
A domain specific language for extracting
models in software modernization

Javier Luis Cánovas Izquierdo and Jesús Garćıa Molina

University of Murcia
{jlcanovas,jmolina}@um.es

Abstract. Model-driven engineering techniques can be used both to
create new software and to modernize existing software systems. Model-
driven software modernization requires a first step for the extraction
of models. Most modernization scenarios involve dealing with the GPL
source code of the existing system. Techniques and tools providing effi-
cient means to extract models from source code are therefore needed.

In this paper, we analyze the difficulties encountered when using the ex-
isting approaches and we propose a language, called Gra2MoL, which is
especially tailored to address the problem of model extraction. This pro-
vides a powerful query language for concrete syntax trees, and mappings
between source grammar elements and target metamodel elements are
expressed by rules similar to those found in model transformation lan-
guages. Moreover, the approach also allows reusing existing grammars.

1 Introduction

Model-driven engineering (MDE) techniques are not only used to create new
systems, but also to evolve or modernize legacy software. The field of model-
based software modernization is currently emerging and a great research and
development effort will thus be necessary in the years to come. The OMG has
recently proposed several modernization standards in its ADM initiative [1],
certain tools, such as MoDisco [2], are currently under development, and some
research challenges have even been identified for the evolution of systems built
by using MDE techniques [3].

Most modernization scenarios [4], such as platform migration or application
improvement, involve dealing with source code written in a general purpose pro-
gramming language (GPL). Techniques and tools providing efficient means to
extract models from source code are therefore essential. In this extraction pro-
cess, models conforming to a target metamodel are generated from source code
conforming to the grammar of a GPL. Thus, a bridge between the technical
spaces grammarware [5] and MDE must be built. This bridge is normally im-
plemented by dedicated parsers (i.e. tools performing both parsing and model
generation tasks), since the use of approaches such as bridging grammarware and
MDE or transforming programs have certain drawbacks which limit their useful-
ness. Bridging approaches [6, 7] aim to create textual domain specific languages

(DSL) which have a simpler structure than GPLs; in the case of program trans-
formations [8, 9], the resulting program must still be converted into a model.
Since the construction of dedicated parsers is a time-consuming task, we have
defined a DSL, denominated as Gra2MoL, which has been specifically designed
for extracting models from GPL source code.

Gra2MoL allows mappings to be established between grammar elements and
target metamodel elements in a similar way to which model-to-model transfor-
mations are expressed in languages as ATL [10] and RubyTL [11]. It provides a
powerful query language to ease the navigation and query of syntax trees. We
have used Gra2MoL to extract models from Java and PL/SQL code, and this
experience has shown a reduction in development time, while maintenance is also
improved and existing grammars are reused. In this paper we present Gra2MoL,
and compare it with the existing approaches.

This paper is organized as follows. Section 2 analyzes the difficulties en-
countered when using existing solutions for model extraction, and Gra2MoL is
motivated. In Section 3, we describe the language for querying concrete syntax
trees provided by Gra2MoL. Section 4 presents the main features of Gra2MoL
and explains how it has been implemented, while Section 5 shows an example of
the language. Finally, Section 6 presents our conclusions and some future work.

2 Model extraction from source code

In this section we contrast different approaches which could be used to extract
models from GPL code, indicating their main limitations. This discussion will
motivate the approach proposed in this paper. We will begin by giving a defini-
tion of model extraction in the context of model-driven modernization, identify-
ing the main issues to be addressed.

Figure 1 shows the elements involved in the process of extracting models from
GPL source code. This process is a grammar-to-model transformation T which
has as its input a program P along with the grammar definition G to which it
conforms. It generates a target model MT conforming to a target metamodel
MMT which defines the information to be extracted. The extraction process
also requires a mapping between the grammar elements and the metamodel
elements. As we will see, the form of these mappings is different depending
on each considered approach. The input program is represented by either an
abstract syntax tree (AST) or a concrete syntax tree (CST). Along this paper,
we will use the term “syntax tree” to refer both AST and CST.

