BusinessProcessModeling Notation
Specification

This OMG document replaces the submission document and the draft adopted specification (dtc/06-
01-01). Itisan OMG Final Adopted Specification, which has been approved by the OMG board and
technical plenaries, and is currently in the finalization phase. Comments on the content of this doc-
ument are welcomed, and should be directed to issues@omg.org by March 6, 2006.

You may view the pending issues for this specification from the OMG revision issues web page
http: //mww.omg.org/issues/; however, at the time of this writing there were no pending issues.

The FTF Recommendation and Report for this specification will be published on May 5, 2006. If
you are reading this after that date, please download the available specification from the OMG
Specifications Catal og.

OMG Final Adopted Specification
February 2006
dtc/06-02-01

Date: February 2006

Business Process Modeling Notation (BPMN) Specification

Final Adopted Specification
dtc/06-02-01

OBJECT MANAGEMENT GROUP

Copyright © 2004, BPMI.org
Copyright © 2006, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the
included material of any such copyright holder by reason of having used the specification set forth herein or having conformed any
computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual , worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specificationsis for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercia purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be required by
any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
againgt liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of thiswork covered
by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR

WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entirerisk asto the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Dataand Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.FR. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.SA.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmMed™, CORBAnNet™, Integrate 2002™, Middleware That's Everywhere™, UML ™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA ™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other specia designations to indicate compliance with these materials.

Software developed under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmw.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

Preface ... XV
1 Y o0] 01PN 1
2 CONFOIMANCE ...oiecii et e eaa s 1
3 Normative REfErE€NCESuviiiiiiiiii e 2
G 70 R N o 1 = 111/ PP 2

G2 [0 o B AN o 4 4 T =P 2

4 Terms and DefinitioNSooeiiiiiiie e 4
5 SYMDOIS e e 5
6 Additional Informationcooiiiiiii i 5
L0 R @0] 0 V7= 1 o] o P 5

6.1.1 Typographical and Linguistic Conventions and Style...........ccccccceeeee i, 5

6.2 Dependency on Other SPeCIfiCatioNS............uuuuiuriiuiiiiiiiiii 6

6.3 Structure of thisS DOCUMENL.. ... re e ee e aeeeaeeees 6

6.4 ACKNOWIEAGEMENTSo e e e e e aeeeaeeeeeeeeeeeeeeeeeeees 6

7 (@ 17T V1P 9
7.1 BPMN SCOP ittt ettt e e e e et e e et e e e e e e e eeanaee 10

00 T T U =TS o 2 Y PSR 10

7.1.2 Diagram Point Of VIBWuuiiiiiiiiii e e e e eane e e e 13

7.1.3 Extensibility of BPMN and Vertical DOMAINScccooviiiiiiiiiiiiiieeee e ecsiinieee e 14

8 BUSINESS Process DIagramscccuiiiiiiiiiiieieiiin et eeeis 15
8.1 BPD CoOre El€MENt SELuii e e e e e e e e e aeeaaeaaees 15

8.2 BPD COMPIELIE SEU ..oeeiieiiiiiieii ittt e e 18

8.3 Use of Text, Color, Size, and Lines in a Diagramcccccccviiiiiiiiiiiiiiiiieeeee, 26

8.4 Flow Object CoNNECHiON RUIEScciiiiiiiieie et 27

8.4.1 SeqUENCE FIOW RUIESeeiiiiieiieiiie ettt s e e e e e e e e e e e e 27

8.4.2 MeSSaQge FIOW RUIESeeiiiiiiiiiic e e e 28

8.5 Business Process Diagram AHDULESeuiiiiiiiiiiiiiiiiiiiiiiieieieeeree e ee e e ee e 28

8.5.1 Changes Since 1.0 Draft VersioN........ooocuiiiiiiiiiiie et 29

B0 PrOCESSES ittt ettt e e a e e earan 29

8.6.1 ALIDULES ..eeeii i e ————— 30

8.6.2 Changes Since 1.0 Draft VersioN.........oooiuiiiiiiiiiieeee et 31

9 Business Process Diagram Graphical Objectsccccceevvveiinnnnnnn. 33
9.1 Common Graphical Object AttrDULESueiiiiiiiiiiiiiieeeeeeee e 33

9.2 Common Flow ODbject AHIBULESuuuiiiiiiiiiiiiiiiiiiiie e ee e 33

9.2.1 Changes Since 1.0 Draft VEIrSIONcccccuiiiiiiiiee e e e e e 34

BPMN Adopted Specification i

L TG T V=Y o | N 34

9.3.1 Common Event AttriDULESeuiieeiieeeee e 35

0.3.2 SHAN 1veiiiieie ettt a et a e e s e e e et be e e a e e e abeeeareeaans 35

LR TR T o (o O P PP PSPPPROPP 40

9.3.4 INLEIMEIALEeeeeiiiiiie ettt e e e e e e e e et e e e e e e e e e e e e annnenreeeeeeas 43

0.4 ACHIVITIES .eeeieeeei ittt ettt e e e e e ekttt e e e e e s e bbbttt e e e e e e b rr e e e e e e nnnaees 49
9.4.1 Common ACLIVIty AtHDULESeeeiiiiiiiie e 49

O.4.2 SUD-PIOCESSeetiiieiieieii ittt e e e e e ettt e e e e e e e e e e e nbabbeeeaeaaaeeaeas 53

LS - 1 O TSSO P SRR 62

LS BT 1= 1 =LY = £ 68
9.5.1 Common Gateway FEALUIEScueiiiiiiiiiiiiitiiie e e e e e e e e e e e e e ee e ee e 70

9.5.2 EXclusive Gateways (XOR)cccuuuiiiiiirieeeeeseistiieteee e e e s e e s e s sssentraneeeeraaee s e s s ennnnneeens 71

9.5.3 INClUSiVE GAteWAYS (OR)uuuiiiiiiiiiiee e e i e i ettt itie et e e e e e e s s e r e e e e e e e e s e s ananeeaeaes 78

9.5.4 COMPIEX GALEWAYS ..eeiieeeeiiiiiiiiieiieir e eee e et e e se st eereeeaeesassasta st e eeeeaaeeseesannannreneeees 82

9.5.5 Parallel Gateways (AND)ccvuuiiiiieiie e ee e e e e e e e ss s e e e e e e e e s e annannraaee s 85

9.6 Swimlanes (P0O0IS and LANES)uuuiiiiie i eee et e e e e e e et e e e e e e eeaeaanans 86
9.6.1 Common Swimlane AttrDULESooiiiiiiiiii 87

9.6.2 POOI ..t e e aaea e s 87

0.8.3 LN i e e e et e e e e e 90

LS A N 4 1] = od (= 91
9.7.1 Common Artifact DefiNitiONS........ccuveiiiiiiiiiii s 92

9.7.2 DAt ODJECT ...t e e e e e e e e e et e e e e e e e 93

9.7.3 TeXt ANNOLALION ..eoiiiiiiiie ettt e e s seb e e s s anneeeeas 95

LS TR0 N] o 11 o 95

10 Business Process Diagram Connecting ODbjectscccccevvvveviinnennen, 99
10.1 Graphical Connecting ODJECLScuviiiiiiiii e 99
10.1.1 Common Connecting Object AtrDULESceeviiiiiiii e 99

10.1.2 SEQUENCE FIOW ..coiiiiiiii ettt e e e e e e aeeeeeas 100

10.1.3 MESSAQE FIOW ...t e e e e e e e 102

10.1.4 ASSOCIALION ...eeiiiieeieeiiit ettt e ettt et e e e e e e e ettt e e eea e e e e e e e e nnbeeeaneaaaaaeaaans 105

10.2 Sequence FIOW MECNANISMSt eeeeeeeeeeeeees 106
10.2.1 NOIMAI FIOW ..ottt e et e e et e e snaeee s 107

O (ot = o] 1o o T 01 USSP 130

L0.2.3 A HOC oottt e e ettt e sttt e e et e e e nnnaeee s 132

10.3 Compensation ASSOCIALIONuuurieiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneneeeeeeeenees 133
11 Mapping to BPELAWS ... 137
11.1 Business Process Diagram MappingScccccccccuurueurimiimmiminriirerisrieesierereseeree. 137
11.2 BUSINESS ProCeSS MaPPINGSccoioiuurrriiiieaiiiiiiiieee e ees et e e e e s ee e e e s snnneees 137
11.3 Common FIOW ODJECT MAPPINGSuviieiieeeeeiiiieie et e e 139
R YT o | £ PP PTPTTSPTR 139
11.4.1 Start EVENt MappinNgScccovriiiriireeeeeeiisisiieineeeeseeessessssssnneeeseeseeaessssnsnnsssnsneeees 139

0 o To I A =Y L 1Y =T o o o RS 141

11.4.3 Intermediate EVENt MAPPINGS .ovvviieeieiiii it e eee e ee st e e e e e e e e e s e snnvnnaneeee s 142

115 ACHVILIES ittt ettt e e e e e e e e e e e et e e e e e e re s 148
11.5.1 Common ACLIVItY MaPPINGS ..eeeeeeeeeeieiiiiiiiee e eee e e e s s s tnreeerr e e e e e s s e s snnnrnnnereeaeeeees 148

11.5.2 SUD-ProCess MapPiNgScuuueeeiieeeiiiiiiiiiiiieireeeeeesssitsreaeeeeaeeessssssnnensnreeseaaeses 166

TR B I 1Y 1Y = o] o] o SRR 168

ii BPMN Adopted Specification

S 1= 1 = Y= | PP PPR 171

11.6.1 Common GateWay MapPPINgSccoiiouireiiiiieaieeeee e aiieibe e eeea e e s e e s s snbe e aeeeaaaaaaaeas 171

L1.6.2 EXCIUSIVE ..ottt ettt ettt e e e e e e e e e bbb e e e e e aaaa e s 172

L1.6.3 INCIUSIVE ettt e e e e e e e e bbb aee e e e e e e e e s 174

1164 COMPIEX ettt e e e e e e ettt e e e e e e e e e e nnbbbnbaeeeeaaaeaeas 178

L1165 PATAIIEL ..ot e e a e e e e 178

5 A o o | PR PPPPPR P 178

N T - T o [TSRO UURUPTTT 178

0 B Y 1) = Tod £ S PUSURERR 178

11.10 SEQUENCE FIOW ... e e e e e e e ae e e s 179

11.10.1 When to Map a Sequence Flow to a BPELAWS LinKccccccoovvviiiiiieneneeennn, 181

11,11 MESSAQE FIOW oveieiiiiiiieieeeeeeeeee et 182

O I X1 To Lo = [0 PP RPPPP 182

11.13 EXCEPLON FIOW...coviiiiiiiiiiiiie ittt 182

11.14 Compensation ASSOCIAtIONcccuiiiiiiiiiie e e e e e e e e e e e e e ee e s 188

11.15 ASSIGNMENT MAPPING wevrrriiiiieeieeieeiiiiees e e e ee e e e et s e e e e e e e ae e e s e e e e e eesarrnnnn s 189

11.16 BPMN Supporting Type EIEMENtScoiiiiiiiiiieiin e eeea 189

11.17 Determining the Extent of a BPEL4AWS Structured Elementccccccvvvvvvenenn. 190

11.17.1 BPMN Elements that Span Multiple BPEL4AWS Sub-Elements 201

12 BPMN by EXample ... 205
12.1 The Beginning Of the PrOCESSccoiiiiiiiiiiii it 206

12.1.1 Mapping t0 BPELAWSooooiiiiie ittt e e e e e e s s e e e e e e e 206

12.2 The FirSt SUD-PIOCESSceiiiiiiiiiiiiieeeeee e, 211

12.2.1 Mapping t0 BPELAWSooooiiiie ettt r e e e e e e s s n e e e e e e 213

12.3 The Second SUD-PrOCESSooiiiiiiiiiiiiee e 217

12.3.1 Mapping t0 BPELAWSooeeiiiii ettt r e e e e e s s s e e e e e e e 219

12.4 The ENd Of the PrOCESScoiiiiiiiiiiiiiiii ettt 224

12.4.1 Mapping t0 BPELAWS ...ttt e e e e e 225

Annex A - E-Mail Voting Process BPELAWScccooiiiiiiiiiiceieieeeeee 231
Annex B - BPMN Element Attributes and TYPesScocoevvvvviiiicviiieeeennnne, 241
ANNEX C - GIOSSAIY ...oeeiiiiiiie e eeaaa 273

BPMN Adopted Specification iii

BPMN Adopted Specification

List of Figures

Figure 7.1 - Example of Private BUSINESS PrOCESSo oot 11
Figure 7.2 - Example of an Abstract BUSINESSPIroCesst e 11
Figure 7.3 - Example of a Collaboration BuSINESSProCeSSo oo e 12
Figure 9.1 - A Start EVeNt.o 35
Figure 9.2 - ENd EVeNt 40
Figure9.3 - Intermediate EVent i e 44
Figure 9.4 - Task with an Intermediate Event attached toitsboundary 44
Figure 9.5 - Collapsed SUD-PrOCESSot e e e e 54
Figure 9.6 - Expanded SUD-ProCESSttt 54
Figure 9.7 - Expanded Sub-Processused asa“parallel box” L 55
Figure 9.8 - Collapsed Sub-Process Markers e e e e 55
Figure 9.9 - A Sub-Process Object with its Details Shown in the Diagram of the Next Figure 57
Figure 9.10 - A Process and Diagram Details of the Sub-Process Object in the PreviousFigure. 58
Figure 9.11 - An Example of a Transaction Expanded Sub-Processcovvvn.. 60
Figure9.12 - A Task ObJeCtottt e e e e 63
Figure 9.13 - Task Markers.ot e e e 63
FIQUrE Q.14 - A GaleWay v it ittt ettt et e e e e et et e 69
Figure 9.15 - The Different types of Galeways oottt e 69
Figure 9.16 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator . 71
Figure 9.17 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator 72
Figure 9.18 - An Exclusive Merge (Gateway) (without the Internal Indicator) 72
Figure 9.19 - Uncontrolled Merging of Sequence Flow 73
Figure 9.20 - Exclusive Gateway that merges Sequence Flow prior to an Parallel Gateway. 73
Figure 9.21 - An Event-Based Decision (Gateway) Example Using ReceiveTasks 76
Figure 9.22 - An Event-Based Decision (Gateway) Example Using MessageEvents 76
Figure 9.23 - An Inclusive Decision using Conditional SequenceFlow 79
Figure 9.24 - AnInclusive Decisionusingan OR Gatewayc.ouuiiiininennnannnnnn 80
Figure 9.25 - An Inclusive Gateway Merging SequenceFlow. o ... 80
Figure 9.26 - A Complex DeCiSION (GateWay)ouun ettt ettt 83
Figure 9.27 - A Complex Merge (Gateway) oottt e e 83
Figure9.28 - A Paradllel Gateway 85
Figure 9.29 - Joining —thejoining of parallel paths. i i 85
Figure9.30 - A POOL 87
Figure 9.31 - Message Flow connecting to Flow ObjectswithintwoPools 89
Figure 9.32 - Main (Internal) Pool without boundaries 89
Figure9.33-TwoLanesinaPool e e 91
Figure9.34 - A DataObjecto 93
Figure 9.35 - A Data Object associated withaSequenceFlow 93
Figure 9.36 - Data Objects shown asinputsSand QULPULSottt e 94
Figure9.37 - A TeXt ANNOLALiONottt e e e 95
Figure9.38- A Group Artifact e 96
Figure 9.39 - A Group around activitiesindifferent Pools, 96
Figure10.1- A SequenCe FlOW ot 100
Figure 10.2 - A Conditional Sequence FIOW i e e 100
Figure 10.3- A Default Sequence FIow oo 100

BPMN Adopted Specification \

Figure10.4- AMeESsage FlOWo 102

Figure 10.5 - Message Flow connecting to the boundariesof twoPools 102
Figure 10.6 - Message Flow connecting to Flow ObjectswithintwoPools 103
Figure 10.7 - Message Flow connecting to boundary of Sub-Process and Internal objects 104
Figure 10.8AN ASSOCIALIONttt it ettt e e e e e e e e e 105
Figure 10.9 - A directional ASSOCIalioNo vttt e e e 105
Figure 10.10An Association of Text ANNOtation vt e et 105
Figure 10.11 - An Association connecting a Data Object withaFlow 106
Figure 10.12 - Workflow Pattern #1: SEqUENCEottt e e e e e et e e 107
Figure 10.13 - A Processwith Normal FIOw i e 107
Figure 10.14 - An Expanded Sub-Process without a Start Eventand EndEvent 108
Figure 10.15 - An Expanded Sub-Process with a Start Event and End Event Internal 109
Figure 10.16 - An Expanded Sub-Process with a Start Event and End Event Attached to Boundary . . 110
Figure 10.17 - Workflow Pattern #2: Parallel Split--Version1l 111
Figure 10.18 - Workflow Pattern #2: Parallel Split--Version2, 111
Figure 10.19 - The Creation of Parallel PathswithaGateway 112
Figure 10.20 - The Creation of Parallel Paths with Equivalent Conditions. 112
Figure 10.21 - Workflow Pattern #2: Parallel Split--Version3, 113
Figure 10.22 - Workflow Pattern #3: Synchronization--Versionl 113
Figure 10.23 - Workflow Pattern #3: Synchronization--Version2, 114
Figure 10.24 - The Fork-Join RelationshipisnotFixed i, 114
Figure 10.25 - A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice 115
Figure 10.26 - Workflow Pattern #6 -- Multiple Choice--Versionl 116
Figure 10.27 - Workflow Pattern #6 -- Multiple Choice--Version2 116
Figure 10.28 - A Complex DeCision (Galeway)o vttt 117
Figure 10.29 - An Event-Based DecisonExample i 117
Figure 10.30 - Workflow Pattern #5 -- SmpleMerge—Versonl, 118
Figure 10.31 - Workflow Pattern #7 -- MultipleMerge 118
Figure 10.32 - Workflow Pattern #5 -- SmpleMerge—Verson2 ..., 119
Figure 10.33 - Workflow Pattern #8 -- DiSCriminatorcouiuiii i, 119
Figure 10.34 - Workflow Pattern #9 -- SynchronizingJoin ciiiiiiienen... 120
Figure 10.35 - Workflow Pattern #8-- N out of M Join ...t 120
Figure 10.36 - The Split-Merge Relationshipisnot Fixed. 121
Figure 10.37 - A Task and a Collapsed Sub-ProcesswithaLoop Marker. 122
Figure 10.38 - A Task withaParallel Marker 122
Figure 10.39 - An Expanded Sub-ProcesswithaLoopMarker., 123
Figure 10.40 - Workflow Pattern #16 -- Arbitrary Cycle i 123
Figure 10.41 - AnUNL LOOP .. oottt e e e 124
Figure 10.42 - A WhIlE LOOD . . . oot e e e e e e e 124
Figure 10.43 - Link Intermediate Event Used as Off-Page Connector. 125
Figure 10.44 - ProcesswithLong Sequence Flow i e 126
Figure 10.45 - Process with Link Intermediate Events Used asGo ToObjects 126
Figure 10.46 - Link Intermediate Event Used for Looping, 126

Vi BPMN Adopted Specification

Figure 10.47 - Example of Sub-Processwith Start and End Eventsinside 127

Figure 10.48 - Example of Sub-Process with Start and End EventsonBoundary 127
Figure 10.49 - Link Events Used to Synchronize Behavior AcrossProcesses 128
Figure 10.50 - Potentially adead-locked model i 129
Figure 10.51 - ImpProper LOOPING . .o v vttt et e e e e e e e e e e e e e 129
Figure 10.52 - Improper useof aLink EndEvent i 130
Figure 10.53 - A Task with Exception Flow (Interrupts Event Context) 131
Figure 10.54 - A Sub-Process with Exception Flow (Interrupts Event Context) 131
Figure 10.55 - A Collapsed ADHOC SUD-Process e 132
Figure 10.56 - An Expanded Ad HOC SUD-ProCESS e 132
Figure 10.57 - An Ad Hoc Process for WritingaBook Chapter 133
Figure 10.58 - A Task with an Associated Compensation Activity, 134
Figure 10.59 - Compensation Shown in the context of aTransaction 135
Figure 11.1 - BPMN Depiction of BPEL4WS Pattern for a Standard loop, TestTime = Before. 151
Figure 11.2 - BPMN Depiction of BPEL4WS Pattern for a Sequential Multi-Instanceloop 154
Figure 11.3 - Structure of Process to be Spawned for Parallel Multi-instance 157
Figure 11.4 - BPEL4WS Pattern of Paralel Multi-instance, MI_FlowCondition=All 159
Figure 11.5 - BPEL4WS Pattern of Paralel Multi-instance, MI_FlowCondition=0One........... 162
Figure 11.6 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition=None 165
Figure 11.7 - BPELAWS Pattern of Inclusive Decision with two (2) Gates and a DefaultGate.. 176
Figure 11.8 - Example: Sequence Flow that are not used for BPELAWSIinks 181
Figure 11.9 - Example: A Sequence Flow that isused for aBPELAWSIink 182
Figure 11.10 - Exception Flow Merging back into Normal Flow Immediately after Interrupted

ATV, o 183
Figure 11.11 - Exception Flow Merging back into the Normal Flow Further Downstream 184
Figure 11.12 - Exception Flow Merging back into the Normal Flow at theEnd Event 186
Figure 11.13 - Example of Exception Flow Looping Back into the Normal Flow Upstream 186
Figure 11.14 - Example of Modification at BPEL4WS level to HandletheLoop 187
Figure 11.15 - Example of a Derived Processto HandletheLooping 188
Figure 11.16 - Identification of BPELAWS structuredelement, 191
Figure 11.17 - The Creation of Related TOKENSot e 192
Figure 11.18 - Example of Recombinationof Tokens. 193
Figure 11.19 - Example of Partial Recombinationof Tokens oo, 193
Figure 11.20 - Example of Distributed Token Recombination. 194
Figure 11.21 - Example of nested BPEL4AWS structural elements. 195
Figure 11.22 - Example of aLoop from a Decision with Two AlternativePaths 196
Figure 11.23 - Example of a Loop from a Decision with more than Two Alternative Paths 197
Figure 11.24 - Example of Interleaved LOOPSo ot e 198
Figure 11.25 - Example of the BPEL4WS Pattern for Substituting for the Derived Process 199
Figure 11.26 - Example of a BPEL4AWS Peattern for the Derived Process 199
Figure 11.27 - Example: AN INfiNiteLO0Do it e et e e 200
Figure 11.28 - Example: A Pair of Go To Link Events are Treated as a Single Sequence Flow 201
Figure 11.29 - Example: Activity that spans two paths of a BPEL4WS Structured Element 202
Figure 12.1 - E-Mail VOtNg PrOCESSot e et et 205
Figure12.2-TheStart of the Process e e e 206
Figure 12.3 - The ONngoing Starter PrOCESSottt et 207
Figure 12.4 - “Discussion Cycle” Sub-ProcessDetails 212
Figure 12.5 - “Collect Votes’ Sub-ProcessDetailst e 218
Figure 12.6 - The last segment of the E-Mail VotingProcess, 224

BPMN Adopted Specification Vii

Viii BPMN Adopted Specification

List of Tables

Table8.1- CoreModeling Elements o 16
Table8.2-BPD CoreElement Set. it e e 17
Table8.3-BPD Complete Element Set 18
Table 8.4 - Sequence Flow Connection RUIESo e 27
Table 8.5 - Message Flow Connection RUIES i e 28
Table 8.6 - Business Process Diagram Attributes.o 28
Table 8.7 - Process AttribULES 30
Table 9.1 - Common Graphical Object Attributes. e 33
Table 9.2 - Common Flow Object Attributes. e 33
Table 9.3 - Common Event Attributeso 35
Table 9.4 - Start EVeNnt TYPES ..ottt e e 37
Table 9.5 - Start Event AttribUutes 38
Table 0.6 - ENd EVent Ty PeS . . oot e 41
Table 9.7 - End Event Attributes o 42
Table 9.8 - Intermediate EVENt TYPESottt e e 45
Table 9.9 - Intermediate Event Attributes e 46
Table 9.10 - Common Activity AtHDULESo 49
Table 9.11 - Standard Loop Activity Attributes 51
Table 9.12 - Multi-Instance Loop Activity Attributes 51
Table 9.13 - SUb-Process AttrbULES i e 56
Table 9.14 - Embedded Sub-Process Attributes 56
Table 9.15 - Independent Sub-Process Attributes i e 58
Table 9.16 - Reference SUb-Process Attributes e e 59
Table 9.17 - Task AtrbULES o 64
Table9.18 - Service Task AttribDULES 64
Table9.19- Receive Task AttHbULESot e e e e 65
Table9.20 - Send Task AttriDULES 65
Table9.21 - User Task Attributes e 66
Table 9.22 - Script Task AtrDULESo e et e e 66
Table9.23 - Manual Task Attributes 67
Table 9.24 - Reference Task AttribUteso o e 67
Table 9.25 - Common Gateway AtHDULESt e e e 70
Table 9.26 - Data-Based Exclusive Gateway Attributeso 74
Table 9.27 - Event-Based Exclusive Gateway Attributes.t 77
Table 9.28 - Inclusive Gateway Attributes 81
Table 9.29 - Complex Gateway Attributes. 84
Table 9.30 - Parallel Gateway AttribUteSo 86
Table 9.31 - Common Swimlane Attributes. e 87
Table 9.32 - Message Flow connecting to the boundariesof twoPools 88
Table 9.33- Pool AttriDULESo 90
Table9.34 - Lane AttribDULES. o e 91

BPMN Adopted Specification iX

Table 9.35 - Common Artifact AttribULeS.o 92

Table9.36 - Data Object AttribUtES o e 9
Table 9.37 - Text Annotation AttribDULES. o 95
Table 9.38 - Group At bULES e 97
Table 10.1 - Common Connecting Object Attributes. i 99
Table 10.2 - Sequence Flow AttHbULESo e 101
Table 10.3- Message Flow Attributes. i e e 104
Table 10.4 - AssoCiation AIDULESo 106
Table 11.1- Business Process Diagram Mappingsto BPELAWS. 137
Table 11.2 - Business Process MappingsSto BPELAWS i 137
Table 11.3 - Common Flow Object Attribute Mappingsto BPELAWS 139
Table 11.4 - Start Event MappingSto BPELAW i e 139
Table 11.5- End Event MappingSto BPELAWS i e e 141
Table 11.6 - Intermediate Event Mappingsto BPELAWS e 142
Table 11.7 - None Intermediate Mappingsto BPELAWS e 143
Table 11.8 - Message Intermediate Mappingsto BPELAWS 143
Table 11.9 - Timer Intermediate Mappingsto BPELAWS i 144
Table 11.10 - Error Intermediate Mappingsto BPELAWS e 145
Table 11.11 - Cancel Intermediate MappingSto BPELAWS i 145
Table 11.12 - Rule Intermediate Mappingsto BPELAWS 145
Table 11.13 - Compensation Intermediate Mappingsto BPELAWS 146
Table 11.14 - Link Intermediate Mappingsto BPELAWS 147
Table 11.15 - Multiple Intermediate Mappingsto BPELAWS. 147
Table 11.16 - Common Activity Mappingsto BPELAWS e 148
Table 11.17 - Basic Activity Loop Mappingsto BPELAWS 148
Table 11.18 - Standard Activity Loop Mappingsto BPELAWS i, 150
Table 11.19 - Multi-Instance Activity Loop Setup Mappingsto BPELAWS 152
Table 11.20 - Sequential Multi-Instance Activity Loop Mappingsto BPELAWS 153
Table 11.21 - Parallel Multi-Instance Activity Loop Mappingsto BPELAWS 156
Table 11.22 - Parallel Multi-Instance Activity, MI_FlowCondition=All 158
Table 11.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition=One................. 161
Table 11.24 - Parallel Multi-Instance Activity Loop, MI_FlowCondition=Complex 163
Table 11.25 - Parallel Multi-Instance Activity Loop, MI_FlowCondition=None................ 164
Table 11.26 - Sub-Process Mappingsto BPELAWS e 166
Table 11.27 - Embedded Sub-Process Mappingsto BPELAWS i, 167
Table 11.28 - Independent Sub-Process Mappingsto BPELAWS 167
Table 11.29 - Reference Sub-Process Mappingsto BPELAWS 168
Table 11.30 - Task MappingSto BPELAWS i e e e e 168
Table 11.31 - ServiceTask Mappingsto BPELAWS e 169
Table 11.32 - Receive Task MappingSto BPELAWS e 169
Table 11.33 - Send Task Mappingsto BPELAWS e 169
Table 11.34 - User Task Mappingsto BPELAWS e 170
Table 11.35 - Script Task Mappingsto BPELAWS i e 170

X BPMN Adopted Specification

Table 11.36 - Reference Task Mappingsto BPELAWS e 171

Table 11.37 - None Task Mappingsto BPELAWS e 171
Table 11.38 - Common Gateway MappingstoBPELAWS i 171
Table 11.39 - Data-Based Exclusive Gateway Mappingsto BPELAWS 172
Table 11.40 - Data-Based Exclusive Gateway Mappingsto BPELAWS. 173
Table 11.41 - Inclusive Gateway MappingSto BPELAWS e 174
Table 11.42 - Parallel Gateway Mappingsto BPELAWS. i 178
Table 11.43 - Exception Flow MappingsSto BPELAWS i 179
Table 11.44 - Common Exception Flow Mappingsto BPELAWS 183
Table 11.45 - Exception Flow Merging back into the Normal Flow Further Downstream 184
Table 11.46 - Exception Flow MappingSto BPELAWS i 188
Table 11.47 - Assignment Mappingsto BPELAWS e 189
Table 11.48 - Message Attributes i 189
Table B.1 - Business Process Diagram Attributes e 241
TableB.2- Process Attributes 242
Table B.3 - Common Graphical Object Attributes. i 243
Table B.4 - Common Flow Object Attributes.t e e 244
Table B.5- Common Event AfribUtES i 244
Table B.6 - Start Event AMIDULESo 245
Table B.7 - End Event AfINDULES oot e e 246
Table B.8 - Intermediate Event Attributes e 247
Table B.9 - Common Activity Attributes 249
Table B.10 - Standard Loop Activity Attributes. e 250
Table B.11 - Multi-Instance Loop Activity Attributes. e 251
Table B.12 - SUD-Process AttribULES.o 252
Table B.13 - Embedded Sub-Process Attributes i 252
Table B.14 - Independent Sub-Process Attributes i 253
Table B.15 - Reference Sub-Process Attributes 253
Table B.16 - Task AttribULESo e 254
TableB.17 - Service Task Attributes 254
Table B.18 - Receive Task Attributes. 255
Table B.19- Send Task AttribULESo 255
TableB.20 - User Task Attributes oo e 256
TableB.21 - Script Task Attributeso e 256
Table B.22 - Manua Task Attribute 257
Table B.23 - Reference Task AtIDULES.ot e 257
Table B.24 - Common Gateway AttribUteS e e 257
Table B.25 - Data-Based Exclusive Gateway Attributes., 258
Table B.26 - Event-Based Exclusive Gateway Attributes 259
Table B.27 - Inclusive Gateway Attributes i e 260
Table B.28 - Complex Gateway Attributes e 261
Table B.29 - Parallel Gateway Attributes. 262
Table B.30 - Common Swimlane Attributes 262

BPMN Adopted Specification Xi

Table B.31 - Pool AttribULES 263

TableB.32- Lane Attributes 263
Table B.33 - Common Artifact Attributes e 264
TableB.34 - DataObject AttribUteS 264
Table B.35- Text Annotation Attributes 265
TableB.36 - Group Attributes o 265
Table B.37 - Common Connecting Object Attributes 265
Table B.38 - Sequence Flow Attributes 266
Table B.39 - Message Flow ATHDULESot e 267
Table B.40 - Association AttributeS i 267
Table B.41 - Assignment AttribULeS. oo e 268
Table B.42 - Entity AttribUES. oo 268
Table B.43 - EXpression AttribULeS.t e 269
TableB.44 - Message AttHDULES oo e e 269
TableB.45- Object AttriDULESo 269
Table B.46 - Participant AtribDULES o e e 270
Table B.47 - Property AttribUteS.o 270
TableB.48 - Role AttribUtES 270
TableB.49 - Rule AttribULES. 271
Table B.50 - Transaction Attributes o e e 271
Table B.51 - Web Service Attributes o 271

Xii BPMN Adopted Specification

List of Examples

Example 11.1 - BPELAWS SampleforaStandardLoop ...t
Example 11.2 - BPEL4WS Sample for a Multi-Instance L oop with Sequential Ordering

Example 11.3 - BPEL4WS Sample of aderived process for Parallel Multi-l1nstance loops

Example 11.4 - BPEL4WS Sample of aParallel Multi-Instance Loop, MI_FlowCondition = All .
Example 11.5 - BPEL4WS Sample of aParallel Multi-Instance Loop, MI_FlowCondition = One.. ..
Example 11.6 - BPEL4WS Sample of aParallel Multi-Instance Loop, MI_FlowCondition = None . .
Example 11.7 - BPEL4WS Sample for the Pattern for an Inclusive Decision with a DefaultGate . . .

Example 11.8 - Example: BPMN Elements that Span Multiple BPEL4WS Sub-Elements

Example 12.1 - BPEL4WS Sample for Beginning of E-Mail Voting Process
Example 12.2 - BPEL4WS Sample of “Discussion Cycle” Sub-ProcessDetails
Example 12.3 - BPEL4WS Sample that sets up the Access for the Second Sub-Process
Example 12.4 - BPEL4WS Sample of the Second Sub-Process
Example 12.5 - Sample BPEL4WS code for the last section of theProcess
Example 12.6 - Sample BPEL4WS code for derived process for repeated elements

BPMN Adopted Specification

Xiii

Xiv BPMN Adopted Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include; UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications Catalog is available from the OMG website at:

http://mww.omg.org/technology/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMl

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
. CORBAservices

BPMN Adopted Specification XV

¢ CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG's formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

XVi BPMN Adopted Specification

1 Scope

The Business Process Management Initiative (BPMI) has developed a standard Business Process Modeling Notation
(BPMN). The primary goal of BPMN isto provide anotation that is readily understandable by all business users, from the
business analysts that create the initial drafts of the processes, to the technical developers responsible for implementing
the technology that will perform those processes, and finally, to the business people who will manage and monitor those
processes. Thus, BPMN creates a standardized bridge for the gap between the business process design and process
implementation.

Another goal, but no less important, is to ensure that XML languages designed for the execution of business processes,
such as BPEL 4W'S (Business Process Execution Language for Web Services), can be visualized with a business-oriented
notation.

This specification defines the notation and semantics of a Business Process Diagram (BPD) and represents the
amalgamation of best practices within the business modeling community. The intent of BPMN is to standardize a business
process modeling notation in the face of many different modeling notations and viewpoints. In doing so, BPMN will
provide a simple means of communicating process information to other business users, process implementers, customers,
and suppliers.

The membership of the BPMI Notation Working Group has brought forth expertise and experience with many existing
notations and has sought to consolidate the best ideas from these divergent notations into a single standard notation.
Examples of other notations or methodologies that were reviewed are UML Activity Diagram, UML EDOC Business
Processes, IDEF, ebXML BPSS, Activity-Decision Flow (ADF) Diagram, RosettaNet, LOVeM, and Event-Process Chains
(EPCs).

2 Conformance

A BPMN implementation is responsible to perform one or more duties, as outlined below, based on the information
contained in this specification.

There are three main aspects of conformance to the BPMN Specification:

1. Thevisual appearance of the BPMN graphical elements. A key element of BPMN is the choice of shapes and icons
used for the graphical elementsidentified in this specification. Theintent is to create a standard visual language that
all process modelers will recognize and understand, regardless of the source of the Diagram. Any tool that is used to
create BPMN Diagrams MUST conform to the shapes and markers as defined in this specification. Note that thereis
flexibility in the size, color, line style, and text positions of the defined graphical elements. Extensionsto aBPD are
allowed asfollows:

« Extensions can be made to the Diagram elements by way of new markers or indicators associated with the current
graphical elements. These markers or indicators could be used to highlight a specific attribute of an activity or to
create a new type of Event, for example. In addition, Extensions could a so include coloring an object or changing
aline style of an object, with the condition that change MUST NOT conflict with any current BPMN defined line
style.

« Extensions MUST NOT change the basic shape of the defined graphical elements and markers (e.g., changing a
square into atriangle, or changing rounded corners into squared corners, €tc.).

« Any number of Artifacts, consisting of avariety of shapes, can be added to a Diagram, with the condition that the
Artifact shape MUST NOT conflict with any current object shape or defined marker.

BPMN Adopted Specification 1

2. The semantics of the BPMN elements. This specification also defines how the graphical elements will interact with
each other, including conditional interactions based on attributes that create behaviora variations of the elements. A
conformant tool MUST adhere to these semantic definitions.

 Throughout the document, specific BPMN semantic definitionswill beidentified through a special shaped bulleted
paragraph, as shown in the following example:

A Task MAY be atarget for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY be
from an alternative path and/or a parallel paths.

3. The exchange of BPMN Diagrams between conformant tools. This draft of the specification will not contain a
standard mechanism for Diagram exchange. The nature of this mechanism has not been defined yet. It could involve
the development of aBPMN XML schemathat islayered upon the BPELAWS XML schemaor it could involve the
use of standard Diagram interchange formats, such a XMI. When an exchange mechanism has been defined, a
conformant tool MUST be able to import and export BPMN Diagramsin the specified format.

A conformant implementation is not required to process any non-normative extension elements or attributes, or any
BPMN document that contains them.

3 Normative References

3.1 Normative

RFC-2119

» Key wordsfor usein RFCsto Indicate Requirement Levels, S. Bradner, IETF RFC 2119, March 1997
http://www.ietf.org/rfc/rfc2119.txt

BPEL4WS

« (BPEL4WS) 1.1, IBM/Microsoft/BEA/SAP/Siebel, July 2002
http://www-106.ibm.com/devel operworks/webservices/library/ws-bpel/

3.2 Non-Normative

Activity Service

» Additional Structuring Mechanism for the OTS specification, OMG, June 1999
http://www.omg.org

» J2EE Activity Service for Extended Transactions (JSR 95), JCP
http://www.jcp.org/jsr/detail/95.jsp

Business Process Definition

» Responseto OMG BPD RFP, OMG, Sept. 2003, bei/03-08-02
http://www.omg.org

Business Process Modeling

» Jean-Jacques Dubray, “A Novel Approach for Modeling Business Process Definitions,” 2002

2 BPMN Adopted Specification

http://www.ietf.org/rfc/rfc2119.txt
http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/
http://www.omg.org
http://www.jcp.org/jsr/detail/95.jsp
http://www.omg.org

http://www.ebpml.org/ebpml2.2.doc

Business Transaction Protocol

« OASISBTP Technical Committee, June, 2002
http://www.0asi s-open.org/committees/downl oad.php/1184/2002-06-03.BTP_cttee spec 1.0.pdf

BPML

« (BPML) 1.0, BPMI, January 2003
http://www.BPMI.org

Dublin Core Meta Data

« Dublin Core Metadata Element Set, Dublin Core Metadata I nitiative
http://dublincore.org/documents/dces/

ebXML BPSS

» Jean-Jacques Dubray, “A new model for ebXML BPSS Multi-party Collaborations and Web Services Choreography,”
2002
http://www.ebpml.org/ebpml.doc

OMG UML

» Unified Modeling Language Specification, OMG, August 2005
http://www.omg.org

Open Nested Transactions

« Concepts and Applications of Multilevel Transactions and Open Nested Transactions, Gerhard Weikum, Hans-J.
Schek, 1992
http://citeseer.nj.nec.com/weikum92concepts.html

RDF

» RDF Vocabulary Description Language 1.0: RDF Schema, W3C Working Draft
http://www.w3.org/ TR/rdf -schema/

SOAP 1.2

» SOAP Version 1.2 Part 1: Messaging Framework, W3C Working Draft
http://www.w3.0rg/TR/soap12-partl/

» SOAP Version 1.2 Part21: Adjuncts, W3C Working Draft
http://www.w3.0rg/ TR/soap12-part2/

uDDI

» Universal Description, Discovery and Integration, Ariba, IBM and Microsoft, UDDI.org.
http://www.uddi.org

URI
» Uniform Resource Identifiers (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L. Masinter, IETF RFC 2396,

BPMN Adopted Specification 3

http://www.ebpml.org/ebpml2.2.doc
http://www.BPMI.org
http://dublincore.org/documents/dces/
http://www.ebpml.org/ebpml.doc
http://www.omg.org
http://citeseer.nj.nec.com/weikum92concepts.html
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/soap12-part2/
http://www.uddi.org

August 1998
http://www.ietf.org/rfc/rfc2396.txt

WfMC Glossary

» Workflow Management Coalition Terminology and Glossary.
http://www.wfmc.org/standards/docs.htm

Web Services Transaction

» (WS-Transaction) 1.0, IBM/Microsoft/BEA, August, 2002
http://www-106.ibm.com/devel operworks/webservices/library/ws-transpec/

WSDL

» Web Services Description Language (WSDL) 1.1, W3C Note, 15 March 2001
http://www.w3.org/TR/wsdl.html

XML 1.0 (Second Edition)

» Extensible Markup Language (XML) 1.0, Second Edition, Tim Bray et a., eds., W3C, 6 October 2000
http://www.w3.0rg/TR/REC-xml

XML-Namespaces

» Namespacesin XML, Tim Bray et a., eds., W3C, 14 January 1999
http://www.w3.0rg/TR/REC-xml-names

XML-Schema

« XML SchemaPart 1: Structures, Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, W3C, 2 May
2001
http://www.w3.0rg/TR/xmlschema-1//

» XML Schema Part 2: Datatypes, Paul V. Biron and Ashok Malhotra, eds., W3C, 2 May 2001
http://www.w3.0rg/TR/xmlschema-2/

XPath

« XML Path Language (XPath) 1.0, James Clark and Steve DeRose, eds., W3C, 16 November 1999
http://www.w3.org/TR/xpath

XPDL

» Workflow Management Coalition XML Process Definition Language.
http://www.wfmc.org/standards/docs.htm

4 Terms and Definitions

See Annex C - Glossary.

4 BPMN Adopted Specification

http://www.ietf.org/rfc/rfc2396.txt
http://www.wfmc.org/standards/docs.htm
http://www.w3.org/TR/wsdl.html
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names
http://www.w3.org/TR/xmlschema-1//
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xpath
http://www.wfmc.org/standards/docs.htm

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Conventions

The section introduces the conventions used in this document. This includes (text) notational conventions and notations
for schema components. Also included are designated namespace definitions.

6.1.1 Typographical and Linguistic Conventions and Style

This specification incorporates the following conventions:

» Thekeywords“MUST,” “MUST NOT,” “REQUIRED,” “SHALL,” “MUST NOT,” “SHOULD,” “SHOULD NOT,”
“RECOMMENDED,” “MAY,” and “OPTIONAL" in this document are to be interpreted as described in RFC-2119.

« Atermisaword or phrase that has a specia meaning. When aterm is defined, the term name is highlighted in bold
typeface.

» A referenceto another definition, section, or specification is highlighted with underlined typeface and providesalink to
the relevant location in this specification.

« A reference to an element, attribute, or BPM N construct is highlighted with a capitalized word (e.g., Sub-Process).

« A referenceto a BPEL4W S element, attribute, or construct is highlighted with an italic lower-case word, usually pre-
ceded by the word “BPEL4WS’ (e.g., BPEL4AWS pick).

» Non-normative examples are set off in boxes and accompanied by a brief explanation.

+ XML and pseudo code is highlighted with mono - spaced typeface. Different font colors may be used to highlight the
different components of the XML code.

» Thecardinality of any content part is specified using the following operators:
* <none> — exactly once
*(0-1)—0or1
¢ (0-n) — 0 or more
¢ (1-n) — 1 or more
« Attributes separated by | and grouped within (and) — alternative values
» <value> — default value
» <type>— the type of the attribute

BPMN Adopted Specification 5

6.2 Dependency on Other Specifications

The BPMN specification supports for the following specifications is a normative part of the BPMN specification:
BPEL4WS.

The following abbreviations may be used throughout this document:

This abbreviation Refersto

BPEL4WS Business Process Execution Language for Web Services (see BPEL4WS). This abbreviation
refers specifically to version 1.1 of the specification.

WSDL Web Service Description Language (see WSDL). This abbreviation refers specifically to the
W3C Technical Note, 15 March 2001, but is intended to support future versions of the
WSDL specification

6.3 Structure of this Document

The BPMN specification defines the Business Process Diagram modeling objects, their semantics, their mapping to
BPEL4WS, and is comprised of the following topics:

BPMN Overview provides an introduction to BPMN, its requirements, and discusses the range of modeling purposes that
BPMN can convey.

Business Process Diagrams provides a summary of the BPMN graphical elements and their relationships.

