually working to bring together the right people
and technology to improve elevator performance while
ever-simplifying installation, maintenance and opera-
tion. 

In early 2000, MCE began development of their
next generation elevator controller.  Key to this devel-
opment was the adoption of a more advanced software
development process, one in which they could continu-
ally add advanced features while developing and main-
taining a set process. Their decision was to focus on a
Unified Modeling Language (UML)-based object-
oriented approach. Once they decided to use the
VxWorks RTOS, the next step was to select a software
development tool. After evaluating several tools, includ-
ing Project Technology Inc. BridgePoint, Rational Rose
and RTI ControlShell, MCE selected the Rhapsody in
C++ UML-based visual application development plat-
form. 

By April of 2000 MCE's software engineers began
the redesign of their elevator computer control logic.
This was Motion Controls first project using object-ori-
ented design, the UML and a visual application devel-
opment platform. They brought in an I-Logix expert to
provide in-house training on all three.

"Our software developers were proficient in manu-
ally writing code in C and Assembly, but no one had
experience with a visual application development plat-
form or the Unified Modeling Language," said Gavin
Arthurs of MCE. "I-Logix training allowed us to first
learn the fundamentals of object-oriented design, then
learn the "ins and outs" of the Rhapsody tool, while
tying them together. This on-site training was beneficial
to ramping up our team."

The first step for the development of the elevator
control was to define the basic requirements. MCE soft-
ware developers captured their requirements using

Rhapsody Use Cases during the initial development
stages.  They then used UML Sequence Diagrams dur-
ing the architectural design phase to develop core class-
es of the model and the relationship between those
classes. Once the requirements were defined, MCE
moved into the use of UML Statecharts for developing
the control logic. During elevator use, control logic
takes into consideration user input (push of a button)
and the current state of the elevator (travelling direc-
tion), makes a decision based upon both, and then trig-
gers an action (such as stop or change direction).
Through Rhapsody, "current user inputs" were modeled
as events in UML Statecharts, and the "current state" as
states, including concurrent states. From the Statechart,
code was automatically generated and could later be
used to run animation and debug the design.  During
animation, the developers debugged their design at the
model level.  They were able to inject an event and view
the resulting effect on the Statechart graphically.  This
allowed them to watch how an event triggers an action
to ensure the control logic was behaving as desired.  

"Developing our application in a visual manner is
key because an elevator is primarily built using module
based development," said Arthurs. "The Statecharts,
and ability to animate Statecharts, has been very useful
in developing the logic that runs the elevator, especially
when people collaborate. It is much easier to understand
what is going on when you see Statecharts running
rather than looking at code." 

A major benefit MCE experienced with Rhapsody
was the ability to have multiple software engineers
working independently, without fear of losing data.
During the initial stages each engineer was able to focus
on their assigned area and then merge the model togeth-
er when it was critical to synchronize the project. The
pieces of the design were combined initially using the
"Add to Model" feature in Rhapsody. Basically, devel-
opers would work independently for a time, would
merge the models periodically, and repeat.  This method
worked well when there was a lot of parallel develop-
ment going on.  

As the model evolved and the official release was



approaching, the engineers began using an official
Configuration Management tool in conjunction with
Rhapsody. Motion Control was then able to version
control their design.  As a team, they were able to bring
together all of the elements, get the project running,
validate that it was operating as defined, and move
onto the next step in an iterative fashion. Rhapsody
greatly facilitated collaboration in these ways.  Also,
Rhapsody's hierarchical repository eased the pain asso-
ciated with storing elements hierarchically in the file
system, and enabled potential component reuse for the
future. 

"The package elements and the component / con-
figuration structures are useful in managing the "host"
and "target" builds within the same model," said
Arthurs.

Rhapsody's real-time framework has built in fea-
tures such as communication between classes and event
structures.  As mentioned previously, before Rhapsody
was introduced, the team at Motion Control wrote all
of their code manually in Assembly or C.  This code
targeted five or six processors, many without the bene-
fit of an operating system.  

"Consequently, exchanging data between process-
es was done at a very low level and driven heavily by
the hardware.  Most of our problems were in data
latency and synchronization," said Arthurs.  Motion
Control was able to benefit from many of the
Rhapsody framework classes, such as OMReactive,
OMEvent, etc., to accomplish common OS functions,
including asynchronous communications between
objects. Rhapsody was able to help the team raise the
level of design abstraction as well as save time and
effort for the development team.

Throughout the entire development process,
MCE was able to automatically generate code for their
application. The code was used to test the application
at various stages to ensure that specifications were met.
They were also able to debug their applications as the
code was running on their PC, and this was automati-
cally reflected back in the model, then they were able
to immediately deploy it on VxWorks. Design-level
debugging was conducted on both the host and the
target. This was a huge benefit, as it allowed the engi-
neers to concentrate on their design instead of "house-
keeping" code. The Rhapsody framework, specifically
designed for embedded real-time systems, ensured that
the real-time constructs such as timers, semaphores
and threads were automatically generated for the spe-
cific operating system being targeted, whether that be
Windows or VxWorks, MCE chose to work mostly at
the design level, and used all of the Rhapsody generat-
ed code for their application.

"The greatest benefit we have experienced using
Rhapsody is the ability to run the logic on the host,
targeted for our PC, then test it and debug it logically.
Previously we could not do that. Most of our testing
had to be done directly on the hardware because we
could not emulate it on the PC. We were very tied to
actually having to keep the hardware with us.
Rhapsody has allowed us, from a logical point of view,
to debug a lot earlier without any hardware," said
Arthurs. "This has been huge, we now can focus on
getting the application to connect to the hardware so
that the information coming up is correct. The logic is
already debugged, and that has been very helpful. It is
an order of magnitude in time and cost savings."

Through the use of Rhapsody, MCE was able to
develop their elevator control using a visual, UML-
based application development platform. They benefit-
ed from the ability to visualize a logic-heavy applica-
tion during the development phase, improve commu-
nication and collaboration among their engineers, abil-
ity to produce higher quality code which allowed them
to debug and test their application up front, and the
ability to deploy that code on both the host and target
platforms. MCE is currently shipping to beta sites.
With Rhapsody, they were able to take what was devel-
oped over 15 years, put it into one product and deploy
on a new platform in less than two years. 

Motion Control is committed to continued devel-
opment with Rhapsody. "When we selected Rhapsody,
we selected the way we planned to develop software for
the foreseeable future," said Arthurs.

I-Logix Inc.
3 Riverside Drive
Andover, MA 01810
Tel: 978-682-2100
Toll Free: 888-845-6449
Fax: 978-682-5995
E-mail: info@ilogix.com
http//www.ilogix.com

European Headquarters 
I-Logix UK Ltd.
1 Cornbrash Park
Bumpers Way
Chippenham
Wiltshire SN14 6RA
England
Tel:  +44 1249 467-600
Fax:  +44 1249 467-610
E-mail:  info_euro@ilogix.com

Information provided here is subject to change without notice. Rhapsody is a registered
trademark of I-Logix Inc. I-Logix, and the I-Logix logo are trademarks of I-Logix Inc.
OMG marks and logos are trademarks or registered trademarks, service marks and/or
certification marks of Object Management Group, Inc. registered in the United States.
Other products mentioned may be trademarks or registered trademarks of their respec-
tive companies. Copyright 2002. Printed in USA.
08/2002