Therefore extracting models from source code is a scenario which requires a
bridge between grammarware and MDE techniques (modelware), the same as the
definition of a textual concrete syntax for an abstract syntax metamodel [6, 12].
With GPL code, creating this bridge requires an efficient mechanism for travers-
ing syntax trees since the model elements to be extracted are usually composed
of information that is scattered in such trees. In particular, this scattering is
mainly caused by the means used to represent the references between elements.
Models are graphs and any model element can directly refer to another, whereas

Fig. 1. Process of extracting models from source code.

in a syntax tree that represents certain code which conforms to a GPL grammar,
the references between grammar elements are implicitly established by means of
identifiers. Transforming an identifier-based reference into an explicit reference
involves looking for the “identified” node on the syntax tree. For instance, if a
model element is extracted from a “function call” statement where one argu-
ment is a global variable, certain necessary information, such as the type of the
variable or the function signature, is located outside the current scope ([13] calls
this kind of transformations global-to-local transformations).

2.1 Approaches for model extraction

The chosen strategy is normally that of creating dedicated parsers. Given a
grammar and a target metamodel, a dedicated parser provides a specific solu-
tion which performs both parsing and model generation tasks. The former is in
charge of extracting a syntax tree from the source code and the latter traverses
such syntax trees in order to generate the target model. For example, in [14] a
dedicated parser is built to extract models from PL/SQL code, and another with
which to extract models from VB code is presented in [15]. However, dedicated
parser development is a time-consuming and very expensive task. The effort re-
quired is usually alleviated by automatically extracting an AST from the source
code. This step is performed by using an API, which is intended to make the
management of such tree easier. An example of such APIs is the JDT Eclipse
project [16], which works with Java source code. But APIs do not currently
exist for a number of the GPLs widely used in modernization (e.g. PL/SQL
language). In addition, although these APIs tackle AST extraction and manage-
ment, a mechanism for retrieving scattered information must still be hard-coded,
so APIs do not considerably shorten the development time.

MoDisco (Model Discovery) [2] is a model extraction framework, which is
part of the Eclipse GMT project [17]. This framework is currently under devel-
opment and provides a model managing infrastructure through which to imple-
ment dedicated parsers (“discoverers” in MoDisco terminology). A KDM based
metamodel, a metamodel extension mechanism and a methodology for designing
such extensions are also planned.

Several approaches for bridging grammarware and modelware have been de-
fined in the context of creating textual domain specific languages (DSL) for
MDE. These approaches can be classified in two groups according to whether
they are focused on grammars or metamodels. Grammar-based approaches are
oriented towards automatically generating metamodels from grammars, whereas
metamodel-based approaches work in the opposite direction. In model-driven
modernization, the process starts from existing source code which conforms to
the grammar of a GPL. Therefore metamodel-based approaches, such as TCS,
are not well suited. As is stated in [12]: “If the problem at hand is to develop
a single, eventually general purpose language then the efforts for developing a
dedicated parser are worthwhile” (rather than using TCS).

XText [6] is an example of a grammar-based approach, which is part of
the openArchitectureWare toolkit [18]. An EBNF-based language is provided
to specify the input grammar to the xText processor, that is, a specification
of the textual concrete syntax including grammar rules intended to guide the
generation of the corresponding metamodel. Three artifacts are thus generated:
i) a metamodel of the language, ii) a parser to recognize the language syntax and
to create models conforming to the generated metamodel, and iii) a language
specific editor.

