

White Paper on RFP II: Abstract Syntax Tree Meta-Model

OMG Architecture Driven Modernization Task Force

August 18, 2004

Contributors: Philip Newcomb, The Software Revolution, Inc.
 Ed Gentry , Blue Phoenix, Inc.

 Carlos Araya, Artinsoft, Inc.
Ivan Sanazria, Artinsoft, Inc.
Charles Dickerson, Relativity, Inc.
William Ulrich, OMG ADM Task Force Co-chair

Introduction

The OMG Architecture Driven Modernization Task Force (OMG ADM TF) will hold
discussions pertaining to drafting the ADM Request for Proposal (RFP II), Wednesday,
August 23, 2004. A subgroup of the ADM TF was appointed at the June 23rd OMG
ADM TF in Orlando to proceed with formulating a draft of RFP II on the subject:
“structure artifacts below procedure level.” This White Paper is intended to facilitate
drafting of RFP II by providing a brief description of the subject area (here in after called
the Software Modeling Standard) and summarizes issues related to it to be discussed and
considered for standardization. This White Paper is respectfully submitted to the Full
ADM TF Task Force to provide a basis for discussions pertaining to preparation of RFP
II. The Software Modeling Standard is intended to be compatible with the objectives of
the OMG Model Driven Architecture including the OMG Meta Object Framework, and
supportive of the broader goals of the ADM Roadmap, the ADM Mission Statement and
complementary to ADM RFP I, the KDM standard, and subsequent RFPs to be issued by
the OMG ADM TF.

Scope

One of the key goals of standards organizations is to establish rules of the road that
facilitate interoperability between the tools and services of the adherents of the standards
established by the standards body. Interoperability standards enable integrators and
customers to tackle more complex software engineering problems because more
comprehensive solutions can be cost-effectively undertaken when tools interoperate
effectively because of their adherence to common standards. It is costly, if not
impossible, to integrate tools and services that do not have standardized interfaces and
well-defined formats for interchanging information. The goal of the Software Modeling
Standard is to achieve well-defined interfaces and well-defined formats for interchange of
information about software models that are used by the complex and powerful tool sets
that are used for software modernization.

The establishment of standards for the interchange of software models is a core
requirement for the establishment of the multi-vendor industrial-scale integrated tool

frameworks that are needed to support the OMG goal of Architectural Driven
Modernization (ADM) and software development and maintenance using Model Driven
Architectures.

The purpose of this paper is to commence discussion of what should or should not be
defined within the scope of Software Modeling Standards and what should or should not
be included in the scope of Software Model Interchange in order to facilitate the OMG
ADM TF preparation of a RFP for the Software Modeling Standard.

Software Modeling

High quality software models are the basis of the high quality analysis, transformation
and documentation technologies that are the foundation of powerful tool based software
modernization solutions. The quality of the software model is the primary limiting
factor upon the quality and comprehensiveness of the analysis, transformation, and
documentation achieved by software modernization tools. The structure of the software
models inherently limits the ability of the software models to be integrated with other
models and other tools.

Effort and technology are required to create and exchange software models. The degree
of precision of software models and the effort associated with their construction can vary
greatly depending upon the approach taken to their construction. The concept of weaker
and strong modeling formalisms is concerned with the degree to which models are able to
faithfully represent with precision the details of the thing that they seek to represent. A
weaker model will gloss over important details, such as scope and type of variables and
expressions, while a stronger model will capture these details. Models also differ in their
architecture. Weaker models tend to blend modeling layers together without clear
boundaries and without expectations for when a particular model property should or
should not be present, while stronger models will carefully define properties, define
layers between models, and define when model properties should or should not be
present.

It is the collective view of the authors that RFP II, the Software Modeling Standard,
should provide a descriptive formalism for representing abstract models of the structure
of software and the format to be used for the interchange of software models. These
software models should provide for the representation of the types, relationships between
types, and other properties sufficient to represent the abstract structure of software, and
should be adequate for the composition of models of software applications expressed in
the language constructs used in software languages. The software modeling standard and
the formalism used for its description should be sufficient to permit the representation of
generic as well as specific model properties. The standard should permit more specific
types to be derived from more generic types, and allow static structural as well as
dynamic functional properties of these types to be generalized, specialized and inherited.