Business Process Diagram Graphical Objects details the graphical representation, attributes, and semantics of the
behavior of BPMN Diagram elements.

Business Process Diagram Connecting Objects defines the graphical objects used to connect two objects together (i.e., the
connecting lines of the Diagram) and how flow progresses through a Process (i.e., through a straight sequence or through
the creation of parallel or alternative paths).

Mapping to BPELAWS provides the formal mechanism for converting a Business Process to a BPEL4WS document.
BPMN by Example provides a walkthrough of a sample Process using BPMN and its particular mapping to BPEL4AWS.

Annex A: E-Mail Voting Process BPELAWS provides a full sample of BPEL4WS code based on the example business
process described in the “BPMN by Example” section.

Annex B: BPMN Element Attributes and Types provides the complete set of BPMN Element attributes, which are first
presented in Chapters 8, 9, and 10, and the definition of types that support the attributes.

Annex C: Glossary presents an alphabetical index of terms that are relevant to practitioners of BPMN.

6.4 Acknowledgements

The author/editor of the specification:

» Stephen A. White, IBM Corporation (wstephe@us.ibm.com)

6 BPMN Adopted Specification

mailto:wstephe@us.ibm.com

The members of the BPMI Notation Working Group contributed to the development of this specification, including those
who contributed to the text and editing of the specification:

+ Ashish Agrawal, Intalio (ashish@intalio.com)

« Michael Anthony, International Performance Group (manthony @ipgl.com)

o Assaf Arkin, Intalio (arkin@intalio.com)

« Steve Ball, Sterling Commerce (steve_ball @stercomm.com)

« Rob Bartel, iGrafx (rob.bartel @igrafx.com)

» Steinar Carlsen, Computas (sca@computas.com)

» Ugo Corda, SeeBeyond Technology Corporation (ucorda@seebeyond.com)

 Tony Fletcher (tony_fletcher@btopenworld.com)

« Steven Forgey, SeeBeyond Technology Corporation (sforgey @seebeyond.com)

» Jean-Luc Giraud, Axway Software (jlgiraud@axway.com)

» Paul Harmon (pharmon@shcglobal .net)

« Damion Heredia, Lombardi Software (damion.herediat@|ombardisoftware.com)

 George Keeling, Casewise (george@casewise.co.uk)

« Brian James, Proforma (bjames@prof ormacorp.com)

« Antoine Lonjon, Mega International (al onjon@mega.com)

« Mike Marin, FileNet (mmarin@filenet.com)

« Lee Mason, webM ethods (mason.l ee@webmethods.com)

» Derek Miers, Enix Consulting Ltd. (miers@enix.co.uk)

« Alex Moffat, Lombardi Software (al ex.moffat@|ombardisoftware.com)

» Raberta Norin, Pegasystems (roberta.norin@pega.com)

» Martin Owen, Popkin Software (martin.owen@popkin.co.uk)

» Jog Raj, Popkin Software (jog.raj @popkin.co.uk)

« Bob Smith, Tall Tree Labs (robsmithS5@1talltrees.com)

« Manfred Sturm, ITPearls AG (manfred.sturm@itpearls.com)

« Balasubramanian (Bala) Suryanarayanan, Infosys (bal as@infosys.com)

» Roy Thompson, Casewise (roy.thompson@casewise.co.uk)

 Paul Vincent, Fair, Isaac & Company (paul vincent@fairisaac.com)

» Paul Wuethrich, Sybase (pwuethri @sybase.com)

« Petko Chobantonov, Lombardi Software

BPMN Adopted Specification 7

mailto:ashish@intalio.com
mailto:manthony@ipgl.com
mailto:arkin@intalio.com
mailto:steve_ball@stercomm.com
mailto:rob.bartel@igrafx.com
mailto:sca@computas.com
mailto:ucorda@seebeyond.com
mailto:tony_fletcher@btopenworld.com
mailto:sforgey@seebeyond.com
mailto:jlgiraud@axway.com
mailto:pharmon@sbcglobal.net
mailto:damion.herediat@lombardisoftware.com
mailto:george@casewise.co.uk
mailto:bjames@proformacorp.com
mailto:alonjon@mega.com
mailto:mmarin@filenet.com
mailto:mason.lee@webmethods.com
mailto:mason.lee@webmethods.com
mailto:miers@enix.co.uk
mailto:alex.moffat@lombardisoftware.com
mailto:roberta.norin@pega.com
mailto:martin.owen@popkin.co.uk
mailto:jog.raj@popkin.co.uk
mailto:robsmith5@1talltrees.com
mailto:manfred.sturm@itpearls.com
mailto:balas@infosys.com
mailto:roy.thompson@casewise.co.uk
mailto:paulvincent@fairisaac.com
mailto:pwuethri@sybase.com

The members of the BPMI Notation Working Group would like to thank SeeBeyond Technology Corporation and
International Business Machines Corporation for their valuable support in the development of this specification.

8 BPMN Adopted Specification

4 Overview

There has been much activity in the past two or three years in developing web service-based XML execution languages
for Business Process Management (BPM) systems. Languages such as BPEL4WS provide a formal mechanism for the
definition of business processes. The key element of such languages is that they are optimized for the operation and inter-
operation of BPM Systems. The optimization of these languages for software operations renders them less suited for
direct use by humans to design, manage, and monitor business processes. BPEL4WS has both graph and block structures
and utilizes the principles of formal mathematical models, such as pi-calculust. This technical underpinning provides the
foundation for business process execution to handle the complex nature of both internal and B2B interactions and take
advantage of the benefits of Web services. Given the nature of BPEL4WS, a complex business process could be organized
in a potentially complex, disjointed, and unintuitive format that is handled very well by a software system (or a computer
programmer), but would be hard to understand by the business analysts and managers tasked to develop, manage, and
monitor the process. Thus, there is a human level of “inter-operability” or “portability” that is not addressed by these web
service-based XML execution languages.

Business people are very comfortable with visualizing business processes in a flow-chart format. There are thousands of
business analysts studying the way companies work and defining business processes with simple flow charts. This creates
atechnical gap between the format of the initial design of business processes and the format of the languages, such as
BPEL4WS, that will execute these business processes. This gap needs to be bridged with a forma mechanism that maps
the appropriate visualization of the business processes (a notation) to the appropriate execution format (a BPM execution
language) for these business processes.

Inter-operation of business processes at the human level, rather than the software engine level, can be solved with
standardization of the Business Process Modeling Notation (BPMN). BPMN provides a Business Process Diagram (BPD),
which is a Diagram designed for use by the people who design and manage business processes. BPMN also provides a
formal mapping to an execution language of BPM Systems (BPEL4WS). Thus, BPMN would provide a standard
visualization mechanism for business processes defined in an execution optimized business process language.

BPMN will provide businesses with the capability of understanding their internal business procedures in a graphical
notation and will give organizations the ability to communicate these procedures in a standard manner. Currently, there
are scores of process modeling tools and methodologies. Given that individuals will move from one company to another
and that companies will merge and diverge, it is likely that business analysts are required to understand multiple
representations of business processes--potentially different representations of the same process as it moves through its
lifecycle of development, implementation, execution, monitoring, and analysis. Therefore, a standard graphical notation
will facilitate the understanding of the performance collaborations and business transactions within and between the
organizations. This will ensure that businesses will understand themselves and participants in their business and will
enable organizations to adjust to new internal and B2B business circumstances quickly. To do this, BPMN will follow the
tradition of flowcharting notations for readability; yet still provide a mapping to the executable constructs. BPMI is using
the experience of the business process notations that have preceded BPMN to create the next generation notation that
combines readability, flexibility, and expandability.

BPMN will also advance the capabilities of traditional business process notations by inherently handling B2B business
process concepts, such as public and private processes and choreographies, as well as advanced modeling concepts, such
as exception handling, transactions, and compensation.

1. SeeMilner, 1999, “Communicating and Mobile Systems: theIT-Calculus,” Cambridge University Press. ISBN 0521 643201 (hc.) ISBN
0521 65869 1 (pbk.)

BPMN Adopted Specification 9

7.1 BPMN Scope

BPMN will be constrained to support only the concepts of modeling that are applicable to business processes. This means
that other types of modeling done by organizations for business purposes will be out of scope for BPMN. For example,
the modeling of the following will not be a part of BPMN:

» Organizational structures and Resources
 Functional breskdowns

« Dataand information models

« Strategy

» Business Rules

Since these types of high-level modeling either directly or indirectly affects business processes, the relationships between
BPMN and other high-level business modeling will be defined more formally as BPMN and other specifications are
advanced.

In addition, while BPMN will show the flow of data (messages), and the association of data Artifacts to activities, it is not
a data flow Diagram.

7.1.1 Uses of BPMN

Business process modeling is used to communicate a wide variety of information to a wide variety of audiences. BPMN
is designed to cover many types of modeling and allows the creation of end-to-end business processes. The structural
elements of BPMN will alow the viewer to be able to easily differentiate between sections of a BPMN Diagram.

There are three basic types of sub-models within an end-to-end BPMN model:
« Private (internal) business processes
» Abstract (public) processes

 Collaboration (global) Processes

Note — The terminology used to describe the different types of processes has not been standardized. Definitions of these terms
arein flux. Thereiswork being done in the World Wide Web Consortium (W3C) and in the Organization for the Advancement
of Structured Information Standards (OASIS) that will hopefully consolidate these terms.

Some BPMN specification terms regarding the use of Swimlanes (e.g., Pools and Lanes) are used in the descriptions
below. “ Swimlanes (Pools and Lanes)” on page 262 for more details on how these elements are used in a BPD.

Private (Internal) Business Processes

Private business processes are those internal to a specific organization and are the types of processes that have been
generally called workflow or BPM processes (see Figure 7.1). A single private business process may be mapped to one or
more BPEL4WS documents.

10 BPMN Adopted Specification

If Swimlanes are used then a private business process will be contained within a single Pool. The Sequence Flow of the
Process is therefore contained within the Pool and cannot cross the boundaries of the Pool. Message Flow can cross the
Pool boundary to show the interactions that exist between separate private business processes. Thus, a single Business
Process Diagram may show multiple private business processes, each with separate mappings to BPEL4WS.

Notify Applicant of
Approval or
Rejection

Determine Order Check Record of Determine Approve or Reject
is Complete Applicant Premium of Policy Policy

Figure 7.1 - Example of Private Business Process

Abstract (Public) Processes

This represents the interactions between a private business process and another process or participant (see Figure 7.2).
Only those activities that are used to communicate outside the private business process, plus the appropriate flow control
mechanisms, are included in the abstract process. All other “internal” activities of the private business process are not
shown in the abstract process. Thus, the abstract process shows to the outside world the sequence of messages that are
required to interact with that business process. A single abstract process may be mapped to a single BPEL4WS abstract
process (however, this mapping will not be done in this version of the specification).

Abstract processes are contained within a Pool and can be modeled separately or within alarger BPMN Diagram to show
the Message Flow between the abstract process activities and other entities. If the abstract process is in the same Diagram
as its corresponding private business process, then the activities that are common to both processes can be associated.

Patient
T T T

|
8) Pickup ydur medicine 10) Here is your medicine

|

|

!

I 6) | feel sick and you ¢an leave

1) | want to} see doctor l
|
|
[
|
|
|
[
|

| 5)Gos |

e doctor

SD_————

|
|
|
|
| 9) need my medicine
| |
| \
| |
| |
| \
| \
| |

|
|
|
|
|
|
|
|
|
|
A A

Receive Receive Send Receive
Doctor Send Appt. Symptoms Prescription Medicine Send Medicine O
Request ymp Pickup Request

D —————

Doctor’s Office

Figure 7.2 - Example of an Abstract Business Process

Collaboration (Global) Processes

A collaboration process depicts the interactions between two or more business entities. These interactions are defined as
a sequence of activities that represent the message exchange patterns between the entities involved. A single collaboration
process may be mapped to various collaboration languages, such as ebXML BPSS, RosettaNet, or the resultant
specification from the W3C Choreography Working Group (however, these mappings are considered as future directions
for BPMN).

BPMN Adopted Specification 11

The collaboration process can be shown as two or more abstract processes communicating with each other (see Figure
7.3). With an abstract process, the activities for the collaboration participants can be considered the “touch-points”
between the participants. The actual (executable) processes are likely to have much more activity and detail than what is

shown in the abstract processes.
— .
[Send Doctor . Send Recglvg Send Medicine Receive
) Receive Appt. Prescription o
= Request Symptoms Pi Request Medicine
= ickup
© T T T
[al lliness | I I i [I
Occurs ! : !) Pick A J | !
| 8) Pickup ygur medicine . .
: : 6) 1 fe{al sick and you {;an leave } 10) Here is)/Ipur medicine
| | I
1) | want IO: see doctor 5) Go sde doctor ! ! 9) need my medicine !
I T T t T t
| I | I } |
| i | | } |
I ! | | | |
| | | | | |
= EN A A
R Receive Receive Send Receive
o B Doctor Send Appt. Symptoms Prescription Medicine Send Medicine
g 6 Request ymp Pickup Request
o
o 0
&)
@

Figure 7.3 - Example of a Collaboration Business Process

Types of BPD Diagrams

Within and between these three BPMN sub-models, many types of Diagrams can be created. The following are the types
of business processes that can be modeled with BPMN (those with asterisks may not map to an executable language):

12

High-level private process activities (not functional breakdown)*

Detailed private business process
¢ As-isor old business process*

* To-be or new business process
Detailed private business process with interactions to one or more external entities (or “Black Box” processes)
Two or more detailed private business processes interacting
Detailed private business process rel ationship to Abstract Process
Detailed private business process relationship to Collaboration Process
Two or more Abstract Processes*
Abstract Process relationship to Collaboration Process*
Collaboration Process only (e.g., ebXML BPSS or RosettaNet)*

Two or more detailed private business processes interacting through their Abstract Processes

BPMN Adopted Specification

» Two or more detailed private business processes interacting through a Collaboration Process

» Two or more detailed private business processes interacting through their Abstract Processes and a Collaboration Pro-
cess

BPMN is designed to allow all the above types of Diagrams. However, it should be cautioned that if too many types of
sub-models are combined, such as three or more private processes with message flow between each of them, then the
Diagram may become too hard for someone to understand. Thus, we recommend that the modeler pick a focused purpose
for the BPD, such as a private process, or a collaboration process.

BPMN mappings
Since BPMN covers such a wide range of usage, it will map to more than one lower-level specification language:

+ BPEL4WS are the primary languages that BPMN will map to, but they only cover a single executabl e private business
process. If aBPMN Diagram depicts more than one internal business process, then there will a separate mapping for
each on the internal business processes.

« Theabstract sections of aBPMN Diagram will be mapped to Web service interfaces specifications, such as the abstract
processes of BPEL4WS.

» The Collaboration model sections of aBPMN may be mapped Collaboration models such as ebXML BPSS, Rosetta-
Net, and the W3C Choreography Working Group Specification (when it is completed).

This specification will only cover a mapping to BPEL4WS. Mappings to other specifications will have to be a separate
effort, or perhaps a future direction of BPMN (beyond Version 1.0 of the BPMN specification). It is hard to predict which
mappings will be applied to BPMN at this point, since process language specifications is a volatile area of work, with
many new offerings and mergings.

A BPD is not designed to graphically convey all the information required to execute a business process. Thus, the graphic
elements of BPMN will be supported by attributes that will supply the additional information required to enable a
mapping to BPEL4AWS. A complete list of all the element attributes can be found in Appendix B.

7.1.2 Diagram Point of View

Since a BPMN Diagram may depict the Processes of different Participants, each Participant may view the Diagram
differently. That is, the Participants have different points of view regarding how the Processes will behave. Some of the
activities will be internal to the Participant (meaning performed by or under control of the Participant) and other activities
will be external to the Participant. Each Participant will have a different perspective as to which are internal and external.
At runtime, the difference between internal and external activities isimportant in how a Participant can view the status of
the activities or trouble-shoot any problems. However, the Diagram itself remains the same. Figure 7.3, above, displays a
Business Process that has two points of view. One point of view is of a Patient, the other is of the Doctor’s office. The
Diagram shows the activities of both participants in the Process, but when the Process is actually being performed, each
Participant will really have control over their own activities.

Although the Diagram point of view is important for a viewer of the Diagram to understand how the behavior of the
Process will relate to that viewer, BPMN will not currently specify any graphical mechanisms to highlight the point of
view. It is open to the modeler or modeling tool vendor to provide any visual cues to emphasize this characteristic of a
Diagram.

BPMN Adopted Specification 13

7.1.3 Extensibility of BPMN and Vertical Domains

BPMN is intended to be extensible by modelers and modeling tools. This extensibility allows modelers to add non-
standard elements or Artifacts to satisfy a specific need, such as the unique requirements of a vertical domain. While
extensible, BPMN Diagrams should still have the basic look-and-feel so that a Diagram by any modeler should be easily
understood by any viewer of the Diagram. Thus the footprint of the basic flow elements (Events, activities, and
Gateways) should not be altered. Nor should any new flow elements be added to a BPD, since there is no specification as
to how Sequence and Message Flow will connect to any new Flow Object. In addition, mappings to execution languages
may be affected if new flow elements are added. To satisfy additional modeling concepts that are not part of the basic set
of flow elements, BPMN provides the concept of Artifacts that can be linked to the existing Flow Objects through
Associations. Thus, Artifacts do not affect the basic Sequence or Message Flow, nor do they affect mappings to execution
languages.

The graphical elements of BPMN are designed to be open to allow specialized markers to convey specialized information.
For example, the three types of Events all have open centers for the markers that BPMN standardizes as well as user-
defined markers.

14 BPMN Adopted Specification

8 Business Process Diagrams

This chapter provides a summary of the BPMN graphical objects and their relationships. More details on the concepts will
be provided in “Business Process Diagram Graphical Objects’ on page 33 and “Business Process Diagram Connecting
Objects’ on page 99.

A goal for the development of BPMN is that the notation be simple and adoptable by business analysts. Also, there is a
potentially conflicting requirement that BPMN provide the power to depict complex business processes and map to BPM
execution languages. To help understand how BPMN can manage both requirements, the list of BPMN graphic elements
is presented in two groups.

First, there is the list of core elements that will support the requirement of a simple notation. These are the elements that
define the basic look-and-feel of BPMN. Most business processes will be modeled adequately with these elements.
Second, there is the entire list of elements, including the core elements, which will help support requirement of a powerful
notation to handle more advanced modeling situations. And further, the graphical elements of the notation will be
supported by non-graphical attributes that will provide the remaining information necessary to map to an execution
language or other business modeling purposes.

8.1 BPD Core Element Set

It should be emphasized that one of the drivers for the development of BPMN is to create a simple mechanism for
creating business process models, while at the same time being able to handle the complexity inherent to business
processes. The approach taken to handle these two conflicting requirements was to organize the graphical aspects of the
notation into specific categories. This provides a small set of notation categories so that the reader of a BPMN diagram
can easily recognize the basic types of elements and understand the diagram. Within the basic categories of elements,
additional variation and information can be added to support the requirements for complexity without dramatically
changing the basic look and feel of the diagram. The four basic categories of elements are:

» Flow Objects
» Connecting Objects
« Swimlanes
 Artifacts
Flow objects are the main graphical elements to define the behavior of a Business Process. There are three Flow Objects:
+ Events
« Activities
« Gateways

There are three ways of connecting the Flow Objects to each other or other information. There are three Connecting
Objects:

» Sequence Flow
» Message Flow

« Association

BPMN Adopted Specification 15

There are two ways of grouping the primary modeling elements through “ Swimlanes.”
- Pools

« Lanes

Artifacts are used to provide additional information about the Process. There are three standardized Artifacts, but
modelers or modeling tools are free to add as many Artifacts as required. There may be addition BPMN efforts to
standardize a larger set of Artifacts for general use or for vertical markets. The current set of Artifacts include:

» Data Object
« Group
« Annotation

Table 8.2 displays a list of the core modeling elements that are depicted by the notation.

Table 8.1 - Core Modeling Elements

Element Description Notation
Event An event is something that “happens’ during the
course of a business process. These events affect
the flow of the process and usually have a cause Q

(trigger) or an impact (result). Events are circles
with open centers to allow internal markers to
differentiate different triggers or results. There are
three types of Events, based on when they affect the
flow: Start, Intermediate, and End.

Activity An activity is ageneric term for work that company
performs. An activity can be atomic or non-atomic
(compound). The types of activities that are a part
of a Process Model are: Process, Sub-Process, and
Task. Tasks and Sub-Processes are rounded
rectangles. Processes are either unbounded or a
contained within a Pool.

Gateway A Gateway is used to control the divergence and
convergence of Sequence Flow. Thus, it will
determine branching, forking, merging, and joining
of paths. Internal Markers will indicate the type of
behavior control.

16 BPMN Adopted Specification

Table 8.2 - BPD Core Element Set

Element

Description

Notation

Sequence Flow

A Sequence Flow is used to show the order that
activities will be performed in a Process.

Message Flow

A Message Flow is used to show the flow of
messages between two participants that are
prepared to send and receive them. In BPMN, two
separate Poolsin the Diagram will represent the two
participants (e.g., business entities or business
roles).

Association

An Association is used to associate information
with Flow Objects. Text and graphical non-Flow
Objects can be associated with the Flow Objects.

Pool

A Pool represents a Participant in a Process. It is
also acts as a“swimlane” and a graphical container
for partitioning a set of activities from other Poals,
usualy in the context of B2B situations.

Name

Lane

A Lane is a sub-partition within a Pool and will
extend the entire length of the Pool, either vertically
or horizontally. Lanes are used to organize and
categorize activities.

Name
Name | Name

Data Object

Data Objects are considered Artifacts because they
do not have any direct effect on the Sequence Flow
or Message Flow of the Process, but they do
provide information about what activities require to
be performed and/or what they produce.

Name

Group (abox around a
group of objects for
documentation
purposes)

A grouping of activities that does not affect the
Sequence Flow. The grouping can be used for
documentation or analysis purposes. Groups can
also be used to identify the activities of adistributed
transaction that is shown across Poals.

Text Annotation
(attached with an
Association)

Text Annotations are a mechanism for a modeler to
provide additional information for the reader of a
BPMN Diagram.

_-| Descriptive Text Here

BPMN Adopted Specification

17

8.2

BPD Complete Set

Table 8.3 displays a more extensive list of the business process concepts that could be depicted through a business process
modeling notation.

Table 8.3 - BPD Complete Element Set

Element

Description

Notation

Event

An event is something that “happens’
during the course of a business process.
These events affect the flow of the
process and usually have a cause (trigger)
or an impact (result). There are three
types of Events, based on when they
affect the flow: Start, Intermediate, and
End.

)

Name or
Source

Flow Dimension (e.g.,
Start, Intermediate, End)

Start (None,
Message, Timer,
Rule, Link, Multiple)

Intermediate (None,
Message, Timer,
Error, Cancel,
Compensation, Rule,
Link, Multiple)

End (None, Message,
Error, Cancel,
Compensation, Link,
Terminate, Multiple)

Asthe name implies, the Start Event
indicates where a particular process will
start.

I ntermediate Events occur between a Start
Event and an End Event. It will affect the
flow of the process, but will not start or
(directly) terminate the process.

As the name implies, the End Event
indicates where a process will end.

Start Q
Intermediate @

End

18

BPMN Adopted Specification

Table 8.3 - BPD Complete Element Set

Type Dimension (e.g.,
Message, Timer, Error,
Cancel, Compensation,
Rule, Link, Multiple,
Terminate.)

Start and most Intermediate Events have
“Triggers’ that define the cause for the
event. There are multiple ways that these
events can be triggered. End Events may
define a“Result” that is a consequence of
a Sequence Flow ending.

Message
Timer
Error

Cancel

Compensation

Rule
Link

Multiple

@
-
*

BOOBO®ROO
@HO® BOXG

Terminate

Task (Atomic)

A Task is an atomic activity that is
included within a Process. A Task is used
when the work in the Process is not
broken down to afiner level of Process
Model detail.

Process/Sub-Process (non-
atomic)

A Sub-Process is a compound activity
that is included within a Process. It is
compound in that it can be broken down
into a finer level of detail (a Process)
through a set of sub-activities.

See Next Two Figures

Collapsed Sub-Process

The details of the Sub-Process are not
visible in the Diagram. A “plus’ signin
the lower-center of the shape indicates
that the activity is a Sub-Process and has
alower-level of detail.

Expanded Sub-Process

The boundary of the Sub-Process is
expanded and the details (a Process) are
visible within its boundary.

Note that Sequence Flow cannot cross the
boundary of a Sub-Process.

P
Name

BPMN Adopted Specification

19

Table 8.3 - BPD Complete Element Set

Gateway

A Gateway is used to control the
divergence and convergence of multiple
Sequence Flow. Thus, it will determine
branching, forking, merging, and joining
of paths.

Gateway Control Types

[cons within the diamond shape will
indicate the type of flow control behavior.
The types of control include:

* XOR -- exclusive decision and
merging. Both Data-Based and
Event-Based. Data-Based can be
shown with or without the “ X”
marker.

* OR -- inclusive decision and merging

e Complex -- complex conditions and
situations (e.g., 3 out of 5)

« AND -- forking and joining

Each type of control affects both the
incoming and outgoing Flow.

Exclusive (XOR)
Data-Based or

Event-Based

Inclusive (OR)
Complex

Parallel (AND)

+ %0

Sequence Flow

A Sequence Flow is used to show the
order that activities will be performed in
a Process.

See next seven figures

Normal Flow

Normal Sequence Flow refers to the flow
that originates from a Start Event and
continues through activities via
alternative and parallel paths until it ends
at an End Event.

Uncontrolled flow

Uncontrolled flow refers to flow that is
not affected by any conditions or does not
pass through a Gateway. The simplest
example of thisis a single Sequence Flow
connecting two activities. This can also
apply to multiple Sequence Flow that
converge on or diverge from an activity.
For each uncontrolled Sequence Flow a
“Token” will flow from the source object
to the target object.

20

BPMN Adopted Specification

Table 8.3 - BPD Complete Element Set

Conditional flow

Sequence Flow can have condition
expressions that are evaluated at runtime
to determine whether or not the flow will
be used. If the conditional flow is
outgoing from an activity, then the
Sequence Flow will have a mini-diamond
at the beginning of the line (see figure to
the right). If the conditional flow is
outgoing from a Gateway, then the line
will not have a mini-diamond (see figure
in the row above).

Default flow

For Data-Based Exclusive Decisions or
Inclusive Decisions, one type of flow is
the Default condition flow. This flow will
be used only if al the other outgoing
conditiona flow is not true at runtime.
These Sequence Flow will have a
diagonal slash will be added to the
beginning of the line (see the figure to the
right).

Exception Flow

Exception Flow occurs outside the
Norma Flow of the Process and is based
upon an Intermediate Event that occurs
during the performance of the Process.

Exception

Message Flow

A Message Flow is used to show the flow
of messages between two entities that are
prepared to send and receive them. In
BPMN, two separate Pools in the
Diagram will represent the two entities.

Compensation Association

Compensation Association occurs outside
the Normal Flow of the Process and is
based upon an event (a Cancel
Intermediate Event) that is triggered
through the failure of a Transaction or a
Compensate Event. The target of the
Association must be marked as a
Compensation Activity.

Association

BPMN Adopted Specification

21

Table 8.3 - BPD Complete Element Set

Data Object Data Objects are considered Artifacts
because they do not have any direct effect
on the Sequence Flow or Message Flow
of the Process, but they do provide Name
information about what activities require
to be performed and/or what they
produce.

Fork (AND-Split) BPMN uses the term “fork” to refer to
the dividing of a path into two or more
parallel paths (also known as an AND-
Split). It is a place in the Process where
activities can be performed concurrently,
rather than sequentially.

There are two options:

Multiple Outgoing Sequence Flow can be
used (see figure top-right). This
represents “uncontrolled” flow isthe
preferred method for most situations.

A Paralel (AND) Gateway can be used
(see figure bottom-right). This will be
used rarely, usually in combination with
other Gateways.

Join (AND-Join) BPMN usestheterm “join” to refer to the
combining of two or more parallel paths
into one path (also known as an AND-
Join or synchronization).

A Paralel (AND) Gateway is used to
show the joining of multiple Flow.

Decision, Branching Point; | Decisionsare Gatewayswithin abusiness | See next five rows.

(OR-Split) process where the flow of control can
take one or more alternative paths.
Exclusive An Exclusive Gateway (XOR) restricts

the flow such that only one of a set of
alternatives may be chosen during
runtime. There are two types of Exclusive
Gateways. Data-based and Event-based.

Data-Based or

Event-Based

22 BPMN Adopted Specification

Table 8.3 - BPD Complete Element Set

Data-Based

This Decision represents a branching
point where Alternatives are based on
conditional expressions contained within
the outgoing Sequence Flow. Only one of
the Alternatives will be chosen.

Condition 1

Default

Event-Based

This Decision represents a branching
point where Alternatives are based on an
Event that occurs at that point in the
Process. The specific Event, usualy the
receipt of a Message, determines which
of the paths will be taken. Other types of
Events can be used, such as Timer. Only
one of the Alternatives will be chosen.
There are two options for receiving
Messages:

Tasks of Type Receive can be used (see
figure top-right).

Intermediate Events of Type Message can
be used (see figure bottom-right).

[Type:
Receive]

o,

BPMN Adopted Specification

23

Table 8.3 - BPD Complete Element Set

Inclusive

This Decision represents a branching
point where Alternatives are based on
conditional expressions contained within
the outgoing Sequence Flow.

In some sense it is a grouping of related
independent Binary (Y es/No) Decisions.
Since each path is independent, all
combinations of the paths may be taken,
from zero to all. However, it should be
designed so that at least one path istaken.
A Default Condition could be used to
ensure that at |east one path is taken.
There are two versions of this type of
Decision:

The first uses a collection of conditional
Sequence Flow, marked with mini-
diamonds (see top-right figure).

The second uses an OR Gateway, usually
in combination with other Gateways (see
bottom-right picture).

Condition 1

Condition 2

Condition 1

Merging (OR-Join)

BPMN uses the term “merge” to refer to
the exclusive combining of two or more
paths into one path (also known as an a
OR-Join).

A Merging (XOR) Gateway is used to
show the merging of multiple Flow.

If al the incoming flow is alternative,
then a Gateway is not needed. That is,
uncontrolled flow provides the same
behavior.

Looping

BPMN provides 2 (two) mechanisms for
looping within a Process.

See Next Two Figures

Activity Looping

The attributes of Tasks and Sub-
Processes will determine if they are
repeated or performed once. There are
two types of loops: Standard and Multi-
Instance. A small looping indicator will
be displayed at the bottom-center of the
activity.

Lo

24

BPMN Adopted Specification

Table 8.3 - BPD Complete Element Set

Sequence Flow Looping

L oops can be created by connecting a
Sequence Flow to an “upstream” object.
An object is considered to be upstream if
that object has an outgoing Sequence
Flow that leads to a series of other
Sequence Flow, the last of which isan
incoming Sequence Flow for the original
object.

Multiple Instances

The attributes of Tasks and Sub-
Processes will determine if they are
repeated or performed once. A small
parallel indicator will be displayed at the
bottom-center of the activity.

Process Break (something
out of the control of the
process makes the process
pause)

A Process Break is alocation in the
Process that shows where an expected
delay will occur within a Process. An
Intermediate Event is used to show the
actual behavior (see top-right figure). In
addition, a Process Break Artifact, as
designed by a modeler or modeling tool,
can be associated with the Event to
highlight the location of the delay within
the flow.

Increment
Tally

Announce
Issues for Vote

Voting
Response
Received

Transaction

A transaction is a Sub-Process that is
supported by special protocol that insures
that al parties involved have complete
agreement that the activity should be
completed or cancelled. The attributes of
the activity will determine if the activity
isatransaction. A double-lined boundary
indicates that the Sub-Process is a
Transaction.

&

Nested/Embedded Sub-
Process (Inline Block)

A nested (or embedded) Sub-Process is
an activity that shares the same set of
data asits parent process. Thisis opposed
to a Sub-Process that is independent, re-
usable, and referenced from the parent
process. Data needs to be passed to the
referenced Sub-Process, but not to the
nested Sub-Process.

Thereis no special indicator for nested Sub-
Processes

BPMN Adopted Specification

25

Table 8.3 - BPD Complete Element Set

Group (a box around a
group of objects for
documentation purposes)

A grouping of activities that does not
affect the Sequence Flow. The grouping
can be used for documentation or analysis
purposes. Groups can aso be used to
identify the activities of a distributed
transaction that is shown across Pools.

Off-Page Connector

Generally used for printing, this object
will show where the Sequence Flow
leaves one page and then restarts on the
next page. A Link Intermediate Event can
be used as an Off-Page Connector.

Association

An Association is used to associate
information with Flow Objects. Text and
graphical non-Flow Objects can be
associated with the Flow Objects.

Text Annotation (attached
with an Association)

Text Annotations are a mechanism for a
model er to provide additional information
for the reader of a BPMN Diagram.

_-| Descriptive Text Here

Pool

A Pool represents a Participant in a
Process. It is aso acts as a “swimlane”
and a graphical container for partitioning
a set of activities from other Pools,
usualy in the context of B2B situations.

Name

Lanes

A Lane is a sub-partition within a Pool
and will extend the entire length of the
Pool, either vertically or horizontally.

L anes are used to organize and categorize
activities within a Pool.

Name
Name | Name

8.3 Use of Text, Color, Size, and Lines in a Diagram

Text Annotation objects can be used by the modeler to display additional information about a Process or attributes of the

objects within the Process.

» Flow objects and Flow MAY have |labels (e.g., its name and/or other attributes) placed inside the shape, or above or
below the shape, in any direction or location, depending on the preference of the modeler or modeling tool vendor.

» Thefillsthat are used to for the graphical elements MAY be white or clear.

« The notation MAY be extended to use other fill colorsto suit the purpose of the modeler or tool (e.g., to highlight
the value of an object attribute).

» Flow objects and markers MAY be of any size that suits the purposes of the modeler or modeling tool.

26

BPMN Adopted Specification

» Thelinesthat are used to draw the graphical elements MAY be black.

* The notation MAY be extended to use other line colors to suit the purpose of the modeler or tool (e.g., to highlight
the value of an object attribute).

« The notation MAY be extended to use other line styles to suit the purpose of the modeler or tool (e.g., to highlight
the value of an object attribute) with the condition that the line style MUST NOT conflict with any current BPMN
defined line style. Thus, the line styles of Sequence Flow, Message Flow, and Associations MUST NOT be
modified.

8.4 Flow Object Connection Rules

An incoming Seguence Flow can connect to any location on a Flow Object (left, right, top, or bottom). Likewise, an
outgoing Sequence Flow can connect from any location on a Flow Object (left, right, top, or bottom). Message Flow also
have this capability. BPMN allows this flexibility, however, we also recommend that modelers use judgment or best
practices in how Flow Objects should be connected so that readers of the Diagrams will find the behavior clear and easy
to follow. Thisis even more important when a Diagram contains Sequence Flow and Message Flow. In these situations it
is best to pick a direction of Sequence Flow, either left to right or top to bottom, and then direct the Message Flow at a
90° angle to the Sequence Flow. The resulting Diagrams will be much easier to understand.

8.4.1 Sequence Flow Rules

Table 8.4 displays the BPMN Flow Objects and shows how these objects can connect to one another through Sequence
Flow. The 2 symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity
of connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to
the sections in the next chapter for each individual object for more detailed information on the appropriate connection
rules. Note that if a sub-process has been expanded within a Diagram, the objects within the sub-process cannot be
connected to objects outside of the sub-process. Nor can Sequence Flow cross a Pool boundary.

Table 8.4 - Sequence Flow Connection Rules

Tablg.L :

|) vl e el

| | | 7| 2

Name

O@QHIQ 3
g

N

N

N

N

N

BPMN Adopted Specification 27

Note — Only those objects that can have incoming and/or outgoing Sequence Flow are shown in the table. Thus, Pool, Lane,
Data Object, and Text Annotation are not listed in the table.

8.4.2 Message Flow Rules

Table 8.5 displays the BPMN modeling objects and shows how these objects can connect to one another through Message
Flow. The & symbol indicates that the object listed in the row can connect to the object listed in the column. The quantity
of connections into and out of an object is subject to various configuration dependencies are not specified here. Refer to
the sections in the next chapter for each individual object for more detailed information on the appropriate connection
rules. Note that Message Flow cannot connect to objects that are within the same Participant Lane boundary.

Table 8.5 - Message Flow Connection Rules

From\To O § (Pool) ‘ = ‘ [‘ @ O
O
¢ (Pool) ¢ g ’ 7 ’
Name & & & & &
O
O ik S A

Note — Only those objects that can have incoming and/or outgoing Message Flow are shown in the table. Thus, Lane,
Gateway, Data Object, and Text Annotation are not listed in the table.

8.5 Business Process Diagram Attributes

The following table displays the set of attributes of a Business Process Diagram:

Table 8.6 - Business Process Diagram Attributes

Attributes Description

Id: Object Thisis aunique Id that distinguishes the Diagram from other Diagrams.
Name: String Name is an attribute that is text description of the Diagram.

Version (0-1) : String This defines the Version number of the Diagram.

28

BPMN Adopted Specification

Table 8.6 - Business Process Diagram Attributes

Attributes

Description

Author (0-1) : String

This holds the name of the author of the Diagram.

Language (0-1) : String

This holds the name of the language in which text is written. The default is
English.

ExpressionLanguage (0-1) :
String

A Language MAY be provided so that the syntax of expressions used in the
Diagram can be understood.

QueryLanguage (0-1) : String

A Language MAY be provided so that the syntax of queries used in the Diagram
can be understood.

CreationDate (0-1) : Date

This defines the date on which the Diagram was created (for the current Version).

ModificationDate (0-1) : Date

This defines the date on which the Diagram was last modified (for this Version).

Pools (1-n) : Pool

A BPD SHALL contain one or more Pools. The boundary of one of the Pools
MAY be invisible (especialy if there is only one Pool in the Diagram). Refer to
the Section B.8.2, “Pool,” on page 263 for more information about Pools.

Documentation (0-1) : String

The modeler MAY add optional text documentation about the Diagram.

8.5.1 Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» Theld attribute, within the set of Business Process Diagram attributes, was changed to be of type Object.

« The ModificationDate, ExpressionL anguage, and QueryL anguage attributes were added to the set of Diagram

attributes.

» Thecardinality of the Version, Author, CreationDate, and ModificationDate attributes, within the set of Business Pro-
cess Diagram attributes, was changed from O to 1.

» The Process attribute was removed from the set of Diagram attributes. The attribute was redundant with the Pool
attribute, which will refer to al the Processes in the Diagram.

8.6 Processes

A Processis an activity performed within a company or organization. In BPMN a Process is depicted as a graph of Flow
Objects, which are a set of other activities and the controls that sequence them. The concept of processis intrinsically
hierarchical. Processes may be defined at any level from enterprise-wide processes to processes performed by a single
person. Low-level processes may be grouped together to achieve a common business goal.

Note that BPMN defines the term Process fairly specifically and defines a Business Process more generically as a set of
activities that are performed within an organization or across organizations. Thus a Business Process, as shown in a
Business Process Diagram, may contain more than one separate Process. Each Process may have its own Sub-Processes
and would be contained within a Pool (Section B.8.2, “Pool,” on page 263). The individual Processes would be
independent in terms of Sequence Flow, but could have Message Flow connecting them.

BPMN Adopted Specification

8.6.1 Attributes

The following table displays the set of attributes of a Process:

Table 8.7 - Process Attributes

Attributes

Description

Id: Object Thisis aunique Id that identifies the object from other objects within the
Diagram.
Name: String Name is an attribute that is text description of the object.

ProcessType (None | Private |
Abstract | Collaboration) None :
String

ProcessType is an attribute that provides information about which lower-level
language the Pool will be mapped.By default, the ProcessType is None (or
undefined). A Private ProcessType MAY be mapped to an executable BPEL4WS
process. An Abstract ProcessType is also called the public interface of a process
(or other web services) and MAY be mapped to an abstract BPEL4WS process. A
Collaboration ProcessType will have two Lanes that represent business roles (e.g.,
buyer or seller) and will show the interactions between these roles. These Pools
MAY be mapped to languages such as ebXML or WS Choreography. However,
these mappings are not provided in this version of the specification.

If the Process is to be used to create a BPEL4WS document, then the attribute
MUST be set to Executable or Abstract.

Status (None | Ready | Active |
Cancelled | Aborting | Aborted |
Completing | Completed) None :
String

The Status of a Process is determined when the Process is being executed by a
process engine. The Status of a Process can be used within Assignment
Expressions.

GraphicalElements (0-n) :
Object

The Graphical Elements attribute identifies all of the objects (e.g., Events,
Activities, Gateways, and Artifacts) that are contained within the Business
Process.

Assignments (0-n) : Assignment

One or more assignment expressions MAY be made for the object. The
Assignment SHALL be performed as defined by the AssignTime attribute. The
details of the Assignment is defined in the Section B.11.1, “Assignment,” on page
268.

Properties (0-n) : Property

Modeler-defined Properties MAY be added to a Process. These Properties are
“local” to the Process. All Tasks, Sub-Process objects, and Sub-Processes that are
embedded SHALL have access to these Properties. The fully delineated name of
these properties are “ <process name>.<property name>" (e.g., “Add
Customer.Customer Name”). If a process is embedded within another Process,
then the fully delineated name SHALL also be preceded by the Parent Process
name for as many Parents there are until the top level Process. Further details
about the definition of a Property can be found in the Section B.11.7, “ Property,”
on page 270.

30

BPMN Adopted Specification

Table 8.7 - Process Attributes

Attributes

Description

AdHoc False : Boolean

AdHoc is a boolean attribute, which has a default of False. This specifies whether
the Process is Ad Hoc or not. The activities within an Ad Hoc Process are not
controlled or sequenced in a particular order, their performance is determined by
the performers of the activities. If set to True, then the Ad Hoc marker SHALL be
placed at the bottom center of the Process or the Sub-Process shape for Ad Hoc
Processes.

[AdHoc = True only]

AdHocOrdering (0-1)
(Sequential | Parallel) Parallel :
String

If the Process is Ad Hoc (the AdHoc attribute is True), then the AdHocOrdering
attribute MUST be included. This attribute defines if the activities within the
Process can be performed in Parallel or must be performed sequentially. The
default setting is Parallel and the setting of Sequential is a restriction on the
performance that may be required due to shared resources.

[AdHoc = True only]

AdHocCompletionCondition
(0-1) : Expression

If the Process is Ad Hoc (the AdHoc attribute is True), then the
AdHocCompletionCondition attribute MUST be included. This attribute defines
the conditions when the Process will end.

SuppressJoinFailure False :
Boolean

This attribute isincluded for mapping to BPEL4AWS. This specifies whether or not
a BPEL4WS joinFailure fault will be suppressed for al activities in the
BPEL4WS process.

EnablelnstanceCompensation
False : Boolean

This attribute is included for mapping to BPEL4AWS. It specifies whether or not a
compensation can be performed after the Process has completed normally.

Categories (0-n) : String

The modeler MAY add one or more defined Categories that can be used for
purposes such as reporting and analysis.

Documentation (0-1) : String

The modeler MAY add text documentation about the Process.

8.6.2 Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» The set of Process attributes was decoupled from the set of common Flow Object attributes. This was done since some
of the Common attributes, such as Pool and Lane, did not apply to a Process.

» Theld, Name, ProcessType, Graphical Elements, Assignments, AdHocOrdering, Categories, SuppressJoinFailure,
Enabl el nstanceCompensation, and Document attributes were added to the set of Process attributes.

« The Property attribute, within the set of Process Attributes, was renamed to Properties and defined as type Property.

» The AdHocCompletionCondition attribute, within the set of Process attributes, was changed to an option attribute.

» The Name and Type attributes were removed from the set of Process attributes. These attributes can be found in the

definition of a Property, which can be found in the section “Property” on page 270.

The PassThrough attribute was removed from the set of Process attributes. Link type of Start, End, and Intermediate
Events provide this functionality.

BPMN Adopted Specification 31

32

BPMN Adopted Specification

9 Business Process Diagram Graphical Objects

This section details the graphical representation and the semantics of the behavior of Business Process Diagram graphical
elements. “Mapping to BPEL4WS” on page 137 for more information about how these elements map to execution
languages.

9.1 Common Graphical Object Attributes

The following table displays a set of common attributes for BPMN graphical objects (Flow Objects, Swimlanes, Artifacts,
and Connecting Objects):
Table 9.1 - Common Graphical Object Attributes

Attributes Description

Id : Object Thisis aunique Id that identifies the object from other objects within the
Diagram.

Categories (0-n) : String The modeler MAY add one or more defined Categories that can be used for
purposes such as reporting and analysis.

Documentation (0-1) : String The modeler MAY add text documentation about the object.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The set of common set of graphical object attributes was added.

« Theld and Documentation attributes were moved from other attribute sets to the list of common graphical object
attributes.