However, several problems arise when xText is used in modernization, since
dealing with GPL source code involves problems not addressed by this approach,
which is aimed at simpler languages than a GPL. The automatically generated
metamodel from the grammar of a GPL is of poor quality because it includes su-
perfluous elements and grammatical aspects, and the semantic gap between this
metamodel and the target metamodel is thus very high. A model-to-model trans-
formation is therefore required to convert models generated by xText into models
conforming to the desired target metamodel. However, since current model-to-
model transformation languages do not offer an efficient mechanism to resolve
the problem of gathering scattered information, the definition of such transfor-
mation is a complex task. Moreover, neither existing grammar reuse, the reuse of
grammars for well-known parser generators (e.g. ANTLR), nor the reuse of xText
grammar specifications is promoted. On the one hand, translating a grammar
specification provided by a parser generator into a xText EBNF-based specifi-
cation is extremely complicated since some parser options which are needed to
recognize GPLs cannot be specified (e.g. in Java, the use of backtracking or the
inclusion of syntactic predicates). On the other hand, xText grammar specifica-
tions are oriented to a specific metamodel so they include specific rules for such
a metamodel.

Wimmer et al. [7] and Kunert [19] have proposed improving the quality of the
generated metamodel by applying heuristics and including manual annotations
to the grammar. However, the quality of the metamodel generated from a GPL
grammar is still low and it is necessary to additionally define a model-to-model
transformation. Moreover, tools supporting these two approaches are not yet
available.

Program transformation languages, such as Stratego/XT [8] and TXL [9],
could be used to extract models from source code by expressing the abstract
syntax as a context-free grammar rather than a metamodel. However, when
such languages are used, the following limitations are encountered. Firstly, the
result of a program transformation execution is a program conforming to a gram-
mar, and therefore a tool for bridging grammarware and modelware would be
still needed to obtain the model conforming to the target metamodel. Secondly,
grammar reuse is not promoted because each toolkit uses its own grammar def-
inition language. Moreover, each toolkit only provides a limited number of GPL
grammars (i.e. Java and C in Stratego and TXL).

2.2 Our approach for model extraction

In the context of an Oracle Forms migration project, we faced model extraction
from PL/SQL code. Then we considered the definition of a DSL in order to over-
come the limitations of the previously discussed approaches. This DSL should
decrease the development time, make the maintenance easier and promote the
reuse of existing grammars (e.g. ANTLR and JavaCC grammars). To achieve
these objectives, it is necessary to raise two key design issues: how can mappings
between grammar elements and metamodel elements be expressed in a simple
and readable way, and what notation is appropriate when retrieving scattered
information from syntax trees.

Model-to-model transformation languages could be used to express the map-
pings between grammar elements and metamodel elements, but this possibility
would require models rather than GPL code as input, and a dedicated parser
would therefore have to be implemented to extract a model conforming to an
intermediate metamodel (i.e. an abstract syntax tree metamodel) from source
code. A model-to-model transformation would then be applicable. However,
defining these transformations would lead to an important problem: the inad-
equacy of the query language. Many current model transformation languages,
such as ATL [10] or QVT [20], provide a variant of the OCL navigation language
[21] which allows model graphs to be traversed. Although OCL-like expressions
are appropriate for most practical model-to-model transformation definitions,
they are not convenient for typical global-to-local transformations involved in a
model extraction from GPL code: long navigation chains must be written using
dot notation. Integrating a more suitable query language in an existing model
transformation language would involve important changes if a language support-
ing two different query mechanisms were to be obtained. For instance, a plugin
mechanism could be implemented.

We have therefore created a DSL which has been specially designed to express
grammar-to-model mappings, and which provides a powerful query language for
syntax trees. In particular, since the scattered information problem appears in
both AST and CST, and obtaining a CST is easier than an AST, we use CSTs for
representing the source code. This DSL, denominated as Gra2MoL (Grammar
To Model Transformation Language) will be described in Section 4 and the query
language is introduced in the following section.

Approach
Syntax tree
navigation

Artifacts
to be

created

Post
processing

Existing
grammar

reuse

Built
grammar

reuse

Purpose

Dedicated
parser

(+ API)

GPL code
(+ primitives)

MMT

P
None Yes NA Specific

model
extraction

Grammar
based

bridging
(xText)

Poor support Gxt

MMT

m2m

M2M transformation:
generated MMI →
MMT

No No DSL
creation

Program
transf.