Formal software modeling is understood to entail the construction of structured multi-
dimensional layered formalisms that describe software and can be manipulated and

transmitted by computer programs and transferred between persistent and temporary
storage mediums on computers. It is essential that software models interplay with other
modeling layers in such a way that the relationships between software models, and
models constituting additional descriptive layers about the software be structurally
continuous, so that automated tools can freely use all dimensions and layers of the
modeling formalism and easily construct, deconstruct, augment and transform the types
that make up software models and the types used to represent models that augment the
software models.

Within the context of the ADM other descriptive modeling layers are understood to
include the KDM as well as other software analysis models that supplement the software
model with additional semantic properties about software. The boundaries and interface
between these model layers should be formally defined and precisely specified
sufficiently to allow construction, manipulation and interchange of composite and
discrete models, but the specific composition of these modeling layers should not be
constrained by the standards body.

Abstract Syntax Trees

Common techniques for software modeling involve the use of parsing technologies to
create structured abstract syntax tree representations of software from the concrete (or
surface) syntax of the software artifact.

 Abstract syntax trees (AST) are models of software that represent the software artifact,
either the legacy software or the modern software application, using data structures that
represent the types of language constructs, their compositional relationships to other
language constructs and a set of direct and derived properties associated with each such
language construct. The abstract syntax tree is derived from an analysis process. An
abstract syntax tree provides a means for creating a more or less complete representation
of the software artifact.

The abstract syntax tree is an extensible and formal representation of the syntactical
structure of software that is more amenable to formal analysis techniques than is the
concrete or surface syntax of software. An AST may be an invertible representation, that
is, it may be possible to traverse the AST and reconstruct the “surface syntax” of the
legacy system, or reconstitute it in textual from, from the abstract structures. ASTs may
be augmented, that is, the AST may be analyzed and have added to it additional
structures that describe additional properties about the software.

Common analyses that augment an AST with additional properties include constraint
analysis, data-flow analysis, control-flow analysis, axiomatic and denotational analysis,
and so on. The analysis models used to capture such properties can become arbitrarily
complex and intricate, and highly varied in form, composition and intended use. ASTs
are generated with varying degrees of precision to support differing objectives.

The form and composition of the AST influences the kinds of analyses that can be
performed on it. ASTs typically express the structural compositional of the software they
model using the syntactical types of the software language in which the software is
written. ASTs are traditionally the input to the translation stage of compilers. Machine
code is generated by the traversal of the AST structures and application of rewrite rules to
translate the AST structures into machine instructions.

ASTs are generally augmented with additional analyses layers, such as type analysis,
control-flow analysis or data-flow analysis (to support code optimization) or to support
capture of software engineering metrics (control-flow and data-flow complexity) and
documentation. The use of AST structures for the abstract representation of the structure
of software has become an accepted practice for modeling software; however the
definition of the format of AST structures and the mechanisms for representation and
interchange of ASTs models has not yet been standardized.

Establishment of standards for software model formats and interchange will facilitate
exchanging software models in standard abstract formats between tools. The ability to
freely exchange software models between tools will provide industries, corporations and
the government the ability to use advanced model-based tools for automated software
analysis and transformation, which will bring about a significant advancement in the state
of software engineering practice -- perhaps as significant as the introduction of
engineering diagrams did for industrial engineering practices. The achievement of deep-
level interchange of software models between software tools that have common
expectations about the structure of these software models is expected to have a profound
impact upon tool providers and tool users in the software industry.

Software Transformation

Software Transformation is generally concerned with the application of rewrite rules to a
software artifact in order to change its structure. A general notion of transformation is
any mechanized change performed to a software artifact – either directly to the textual
form of the software artifact or a change made to an abstraction of the software artifact,
such as an AST, which results in a change to the text of the software artifact. There are
many variations in approaches used and tools used for software transformation that vary
in how they describe software transformation. Some software transformation tools
operate on the surface syntax directly. Others operate upon syntax remotely by
manipulating abstract syntax.

 Among the more commonly used and freely available textual (or surface syntax)
software transformation tools today are simple textual substitution commands and macros
embedded in editors such emacs and vi and word. Command-line tools for more
powerful forms of textual transformation include tools such as sed, awk, and perl. Such
tools have in common their manipulation of surface syntax rather than abstract syntax.
Tools based upon textual substitution approaches are generally more limited in their
range of functionality than transformation tools that operate against abstract software
models. Compilers and many software engineering tools use ASTs and AST-like

structures produced by lexing and parsing technologies. Some common and freely
available tools, such as lex, yacc and bison, are widely used for creating abstract models
of software. Such tools have in common their construction of data structures for the
representation of software and the use of programs for the manipulation of these data
structures. The data structures produced by tools such as lex, yacc and bison are not
standardized across industry nor are the techniques for writing the programs that
manipulate these data structures. Among the data structures that can be produced
through the use of such tools are abstract syntax trees.