« Theld attributes, within the set of common graphical object attributes, was changed to be of type Object.
» The Categories attribute was added to the set of common graphical object attributes.

« Throughout the specification, attributes that were defined as being of type “ (True | False)” were changed to type “bool-
%r].”

9.2 Common Flow Object Attributes

The following table displays a set of common attributes for BPMN Flow Objects (Events, Activities, and Gateways), and
which extends the set of common graphical object attributes (see Table 9.1):

Table 9.2 - Common Flow Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

BPMN Adopted Specification 33

Table 9.2 - Common Flow Object Attributes

Attributes Description

Assignments (0-n) : Assignment | One or more assignment expressions MAY be made for the object. For activities
(Task, Sub-Process, and Process), the Assignment SHALL be performed as
defined by the AssignTime attribute. The Details of the Assignment is defined in
Section B.11.1, “Assignment,” on page 268.

Pool : Pool A Pool MUST be identified for the object to identify its location.The attributes of
a Pool can be found in Section 9.6.2, “Pool,” on page 87.
Lanes (0-n) : Lane If the Pool (which can be determined through the Pool that the Process has been

assigned to) has more than one Lane, then the Id of at |east one Lane MUST be
added. There MAY be multiple Lanes listed if the Lanes are organized in matrix
or overlap in a non-nested manner, The attributes of a Lane can be found in
Section 9.6.3, “Lane,” on page 90.

9.2.1 Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
» The Pool attributes, within the set of common Flow Object attributes, was changed to be of type Pool.

» The Lanes attributes, within the set of common Flow Object attributes, was changed to be of type Lane.

9.3 Events

An Event is something that “happens’ during the course of a business process. These Events affect the flow of the Process
and usually have a cause or an impact. The term “event” is general enough to cover many things in a business process.
The start of an activity, the end of an activity, the change of state of a document, a message that arrives, etc., all could be
considered events. However, BPMN has restricted the use of events to include only those types of events that will affect
the sequence or timing of activities of a process. BPMN further categorizes Events into three main types: Start,
Intermediate, and End.

Start and most Intermediate Events have “ Triggers’ that define the cause for the event. There are multiple ways that these
events can be triggered (“ Start Event Triggers’ on page 37 and “Intermediate Event Triggers’ on page 44). End Events
may define a “Result” that is a consequence of a Sequence Flow ending. There are multiple types of Results that can be
defined (“End Event Results’ on page 41).

All Events share the same shape footprint, a small circle. Different line styles, as shown below, distinguish the three types
of flow Events. All Events also have an open center so that BPMN-defined and modeler-defined icons can be included
within the shape to help identify the Trigger or Result of the Event.

34 BPMN Adopted Specification

9.3.1 Common Event Attributes

The following table displays the set of attributes common to the three types of Events, and which extends the set of
common Flow Object attributes (see Table 9.2):

Table 9.3 - Common Event Attributes

Attributes Description
EventType (Start | End | The EventType MUST be of type Start, End, or Intermediate.
Intermediate) Start : String

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

« The set of common set of Event attributes was added.

» The EventType attribute was added to the set of common Event attributes.

9.3.2 Start

As the name implies, the Start Event indicates where a particular Process will start. In terms of Sequence Flow, the Start
Event starts the flow of the Process, and thus, will not have any incoming Sequence Flow—no Sequence Flow can
connect to a Start Event.

The Start Event shares the same basic shape of the Intermediate Event and End Event, a circle with an open center so that
markers can be placed within the circle to indicate variations of the Event.

A Start Eventisacirclethat MUST be drawn with a single thin line (see Figure 9.1).

[_IThe use of text, color, size, and linesfor a Start Event MUST follow the rules defined in
Section 8.3, “Use of Text, Color, Size, and Linesin aDiagram,” on page 26 with the exception that:

[_The thickness of the line MUST remain thin so that the Start Event may be distinguished from the
Intermediate and End Events.

O

Figure 9.1 - A Start Event

Throughout this document, we will discuss how Sequence Flow proceeds within a Process. To facilitate this discussion,
we will employ the concept of a“Token” that will traverse the Sequence Flow and pass through the Flow Objectsin the
Process. The behavior of the Process can be described by tracking the path(s) of the Token through the Process. A Token
will have a unique identity, called a Tokenld set, that can be used to distinguish multiple Tokens that may exist because
of concurrent Process instances or the dividing of the Token for parallel processing within a single Process instance. The
parallel dividing of a Token creates alower level of the Tokenld set. The set of all levels of Tokenld will identify a Token.

A Start Event generates a Token that must eventually be consumed at an End Event (which may be implicit if not
graphically displayed). The path of Tokens should be traceable through the network of Sequence Flow, Gateways, and
activities within a Process. There MUST NOT be any implicit flow during the course of normal Sequence Flow (i.e., there

BPMN Adopted Specification 35

should always be either Sequence Flow or a graphical indicator, such as an Intermediate Event to show all the potential
paths of Tokens). An example of implicit flow is when a Token arrives at a Gateway, but none of the Gates are valid, the
Token would then (implicitly) passto the end of the Process, which occurs with some modeling notations.Tokens can also
be directed through exception handling Intermediate Events, which act like a forced end to an activity. Note: A Token
does not traverse the Message Flow since it is a Message that is passed down those Flow (as the name implies).

Semantics of the Start Event include:

1A Start Event is OPTIONAL: a Process level—atop-level Process or an expanded Sub-Process—MAY (isno
required to) have a Start Event:

Note — A BPD may have more than one Processlevel (i.e., it can include Expanded Sub-Processes). The use of Start and End
Eventsisindependent for each level of the Diagram.

[If aProcess is complex and/or the starting conditions are not obvious, then it is RECOMMENDED that a Start
Event be used.

[If thereis an End Event, then there MUST be at |east one Start Event.

[1If the Start Event is used, then there MUST NOT be other flow elements that do not have incoming Sequence
Flow—all other Flow Objects MUST be atarget of at least one Sequence Flow.

[_Exceptionsto this are activities that are defined as being Compensation activities (have the Compensation
Marker). Compensation activities MUST NOT have any incoming Sequence Flow, even if thereis a Start
Event in the Process level. See Section 10.3, “ Compensation Association,” on page 133 for more
information on Compensation activities.

[_An exception to thisis the Intermediate Event, which MAY be without an incoming Sequence Flow (when
attached to an activity boundary).

[1If the Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow (i.e., are not a
target of a Sequence Flow) SHALL be instantiated when the Process is instantiated. There is an assumption that
thereis only oneimplicit Start Event, meaning that all the starting Flow Objects will start at the same time.

[_Exceptionsto this are activities that are defined as being Compensation activities (have the Compensation
Marker). Compensation Activities are not considered a part of the Normal Flow and MUST NOT be
instantiated when the Process is instantiated.

[_IThere MAY be multiple Start Events for a given Process level.

[JEach Start Event is an independent event. That is, a Process Instance SHALL be generated when the Start Event
istriggered.

Note — The behavior of Process may be harder to understand if there are multiple Start Events. It is RECOMMENDED that
this feature be used sparingly and that the modeler be aware that other readers of the Diagram may have difficulty
understanding the intent of the Diagram.

When the trigger for a Start Event occurs, Tokens will be generated for each outgoing Sequence Flow from that event.
The Tokenld set for each of the Tokens will be established such that it can be identified that the Tokens are al from the
same parallel Fork (AND-Split) and the number of Tokens in the group. These Tokens will begin their flow and not wait
for any other Start Event to be triggered.

If there is a dependency for more than one Event to happen before a Process can start (e.g., two messages are required to
start), then the Start Events must flow to the same activity within that Process. The attributes of the activity would specify
when the activity could begin. If the attributes specify that the activity must wait for all inputs, then all Start Events will

36 BPMN Adopted Specification

have to be triggered before the Process begins (“ Attributes’ on page 38 (for sub-processes) and “Attributes” on page 64
(for Tasks) for more information about activity attributes). In addition, a correlation mechanism will be required so that
different triggered Start Events will apply to the same process instance. Correlation will likely be handled through Event
attributes, but this open issue will be addressed in a later version of the specification. Refer to Annex D for a complete
list of the issues open for BPMN.

Start Event Triggers

There are many ways that business process can be started (instantiated). The Trigger for a Start Event is designed to show
the general mechanism that will instantiate that particular Process. There are six types of Start Events in BPMN: None,
Message, Timer, Rule, Link, and Multiple.

Table 9.4 displays the types of Triggers and the graphical marker that will be used for each:
Table 9.4 - Start Event Types

will be required to start the Process. The attributes of the Start Event will define
which of the other types of Triggers apply.

Trigger Description Marker
None The modeler does not display the type of Event. It is also used for a Sub-Process that
starts when the flow is triggered by its Parent Process. Q
Message A message arrives from a participant and triggers the start of the Process.
Timer A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that
will trigger the start of the Process.
Rule This type of event is triggered when the conditions for a rule such as “S&P 500
changes by more than 10% since opening,” or “ Temperature above 300C”" become
true.
Link A Link is a mechanism for connecting the end (Result) of one Process to the start
(Trigger) of another. Typically, these are two Sub-Processes within the same parent @
Process.
Multiple This means that there are multiple ways of triggering the Process. Only one of them @

BPMN Adopted Specification

37

Attributes

The following table displays the set of attributes of a Start Event, which extends the set of common Event attributes (see

Table 9.5):
Table 9.5 - Start Event Attributes

Attributes

Description

Trigger (None | Message | Timer
| Rule | Link | Multiple) None :
String

Trigger is an attribute (default None) that defines the type of trigger expected for
that Start. The next eight (8) rows define the attributes that are required for each
of the Trigger types.

The Trigger list MAY be extended to include new types. These new Triggers
MAY have a new modeler- or tool-defined Marker to fit within the boundaries of
the Event.

[Message Trigger only]
Message : Message

If the Trigger is a Message, then the a Message MUST be supplied. The attributes
of a Message can be found in Section B.11.4, “Message,” on page 269.

[Message Trigger only]

Implementation (Web Service |
Other | Unspecified) Web
Service

This attribute specifies the technology that will be used to receive the message. A
Web service is the default technology.

RuleName : Rule

[Timer Trigger only] If the Trigger is a Timer, then a TimeDate MAY be entered. If a TimeDate is not
TimeDate (0-1) : Date entered, then a TimeCycle MUST be entered (see the attribute below).

[Timer Trigger only] If the Trigger is a Timer, then a TimeCycle MAY be entered. If a TimeCycle is
TimeCycle (0-1) : String not entered, then a TimeDate MUST be entered (see the attribute above).

[Rule Trigger only] If the Trigger is a Rule, then a Rule MUST be entered. The attributes of a Rule

can be found in Section B.11.9, “Rule,” on page 271.

ProcessRef : Process

[Link Trigger only] If the Trigger is a Link, then the Linkld MUST be entered.
Linkld : String
[Link Trigger only] If the Trigger is a Link, then the ProcessRef MUST be entered. The identified

Process MAY be the same Process as that of the Link Event.

[Multiple Trigger only]
Triggers (2-n) : Trigger

If the Trigger attribute is a Multiple, then alist of two or more Triggers MUST be
provided. Each Trigger MUST have the appropriate data (as defined above). The
Trigger MUST NOT be of type None or Multiple.

Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how they may be source or targets

of Sequence Flow.

1A Start Event MUST NOT be atarget for Sequence Flow; it MUST NOT have incoming Sequence Flow.

AN exception to thisiswhen a Start Event is used in an Expanded Sub-Process and is attached to the boundary of
that Sub-Process. In this case, a Sequence Flow from the higher-level Process MAY connect to that Start Event
in lieu of connecting to the actual boundary of the Sub-Process (see Figure 10.16).

A Start Event MUST be a source for Sequence Flow.

[IMultiple Sequence Flow MAY originate from a Start Event. For each Sequence Flow that has the Start Event asa
source, anew parallel path SHALL be generated.

38

BPMN Adopted Specification

[_1The Condition attribute for all outgoing Sequence Flow MUST be set to None.

[When a Start Event is not used, then all Flow Objects that do not have an incoming Sequence Flow SHALL be
the start of a separate parallel path.

Each path will have a separate unique Token that will traverse the Sequence Flow.

Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within
the Pool boundary. They cannot connect two objects within the same Pooal.

A Start Event MAY be the target for Message Flow; it can have 0 (zero) or more incoming Message Flow. Each

Message Flow arriving at a Start Event represents an instantiation mechanism (a Trigger) for the process. Only one of
the Triggersisrequired to start a new Process.

[_IThe Trigger attribute of the Start Event MUST be set to “Message” or “Multiple’ if there are any incoming
Message Flow.

[_The Trigger attribute of the Start Event MUST be set to “Multiple” if there are more than one incoming
Message Flow.

1A Start Event MUST NOT be a source for Message Flow; it MUST NOT have outgoing Message Flow.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

The constraint about the fill of the Event was removed.

The attribute table was reorganized to make it more clear that some attributes applied only if the Trigger attribute was
set to specific values.

The Message attribute, within the set of the Start Event attributes, was changed to be of type Message.

The RuleExpression attribute, within the set of the Start Event attributes, was renamed to RuleName and was changed
to be of type Rule.

The LinkName attribute, within the set of the Start Event attributes, was rename to Linkld and was changed to be of
type String.

The Implementation and ProcessRef attributes were added to the list of Start Event attributes.

The attribute for a Timer Event, within the set of the Start Event attributes, was divided into two separate attributes.
Oneis TimeDate and the other is TimeCycle.

The cardinality of thelist of Triggers for the Multiple Trigger was modified so that it is now 2 or more.

Within the Message Flow Connections section, it was clarified that if there are multiple incoming Message Flow, then
the Trigger must be Multiple.

BPMN Adopted Specification 39

9.3.3 End

As the name implies, the End Event indicates where a process will end. In terms of Sequence Flow, the End Event ends
the flow of the Process, and thus, will not have any outgoing Sequence Flow—no Sequence Flow can connect from an
End Event.

The End Event shares the same basic shape of the Start Event and Intermediate Event, a circle with an open center so that
markers can be placed within the circle to indicate variations of the Event.

[1An End Event isacircle that MUST be drawn with a single thick black line (see Figure 9.2).

[IThe use of text, color, size, and lines for an End Event MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin a Diagram,” on page 26 with the exception that:

[_Thethickness of the line MUST remain thick so that the End Event may be distinguished from the
Intermediate and Start Events.

O

Figure 9.2 - End Event

To continue discussing how flow proceeds throughout the process, an End Event consumes a Token that had been
generated from a Start Event within the same level of Process. If parallel Sequence Flow target the End Event, then the
Tokens will be consumed as they arrive. All the Tokens that were generated within the Process must be consumed by an
End Event before the Process has been completed. In other circumstances, if the Process is a Sub-Process, it can be
stopped prior to normal completion through exception Intermediate Events (See Section 10.2.2, “Exception Flow,” on
page 130 for more details). In this situation the Tokens will be consumed by an Intermediate Event attached to the
boundary of the Sub-Process.

Semantics of the End Event include:

[1There MAY be multiple End Events within asingle level of a process.

[IThis shapeis OPTIONAL: agiven Process level—atop-level Process or an expanded Sub-Process—MAY (is not
required to) have this shape:

CIf thereis a Start Event, then there MUST be at |east one End Event.

[If an End Event is used, then there MUST NOT be other flow elements that do not have any outgoing Sequence
Flow—all other Flow Objects MUST be a source of at least one Sequence Flow.

[_Exceptionsto this are activities that are defined as being Compensation activities (have the Compensation
Marker). Compensation Activities MUST NOT have any outgoing Sequence Flow, even if thereisan End
Event in the Process level. Section 10.3, “ Compensation Association,” on page 133 for moreinformation on
Compensation activities.

[1If the End Event is not used, then all Flow Objects that do not have any outgoing Sequence Flow (i.e., are not a
source of a Sequence Flow) mark the end of a path in the Process. However, the process MUST NOT end until
all parallel paths have completed.

[_Exceptions to this are activities that are defined as being Compensation activities (have the Compensation
Marker). Compensation Activities are not considered a part of the Normal Flow and MUST NOT mark the
end of the Process.

40 BPMN Adopted Specification

Note — A BPD may have more than one Processlevel (i.e., it can include Expanded Sub-Processes). The use of Start and End
Eventsisindependent for each level of the Diagram.

For Processes without an End Event, a Token entering a path-ending Flow Object will be consumed when the processing
performed by the object is completed (i.e., when the path has completed), as if the Token had then gone on to reach an
End Event. When all Tokens for a given instance of the Process are consumed, then the Process will reach a state of being

completed.

End Event Results

A BPMN modeler can define the consequence of reaching an End Event. This will be referred to as the End Event Result.

Table 9.6 displays the types of Results and the graphical marker that will be used for each:
Table 9.6 - End Event Types

Transaction should be cancelled and will trigger a Cancel Intermediate Event
attached to the Sub-Process boundary. In addition, it will indicate that a
Transaction Protocol Cancel message should be sent to any Entities involved in
the Transaction.

Result Description Marker
None The modeler does not display the type of Event. It is also used to show the end of
a Sub-Process that ends, which causes the flow goes back to its Parent Process.
Message Thistype of End indicates that a message is sent to a participant at the conclusion
of the Process.
Error Thistype of End indicates that a named Error should be generated. This Error will
be caught by an Intermediate Event within the Event Context.
Cancel Thistype of End is used within a Transaction Sub-Process. It will indicate that the

Compensation

This type of End will indicate that a Compensation is necessary. The
Compensation identifier will trigger an Intermediate Event when the Process is
rolling back.

Link

A Link is a mechanism for connecting the end (Result) of one Process to the start
(Trigger) of another. Typically, these are two Sub-Processes within the same
parent Process. A Token arriving at Link End Event will immediately jump to its
corresponding target Start or Intermediate Event.

Terminate

This type of End indicates that all activities in the Process should be immediately
ended. This includes all instances of Multi-Instances. The Process is ended
without compensation or event handling.

Multiple

This means that there are multiple conseguences of ending the Process. All of
them will occur (e.g., there might be multiple messages sent). The attributes of the
End Event will define which of the other types of Results apply.

®® ® ® 600O0

BPMN Adopted Specification

41

Attributes

The following table displays the set of attributes of a End Event, which extends the set of common Event attributes (see

Table 9.3):
Table 9.7 - End Event Attributes

Attributes

Description

Result (None | Message | Error |
Cancel | Compensation | Link |
Terminate | Multiple) None :
String

Result is an attribute (default None) that defines the type of result expected for
that End.

The Cancel Result MUST NOT be used unless the Event is used within a Process
that is a Transaction.

The Result list MAY be extended to include new types. These new Results MAY
have a new modeler- or tool-defined Marker to fit within the boundaries of the
Event.

[Message Result only]
Message : Message

If the Result is a Message, then the Message MUST be supplied. The attributes of
a Message can be found in Section B.11.4, “Message,” on page 269.

[Message Result only]

Implementation (Web Service |
Other | Unspecified) Web
Service : String

This attribute specifies the technology that will be used to send the message. A
Web service is the default technology.

[Error Result only]
ErrorCode : String

If the Result is an Error, then the ErrorCode MUST be supplied.

[Compensation Result only]
Activity : Object

If the Result is a Compensation, then the Object of the Activity that needs to be
compensated MUST be supplied.

[Link Result only]
Linkld : String

If the Result is a Link, then the Linkld MUST be entered.

[Link Result only]
ProcessRef : Process

If the Result is a Link, then the ProcessRef MUST be entered. The identified
Process MAY be the same Process as that of the Link Event.

[Multiple Result only]
Results (2-n) : Result

If the Result attribute is a Multiple, then alist of two or more Results MUST be
entered. Each Result on the list MUST have the appropriate data as specified for
the above attributes. The Result MUST NOT be of type None, Terminate, or
Multiple.

Sequence Flow Connections

Section 8.4.1, “Sequence Flow Rules,” on page 27 for the entire set of objects and how they may be source or targets of

Sequence Flow.

[1An End Event MUST be atarget for Sequence Flow.
[1An End Event MAY have multiple incoming Sequence Flow.

The Flow MAY come from either alternative or parallel paths. For modeling convenience, each path MAY connect to a
separate End Event object. The End Event is used as a Sink for all Tokens that arrive at the Event. All Tokens that are
generated at the Start Event for that Process must eventually arrive at an End Event. The Process will be in arunning state

until al Tokens are consumed.

42

BPMN Adopted Specification

[1An End Event MUST NOT be a source for Sequence Flow; that is, there MUST NOT be outgoing Sequence Flow.

AN exception to thisiswhen an End Event is used in an Expanded Sub-Process and is attached to the boundary of
that Sub-Process. In this case, a Sequence Flow from the higher-level ProcessMAY connect from that End Event
in lieu of connecting from the actual boundary of the Sub-Process (see Figure 10.16).

Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within
the Pool boundary. They cannot connect two objects within the same Pooal.

[1An End Event MUST NOT be the target for Message Flow; it can have no incoming Message Flow.
[JAn End Event MAY be a source for Message Flow; it can have one or more outgoing Message Flow.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The constraint about the fill of the Event was removed.
» Thedefinition of the Link End Event was updated to include a description of Token flow.

» Theattribute table was reorganized to make it more clear that some attributes applied only if the Result attribute was set
to specific values.

« For the Result attribute, within the set of End Event attributes, the type Rule was removed from the list of types of
Results. It should not have been listed there initially.

» The Exception Results was renamed to Error.
» The Message attribute, within the set of the End Event attributes, was changed to be of type Message.

» For aResult of type Compensation. the attributes were rather vaguely defined and have been consolidated to be asingle
attribute named Activity of type Object.

« The LinkName attribute, within the set of the End Event attributes, renamed to Linkld was changed to be of type
String.

» The Implementation and ProcessRef attributes were added to the list of End Event attributes.

» Thecardinality of the list of Results for the Multiple Result was modified so that it is nhow 2 or more.

9.3.4 Intermediate

Intermediate Events occur between a Start Event and an End Event. This is an event that occurs after a Process has been
started. It will affect the flow of the process, but will not start or (directly) terminate the process. Intermediate Events can
be used to:

» Show where messages are expected or sent within the Process,

» Show delays are expected within the Process,

BPMN Adopted Specification 43

» Disrupt the Normal Flow through exception handling, or

« Show the extrawork required for compensation.

The Intermediate Event shares the same basic shape of the Start Event and End Event, a circle with an open center so that
markers can be placed within the circle to indicate variations of the Event.

AN Intermediate Event isacircle that MUST be drawn with a double thin black line. (see Figure 9.3).

[The use of text, color, size, and lines for an Intermediate Event MUST follow the rules defined in Section 8.3,
“Use of Text, Color, Size, and Linesin aDiagram,” on page 26 with the exception that:

[_Thethickness of theline MUST remain double so that the Intermediate Event may be distinguished from the
Start and End Events.

O

Figure 9.3 - Intermediate Event

One use of Intermediate Events is to represent exception or compensation handling. This will be shown by placing the
Intermediate Event on the boundary of a Task or Sub-Process (either collapsed or expanded). Figure 9.4 displays an
example of an Intermediate Event attached to a Task. The Intermediate Event can be attached to any location of the
activity boundary and the outgoing Sequence Flow can flow in any direction. However, in the interest of clarity of the
Diagram, we recommend that the modeler choose a consistent location on the boundary. For example, if the Diagram
orientation is horizontal, then the Intermediate Events can be attached to the bottom of the activity and the Sequence Flow
directed down, then to the right. If the Diagram orientation is vertical, then the Intermediate Events can be attached to the
left or right side of the activity and the Sequence Flow directed to the left or right, then down.

Moderate E-mail
Discussion

7 Days Review Status of
Discussion

Figure 9.4 - Task with an Intermediate Event attached to its boundary

Intermediate Event Triggers

There are eight types of Intermediate Events in BPMN: Message, Timer, Error, Compensation, Cancel, Rule, Link, and
Multiple. These Event types indicate the different ways that a Process may be interrupted or delayed after it has started.
Each type of Intermediate Event will have a different icon placed in the center of the Intermediate Event shape to
distinguish one from another.

44 BPMN Adopted Specification

Table 9.8 displays the types of Triggers and the graphical marker that will be used for each:
Table 9.8 - Intermediate Event Types

Trigger

Description

Marker

None

Thisisvalid for only Intermediate Events that are in the main flow of the Process.
The modeler does not display the type of Event. It is used for modeling
methodol ogies that use Events to indicate some change of state in the Process.

Message

A message arrives from a participant and triggers the Event. This causes the Process
to continue if it was waiting for the message, or changes the flow for exception
handling. In Normal Flow, Message Intermediate Events can be used for sending
messages to a participant. If used for exception handling it will change the Normal
Flow into an Exception Flow.

Q| O

Timer

A specific time-date or a specific cycle (e.g., every Monday at 9am) can be set that
will trigger the Event. If used within the main flow it acts as a delay mechanism. If

used for exception handling it will change the Normal Flow into an Exception Flow.

Error

Thisis used for error handling--both to set (throw) and to react to (catch) errors. It

sets (throws) an error if the Event is part of a Normal Flow. It reacts to (catches) a

named error, or to any error if aname is not specified, when attached to the boundary
of an activity.

Cancel

This type of Intermediate Event is used within a Transaction Sub-Process. This type
of Event MUST be attached to the boundary of a Sub-Process. It SHALL be
triggered if a Cancel End Event is reached within the Transaction Sub-Process. It
also SHALL be triggered if a Transaction Protocol “Cancel” message has been
received while the Transaction is being performed.

)

Compensation

Thisis used for compensation handling--both setting and performing compensation.
It call for compensation if the Event is part of a Normal Flow. It reacts to a named
compensation call when attached to the boundary of an activity.

Rule Thisisonly used for exception handling. This type of event is triggered when aRule
becomes true. A Rule is an expression that evaluates some Process data.
Link A Link is a mechanism for connecting an End Event (Result) of one Process to an
Intermediate Event (Trigger) in another Process. Paired Intermediate Events can also
be used as “Go To" objects within a Process.
Multiple This means that there are multiple ways of triggering the Event. Only one of them

will be required. The attributes of the Intermediate Event will define which of the
other types of Triggers apply.

BPMN Adopted Specification

45

Attributes

The following table displays the set of attributes of an Intermediate Event, which extends the set of common Event
attributes (see Table 9.9):

Table 9.9 - Intermediate Event Attributes

Attributes

Description

Trigger (None | Message | Timer
| Error | Cancel | Link |
Compensation | Rule | Multiple)
Message : String

Trigger is an attribute (default Message) that defines the type of trigger expected
for that Intermediate Event.

The None and Link Trigger MUST NOT be used when the Event is attached to
the boundary of an Activity. The Multiple, Rule, and Cancel Triggers MUST
NOT be used when the Event is part of the Normal Flow of the Process. The
Cancel Trigger MUST NOT be used when the Event is attached to the boundary
of a Transaction or if the Event is not contained within a Process that is a
Transaction.

The Trigger list MAY be extended to include new types. These new Triggers
MAY have a new modeler- or tool-defined Marker to fit within the boundaries of
the Event.

Target (0-1) : Object

A Target MAY beincluded for the Intermediate Event. The Target MUST be an
activity (Sub-Process or Task). This means that the Intermediate Event is attached
to the boundary of the activity and is used to signify an exception or
compensation for that activity.

[Message Trigger only]
Message : Message

If the Trigger is a Message, then the Message MUST be supplied. The attributes
of a Message can be found in Section B.11.4, “Message,” on page 269.

[Message Trigger only]

Implementation (Web Service |
Other | Unspecified) Web
Service

This attribute specifies the technology that will be used to send or receive the
message. A Web service is the default technology.

[Timer Trigger only] If the Trigger is a Timer, then a TimeDate MAY be entered. If a TimeDate is not
Timedate (0-1) : Date entered, then a TimeCycle MUST be entered (see the attribute below).

[Timer Trigger only] If the Trigger is a Timer, then a TimeCycle MAY be entered. If a TimeCycleis
TimeCycle (0-1) : String not entered, then a TimeDate MUST be entered (see the attribute above).

[Error Trigger only] For an Intermediate Event within Normal Flow:

ErrorCode : String

If the Trigger is an Error, then the ErrorCode MUST be entered. This “throws’
the error.

For an Intermediate Event attached to the boundary of an Activity:

If the Trigger is an Error, then the error code MAY be entered. This Event
“catches’ the error. If there is no error code, then any Error SHALL trigger the
Event. If there is an error code, then only an Error that matches the error code
SHALL trigger the Event.

46

BPMN Adopted Specification

Table 9.9 - Intermediate Event Attributes

Attributes Description
[Compensation Trigger only] For an Intermediate Event within Normal Flow:
Activity : Object If the Trigger is a Compensation, then the Object of the Activity that needs to be

compensated MUST be supplied. This “throws’ the compensation.

For an Intermediate Event attached to the boundary of an Activity:

This Event “catches’ the compensation. No further information is required. The
Object of the activity the Event is attached to will provide the Id necessary to
match the compensation event with the event that “threw” the compensation.

[Rule Trigger only] If the Trigger is a Rule, then a Rule MUST be entered. The attributes of a Rule
RuleName : Rule can be found in Section B.11.9, “Rule,” on page 271.

[Link Trigger only] If the Trigger is a Link, then the Linkld MUST be supplied.

Linkld : String

[Link Trigger only] If the Trigger is a Link, then the ProcessRef MUST be entered. The identified
ProcessRef : Process Process MAY be the same Process as that of the Link Event.

[Multiple Trigger only] If the Trigger is a Multiple, then each Trigger on the list MUST have the
Triggers (2-n) : Trigger appropriate data as specified for the above attributes. The Trigger MUST NOT be

of type None or Multiple.

Activity Boundary Connections
An Intermediate Event can be attached to the boundary of an activity under the following conditions:
[_(One or more) Intermediate Events MAY be attached directly to the boundary of an Activity.

[_1To be attached to the boundary of an Activity, an Intermediate Event MUST be one of the following Triggers:
Message, Timer, Error, Cancel, Compensation, Rule, and Multiple.

[An Intermediate Event with a Cancel Trigger MAY be attached to a Sub-Process boundary only if the
Transaction attribute of the Sub-Processis set to TRUE.

Sequence Flow Connections

See Section 8.4.1, “Sequence Flow Rules,” on page 27 for the entire set of objects and how they may be source or targets
of Sequence Flow.

[1The following Intermediate Events MAY be attached to the boundary of an Activity: Message, Timer, Exception,
Cancel (only Sub-Process that is a Transaction), Compensation, Rule, and Multiple. Thus, the following MUST
NOT: None, and Link.

[If the Intermediate Event is attached to the boundary of an activity:
[_The Intermediate Event MUST NOT be atarget for Sequence Flow; it cannot have an incoming Flow.

[_The Intermediate Event MUST be a source for Sequence Flow; it can have one (and only one) outgoing
Sequence Flow.

[1An exception to this: an Intermediate Event with a Compensation Trigger MUST NOT have an
outgoing Sequence Flow (it MAY have an outgoing Association).

[_1The following Intermediate Events MAY be used in Normal Flow: None, Message, Timer, Exception,
Compensation, Rule, and Link. Thus, the following MUST NOT: Cancel, and Multiple.

BPMN Adopted Specification 47

1If the Intermediate Event is used within Normal Flow:

[Intermediate Events of the following types MUST be atarget of a Sequence Flow: None, Error, and
Compensation. It MUST have one (and only one) incoming Flow.

[Intermediate Events of the following types MAY be atarget of a Sequence Flow: Message, Timer, Rule, and
Link. It MAY have one (and only one) incoming Flow.

Note — These types of Intermediate Events will always be ready to accept the Event Triggers while the Process in which they
are contained is active.

[An Intermediate Event MUST be a source for Sequence Flow; it MUST have one (and only one) outgoing
Sequence Flow.

[1An exception to this: an Source Link Intermediate Event (as defined below), it is not required to have an
outgoing Sequence Flow.

[An Intermediate Event with aLink Trigger MUST NOT be both atarget and a source of a Sequence Flow
unlessit is part of an Event-Based Exclusive Gateway.

To define the use of a Link Intermediate Event as an “ Off-Page Connector” or a“Go To” object:

A Link Intermediate Event MAY bethe target (Target Link) or a source (Source Link) of a Sequence Flow, but
MUST NOT be both atarget and a source.

[1If thereisa Source Link, there MUST be amatching Target Link (they have the same Linkld). Note: A Source
Link (Intermediate Event) should not be used for linking with another Process within the same Pool; an End
Event should be used for this purpose.

[_There MAY be multiple Source Links for asingle Target Link.
[_There MUST NOT be multiple Target Links for asingle Source Link.
A Target Link MAY be used without a corresponding Source Link. This indicates that the Source Link (an End
Event) existsin another Process within the same Pool.
Message Flow Connections
See Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects and how they may be source or targets
of Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objectswithin
the Pool boundary. They cannot connect two objects within the same Pool.

AN Intermediate Event of type Message MAY be the target for Message Flow; it can have one incoming Message
Flow.

AN Intermediate Event MUST NOT be a source for Message Flow; it can have no outgoing Message Flow.
Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:
» The Activity Boundary connections details were added.
» The Normal Flow Sequence Flow connections details were updated.

« The constraint about the fill of the Event was removed.

48 BPMN Adopted Specification

» Thedefinition of Link Intermediate Events was expanded to describe behavior as“ Go To” objects within a Process.

« The attribute table was reorganized to make it more clear that some attributes applied only if the Trigger attribute was
set to specific values.

» The Target attribute was added to the set of Intermediate Event attributes.
» The Message attribute, within the set of the Intermediate Event attributes, was changed to be of type Message.

« Theattribute for a Timer Event, within the set of the Intermediate Event attributes, was divided into two separate
attributes. Oneis TimeDate and the other is TimeCycle.

» The Exception Trigger was renamed to Error.

« Thedefinition of Error setting of the Trigger attribute of the set of Intermediate attributes was updated. The update pro-
vided a separation for the uses of the Event either within Normal Flow or attached to the boundary of an activity. Also,
the attribute ErrorCode was renamed ErrorCode and its type was changed to String.

« The definition of Compensation setting of the Trigger attribute of the set of Intermediate attributes was updated. The
update provided a separation for the uses of the Event either within Normal Flow or attached to the boundary of an
activity. Also, the term Activityld was changed to Object.

» The RuleExpression attribute, within the set of the Intermediate Event attributes, was renamed to RuleName and was
changed to be of type Rule.

» TheLinkName attribute, within the set of the Intermediate Event attributes, was renamed to Linkld and was changed to
be of type String.

» The Implementation and ProcessRef attributes were added to the list of Intermediate Event attributes.

» Thecardinality of thelist of Triggers for the Multiple Trigger was modified so that it is now 2 or more.

9.4 Activities

An activity is work that is performed within a business process. An activity can be atomic or non-atomic (compound).
The types of activities that are a part of a Business Process Diagram are: Process, Sub-Process, and Task. However, a
Process is not a specific graphical object. Instead, it is a set of graphical objects. The following sections will focus on the
graphical objects Sub-Process and Task. More information about Processes can be found in Section 8.6, “Processes,” on

page 29.

9.4.1 Common Activity Attributes

The following table displays the set of attributes common to both a Sub-Process and a Task, and which extends the set of
common Flow Object attributes (see Table 9.3) -- Note that Table 9.11 and Table 9.12 contain additional attributes that
must be included within this set if extended by any other attribute table:

Table 9.10 - Common Activity Attributes

Attributes Description
ActivityType (Task | Sub- The ActivityType MUST be of type Task or Sub-Process.
Process) Task : String

BPMN Adopted Specification 49

Table 9.10 - Common Activity Attributes

Attributes

Description

Status (None | Ready | Active |
Cancelled | Aborting | Aborted |
Completing | Completed) None :
String

The Status of an activity is determined when the activity is being executed by a
process engine. The Status of an activity can be used within Assignment
Expressions.

Properties (0-n) : Property

Modeler-defined Properties MAY be added to an activity. These Properties are
“local” to the activity. These Properties are only for use within the processing of
the activity. The fully delineated name of these properties is “ <process
name>.<activity name>.<property name>" (e.g., “Add Customer.Review
Credit.Status”). Further details about the definition of a Property can be found in
Section B.11.7, “Property,” on page 270.

InputSets (0-n) : Input

The InputSets attribute defines the data requirements for input to the activity.
Zero or more InputSets MAY be defined. Each InputSet is sufficient to alow the
activity to be performed (if it has first been instantiated by the appropriate signal
arriving from an incoming Sequence Flow).

[Input: for InputSets only]
Inputs (1-n) : Artifact

One or more Inputs MUST be defined for each InputSet. An Input is an Artifact,
usualy a Document Object. Note that the Artifacts MAY also be displayed on the
diagram and MAY be connected to the activity through an Association--however,
it is not required for them to be displayed.

OutputSets (0-n) : Output

The OutputSets attribute defines the data requirements for output from the
activity. Zero or more OutputSets MAY be defined. At the completion of the
activity, only one of the OutputSets may be produced--It is up to the
implementation of the activity to determine which set will be produced. However,
the IORules attribute MAY indicate a relationship between an OutputSet and an
InputSet that started the activity.

[Output: for OutputSets only]
Outputs (1-n) : Artifact

One or more Outputs MUST be defined for each OutputSet. An Output is an
Artifact, usually a Document Object. Note that the Artifacts MAY also be
displayed on the diagram and MAY be connected to the activity through an
Association--however, it is not required for them to be displayed.

IORules (0-n) : Expression

The IORules attribute is an expression that defines the relationship between one
InputSet and one OutputSet. That is, if the activity is instantiated with a specified
InputSet, then the output of the activity MUST produce the specified OutputSet.
Zero or more |IORules may be entered.

StartQuantity 1 : Integer

The default value is 1. The value MUST NOT be less than 1. This attribute
defines the number of Tokens that must arrive from a single Sequence Flow
before the activity can begin.

LoopType (None | Standard |
Multilnstance) None : String

LoopType is an attribute and is by default None, but MAY be set to Standard or
Multilnstance. If so, the Loop marker SHALL be placed at the bottom center of
the activity shape (see Figure 9.8 and Figure 9.13).

A Task of type Receive that has its Instantiate attribute set to True MUST NOT
have a Standard or Multilnstance LoopType.

50

BPMN Adopted Specification

Standard Loop Attributes

A Standard Loop activity will have a boolean expression that is evaluated after each cycle of the loop. If the expression
is still True, then the loop will continue. There are two variations of the loop, which reflect the programming constructs
of while and until. That is, a while loop will evaluate the expression before the activity is performed, which means that
the activity may not actually be performed. The until loop will evaluate the expression after the activity has been
performed, which means that the activity will be performed at least once.

The following are additional attributes of a Standard Loop Activity (where the LoopType attribute is set to “ Standard”),
which extends the set of common activity attributes (see Table 9.10):

Table 9.11 - Standard Loop Activity Attributes

Attributes Description

LoopCondition : Expression Standard Loops MUST have a boolean Expression to be evaluated, plus the
timing when the expression SHALL be evaluated. The attributes of an Expression
can be found in Section B.11.3, “EXxpression,” on page 269.

LoopCounter : Integer The LoopCounter attribute is used at runtime to count the number of loops and is
automatically updated by the process engine. The LoopCounter attribute MUST
be incremented at the start of aloop. The modeler may use the attribute in the
LoopCondition Expression.

LoopMaximum (0-1) : Integer The Maximum an optional attribute that provides is a smple way to add a cap to
the number of loops. This SHALL be added to the Expression defined in the
LoopCondition.

TestTime (Before | After) After : | The expressions that are evaluated Before the activity begins are equivalent to a
String programming while function.

The expression that are evaluated After the activity finishes are equivalent to a
programming until function.

Multi-Instance Loop Attributes

Multi-Instance loops reflect the programming construct for each. The loop expression for a Multi-Instance loop is a
numeric expression evaluated only once before the activity is performed. The result of the expression evaluation will be
an integer that will specify the number of times that the activity will be repeated.

There are also two variations of the Multi-Instance loop where the instances are either performed sequentially or in
paralel.

The following are additional attributes of a Multi-Instance Loop Activity (where the LoopType attribute is set to
“Multilnstance”), which extends the set of common activity attributes (see Table 9.10):

Table 9.12 - Multi-Instance Loop Activity Attributes

Attributes Description

MI_Condition : Expression Multilnstance Loops MUST have a numeric Expression to be evaluated--the
Expression MUST resolve to an integer. The attributes of an Expression can be
found in Section B.11.3, “Expression,” on page 269.

BPMN Adopted Specification 51

Table 9.12 - Multi-Instance Loop Activity Attributes

Attributes

Description

LoopCounter : Integer

The LoopCounter attribute is only applied for Sequential Multilnstance Loops and
for processes that are being executed by a process engine. The attribute is updated
at runtime by a process engine to count the number of loops as they occur. The
LoopCounter attribute MUST be incremented at the start of aloop. Unlike a
Standard loop, the modeler does not use this attribute in the MI_Condition
Expression, but it can be used for tracking the status of a loop.

MI_Ordering (Sequential |
Parallel) Sequential : String

This applies to only Multilnstance Loops. The MI_Ordering attribute defines
whether the loop instances will be performed sequentialy or in parallel.
Sequential M1_Ordering is a more traditional loop.

Parallel M1_Ordering is equivalent to multi-instance specifications that other
notations, such as UML Activity Diagrams use. If set to Parallel, the Parallel
marker SHALL replace the Loop Marker at the bottom center of the activity
shape (see Figure 9.8 and Table 9.10).

[Parallel MI_Ordering only]

MI_FlowCondition (None |
One | All | Complex) All : String

This attribute is equivalent to using a Gateway to control the flow past a set of
parallel paths.

An MI_FlowCondition of “Nong” is the same as uncontrolled flow (no Gateway)
and means that all activity instances SHALL generate a token that will continue
when that instance is completed.

An MI_FlowCondition of “One” is the same as an Exclusive Gateway and means
that the Token SHALL continue past the activity after only one of the activity
instances has completed. The activity will continue its other instances, but
additional Tokens MUST NOT be passed from the activity.

An MI_FlowCondition of “All” is the same as a Parallel Gateway and means that
the Token SHALL continue past the activity after al of the activity instances have
completed.

An MI_FlowCondition of “Complex” is the same as a Complex Gateway. The
ComplexMI_FlowCondition attribute will determine the Token flow.

[Complex MI_FlowCondition
only]

ComplexMI_FlowCondition
(0-1) : Expression

If the MI_FlowCondition attribute is set to “Complex,” then an Expression Must
be entered. This Expression that MAY reference Process data. The expression
SHALL determine when and how many Tokens will continue past the activity.
The attributes of an Expression can be found in the Section B.11.3, “ Expression,”
on page 269.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» Thisset of attributes was removed from each of the set of Sub-Process attributes (Table 9.13) and Task attributes (Table
9.17) and moved to the above table (Table 9.12).

« Within the set of common activity attributes, the attributes for standard activity loops and for multi-instance
activity loops were each placed into separate tables (Table 9.11 and Table 9.12, respectively).

« The ActivityType attribute was added to the set of common activity attributes.

52

BPMN Adopted Specification

« The Name and Type attributes were removed from the set of common activity attributes. These attributes can be
found in the definition of a Property, which can be found in the Section B.11.7, “Property,” on page 270.

» The InputSets attribute was added to the set of common activity attributes.

» The Inputs attribute was included in the set of common activity attributes, which means that it al so appliesto Sub-Pro-
cesses. This attribute was redefined to be alist of Artifacts and to be dependent on the I nputSets attribute.

» The OutputSets attribute was added to the set of common activity attributes.

» The Outputs attribute was included in the set of common activity attributes, which means that it also applies to Sub-
Processes. This attribute was redefined to be alist of Artifacts and to be dependent on the OutputSets attribute.

» ThelORules attribute was added to the set of common activity attributes.
« The StartQuantity attribute was added to the set of common activity attributes.

» The specification of the LoopType attribute, within the set of common activity attributes, was updated to note that
Receive Tasks that instantiate the Process cannot be alooping activity.

» The Counter attribute, within the set of looping activity attributes, was renamed to LoopCounter and its type was
changed to Integer. The description of the attribute was updated to show the difference between its use for Standard and
Multi-Instance loops.

« The Maximum attribute, within the set of standard looping activity attributes, was renamed to L oopMaximum and its
type was changed to Integer.

» The InstanceGeneration attribute, within the set of Multi-Instance looping activity attributes, was renamed to
MI_Ordering.

» The Serial type for this attribute was renamed to Sequential.

» The LoopFlowCondition attribute, within the set of Multi-Instance looping activity attributes, was renamed to
MI_FlowCondition.
» A Nonetype was added to the types for the M1_FlowCondition attribute. The definitions of the One type and the
All type were updated.

» The Complex attribute, within the set of Multi-Instance looping activity attributes, was renamed to
ComplexMI_FlowCondition.

» Thedescription of the TestTime attribute, within the set of standard looping activity attributes, was updated to show
that a TestTime of After isthe same as a programming until function.