Stratego incor-
porates a query
language [22]

MMT

TP T

GAS

m2m

Extracting a model
from a program con-
forming to GAS

Limited
(a few
gram-
mars)

Yes Program
transf.

Gra2MoL
Structure-shy query
language

MMT

T
None Yes NA General

purpose
model
extraction

Table 1. Comparison of Gra2MoL with the analyzed approaches. NA = Not applicable, G = Gram-
mar, MMT = Target metamodel, MMI = Intermediate metamodel, T = Transformation definition,
P = Dedicated parser, TP T = Program transformation definition, Gxt = xText grammar, m2m =
model-to-model transformation definition, GAS = Abstract syntax grammar.

Table 1 contrasts Gra2MoL with the analyzed approaches. The columns show
the properties which are compared: the ability to navigate the syntax tree; which
artifacts must be created; whether post-processing is necessary; whether it is
possible to reuse existing and provided grammars; and the main purpose of the
approach. The artifacts to be created and the post-processing tasks determine
the effort level of each approach. For instance, we note that bridging and program
transformation approaches require more complex tasks than Gra2MoL, such as
writing model-to-model transformations or defining a GPL grammar, whereas
in Gra2MoL it is only necessary to create the transformation definition and the
target metamodel. With regard to the creation of a dedicated parser, Gra2MoL
turns a hard-coding task into the writing of a grammar-to-model transforma-
tion definition using a language specially tailored for extracting models. As a
consequence, development time is reduced by using Gra2MoL.

3 A query language for concrete syntax trees

As stated above, grammar-to-model transformations involve an intensive use of
queries to collect scattered information. Therefore, a model extraction approach
must provide a powerful query language, which facilitates the access to tree
nodes outside the current construct scope (i.e. a rule). Figure 2 illustrates the
scattering problem for a simple example of extracting a model element from a
PL/SQL procedure. The CST shown corresponds with a procedure declaration
which includes a variable declaration and an assignment statement initializing
the declared variable. The AssignmentStatement model element represents a
PL/SQL assignment which has two attributes to register the right-hand side
and left-hand side expressions of the assignment. As can be observed, whereas
all the information needed to initialize the right-hand side attribute (insert

Fig. 2. Example of scattered information. The oval indicates the scope of the construct
and the dotted line indicates an identifier-based reference between tree elements.

literal) is inside the current scope (depicted as an oval), the information needed
to initialize the left-hand side attribute is outside such a scope, because the stat
variable declaration is referenced by an identifier. Therefore, a query is necessary
to resolve this reference to the stat variable, by accessing the corresponding
declaration node and retrieving the variables properties.

We have developed a structure-shy query language, inspired by XPath [23],
which allows a CST of the source code to be navigated without the need to
specify each navigation step. The term “structure-shy” is often used to refer
to behavior specifications which are loosely bounded to the data structures on
which operations (i.e. queries) are applied. The term “structure-shy” query is
used in this sense.

In order to navigate the CST, the nodes are “typed” using the grammar
definition, and each tree node registers the name of the grammar element as its
type. Figure 3 illustrates the conformance relationships between the CST and
the grammar definition, showing a CST for several PL/SQL procedures along
with the corresponding fragment of PL/SQL grammar. The conformance rules
are those commonly used to create a tree of this kind:

– A non-terminal element corresponds to a tree node. For instance, the proc decl
non-terminal element corresponds to the proc decl tree node in Figure 3.

– A terminal element corresponds to a leaf. In Figure 3, the Name terminal
corresponds to the Name leaf.

– A production rule is represented by a node hierarchy whose parent corre-
sponds to the non-terminal element on the left-hand side of the rule, and
a child for each grammar element on the right-hand side by applying the
previous rules. In Figure 3, the proc decl production rule is represented by
the hierarchy whose root is a proc decl tree node.

A query consists of a sequence of query operations in which each operation
includes an operator, a node type and optional filter and access expressions. The
EBNF expression for a query operation is:

Fig. 3. CST for the PL/SQL grammar.