The automated software modernization industry came about in part from the broadened
development and utilization of advanced tools for automated software transformation
based upon advanced software analysis and transformation tools that operate upon ASTs
and AST-like software models. While technologies such as lex, yacc and bison are freely
available, the technologies used by vendors for software analysis and transformation of
software models are often highly proprietary to the service providers or vendors that
originated them. The relatively efficiency and expressiveness of these tools are often the
key technical discriminators between the services offered by these vendors.

The software modeling standard should not seek to limit or constrain the variations in
composition, mechanisms for definition of the software models, or the techniques and
algorithms used for model construction, transformation or interchange. The ADM task
force should take care not to define a standard that in any way inhibits the ability of the
vendor community to continuously improve the quality of its models and the techniques
for creating and transforming software models. The software modeling standard can
establish common formats for model definition and interchange that permit variation in
the structure and composition of software models between industry groups.

For example, two vendors may agree or disagree to use a particular abstract syntax tree
definition for creating and interchanging software models of software applications written
in Ada 83, a software language commonly in use within the DoD and industry. The
structure of the Ada 83 ASTs will not be prescribed by the standard, nor will the
techniques for model construction. However, the format used for exchanging the AST
model between the vendor’s tools will be subject to definition by the standard, and will
support the definition and interchange of the particular Ada 83 ASTs in a commonly
accepted format by the two vendors, using a model interchange format that all industry
participants can agree upon.

RFP III, the standard for Software Model Transformation, is expected to support, at a
minimum, the transformation between software models of the same language that may
exist in different forms. For instance, two vendors working independently are likely to
create different AST software models for the representation of the same application in the
same software language. It may be the case that the variations in the ASTs produced by
different tool vendors are sufficiently divergent that it is impossible to achieve a complete
transformational mapping from one to the other. Such divergences in language model
form are expected and acceptable and the software modeling standard will not attempt to
constrain them.

Two vendors may choose to base their tools upon the same AST models, and this would
obviously facilitate combining the tools to achieve more comprehensive solutions if the
tools of the vendors were complementary. The compatibility of models can provide the
basis for industry associations and the forging of alliance partnerships between industry
participants. To the extent that vendors choose to use models whose AST models are
identical or homogenous they will be better able to interchange models defining
transformations between their models and are likely to achieve interoperability between
their tools more quickly.

Multi-Vendor Tool Suites

A key motivation for the OMG establishment of standards for the interchange of software
models within the context of the ADM TF is to facilitate major integrators, tool
developers, tool suppliers and customers creating well-integrated solution suites for
software modernization. Such solutions suites will consist of collections of tools and
services that facilitate modernization of multiple legacy source languages into one or
more target platforms. Such solution suites will be facilitated by the ability of the
vendor community to establish standards for the interchange of software models.

The ultimate OMG goal is to move towards an Architecture Driven Modernization
approach to software development and maintenance that facilitates the OMG goal to use
Model Driven Architectures for the modernization of legacy systems as well as the
development of new systems. To support this objective, information about the
composition of software must be interchangeable through the use of standard interchange
formats.

The task of modeling software results in the construction of software models is larger and
more complex than in virtually any other engineering discipline. Ideally the interchange
formats used for exchanging software models should be consistent with the OMG Meta-
Object Facility MOF and XML Model Interchange Formats (XMI). However, while
adherence to the MOF is desired, to the extent that additional formalisms for model
definition and manipulation are needed that might not exist within MOF, the ADM TF
will work with MOF standard committees to reconcile these differences.

Differentiation of Modeling Levels

As mentioned above, software models vary in their levels of precision from superficial to
deeply detailed. They may also be augmented with arbitrarily deep levels of auxiliary
information (meta-information) that reflect the results of descriptive analysis of the
software artifacts. The OMG ADM TF is defining modeling and interchange standards
for several of these layers of description. We propose that the software modeling layer be
restricted to the collection of AST-like data structures that represent the abstract structure
of software. This layer does not consist of the analysis layers that can be superimposed
upon ASTs to augment the AST with potentially unlimited additional layers of semantic
description, which should more properly be called the software analysis layer.