9.4.2 Sub-Process

A Sub-Process is a compound activity in that it has detail that is defined as a flow of other activities. A Sub-Processis a
graphical object within a Process Flow, but it also can be “opened up” to show another Process (either Embedded or
Independent). A Sub-Process object shares the same shape as the Task object, which is a rounded rectangle.

A Sub-Processis arounded corner rectangle that MUST be drawn with asingle thin black line.

[The use of text, color, size, and lines for a Sub-Process MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin aDiagram,” on page 26 with the exception that.

[_The boundary drawn with a double line SHALL be reserved for Sub-Process that hasits ISATransaction
attribute set to True.

BPMN Adopted Specification 53

The Sub-Process can be in a collapsed view that hides its details (see Figure 9.5) or a Sub-Process can be in an expanded
view that shows its details within the view of the Process in which it is contained (see Figure 9.6). In the collapsed form,
the Sub-Process object uses a marker to distinguish it as a Sub-Process, rather than a Task.

[_1The Sub-Process marker MUST be asmall square with aplus sign (+) inside. The square MUST be positioned at the
bottom center of the shape.

Figure 9.5 - Collapsed Sub-Process

- J

Figure 9.6 - Expanded Sub-Process

Expanded Sub-Process may be used for multiple purposes. They can be used to “flatten” a hierarchical process so that all
detail can be shown at the same time. They are used to create a context for exception handling that applies to a group of
activities (Section 10.2.2, “Exception Flow,” on page 130 for more details). Compensations can be handled similarly
(Section 10.3, “Compensation Association,” on page 133 for more details).

Expanded Sub-Process may be used as a mechanism for showing a group of parallel activities in a less-cluttered, more
compact way. In Figure 9.7, activities “C” and “D” are enclosed in an unlabeled Expanded Sub-Process. These two
activities will be performed in parallel. Notice that the Expanded Sub-Process does not include a Start Event or an End
Event and the Sequence Flow to/from these Events. This usage of Expanded Sub-Processes for “parallel boxes’ is the
motivation for having Start and End Events being optional objects.

54 BPMN Adopted Specification

~—_ @@

Figure 9.7 - Expanded Sub-Process used as a “parallel box”

BPMN specifies five types of standard markers for Sub-Processes. The (Collapsed) Sub-Process Marker, seen in Figure
9.5, can be combined with four other markers: a Loop Marker or a Parallel Marker, a Compensation Marker, and an Ad
Hoc Marker. A collapsed Sub-Process may have one to three of these other markers, in all combinations except that Loop
and Multiple Instance cannot be shown at the same time (see Figure 9.8).

[_1The marker for a Sub-Process that loops MUST be a small line with an arrowhead that curls back upon itself.

[1The Loop Marker MAY be used in combination with any of the other markers except the Multiple Instance
Marker.

[_1The marker for a Sub-Process that has multiple instances MUST be a pair of vertical linesin parallel.

[_1The Multiple Instance Marker MAY be used in combination with any of the other markers except the Loop
Marker.

[_1The marker for a Sub-Process that is Ad Hoc MUST be a“tilde” symboal.
[_1The Ad-Hoc Marker MAY be used in combination with any of the other markers.

[_IThemarker for a Sub-Processthat is used for compensation MUST be apair of |eft facing triangles (like atape player
“rewind” button).

[_1The Compensation Marker MAY be used in combination with any of the other markers.
1Al the markers that are present MUST be grouped and the whole group centered at the bottom of the shape.

Multiple Instance Ad-Hoc Compensation

(oa) Laa) (o] [

Figure 9.8 - Collapsed Sub-Process Markers

BPMN Adopted Specification 55

Attributes

The following table displays the set of attributes of a Sub-Process, which extends the set of common activity attributes
(see Table 9.13):

Table 9.13 - Sub-Process Attributes

Attributes Description

SubProcessType (Embedded | SubProcessType is an attribute that defines whether the Sub-Process details are
Independent | R_eference) embedded within the higher level Process or refers to another, re-usable Process.
Embedded : String The default is Embedded.

IsATransaction False : Boolean | IsATransaction determines whether or not the behavior of the Sub-Process will
follow the behavior of a Transaction (see Section , “Sub-Process Behavior as a
Transaction,” on page 59).

Transaction (0-1) : Transaction If the Transaction attribute is False, then a Transaction MUST NOT be identified.
If the Transaction attribute is True, then a Transaction MUST be identified. The
attributes of a Transaction can be found in the Section B.11.10, “ Transaction,” on
page 271.

Note that Transactions that are in different Pools and are connected through
Message Flow MUST have the same Transactionld.

Embedded Sub-Process

An Embedded (or nested) Sub-Process object is an activity that contains other activities (a Process). The Process within
the Process is dependent on the parent Process for instigation and has visibility to the parent’s global data. No mapping of
datais required.

The objects within the Embedded Sub-Process, being dependent on their parent, do not have all the features of a full
Business Process Diagram, such as Pools and Lanes. Thus, an expanded view of the Embedded Sub-Process would only
contain Flow Objects, Connecting Objects, and Artifacts (see Figure 9.7).

The following are additional attributes of a Embedded Sub-Process (where the SubProcessType attribute is set to
“Embedded”), which extends the set of Sub-Process attributes (see Table 9.14):

Table 9.14 - Embedded Sub-Process Attributes

Attributes Description

GraphicalElements (0-n) : The GraphicalElements attribute identifies all of the objects (e.g., Events,

Object Activities, Gateways, and Artifacts) that are contained within the Embedded Sub-
Process.

AdHoc False : Boolean AdHoc is a boolean attribute, which has a default of False. This specifies whether

the Embedded Sub-Process is Ad Hoc or not. The activities within an Ad Hoc
Embedded Sub-Process are not controlled or sequenced in aparticular order, there
performance is determined by the performers of the activities.

[AdHoc = True only] If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then the
AdHocOrdering (0-1) AdHocOrdering attribute MUST be included. This attribute defines if the
(Sequential | Parallel) Parallel : | activities within the Process can be performed in Parallel or must be performed
String sequentially. The default setting is Parallel and the setting of Sequential is a

restriction on the performance that may be required due to shared resources.

56 BPMN Adopted Specification

Table 9.14 - Embedded Sub-Process Attributes

Attributes Description
[AdHoc = True only] If the Embedded Sub-Process is Ad Hoc (the AdHoc attribute is True), then a
AdHocCompletionCondition Completion Condition MUST be included, which defines the conditions when the
(0-1) : Expression Process will end. The Ad Hoc marker SHALL be placed at the bottom center of
the Process or the Sub-Process shape for Ad Hoc Processes.

Independent Sub-Process

An Independent Sub-Process abject is an activity within a Process that “calls’ to another Process that exists within a BDP
(see Figure 9.9). The Process that is called is not dependent on the Independent Sub-Process’ parent Process for
instantiation or global data. The called Process will be instantiated when called, but it can be instantiated by other
Independent Sub-Process objects (in other diagrams) or by a message from an external source. The Independent Sub-
Process object may pass data to/from the called Process.

Request
passes
"Acid Test"?

Create capacity model
and select a standard
facility option
[Pages 5 & 6]

Gather detailed request
information
[Page 4]

Gather basic initial
request information
[Pages 2 & 3]

O

This Sub-Process Object
| References the Diagram in
the next Figure

Figure 9.9 - A Sub-Process Object with its Details Shown in the Diagram of the Next Figure

The called Process will exist in a separate diagram that can have multiple Pools. Any view of the called Process
(including an expanded view within the calling Process) would show the whole diagram in which the called Process
resides (see Figure 9.10), but any data mapping will be only to that Process and not to any of the other Processes that
might be in the called diagram.

BPMN Adopted Specification 57

Contact ACOT'E;Z
Request
— — —

Tap Requester
(Customer)

Referral
A

Request 1st-
Gate
Information

ate
Information

Tap Systems Coordinator
(Project Manager)

Receive 1st-

Request Advise
Contract Review Customer
Refer Customer
to Retail

[

—

Contact and
Inform Retail

Notify Business
[Notify Legal } {Developmemh

Business
Development

Receive and
Acknowledge

[

Legal

Receive and
Acknowledge

Land or
Right-of-Way

Request
Contract Review

Loc
(Distributor)

Retail

Receive and
Acknowledge

v

Refer to Tap
Receive
Request Systems
Coordinator

Employee
At-Large

Figure 9.10 - A Process and Diagram Details of the Sub-Process Object in the Previous Figure

The following are additional attributes of a Independent Sub-Process (where the SubProcessType attribute is set to
“Independent”), which extends the set of Sub-Process attributes (see Table 9.15):

Table 9.15 - Independent Sub-Process Attributes

Attributes

Description

DiagramRef: Business Process
Diagram

The BPD MUST be identified. The attributes of a BPD can be found in the
Section 8.5, “Business Process Diagram Attributes,” on page 28.

ProcessRef: Process

A Process MUST be identified. The attributes of a Process can be found in the
Section 8.6, “Processes,” on page 29.

InputPropertyMaps (0-n) :
Expression

Multiple input mappings MAY be made between properties of the Independent
Sub-Process and the properties of the Process referenced by this object. These
mappings are in the form of an expression (although a modeling tool can present
this to a modeler in any number of ways).

OutputPropertyMaps (0-n) :
Expression

Multiple output mappings MAY be made between properties of the Independent
Sub-Process and the properties of the Process referenced by this object. These
mappings are in the form of an expression (although a modeling tool can present
this to a modeler in any number of ways).

58

BPMN Adopted Specification

Reference Sub-Process

There may be times where a modeler may want to reference another Sub-Process that has been defined. If the two Sub-
Processes share the exact same behavior and properties, then by one referencing the other, the attributes that define the
behavior only have to be created once and maintained in only one location.

The following table displays the set of attributes of a Reference Sub-Process (where the SubProcessType attribute is set to
“Reference”), which extends the set of Sub-Process attributes (see Table 9.16):

Table 9.16 - Reference Sub-Process Attributes

Attributes

Description

SubProcessRef : Task

The Sub-Process being referenced MUST be identified. The attributes for the
Sub-Process element can be found in Table 9.13.

Sub-Process Behavior as a Transaction

A Sub-Process, either collapsed or expanded, can be set as being a Transaction, which will have a special behavior that is
controlled through a transaction protocol (such as BTP or WS-Transaction). The boundary of the activity will be double-
lined to indicate that it is a Transaction (see Figure 9.11).

BPMN Adopted Specification

59

Transaction

Bookings

Book Flight

Successful Charge
Bookings Buyer
Cancel Flight

Book Hotel

Send Hotel
Cancellation

KL/ Failed - Send

» Unavailability
Notice

Bookings

Exceptions Handle through

Customer Service

Figure 9.11 - An Example of a Transaction Expanded Sub-Process

There are three basic outcomes of a Transaction:

60

» Successful completion: thiswill be shown as a normal Sequence Flow that leaves the Sub-Process.

 Failed completion (Cancel): When a Transaction is cancelled, then the activities inside the Transaction will be sub-

jected to the cancellation actions, which could include rolling back the process and compensation for specific activities.
Note that other mechanisms for interrupting a Sub-Process will not cause Compensation (e.g., Error, Timer, and any-
thing for a non-Transaction activity). A Cancel Intermediate Event, attached to the boundary of the activity, will direct
the flow after the Transaction has been rolled back and all compensation has been completed. The Cancel Intermediate
Event can only be used when attached to the boundary of a Transaction activity. It cannot be used in any Normal Flow
and cannot be attached to a non-Transaction activity. There are two mechanisms that can signal the cancellation of a
Transaction:

« A Cancel End Event is reached within the Transaction Sub-Process. A Cancel End Event can only be used within a
Sub-Process that is set to a Transaction.

« A Cancel Message can be received viathe Transaction Protocol that is supporting the execution of the Sub-
Process.

Hazard: This means that something went terribly wrong and that anormal success or cancel is not possible. We are
using an Error to show Hazards. When a Hazard happens, the activity isinterrupted (without Compensation) and the

BPMN Adopted Specification

flow will continue from the Error Intermediate Event.

The behavior at the end of a successful Transaction Sub-Process is slightly different than that of a normal Sub-Process.
When each path of the Transaction Sub-Process reaches a non-Cancel End Event(s), the flow does not immediately move
back up to the higher-level Parent Process, as does a normal Sub-Process. First, the transaction protocol must verify that
all the participants have successfully completed their end of the Transaction. Most of the time this will be true and the
flow will then move up to the higher-level Process. But it is possible that one of the participants may end up with a
problem that causes a Cancel or a Hazard. In this case, the flow will then move to the appropriate Intermediate Event,
even though it had apparently finished successfully.

Note — The exact behavior and notation for defining Transactionsis still an Open Issue. Refer Annex D for a complete list of
the issues open for BPMN.

Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how they may be source or targets
of Sequence Flow.

A Sub-Process MAY be atarget for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY be
from an alternative path and/or a parallel paths.

Note — If the Sub-Process has multiple incoming Sequence Flow, then thisis considered uncontrolled flow. This means that
when a Token arrives from one of the Paths, the Sub-Process will beinstantiated. It will not wait for the arrival of Tokensfrom
the other paths. If another Token arrives from the same path or another path, then a separate instance of the Sub-Processwill be
created. If the flow needs to be controlled, then the flow should converge on a Gateway that precedes the Sub-Process
(Section 9.5, “ Gateways,” on page 68 for more information on Gateways).

[1If the Sub-Process does not have an incoming Sequence Flow, and there is no Start Event for the Process, then the
Sub-Process MUST be instantiated when the processis instantiated.

[IExceptions to this are Sub-Processes that are defined as being Compensation activities (have the Compensation
Marker). Compensation Sub-Processes are not considered a part of the Normal Flow and MUST NOT be
instantiated when the Process is instantiated.

A Sub-Process MAY be a source for Sequence Flow; it can have multiple outgoing Flow. If there are multiple
outgoing Sequence Flow, then this means that a separate parallel path is being created for each Flow.

Tokens will be generated for each outgoing Sequence Flow from Sub-Process. The Tokenlds for each of the Tokens will
be set such that it can be identified that the Tokens are all from the same parallel Fork (AND-Split) as well as the number
of Tokens that exist in parallel.

[_1If the Sub-Process does not have an outgoing Sequence Flow, and there is no End Event for the Process, then the Sub-
Process marksthe end of one or more pathsin the Process. When the Sub-Process ends and there are no other parallel
paths active, then the Process MUST be completed.

[IExceptions to this are Sub-Processes that are defined as being Compensation activities (have the Compensation
Marker). Compensation Sub-Processes are not considered a part of the Normal Flow and MUST NOT mark the
end of the Process.

Message Flow Connections

Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects and how they may be source or targets of
Message Flow.

BPMN Adopted Specification 61

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objects within
the Pool boundary. They cannot connect two objects within the same Pool.

1A Sub-Process MAY be the target for Message Flow; it can have zero or more incoming Message Flow.
A Sub-Process MAY be a source for Message Flow; it can have zero or more outgoing Message Flow.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
» The Reference Sub-Process type was added.
» The constraint about the fill of the Sub-Process was removed.
« Attributes that are specific to a Sub-Process of type Embedded a were added and presented in a new table (Table 9.14).

» The set of attributes that are specific to a Sub-Process of type Independent were removed from the main table (Table
9.13) and placed in a separate table (Table 9.15).

« Attributes that are specific to a Sub-Process of type Reference awere added and presented in a new table (Table 9.16).
« The Expanded attribute was added to the set of Sub-Process attributes.

« The TransactionProtocol and TransactionM ethod attributes were removed from the set of Sub-Process attributes. These
attributes can be found in the definition of a Transaction, which can be found in the Section B.11.10, “ Transaction,” on
page 271.

» The ProcessRef attribute, within the set of Independent Sub-Process attributes, was changed to be of type Process.
« The Process attribute was removed from the set of Sub-Process attributes.

» The InputMap attribute, within the set of Independent Sub-Process attributes, was renamed to InputPropertyMaps and
its cardinality was changed from 0 to many (0-n). In addition, the description was updated to clarify that the mapping
was between the properties of the object and the properties of the referenced Process.

» The OutputMap attribute, within the set of Independent Sub-Process attributes, was renamed to OutputPropertyMaps
and its cardinality was changed from 0 to many (0-n). In addition, the description was updated to clarify that the map-
ping was between the properties of the object and the properties of the referenced Process.

9.4.3 Task

A Task is an atomic activity that is included within a Process. A Task is used when the work in the Process is not broken
down to afiner level of Process Model detail. Generally, an end-user and/or an application are used to perform the Task
when it is executed.

A Task object shares the same shape as the Sub-Process, which is a rectangle that has rounded corners (see Figure 9.12).
A Task isarounded corner rectangle that MUST be drawn with a single thin black line.

[1The use of text, color, size, and lines for a Task MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Linesin a Diagram,” on page 26.

62 BPMN Adopted Specification

Figure 9.12 - A Task Object

BPMN specifies three types of markers for Task: a Loop Marker or a Multiple Instance Marker and a Compensation
Marker. A Task may have one or two of these markers (see Figure 9.13).

[_1The marker for a Task that is a standard loop MUST be a small line with an arrowhead that curls back upon itself.
[_1The Loop Marker MAY be used in combination with the Compensation Marker.

[_1The marker for a Task that is a multi-instance loop MUST be a pair of vertical linesin parallel.
[_1The Multiple Instance Marker MAY be used in combination with the Compensation Marker.

[_1The marker for a Task that is used for compensation MUST be apair of left facing triangles (like a tape player
“rewind” button).

[_1The Compensation Marker MAY be used in combination with the Loop Marker or the Multiple Instance Marker.
1Al the markersthat are present MUST be grouped and the whole group centered at the bottom of the shape.

All the markers that are present will be grouped and centered at the bottom of the shape.

Loop Multiple Instance Compensation

@)

Figure 9.13 - Task Markers

In addition to categories of Task shown above, there are different types of Tasks identified within BPMN to separate the
types of inherent behavior that Tasks might represent (see Table 9.2). However, BPMN does not specify any graphical
indicators for the different types of Tasks. Modelers or modeling tools may choose to create their own indicators or
markers to show the readers of the diagram the type of Task. Thisis permitted by BPMN as long as the basic shape of the
Task (a rounded rectangle) is not modified. The list of Task types may be extended along with any corresponding
indicators.

BPMN Adopted Specification 63

Attributes

The following table displays the set of attributes of a Task, which extends the set of common activity attributes (see Table
9.10):
Table 9.17 - Task Attributes

Attributes Description
TaskType (Service | Receive | TaskType is an attribute that has a default of Service, but MAY be set to Send,
Send | User | Script | Manual | Receive, User, Script, Manual, Reference, or None. The TaskType will be

Reference | None) None : String | impacted by the Message Flow to and/or from the Task, if Message Flow are
used. A TaskType of Receive MUST NOT have an outgoing Message Flow. A
TaskType of Send MUST NOT have an incoming Message Flow. A TaskType of
Script, Manual, or None MUST NOT have an incoming or an outgoing Message
Flow.

The TaskType liss MAY be extended to include new types.

The attributes for specific values of TaskType can be found in Table 9.18 through
Table 9.24.

Service Task

A Service Task is a Task that provides some sort of service, which could be a Web service or an automated application.
The following table displays the set of attributes of a Service Task (where the TaskType attribute is set to “ Service”),
which extends the set of Task attributes (see Table 9.17):

Table 9.18 - Service Task Attributes

Attributes Description

A Message for the InMessage attribute MUST be entered. This indicates that
the Message will be sent at the start of the Task, after the availability of any
defined InputSets. A corresponding outgoing Message Flow MAY be shown
on the diagram. However, the display of the Message Flow is not required.
OutMessage : Message A Message for the OutM essage attribute MUST be entered. The arrival of
this message marks the completion of the Task, which may cause the
production of an OutputSet. A corresponding incoming Message Flow MAY
be shown on the diagram. However, the display of the Message Flow is not
required.

Implementation (Web Service | Other | This attribute specifies the technology that will be used to send and receive
| Unspecified) Web Service : String the messages. A Web service is the default technology.

InMessage : Message

Receive Task

A Receive Task is a simple Task that is designed to wait for a message to arrive from an external participant (relative to
the Business Process). Once the message has been received, the Task is completed.

A Receive Task is often used to start a Process. In a sense, the Process is bootstrapped by the receipt of the message. In
order for the Task to Instantiate the Process it must meet one of the following conditions:

[_1The Process does not have a Start Event and the Receive Task has no incoming Sequence Flow.

64 BPMN Adopted Specification

[_1The Incoming Sequence Flow for the Receive Task has a source of a Start Event.

[_INote that no other incoming Sequence Flow are allowed for the Receive Task (in particular, aloop connection
from a downstream object).

The following table displays the set of attributes of a Receive Task (where the TaskType attribute is set to “Receive’),
which extends the set of Task attributes (see Table 9.17):

Table 9.19 - Receive Task Attributes

Attributes Description

Message: Message A Message for the Message attribute MUST be entered. This indicates that
the Message will be received by the Task. The Message in this context is
equivalent to an in-only message pattern (Web service). A corresponding
incoming Message Flow MAY be shown on the diagram. However, the
display of the Message Flow is not required.

Instantiate False : Boolean Receive Tasks can be defined as the instantiation mechanism for the
Process with the Instantiate attribute. This attribute MAY be set to true if
the Task is the first activity after the Start Event or a starting Task if there
is no Start Event (i.e., there are no incoming Sequence Flow). Multiple
Tasks MAY have this attribute set to True.

Implementation (Web Service | Other | | This attribute specifies the technology that will be used to receive the
Unspecified) Web Service : String message. A Web service is the default technology.

Send Task
A Send Task is a simple Task that is designed to send a message to an external participant (relative to the Business
Process). Once the message has been sent, the Task is completed.

The following table displays the set of attributes of a Send Task (where the TaskType attribute is set to “Send”), which
extends the set of Task attributes (see Table 9.17):
Table 9.20 - Send Task Attributes

Attributes Description

Message : Message A Message for the Message attribute MUST be entered. This indicates that the
Message will be sent by the Task. The Message in this context is equivalent to an
out-only message pattern (Web service). A corresponding outgoing Message Flow
MAY be shown on the diagram. However, the display of the Message Flow is not
required.

Implementation (Web Service | | This attribute specifies the technology that will be used to send the message. A
Other | Unspecified) Web Service | Web service is the defauilt technology.

: String

User Task

A User Task is atypical “workflow” task where a human performer performs the Task with the assistance of a software
application and is scheduled through a task list manager of some sort.

BPMN Adopted Specification 65

The following table displays the set of attributes of a User Task (where the TaskType attribute is set to “User”), which
extends the set of Task attributes (see Table 9.17):

Table 9.21 - User Task Attributes

Attributes

Description

Performers (1-n) : String

One or more Performers MAY be entered. The Performers attribute defines the
human resource that will be performing the User Task. The Performers entry
could be in the form of a specific individual, a group, or an organization.
Additional parameters that help define the Performers assignment can be added
by a modeling tool.

InMessage : Message

A Message for the InMessage attribute MUST be entered. This indicates that the
Message will be sent at the start of the Task, after the availability of any defined
InputSets. A corresponding outgoing Message Flow MAY be shown on the
diagram. However, the display of the Message Flow is not required.

OutMessage : Message

A Message for the OutM essage attribute MUST be entered. The arrival of this
message marks the completion of the Task, which may cause the production of an
OutputSet. A corresponding incoming Message Flow MAY be shown on the
diagram. However, the display of the Message Flow is not required.

Implementation (Web Service |
Other | Unspecified) Other :
String

This attribute specifies the technology that will be used by the Performers to
perform the Task.

Script Task

A Script Task is executed by a business process engine. The modeler or implementer defines a script in a language that
the engine can interpret. When the Task is ready to start, the engine will execute the script. When the script is completed,

the Task will also be completed.

The following table displays the set of attributes of a Script Task (where the TaskType attribute is set to “ Script”), which
extends the set of Task attributes (see Table 9.17):

Table 9.22 - Script Task Attributes

Attributes

Description

Script (0-1) : String

The modeler MAY include a script that can be run when the Task is performed. If
a script is not included, then the Task will act equivalent to a TaskType of None.

Manual Task

A Manual Task isaTask that is expected to be performed without the aid of any business process execution engine or any
application. An example of this could be a telephone technician installing a telephone at a customer location.

66

BPMN Adopted Specification

The following table displays the set of attributes of a Manual Task (where the TaskType attribute is set to “Manual”),
which extends the set of Task attributes (see Table 9.17):

Table 9.23 - Manual Task Attributes

Attributes Description

Performers (0-n) : String One or more Performers MAY be entered. The Performers attribute defines the
human resource that will be performing the Manual Task. The Performers entry
could be in the form of a specific individual, a group, an organization role or
position, or an organization.

Reference Task

There may be times where a modeler may want to reference another activity that has been defined. If the two (or more)
activities share the exact same behavior, then by one referencing the other, the attributes that define the behavior only
have to be created once and maintained in only one location.

The following table displays the set of attributes of a Reference Task (where the TaskType attribute is set to “ Reference”),
which extends the set of Task attributes (see Table 9.17):

Table 9.24 - Reference Task Attributes

Attributes Description
TaskRef : Task The Task being referenced MUST be identified. The attributes for the Task
element can be found in Table 9.17.

Sequence Flow Connections

Section 8.4.1, “Sequence Flow Rules,” on page 27 for the entire set of objects and how they may be source or targets of
Sequence Flow.

1A Task MAY beatarget for Sequence Flow; it can have multiple incoming Flow. Incoming Flow MAY be from an
alternative path and/or a parallel paths.

Note — If the Task has multiple incoming Sequence Flow, then thisis considered uncontrolled flow. This means that when a
Token arrivesfrom one of the Paths, the Task will be instantiated. It will not wait for the arrival of Tokens from the other paths.
If another Token arrives from the same path or another path, then a separate instance of the Task will be created. If the flow
needs to be controlled, then the flow should converge with a Gateway that precedes the Task (see Section 9.5, “ Gateways,” on
page 68 for more information on Gateways).

[If the Task does not have an incoming Sequence Flow, and there is no Start Event for the Process, then the Task
MUST be instantiated when the process is instantiated.

[IExceptions to this are Tasks that are defined as being Compensation activities (have the Compensation Marker).
Compensation Tasks are not considered a part of the Normal Flow and MUST NOT be instantiated when the
Process isinstantiated.

1A Task MAY be asource for Sequence Flow; it can have multiple outgoing Flow. If there are multiple outgoing
Sequence Flow, then this means that a separate parallel path is being created for each Flow.

BPMN Adopted Specification 67

Tokens will be generated for each outgoing Sequence Flow from the Task. The Tokenlds for each of the Tokens will be
set such that it can be identified that the Tokens are all from the same parallel Fork (AND-Split) as well as the number of
Tokens that exist in parallel.

[1If the Task does not have an outgoing Sequence Flow, and thereis no End Event for the Process, then the Task marks
the end of one or more pathsin the Process. When the Task ends and there are no other paralléel paths active, then the
Process MUST be compl eted.

[IExceptionsto this are Tasks that are defined as being Compensation activities (have the Compensation Marker).
Compensation Tasks are not considered a part of the Normal Flow and MUST NOT mark the end of the Process.

Message Flow Connections

Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects and how they may be source or targets of
Message Flow.

Note — All Message Flow must connect two separate Pools. They can connect to the Pool boundary or to Flow Objectswithin
the Pool boundary. They cannot connect two objects within the same Pool.

1A Task MAY bethe target for Message Flow; it can have zero or one incoming Message Flow.
1A Task MAY be a source for Message Flow; it can have zero or more outgoing Message Flow.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
» Theconstraint about the fill of the Task was removed.

» The TaskType attribute, within the set of Task attributes, was updated to include a new type named Reference. Also, the
Abstract TaskType was removed.

9.5 Gateways

Gateways are modeling elements that are used to control how Sequence Flow interact as they converge and diverge within
a Process. If the flow does not need to be controlled, then a Gateway is not needed. The term “Gateway” implies that
there is a gating mechanism that either allows or disallows passage through the Gateway--that is, as Tokens arrive at a
Gateway, they can be merged together on input and/or split apart on output as the Gateway mechanisms are invoked. To
be more descriptive, a Gateway is actually a collection of “Gates.” There are different types of Gateways (as described
below) and the behavior of each type Gateway will determine how many of the Gates will be available for the
continuation of flow. There will be one Gate for each outgoing Sequence Flow of the Gateway.

A Gateway is adiamond (see Figure 9.14), which has been used in many flow chart notations for exclusive branching and
is familiar to most modelers.

1A Gateway isadiamond that MUST be drawn with a single thin black line.

[IThe use of text, color, size, and lines for a Gateway MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Linesin a Diagram,” on page 26.

68 BPMN Adopted Specification

Figure 9.14 - A Gateway

Note — Although the shape of a Gateway isadiamond, it is not a requirement that incoming and outgoing Sequence Flow
must connect to the corners of the diamond. Sequence Flow can connect to any position on the boundary of the Gateway
shape.

Gateways can define all the types of business process Sequence Flow behavior: Decisions/branching (OR-Split;
exclusive--XOR, inclusive--OR, and complex), merging (OR-Join), forking (AND-Split), and joining (AND-Join). Thus,
while the diamond has been used traditionally for exclusive decisions, BPMN extends the behavior of the diamonds to

reflect any type of Sequence Flow control. Each type of Gateway will have an internal indicator or marker to show the
type of Gateway that is being used (see Figure 9.15).

Exclusive Decision/Merge (XOR)
Data-Based <> or @

Event-Based

Inclusive Decision/Merge (OR)

Complex Decision/Merge

Parallel Fork/Join (AND)

+ %0 »

Figure 9.15 - The Different types of Gateways

[ITheinternal marker associated with the Gateway MUST be placed inside the shape, in any size or location,
depending on the preference of the modeler or modeling tool vendor, with the exception that the marker for the Data
Based Exclusive Gateway is not required.

The Gateways will control the flow of both diverging and/or converging Sequence Flow. That is, a particular Gateway
could have multiple incoming Sequence Flow and multiple outgoing Sequence Flow at the same time. The type of
Gateway will determine the same type of behavior for both the diverging and converging Sequence Flow. Modelers and
modeling tools may want to enforce a best practice of a Gateway only performing one of these functions. Thus, it would
take two sequential Gateways to first converge and then diverge the Sequence Flow.

BPMN Adopted Specification 69

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The constraint about thefill of the Gateway was removed.

» Theconstraint for placing the internal marker inside the Gateway was changed from MAY to MUST.

9.5.1 Common Gateway Features

Common Gateway Attributes

The following table displays the attributes common to Gateways, and which extends the set of common Flow Object
attributes (see Table 9.2):

Table 9.25 - Common Gateway Attributes

Attributes Description

GatewayType (XOR | OR | GatewayType is by default XOR. The GatewayType MAY be set to OR,

Complex | AND) XOR : String Complex, or AND. The GatewayType will determine the behavior of the
Gateway, both for incoming and outgoing Sequence Flow, and will determine the
internal indicator (as shown in Figure 9.15).

Common Gateway Sequence Flow Connections

This section applies to all Gateways. Additional Sequence Flow Connection rules will be specified for each type of
Gateway in the sections below. See Section 8.4.1, “Sequence Flow Rules,” on page 27 for the entire set of objects and
how they may be source or targets of Sequence Flow.

1A Gateway MAY be atarget for Sequence Flow; it can have zero or more incoming Sequence Flow. An incoming
Flow MAY be from an alternative path or a parallel path.

[If the Gateway does not have an incoming Sequence Flow, and thereis no Start Event for the Process, then the
Gateway' s divergence behavior, depending on the GatewayType attribute (see below), SHALL be performed
when the Process is instantiated.

1A Gateway MAY be a source of Sequence Flow; it can have zero or more outgoing Flow.

1A Gateway MAY have both multiple incoming and outgoing Segquence Flow.

Note — The incoming and outgoing Sequence Flow are not required to attach to the corners of the Gateway’s diamond shape.
Sequence Flow can attach to any location on the boundary of a Gateway.

Message Flow Connections

This section applies to all Gateways. See Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects
and how they may be source or targets of Message Flow.

[1An Gateway MUST NOT be atarget for Message Flow.
AN Gateway MUST NOT be a source for Message Flow.

70 BPMN Adopted Specification

9.5.2 Exclusive Gateways (XOR)

Exclusive Gateways (Decisions) are locations within a business process where the Sequence Flow can take two or more
alternative paths. Thisis basically the “fork in the road” for a process. For a given performance (or instance) of the
process, only one of the paths can be taken (this should not be confused with forking of paths—refer to “Forking Flow”
on page 110). A Decision is not an activity from the business process perspective, but is a type of Gateway that controls
the Sequence Flow between activities. It can be thought of as a question that is asked at that point in the Process. The
guestion has a defined set of alternative answers (Gates). Each Decision Gate is associated with a condition expression
found within an outgoing Sequence Flow. When a Gate is chosen during the performance of the Process, the
corresponding Sequence Flow is then chosen. A Token arriving at the Decision would be directed down the appropriate
path, based on the chosen Gate.

The Exclusive Decision has two or more outgoing Sequence Flow, but only one of them may be taken during the
performance of the Process. Thus, the Exclusive Decision defines a set of alternative paths for the Token to take as it
traverses the Flow. There are two types of Exclusive Decisions: Data-Based and Event-Based.

Data-Based

The Data-Based Exclusive Gateways are the most commonly used type of Gateways. The set of Gates for Data-Based
Exclusive Decisions is based on the boolean expression contained in the ConditionExpression attribute of the outgoing
Sequence Flow of the Gateway. These expressions use the values of process data to determine which path should be taken
(hence the name Data-Based).

Note — BPMN does not specify the format of the expressions used in Gateways or any other BPMN element that uses
expressions.

[1The Data-Based Exclusive Gateway MAY use amarker that is shaped like an “X” and is placed within the Gateway
diamond (see Figure 9.17) to distinguish it from other Gateways. This marker is not required (see Figure 9.16).

1A Diagram SHOULD be consistent in the use of the “X” internal indicator. That is, a Diagram SHOULD NOT
have some Gateways with an indicator and some Gateways without an indicator.

Alternative 1

Alternative

Default
Alternative

Figure 9.16 - An Exclusive Data-Based Decision (Gateway) Example without the Internal Indicator

BPMN Adopted Specification 71

Alternative 1

Alternative

Alternative

Figure 9.17 - A Data-Based Exclusive Decision (Gateway) Example with the Internal Indicator

The conditions for the alternative Gates should be evaluated in a specific order. The first one that evaluates as TRUE will
determine the Sequence Flow that will be taken. Since the behavior of this Gateway is exclusive, any other conditions that
may actually be TRUE will be ignored--only one Gate can be chosen. One of the Gates may be “default” (or otherwise),
and is the last Gate considered. This means that if none of the other Gates are chosen, then the default Gate will be
chosen—along with its associated Sequence Flow.

The default Gate is not mandatory for a Gateway. This means that if it is not used, then it is up to the modeler to insure
that at least one Gate be valid at runtime. BPMN does not specify what will happen if there are no valid Gates. However,
BPMN does specify that there MUST NOT be implicit flow and that all Normal Flow of a Process must be expressed
through Sequence Flow. This would mean that a Process Model that has a Gateway that potentially does not have a valid
Gate at runtime is an invalid model.

Figure 9.18 - An Exclusive Merge (Gateway) (without the Internal Indicator)
Exclusive Gateways can also be used as a merge (see Figure 9.18) for alternative Sequence Flow, although it is rarely

required for the modeler to use them this way. The merging behavior of the Gateway can also be modeled as seen in
Figure 9.19. The behavior of Figure 9.18 and Figure 9.19 are the same if all the incoming flow are alternative.

72 BPMN Adopted Specification

Figure 9.19 - Uncontrolled Merging of Sequence Flow

There are certain situations where an Exclusive Gateway is required to act as a merging object. In Figure 9.21 an
Exclusive Gateway (labeled “Merge”) merges two alternative Sequence Flow that were generated by an upstream
Decision. The aternative Sequence Flow are merged in preparation for an Parallel Gateway that synchronizes a set of
paralel Sequence Flow that were generated even further upstream. If the merging Gateway was not used, then there
would have been four incoming Sequence Flow into the Parallel Gateway. However, only three of the four Sequence Flow
would ever pass a Token at one time. Thus, the Gateway would be waiting for a fourth Token that would never arrive.
Thus, the Process would be stuck at the point of the Parallel Gateway.

Decision

Figure 9.20 - Exclusive Gateway that merges Sequence Flow prior to an Parallel Gateway

BPMN Adopted Specification 73

In simple situations, Exclusive Gateways need not be used for merging Sequence Flow, but there are more complex
situations where they are required. Thus, a modeler should always be aware of the behavior of a situation where Sequence
Flow are uncontrolled. Some modelers or modeling tools may, in fact, require that Exclusive Gateways be used in all

situations as a matter of Best Practice.

Attributes

The following table displays the attributes for an Data-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to XOR. The following attributes extend the set of common Gateway attributes (see Table

9.30):

Table 9.26 - Data-Based Exclusive Gateway Attributes

Attributes

Description

XORType (Data | Event) Data :
String

XORType is by default Data. The XORType MAY be set to Event. Since Data-
Based XOR Gateways are the subject of this section, the attribute MUST be set to
Data for the attributes and behavior defined in this section to apply to the
Gateway.

MarkerVisible False : Boolean

This attribute determines if the XOR Marker is displayed in the center of the
Gateway diamond (an “X"). The marker is displayed if the attribute is True and it
is not displayed if the attribute is False. By default, the marker is not displayed.

Gates (0-n) : Gate

There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.

If there are zero or only one incoming Sequence Flow (i.e, the Gateway is acting
as a Decision), then there MUST be at least one Gate. In this case, if thereisno
DefaultGate, then there MUST be at least two Gates.

[Gate]

OutgoingSequenceFlow:
SequenceFlow

Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
have its Condition attribute set to Expression and MUST have a vdid
ConditionExpression. The attributes of a Sequence Flow can be found in the
Section 10.1.2, “Sequence Flow,” on page 100.

If there is only one Gate (i.e., the Gateway is acting only as a Merge), then
Sequence Flow MUST have its Condition set to None.

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressions MAY be made for each Gate. The
Assignment SHALL be performed when the Gate is selected. The Assignment is
defined in the Section B.11.1, “Assignment,” on page 268.

DefaultGate (0-1) : Gate

A Default Gate MAY be specified.

[Gate]

OutgoingSequenceFlow:
SequenceFlow

If there is a DefaultGate, then it MUST have an associated Sequence Flow. The
Sequence Flow SHALL have the Default Indicator (see Figure 9.16). The
Sequence Flow MUST have its Condition attribute set to Default. The attributes
of a Sequence Flow can be found in the Section 10.1.2, “ Sequence Flow,” on
page 100.

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressions MAY be made for the DefaultGate. The
Assignment SHALL be performed when the DefaultGate is selected. The details
of Assignment is defined in the Section B.11.1, “Assignment,” on page 268.

74

BPMN Adopted Specification

Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow
Connections’ on page 70. Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how they
may be source or targets of Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow:

[_1If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process (asiif there
were no Gateway). That is,

[IProcess flow SHALL continue when asignal (a Token) arrives from any of a set of Sequence Flow.

[_Bignals from other Sequence Flow within that set may arrive at other times and the flow will continue when
they arrive as well, without consideration or synchronization of signals that have arrived from other
Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow:

[_1If there are multiple outgoing Segquence Flow, then only one Gate (or the DefaultGate) SHALL be selected during
performance of the Process.

[1The Gate SHALL be chosen based on the result of evaluating the ConditionExpression that is defined for the
Sequence Flow associated with the Gate.

[_The Conditions associated with the Gates SHALL be evaluated in the order in which the Gates appear on the
list for the Gateway.

[1f a ConditionExpression is evaluated as“ TRUE,” then that Gate SHALL be chosen and any Gates
remaining on the liss MUST NOT be evaluated.

[1f none of the ConditionExpressions for the Gates are evaluated as“ TRUE,” then the DefaultGate SHALL be
chosen.

Note — If the Gateway does not have a DefaultGate and none of the Gate ConditionExpressions are evaluated as “ TRUE,”
then the Processis considered to have an invalid model.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The Gates and DefaultGate attributes, within the set of Data-Based Exclusive Gateway attributes, were changed to type
Object.

Event-Based

The inclusion of Event-Based Exclusive Gateways is the result of recent developments in the handling of distributed
systems (e.g., with pi-calculus) and will map to the BPEL4WS pick. On the input side, their behavior is the same as a
Data-Based Exclusive Gateway (see “Data-Based” on page 71). On the output side, the basic idea is that this Decision
represents a branching point in the process where the alternatives are based on events that occurs at that point in the
Process, rather than the evaluation of expressions using process data. A specific event, usually the receipt of a message,
determines which of the paths will be taken. For example, if a company is waiting for a response from a customer, they
will perform one set of activities if the customer responds “Yes’ and another set of activities if the customer responds
“No.” The customer’s response determines which path is taken. The identity of the Message determines which path is
taken. That is, the “Yes’ Message and the “No” message are different messages—they are not the same message with

BPMN Adopted Specification 75

different values within a property of the Message. The receipt of the message can be modeled with a Task of TaskType
Receive or an Intermediate Event with a Message Trigger. In addition to Messages, other Triggers for Intermediate Events
can be used, such as Timers and Errors.

[_1The Event-Based Exclusive Gateway MUST use a marker that is the same as the Multiple Intermediate Event and is
placed within the Gateway diamond (see Figure 9.21 and Figure 9.22) to distinguish it from other Gateways.

[1The Event-Based Exclusive Decisions are configured by having outgoing Sequence Flow target a Task of TaskType
Receive or an Intermediate Event (see Figure 9.21 and Figure 9.22).

1Al of the outgoing Sequence Flow must have this type of target; there cannot be a mixing of condition
expressions and | ntermediate Events for a given Decision.

[Type
Receive]

[Type
Receive]

Figure 9.22 - An Event-Based Decision (Gateway) Example Using Message Events

To relate the Event-Based Exclusive Gateway to BPEL4WS, the Gateway diamond marks the location of a BPELAWS
pick and the Intermediate Events that follow the Decision become the event handlers of the pick or choice. The activities
that follow the Intermediate Events become the contents of the activity sets for the event handlers. The boundaries of the
activity sets is actually determined by the configuration of the process; that is, the boundaries extend to where all the
alternative paths are finally joined together (which could be the end of the Process).

76 BPMN Adopted Specification

Because this Gateway is an Exclusive Gateway, the merging functionality for the Event-Based Exclusive Gateway is the
same as the Data-Based Exclusive Gateway described in the previous section.

A Gateway can be used to start a Process. In a sense, the Process is bootstrapped by the receipt of a message. The receipt
of any of the messages defined by the Gateway configuration will instantiate the Process. Thus, the Gateway provides a
set of alternative ways for the Process to begin.

In order for the Gateway to Instantiate the Process it must meet one of the following conditions:

[_1The Process does not have a Start Event and the Gateway has no incoming Sequence Flow.

[_1The Incoming Sequence Flow for the Gateway has a source of a Start Event.

[INote that no other incoming Sequence Flow are allowed for the Gateway (in particular, aloop connection from a

downstream object).

[_1The Targets for the Gateway’ s outgoing Sequence Flow MUST NOT be a Timer Intermediate Event.

Attributes

The following table displays the attributes for an Event-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to XOR. The following attributes extend the set of common Gateway attributes (see Table

9.31):

Table 9.27 - Event-Based Exclusive Gateway Attributes

Attributes

Description

XORType (Data | Event) Event ;
String

XORType is by default Data. The XORType MAY be set to Event. Since Event-
Based XOR Gateways is the subject of this section, the attribute MUST be set to
Event for the attributes and behavior defined in this section to apply to the
Gateway.

Instantiate False : Boolean

Event-Based Gateways can be defined as the instantiation mechanism for the
Process with the Instantiate attribute. This attribute MAY be set to true if the
Gateway is the first element after the Start Event or a starting Gateway if there is
no Start Event (i.e., there are no incoming Sequence Flow).

Gates (2-n) : Gate

There MUST be two or more Gates. (Note that this type of Gateway does not act
only as a Merge--it is aways a Decision, at least.)

[Gate]

OutgoingSequenceFlow :
SequenceFlow

Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
have its Condition attribute set to None (there is not an evaluation of a condition
expression). The attributes of a Sequence Flow can be found in the Section 10.1.2,
“Sequence Flow,” on page 100.

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressions MAY be made for each Gate. The
Assignment SHALL be performed when the Gate is selected. The details of
Assignment is defined in the Section B.11.1, “Assignment,” on page 268.

Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence Flow
Connections’ on page 70. See Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for converging Sequence Flow:

BPMN Adopted Specification

77

[_1If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process (asiif there
were no Gateway). That is,

[Process flow SHALL continue when asignal (a Token) arrives from any of a set of Sequence Flow.