{ (’/’|’//’|’///’) (’#’)? nodeType [filterExpression] [accessExpression] }

We have defined three operators for querying and navigating over CSTs: /,
// and ///. The / operator returns the immediate children of a node and is
similar to dot-notation (e.g. in OCL). The // and /// operators permit the
traversal of all the nodes children (direct and indirect), thus retrieving all nodes
of a given type. The /// operator differs slightly from the // operator. Whereas
the /// operator searches the syntax tree in a recursive manner, the // oper-
ator only matches the nodes whose depth is less than or equal to the depth of
the first matched node. The /// operator is, therefore, only used to extract in-
formation from recursive grammar structures. These two operators allow us to
ignore intermediate superfluous nodes, thus making the query definition easier,
since it specifies what kind of node must be matched, but not how to reach it,
in a shy-structure manner. The createFunctionCallStatement rule defined in
Section 5 will show the difference between both operators.

Since a query could return one or more subtrees, the # operator is used to
indicate the root node from which the information needed can be accessed. This
operator must be associated to one and only one query operation of the sequence
of operations forming a query. For instance, in order to extract all the PL/SQL
variable declarations defined in every procedure of the PL/SQL CST shown in
Figure 3, the following query could be expressed /create package//#var decl.
The same query expressed in OCL is shown in Figure 4. It is worth mentioning
how the clarity, legibility and conciseness are improved.

Fig. 4. OCL query for extracting all the variable declarations of every prodecure of
the PL/SQL CST shown in Figure 3.

Query operations can also include a filter expression, which is enclosed in
curly brackets. A filter expression is a logical expression which is applied to the
leaves of the node specified in a query operation. Each operand of a filter expres-
sion is a boolean function which checks the properties of a leaf, such as its value
or whether it exists. Only those nodes that satisfy the filter expression will be
selected. For example, the query /create package//#proc decl{Name.exists
&& Name.eq(’insert’)} will select every procedure grammar element with a
Name leaf and the value of such leaf must be insert in the PL/SQL CST shown
in Figure 3.

Finally, query operators can also include an access expression enclosed in
square brackets, which is used to access to sibling nodes through indexing.
For instance, the query /create package//#proc decl[0] will select the first
procedure grammar element of the CST in Figure 3, which is the insert pro-
cedure.

The following section outlines the Gra2MoL domain specific language which
integrates the described query language.

4 Gra2MoL

In Gra2MoL, a model extraction process is considered as a grammar-to-model
transformation, so mappings between grammar elements and metamodel ele-
ments are explicitly specified. According to Figure 1, the input of a Gra2MoL
transformation is source code along with the grammar definition it conforms to,
a target metamodel and a transformation definition; the output is a model which
conforms to the target metamodel.

The language has been designed as a rule-based model transformation lan-
guage with rules whose structure is similar to that provided in languages such
as ATL or RubyTL, with two important differences: i) the source element of a
rule is a grammar element rather than a metamodel element, and ii) the naviga-
tion is expressed by the query language described in Section 3, rather than an
OCL-based language.

A Gra2MoL transformation definition consists of a set of transformation
rules. Each rule specifies the mappings between a grammar element and a target
metamodel element and is composed of four parts:

– The from part specifies a grammar non-terminal symbol, and declares a
variable that will be bound to a tree node when the rule is applied. This
variable can be used by any expression within the rule. The from part can
also include query operations to check the structure to be satisfied by the
nodes whose type is the non-terminal symbol.

– The to part specifies the target element metaclass.
– The queries part contains a set of query expressions which allow information

to be retrieved from the CST. The result of these queries will be used in the
assignments of the mapping part.

– Finally, the mapping part contains a set of bindings to assign a value to the
properties of the target element.

An example of Gra2MoL is shown and commented upon in Section 5.