By bounding the software modeling layer to the more concrete collection of structures
that provide the abstract representation of software constructs for multiple languages we
restrict the complexity of the format used for the interchange of software information.
This restriction can expedite the process of standards adoption by limiting the breadth of
the area subjected to standards adoption. This restriction can thus achieve benefit more
quickly by facilitating a shorter standards adoption cycle, and hence more rapid adoption
of the standard by leading participants in the industry.

By taking this more limited approach to standardization, the structures used for control-
flow analysis, data-flow analysis, and the structures used for representation of scope,
type, and those used for denotational semantics or axiomatic semantics are not considered
part of the software model layer. We would characterize the modeling layers used for
these kinds of semantic augmentations to the software modeling layer as the Software
Analysis Layer and would propose that a separate RFP be issued to address the Software
Analysis Standard.

Furthermore, we propose that the standards for representation of software modeling
information not attempt to constrain the set of language constructs to a common set of
constructs universal to all languages. Even though there is commonality between many
software languages, software languages vary greatly in their syntactical and semantic
forms.

In order to faithfully capture the abstract structures associated with these software
languages the standard for software interchange must allow for all possible variations in
language constructs. Thus, the standard for software model interchange should not
propose a universal set of language constructs. It must instead focus upon the
mechanisms and structures that facilitate representing AST-like structures and the
formats for transferring such models between tools.

Finally, the software model layer must be augmentable, that is, it should be possible to
form composite models that contain both the software models for a particular language as
well as the software analysis models that pertain to particular software analysis
formalism.

Surface Syntax and Abstract Syntax

The mechanisms for the creation of abstract syntax from surface syntax are often
achieved through the use of proprietary technologies. There are widely used tools that
provide a one-way translation from surface syntax (textual form of software) into the
Abstract Syntax Tree Form. The degree of precision of Abstract Syntax Tree Models
varies as well, with some modeling techniques being more complete than others. There
are also tools that support bi-directional mapping between surface-syntax and abstract
syntax.

In principal the approach to this mapping between concrete and abstract form should not
be the focus of the software modeling standards. The mapping from syntactical form to
abstract form is more of a mapping issue than a modeling issue, in any case. There are
many ways to approach this problem, and the establishment of standards for interchange
of software models does not require addressing the mechanisms that are used for the
creation of the software models, nor does it need to address the mechanism by which the
software artifact takes on abstract or concrete forms.

Variation in industry approach is expected in the technologies used for abstracting
software model from their concrete forms and generating software from abstract forms.

Conclusion

This paper has attempted to delimit the scope of the ADM TF RFP for software model
interchange. Its perspective is that there are many areas ripe for standardization that
properly lies outside of the purview of the software modeling RFP.

The RFP must anticipate the need for the software modeling standards to be augmented
with auxiliary models, but it should not establish standards in areas that are extraneous to
modeling the structure of software, nor should it establish a standard that inhibits
contiguity between modeling layers or inhibit the interchange of composite models.

In particular, the principal concern of the ADM TF RFP for software modeling is to
provide formats and mechanisms that facilitate the interchange of abstract software
models for formal software languages. Such formal languages are to include all software
languages.

Glossary

Abstract Syntax Tree A data structure consisting of types that represent

language constructs connected by sequence and unit
valued relationships to other types. Additional properties
associated with each type represent names of identifiers,
numbers and other literal values associated with the
language construct. An abstract syntax tree is an acyclic
graph with a single root node, connecting nodes and leaf
nodes.

Concrete Syntax or (Surface
Syntax)

The textual form of a software artifact expressed in the
software language in which the software artifact was
written.

Software Artifact The model or textual form used for writing or expressing
software or information about software.

Software Analysis Layer The modeling layer used for capturing and expressing

information about semantic models of software artifacts.
Software Analysis Model The model formalism used for capturing and expressing

information about semantic models of software artifacts.
Software Analysis
Interchange Format

The format used for transmission of software analysis
models.

Software Model The model formalism used for capturing and expressing
information about syntax models of software artifacts.

Software Modeling Layer The modeling layer used for capturing and expressing
information about syntax models of software artifacts.

Software Model
Interchange Format

The format used for transmission of software models.

Software Transformation The application of a program that takes as input a
software artifact and produces as output a modified form
of the software artifact, or the application of a program
that takes as input a model of a software artifact and
produces as output a modified form of the model of the
software artifact.

	Introduction
	Scope
	Software Modeling
	Abstract Syntax Trees
	Software Transformation
	Multi-Vendor Tool Suites
	Differentiation of Modeling Levels
	Surface Syntax and Abstract Syntax
	Conclusion
	Glossary