[_Signals from other Sequence Flow within that set may arrive at other times and the flow will continue when
they arrive as well, without consideration or synchronization of signals that have arrived from other
Sequence Flow.

To define the exclusive nature of this Gateway’s behavior for diverging Sequence Flow:
[1O0nly one Gate SHALL be selected during performance of the Process.
[_1The Gate SHALL be chosen based on the Target of the Gate’' s Sequence Flow.

[Af aTarget isinstantiated (e.g., amessageis received or atime is exceeded), then that Gate SHALL be
chosen and the remaining Gates MUST NOT be evaluated (i.e., their Targets will be disabled).

[_1The outgoing Sequence Flow Condition attribute MUST be set to None.

[_1The Target of the Gateway’ s outgoing Sequence Flow MUST be one of the following objects:
[ITask with the TaskType attribute set to Receive.
[Intermediate Event with the Trigger attribute set to Message, Timer, Rule, or Link.

[f one Gate Target is a Task, then an Intermediate Event with a Trigger Message MUST NOT be used asa
Target for another Gate. That is, messages MUST be received by only Receive Tasks or only Message
Events, but not amixture of both for a given Gateway.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
A description of how Event-Based Gateways can instantiate a Process was added.
» The Instantiate attribute was added to the set of Event-Based Exclusive Gateway attributes.

» The Target attribute was removed from the set of Event-Based Gateway attributes, as it duplicated information pro-
vided in the semantic definition of the Gateway.

» The Error Intermediate Event was removed as a possible target for the Sequence Flow that exit the Gateway.

9.5.3 Inclusive Gateways (OR)

This Decision represents a branching point where Alternatives are based on conditional expressions contained within
outgoing Sequence Flow. However, in this case, the True evaluation of one condition expression does not exclude the
evaluation of other condition expressions. All Sequence Flow with a True evaluation will be traversed by a Token. In
some sense it like is a grouping of related independent Binary (Yes/No) Decisions--and can be modeled that way. Since
each path is independent, all combinations of the paths may be taken, from zero to all. However, it should be designed so
that at least one path is taken.

Note — If none of the Inclusive Decision Gate ConditionExpressions are evaluated as“ TRUE,” then the Processis considered
to have an invalid model.

There are two mechanism for modeling this type of Decision:

78 BPMN Adopted Specification

The first method for modeling Inclusive Decision situations does not actually use an Inclusive Gateway, but instead uses
acollection of conditional Sequence Flow, marked with mini-diamonds--the Gates without the Gateway (see Figure 9.23).
Conditional Sequence Flow have their Condition attribute set to Expression and the ConditionExpression attribute set to

a boolean mathematical expression based on information available to the Process. These Sequence Flow are indicated by
a “mini-diamond” marker at the start of the Sequence Flow line.

Condjtion 1

Condition 2

Condlition

Figure 9.23 - An Inclusive Decision using Conditional Sequence Flow

There are some restrictions in using the conditional Sequence Flow (with mini-diamonds):

» Thesource object MUST NOT be an Event. The source object MAY a Gateway, but the mini-diamond MUST NOT be

displayed in this case. The source object MAY be an activity (Task or Sub-Process) and the mini-diamond SHALL be
displayed in this case.

* A source Gateway MUST NOT be of type AND (Parallel).

« If aconditional Sequence Flow is used from a source activity, then there MUST be at |east one other outgoing
Sequence Flow from that activity

» The additiona Sequence Flow(s) MAY also be conditional, but it is not required that they are conditional.

The second method for modeling Inclusive Decision situations uses an OR Gateway (see Figure 9.24), sometimes in

combination with other Gateways. A marker will be placed in the center of the Gateway to indicate that the behavior of
the Gateway isinclusive.

[IThelnclusive Gateway MUST use amarker that isin the shape of acircleor an“O” and is placed within the Gateway
diamond (see Figure 9.24) to distinguish it from other Gateways.

BPMN Adopted Specification 79

Condition 1

Condition

Default

Figure 9.24 - An Inclusive Decision using an OR Gateway

The behavior of the model depicted in Figure 9.23 is equivalent to the behavior of the model depicted in Figure 9.24.
Again, it is up to the modeler to insure that at least one of the conditions will be TRUE when the Process is performed.

When the Inclusive Gateway is used as a Merge, it will wait for (synchronize) all Tokens that have been produced
upstream. It does not require that all incoming Sequence Flow produce a Token (as the Parallel Gateway does). It requires
that all Sequence Flow that were actually produced by an upstream (by an Inclusive OR situation, for example). If an
upstream Inclusive OR produces two out of a possible three Tokens, then a downstream Inclusive OR will synchronize
those two Tokens and not wait for another Token, even though there are three incoming Sequence Flow (see Figure 9.25).

Figure 9.25 - An Inclusive Gateway Merging Sequence Flow

80 BPMN Adopted Specification

Attributes

The following table displays the attributes for an Inclusive Gateway. These attributes only apply if the GatewayType
attribute is set to OR. The following attributes extend the set of common Gateway attributes (see Table 9.30):

Table 9.28 - Inclusive Gateway Attributes

Attributes

Description

Gates (0-n) : Gate

There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.

If there are zero or only one incoming Sequence Flow (i.e, the Gateway is acting
as a Decision), then there MUST be at least two Gates.

[Gate]

OutgoingSequenceFlow:
SequenceFlow

Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
have its Condition attribute set to Expression and MUST have a valid
ConditionExpression. The ConditionExpression MUST be unique for all the
Gates within the Gateway. The attributes of a Sequence Flow can be found in
Section 10.1.2, “Sequence Flow,” on page 100. If there is only one Gate (i.e., the
Gateway is acting only as a Merge), then Sequence Flow MUST have its
Condition attribute set to None.

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressions MAY be made for each Gate. The
Assignment SHALL be performed when the Gate is selected. The details of
Assignment is defined in Section B.11.1, “Assignment,” on page 268.

DefaultGate (0-1) : Gate

A Default Gate MAY be specified.

[Gate]

OutgoingSequenceFlow:
SequenceFlow

If there is a DefaultGate, then it MUST have an associated Sequence Flow. The
Sequence Flow SHALL have the Default Indicator (see Figure 9.24). The
Sequence Flow MUST have its Condition attribute set to Default. The attributes
of a Sequence Flow can be found in Section 10.1.2, “ Sequence Flow,” on page
100.

[Gate]
Assigments (0-n) : Assignment

Zero or more assignments MAY be made for the DefaultGate. The Assignment
SHALL be performed when the DefaultGate is selected. The details of
Assignment is defined in Section B.11.1, “Assignment,” on page 268.

Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “Common Gateway Sequence
Flow Connections” on page 70.See Section 8.4.1, “Sequence Flow Rules,” on page 27 for the entire set of objects and
how they may be source or targets of Sequence Flow.

To define the inclusive nature of this Gateway’s behavior for converging Sequence Flow:

[If there are multiple incoming Sequence Flow, one or more of them will be used to continue the flow of the Process.

That is,

[IProcess flow SHALL continue when the signals (Tokens) arrive from all of the incoming Sequence Flow that are
expecting a signal based on the upstream structure of the Process (e.g., an upstream Inclusive Decision).

[_Bome of the incoming Sequence Flow will not have signals and the pattern of which Sequence Flow will
have signals may change for different instantiations of the Process.

BPMN Adopted Specification

81

Note — Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of aloop) will be treated
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow:
[10ne or more Gates SHALL be selected during performance of the Process.

[1The Gates SHAL L be chosen based on the Condition expression that is defined for the Sequence Flow associated
with the Gates.

[T he Condition associated with all Gates SHALL be evaluated.

[1f aCondition is evaluated as“TRUE,” then that Gate SHAL L be chosen, independent of what other Gates
have or have not been chosen.

[1f none of the ConditionExpressionsfor the Gates are evaluated as“ TRUE,” then the DefaultGate SHALL be
chosen.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» Figure 9.23 and Figure 9.24 were updated to show three conditional Sequence Flow, one of which has a default condi-
tion.

» The DefaultGate attribute, with supporting attributes, was added to the set of Inclusive Gateway Attributes.

9.5.4 Complex Gateways

BPMN includes a Complex Gateway to handle situations that are not easily handled through the other types of Gateways.
Complex Gateways can also be used to combine a set of linked simple Gateways into a single, more compact situation.
Modelers can provide complex expressions that determine the merging and/or splitting behavior of the Gateway.

[_1The Complex Gateway MUST use a marker that isin the shape of an asterisk and is placed within the Gateway
diamond (see Figure 9.26) to distinguish it from other Gateways.

When the Gateway is used as a Decision (see Figure 9.26), then an expression determines which of the outgoing
Sequence Flow will be chosen for the Process to continue. The expression may refer to process data and the status of the
incoming Sequence Flow. For example, an expression may evaluate Process data and then select different sets of outgoing
Sequence Flow, based on the results of the evaluation. However, The expression should be designed so that at |east one of
the outgoing Sequence Flow will be chosen.

82 BPMN Adopted Specification

Alternative 1
-

Alternative 2

Alternative 3

Alternative 4

Figure 9.26 - A Complex Decision (Gateway)

When the Gateway is used as a Merge (see Figure 9.27), then there will be an expression that will determine which of the
incoming Sequence Flow will be required for the Process to continue. The expression may refer to process data and the
status of the incoming Sequence Flow. For example, an expression may specify that any 3 out of 5 incoming Tokens will
continue the Process. Another example would be an expression that specifies that a Token is required from Sequence
Flow “@" and that a Token from either Sequence Flow “b” or “c” is acceptable. However, the expression should be
designed so that the Process is not stalled at that location.

Figure 9.27 - A Complex Merge (Gateway)

BPMN Adopted Specification 83

Attributes

The following table displays the attributes for a Complex Gateway. These attributes only apply if the GatewayType
attribute is set to Complex. The following attributes extend the set of common Gateway attributes (see Table 9.30):

Table 9.29 - Complex Gateway Attributes

Attributes Description

Gates (0-n) : Gate There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.
If there are zero or only one incoming Sequence Flow, then there MUST be at

least two Gates.
[Gate] Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
OutgoingSequenceFlow : have its Condition attribute set to None. The attributes of a Sequence Flow can be
SequenceFlow found in Section 10.1.2, “ Sequence Flow,” on page 100.
[Gate] One or more assignment expressions MAY be made for each Gate. The

Assigments (0-n) : Assignment | Assignment SHALL be performed when the Gate is selected. The details of
Assignment is defined in Section B.11.1, “Assignment,” on page 268.

IncomingCondition (0-1) : If there are multiple incoming Sequence Flow, an IncomingCondition expression

Expression MUST be set by the modeler. Thiswill consist of an expression that can reference
Sequence Flow names and/or Process Properties (Data).

OutgoingCondition (0-1) : If there are multiple outgoing Sequence Flow, an OutgoingCondition expression

Expression MUST be set by the modeler. Thiswill consist of an expression that can reference

(outgoing) Sequence Flow Ids and/or Process Properties (Data).

Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “ Common Gateway Sequence Flow
Connections’ on page 70. See Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the complex nature of this Gateway’s behavior for converging Sequence Flow:

_1If there are multiple incoming Sequence Flow, one or more of them will be used to continue the flow of the Process.
The exact combination of incoming Sequence Flow will be determined by the Gateway’ s IncomingCondition
expression.

[IProcess flow SHALL continue when the appropriate number of signals (Tokens) arrives from appropriate
incoming Sequence Flow.

[1Signals from other Sequence Flow within that set MAY arrive, but they MUST NOT be used to continue the
flow of the Process.

Note — Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of aloop) will be treated
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from
those Segquence Flow that have a source that is an upstream activity.

To define the inclusive nature of this Gateway’s behavior for diverging Sequence Flow:
[10ne or more Gates SHAL L be selected during performance of the Process.
[1The Gates SHALL be chosen based on the Gateway’ s OutgoingCondition expression.

84 BPMN Adopted Specification

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

« The Assignments attribute, supporting the Gates attribute, within the set of Complex Gateway attributes, was updated.

9.5.5 Parallel Gateways (AND)

Parallel Gateways provide a mechanism to synchronize parallel flow and to create parallel flow. These Gateways are not

required to create parallel flow, but they can be used to clarify the behavior of complex situations where a string of

Gateways are used and parallel flow is required. In addition, some modelers may wish to create a “best practice” where
Parallel Gateways are always used for creating parallel paths. This practice will create an extra modeling element where

one is not required, but will provide a balanced approach where forking and joining elements can be paired up.

[1The Parallel Gateway MUST use amarker that isin the shape of an plus sign and is placed within the Gateway
diamond (see Figure 9.28) to distinguish it from other Gateways.

Parallel Split /
Forking

Gateway

Figure 9.28 - A Parallel Gateway

Parallel Gateways are used for synchronizing parallel flow.

YN

Figure 9.29 - Joining — the joining of parallel paths

BPMN Adopted Specification

85

Attributes

The following table displays the attributes for a Parallel Gateway. These attributes only apply if the GatewayType
attribute is set to AND (Parallel). The following attributes extend the set of common Gateway attributes (see Table 9.31):

Table 9.30 - Parallel Gateway Attributes

Attributes Description

Gates (0-n) : Gate There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.

If there are zero or only one incoming Sequence Flow (i.e, the Gateway is acting
as a fork), then there MUST be at least two Gates.

[Gate] Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
OutgoingSequenceFlow : have its Condition attribute set to None. The attributes of a Sequence Flow can be
SequenceFlow found in Section 10.1.2, “ Sequence Flow,” on page 100.

[Gate] One or more assignment expressions MAY s be made for each Gate. The

Assigments (0-n) : Assignment | Assignment SHALL be performed when the Gate is selected. The details of
Assignment is defined in Section B.11.1, “Assignment,” on page 268.

Sequence Flow Connections

This section extends the basic Gateway Sequence Flow connection rules as defined in “ Common Gateway Sequence Flow
Connections’ on page 70. See Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how
they may be source or targets of Sequence Flow.

To define the parallel nature of this Gateway’s behavior for converging Sequence Flow:

1If there are multiple incoming Sequence Flow, all of them will be used to continue the flow of the Process--the flow
will be synchronized. That is,

[IProcess flow SHALL continue when asignal (a Token) has arrived from all of a set of Sequence Flow (i.e., the
process will wait for all signalsto arrive before it can continue).

Note — Incoming Sequence Flow that have a source that is a downstream activity (that is, is part of aloop) will be treated
differently than those that have an upstream source. They will be considered as part of a different set of Sequence Flow from
those Sequence Flow that have a source that is an upstream activity.

To define the parallel nature of this Gateway’s behavior for diverging Sequence Flow:
1Al Gates SHALL be selected during performance of the Process.

9.6 Swimlanes (Pools and Lanes)

BPMN has a larger scope than BPEL4WS, and this scope is expressed in different dimensions. The dimension discussed
in this section has to with defining business processes in a collaborative B2B environment. BPMN uses the concept
known as “swimlanes’ to help partition and/organize activities.

BPEL4WS is focused on a specific private process that is internal to a given Participant (i.e., a company or organization).
BPEL4WS also can define an abstract process, but from the point of view of a single participant. It is possible that a
BPMN Diagram may depict more than one private process, as well as the processes that show the collaboration between

86 BPMN Adopted Specification

private processes or Participants. If so, then each private business process will be considered as being performed by
different Participants. Graphically, each Participant will be partitioned; that is, will be contained within a rectangular box
call a“Pool.” Pools can have sub-Swimlanes that are called, simply, “Lanes.”

Section 7.1.1, “Uses of BPMN,” on page 10 describes the uses of BPMN for modeling private processes and the
interactions of processes in B2B scenarios. Pools and Lanes are designed to support these uses of BPMN.

9.6.1 Common Swimlane Attributes

The following table displays a set of common attributes for Swimlanes (Pools and Lanes), and which extends the set of
common graphical object attributes (see Table 9.1):

Table 9.31 - Common Swimlane Attributes

Attributes Description

Name : String Name is an attribute that is text description of the Swimlane.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

« The set of common Swimlane attributes was added.

9.6.2 Pool

A Pool represents a Participant in the Process. A Participant can be a specific business entity (e.g, a company) or can be
a more general business role (e.g., a buyer, seller, or manufacturer). Graphically, a Poal is a container for partitioning a
Process from other Pools, when modeling business-to-business situations, although a Pool need not have any internal
details (i.e., it can be a “black box”).

1A Pool isa square-cornered rectangle that MUST be drawn with a solid single black line (as seen in Figure 9.30).

[IThe use of text, color, size, and lines for a Pool MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Linesin a Diagram,” on page 26.

Name

Figure 9.30 - A Pool

To help with the clarity of the Diagram, A Pool will extend the entire length of the Diagram, either horizontally or
vertically. However, there is no specific restriction to the size and/or positioning of a Pool. Modelers and modeling tools
can use Pools (and Lanes) in a flexible manner in the interest of conserving the “real estate” of a Diagram on a screen or
a printed page.

BPMN Adopted Specification 87

A Pool acts as the container for the Sequence Flow between activities. The Sequence Flow can cross the boundaries
between Lanes of a Pool, but cannot cross the boundaries of a Pool. The interaction between Poals, e.g., in aB2B context,
is shown through Message Flow.

Another aspect of Pools is whether or not there is any activity detailed within the Pool. Thus, a given Pool may be shown
as a “White Box,” with all details exposed, or as a “Black Box,” with all details hidden. No Sequence Flow is associated
with a “Black Box” Pool, but Message Flow can attach to its boundaries (see Table 9.32).

Financial
Institution

S
T |
[I

Credit Bequest Credit Response
i i

)‘\ I

Manufacturer

Table 9.32 - Message Flow connecting to the boundaries of two Pools

For a “White Box” Pool, the activities within are organized by Sequence Flow. Message Flow can cross the Pool
boundary to attach to the appropriate activity (see Figure 9.31).

88 BPMN Adopted Specification

Credit Card
Authorization

Financial
Institution

~ -
o
| |
!
i ?
| I
c | |
o | 1
=] | |
=2 1 1
) | |
= ! | Pack Goods H Ship Goods m
@ L
| O I |
& L
a I \
= | i
3 i I
n L
(%) Authorize
% w Payment H Process Order
)

Figure 9.31 - Message Flow connecting to Flow Objects within two Pools

All BPDs contain at least one Pool. In most cases, a BPD that consists of a single Pool will only display the activities of
the Process and not display the boundaries of the Pool. Furthermore, many BPDs may show the “main” Pool without
boundaries. That is, the activities that represent the work performed from the point of view of the modeler or the
modeler’s organization are considered “internal” activities and may not be surrounded by the boundaries of a Pool, while
the other Pools in the Diagram will have their boundary. (see Figure 9.32)

Financial Institution

T
[
\
I
I
I
I
I
I
I
A

=
|
I
|
|
|
|
|
!
|

v

Authorize Process Order H Pack Goods H Ship Goods m
Payment

Figure 9.32 - Main (Internal) Pool without boundaries

BPMN Adopted Specification 89

Attributes

The following table displays the identified attributes of a Pool, and which extends the set of common Swimlane attributes

(see Table 9.34):
Table 9.33 - Pool Attributes

Attributes

Description

Process (0-1) : Process

The Process attribute defines the Process that is contained within the Pool. Each
Pool MAY have a Process. The attributes for a Process can be found in
Section 8.6, “Processes,” on page 29.

Participant : Participant

The Modeler MUST define the Participant for a Pool. The Participant can be
either a Role or an Entity. This defines the role that a particular Entity or Role the
Pool will play in a Diagram that includes collaboration. The attributes for a
Participant can be found in Section B.11.6, “Participant,” on page 270.

Lanes (1-n) : Lane

There MUST be one or more Lanes within a Pool. If there is only one Lane, then
that Lane shares the name of the Pool and only the Pool name is displayed. If
there is more than one Lane, then each Lane has to have its own name and all
names are displayed.The attributes for a Lane can be found in Section 9.6.3,
“Lane,” on page 90.

BoundaryVisible True : Boolean

This attribute defines if the rectangular boundary for the Pool is visible. Only one
Pool in the Diagram MAY have the attribute set to False.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

« The constraint about the fill of the Pool was removed.

» The Process attribute were added to the set of Pool attributes.

« The Pool Type attribute was removed from the set of Pool attributes.

» Theld and Documentation attributes was moved to the set of common graphical object attributes.

« The Name attribute was moved to the set of common Swimlane attributes.

» The Owner attributes, within the set of Pool attributes, was renamed to be Participant and of type Role or Entity. Also,
the attribute was changed from optional to mandatory.

» The Lane attribute, within the set of Poal attributes, was renamed to Lanes and changed to be of type Lane.

9.6.3 Lane

A Lane is a sub-partition within a Pool and will extend the entire length of the Pool, either vertically or horizontally (see
Figure 9.33). Text associated with the Lane (e.g., its name and/or any attribute) can be placed inside the shape, in any
direction or location, depending on the preference of the modeler or modeling tool vendor. Our examples place the name
as a banner on the left side (for horizontal Pools) or at the top (for vertical Pools) on the other side of the line that
separates the Pool name, however, this is not a requirement.

90

BPMN Adopted Specification

Name
Name | Name

Figure 9.33 - Two Lanes in a Pool

Lanes are used to organize and categorize activities within a Pool. The meaning of the Lanes is up to the modeler. BPMN
does not specify the usage of Lanes. Lanes are often used for such things as internal roles (e.g., Manager, Associate),
systems (e.g., an enterprise application), an internal department (e.g., shipping, finance), etc. In addition, Lanes can be
nested or defined in a matrix. For example, there could be an outer set of Lanes for company departments and then an
inner set of Lanes for roles within each department.

Attributes

The following table displays the identified attributes of a Lane, and which extends the set of common Swimlane attributes
(see Table 9.37):

Table 9.34 - Lane Attributes

Attributes Description

ParentPool : Pool The Parent Pool MUST be specified. There can be only one Parent. The attributes
for a Pool can be found in Section 9.6.2, “Pool,” on page 87.

ParentLane (0-1) : Lane ParentLaneis an optional attribute that is used if the Lane is nested within another
Lane. Nesting can be multi-level, but only the immediate parent is specified.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The ParentPool attribute, within the set of Lane attributes, was change to be of type Pool.
» The ParentLane attribute, within the set of Lane attributes, was change to be of type Lane.
« Theld and Documentation attributes was moved to the set of common graphical object attributes.

« The Name attribute was moved to the set of common Swimlane attributes.

9.7 Artifacts

BPMN provides modelers with the capability of showing additional information about a Process that is not directly
related to the Sequence Flow or Message Flow of the Process.

BPMN Adopted Specification 91

At this point, BPMN provides three standard Artifacts: A Data Object, a Group, and an Annotation. Additional standard
Artifacts may be added to the BPMN specification in later versions. A modeler or modeling tool may extend a BPD and
add new types of Artifactsto a Diagram. Any new Artifact must follow the Sequence Flow and Message Flow connection
rules (listed below). Associations can be used to link Artifacts to Flow Objects (see Section 10.1.4, “Association,” on
page 105).

9.7.1 Common Artifact Definitions
The following sections provide definitions that a common to all Artifacts.

Common Artifact Attributes

The following table displays the identified attributes common to Artifacts, and which extends the set of common
graphical object attributes (see Table 9.1):

Table 9.35 - Common Artifact Attributes

Attributes Description

ArtifactType (DataObject | Group | The ArtifactType MAY be set to DataObject, Group, or Annotation.
Annotation) DataObject : String The ArtifactType list MAY be extended to include new types.

Pool (0-1) : Pool A Pool MAY be added to identify its location. Artifacts, such as

Annotations, can be placed outside of any Pool. Also, a Group may stretch
across multiple Pools. The attributes for a Pool can be found in the
Section 9.6.2, “Pool,” on page 87.

Lanes (0-n) : Lane If the Pool has been specified and it has more than one Lane, then a
LaneName MUST be added. There MAY be multiple Lanes listed. The
attributes for a Lane can be found in the Section 9.6.3, “Lane,” on page 90.

Artifact Sequence Flow Connections

See Section 8.4.1, “ Sequence Flow Rules,” on page 27 for the entire set of objects and how they may be source or targets
of Sequence Flow.

AN Artifact MUST NOT be atarget for Sequence Flow.
AN Artifact MUST NOT be a source for Sequence Flow.

Artifact Message Flow Connections

See Section 8.4.2, “Message Flow Rules,” on page 28 for the entire set of objects and how they may be source or targets
of Message Flow.

AN Artifact MUST NOT be atarget for Message Flow.
AN Artifact MUST NOT be a source for Message Flow.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

« The Name attribute was removed from the set of common Artifact attributes.

92 BPMN Adopted Specification

» Theld and Documentation attributes was moved to the set of common graphical object attributes.

« The Pool and Lanes attributes were added to the set of common Artifact attributes.

9.7.2 Data Object

In BPMN, a Data Object is considered an Artifact and not a Flow Object. They are considered an Artifact because they
do not have any direct affect on the Sequence Flow or Message Flow of the Process, but they do provide information
about what the Process does. That is, how documents, data, and other objects are used and updated during the Process.
While the name “Data Object” may imply an electronic document, they can be used to represent many different types of
objects, both electronic and physical.

In general, BPMN will not standardize many modeling Artifacts. These will mainly be up to modelers and modeling tool
vendors to create for their own purposes. However, equivalents of the BPMN Data Object are used by Document
Management oriented workflow systems and many other process modeling methodologies. Thus, this object is used
enough that it is important to standardize its shape and behavior.

A Data Object is a portrait-oriented rectangle that has its upper-right corner folded over that MUST be drawn with a
solid single black line (as seen in Figure 9.34).

[_IThe use of text, color, size, and lines for a Data Object MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin aDiagram,” on page 26.

Name
[State]

Figure 9.34 - A Data Object

As an Artifact, Data Objects generally will be associated with Flow Objects. An Association will be used to make the
connection between the Data Object and the Flow Object. This means that the behavior of the Process can be modeled
without Data Objects for modelers who want to reduce clutter. The same Process can be modeled with Data Objects for
modelers who want to include more information without changing the basic behavior of the Process.

In some cases, the Data Object will be shown being sent from one activity to another, via a Sequence Flow (see Figure
9.35). Data Objects will also be associated with Message Flow. They are not to be confused with the message itself, but
could be thought of as the “payload” or content of some messages.

Send Invoice Make Payment

Invoice
[Approved]

Figure 9.35 - A Data Object associated with a Sequence Flow

BPMN Adopted Specification 93

In other cases, the same Data Object will be shown as being an input, then an output of a Process (see Figure 9.36).
Directionality added to the Association will show whether the Data Object is an input or an output. Also, the state
attribute of the Data Object can change to show the impact of the Process on the Data Object.

Approve Purchase
Order

Purchase Order Purchase Order
[Complete] [Approved]

Figure 9.36 - Data Objects shown as inputs and outputs

Attributes

The following table displays the attributes for Data Objects, which extends the set of common Artifact attributes (see).
These attributes only apply if the ArtifactType attribute is set to DataObject:

Table 9.36 - Data Object Attributes

Attributes

Description

Name : String

Name is an attribute that is text description of the object.

State (0-1) : String

State is an optional attribute that indicates the impact the Process has
had on the Data Object. Multiple Data Objects with the same name
MAY share the same state within one Process.

Properties (0-n) : Property

Modeler-defined Properties MAY be added to a Data Object. The fully
delineated name of these properties is “ <process name>.<task
name>.<property name>" (e.g., “Add Customer.Credit Report.Score”).
Further details about the definition of a Property can be found in
Section B.11.7, “Property,” on page 270.

RequiredForStart True : Boolean

The default value for this attribute is True. This means that the Input is
required for an activity to start. If set to False, then the activity MAY
start within the input, but MAY accept the input (more than once) after
the activity has started.

ProducedAtCompletion True : Boolean

The default value for this attribute is True. This means that the Output
will be produced when an activity has been completed. If set to False,
then the activity MAY produce the output (more than once) before it
has completed.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» The Name attribute was added to the set of Data Object attributes.

94

BPMN Adopted Specification

» The Pool and Lanes attributes were removed from the set of Data Object attributes. These two attributes were added to
the set of Common Artifact attributes.

« The Name and Type attributes were removed from the set of Property attributes. These attributes can be found in the
definition of a Property, which can be foundin Section B.11.7, “ Property,” on page 270.

» The RequiredForStart and ProducedAtCompletion attributes were added to the set of Data Object attributes.

» The constraint about thefill of the Data Object was removed.
9.7.3 Text Annotation

Text Annotations are a mechanism for a modeler to provide additional information for the reader of a BPMN Diagram.
A Text Annotation is an open rectangle that MUST be drawn with a solid single black line (as seen in Figure 9.37).
[1The use of text, color, size, and lines for a Text Annotation MUST follow the rules defined in Section 8.3, “Use
of Text, Color, Size, and Linesin a Diagram,” on page 26.

The Text Annotation object can be connected to a specific object on the Diagram with an Association (see Figure 9.37),
but do not affect the flow of the Process. Text associated with the Annotation can be placed within the bounds of the open
rectangle.

Text Annotation Allows
I a Modeler to provide

additional Information

Figure 9.37 - A Text Annotation

Attributes

The following table displays the attributes for Annotations, which extends the set of common Artifact attributes (see).
These attributes only apply if the ArtifactType attribute is set to Annotation:

Table 9.37 - Text Annotation Attributes

Attributes Description
Text : String Text is an attribute that is text that the modeler wishes to communicate to the
reader of the Diagram.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

« The constraint about the fill of the Text Annotation was removed.

9.7.4 Group

The Group object is an Artifact that provides a visua mechanism to group elements of a Process informally.
1A Group isarounded corner rectangle that MUST be drawn with a solid dashed black line (as seen in Figure 9.38).
[_1The use of text, color, size, and lines for a Group MUST follow the rules defined in Section 8.3, “Use of Text,

BPMN Adopted Specification 95

Color, Size, and Linesin a Diagram,” on page 26.

Figure 9.38 - A Group Artifact

As an Artifact, a Group is not an activity or any Flow Object, and, therefore, cannot connect to Sequence Flow or
Message Flow. In addition, Groups are not constrained by restrictions of Pools and Lanes. This means that a Group can
stretch across the boundaries of a Pool to surround Diagram elements (see Figure 9.39), often to identify activities that
exist within a distributed business-to-business transaction.

Handle Medicine
[= Send Doct Send Medi R
en or nd Medicine eCeive
2 F"~‘3'?I'U'~5"c'*l Receive Appl Requ951 Medicine
‘(ﬁ liness
a ¥ Oceurs &
| : , | 10} Here is yru me-du::ne
1) Iwantla15&e daoctor 5) Go sge doctor | 9) need er medicine
: | ' : '
| ' | |
@ l
E Racewa Rau_.a_we
= Diactor Sand Appt. Medicine Send Medicine
(e Request Request
ih]
'S e e — .
[
o

Figure 9.39 - A Group around activities in different Pools
Groups are often used to highlight certain sections of a Diagram without adding additional constraints for performance--

as a Sub-Process would. The highlighted (grouped) section of the Diagram can be separated for reporting and analysis
purposes. Groups do not affect the flow of the Process and do not map to any BPEL4WS elements.

96 BPMN Adopted Specification

The following table displays the attributes for Groups, and which extends the set of common Artifact attributes. These
attributes only apply if the ArtifactType attribute is set to Group:

Table 9.38 - Group Attributes

Attributes

Description

Name (0-1) : String

Name is an optional attribute that is text description of the Group.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» The Name attribute was added to the set of Group attributes.

» The congtraint about thefill of the Group was removed.

BPMN Adopted Specification

97

98

BPMN Adopted Specification

10 Business Process Diagram Connecting Objects

This section defines the graphical objects used to connect two objects together (i.e., the connecting lines of the Diagram)
and how the flow progresses through a Process (i.e., through a straight sequence or through the creation of parallel or
alternative paths).

10.1 Graphical Connecting Objects

There are two ways of Connecting Objects in BPMN: a Flow, either sequence or message, and an Association. Sequence
Flow and Message Flow, to a certain extent, represent orthogonal aspects of the business processes depicted in a model,
although they both affect the performance of activities within a Process. In keeping with this, Sequence Flow will
generally flow in a single direction (either left to right, or top to bottom) and Message Flow will flow at a 90° from the
Sequence Flow. This will help clarify the relationships for a Diagram that contains both Sequence Flow and Message
Flow. However, BPMN does not restrict this relationship between the two types of Flow. A modeler can connect either
type of Flow in any direction at any place in the Diagram.

The next three sections will describe how these types of connections function in BPMN.

10.1.1 Common Connecting Object Attributes

The following table displays the set of attributes common to Connecting Objects (Sequence Flow, Message Flow, and
Association), and which extends the set of common graphical object attributes (see Table 9.1):

Table 10.1 - Common Connecting Object Attributes

Attributes Description
Name (0-1) : String Name is an optional attribute that is text description of the Connecting Object.
Source : Object Source is an attribute that identifies which Flow Object the Connecting Object is

connected from. Note: there are restrictions as to what objects Sequence Flow and
Message Flow can connect. Refer to the Sequence Flow Connections section and
the Message Flow Connections section for each Flow Object, Swimlane, and
Artifact.

Target : Object Target is an attribute that identifies which Flow Object the Connecting Object is
connected to. Note: there are restrictions as to what objects Sequence Flow and
Message Flow can connect. Refer to the Sequence Flow Connections section and
the Message Flow Connections section for each Flow Object, Swimlane, and
Artifact.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The set of common set of Connecting Object attributes was added.

» The Source and Target attributes, within the set of common Connecting Object attributes, were changed to the type
Object.

BPMN Adopted Specification 99

10.1.2 Sequence Flow

A Sequence Flow is used to show the order that activities will be performed in a Process. Each Flow has only one source
and only one target. The source and target must be from the set of the following Flow Objects: Events (Start,
Intermediate, and End), Activities (Task and Sub-Process), and Gateways. During performance (or simulation) of the
process, a Token will leave the source Flow Object, traverse down the Sequence Flow, and enter the target Flow Object.

1A Sequence Flow islinewith a solid arrowhead that MUST be drawn with asolid single line (as seen in Figure 10.1).

[_IThe use of text, color, and size for Sequence Flow MUST follow the rules defined in Section 8.3, “Use of Text,
Color, Size, and Linesin a Diagram,” on page 26.

-
Figure 10.1 - A Sequence Flow

BPMN does not use the term “Control Flow” when referring the lines represented by Sequence Flow or Message Flow.
The start of an activity is “controlled” not only by Sequence Flow (the order of activities), but also by Message Flow (a
message arriving), as well as other process factors, such as scheduled resources. Artifacts can be Associated with
activities to show some of these other factors. Thus, we are using a more specific term, “ Sequence Flow,” since these
lines mainly illustrate the sequence that activities will be performed.

1A Sequence Flow MAY have a conditional expression attribute, depending on its source object.
This means that the condition expression must be evaluated before a Token can be generated and then leave the source
object to traverse the Flow. The conditions are usually associated with Decision Gateways, but can also be used with
activities.
[_1If the source of the Sequence Flow is an activity, rather than Gateway, then a Conditional Marker, shaped as a*“mini-
diamond”,” MUST be used at the beginning of the Sequence Flow (see Figure 10.2).

The diamond shape is used to relate the behavior to a Gateway (also a diamond) that controls the flow within a Process.
More information about how conditional Sequence Flow are used can be found in “ Splitting Flow” on page 115.

<> >

Figure 10.2 - A Conditional Sequence Flow

A Sequence Flow that has an Exclusive Data-Based Gateway or an activity as its source can also be defined with a
condition expression of Default. Such Sequence Flow will have a marker to show that it is a Default flow.

[_1The Default Marker MUST be a backslash near the beginning of the line (see Figure 10.3).

>

Figure 10.3 - A Default Sequence Flow

100 BPMN Adopted Specification

Attributes

The following table displays the set of attributes of a Sequence Flow, and which extends the set of common Connecting
Object attributes (see Figure 10.44):

Table 10.2 - Sequence Flow Attributes

Attributes Description

ConditionType (None | By default, the ConditionType of a Sequence Flow is None. This means that there
Expression | Default) None : is no evaluation at runtime to determine whether or not the Sequence Flow will be
String used. Once a Token is ready to traverse the Sequence Flow (i.e., the Source is an

activity that has completed), then the Token will do so. The normal, uncontrolled
use of Sequence Flow, in a sequence of activities, will have a None
ConditionType (see Figure 10.12). A None ConditionType MUST NOT be used
if the Source of the Sequence Flow is an Exclusive Data-Based or Inclusive
Gateway.

The ConditionType attribute MAY be set to Expression if the Source of the
Sequence Flow is a Task, a Sub-Process, or a Gateway of type Exclusive-Data-
Based or Inclusive.

If the ConditionType attribute is set to Expression, then a condition marker
SHALL be added to the line if the Sequence Flow is outgoing from an activity
(see Figure 10.2). However, a condition indicator MUST NOT be added to the
line if the Sequence Flow is outgoing from a Gateway.

An Expression ConditionType MUST NOT be used if the Source of the Sequence
Flow is an Event-Based Exclusive Gateway, a Complex Gateway, a Parallel
Gateway, a Start Event, or an Intermediate Event. In addition, an Expression
ConditionType MUST NOT be used if the Sequence Flow is associated with the
Default Gate of a Gateway.

The ConditionType attribute MAY be set to Default only if the Source of the
Sequence Flow is an activity or an Exclusive Data-Based Gateway. If the
ConditionType is Default, then the Default marker SHALL be displayed (see

Figure 10.3).
[ConditionType is set to If the ConditionType attribute is set to Expression, then the ConditionExpression
Expression only] attribute MUST be defined as a valid expression. The expression will be
Cond|t|anxpreSS|on: evaluated at runtime. If the result of the evaluation is TRUE, then a Token will be
Expression generated and will traverse the Sequence--Subject to any constraints imposed by a
Source that is a Gateway.
Quantity 1 : Integer The default value is 1. The value MUST NOT be less than 1. This attribute

defines the number of Tokens that will be generated down the Sequence Flow.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» Theld and Documentation attributes were moved to the set of common graphical object attributes.

« The Name, Source, and Target attributes were moved to the set of common Connecting Object attributes.

» The Condition attribute, within the set of Sequence Flow attributes, was renamed to ConditionType.

BPMN Adopted Specification 101

» The Quantity attribute was added to the set of Sequence Flow attributes.

10.1.3 Message Flow

A Message Flow is used to show the flow of messages between two entities that are prepared to send and receive them.
In BPMN, two separate Pools in the Diagram will represent the two entities. Thus,

[IMessage Flow MUST connect two Pools, either to the Pools themselves or to Flow Objects within the Pools. They
cannot connect two objects within the same Pool.

1A Message Flow isline with a open arrowhead that MUST be drawn with a dashed single black line (as seen in
Figure 10.4).

[1The use of text, color, size, and lines for Message Flow MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin a Diagram,” on page 26.

Figure 10.4 - A Message Flow

The Message Flow can connect directly to the boundary of a Pool (See Figure 10.5), especialy if the Pool does not have
any process details within (e.g., is a “Black Box”).

- c
8 o
oS
€2
K=I7}
Wiy =
7 7
! [
Credit I?equest Credit Response
i i
[
1 v
o
g
=1
=
o
(]
£
=}
c
]
=

Figure 10.5 - Message Flow connecting to the boundaries of two Pools

A Message Flow can also cross the boundary of a Pool and connect to a Flow Object within that Pool (see Figure 10.6).

102 BPMN Adopted Specification

= C
8o
8 5 Credit Card
o = Authorization
T 2
= 7 —
L
|
| I
| I
| I
| I
T
i i
| I
c | |
k) . !
5 i |
feo) ! "
s 1 | Pack Goods Ship Goods
2 o
5| ° o
=3 ! !
s ! !
| |
0 A v
g ':L:;n(::ﬁf Process Order
©
»

Figure 10.6 - Message Flow connecting to Flow Objects within two Pools

If there is an Expanded Sub-Process in one of the Pooals, then the message flow can be connected to either the boundary

of the Sub-Process or to objects within the Sub-Process. If the Message Flow is connected to the boundary to the

Expanded Sub-Process, then this is equivalent to connecting to the Start Event for incoming Message Flow or the End
Event for outgoing Message Flow (see Figure 10.7).

BPMN Adopted Specification

103

Customer

Credit Response

&

Credit Request

VA
‘ Recieve Request

Supplier

Receive Credit
Report
A

Check Credit

Established with
good Credit

Include Apology
Text

Include History of
Transactions

Established with
poor Credit

Continue Order...

Include Standard
Text

Default
(New)

Default
(Yes)

Credit Report

Do —————|—

Credit
Agency

Figure 10.7 - Message Flow connecting to boundary of Sub-Process and Internal objects

Attributes

The following table displays the identified attributes of a Message Flow, and which extends the set of common
Connecting Object attributes (see Table 10.1):

Table 10.3 - Message Flow Attributes

Attributes

Description

Message (0-1) : Message

Message is an optional attribute that identifies the Message that is being sent. The
attributes of a Message can be found in Section B.11.4, “Message,” on page 269.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

« Theld and Documentation attributes were moved to the set of common graphical object attributes.

» The Name, Source, and Target attributes were moved to the set of common Connecting Object attributes.

» The Message and Categories attributes were added to the set of Message Flow attributes.

104

BPMN Adopted Specification

10.1.4 Association

An Association is used to associate information and Artifacts with Flow Objects. Text and graphical non-Flow Objects
can be associated with the Flow Objects and Flow. An Association is also used to show the activities used to compensate
for an activity. More information about compensation can be found in Section 10.3, “ Compensation Association,” on page

133.
[1An Association Flow isline that MUST be drawn with a dotted single black line (as seen in Figure 10.8).

[The use of text, color, size, and lines for an Association MUST follow the rules defined in Section 8.3, “Use of
Text, Color, Size, and Linesin aDiagram,” on page 26.

Figure 10.8 - An Association

If there is a reason to put directionality on the association then:

A linearrowhead MAY be added to the Association line. (see Figure 10.9).

A directional Association is often used with Data Objects to show that a Data Object is either an input to or an output
from an activity.

_______________________>
Figure 10.9 - A directional Association

An Association is used to connect user-defined text (an Annotation) with a Flow Object (see Figure 10.10).

Announce

Issues for
Discussion

.| Allow 1 week for the
% discussion of the Issues
— through e-mail or
calls

Figure 10.10 - An Association of Text Annotation

An Association is also used to associate Data Objects with other objects (see Figure 10.11). A Data Object is used to
show how documents are used throughout a Process. See Section 9.7.2, “Data Object,” on page 93 for more information
on Data Objects.

BPMN Adopted Specification 105

Issue List

Receive Issue Review Issue

List List

Figure 10.11 - An Association connecting a Data Object with a Flow

Attributes

The following table displays the identified attributes of a Association, and which extends the set of common Connecting
Object attributes (see Table 10.1):

Table 10.4 - Association Attributes

Attributes Description
Direction (None | To | From | Direction is an attribute that defines whether or not the Association shows any
Both) None : String directionality with an arrowhead. The default is None (no arrowhead). A value of

To means that the arrowhead SHALL be at the Source object. A value of From
means that the arrowhead SHALL be at the Target Artifact. A value of Both
means that there SHALL be an arrowhead at both ends of the Association line.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

« Theld and Documentation attributes were moved to the set of common graphical object attributes.

» The Name, Source, and Target attributes were moved to the set of common Connecting Object attributes.

10.2 Sequence Flow Mechanisms

The Sequence Flow mechanisms described in the following sections are divided into four types: Normal, Exception, Link
Events, and Ad Hoc (no flow). Within these types of flow, BPMN can be related to specific “Workflow Patterns®.” These
patterns began as development work by Wil van der Aalst, Arthur ter Hofstede, Bartek Kiepuszewski, and Alistair
Barros?. Twenty-one patterns have been defined as a way to document specific behavior that can be executed by a BPM
system. These patterns range from very simple behavior to very complex business behavior. These patterns are useful in
that they provide a comprehensive checklist of behavior that should be accounted for by BPM system. Therefore, some of
these patterns will be illustrated with BPMN in the following sections to show how BPMN can handle the simple and
complex requirements for Business Process Modeling.

1. http://tmitwww.tm.tue.nl/research/patterns/
2. http:/tmitwww.tm.tue.nl/research/patterns/downl oad/wfs-pat-2002. pdf

106 BPMN Adopted Specification

10.2.1 Normal Flow

Normal Sequence Flow refers to the flow that originates from a Start Event and continues through activities via
alternative and parallel paths until it ends at an End Event. The simplest type of flow within a Process is a sequence,
which defines a dependencies of order for a series of activities that will be performed (sequentially). A sequence is also
Workflow Pattern #1 -- Sequence3 (see Figure 10.12).

SEER

Figure 10.12 - Workflow Pattern #1: Sequence

As stated previously, the normal Sequence Flow should be completely exposed and no flow behavior hidden. This means
that a viewer of a BPMN Diagram will be able to trace through a series of Flow Objects and Sequence Flow, from the
beginning to the end of a given level of the Process without any gaps or hidden “jumps” (see Figure 10.13). In this figure,
Sequence Flow connect al the objectsin the Diagram, from the Start Event to the End Event. The behavior of the Process
shown will reflect the connections as shown and not skip any activities or “jump” to the end of the Process.