4.1 Bindings and rule evaluation

A binding construct is used in the mapping part to establish the relationship
between a source grammar element and a target metamodel element. This con-
struct has very similar syntax and semantics to the binding construct of the
RubyTL [11] and ATL [10] languages. A binding is written as an assignment
using the operator “=”. The left-hand side must be a property of the target
element metaclass. The right-hand side can be the variable specified in the from
part of the rule, a literal value or a query identifier.

The execution of a transformation definition is driven by the bindings. The
definitions of rule conformance and well-formed transformation stated for RubyTL
in [11] are applicable to Gra2MoL, with simple changes. A metaclass Am con-
forms to a metaclass Bm if they are the same or Am is subtype of Bm, whereas a
node type An conforms to a node type Bn if they are the same. Every Gra2MoL
transformation definition must have an entry point in order to start the transfor-
mation execution. The entry point is the first rule of the transformation definition
and its mappings are in charge of starting the transformation execution. When
a rule is applied on a node, the filter located in the from part is first checked
and then, if the node satisfies the filter, an instance of the target metaclass is
created, and the rules bindings are executed. In the execution of a binding, three
situations may arise according to the nature of the right-hand side.

1. If it is a literal value, the value is directly assigned to the property of the
left-hand side.

2. If it is a query identifier, the query is executed and a rule resolving this
binding is looked up in the transformation definition, i.e. a rule whose types
of the from and to parts conform to the types of the right-hand side and left-
hand side of the binding, respectively. Whenever a conforming rule is found,
it is applied by using the element of the right-hand side of the binding as
the source grammar element.

3. If it is an expression, it is evaluated and two situations may arise, depending
on whether the result is a node whose type corresponds to a terminal (a leaf)

or a non-terminal symbol. If it is a leaf, the result is a primitive type and is
directly assigned, otherwise, a rule to resolve the binding is looked up and
executed, as was explained in the previous case.

4.2 Implementation

The first step in the execution of a Gra2MoL transformation is to build the CST
of the source code. Current implementation of Gra2MoL uses ANTLR grammar
definitions. These definitions can be enriched with actions in order to create the
CST. However, we are interested in using ANTLR grammar definitions without
attached actions for two reasons: (1) to alleviate the grammar developer from
the burden of creating the CST programmatically and (2) to promote grammar
reuse. We have therefore defined an enrichment process which automatically
adds the actions needed to build the CST to the grammar rules.

Gra2MoL uses a metamodel internally to generically represent CSTs of the
parsed source code. This metamodel is shown in Figure 5. There are three kinds
of elements in a CST model, namely Leaf, Node and Tree. Leaf represents a tree
node which corresponds to a recognized terminal symbol. Node represents a tree
node which corresponds to a recognized non-terminal symbol and is composed of
one or more children nodes, either of the Leaf or Node type. The type attribute
identifies the grammar symbol whose recognition has yielded the tree node cre-
ation (this is needed to navigate through the CST, as was explained in Section
3). Finally, Tree represents the root node of the tree. The creation of models
conforming to this metamodel is driven by the conformance rules explained in
Section 3.

Fig. 5. CST metamodel MMCST .

The execution process of a Gra2MoL transformation is shown in Figure 6(b),
together with a schema of the pre-processing step T to enrich the ANTLR gram-
mar in Figure 6(a). Note that 6(b) is the same as Figure 1, except that a parser
is an input to the Gra2MoL engine to build the CST model. This parser is gen-

Fig. 6. Gra2MoL implementation

erated from the grammar (Ge) enriched with actions intended to create CST
models conforming to the metamodel MMCST shown in Figure 5.

5 Example

Oracle Forms is an Oracle technology used to design and build enterprise ap-
plications in which the business logic and database access is encapsulated in
PL/SQL triggers. The source code of such applications is organized in sequences
of statements in which each sequence corresponds to a trigger. Gra2MoL has
been used within the context of a project to migrate Oracle Forms applications
to Java platform, in order to extract models from PL/SQL code. We implemented
a Gra2MoL transformation definition to extract models conforming to a meta-
model representing a subset of the PL/SQL abstract syntax. This transformation
definition consists of 57 rules1. An excerpt of this transformation definition will
be shown as follows. Figure 7 shows the parts of the PL/SQL grammar and the
PL/SQL metamodel considered in this example. have only shown the grammar
rules of interest for this example. Also, we have underlined the non-terminal
symbols used in the example.

rule createPLSQLDefinition

from create_package cp

to PLSQLDefinition

queries

seqt : /cp//#seq_of_statements;

mappings

triggers = seqt;

end_rule

rule createTriggerBlock

from seq_of_statements seqt

to TriggerBlock

queries

stats : /seqt/#statement;

1 The complete transformation definition can be downloaded from
http://modelum.es/gra2mol

Fig. 7. Excerpt of the PL/SQL grammar and the subset of PL/SQL metamodel used
in the example

mappings

statements = stats;

end_rule

rule createReturnStatement

from statement/return_statement st

to ReturnStatement

mappings

end_rule

rule createFunctionCallStatement

from statement/function_call st

to FunctionCallStatement

queries

fc : /statement/#function_call;

iden : /fc/user_defined_function//#identifier;

params : /fc///#call_parameter;

mappings

name = iden.ID;

parameters = params;

end_rule

rule createFunctionCallParamForFunctionCall

from call_parameter cp

to FunctionCallParameter

queries

iden : /cp/parameter_name/#identifier;

mappings

name = iden.ID;

end_rule

The first rule starts the transformation process by creating an instance
of PLSQL Definition. This rule has only one binding whose right-hand side
is a query identifier and whose left-hand side refers to the triggers attribute
of the PLSQLDefinition metaclass. The query is therefore executed and the
rules conforming the binding are then looked up and executed. In this ex-
ample, the createTriggerBlock rule would create instances of TriggerBlock
and would apply the statements = stats binding, whose right-hand side is a
query identifier and whose left-hand side refers to the statements attribute of
the TriggerBlock metaclass. In this case, both createReturnStatement and
createFunctionCallStatement rules conform to the binding, but the filter of
these rules allows the selection of only one, depending on the direct children
of the statement grammar element. The createFunctionCallStatement rule
illustrates the meaning of the // and /// operators. On the one hand, the //
operator used in the second query avoids the need to specify every navigation
step (i.e. sql identifier) to reach the identifier node. On the other hand, since
the call parameter production rule is defined recursively, the /// allows the
CST to be traversed in order to retrieve every call parameter node.

It is worth mentioning how clear and legible the transformation shown above
is. Both the implicit rule application driven by the bindings and the format of the
queries make it a clean language. Moreover, the query format also contributes
towards improving the legibility of the CST retrievals. Figure 8 shows the result
of an execution of this transformation definition.

Fig. 8. Result of a Gra2MoL transformation execution

6 Conclusions and future work

In this paper, we have presented Gra2MoL, a DSL for extracting models from
GPL source code by means of grammar-to-model transformations. Gra2MoL has
therefore been designed as a rule-based language inspired by languages such as
ATL and RubyTL. A Gra2MoL transformation definition consists of rules which
transform grammar elements into model elements by manipulating the CST of
the source code. A powerful language has been defined to navigate and query a
CST in a structure-shy manner. Several benefits will be derived from this new
approach, in comparison to existing solutions.

With regard to the implementation of a dedicated parser, our approach con-
siderably reduces the development time, and maintainability is also favored.
Mappings and queries are not hard-coded in the code of a programming lan-
guage, but are specified in a clear, concise and legible manner.

We have also compared Gra2MoL to grammarware-MDE bridging and pro-
gram transformation approaches. Since neither of these approaches was devised
for the extraction of models from GPL code, both require the performance of
difficult tasks. On the one hand, bridging approaches were designed to create
DSL, and are therefore not very practical for dealing with GPL. For instance,
xText generates low-level models, and model-to-model transformations have to
be defined. On the other hand, a program transformation approach could be
used but the developer is required to write a target grammar specification and
to define a bridge to convert the program generated into a model; Gra2MoL
transformations are, moreover, simpler than those transformations expressed by
the more commonly used transformational approaches, which use formalisms
such as rewriting techniques.