Rejected

Ship Order

Fill Order

Figure 10.13 - A Process with Normal Flow

Close Order

Send Invoice H Make Payment H Accept Payment P

As the Process continues through the series of Sequence Flow, control mechanisms may divide or combine the Sequence
Flow as a means of describing complex behavior. There are control mechanisms for dividing (forking and splitting) and
for combining (joining and merging) Sequence Flow. Gateways and conditional Sequence Flow are used to accomplish
the dividing and combining of flow. It is possible that there may be gaps in the Sequence Flow if Gateways and/or
conditional Sequence Flow are not configured to cover all performance possibilities. In this case, a model that violates the
flow traceability requirement will be considered an invalid model. Presumably, process development software or BPM
test environments will be able to test a process model to ensure that the model is valid.

A casual look at the definitions of the English terms for these mechanisms (e.g., forking and splitting) would indicate that
each pair of terms mean basically the same thing. However, their effect on the behavior of a Process is quite different. We
will continue to use these English terms but will provide specific definitions about how they affect the performance of the

3. http:/tmitwww.tm.tue.nl/research/patterns/sequence.htm

BPMN Adopted Specification 107

process in the next few sections of this specification. In addition, we will relate these BPMN terms to the terms OR-Split
(for split), Or-Join (for merge), AND-Split (for fork), and AND-Join (for join), as defined by the Workflow Management
Coalition.*

The use of an expanded Sub-Process in a Process (see Figure 10.14), which is the inclusion of one level of the Process
within another Level of the Process, can sometimes break the traceability of the flow through the lines of the Diagram.
The Sub-Process is not required to have a Start Event and an End Event. This means that the series of Sequence Flow will
be disrupted from border of the Expanded Sub-Process to the first object within the Expanded Sub-Process. The flow will
“jump” to the first object within the Expanded Sub-Process. Expanded Sub-Processes will often be used, as seen in the
figure, to include exception handling. A requirement that modelers always include a Start Event and End Event within
Expanded Sub-Processes would mainly add clutter to the Diagram without necessarily adding to the clarity of the
Diagram. Thus, BPMN does not require the use of Start Events and End Events to satisfy the traceability of a Diagram
that contains multiple levels.

Send “No

Suppliers” To
Downstream
Activities
Repeat for Each Supplier
Yes——P» Send RFQ Receive Quote H Add Quote
From To
Upstream Downstream
Activities

Find Optimal
Quote

Activities O

Time Limit Exceeded

Figure 10.14 - An Expanded Sub-Process without a Start Event and End Event

Of course, the Start and End Events for an Expanded Sub-Process can be included and placed entirely within its
boundaries (see Figure 10.15). This type of model will also have a break from a completely traceable Sequence Flow as
the flow continues from one Process level to another.

4. TheWorkflow Management Coalition Terminology & Glossary. The Workflow Management Coalition. Document Number WFMC-TC-
1011. April 1999.

108 BPMN Adopted Specification

Send “No

Suppliers” To

Downstream
Activities

Repeat for Each Supplier

Yesa ©-+ Send RFQ H Receive Quote H Add Quote m

From
Upstream

Activities D

Time Limit Exceeded

To
Downstream \
Activities

Find Optimal
Quote

Figure 10.15 - An Expanded Sub-Process with a Start Event and End Event Internal

However, a modeler may want to ensure the traceability of a Diagram and can use a Start Event and End Event in an
Expanded Sub-Process. One way to do this would be to attach these events to the boundary of the Expanded Sub-Process
(see Figure 10.16). The incoming Sequence Flow to the Sub-Process can be attached directly to the Start Event instead of
the boundary of the Sub-Process. Likewise, the outgoing Sequence Flow from the Sub-Process can connect from the End
Event instead of the boundary of the Sub-Process. Doing this, the Normal Flow can be traced throughout a multi-level
Process.

Technically, the Start and End Events still reside within the Sub-Process. The use of this modeling technic is just a
graphical short-cut to a more accurate depiction of the Process (i.e., as shown in Figure 10.15. Therefore, the Sequence
Flow connecting to the Start Event and connecting from the End Event do not violate the Sequence Flow connection rules
(as defined in “ Sequence Flow Connections” on page 38 and “ Sequence Flow Connections’ on page 42).

BPMN Adopted Specification 109

Send “No

Suppliers” To

Downstream
Activities

Repeat for Each Supplier

H Send RFQ H Receive Quote H Add Quote H

From To
Upstream Downstream

Activities m O Activities

\TJ Find Optimal

Time Limit Exceeded Quote

Figure 10.16 - An Expanded Sub-Process with a Start Event and End Event Attached to Boundary

When dealing with Exceptions and Compensation, the traceability requirement is also relaxed (Section 10.2.2, “Exception
Flow,” on page 130 and Section 10.3, “Compensation Association,” on page 133).

Forking Flow

BPMN uses the term forking to refer to the dividing of a path into two or more parallel paths (also known as an AND-
Split). It is a mechanism that will allow activities to be performed concurrently, rather than sequentially. Thisis aso
Workflow Pattern #2 -- Parallel Split5. BPMN provides three configurations that provide forking.

The first mechanism to create a fork is simple: a Flow Object can have two or more outgoing Sequence Flow (see Figure
10.17). A special flow control object is not used to fork the path in this case, sinceit is considered uncontrolled flow; that
is, flow will proceed down each path without any dependencies or conditions--there is no Gateway that controls the flow.
Forking Sequence Flow can be generated from a Task, Sub-Process, or a Start Event.

5. http://tmitwww.tm.tue.nl/research/patterns/parallel_split.htm

110 BPMN Adopted Specification

Parallel Split
Uncontrolled Flow
Figure 10.17 - Workflow Pattern #2: Parallel Split -- Version 1

The second mechanism uses a Parallel Gateway (see Figure 10.21). For situations as shown in the Figure 10.18, a
Gateway is not needed, since the same behavior can be created through multiple outgoing Sequence Flow, as in Figure
10.17. However, some modelers and modeling tools may use a forking Gateway as a “best practice.” See Section 9.5.5,
“Parallel Gateways (AND),” on page 85 for more information on Parallel Gateways.

Parallel Split /
Forking

Gateway
Figure 10.18 - Workflow Pattern #2: Parallel Split -- Version 2
Even when not required as a “best practice,” there are situations were the Parallel Gateway provides a useful indicator of

the behavior of the Process. Figure 10.19 shows how a forking Gateway is used when the output of an Exclusive Decision
requires that multiple activities will be performed based on one condition (Gate).

BPMN Adopted Specification 111

Figure 10.19 - The Creation of Parallel Paths with a Gateway

While multiple conditional Sequence Flow, each with the exact same condition expression (see Figure 10.20), could be
used with an Inclusive Gateway to create the behavior, the use of a forking Gateway makes the behavior much more
obvious.

Condition 1 > B
A Condition c
— D

Condition 2 >

Figure 10.20 - The Creation of Parallel Paths with Equivalent Conditions

This third version of the forking mechanism uses an Expanded Sub-Process to group a set of activities to be performed in
paralel (see Figure 10.21). The Sub-Process does not include a Start and End Event and displays the activities “floating”
within. A configuration like this can be called a “parallel box” and can be a compact and less cluttered way of showing
paralelism in the Process. The capability to model in this way is the reason that Start and End Events are optional in
BPMN.

112 BPMN Adopted Specification

Parallel Split /
Uncontrolled Flow /

Applies to Start
Events

Figure 10.21 - Workflow Pattern #2: Parallel Split -- Version 3

Most of the time, the paths that have been divided with afork are combined back together through ajoin (refer to the next
section) and synchronized before the flow will continue. However, BPMN provides the flexibility for advanced methods
to handle complex process situations. Thus, the exact behavior will be determined by the configuration of the Sequence
Flow and the Gateways that are used.

Joining Flow

BPMN uses the term joining to refer to the combining of two or more paralel paths into one path (also known as an
AND-Join). A Parallel Gateway is used to synchronize two or more incoming Sequence Flow (see Figure 10.22). In
general, this means that Tokens created at a fork will travel down parallel paths and then meet at the Parallel Gateway.
From there, only one Token will continue. Thisis also Workflow Pattern #3 -- SynchronizationG. Section 9.5.5, “Parallel
Gateways (AND),” on page 85 for more information on Parallel Gateways.

Figure 10.22 - Workflow Pattern #3: Synchronization -- Version 1

Another mechanism for synchronization is the completion of a Sub-Process (see Figure 10.23). If there are parallel paths
within the Sub-Process that are not synchronized with an Parallel Gateway, then they will eventually reach an End Event
(even if the End Event is implied). The default behavior of a Sub-Process is to wait until all activity within has been
completed before the flow will move back up to a higher level Process. Thus, the completion of a Sub-Process is a
synchronization point.

6. http://tmitwww.tm.tue.nl/research/synchronization.htm

BPMN Adopted Specification 113

Synchronization
Applies to End
Events

Figure 10.23 - Workflow Pattern #3: Synchronization -- Version 2

There is no specific correlation between the joining of a set of parallel paths and the forking that created the parallel
paths. For example, an activity may have three outgoing Sequence Flow, which creates a fork of three parallel paths, but
these three paths do not need to be joined at the same object. Figure 10.24 shows that two of three parallel paths are
joined at Task “F.” All of the paths eventually will be joined, but this can happen through any combination of objects,
including lone End Events. In fact, each path could end with a separate End Event, and then be synchronized as
mentioned above.

@:

Figure 10.24 - The Fork-Join Relationship is not Fixed

Thus, for parallel flow, BPMN contrasts with BPEL4WS, which is mainly block structured. A BPEL4WS flow, which
maps to a set of BPMN parallel activities, is a specific block structure that has a well-defined boundary. While there are
no obvious boundaries to the parallel paths created by a fork, the appropriate boundaries can be derived by an evaluation
of the configuration of Sequence Flow that follow the fork. The locations in the Process where Tokens of the same
Tokenld and all the appropriate SubTokenlds are joined with through multiple incoming Sequence Flow will determine
the boundaries for a specific block of parallel activities. The boundary may in fact be the end of the Process. More detail
on the evaluation of BPEL4WS element boundaries can be found in Chapter 11, “Mapping to BPEL4WS.”

114 BPMN Adopted Specification

Splitting Flow

BPMN uses the term splitting to refer to the dividing of a path into two or more alternative paths (also known as an OR-
Split). It is a place in the Process where a question is asked, and the answer determines which of a set of paths is taken.

It is the “fork in the road” where a traveler, in this case a Token, can take only one of the forks (not to be confused with

forking—see below).

The general concept of splitting the flow is usually referring to as a Decision. In traditional flow charting methodol ogies,
Decisions are depicted as diamonds and usually are exclusive. BPMN also uses a diamond to leverage the familiarity of
the shape, but extends the use of the diamond to handle the complex behavior of business processes (which cannot be
handled by traditional flow charts). The diamond shape is used in both Gateways and the beginning of a conditional
Sequence Flow (when exiting an activity). Thus, when readers of BPD see a diamond, they know that the flow will be
controlled in some way and will not just pass from one activity to another. The location of the mini-diamond and the
internal indicators within the Gateways will indicate how the flow will be controlled.

There are multiple configurations to split the flow within BPMN so that different types of complex behavior can be
modeled. Conditional Sequence Flow and three types of Gateways (Exclusive, Inclusive, and Complex) are used to split
the flow. See Section 10.1.2, “Sequence Flow,” on page 100 for details on conditional Sequence Flow. Section 9.5,
“Gateways,” on page 68 for details on the Gateways.

There are two basic mechanism for making the Decision during the performance of the Process: the first is an evaluation
of a condition expression. There are three variations of this mechanism: Exclusive, Inclusive, and Complex. The first
variation, an Exclusive Decision, is the same as Workflow Pattern #4 -- Exclusive Choice’ (see Figure 10.25). See “Data-
Based” on page 71 for more information on Data-Based Exclusive Gateways.

Condition 1

Condition

Condition

Figure 10.25 - A Data-Based Decision Example -- Workflow Pattern #4 -- Exclusive Choice

The second type of expression evaluation is the Inclusive Decision, which is also Workflow Pattern #6 -- Multiple
Choice®. There are two configurations of the Inclusive Decision. The first type of Inclusive Decisions uses conditional
Sequence Flow from an Activity (see Figure 10.26).

7. http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm
8. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm

BPMN Adopted Specification 115

CondﬂD
E tijiD

Figure 10.26 - Workflow Pattern #6 -- Multiple Choice -- Version 1

The second type of Inclusive Decisions uses an Inclusive Gateway to control the flow (see Figure 10.27). See
Section 9.5.3, “Inclusive Gateways (OR),” on page 78 for more information on Inclusive Gateways.

Figure 10.27 - Workflow Pattern #6 -- Multiple Choice -- Version 2

The third type of expression evaluation is the Complex Decision (see Figure 10.28). See Section 9.5.4, “Complex
Gateways,” on page 82 for more information on Complex Gateways.

116 BPMN Adopted Specification

Alternative 1

Alternative 2

Alternative 3

Alternative 4

Figure 10.28 - A Complex Decision (Gateway)

The second mechanism for making a Decision is the occurrence of a particular event, such as the receipt of a message
(see Figure 10.29). See “Event-Based” on page 75 for more information on Event-Based Exclusive Gateways.

Message 1
. ;
o Message 2
Decision
OR-Split
:
1 Day

Figure 10.29 - An Event-Based Decision Example

Merging Flow

BPMN uses the term merging to refer to the combining of two or more alternative paths into one path (also known as an
a OR-Join). It is a place in the process where two or more aternative paths begin to traverse activities that are common
to each of the paths. Theoretically, each alternative path can be modeled separately to a completion (an End Event).
However, merging allows the paths to overlap and avoids the duplication of activities that are common to the separate
paths. For a given instance of the Process, a Token would actually only see the sequence of activities that exist in one of
the paths as if it were modeled separately to completion.

BPMN Adopted Specification 117

Since there are multiple ways that Sequence Flow can be forked and split, there are multiple ways that Sequence Flow can
be merged. There are five different Workflow Patterns that can be demonstrated with merging.

The first Workflow Pattern, Simple Mergeg, The graphical mechanism to merge alternative paths is simple: there are two
or more incoming Segquence Flow to a Flow Object (see Figure 10.30). In general, this means that a Token will travel
down one of the alternative paths (for a given Process instance) and will continue from there. For that instance, Tokens
will never arrive down the other alternative paths. BPMN provides two versions of a Simple Merge.

Thefirst version is shown in Figure 10.30. The two incoming Sequence Flow for activity “D” are uncontrolled. Since the
two Sequence Flow are at the end of two alternative paths, created through the upstream exclusive Gateway, only one
Token will reach activity “D” for any given instance of the Process.

Simple Merge

Exclusive Choice C
Decision Gateway Uncontrolled Flow

Figure 10.30 - Workflow Pattern #5 -- Simple Merge — Version 1

If the multiple incoming Sequence Flow are actually paralel instead of alternative, then the end result is different, even
though the merging configuration is the same as Figure 10.30. In Figure 10.31, the upstream behavior is parallel. Thus,
there will be two Tokens arriving (at different times) at activity “D.” Since the flow into activity “D” in uncontrolled,
each Token arriving at activity “ D” will cause a new instance of that activity. Thisis an important concept for modelers
of BPMN should understand. In addition, this type of merge is the Workflow Pattern Multiple Mergelo.

Multiple Merge

Parallel Split
Uncontrolled Flow
Econtrolled Flow

Figure 10.31 - Workflow Pattern #7 -- Multiple Merge

9. http://tmitwww.tm.tue.nl/research/patterns/simple_merge.htm
10. http://tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm

118 BPMN Adopted Specification

The second version of the Simple Merge is shown in Figure 10.32. The two incoming Sequence Flow for activity “D” are
controlled through the Exclusive Gateway. Since the two Sequence Flow are at the end of two alternative paths, created
through the upstream exclusive Gateway, only one Token will reach the Gateway for any given instance of the Process.

The Token will then immediately proceed to activity “D.”

Version 2
A
Exclusive Choice c Simple Merge
Decision Gateway Merging
Gateway

Figure 10.32 - Workflow Pattern #5 -- Simple Merge — Version 2

Again, if the multiple incoming Sequence Flow are actually parallel instead of alternative, then the end result is different,
even though the merging configuration is the same as Figure 10.32. In the model shown in Figure 10.33, there will be two
Tokens arriving (at different times) at the Exclusive Gateway preceding activity “D.” In this situation, the Gateway will
accept the first Token and immediately pass it on through to the activity. When the second Token arrives, it will be
excluded from the remainder of the flow. This means that the Token will not be passed on to the activity, but will be
consumed. This type of merge is the Workflow Pattern Discriminator®!.

Parallel Split Discriminator
Bcontrolled Flow Merging
Gateway
Figure 10.33 - Workflow Pattern #8 -- Discriminator

The fourth type of Workflow Pattern merge is called a Synchronizing Joi n'2. Thisis a situation when the merging location
does not know ahead of time how many Tokens will be arriving at the Gateway. In some Process instances, there may be
only one Token. In other Process instances, there may be more than one Token arriving. This type of situation is created
when an Inclusive Decision is made up stream (see Figure 10.34). To handle this, an Inclusive Gateway can be used to

11. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm
12. http://tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm

BPMN Adopted Specification 119

merge the appropriate number of Tokens for each Process instance. The Gateway, following the pattern Synchronizing
Join, will wait for all expected Tokens before the flow will continue to the next activity. Section 9.5.3, “Inclusive
Gateways (OR),” on page 78 for more information on Inclusive Gateways.

Multi-Choice o
Inclusive Decision Synchronizing Merge
Gateway Merging Gateway

Figure 10.34 - Workflow Pattern #9 -- Synchronizing Join

The fourth type of Workflow Pattern merge is called a N out of M Join®2. This type of situation is more complex and can
be handled through a Complex Gateway (see Figure 10.35). The Gateway will receive Tokens from its incoming
Sequence Flow and evaluate an expression to determine whether or not the flow should proceed. Once the condition has
been satisfied, if additional Tokens arrive, they will be excluded (much like the Discriminator Pattern from Figure 10.33).
Section 9.5.4, “Complex Gateways,” on page 82 for more information on Complex Gateways.

B2
Parallel Split N out of M Join
Complex
Uncontrolled Flow —
Gateway
> B3

Figure 10.35 - Workflow Pattern #8 -- N out of M Join

There is no specific correlation between the merging of a set of paths and the splitting that occurs through a Gateway
object. For example, a Decision may split a path into three separate paths, but these three paths do not need to be merged
at the same object. Figure 10.36 shows that two of three alternative paths are merged at Task “F.” All of the paths
eventually will be merged, but this can happen through any combination of objects, including lone End Events. In fact,
each path could end with a separate End Event.

13. http://tmitwww.tm.tue.nl/research/patterns/n_out_of _m_join.htm

120 BPMN Adopted Specification

Condition 1 ' B E
_
)
A Condition 2' C
—
F
S
[Default] D
~—

Figure 10.36 - The Split-Merge Relationship is not Fixed

Thus, for alternative flow, BPMN contrasts with BPEL4WS, which is mainly block structured. BPEL4WS switch and
pick, which map to the BPMN Exclusive Gateway, are specific block structures that have well-defined boundaries. While
there are no obvious boundaries to the alternative paths created by a decision in BPMN, the appropriate boundaries can
be derived by an evaluation of the configuration of Sequence Flow that follow the decision. The locations in the Process
where Tokens of the same identity are merged through multiple incoming Sequence Flow will determine the boundaries
for a specific decision. The boundary may in fact be the end of the Process. More detail on the evaluation of BPEL4WS
element boundaries can be found in the “Mapping to BPELAWS” (Chapter 11).

Looping

BPMN provides 2 (two) mechanisms for looping within a Process. The first involves the use of attributes of activities to
define the loop. The second involves the connection of Sequence Flow to “upstream” objects.

Activity Looping

The attributes of Tasks and Sub-Processes will determine if they are repeated as a loop. There are two types of loops that
can be specified: Standard and Multi-Instance.

For Standard Loops:

- If theloop condition is evaluated before the activity, thisis generally referred to asa“while’ loop. This means that the
activities will be repeated as long as the condition istrue. The activities may not be performed at all (if the condition is
false the first time) or performed many times.

« If theloop condition is evaluated after the activity, thisis generaly referred to asan “until” loop. This means that the
activitieswill be repeated until a condition becomes true. The activitieswill be performed at least once, but may be per-
formed many times.

For Multi-l1nstance Loops:

« If the MI_Ordering is serial, then this becomes much like a while loop with a set number of iterations the loop will go
through. These are often used in processes where a specific type of item will have a set number of sub-items or line
items. A Multi-Instance loop will be used to process each of the line items.

« If the MI_Ordering is parallel, thisis generally referred to as multiple instances of the activities. An example of this
type of feature would be used in a process to write a book, there would be a Sub-Process to write a chapter. There

BPMN Adopted Specification 121

would be as many copies or instances of the Sub-Process as there are chaptersin the book. All the instances could begin
at the same time.

Those activities that are repeated (looped) will have a loop marker placed in the bottom center of the activity shape (see
Figure 10.37). Those activities that are Parallel Multi-Instance will have a parallel marker placed in the bottom center of
the activity shape (see Figure 10.38)

Receive Vote

Discussion Cycle

Figure 10.37 - A Task and a Collapsed Sub-Process with a Loop Marker

Request Quotes

Figure 10.38 - A Task with a Parallel Marker

Expanded Sub-Processes also can have aloop marker placed at the bottom center of the Sub-Process rectangle (see Figure
10.39). The entire contents of the Sub-Process will be repeated as defined in the attributes.

122 BPMN Adopted Specification

P
Discussion Cycle (Until Discussion Over)

Moderate E-mail
Discussion

Announce Issues
for Discussion

Review Status of
Discussion

E-Mail Discussion
Deadline Warning
Delay 6 days from

Announcement o

-

Figure 10.39 - An Expanded Sub-Process with a Loop Marker

Sequence Flow Looping

L oops can also be created by connecting a Sequence Flow to an “upstream” object. An object is considered to be
upstream if that object has an outgoing Sequence Flow that leads to a series of other Sequence Flow, the last of which
turns out to be an incoming Sequence Flow to the original object. That is, that object produces a Token and that Token
traverses a set of Sequence Flow until the Token reaches the same object again. Sequence Flow looping is the same as
Workflow Pattern #16 -- Arbitrary Cycle** (see Figure 10.25).

Default

Figure 10.40 - Workflow Pattern #16 -- Arbitrary Cycle

Usually these connections follow a Decision so that the loop is not infinite (see Figure 10.41). If the Sequence Flow goes
directly from a Decision to an upstream object, thisis an “until” loop. The set of looped activities will occur until a

certain condition is true.

14. http://tmitwww.tm.tue.nl/research/patterng/arbitrary _cycle.htm

BPMN Adopted Specification 123

Package Product

Configure Product Test Product Yes

No

Figure 10.41 - An Until Loop

A while loop is created by making the decision first and then performing the repeating activities or moving on in the
Process (see Figure 10.42). The set of looped activities may not occur or may occur many times.

Yes# Fix Errors Test Fixes

Package Product

No

Figure 10.42 - A While Loop

Sequence Flow Jumping (Off-Page Connectors and Go To Objects)

Since process models often extend beyond the length of one printed page, there is often a concern about showing how
Sequence Flow connections extend across the page breaks. One solution that is often employed is the use of Off-Page
connectors to show where one page leaves off and the other begins. BPMN provides Intermediate Events of type Link for
use as Off-Page connectors (see Figure 10.43--Note that the figure shows two different printed pages, not two Pools in
one diagram). A pair of Link Intermediate Events is used. One of the pair is shown at the end of one page. This Event is
named and has an incoming Sequence Flow and no outgoing Sequence Flow. The second Link Event is at the beginning
of the next page, shares the same name, and has an outgoing Sequence Flow and no incoming Sequence Flow.

124 BPMN Adopted Specification

Request Flights
within Parameters

Prepare and
Send Candidate
Itineraries

Receive
Confirmation

Request Rooms
within Parameters

Send Cancellation
Notice

Page 1

Book
Reservations

Charge H Send Confirmation m
Buyer

Page 2

Figure 10.43 - Link Intermediate Event Used as Off-Page Connector

Another way that Link Intermediate Events can be used is as “Go To” objects. Functionally, they would work the same as
for Off-Page Connectors (described above), except that they could be used anywhere in the diagram--on the same page or
across multiple pages. The general ideais that they provide a mechanism for reducing the length of Sequence Flow lines.
Some modelers may consider long lines as being hard to follow or trace. Go To Objects can be used to avoid very long
Sequence Flow (see Figure 10.44 and Figure 10.45). Both diagrams will behave equivalently. For Figure 10.45, if the
“Order Rejected” path is taken from the Decision, then the Token traversing the Sequence Flow would reach the source
Link Event and then “jump” to the target Link Event and continue down the Sequence Flow. The process would continue

as if the Sequence Flow had directly connected the two objects.

BPMN Adopted Specification

Order rejected

Ship Order

Send Invoice Make Payment

Requested Order

Record Problem Qrder accepted Fill Order

Close Order O

Accept Payment

Invoice

Figure 10.44 - Process with Long Sequence Flow

Requested Order
To Close To Close

D """""" : Order rejected Ship Order

Fill Order Close Order

Send Invoice Make Payment Accept Payment

Invoice

Record Problem Qrder accepte:

Figure 10.45 - Process with Link Intermediate Events Used as Go To Objects

Some methodologies prefer that all Sequence Flow only move in one direction; that is, forward in time. These
methodologies do not allow Sequence Flow to connect directly to upstream objects. Some consistency in modeling can be
gained by such a methodology, but situations that require looping become a challenge. Link Intermediate Events can be
used to make upstream connections and create |oops without violating the Sequence Flow direction restriction (see Figure
10.46).

Package Product

Configure Product Test Product Yes

o »()

Reconfigure Reconfigure

Figure 10.46 - Link Intermediate Event Used for Looping

126 BPMN Adopted Specification

Passing Flow to and from Sub-Processes

This section reviews how flow will be passed between a parent Process and any of its Sub-Processes. The flow (e.g., a
Token) will start at the parent Process and then move to the Sub-Process and then will move back to the parent process
(see Figure 10.47). Most of the time the flow will reach a Sub-Process, get transferred to the Start Event of the Sub-
Process, traverse the Sequence Flow of the Sub-Process, reach the End Event of the Sub-Process, and, finally, get
transferred back to the parent Process to continue down the outgoing Sequence Flow of the Sub-Process object. If the
Sub-Process contains parallel Flow, then all the Flow must complete before a Token is transferred back to the parent
Process. This functionality treats the Sub-Process as a self-contained “box” of activities.

Check Credit

Include History of

No Transactions

Continue Order...

Include Standard
Text

Recieve Request

Approve?

Receive Credit
Report

Figure 10.47 - Example of Sub-Process with Start and End Events Inside

To make the flow between levels of a Process more obvious, a modeler has the option of placing the Start Event and the
End Event on the boundary of the Sub-Process and connect the Sequence Flow from the Parent Process objects to/from
these Events (see Figure 10.48).

Check Credit

Include History of
Transactions

No

Include Standard
Text

Receive Credit Yes

Report

Approve?

Figure 10.48 - Example of Sub-Process with Start and End Events on Boundary

BPMN Adopted Specification 127

Controlling Flow Across Processes

There may be situations within a Process where the flow is affected by or dependent on the activity that occurs in another
Process. These events or conditions can be referred to as milestones. The process model must be able to identify and react
to the milestone.That is, the starting or continuation of a Process may be triggered by Link Events, which pass the flow
(Tokens) between processes (see Figure 10.49). The type of Workflow Pattern called a Milestonel®.

B Completed

O) ® : @

u» '

B Completed

Figure 10.49 - Link Events Used to Synchronize Behavior Across Processes

Avoiding lllegal Models and Unexpected Behavior

BPMN, being a graph-structured Diagram, rather than having a block-structures like BPEL4WS, provides a great
flexibility for depicting complex process behavior in a fairly compact form. However, the free-form nature of BPMN can
create modeling situations that cannot be executed or will behave in a manner that is not expected by the modeler. These
types of modeling problems can occur because there is not a tight relationship between forks and joins or splits and
merges. A block structure provides these tight relationships, but a graph-structure allows these flow control mechanisms
to be mixed and matched at the discretion of the modeler. Some combinations of these control elements will create
Processes that cannot be executed or will create behavior that was not intended by the modeler. The situation where
alternative paths cross the implicit boundary of a group of parallel paths can cause an invalid model.

Figure 10.50 shows such a model. Task “D” is an activity that has two incoming Sequence Flow; one from a forked path
(after a split path) and one from a split path. This can create a problem at the Parallel Gateway that precedes Task “E,”
which also has multiple incoming Sequence Flow. The Sequence Flow from Task “B” is crossing the implicit boundary of
the fork created after Task “A.” Asaresult, if the “Yes’ Sequence Flow is taken from the Decision in the Diagram
(Variation 1), then Task “E" can expect two Tokens to arrive—one from Task “C” and one from Task “D.” However, if
the “No” Sequence Flow is taken from the Decision (Variation 2), the Parallel Gateway will receive only one Token—one
from Task “D.” Since the Gateway expects two Tokens, the Process will be dead-locked at that position.

15. http://tmitwww.tm.tue.nl/research/patterns/milestone.htm

128 BPMN Adopted Specification

Figure 10.50 - Potentially a dead-locked model
Another type of problem occurs with looping back to upstream activities. If the loop Decision is made within the implicit
boundaries of a set of parallel paths, then the behavior of the loop becomes ambiguous (see Figure 10.51), since it is

unclear whether Task “E” was intended to be repeated based on the loop or what would happen if Task “E” was till
active when the loop reached that Task again.

E F

N~ | S —
AHBHCq

) 0

default

Figure 10.51 - Improper Looping

The use of Link Events can also create unexpected behavior. In general, Link Events not used for off-page connectors
should be considered an advanced modeling technique and the modeler should be careful to understand the resultant
behavior and flow of Tokens.

Figure 10.52 is a variation of Figure 10.49. In this figure, however, the Link End Event in the top Sub-Processis not used
properly. For the top Sub-Process, there is only one Token generated and available. When the Token leaves Task “C” and
arrives at the Link End Event, it is consumed by the Event, but then immediately jumps to the target Start Event that

BPMN Adopted Specification 129

shares its name (in the bottom Sub-Process). Because the Token jumps to the other Sub-Process, there is no Token left to
be transferred up to the Parent Process and continue down the outgoing Sequence Flow of the top Sub-Process. Thus, the
overall Process will be stuck waiting at the Parallel Gateway for a Token that will never arrive.

C Completed

B
S 4+~ = O

» .

C Completed

Figure 10.52 - Improper use of a Link End Event

In general, the analysis of how Tokens will flow through the model will help find models that cannot be executed
properly. This Token flow analysis will be used to create some of the mappings to BPEL4AWS. Since BPEL4AWS is
properly executable, if the Token flow analysis cannot create a valid BPEL4WS process, then the model is not structured
correctly.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
» The“Sequence Flow Jumping (Off-Page Connectors and Go To Objects)” on page 124 was added.
» The“Controlling Flow Across Processes’ on page 128 was added.
» The“Avoiding Illegal Models and Unexpected Behavior” on page 128 was updated to show an example of how Link
Events can cause unexpected behavior.

10.2.2 Exception Flow

Exception Flow occurs outside the Normal Flow of the Process and is based upon an event (an Intermediate Event) that
occurs during the performance of the Process. While Intermediate Events can be included in the Normal Flow to set
delays or breaks to wait for a message, when they are attached to the boundary of an activity, either a Task or a Sub-
Process (see Figure 10.53), they create Exception Flow.

130 BPMN Adopted Specification

Moderate E-mail
Discussion

7 Days Review Status of
Discussion

Figure 10.53 - A Task with Exception Flow (Interrupts Event Context)

By doing this, the modeler is creating an Event Context. The Event Context will respond to specific Triggers to interrupt
the activity and redirect the flow through the Intermediate Event. The Event Context will only respond if it is active
(running) at the time of the Trigger. If the activity has completed, then the Trigger may occur with no response. The
source of the Trigger may be external to the Process execution, such as a message or an application error, or the Trigger
may be caused by a “throw” Intermediate Event from any other active location within the Process.

If there are a group of Tasks that the modeler wants to include in an Event Context, then a Sub-Process can be added to
encompass the Tasks and to handle any events by having them attached to its boundary (see Figure 10.54).

Send “No
Suppliers”

Repeat for Each Supplier

Yes——pp Send RFQ Receive Quote Add Quote

) O

\T/ Time Limit Exceeded

Figure 10.54 - A Sub-Process with Exception Flow (Interrupts Event Context)

Find Optimal
Quote

Two Triggers for Intermediate Event are used by Event Contexts at the level of the execution language (BPEL4AWS):
Message, and Error (fault). A Message Event occurs when a message, with the exact identity as specified in the
Intermediate Event, is received by the Process. An Error Event occurs when the Process detects an Error. If an Error Code
is specified in the Intermediate Event, then the code of the detected Error must match for the Event Context to respond.
If the Intermediate Event does not specify an Error Code, then any Error will trigger a response from the Event Context.

BPMN Adopted Specification 131

Other BPMN Triggers, such as a Timer, must be converted into a BPEL4WS configuration that will generate the
appropriate Message or Error (see Section 11.13, “Exception Flow,” on page 182 for details of a mapping of Exception
Flow to BPEL4WS).

If this event does not occur while the Event Context is ready, then the Process will continue through the Normal Flow as
defined through the Sequence Flow.

10.2.3 Ad Hoc

An Ad Hoc Process is a group of activities that have no pre-definable sequence relationships. A set of activities can be
defined for the Process, but the sequence and number of performances for the activities is completely determined by the
performers of the activities and cannot be defined beforehand.

A Sub-Process is marked as being an Ad Hoc with a “tilde” symbol placed at the bottom center of the Sub-Process shape
(see Figure 10.55 and Figure 10.56). Activities within the Process are disconnected from each other. During execution of
the Process, any one or more of the activities may be active and they can be performed in almost any order or frequency.

Name
~[]

Figure 10.55 - A Collapsed Ad Hoc Sub-Process

Name

-
G

L ~)

Figure 10.56 - An Expanded Ad Hoc Sub-Process

The performers determine when activities will start, when they will end, what the next activity will be, and so on.
Examples of the types of Processes that are Ad Hoc include computer code development (at a low level), sales support,
and writing a book chapter. If we look at the details of writing a book chapter, we could see that the activities within this
Process include: researching the topic, writing text, editing text, generating graphics, including graphics in the text,
organizing references, etc. (see Figure 10.57). There may be some dependencies between Tasks in this Process, such as
writing text before editing text, but there is not necessarily any correlation between an instance of writing text to an
instance of editing text. Editing may occur infrequently and based on the text of many instances of the writing text Task.

132 BPMN Adopted Specification

~
Writing a Book Chapter
/S
researching - i,
the topic writing text editing text
eneratin including organizin
g ung graphics in g 9
graphics text references
& —~ J

Figure 10.57 - An Ad Hoc Process for Writing a Book Chapter

It is achalenge for aBPM engine to monitor the status of Ad Hoc Processes, usually these kind of processes are handled
through groupware applications (such as e-mail), but BPMN allows modeling of Processes that are not necessarily
executable and should provide the mechanisms for those BPM engines that can follow an Ad Hoc Process. Given this, at
some point, the Process will have completed and this can be determined by evaluating a Completion Condition that
evaluates Process attributes that will have been updated by an activity in the Process.

10.3 Compensation Association

Some activities produce complex effects or specific outputs. If the outcome is determined to be undesirable by some
specified criteria (such as an order being cancelled), then it will be necessary to “undo” the activities. There are three
ways this can be done:

» Restoring of acopy of theinitial values for data, thereby overwriting any changes.
» Doaing nothing (if nothing has be changed because the changes have been set aside until a confirmation).

« Invoking activities that undo the effects--also known as compensation.

An activity that might require compensation could be, for example, one that charges a buyer for some service and debits
acredit card to do so. These types of activities usually need a separate activity to counter the effects of the initial activity.
Often, arecord of both activities is required, so this is another reason that the activity is not “undone.” An Intermediate
Event of type Compensation is attached to the boundary of an activity to indicate that compensation may be necessary for
that activity.

One of the three mechanisms for “undo” activities, Compensation, requires specific notation and is a special circumstance
that occurs outside the Normal Flow of the Process. For this reason, the Compensation Intermediate Event does not have
an outgoing Sequence Flow, but instead has an outgoing directed Association (see Figure 10.58).

BPMN Adopted Specification 133

Charge
Buyer

Credit Buyer

«

Figure 10.58 - A Task with an Associated Compensation Activity

The target of this Association is the activity that will compensate for the work done in the source activity, and will be
referred to as the Compensation Activity. The Compensation Activity is specia in that it does not follow the normal
Sequence Flow rules--as mentioned, it is outside the Normal Flow of the Process. This activity cannot have any incoming
or outgoing Sequence Flow. The Compensation marker (asis in the Compensation Intermediate Event) will be displayed
in the bottom center of the Activity to show this status of the activity (see the “Credit Buyer” Task in Figure 10.58). Note
that there can be only one target activity for compensation. There cannot be a sequence of activities shown. If the
compensation does require more than one activity, then these activities must be put inside a single Sub-Process that is the
target of the Association. The Sub-Process can be collapsed or expanded. If the Sub-Process is expanded, then only the
Sub-Process itself requires the Compensation marker--the activities inside the Sub-Process do not require this marker.

Only activities that have been completed can be compensated. The compensation of an activity can be triggered in two
ways:

» Theactivity isinside a Transaction Sub-Process that is cancelled (see Figure 10.59). In this situation, the whole Sub-
Process will be“rewound” or rolled back--the Process flow will go backwards and any activity that requires compensa-
tion will be compensated. Thisis why the Compensation marker for Events looks like a“rewind” symbol for atape
player. After the compensation has been completed, the Process will continue its rollback.

« A downstream Intermediate or End Event of type Compensation “throws’ acompensation identifier that is* caught” by
the Intermediate Event attached to the boundary of the activity.

134 BPMN Adopted Specification

Transaction

Bookings

Book Flight

Bookings
Cancel Flight

Book Hotel

Send Hotel
Cancellation

) Send
\H Failed » Unavailability

Notice

Bookings

Exceptions Handle through

Customer Service

Figure 10.59 - Compensation Shown in the context of a Transaction

BPMN Adopted Specification

135

136 BPMN Adopted Specification

11 Mapping to BPEL4AWS

This section will cover a mapping to BPEL4AWS that are derived by analyzing the BPMN objects and the relationships
between these objects as described in the previous chapters.

11.1 Business Process Diagram Mappings

A Business Process Diagram can be made up of a set of (semi-) independent components, which are shown as separate
Pools. Thus, there is not a specific mapping to the diagram itself. Rather, there are separate mappings to each of the Pools
that are in the diagram. That is, each Pool in the diagram, if it is a “white box” that contains process elements, will map
to an individual BPEL4WS process. However, in the course of mapping the contents of the Process, there may be one or
more derived processes necessary to handle complex behavior, such as looping. The attributes of “black box” Pools will
also be used in determining specific BPEL4WS elements, such as partnerLink.

The following table displays a set of mappings for the attributes of a Business Process Diagram that can be mapped to
BPEL4WS:

Table 11.1 - Business Process Diagram Mappings to BPEL4WS

Business Process Diagram | Mapping to BPEL4WS

Id, Name, Version, These Elements do not map to any BPEL4WS elements or attributes.
Author, Language,
CreationDate,
ModificationDate, Pool,
and Documentation

ExpressionLanguage This attribute will be used for all the Processes that are within the Business Process
attribute Diagram. The attribute will map to the expressionLanguage attribute of each BPEL4WS
process.

QueryLanguage attribute | This attribute will be used for all the Processes that are within the Business Process
Diagram. The attribute will map to the queryLanguage attribute of each BPEL4WS
process.

11.2 Business Process Mappings

There can be one or more Business Processes within a Business Process Diagram, each within a separate Pool. The
following table displays a set of mappings from attributes of a Process to BPEL4WS elements (the mappings for the
objects contained within a Process, its contents, are mapped separately and these mappings can be found in the sections
that follow):

Table 11.2 Business Process Mappings to BPEL4WS
Process Mapping to BPEL4W S

ProcessType If the Process is to be used to create a BPEL4WS document, then the attribute
MUST be set to Private or Abstract. If the attribute is set to Private, then the
abstractProcess attribute of the BPEL4WS process MUST be set to “no.” If the
attribute is set to Abstract, then the abstractProcess attribute of the BPEL4AWS
process MUST be set to “yes.”

BPMN Adopted Specification 137

Table 11.2 Business Process Mappings to BPEL4WS

Process

Mapping to BPEL4WS

Id, Categories, and
Documentation

These Elements do not map to any BPEL4WS elements or attributes.

Name

The Name attribute of the Process SHALL map to name attribute of the appropriate
process. The extra spaces and non-al phanumeric characters MUST be stripped from
the Name to fit with the XML specification of the name attribute. Note that there
may be two or more elements with the same name after the BPMN name has been
stripped.

GraphicalElements

Thisisalist of all the graphical elements contained within the Process. Each of
these elements will have their mapping, as defined in the sections below.

Properties

The set of Properties of a Process, as a whole, will map to a BPEL4WS variable.

The variable element will be structured as follows:

<variable name="[Process.Name] Data"
messageType="[Process.Name] ProcessDataMessage" />

The individual Properties will map to the parts of a WSDL message. The message

element will be structured as follows:

<message name="[Process.Name] ProcessDataMessage" >
<part name="[Property.Name]"
type="xsd: [Property.Typel" />
</message>

There will be as many parts to the message as there are Properties in the input
group.

Correlation = True

This only applies to Properties of Type = “Set.’
The Name of the Property will map to the name of a correlationSet. The Name of
each child Property for the Set will be added to the list of properties of the
correlationSet.

Adhoc Ad Hoc Processes are not executable. Thus, this attribute MUST be set to False if
the Process is to be mapped to BPEL4WS.
AdHocCompletionCondition This attribute only applies to Ad Hoc Processes. Thus, it will not be mapped to

BPEL4WS.

With Assigments Expression

This will map to a BPEL4WS assign. Refer to the section entitled “Assignment
Mapping” on page 189 for more details about the mappings associated with the
assign element.

AssignTime = Start

A BPEL4WS sequence will be created and the assign will follow the instantiation of
the process (through a receive or a pick).

AssignTime = End

A BPEL4WS sequence will be created and the assign will follow

SuppressJoinFailure

This maps to the BPEL4WS process attribute suppressJoinFailure.

EnablelnstanceCompensation

This maps to the BPEL4WS process attribute enablelnstanceCompensation.

[_1The BPEL4WS process attributes targetNamespace and xmins MUST be provided by the modeling tool that
generates the mapping to BPEL4WS.

138

BPMN Adopted Specification

11.3 Common Flow Object Mappings

The following table displays a set of mappings for the attributes common to Flow Objects (Events, Activities, and

Gateways):
Table 11.3 - Common Flow Object Attribute Mappings to BPEL4WS

Objects Mapping to BPEL4AWS

Id, Pool, Lanes, These Elements do not map to any BPEL4WS elements or attributes.

Categories, and

Documentation

Name The Name attribute of the object SHALL map to name attribute of the appropriate derived
BPEL4WS element (as per mappings described in the sections below). The extra spaces
and non-alphanumeric characters MUST be stripped from the Name to fit with the XML
specification of the name attribute. Note that there may be two or more elements with the
same name after the BPMN name has been stripped.

Assigments Each Assignments Expression will map to a BPEL4WS assign activity. Refer to the
section entitled “Assignment Mapping” on page 189 for more details about the mappings
associated with the assign element.

11.4 Events

11.4.1 Start Event Mappings

The following table displays a set of mappings from the variations of a Start Event to BPEL4WS elements (these
mappings extend the mappings common to objects--see Section 11.3, “Common Flow Object Mappings,” on page 139):

Table 11.4 - Start Event Mappings to BPEL4W

Sart Event

Mapping to BPEL4AW S

EventType = Start and Trigger

The mapping to BPEL4WS is specific to the Trigger setting. These mappings are
defined in the rows below.

None

There is no BPEL4WS element that a Start Event will map to with a Trigger that is
None. The object(s) that are the Target(s) of Sequence Flow that originate from the
Start Event will determine the first BPEL4WS element of the Process.

Note that a valid BPEL4WS process must begin with a receive or a pick activity that
has a createl nstance set to “yes.” The receive or pick will likely be placed within a
seguence or a flow.

Message

This will map to the receive element. The createl nstance attribute of the receive
element will be set to “yes.”

Message

The Message attribute maps to the variable attribute of the receive activity. See
“Messages’ on page 189 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

BPMN Adopted Specification

139

Table 11.4 - Start Event Mappings to BPEL4W

Sart Event Mapping to BPEL4WS
Implementation = Web The Implementation attribute MUST be a Web service or MUST be converted to a
Service Web Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as
follows:
The Participant attribute is mapped to the partnerLink attribute of the BPELAWS
activity.

The Interface attribute is mapped to the portType attribute of the BPEL4AWS activity.
The Operation attribute is mapped to the operation attribute of the BPEL4WS
activity.

Timer Thiswill map to the receive element. The createl nstance attribute of the receive
element will be set to “yes.” The remaining attributes of the receive will be mapped
as shown for the Message Start Event (see above).

The functionality of the timing as defined in the Start Event must be implemented in
a separate process that will start itself, then use a wait element for the defined time,
and then use an invoke to send a message that will be received by the above receive
element. A specific Message and Web service implementation must be provided so
that the mappings to receive element can be compl eted.

Rule Thiswill map to the receive element. The createl nstance attribute of the receive
element will be set to “yes.” The remaining attributes of the receive will be mapped
as the same way as for the Message Start Event (see above).

Note: the Message is expected to arrive from the application that tracks and triggers
Business Rules.

Link Thiswill map to the receive element. The createl nstance attribute of the receive
element will be set to “yes.” The remaining attributes of the receive will be mapped
as shown for the Message Start Event (see above). A specific Message and Web
service implementation must be provided so that the mappings to receive element can
be compl eted.

Multiple Thiswill map to a BPEL4WS pick will be required to process the messages with a
separate onMessage for each defined Trigger. The createl nstance attribute of the pick
element will be set to “yes.” This means that a single instance of the process will be
instantiated when the first message received through the pick onMessage is triggered.
The onMessage mappings are the same as that of a receive and as defined for the
Message Start Event (see above).

With Assigments Expression Each Assignments Expression will map to a BPEL4AWS assign that will follow the
receive. See Section 11.15, “Assignment Mapping,” on page 189 for more details
about the mappings associated with the assign element.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
» The Timer and Rule Trigger mappings have been defined.
« Thedefinition of the Link Trigger mapping was expanded.

140 BPMN Adopted Specification

» The mapping for the Multiple Trigger was changed to be a BPEL4WS pick element.

» The part of the definition of the Message Trigger that described the mapping if there were multiple incoming Message
Flow was removed. This was due that only Multiple Triggers can have multiple incoming Message Flow.

11.4.2 End Event Mappings

The following table displays a set of mappings from the variations of a End Event to BPEL4WS elements (these
mappings extend the mappings common to objects--see Section 11.3, “Common Flow Object Mappings,” on page 139):

Table 11.5 - End Event Mappings to BPEL4WS

End Event Mapping to BPEL4WS
EventType = End and The mapping to BPEL4WS is specific to the Result setting. These mappings are defined in
Result the rows below.

None There is no BPEL4WS element that a End Event will map to with a Result that is None.

However, it marks the end of a path within the Process and will be used to define the
boundaries of complex BPEL4WS elements. The object(s) that are the Source(s) of
Sequence Flow that Target the End Event will determine the final BPEL4WS elements of
the Process.

Message Thiswill map to aBPEL4AWS reply or an invoke. The appropriate BPELAWS activity will
be determined by the implementation defined for the Event. That is, the portType and
operation of the Message will be used to check to see if an upstream Message Event have
the same portType and operation. If these two attributes are matched, then the Event will
map to areply, if not, the Event will map to an invoke.

Message The Message attribute maps to the variable attribute of the reply or the outputVariable of
the invoke. See “Messages’ on page 189 for more information about how a BPMN
Message maps to BPEL4AWS and WSDL.

Implementation = Web The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:
The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS activity.
The Interface attribute is mapped to the portType attribute of the BPEL4AWS activity.

The Operation attribute is mapped to the operation attribute of the BPEL4AWS activity.

Error This will map to a throw element. The ErrorCode attribute of the Event will map to the
faultName attribute of the throw.

Cancel The mapping of the Cancel Intermediate Event to BPEL4WS is an open issue. Refer to
Annex D for other Open Issues.

Compensation This will map to a compensate element. The Name of the activity referenced by the
Compensation Event will map to the scope attribute of the compensate element.

Link This will map to a (one-way) invoke element.

Linkld The Linkld attribute maps to the outputVariable of the invoke. See “Messages’ on page

189 for more information about how a BPMN Message maps to BPEL4WS and WSDL.

BPMN Adopted Specification 141

Table 11.5 - End Event Mappings to BPEL4AWS

End Event

Mapping to BPEL4WS

ProcessRef

The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service for mapping to BPELAWS. The Web Service Attributes are mapped as follows:
The Participant attribute of the Pool where the Process is contained is mapped to the
partnerLink attribute of the BPEL4WS activity.

The Name attribute of the Process is mapped to the portType attribute of the BPEL4AWS
activity.

The Linkld attribute is mapped to the operation attribute of the BPEL4WS activity.

Terminate

This will map to the terminate element.

Multiple

This will map to a this will map to a combination of invoke, throw, fault, and
compensation elements as they are defined above.

With Assigments
Expression

Thiswill map to a BPEL4WS assign that will precede any other mappings required by the
Event. See Section 11.15, “Assignment Mapping,” on page 189 for more details about the
mappings associated with the assign element.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» The mapping for the Message, Error, Compensation, and Link End Events was updated and expanded.

» The mapping to the Return End Event was removed, since that type of Event has been removed.

11.4.3 Intermediate Event Mappings

The following table displays a set of mappings from the variations of a Intermediate Event to BPEL4WS elements (these
mappings extend the mappings common to objects--see Section 11.3, “Common Flow Object Mappings,” on page 139):

Table 11.6 - Intermediate Event Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4AWS

EventType = Intermediate
and Trigger

The mapping to BPEL4WS is specific to the Trigger setting. These mappings are defined
in the sections below.

With Assigments
Expression

this will map to a BPEL4WS assign. See Section 11.15, “Assignment Mapping,” on page
189 for more details about the mappings associated with the assign element.

142

BPMN Adopted Specification

None Intermediate Events

The mappings for None Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.7 - None Intermediate Mappings to BPEL4AWS
Intermediate Event Mapping to BPEL4WS

Trigger = None There is no BPEL4AWS element that a Intermediate Event will map to with a Trigger that
is None. These types of Intermediate Events are often used for documentation purposes to
show a specific state of the Process.

Message Intermediate Events

The mappings for Message Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--refer to the section entitled “Intermediate Event Mappings’ on page 142):

Table 11.8 - Message Intermediate Mappings to BPEL4WS
Intermediate Event Mapping to BPEL4WS

Trigger = Message This mapping is defined in the next five (5) rows.

Within the Normal Flow | If the Participant defined in the To attribute of the Message is the same Participant as that
of the Process that contains the Event, then this will map to areceive. The createl nstance
attribute of the receive element will be set to “no.”

If the Participant defined in the From attribute of the Message is the same Participant as
that of the Process that contains the Event, then this will map to a (one-way) invoke.

Message The Message attribute maps to the variable attribute of the reply or the outputVariable of
the invoke. See “Messages’ on page 189 for more information about how a BPMN
Message maps to BPEL4AWS and WSDL.

Implementation = Web The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:
The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS activity.
The Interface attribute is mapped to the portType attribute of the BPEL4AWS activity.

The Operation attribute is mapped to the operation attribute of the BPEL4AWS activity.

Without an incoming The Participant defined in the To attribute of the Message MUST be the same Participant
Sequence Flow (but not | asthat of the Process that contains the Event.

attached to an Activity The process will be given a scope (if it doesn’t already have one).

Boundary) A eventHandlers element will be defined for the scope.

An onMessage element will be added to the eventHandlers element.

Message The Message attribute maps to the variable attribute of the onMessage. See “Messages’
on page 189 for more information about how a BPMN M essage maps to BPEL4AWS and
WSDL.

Implementation = Web The Implementation attribute MUST be a Web service or MUST be converted to a Web

Service Service for mapping to BPEL4WS. The Web Service Attributes are mapped as follows:

The Participant attribute is mapped to the partnerLink attribute of the onMessage.
The Interface attribute is mapped to the portType attribute of the onMessage.
The Operation attribute is mapped to the operation attribute of the onMessage.

BPMN Adopted Specification 143

Table 11.8 - Message Intermediate Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4AWS

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers element with “<message name>_Exit”
as the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive above.

The activity for the onMessage will be a throw with “<message name>_Exit” as the
faultName attribute.

Used in an Event-Based
Decision

This will map to an onMessage within a pick. The mapping to the onMessage attributes is
the same as described for the receive above.

Timer Intermediate Events

The mappings for Timer Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.9 - Timer Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4AWS

Trigger = Timer

This mapping is defined in the next three (3) rows.

Within the Normal Flow

This will map to a wait.
The TimeDate attribute maps to the until attribute of the wait.
The TimeCycle attribute maps to the for attribute of the wait.

Without an incoming
Sequence Flow (but not
attached to an Activity
Boundary)

The process will be given a scope (if it doesn't already have one).
A eventHandlers element will be defined for the scope.

An onAlarm element will be added to the eventHandlers element.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers element with “<Event name>_Exit” as
the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onAlarm element within the eventHandlers.

The TimeDate attribute maps to the until attribute of the onAlarm.

The TimeCycle attribute maps to the for attribute of the onAlarm.

The activity for the onAlarm will be a throw with “<message name>_Exit” as the
faultName attribute.

144

BPMN Adopted Specification

Table 11.9 - Timer Intermediate Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4WS

Used in an Event-Based
Decision

This will map to an onAlarm within a pick.
The TimeDate attribute maps to the until attribute of the onAlarm.
The TimeCycle attribute maps to the for attribute of the onAlarm.

Error Intermediate Events

The mappings for Error Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.10 - Error Intermediate Mappings to BPEL4AWS

Intermediate Event

Mapping to BPEL4WS

Trigger = Error

This mapping is defined in the next two (2) rows.

Within the Normal Flow

This will map to a throw element.

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

This Event will map to a catch element within a scope.

If the Error Event does not have an ErrorCode, then a catchAll element will be added to
the faultHandlers element.

If the Error Event does has an ErrorCode, then a catch element will be added to the
faultHandlers element with the ErrorCode mapping to the faultName attribute.

Cancel Intermediate Events

The mappings for Cancel Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.11 - Cancel Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Trigger = Cancel

The mapping of the Cancel Intermediate Event to BPEL4WS is an open issue. Refer to
Annex D for other Open Issues.

Rule Intermediate Events

The mappings for Rule Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.12 - Rule Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4WS

Trigger = Rule

This mapping is defined in the next two (2) rows.

Within the Normal Flow

This will map to the receive element. The createl nstance attribute of the receive element
will be set to “no.” The remaining attributes of the receive will be mapped as shown for
the Message Start Event (see above).

BPMN Adopted Specification

145

Table 11.12 - Rule Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4AWS

Without an incoming
Sequence Flow (but not
attached to an Activity
Boundary)

The Participant defined in the To attribute of the Message MUST be the same Participant
as that of the Process that contains the Event.

The process will be given a scope (if it doesn't already have one).

A eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive for the Message Event
above.

Note: the Message is expected to arrive from the application that tracks and triggers
Business Rules.

Attached to an Activity
Boundary

The mappings of the activity (to which the Event is attached) will be placed within a
scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers element with “<message name>_Exit”
as the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive for the Message Event
above.

Note: the Message is expected to arrive from the application that tracks and triggers
Business Rules.

The activity for the onMessage will be a throw with “<message name>_Exit" as the
faultName attribute.

Used in an Event-Based
Decision

This will map to an onMessage element within a pick. The mapping to the onMessage
attributes is the same as described for the receive for the Message Event above.

Compensation Intermediate Events

The mappings for Compensation Intermediate Events are described in the following table (these mappings extend the
mappings common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.13 - Compensation Intermediate Mappings to BPEL4WS

Intermediate Event

Mapping to BPEL4AWS

Trigger = Compensation

This mapping is defined in the next two (2) rows.

Within the Normal Flow

This will map to a compensate element.The Name of the activity referenced by the
Compensation Event will map to the scope attribute of the compensate element.

Attached to an Activity
Boundary

The activity (to which the Event is attached) will be placed within a scope.
This Event map to an compensationHandler element within a scope.

146

BPMN Adopted Specification

Link Intermediate Events

The mappings for Link Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.14 - Link Intermediate Mappings to BPEL4WS

Intermediate Event Mapping to BPEL4WS
Trigger = Link This mapping is defined in the next four (4) rows.
With an outgoing Thiswill map to areceive. The createlnstance attribute of the receive element will be set
Sequence Flow to “no.” The mapping to the receive attributes is the same as described for the receive for
the Message Event above.
With an incoming Thiswill map to a (one-way) invoke element. The mapping to the onMessage attributes is
Sequence Flow the same as described for the invoke for the Message Event above.

Attached to an Activity The mappings of the activity (to which the Event is attached) will be placed within a
Boundary scope.

A faultHandlers element will be defined for the scope.

A catch element will be added to the faultHandlers element with “<message name>_Exit”
as the faultName attribute.

An eventHandlers element will be defined for the scope.

The Event will map to an onMessage element within the eventHandlers. The mapping to
the onMessage attributes is the same as described for the receive for the Message Event
above.

The activity for the onMessage will be a throw with “<message name>_Exit” as the
faultName attribute.

Used in an Event-Based | This will map to an onMessage element within a pick. The mapping to the onMessage
Decision attributes is the same as described for the receive for the Message Event above.

Multiple Intermediate Events

The mappings for Multiple Intermediate Events are described in the following table (these mappings extend the mappings
common to Intermediate Events--see Section 11.4.3, “Intermediate Event Mappings,” on page 142):

Table 11.15 - Multiple Intermediate Mappings to BPEL4AWS

Intermediate Event Mapping to BPEL4WS
Trigger = Multiple This will map to a this will map to a combination of the mappings as they are defined in
the Intermediate Event sections above.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» The mapping for the Message, Error, Compensation, Rule, and Link End Events was updated and expanded.

BPMN Adopted Specification 147

11.5 Activities

11.5.1 Common Activity Mappings

The following table displays a set of mappings from the variations of activities to BPEL4WS elements (these mappings
extend the mappings common to objects -- see Section 11.3, “Common Flow Object Mappings,” on page 139 -- Note that
Table 11.17 contains additional mappings that must be included within this set if extended by any other mapping table):

Table 11.16 - Common Activity Mappings to BPEL4WS

Activity

Mapping to BPEL4AWS

Properties

The set of Properties of an activity, as a whole, will map to a BPEL4AWS variable. The

variable element will be structured as follows:

<variable name="[activity.Name] ActivityData"
messageType="[activity.Name] ActivityDataMessage" />

Theindividual Properties will map to the parts of a WSDL message. The message element

will be structured as follows:

<message name="[activity.Name] ActivityDataMessage" >

<part name="[Property.Name]"
type="xsd: [Property.Typel" />
</message>

There will be as many parts to the message as there are Properties in the input group.

With Assigments
Expression

Thiswill map to a BPEL4WS assign. Refer to the section entitled “Assignment Mapping”
on page 189 for more details about the mappings associated with the assign el ement.

AssignTime = Start

A BPEL4WS sequence will be created and the assign will precede

AssignTime = End

A BPEL4WS sequence will be created and the assign will follow

Activity Loop Mapping

The mapping to BPEL4WS for looping activities is complex and is made up of a number of activities that will surround
the original mapping of the activity itself (which may be complex). The description of this mapping is divided into three
sections to describe the basic setup of the loop (common to all loops), then the details of Standard looping, then the
details of Multi-Instance looping.

Basic Loop Setup

The basic set up mappings, which are common to both Standard and M ulti-Instance looping activities, are described in the
following table (these mappings extend the mappings common to objects--see Section 11.5.1, “Common Activity

Mappings,” on page 148):

Table 11.17 - Basic Activity Loop Mappings to BPEL4WS

L ooping

Mapping to BPEL4WS

Activities with internal
looping

Activities that have either a Standard or Multilnstance loop setting will result in a pattern
of BPEL4AWS elements, depending on the exact settings. This pattern will be placed within
a BPEL4WS sequence activity. The details of the other mappings are described in the
rows that follow.

148

BPMN Adopted Specification

Table 11.17 - Basic Activity Loop Mappings to BPEL4WS
L ooping Mapping to BPEL4WS

LoopCounter This attribute will map to a BPEL4AWS variable, which will be part of the process
definition. The variable will be structured as follows:

<variable name="[activity.Name] loopCounter"
messageType="loopCounterMessage" />

Note: The LoopCounter mappings described in the this and the next three rows are only
required for Multi-Instance loops and Standards |oops that use the LoopMaximum
attribute. For all looping activities, the LoopCounter can be used for reporting purposes.

Supporting WSDL A WSDL message element will have to be created to support this variable. This message
Message can be used for multiple variables. The message will be structured as follows:

<message name="loopCounterMessage" >
<part name="loopCounter" type="xsd:integer" />
</message>

Initialization of the An assign activity will be created to initialize the variable before the start of the loop.
LoopCounter This activity precede the while activity. This will be the first activity within the sequence
activity. The assign will be structured as follows:

<assign name="[activity.Name] initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="[activity.Name] loopCounter"
part="loopCounter" />

</copy>
</assign>
Incrementing the An assign activity will be created to update the loopCounter variable at the end of the
LoopCounter while activity (see below). This activity will the last activity of the sequence activity that
is within the while activity. The assign will be structured as follows:
<assign name="[activity.Name] increment loopCounter"s
<copy>

<from expression="
bpws:getVariableData ([activity.Name] loopCounter,
loopCount) + 1"/>
<to variable="[activity.Name] loopCounter"
part="loopCounter" />
</copy>
</assign>

BPMN Adopted Specification 149

Standard Loops

The loop mappings for Standard loops are described in the following table (these mappings extend the mappings of the
Basic Loop Setup--refer to the previous section):

Table 11.18 - Standard Activity Loop Mappings to BPEL4WS
L ooping Mapping to BPEL4WS

LoopType = Standard For a Standard L ooping activity, the mapping of the base BPMN activity will be placed
within a BPEL4WS sequence that is within a while, and this will follow the assign
described in the Basic Loop Setup (see Figure 11.1 and Example 11.1). Section 11.5.2,
“Sub-Process Mappings,” on page 166 or the Section 11.5.3, “Task Mappings,” on page
168 for details about how the base activity will be mapped to BPEL4WS.

LoopCondition The LoopCondition, which MUST be a boolean expression, will be used as the condition
attribute of the while element.The while condition be structured as follows:

<while condition="[loopCondition]">

TestTime = After An After TestTime will map to the BPEL4WS while activity. However, to insure that the
Task is performed at least once (i.e., the functionality of an until loop), a copy of the
mapping for BPMN activity will be performed first in a sequence, followed by the while
(which will contain the original copy of the mapping for the BPMN activity).

TestTime = Before A Before TestTime does not require any additional mappings.

LoopMaximum Any value in Maximum will be appended to the LoopCondition. For example with a
LoopCondition of “x < 0" and Maximum of 5 (loops), the final expression would be “(x <
0) and ([ActivityName].LoopCounter <= 5).”

150 BPMN Adopted Specification

This represents the

: BPELAWS
This uses the Continue the sequence
M1 Conditicn
attribute of the Multi- Process ;| used for the mapping of the
Instance activity - multi-instance activity
JNNE @ I T LI " IS F - e " LI T IS T S fT S-S " f TSSO " - P I Y - - ' E—_—_— -,
I <<gs5ign=> Performed <<gs5s5igr=> T |
[Betivity, Mame]_ Mapped [activity Mame]_ | | |
initialize inerameant
loopCounter Activity IoopCountar | | .
: B |
N S R S
This represents the " [There will be as many * : . ;
EPEL‘P'"JS iterations of this acti'u-i:;r : Tsh;S S;?;:?:fa " mmé:?éﬁ::-?g the
while : as required until the activities depending sequence
oo dition is safisfiad : .
generated from the mult- pCan on the mapping within the while activity

instance activity

Figure 11.1 - BPMN Depiction of BPEL4WS Pattern for a Standard loop, TestTime = Before

BPMN Adopted Specification 151

Example 11.1 displays sample BPEL4WS code that reflects the mapping of a Standard loop.

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequences>
<assign name="[activity.Name] initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<!-- If the TestTime is set to After, the mappings of the original activity
are placed here, as well as within the while.-->
<while condition="[loopCondition]">
<sequences>
<!--The mappings of the original activity are placed here.-->
<assign name="[activity.Name] increment counter">
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter,loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example 11.1 - BPEL4WS Sample for a Standard Loop

Multi-Instance Loop Setup

The loop mappings for Multi-Instance loops are described in the following table (these mappings extend the mappings of
the Basic Loop Settings--see “Basic Loop Setup” on page 148):

Table 11.19 - Multi-Instance Activity Loop Setup Mappings to BPEL4WS

Multi-Instance Mapping to BPEL4AWS

LoopType = Multilnstance | For a Multi-Instance Looping activity, the mapping of the BPMN activity will be placed
within a BPEL4WS sequence that is within a while, and this will follow the assign
described in the Basic Loop Setup (see Figure 11.1 and Example 11.1). See

Section 11.5.2, “ Sub-Process Mappings,” on page 166 or Section 11.5.3, “Task
Mappings,” on page 168 for details about how the base activity will be mapped to
BPEL4WS.

152 BPMN Adopted Specification

Table 11.19 - Multi-Instance Activity Loop Setup Mappings to BPEL4AWS
M ulti-Instance Mapping to BPEL4WS

MI_Condition This applies to both Sequential and Parallel M1_Ordering (see below).

The MI_Condition, which MUST be a numeric expression, will map to an assign activity.
Thiswill be the first activity of the generated sequence activity (as described in the row
above).

First, a BPEL4AWS variable must be created with a derived name and will have a structure
as follows:

<variable name="[activity.Name] forEachCount"
messageType="forEachCounterMessage" />

Second, an assign activity will be used to generate the number of instances that will be
required. The assign will be structured as follows:

<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI Condition Expression]"/>
<to variable="[activity.Name] forEachCount"
part="forEachCount" />

</copy>
</assign>
Supporting WSDL A WSDL message element will have to be created to support the variable. This message
Message can be used for multiple variables. The message will be structured as follows:

<message name="forEachCounterMessage" >
<part name="forEachCount" part="xsd:integer" />

</message>
The condition for the The condition attribute of the while will be a derived expression that utilizes the
while loopCounter variable and compares it to the derived forEachCount (described in the row

above). The while condition be structured as follows:

<while condition="
bpws:getVariableData ([activity.Name] loopCounter,
loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount,
forEachCount) ">

Sequential Multi-Instance Loops

The loop mappings for Sequential Multi-Instance loops are described in the following table (these mappings extend the
mappings of the Multi-Instance Setup--refer to the section above):

Table 11.20 - Sequential Multi-Instance Activity Loop Mappings to BPEL4WS
M ulti-Instance Mapping to BPEL4WS

MI_Ordering = Sequential | Thistype of looping utilizes both the Basic Loop Setup mappings and the above Multi-
Instance mappings. No further mappings are necessary. See Figure 11.2 and Example 11.2
for the complete mappings.

BPMN Adopted Specification 153

This represents the

BPELAWS .
Continue the
sequence _ |:

used for the mapping of the Process
multi-instance activity

<<gssign>> <<gssign>> <<gssign=> | : |
| [activity. Name]_ [activity. Name] P:: rnrm:d [activity. Name]_ |
initialize_ datarminge_ appe increment_ | . |
| loopCountar instances Activity loopCounter | .
| . |
S |
| T TLoTLTT_ITL
This uses the - i .
MI_Condition .~ e o There will be as many . This represents the
attribute of the Multi- hile : copies of this acivity as. BPELAWS
- whi re are instances as
Instance activity generated from the mult- detarmine by the) .Seque.nce.)
instance activity previous assign activity within the while activity

Figure 11.2 - BPMN Depiction of BPEL4WS Pattern for a Sequential Multi-Instance loop

154 BPMN Adopted Specification

Example 11.2 displays some sample BPEL4WS code that reflects the mapping of a Standard loop.

<!-- The Process data is defined first-->
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequences
<assign name="[activity.Name] initialize loopCounter"s>
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition="bpws:getVariableData ([activity.Name] loopCounter, loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequences

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name] increment counter"s
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter,loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example 11.2 - BPEL4WS Sample for a Multi-Instance Loop with Sequential Ordering

BPMN Adopted Specification 155

Parallel Multi-Instance Loop Setup

The loop mappings for Sequential Multi-Instance loops are described in the following table (these mappings extend the
mappings of the Multi-Instance Setup--refer to the section above):

Table 11.21 - Parallel Multi-Instance Activity Loop Mappings to BPEL4WS
Multi-Instance Mapping to BPEL4WS

MI_Ordering = Parallel A BPEL4WS while activity will also be used for Parallel ordering. However, since the
Task isto be performed in paralel, the mapping to the Tasks cannot be contained within
the while. To get the parallel behavior, each copy of the multi-instance Task will be placed
into a separate, derived BPEL4WS process®. A one-way invoke will be used to “spawn”
each process and, thus, each instance of the Task. Since the invoke is only one-way, and
doesn’t wait for a response from the process, the invoke will complete quickly and the
while will cycle through al of its iterations quick enough that the instantiations of the
Task mappings will be effectively, if not literaly, in parallel.

The setting for the M1_FlowCondition attribute will determine what BPEL4WS el ements
will follow the while activity. These mappings will be described in the next four sections.

The while condition The while condition will be the same as that of the Sequential ordering (see previous
section).
Spawning the process In the while activity, a one-way invoke activity will be created and used to “spawn” each

of the derived processes. The name attribute for each derived invoke will be in the
following format:

<invoke name="Spawn Process_For [activity.Name]l" ... >

This invoke will replace the mappings of the original activity, which was in the while for
Standard loops and Sequential Multi-1nstance Loops.

The spawned process The derived process will start with a receive that accepts the message that is sent by the
one-way invoke that is within the while loop of the original process. The name of the
process will be "Spawned Process For [activity.Name]." The original Task
will be mapped and those BPEL4WS elements will follow the initial receive.

After all the mapped elements have been completed, then a one-way invoke will be used to
send a message back to the original process has a notification that the spawned processis
completed. This will be the last element of the spawned process (see Figure 11.3 and
Example 11.3). The name attribute for the derived invoke will be in the following format:

<invoke name="[activity.Name] Completed" ... >

156 BPMN Adopted Specification

Table 11.21 - Parallel Multi-Instance Activity Loop Mappings to BPEL4AWS

M ulti-Instance Mapping to BPEL4WS
Copying variables to/ Since the Parallel Multi-Instance Task mappings are going to be performed within the a
from the spawned different process instance, the variables of the original process will need to be passed to
processes the spawned process through the inputVariable of the one-way invoke that spawns the

process. Likewise, any variables that are updated in the spawned process will need to be
passed back to the original process through the inputVariable of the one-way invoke that
indicates that the spawned process has completed.

Note: Once the individual derived processes are instantiated, they will be blind to any
changes in process variables. From the BPMN point of view, all the multi-instance
activities are within the same context as the original Process and, thus, should be able to
utilize any dynamic changes to Process Properties (BPEL4WS variables) as they occur
(this is especially true for multi-instance Sub-Processes). It is up to the BPEL4AWS
execution environment to provide a “virtual context” for all the derived processes to
“share’ the process variables.

Receiving completion As mentioned above, the spawned processes will send a message back to the origina
messages process after it has completed performing the behavior of the origina activity. A
BPEL4WS receive activity will be used to receive the messages back from al the
spawned processes. The settings of the MI1_FlowCondition will determine The name
attribute for each derived receive will be structured as follows:

<receive name="[activity.Name] Completed" ... >

The setting of the MI_FlowCondition attribute will determine how many receive activities
will be required. Once the appropriate number of messages have been received back from
the spawned processes, the original process will continue.

a. Note: BPEL4WS does not have a sub-process capability. It is likely that sub-processes, both Embedded and Reference, will be
added to BPEL4WS in the future. When this capability has been added, the mapping for derived processes will be updated.

This may be a Send a message
sequence of » back to indicate that
A activities, depending the activity has been

onthe mapping .~ completed.

<<receive>> Performed <<one-way>>
Spawn_Process_For Mapped [activity.Name]_
_[activity.Name] Activity(ies) Completed

“. | Receive the instantiation

.| message from the one-way

invoke from the original
process

Figure 11.3 - Structure of Process to be Spawned for Parallel Multi-instance

BPMN Adopted Specification 157

Example 11.5 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must synchronize all the looped activities.

<process name="Spawned Process For [activity.Name]l" ... >
<sequence>
<receive name="Spawn Process For [activity.Name]l" ... >
<!--The mappings of the original activity are placed here.-->
<invoke name="[activity.Name] Completed" ... >
</sequence>
</process>

Example 11.3 - BPEL4WS Sample of a derived process for Parallel Multi-Instance loops

Parallel Multi-Instance Loops -- Flow Condition All

The loop mappings for Parallel Multi-Instance loops that have an M1_FlowCondition of All are described in the following
table (these mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above):

Table 11.22 - Parallel Multi-Instance Activity, Ml_FlowCondition = All
Multi-Instance Mapping to BPEL4WS

MI_FlowCondition = All This setting utilizes the mechanisms described above for the Parallel ordering. The “All”
setting requires that all of the spawned processes must be completed before the original
process can continue (see Figure 11.4 and Example 11.4).

Synchronizing the The synchronization from the spawned processes is managed through the messages sent
completion of the by those processes when they have completed the behavior defined by the original
spawned processes activity. These messages will be received by the origina process and when the messages

from all the spawned processes are received, then the original process can continue. To
ensure that all the messages are received, a second while activity will used. Thiswhile will
contain a receive activity (for the completion messages) and an assign activity to
increment the loop counter. The while condition attribute will be the same as the condition
for the while that generated all the spawned processes, so that the same number of
messages will be received as there were spawned processes.

Resetting the loop Prior to the second while activity, another assign will be required to reset the loop counter.

Counter The contents of the assign activity will be the same as the assign that originally initialized
the loopCounter. The name attribute for the derived assign will be in the following format:
<assign name="[activity.Name] reset loopCounter" ... >

158 BPMN Adopted Specification

This represents the
BPELAWS

sequence

used for the mapping of the
multi-instance activity

. Thi: thi
Continue the Bﬂﬁ:ﬁg ©
| Process while

usad o synchronize the
compleation of the instances

=<agsign=> teJ <<rBCEive=> Tgtssrign” |) |

| [activity Name]_reset loopCounted) == | [activity Mame]_ [aﬁ,:;",gm;r{*]— e
' —toopCounter farEachCouPn Completed loopCounter | | |
| This uses the X
. MI_Condition ; |
| attribute of the Mult- * o . .
. Instance activity [_‘\ “There will be as many |
| . [AR . | respanses back from the

i | - ' | 1 ‘spawned process as |
) <<assign=> <<assign=> =<assign=> | there are instances of
[| foctivity Name] [activity Name] SEane-way>> [activity Name] | " hat process
: iniialize_ determing_ Spa[v.'nt_ll?tro?‘ess_llror increment_ ' | P |

loopCounter instances —LACHvILy. NBMe] loopCounter | ! |

| . | “| This represents the
: X | BPEL4WS
| . !| sequence

This represants the
BPELAWS

while
generated from the mult-
instance activity

There will be as many |
copies of this activity as
there are instances as -
detarmine by the
previous assign activity

within the whils activity |

This regresants the
BFEL4WS
sequence
within the while aclivity

Figure 11.4 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = All

BPMN Adopted Specification

159

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />

<!-- The contents of the process prior to the looping activity are here-->
<sequences>
<assign name="[activity.Name] initialize loopCounter"s>
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition=" bpws:getVariableData ([activity.Name] loopCounter,loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequences

<invoke name=" Spawn Process_ For [activity.Name]l" ... >

<assign name="[activity.Name] increment counter"s
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter,loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
<assign name="[activity.Name] reset loopCounter"s
<copy>
<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<!-- Set a while to receive all the return messages. The condition will be the same.-->
<while condition=" bpws:getVariableData ([activity.Name] loopCounter,loopCounter) »>=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">

<sequencex>
<receive name="[activity.Name] Completed" ... >
<assign name="[activity.Name] increment counter"s>
<copy>

<from expression="bpws:getVariableData ([activity.Name] loopCounter,loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example 11.4 - BPEL4WS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = All

160 BPMN Adopted Specification

Parallel Multi-Instance Loops -- Flow Condition One

The loop mappings for Parallel Multi-Instance loops that have a MI_FlowCondition of One are described in the following
table (these mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above):

Table 11.23 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = One

Multi-Instance

Mapping to BPEL4WS

MI_FlowCondition = One

This setting utilizes the mechanisms described above for the Parallel ordering. The “One”
setting requires that only one of the spawned processes must be completed before the
original process can continue (see Figure 11.5 and Example 11.5).

Receiving the
completion message

Only one message is required from any one of the spawned processes before the original
process can continue. Thus, there will be a single receive activity following the while
activity. The receive will be the last element of the sequence that was started for the
mapping of the Multi-Instance activity. The other spawned processes will continue there
activities in paralel, but their completion will have no direct impact on the flow of the
main process (their messages won't be received).

Note: As mentioned above, it is up to the BPEL4WS execution environment to provide a
“virtual context” for all the derived processes to “share” the process variables that may be
updated by the spawned processes with the original process, even if there are no specific
BPEL4WS activities to manage this information.

BPMN Adopted Specification

161

This represents the

BPELAWS _
sequence Continue the

used for the mapping of the . . o Process
mlti-instance activity '

’ <<racaives> |
| [activity. Mame]_ :
. . Completed |
This uses the
| Mi_Condition '
: attribute of the Multi- |
| Instance activity | L .
. ==gssign==> ==gss5ign== <=g5sign== .
[activity Name]_ [activity Name] Srone-way== [activity Mame] | |
| Initialize_ determine_ N SpaE.r.'nt_lF_"tro?ie:ss_I]:m increment_ -) |
: loopCounter instances —Lactvity Name; loopCounter | | |
! L_._._._._.__'.__'.__'.__'.__'.__'._;.__'__;_!|
This represents the < | There will be as many coples This represents the
BPEH‘WS of this activity as there are - BPEL4WS
while ' instances as determing by sequence
generated from the mult- the previous assign activity within the wiile activity

instance activity

Figure 11.5 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = One

162 BPMN Adopted Specification

Example 11.5 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must wait for only one of the looped activities.

<!-- The Process data is defined first-->
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence>
<assign name="[activity.Name] initialize loopCounter"s>
<copy>

<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI_ Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assign>
<while condition="bpws:getVariableData ([activity.Name] loopCounter, loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">

<sequence>
<!--The mappings of the original activity are placed here.-->
<assign name="[activity.Name] increment counter">
<copy>

<from expression="bpws:getVariableData ([activity.Name] loopCounter,loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
<receive name="[activity.Name] Completed" ... >
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example 11.5 - BPEL4AWS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = One

Parallel Multi-Instance Loops -- Flow Condition Complex

The loop mappings for Parallel Multi-Instance loops that have a M1_FlowCondition of Complex are described in the
following table (these mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above):

Table 11.24 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex

Multi-Instance Mapping to BPEL4WS
MI_FlowCondition = The mapping for this setting is amost the same as the M1_FlowCondition of All mapping
Complex (as described above) and seen in Figure 11.4 and Example 11.4). The difference isthat the
number of return messages required before the process flow will continue must be
determined and the messages have been received.

BPMN Adopted Specification 163

Table 11.24 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = Complex

Multi-Instance Mapping to BPEL4WS

The while condition for The second while in the sequence will be used to receive the appropriate number of

receiving completion completion messages. The ComplexM|_FlowCondition, which MUST be a boolean

messages expression, will determine this number. The while condition be structured as follows:
<while condition="[ComplexMI FlowCondition] ">

Parallel Multi-Instance Loops -- Flow Condition None

The loop mappings for Parallel Multi-1nstance loops that have a M1_FlowCondition of None are described in the
following table (these mappings extend the mappings of the Parallel Multi-Instance Setup--refer to the section above):

Table 11.25 - Parallel Multi-Instance Activity Loop, MI_FlowCondition = None
Multi-Instance Mapping to BPEL4AWS

MI_FlowCondition = None | This means that there is not synchronization or control of the Tokens that are generated
through the multi-instance activity. This means that each Token will continue on
independently and each Token will create a separate instantiation of each activity they
encounter. Basically, it means there is a separate copy of the whole process, for each copy
of the Multi-Instance activity, after that point. Each copy of the remainder of the process
will continue independently.

To create this behavior, the remainder of the process will moved into a new, derived

process.
Spawning the rest of the | This process will be spawned through a one-way invoke that will be placed within the
process while activity, after the mappings of the original BPMN activity (see Figure 11.6 and

Example 11.6). The name attribute for the derived invoke will be in the following format:

<invoke name=
"Spawn_Remainder of Process from_ [activity.Name]"...>

164 BPMN Adopted Specification

This uses the

MI_Condition
attribute of the Multi- *,
Instance activity

End Segment
of the
- Process

used for the mapping of the

This represents the
BPEL4AWS

sequence

multi-instance activity

<<assign>> <<assign>>
[activity.Name]_ [activity.Name]_
initialize_ determine_
loopCounter instances

<<one-way>>
loopCounter) >=| | spawn_Process_For

L =
\ /" forEachCount) —[activity.Name]

<<assign>>
L <<one-way>>
[activity.Name]
. - Spawn_Process
increment, — . —
- Remainder
loopCounter

!

This represents the
BPEL4AWS

while

generated from the multi-
instance activity

BPMN Adopted Specification

There will be as many
copies of this activity as |
there are instances as
determine by the
previous assign activity

This represents the
BPEL4WS

sequence
within the while activity

Figure 11.6 - BPEL4WS Pattern of Parallel Multi-instance, MI_FlowCondition = None

165

Example 11.6 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must wait for none of the looped activities.

<!-- The Process data is defined first--»>
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<variable name="[activity.Name] forEachCount" messageType="forEachCounterMessage" />

<!-- The contents of the process prior to the looping activity are here-->
<sequence>
<assign name="[activity.Name] initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assigns>
<assign name="[activity.Name] determine instances">
<copy>
<from expression="[MI Condition Expression]"/>
<to variable="[activity.Name] forEachCount" part="forEachCount" />
</copy>
</assigns>

<while condition=" bpws:getVariableData ([activity.Name] loopCounter,loopCounter) >=
bpws:getVariableData ([activity.Name] forEachCount, forEachCount) ">
<sequence>

<!--The mappings of the original activity are placed here.-->

<assign name="[activity.Name] increment counter">
<copy>
<from expression="bpws:getVariableData ([activity.Name] loopCounter,loopCount)+1"/>
<to variable="[activity.Name] loopCounter" part="loopCounter" />
</copy>
</assign>
</sequence>
</while>
<invoke name="Spawn Remainder of Process from [activity.Namel" ... >
</sequence>
<!-- The contents of the process after the looping activity are here-->

Example 11.6 - BPEL4AWS Sample of a Parallel Multi-Instance Loop, MI_FlowCondition = None
Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The activity looping mappings were completely reorganized and revised.

11.5.2 Sub-Process Mappings

The following table displays a set of mappings from the variations of a Sub-Process to BPEL4WS elements (This extends
the mappings that are defined for all activities--refer to the section entitled “Common Activity Mappings’ on page 148):

Table 11.26 - Sub-Process Mappings to BPEL4WS
Sub-Process Mapping to BPEL4AWS

ActivityType = SubProcess | The SubProcessType attribute will determine the exact mapping of a Sub-Process. See the
next two sub-sections for these mappings.

166 BPMN Adopted Specification

Table 11.26 - Sub-Process Mappings to BPEL4WS
Sub-Process Mapping to BPEL4WS

IsATransaction The mapping of a Sub-Process set to a Transaction is an Open Issue (See Annex D for
other Open Issues). Thus, there is ho mapping defined when the ISATransaction is set to
True, or the sub-attributes Transactionld, TransactionProtocol, and TransactionM ethod.

Embedded Sub-Process

The following table displays a set of mappings from the variations of an Embedded Sub-Process to BPEL4WS elements
(This extends the mappings that are defined for all activities--Section 11.5.2, “ Sub-Process Mappings,” on page 166):

Table 11.27 - Embedded Sub-Process Mappings to BPEL4WS

Sub-Process Mapping to BPELAWS

SubProcessType = This will map to a BPEL4WS scope element. The scope is not an independent

Embedded process and will share the process variables of the higher-level process.

GraphicalElements Thisisalist of al the graphical elements contained within the Process. Each of these
elements will have their mapping, as defined in the sections below.

Adhoc Ad Hoc Processes are not executable. Thus, this attribute MUST be set to False if the
Process is to be mapped to BPEL4WS. The AdHocCompletionCondition and the
AdHocOrdering attributes are only valid if the AdHoc attribute is True. Thus, these
attributes will not be mapped to BPEL4WS.

Independent Sub-Process

The following table displays a set of mappings from the variations of an Independent Sub-Process to BPEL4WS elements
(This extends the mappings that are defined for all activities--see Section 11.5.2, “ Sub-Process Mappings,” on page 166):

Table 11.28 - Independent Sub-Process Mappings to BPEL4WS

Task Mapping to BPEL4WS
SubProcessType = BPEL4WS does not have a sub-process element. Thus, Independent Sub-Processes MUST
Independent map to a BPEL4WS process. That is, the contents of the Sub-Process, whether it is

expanded or collapsed, will be contained within a separate process.

The DiagramRef and ProcessRef attributes will identify the process that will be used for
the mapping to the BPEL4WS process. The attributes of the other BPEL4WS process
element will be filled from the mapping of the referenced Process. Section 11.2, “Business
Process Mappings,” on page 137 for the details of this mapping.

The Sub-Process object itself maps to an invoke activity that “calls’ the process.

InputPropertyMaps This attribute is actually a mapping of Process Properties to the Process Properties of the
Process being referenced by the Sub-Process Object.

The OutputPropertyMaps attribute maps to the inputVariable attribute of the invoke
activity. See “Messages’ on page 189 for more information about how a BPMN Message
maps to BPEL4WS and WSDL.

BPMN Adopted Specification 167

Table 11.28 - Independent Sub-Process Mappings to BPEL4AWS
Task Mapping to BPEL4AWS

OutputPropertyMaps This attribute is actually a mapping of Process Properties to the Process Properties of the
Process being referenced by the Sub-Process Object.

The InputPropertyMaps attribute maps to the outputVariable attribute of the invoke
activity. See “Messages’ on page 189 for more information about how a BPMN Message
maps to BPEL4WS and WSDL.

Reference Sub-Process

The following table displays a set of mappings from the variations of a Reference Sub-Process to BPEL4WS elements:
Table 11.29 - Reference Sub-Process Mappings to BPEL4AWS

Task Mapping to BPEL4WS

SubProcessType = This type of Sub-Processis not directly mapped to BPEL4AWS, since BPEL4WS does not

Reference support this type of referencing. However, the Sub-Process will be used as a placeholder
for the Sub-Process that will be mapped (see next row).

TaskRef: Task This attribute references another Sub-Process in the Process. It is the referenced Sub-

Process that will be mapped and the mappings will be placed in the location of the
Reference Sub-Process. That is, another copy of the entire mapping of the referenced Sub-
Process will be created in this location (the mappings will also exist in the referenced Sub-
Process' origina location).

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:
» Separate sub-sections were create for the mappings for Embedded, Independent, and Reference Sub-Processes.

» The Embedded Sub-Process mapping was changed from an invoke of another process to a scope.

11.5.3 Task Mappings

The following table displays a set of mappings from the variations of a Task to BPEL4WS elements (This extends the
mappings that are defined for all activities--see Section 11.5.1, “Common Activity Mappings,” on page 148):

Table 11.30 - Task Mappings to BPEL4WS
Task Mapping to BPEL4AWS

Activity Type = Task The TaskType attribute will determine the exact mapping of a Task. See the next eight (8)
sub-sections for these mappings.

Web service Mappings The Implementation attribute MUST be a Web service or MUST be converted to a Web
Service for mapping to BPEL4AWS. The Web Service Attributes are mapped as follows:
The Participant attribute is mapped to the partnerLink attribute of the BPEL4WS activity.
The Interface attribute is mapped to the portType attribute of the BPEL4WS activity.

The Operation attribute is mapped to the operation attribute of the BPEL4WS activity.

168 BPMN Adopted Specification

Service Task

The following table displays a set of mappings from the variations of a Service Task to BPEL4WS elements:
Table 11.31 - ServiceTask Mappings to BPEL4WS

Task

Mapping to BPEL4WS

TaskType = Service

This type of Task maps to an invoke activity.