With regard to future work, we are working on several issues such as a mod-
ularity mechanism for Gra2MoL transformations and the identification of query
patterns to make the query definition independent from the grammar structure.
We are also analyzing how to integrate Gra2MoL in the Modisco framework as a
mechanism through which to create discoverers. Moreover, since Gra2MoL deals
solely with ANTLR grammars, we would like to support other parser generators
in order to increase the number of existing grammars that can be reused.

Acknowledgment

This work has been supported by Consejeŕıa de Educación y Cultura (CARM,
Spain), grant TICARM-9478. Javier Luis Cánovas Izquierdo enjoys a doctoral
grant from the Fundación Séneca.

References

1. Architecture-Driven Modernization Roadmap. OMG (2006).

2. MoDisco. http://www.eclipse.org/gmt/modisco/

3. A. van Deursen, E. Visser, and J. Warmer, “Model-driven software evolution: A
research agenda” in Workshop on Model-Driven Software Evolution (2007).

4. ADM Task Force: Architecture-driven modernization scenarios. OMG (2006).
5. P. Klint, R. Lämmel and C. Verhoef, “Toward an engineering discipline for gram-

marware”, in ACM Transactions on Software Engineering Methodology, n. 3, vol.
14, pp. 331-380 (2005).

6. S. Efftinge, “openarchitectureware 4.1 xtext language reference”,
http://www.eclipse.org/gmt/oaw/doc/4.1/r80 xtextReference.pdf (2006).

7. M. Wimmer and G. Kramler, “Bridging grammarware and modelware”, Satellite
Events at the MoDELS 2005 Conference, pp. 159168 (2006).

8. Stratego/XT. http://strategoxt.org/
9. TXL. http://www.txl.ca/
10. F. Jouault and I. Kurtev, “Transforming models with atl” (2005).
11. J. S. Cuadrado, J. G. Molina and M. M. Tortosa, “Rubytl: A practical, exten-

sible transformation language” in ECMDA-FA, L. N. in Computer Science, vol.
4066/2006, pp. 158, 172 (2006).

12. F. Jouault, J. Bézivin, and I. Kurtev, “TCS: a dsl for the specification of textual
concrete syntaxes in model engineering”, in GPCE, pp. 249-254 (2006).

13. J. van Wijngaarden and E. Visser, “Program transformation mechanics. a classi-
fication of mechanisms for program transformation with a survey of existing trans-
formation systems”, Department of Information and Computing Sciences, Utrecht
University, Tech. Rep. UU-CS-2003-048, (2003).

14. L. F. Andrade, J. Gouveia, M. Antunes, M. El-Ramly and G. Koutsoukos,
“Forms2Net - Migrating Oracle Forms to Microsoft .NET”, GTTSE, pp. 261-277
(2006).

15. “Migrating Visual Basic Applications to VB.NET using the NewCode extension
for Microsoft Visual Studio”. Newcode (2008).

16. JDT Eclipse project. http://www.eclipse.org/jdt
17. GMT Eclipse project. http://www.eclipse.org/gmt
18. OpenArchitectureWare toolkit. http://www.openarchitectureware.org
19. A. Kunert, “Semi-automatic generation of metamodels and models from gram-

mars and programs”, in Fifth Intl. Workshop on Graph Transformation and Visual
Modeling Techniques, E. N. in Theorical Computer Science, vol. 211, pp. 111-119,
(2008).

20. Linda Heaton. Meta Object Facility (MOF) 2.0 Query/View/Transformation Spec-
ification. OMG (2005).

21. OCL constraint language. http://www.omg.org/cgi-bin/apps/doc?formal/06-05-
01.pdf. OMG (2006).

22. J. van Wijngaarden. “Code Generation from a Domain Specific Language”, Master
Tesis (2003).

23. Xpath. http://www.w3.org/TR/xpath