InMessage The InMessage attribute maps to the inputVariable attribute of the invoke activity. See
“Messages’ on page 189 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

OutMessage The OutM essage attribute maps to the outputVariable attribute of the invoke activity. See

“Messages’ on page 189 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Implementation = Web
Service

Thiswill map as defined in Table 11.30.

Receive Task

The following table displays a set of mappings from the variations of a Receive Task to BPEL4WS elements (This
extends the mappings that are defined for all Tasks--see Section 11.5.3, “Task Mappings,” on page 168):

Table 11.32 - Receive Task Mappings to BPEL4AWS

Task

Mapping to BPEL4WS

TaskType = Receive

This type of Task maps to areceive activity.

Message: Message

The Message attribute maps to the variable attribute of the receive activity. See
“Messages’ on page 189 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Instantiate False :
Boolean

If the Instantiate attribute of the Task is set to False, then the createl nstance attribute of
the receive will not be included or it will be set to “no.”

If the Instantiate attribute of the Task is set to True, then the createl nstance attribute of the
receive will be set to “yes.”

Implementation = Web
Service

Thiswill map as defined in Table 11.30.

Send Task

The following table displays a set of mappings from the variations of a Send Task to BPEL4WS elements:
Table 11.33 - Send Task Mappings to BPEL4WS

Task

Mapping to BPEL4WS

TaskType = Send

This type of Task maps to areply or an invoke activity. The appropriate BPEL4AWS
activity will be determined by the implementation defined for the Task. That is, the
portType and operation of the Task will be used to check to see if an upstream Receive
Task have the same portType and operation. If these two attributes are matched, then the
Send Task will map to areply, if not, the Send Task will map to an invoke.

BPMN Adopted Specification

169

Table 11.33 - Send Task Mappings to BPEL4AWS

Task

Mapping to BPEL4AWS

Message: Message

The Message attribute maps to the variable attribute of the reply activity or it maps to the
inputVariable attribute of the invoke activity. See “Messages’ on page 189 for more
information about how a BPMN Message maps to BPEL4WS and WSDL.

Implementation = Web
Service

This will map as defined in Table 11.30.

User Task

The following table displays a set of mappings from the variations of a User Task to BPEL4WS elements:
Table 11.34 - User Task Mappings to BPEL4WS

Task

Mapping to BPEL4AWS

TaskType = User

This type of Task maps to an invoke activity.

Performers: String

The Performers is information needed by the implementation. Thus, it will be included in
the InMessage being sent to the Web service, through the inputVariable attribute of the
invoke activity.

InMessage The InMessage attribute maps to the inputVariable attribute of the invoke activity. See
“Messages’ on page 189 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

OutMessage The OutM essage attribute maps to the outputVariable attribute of the invoke activity. See

“Messages’ on page 189 for more information about how a BPMN Message maps to
BPEL4WS and WSDL.

Implementation = Web
Service

This will map as defined in Table 11.30.

Script Task

The following table displays a set of mappings from the variations of a Script Task to BPEL4WS elements:
Table 11.35 - Script Task Mappings to BPEL4WS

Task

Mapping to BPEL4AWS

TaskType = Script

This type of Task maps to an invoke activity. Since this activity is performed by a process
engine, the default settings of the engine must be used to determine the settings of the
invoke activity. That is, partnerLink, portType, operation, inputVariable, and maybe
outputVariable are derived by these default settings. The script itself is performed when
the appropriate Web service of the process engine in invoked.

Manual Task

The Manual Task does not map to BPEL4WS. Thus, this type of Task should not be used in a Process that is intended to

generate BPEL4WS code.

170

BPMN Adopted Specification

Reference Task

The following table displays a set of mappings from the variations of a Reference Task to BPEL4WS elements:
Table 11.36 - Reference Task Mappings to BPEL4WS

Task Mapping to BPEL4WS

TaskType = Reference Thistype of Task is not directly mapped to BPEL4WS, since BPEL4WS does not support
this type of referencing. However, the Task will be used as a placeholder for the Task that
will be mapped (see next row).

TaskRef: Task This attribute references another Task in the Process. It is the referenced Task that will be
mapped and the mappings will be placed in the location of the Reference Task. That is,
another copy of the entire mapping of the referenced Task will be created in this location
(the mappings will also exist in the referenced Task’s original location).

None Task

The following table displays a set of mappings from the variations of a None Task to BPEL4WS elements:
Table 11.37 - None Task Mappings to BPEL4WS
Task Mapping to BPEL4WS

TaskType = None This type of Task maps to an empty activity.

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» The mapping was separated into separate sub-sections for each type of Task.
» Thereference to a BPEL4AWS until activity was removed.

» The mapping for the Reference Task was included.

11.6 Gateways

11.6.1 Common Gateway Mappings

The following table displays a set of mappings are common for Gateways to BPEL4WS elements (these mappings extend
the mappings common to objects -- see Section 11.3, “Common Flow Object Mappings,” on page 139):

Table 11.38 - Common Gateway Mappings to BPEL4WS

Data-Based Exclusive Mapping to BPEL4WS

Gateways

Gateway A Gateway will map to a variety of BPEL4WS elements (e.g., switch, pick, flow) and
patterns of elements.

BPMN Adopted Specification 171

Table 11.38 - Common Gateway Mappings to BPEL4WS

Data-Based Exclusive
Gateways

Mapping to BPEL4WS

Incoming Flow

A Gateway, as with activities, is alocation where Sequence Flow can converge. The
convergence of Sequence Flow potentially marks the end of a BPEL4WS structured
element, if the correct number of flow converge. See Section 11.17, “Determining the
Extent of a BPEL4WS Structured Element,” on page 190 for more details on converging
of Sequence Flow and their mapping to BPEL4WS.

Outgoing Flow

The mapping will begin at the location of the Gateway.

The BPMN elements that follow the Gateway, until all the outgoing paths have converged,
will be contained within the extent of the mapping (e.g., they will be placed with in a
sequence within a switch case).

The end of the mapping will be determined by the convergence of the paths, through a
variety of mechanisms (see Section 11.17, “Determining the Extent of a BPEL4WS
Structured Element,” on page 190).

Assignments associated
with Gates

Thiswill map to a BPEL4AWS assign. See Section 11.15, “ Assignment Mapping,” on page
189 for more details about the mappings associated with the assign element.

11.6.2 Exclusive

Data-Based

The following table displays a set of mappings from the variations of a Data-Based Exclusive Gateway to BPEL4AWS

elements (these mappings extend the mappings common to objects -- see Section 11.6.1, “Common Gateway Mappings,

on page 171):

Table 11.39 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Data-Based Exclusive
Gateways

Mapping to BPEL4AWS

Gateway (GatewayType = | The Gateway will map to a BPEL4WS switch.
XOR; XORType = Data)
MarkerVisible This does not have a mapping to BPEL4WS. Its purpose is to determine whether or not a

graphical marker will be displayed.

Incoming Flow

Outgoing Flow

Gates

Each Gate will map to a case of the switch. The cases will be listed in the switch in the
same order as they are listed for the Gateway.

Condition for the
Sequence Flow
associated with the
Gate

This will map to the condition for a switch case.

BPMN Elements that
follow the Gate.

If there is more than one element that follows the Gate, and this includes Assignments for
the Gate, then these elements will be placed inside a sequence activity after these elements
have been mapped.

DefaultGate

This will map to the otherwise element of the switch.

172

BPMN Adopted Specification

Table 11.39 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Data-Based Exclusive
Gateways

Mapping to BPEL4WS

BPMN Elements that
follow the DefaultGate.

If there is more than one element that follows the DefaultGate, and this includes
Assignments for the Gate, then these elements will be placed inside a sequence activity
after these elements have been mapped.

Event-Based

The following table displays a set of mappings from the variations of a Event-Based Exclusive Gateway to BPEL4WS
elements (these mappings extend the mappings common to objects -- see Section 11.6.1, “Common Gateway Mappings,”

on page 171):

Table 11.40 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Event-Based Exclusive
Gateways

Mapping to BPEL4WS

Gateway (GatewayType =
XOR; XORType = Event)

This Gateway will map to a BPEL4WS pick. The elements of the pick will be determined
by the targets of the outgoing Sequence Flow. The specific mappings are described in the
rows below.

Instantiate

If the Instantiate attribute of the Gateway is set to False, then the createl nstance attribute
of the pick MUST NOT be included OR it MUST be set to “no.”

If the Instantiate attribute of the Gateway is set to True, then the createl nstance attribute
of the pick MUST be set to “yes.”

Gate with Receive Task
as Target

The Receive Task will map to an onMessage element within the pick.

The attributes of the Receive Task will map to the appropriate elements of the onMessage,
such as operation and portType. See “Receive Task” on page 169 for the mapping of the
Receive Task. Note that the name of the Task does not have a corresponding attribute
within the onMessage element.

Gate with Message
Intermediate Event as
Target

A Message Intermediate Event will map to an onMessage element within the pick.

The attributes of the Message Intermediate Event will map to the appropriate elements of
the onMessage, such as operation and portType. See Section 11.4.3, “Intermediate Event
Mappings,” on page 142 for the mapping of the Message Intermediate Event.

Gate with Timer
Intermediate Event as
Target

A Timer Intermediate Event, which is the Target of a Sequence Flow associated with the
Gate, will map to an onAlarm element within the pick.

The Timedate attribute of the Event will map to the until element of the onAlarm element.
The Timecycle attribute of the Event will map to the for element of the onAlarm element.

Gate with Link
Intermediate Event as
Target

A Rule Intermediate Event, in this situation, will be considered as the same as receiving a
message from a process. Thus, this will map to an onMessage element within the pick.
The attributes of the Message Intermediate Event will map to the appropriate elements of
the onMessage, such as operation and portType. See Section 11.4.3, “Intermediate Event
Mappings,” on page 142 for the mapping of the Message Intermediate Event.

BPMN Adopted Specification

173

Table 11.40 - Data-Based Exclusive Gateway Mappings to BPEL4WS

Event-Based Exclusive
Gateways

Mapping to BPEL4WS

Gate with Rule
Intermediate Event as
Target

A Rule Intermediate Event, in this situation, will be considered as the same as receiving a
message from a system that tracks and generates Rule events. Thus, this will map to an
onMessage element within the pick.

The attributes of the Message Intermediate Event will map to the appropriate elements of
the onMessage, such as operation and portType. See Section 11.4.3, “Intermediate Event
Mappings,” on page 142 for the mapping of the Message Intermediate Event.

BPMN Elements that
follow the first target of a
Gate.

If there is more than one element that follows the first target of a Gate, and this includes
Assignments for the Gate, then these elements will be placed inside a sequence activity
after these elements have been mapped.

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

» A mapping for the Instantiate attribute of the Gateway was added.

» A mapping for the Error Intermediate Event, as a Target, was removed.

« Those mappings that were incomplete in the previous version, were completed.

11.6.3 Inclusive

The following table displays a set of mappings from the variations of a Inclusive Gateway to BPEL4WS elements (these
mappings extend the mappings common to objects -- See Section 11.6.1, “Common Gateway Mappings,” on page 171):

Table 11.41 - Inclusive Gateway Mappings to BPEL4AWS

Inclusive Gateways

Mapping to BPEL4WS

Gateway (GatewayType = | The Gateway will map to a set of BPEL4AWS switches within a BPEL4AWS flow. An
OR) additional switch will be required if the DefaultGate is used (see below)
Gates Each Gate will map to a switch. Each switch will binary in nature. That is, each switch

will have exactly one case and one otherwise.

Condition for the
Sequence Flow
associated with the Gate

This will map to the condition for the switch case.

BPMN Elements that
follow the Gate.

If there is more than one element that follows the Gate, and this includes Assignments for
the Gate, then these elements will be placed inside a sequence activity after these elements
have been mapped.

If a DefaultGate is used, then an assign activity will follow all the other mappings (see
below for details).

The otherwise element
for the switch

The otherwise element for each switch will contain an empty activity. However, if the
DefaultGate is used, then

174

BPMN Adopted Specification

Table 11.41 - Inclusive Gateway Mappings to BPEL4AWS

Inclusive Gateways Mapping to BPEL4WS

DefaultGate The DefaultGate will map to a switch. However, by using the DefaultGate, the mapping to
BPEL4WS is more complicated (see Figure 11.7 and Example 11.7). This is the path that
istaken if none of the other paths are taken. Thus, the decision about whether the Default
Gate should be taken will occur after al the other Gate decisions have been determined.

This means that the switch for the DefaultGate will follow the flow activity generated for
all the Gates of the Gateway. Also, a sequence activity must encompass the flow and the

switch.
Create the tracking A variable must be used so that the switch for the DefaultGate will know whether or not
variable the Default BPMN path should be taken. To do this, a BPEL4WS variable must be

created with a derived name and will have a structure as follows:

<variable name=" [Gateway.Name] noDefaultRequired"
messageType="noDefaultRequired" />

Supporting WSDL A WSDL message element will have to be created to support this variable. This message
Message can be used for multiple variables. The message will be structured as follows:

<message name="noDefaultRequired" >
<part name="noDefault" type="xsd:boolean" />

</message>
Initialization of the An assign activity will be created to initialize the variable before the start of the loop.
tracking variable This assign precede the flow activity that contains all the switches derived from the Gates.
Thiswill be the first activity within the sequence activity. The assign will be structured as
follows:
<assign name=" [Gateway.Name] initialize noDefault">
<copy>

<from expression="false"/>
<to variable="[Gateway.Name] noDefaultRequired"
part="noDefault" />
</copy>
</assign>

The switch cases The condition for the switch case will used the noDefaultRequired variable and will
structured as follows:

<switch>
<case condition="bpws:getVariableProperty (
[Gateway.Name] noDefaultRequired,noDefault)=true">
<sequence>

<!--The mappings of the original activity are placed here.-->
<!--An assign activity (see below) is placed here.-->

</sequence>
</case>
<otherwise>
<empty/>
</otherwise>
</switch>

BPMN Adopted Specification 175

Table 11.41 - Inclusive Gateway Mappings to BPEL4AWS

Inclusive Gateways

Mapping to BPEL4WS

BPMN Elements that
follow the DefaultGate

after all the other mappings (see next row).

If there is more than one element that follows the DefaultGate, and this includes
Assignments for the Gate, then these elements will be placed inside a sequence activity
after these elements have been mapped. An assign activity will be placed in the sequence

Setting of the tracking
variable

<copy>
<from expression="true"/>

part="noDefault" />

If any of the switches within the flow passes the condition of the switch case, then the
noDefaultRequired must be set to True. This will ensure that the DefaultGate switch will
bypass the mapped activities for the BPMN Default Gate.

An assign activity will be created to set the variable to True. This will be the last activity
within the sequence activity within the switch. The assign will be structured as follows:

<assign name=" [Gateway.Name] set noDefault">

<to variable="[Gateway.Name] noDefaultRequired"

</copy>
</assign>
This represents the BPEL4WS -
flow This “"p“mm;' [}‘9 BFELAWE This represents the BPELAWS
while
| that encloses the switches for g sequence
: the Gates generated from a Gate within the switch case
P e R e RN
e - .
I There may be more Parf d |
switches included within erforme <<assign=> i .
| the flow, but there must *, Mapped [activity.Name]_ This represents El'e BPELAWS |
be at least one, B Activity(ies) set_noDefault while .
I generated from the |
DefaultGate
I Otharwise - |
<<aAssign=> | | .
[activity. Name]_ —_ e — s — s — s — = = . noDefault = True |
initialize_ - - i -
noDefault | . |
l Performed :
| Performed <<assign>> Mapped | |
Mapped [activity Name] | otherwse Activity(ies) Lo
| Activity(ies) set_noDefault - | |
Otherwise

This represents the BPEL4WS

that encloses the whole

This represents the BPEL4WS
sequence while
generated from a Gate

pattern

sequence

- . | This represents the BPELAWS
within the switch case

Figure 11.7 - BPEL4WS Pattern of Inclusive Decision with two (2) Gates and a DefaultGate

176

BPMN Adopted Specification

Example 11.7 displays some sample BPEL4WS code that reflects the mapping of a Multi-Instance loop that has Parallel
ordering and must synchronize all the looped activities.

<!-- The Process data is defined first-->
<variable name="[activity.Name] loopCounter" messageType="loopCounterMessage" />
<!-- The contents of the process prior to the looping activity are here-->
<sequence>
<assign name="[Gateway.Name] initialize noDefault'"s>
<copy>

<from expression="false"/>
<to variable=" [Gateway.Name] noDefaultRequired" part="noDefault" />

</copy>
</assign>
<flow>
<!--There will be as many copies of the switch below as there are Gates.-->
<switch>
<case condition="[Sequence Flow Condition"s>
<sequence>
<!--The mappings of the activities are placed here.-->

<assign name="[Gateway.Name] initialize noDefault"s>
<copy>
<from expression="true"/>
<to variable=" [Gateway.Name] noDefaultRequired" part="noDefault" />
</copy>
</assign>
</sequence>
</case>
<otherwise>
<empty/>
</otherwise>
</switch>
</flow>
<switch>
<case condition=
"bpws:getVariableProperty ([Gateway.Name] noDefaultRequired,noDefault)=true">
<sequence>

<!--The mappings of the activities are placed here.-->

</sequence>
</case>
<otherwise>
<empty/>
</otherwises>
</switchs>
</sequence>

Example 11.7 - BPEL4WS Sample for the Pattern for an Inclusive Decision with a DefaultGate

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» This mapping, which was not defined in the last version, was defined.

BPMN Adopted Specification 177

11.6.4 Complex

The behavior and usage of Complex Gateways have not been well enough established for a mapping to BPEL4WS to be
defined.

11.6.5 Parallel

The following table displays a set of mappings from the variations of a Parallel Gateway to BPEL4WS elements (these
mappings extend the mappings common to objects --see Section 11.6.1, “Common Gateway Mappings,” on page 171):

Table 11.42 - Parallel Gateway Mappings to BPEL4WS
Parallel Gateways Mapping to BPEL4WS

Gateway (GatewayType = | The Gateway will map to a BPEL4WS flow.
AND)

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

« This mapping, which was not defined in the last version, was defined.

11.7 Pool

Pools do not have any specific Mapping to Execution Languages. However, a Pool is associated with a mapping to a
specific lower level language. For example, one Pool may encompass a BPEL4WS document while another Pool might
encompass B2B Collaboration process.

11.8 Lane

Lanes do not have any specific Mapping to Execution Languages. They are designed to help organize and communicate
how activities are grouped in a business process.

11.9 Artifacts

As a general rule, Artifacts do not map to BPEL4AWS elements. They provide detailed information about how data will
interact with the Flow Objects and Flow of Processes.

However, Text Annotations can map to the documentation element of BPM execution languages. If the Annotation is
associated with a Flow Object and that object has a straight-forward mapping to a BPM execution language element, then
the text of the Annotation will be placed in the documentation element of that object. If there is no straight-forward
mapping to a BPM execution language element, then the text of the Annotation will be appended to the documentation
element of the process.

For any new Artifact that is added to a BPD through a modeling tool, it will have to be determined whether or not that
Artifact maps to any BPEL4WS element.

178 BPMN Adopted Specification

11.10 Sequence Flow

A Sequence Flow may not have a specific mapping to a BPEL4AWS in most situations. However, when there is a section
of the Diagram that contains parallel activities, then Sequence Flow may map to the link element. Details of this mapping
are TBD. In general, the set of Sequence Flow within a Pool will determine how BPEL4WS elements are derived and the

boundaries of those elements.

The following table displays a set of mappings from Sequence Flow to BPEL4WS elements:
Table 11.43 - Exception Flow Mappings to BPEL4WS

Sequence Flow

Mapping to BPEL4AW S

Sequence Flow

This MAY map to a BPEL4WS link element. The location of the Sequence Flow within
the Process will determine how or if it is mapped to alink. Even if the Sequence Flow is
not mapped to alink, attributes, such as Condition, will be mapped to BPEL4WS
elements, as described below.

Id, Categories, and
Documentation

These Elements do not map to any BPEL4WS elements or attributes.

Name

If the Sequence is not being mapped to a link:

This attribute does not map to any BPEL4WS elements or attributes.

If the Sequence is being mapped to alink:

The Name attribute of the Process SHALL map to name attribute of the link. The extra
spaces and non-alphanumeric characters MUST be stripped from the Name to fit with the
XML specification of the name attribute. Note that there may be two or more elements
with the same name after the BPMN name has been stripped.

Source

If the Sequence is not being mapped to a link:

This attribute does not map to any BPEL4WS elements or attributes.
If the Sequence is being mapped to alink:

This mapping is described in the next four (4) Rows.

Source Object is an
Activity (for a link)

The mapping of the source activity will now include a source element.

The Name of the Sequence Flow will map to linkName attribute of the source element.The
extra spaces and non-al phanumeric characters MUST be stripped from the Name to fit
with the XML specification of the name attribute. Note that there may be two or more
elements with the same name after the BPMN name has been stripped.

For an exception to the location of the source element, see the description of the mapping
for a ConditionExpression when the Source object is an Activity below.

Source Objectis a
Gateway (for a link)

This mapping is described in the next two (2) Rows.

The Gateway maps to
an activity (e.g., switch)

This mapping is the same as if the source object is an activity (see above).

The Gateway does not
map to an activity

This Sequence Flow will be essentially combined with one of the Gateway’s incoming
Sequence Flow. (There will be a separate link for each of the incoming Sequence Flow).
The Source of the second Sequence will be used at the Source for the original Sequence
Flow. Then, this mapping is the same as if the Source object is an activity (see above).

BPMN Adopted Specification

179

Table 11.43 - Exception Flow Mappings to BPEL4AWS

Sequence Flow

Mapping to BPEL4WS

Target

If the Sequence is not being mapped to a link:

This attribute does not map to any BPEL4WS elements or attributes.
If the Sequence is being mapped to a link:

This mapping is described in the next four (4) Rows.

Target Object is an
Activity

The mapping of the target activity will now include a target element.

The Name of the Sequence Flow will map to linkName attribute of the target element. The
extra spaces and non-al phanumeric characters MUST be stripped from the Name to fit
with the XML specification of the name attribute. Note that there may be two or more
elements with the same name after the BPMN name has been stripped.

Target Object is a
Gateway

This mapping is described in the next two (2) Rows.

The Gateway maps to
an activity (e.g., switch)

This mapping is the same as if the target object is an activity (see above).

The Gateway does not
map to an activity

This Sequence Flow will be essentially combined with one of the Gateway’s outgoing
Sequence Flow. (There will be a separate link for each of the outgoing Sequence Flow).
The Target of the second Sequence will be used at the Target for the original Sequence
Flow. Then, this mapping is the same as if the target object is an activity (see above).

ConditionType = None

If the Sequence is not being mapped to a link:

This attribute does not map to any BPEL4WS elements or attributes.

If the Sequence is being mapped to a link:

This means that there is no condition placed on the transition between elements (through
the link). Thus, there is nothing to be mapped to BPEL4WS.

ConditionType =
Expression

This mapping is described in the next two (2) Rows.

Source Object is a
Gateway

The mapping of the Sequence Flow in this situation is described in Section 11.6.2,
“Exclusive,” on page 172, Section 11.6.3, “Inclusive,” on page 174, and Section 11.6.4,
“Complex,” on page 178.

Source Object is an
Activity

Since a Sequence Flow MUST NOT have a Condition if the Source is an activity, unless
there are multiple outgoing Sequence Flow, a BPEL4AWS flow will be required and the
Sequence Flow will map to a link element.

An empty activity will be placed in the flow and will contain all the source elements.
The ConditionExpression will then map to the transitionCondition attribute of the source
element that is contained in the appropriate BPEL4WS activity (see a description of
locating the source above).

ConditionType = Default

The mapping of the Sequence Flow in this situation is described in Section 11.6.2,
“Exclusive,” on page 172, Section 11.6.3, “Inclusive,” on page 174, and Section 11.6.4,
“Complex,” on page 178.

Quantity 1 : Integer

The mapping of the Quantity attribute, if its value is greater than one (1), BPEL4AWS isan
open issue. See Annex D for other Open Issues.

180

BPMN Adopted Specification

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» Thedetails of the mapping, which had not been defined in the last version, were included.

11.10.1 When to Map a Sequence Flow to a BPEL4AWS Link

In many situations, a Sequence Flow will not map to a BPEL4WS link element.

[_1To connect activitiesthat are listed in a BPEL4WS structured activity (e.g., a sequence), the link elements are not
required.

The ordering of the list in the sequence provides the direction of flow (see Example 11.8).

The Tasks are mapped to be within a
BPELAWS seqguence. Thus, the
Sequence Flow are not mapped to /inks.

| |
O—b[Send RFCY Receive Quote Add Cuote
| |

Thns reprasants the BPELAWS
sequence

Figure 11.8 - Example: Sequence Flow that are not used for BPEL4WS links

[Link elements are only appropriate when the Sequence Flow are Connecting Objects that are within a BPEL4WS
flow.

However, it is only the Sequence Flow that are completely contained within the boundaries of the flow will be mapped to
alink (see Example 11.8). It should be noted that if another structured activity (e.g., a switch) is contained within the
flow, then the Sequence Flow that would be appropriate for the contents of the structured activity, would not be mapped
to alink.

BPMN Adopted Specification 181

This represants the BPELAWS
flow

Ship Order

Fill Order : |

Send Invoice

| This represents the BPEL4WS
link

Figure 11.9 - Example: A Sequence Flow that is used for a BPEL4WS link
Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

« This section was added.

11.11 Message Flow

A Message Flow does not have a specific mapping to a BPEL4WS element. It represents a message that is sent through a
WSDL operation that is referenced in a BPEL4WS receive, reply, or invoke.

11.12 Association

An Association does not have a specific mapping to an execution language element. These objects and the Artifacts they
connect to provide additional information for the reader of the BPMN Diagram, but do not directly affect the execution of
the Process.

11.13 Exception Flow

BPMN Exception Flow is al the activities, connected by Sequence Flow, which flow from an Intermediate Event attached
to the boundary of an activity, until the flow merges back into the Normal Flow (sometimes at the point of an End Event).

BPEL4WS handles exceptions in a much more structured and programmatic manner. If triggered through a fault, the
activities in an faultHandlers will be performed and completed, and then the process will continue from the point where
the interrupted activity would have completed normally. Thus, the faultHandlers element is a completely contained
structured element.

182 BPMN Adopted Specification

Since BPMN handles Exception Flow with much more flexibility, so that the modeler can have the Exception Flow go
wherever it is appropriate, there are different challenges to the BPEL4WS mapping, depending on the configuration of the
BPMN model.

The following table displays the mapping Exception Flow to BPEL4AWS:
Table 11.44 - Common Exception Flow Mappings to BPEL4WS

Exception Flow Mapping to BPEL4WS

Activities within the All the activities that follow the attached Intermediate Event, until the Exception Flow

Exception Flow merges back into the Normal Flow, will be mapped to BPEL4WS and then placed within
the faultHandlers element for the scope of the activity (and usually within a sequence).

Additional BPEL4WS mapping patterns for Exception Flow will be described in the next three (3) sections.

The Exception Flow Merges back into the Normal Flow After the Activity

In this situation, the Exception Flow may contain one or more activities, but will merge back into the Normal Flow at the
same object that follows the activity that is the source of the Exception Flow (see Figure 11.10). This situation maps
closely to the BPEL4WS mechanism for exception handling. Thus, no special mapping mechanisms are required.

1D Problem and
Resalution

WVerify Solution

Data Problem

Comect Dala
Problem

Figure 11.10 - Exception Flow Merging back into Normal Flow Immediately after Interrupted Activity

The Exception Flow Merges back into the Normal Flow Further Downstream

In this situation, the activities in the Exception Flow substitute for some of the Normal Flow activities and, thus, the
Exception Flow will skip these activities and merge into the Normal Flow further downstream (see Figure 11.11).
Alternatively, the exception may create a situation where the Process must end prematurely, which means that the
Exception Flow will merge with the Normal Flow at an End Event (see Figure 11.12). In either situation, special
BPEL4WS patterns will have to appended to the basic Exception Flow mappings.

BPMN Adopted Specification 183

ll%HHHIHH%%II

assign
will ba used to sat
the tracking vamable

assign
will be used to set
the tracking varmable

This Activity is contained

Poor Cuality

These Activiies are now
contained within a
switch
whera the ofhersise is amply

within a

sequence

T T T Ty

Store in

Verfy OCR Fill Data Form Archive

Image LT T w]

" | This Activity Is contalned
: within a
sequence

Figure 11.11 - Exception Flow Merging back into the Normal Flow Further Downstream

The following table displays the mapping Exception Flow to BPEL4WS (these mappings extend the mappings common
to Exception Flow -- see above):

Table 11.45 - Exception Flow Merging back into the Normal Flow Further Downstream

Exception Flow

Mapping to BPEL4WS

Activities within the
Exception Flow

If there is only one activity in the faultHandlers element for the scope of the activity, then
this activity will be placed within a sequence and preceded by an assign (as described
below).

Original Activity

The mapping of the original activity will be placed within a sequence (if it had not bee
already).

After the Original Activity

The origina activity will now be followed by a switch, instead of what would have been
normally mapped there.

Switch Characteristics

The switch will be binary in nature. There will be one case and an otherwise element.

Create the tracking
variable

A variable must be used so that the switch will know whether or not the Exception Flow
or Normal Flow had reached that point in the Process. To do this, a BPEL4AWS variable
must be created with a derived name and will have a structure as follows:

<variable name=" [activty.Name] normalCompletion"
messageType="noDefaultRequired" />

Supporting WSDL
Message

A WSDL message element will have to be created to support this variable. This message
can be used for multiple variables. The message will be structured as follows:

<message name="noDefaultRequired" >
<part name="normalCompletion" type="xsd:boolean" />
</message>

184

BPMN Adopted Specification

Table 11.45 - Exception Flow Merging back into the Normal Flow Further Downstream

Exception Flow Mapping to BPEL4WS
Initialization of the An assign activity will be created to initialize the variable before the start of the original
Tracking Variable activity. It will be the first activity in the sequence described above. The assign will be

structured as follows:

<assign name="[activity.Name] initialize normalCompletion">
<copy>
<from expression="true"/>
<to variable="[activity.Name] normalCompletion"
part="normalCompletion" />

</copy>

</assign>
Setting of the tracking If afault is thrown and faultHandlers is activated, then an assign activity will be used to
variable set the variable to False. This will be the first activity within the sequence activity of the

faultHandlers. The assign will be structured as follows:

<assign name="[activity.Name] set normalCompletion"s>
<copy>
<from expression="false"/>
<to variable="[activity.Name] normalCompletion"
part="normalCompletion" />
</copy>
</assign>

Switch cases The case for the switch will contain all the mappings for al activities that occur in the
Process until the Exception Flow has merged back (which could be the end of the
Process), usually within a sequence. The otherwise for the switch will contain an empty
activity.

The condition for the switch case will used the normalCompletion variable and will
structured as follows:

<switch>
<case condition="bpws:getVariableProperty (
[activity.Name] normalCompletion,
normalCompletion)=true">
<sequence>

<!--The mappings of the Process activities until the merging
of the Exception Flow are placed here.-->

</sequence>
</case>
<otherwise>
<empty/>
</otherwises>
</switch>

Potential Invalid Model If the Exception Flow occurs in the larger context of a set of parallel activities, then the
Exception Flow must merge back into the Normal Flow prior to the end of the parallel
activities (a BPEL4WS flow), or this will create an invalid model.

BPMN Adopted Specification 185

This Activity is contained
within a

sSequence

Boaok Chiarge
Resarvations Buyer

Recaive
Confirmation

Send Confimation

assign -': C— = — e These Activities are now
will be used to sat . e, contained within a
the tracking variable switch

Send Cancallation where the otherwise is emply

Motice

n ON This Activity is contained
assign . K within a
will be used to set
the tracking varable sequence

Figure 11.12 - Exception Flow Merging back into the Normal Flow at the End Event

The Exception Flow Loops back into the Normal Flow Upstream

In this situation, the Exception Flow will loop back into the Normal Flow prior to the completion of the activity that is the
source of the Exception Flow (see Figure 11.13). Thisis a particularly challenging mapping and cannot be done entirely
within the confines of the original BPEL4WS process. Another process will need to be derived and then “ spawned” until
the original activity can be completed normally.

Receive Order
Response

Problam with
Response

Send Response
Error

-

Figure 11.13 - Example of Exception Flow Looping Back into the Normal Flow Upstream

186 BPMN Adopted Specification

This part of the Process will be modified at the BPEL4WS level so that the loop can be performed (through calling
another process). If the flow moves to the faultHandlers activity, this means that the original activity will need to be

performed again. Thus, the original activity will be duplicated in another process and the faultHandlers will contain a
one-way invoke to “spawn” this other process (see Figure 11.14). In addition, the original process will wait with areceive

activity for a message from the derived process that the original activity has completed normally.

This regresents a

BPEL4WS
sequence
— = = — .
| Eontlnue the
Lracaivess .
[activity. Name] | o Process
| Completed
Recelve a
| message that the
e e | derived process

Problem with —
Rﬂsp{:nsT

— | finally completed
| the orginal activity

<EOME-WEY > rarmally.
Spawn_ .
Send :":;Wnse ReceivelrderRes |
ponse_
Derived _Process |
This represents a BPELAWS Call the derived
sequence | process to try the
within & ariginal activity
exceptionHandlers Aol

Figure 11.14 - Example of Modification at BPEL4WS level to Handle the Loop

The derived process will be structure much like the corresponding section of the original process (see Figure 11.15). The
mappings of the original activities, from the point of the BPMN Process where the Exception Flow loops into the Normal
Flow to the point of the source of the Exception Flow, will be in the derived process. The same faultHandlers will be

attached to the scope around the original activity. The faultHandlers will also contain a one-way invoke to “spawn” itself

if the fault occurs again.

When the original activity finally completes normally, one-way invoke will be used to send a message back to the original

process so that normal activities can continue.

BPMN Adopted Specification

187

This represents a
BPELAWS

sequence

i ReceivelrderResponse Derived Process

SEONE-WEY>>
[metivity. Mame]_
Complated

I . When the activity
: finally complates
<, | nomally, send a
| | message back 1o
i the original

| i Process

SLone-Wway-

Spawn_
Sand;a;rponsa Recsivelrderfes |
ponse

Derﬁtad_PrEoees

\ J

[This represents a BPELAWS This represents a BPEL4WS - The derived
: process will
process 523:32‘5& 1 “spawn” itself
— . again if the fault
exceptionHandlers oeEUrs again,

Figure 11.15 - Example of a Derived Process to Handle the Looping
Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:
» Thedetails of the Intermediate Event mappings was moved to the Intermediate Event mapping sections.

» The BPEL4WS mapping related to how the Exception Flow merges back into the Normal Flow was added.

11.14 Compensation Association

The following table displays a set of mappings from a Compensation Association to BPEL4WS elements:
Table 11.46 - Exception Flow Mappings to BPEL4AWS

Compensation Mapping to BPEL4WS

Association

A Compensation The mapping of the Compensation Event is described in “Compensation Intermediate

Intermediate Event Events’ on page 146.

attached to an activity The mapping of the activity Associated with the Intermediate Event will follow the

boundary mapping rules defined in Section 11.5.3, “Task Mappings,” on page 168 or in
Section 11.5.2, “ Sub-Process Mappings,” on page 166 will be placed within the
compensationHandler element.

188 BPMN Adopted Specification

Changes Since 1.0 Draft Version
These are the changes since the last publicly released version:

» Thedetails of the Compensation Intermediate Event mapping was moved to the Intermediate Event mapping section.

» Thedescription of the mapping was updated to reflect that only asingle activity can be associated with a Compensation
Intermediate Event that is attached to the boundary of an activity.

11.15 Assignment Mapping

The following table displays a set of mappings from the variations of an Assignment expression to BPEL4WS elements:
Table 11.47 - Assignment Mappings to BPEL4WS
Assignment Mapping to BPEL4WS

To The To attribute will map to the to element of the BPEL4WS assign activity. A variable
and supporting WSDL message should have aready be created for the Property used in
for the Assignment To attribute. Thus, the structure of the to element will be as follows:
If the Property is an attribute of a Process:

<to variable="[Process.Name] ProcessData"
part="[Property.Name]l" />

If the Property is an attribute of an activity:

<to variable="[activity.Name] ActivityData"
part="[Property.Name]l" />

From The From expression will map to the from element of the BPEL4WS assign activity.

<from expression="[From Expression]" />

11.16 BPMN Supporting Type Elements

This section describes the mapping to BPEL4WS of a non-graphical elements that are part of BPMN. Messages, which
are linked with Message Flow, do have impact on how many other BPMN elements are mapped to BPEL4WS.

Messages

The following are the mappings of a Message. These mappings are used to create a BPELAWSEAWS XML file, plus a
supporting WSDL supporting file. These mappings are used for a Start Event, End Event, Intermediate Event, and Task:

Table 11.48 - Message Attributes

Attributes Description

Name The Name attribute maps to the name attribute of a BPEL4WS variable element. Note that
the extra spaces and non-a phanumeric characters MUST be stripped from the Name to fit
with the XML specification of the name attribute. Note that there may be two or more
elements with the same name after the BPMN name has been stripped.

The messageType attribute of the variable element refers to a WSDL message type
definition. Thus, the messageType will share the same Name and a corresponding WSDL
message must be created.

BPMN Adopted Specification 189

Table 11.48 - Message Attributes

Attributes Description

Properties Each Properties of the BPMN Message will map to a part element of the WSDL message.
The Name attribute of the Property will map to the name attribute of the part.
The Type attribute of the Property will map to the type attribute of the part.

11.17 Determining the Extent of a BPEL4WS Structured Element

The structure and vocabulary of BPMN differs from BPEL4WS. BPMN allows flexible, and free-form methods of
connecting activities through Sequence Flow. Furthermore, BPMN is cyclical in that it allows Sequence Flow to connect
to upstream objects so that a modeler can easily visualize looping situations. BPEL4WS has a much more structured form
of creating a process flow. The flow activity in BPEL4WS does allow some flexibility with its link elements, but is
acyclical. Thus, there is not going to be a one-to-one mapping of the BPMN elements to the BPEL4WS elements, without
restricting the connection capability of BPMN.

Thisis particularly true of the BPEL4AWS. In BPEL4WS, structure elements, such as switch, pick, and while, have a clear
beginning and end. BPMN does not provide specific markers for the start and end of these elements. The exact
configuration of the Sequence Flow connections will determine how the Process will be mapped to the BPEL4AWS
elements.

To determine the appropriate merging and joining points that are needed to construct the structured elements, the
configuration of the Process needs to be analyzed. The mechanism we are proposing is called Token Analysis. This
involves the creation of a conceptual Token that will “traverse” all the Sequence Flow of the Process. The Token will
have a hierarchical Tokenld set that will expand/or contract based on the forking and joining and/or splitting and merging
that occurs throughout the Process. By matching the Tokenld set of Tokens that arrive at objects that have multiple
incoming Sequence Flow, it will be possible to determine the boundaries of execution language structured activities.

A BPMN Gateway will usualy indicate the start of a BPEL4WS structured element, but even this may not be one-to-one
if there are loops involved. The end of the BPEL4WS structured element is even less obvious, since it could be marked
by the convergence of Sequence Flow into most types of BPMN elements.

The following sections will describe how different BPMN configurations will map to the BPEL4WS structure elements
and show how conceptual Tokens can be used to determine the extent of the BPEL4WS elements.

Identifying the Start of a BPEL4WS Element
The most basic structured element of BPEL4AWS is the sequence.

[_1If the process, or the activity of a structured element (e.g., a switch case), contains more than one activity, then it is
likely a sequence will be needed. Nearly any set of activities connected by Sequence Flow, which is not going to be
mapped to the contents of a flow, will be contained within a sequence. The sequence will envelope all the remaining
elements to the extent of the context in which the sequence exists. For example, the sequence will extend the length
of the process, or the length of aswitch case, etc.

For the other types of BPEL4AWS elements, their extend is determined by tracing through the Process with conceptual
Tokens:

[_JFirst the start of the BPEL4AWSE4WS structured element (e.g., flow, switch, pick, etc.) must be identified. Thisis
done by performing the mapping of the BPMN elements, starting with the Start Event or first element(s) if thereisno
Start Event, and proceeding down the Sequence Flow. The start of the structured element is usually a Gateway or if
an activity has multiple outgoing Sequence Flow (see Figure 11.16 and Figure 11.18).

190 BPMN Adopted Specification

[INote that some structured elements (mainly a sequence, but including others such as a switch) are needed for
mapping a particular BPMN activity (as described in the sections above). In these cases, the extent of these

structured elements are known.

| Start of BPEL4WS
: Structured Element

| switch

Reproduce
Receive Problem Record Problem Problem

The entire set will
be enveloped ina -

sequence

Figure 11.16 - Identification of BPEL4WS structured element

Correct Problem
Statement

. Duplication of Werify Solution

|An|:|ther Froblem

-

ID Problem and

Carl Reproduce Resoluticn

Problem

[_1The number paths that make up the structured element MUST be determined. To do this, the all outgoing paths from

the location of the structured element will be identified. A conceptual Token can be used to trace the paths. The
Tokens are given an Id that uniquely identifies the precedent of the structure element being determined and the

number of paths being traced for that element (see Figure 11.17).

BPMN Adopted Specification

191

The Token is dhided | S |
into a set of related |
Tokens)

| Atofs |
: . Corract Problam
Cannot Reproducs .
Froblem | i Statement
| |
A 2of3
buplication of | Verify Solution
Anather Problem -
| |
| |
| A dofd |
: ID Problem and
Chn Regroduce : .
Froblem L J Resalution

Figure 11.17 - The Creation of Related Tokens

Finding the End of a BPEL4WS Element

The end of a BPEL4WS structured element will be found when all the paths, which were identified at the start of the
element, have converged.

[_ITrace each path until there is amerge or join with all the other paths. When all the Tokens with the appropriate Ids
arrive at the same BPMN abject and can be recombined, then the structured element SHALL be closed (see Figure
11.18).

192 BPMN Adopted Specification

|: Token T T Location of
Tokan
A 1of 2 A 1-of 2 | Racombination

Post Resulis on
Web Site

V4
|.ﬁ.:1§|:rf1

E-Mail Resulis of
YWote

Start of BPELAWS
Structured Element
flow

Ar2of 2 A 2of2

Figure 11.18 - Example of Recombination of Tokens

[IThere MAY be partia recombinations of the Tokens prior to the final recombination. In this case, one Token will
contain all theidentities of the Tokens that have been merged (see Figure 11.19). Note that partial recombination of a
Token creates another mapping issue that is described in Section 11.17.1, “BPMN Elements that Span Multiple
BPEL4WS Sub-Elements,” on page 201.

Al 1of 3 Location of
Partial Two
Established with | Recombination .. -| TokenlDs in
good Credit § ITTEA one Token
A 1'of 3

and Location of

)) Inglude History of - Final
Established with ransactions " | Recombination

poor Credit

Incrude Standard
Text

A 3old

Figure 11.19 - Example of Partial Recombination of Tokens

[JEnd Events can be combined with other BPMN objects to complete the merging or joining of the paths of a
BPEL4WS structured element (see Figure 11.20).

BPMN Adopted Specification 193

The Token
Recombination s
distributed across

’ the End Events e— —
A 1of3 YA 1of3 7
f Correct Problem R :
Cannol Reproduce Statament - | |
rable .
A 2efd |
Duplication of Werify Solution ' |
Anather Prablem _ J ‘
A 2of3 A 2af 3 |
Communicate |
Resulis |
A 3of 3 :]
: I Probdem and : —
Cam Reproduce .
Broblem Fesolufion W

A 3of3

Figure 11.20 - Example of Distributed Token Recombination

Nested Elements
Another structured element may occur before the first structure element is closed.

[1If another structured element is encountered before all the paths are merged (see Figure 11.21), then the tracing of the
first element MUST be stopped and the tracing of the paths of the second element MUST begin. The extent of the
second element MUST be determined before the extent of the first element can be determined.

[_1This process MUST be repeated if other structured elements are encountered during the tracing of any paths of
structured elements.

194 BPMN Adopted Specification

Location of BPEL4WS g;ﬁzt

Structured Element B: 1'af 2
swilch contained :

within another swilch

Location of first A of 2 Nexfgtei:u?
BPELAWS : Receaive
Structured Send No Refarral

Element switch Option

Send Yes

Send Yes

A 1;12,

&émz

_—— Token with a more
) complex 1D that is part -
Ar2of2 of two structured
elemenis

Figure 11.21 - Example of nested BPEL4WS structural elements

Handling Loops
Loops are created when the flow of the Process moves from a downstream object to an upstream abject.

[_1If one of the paths arrives at aBPMN object that is upstream from the source of the structured element, then this
SHALL create alooping situation. How the loop is handled depends on the type structured element is being traced
and how many paths are included in the element.

The following sections will describe the mapping for the different type of loop configurations.

Simple Loop From a Gateway

This type of loop is created by a Gateway that has only two outgoing Sequence Flow. One Sequence Flow continues
downstream and the other loops back upstream (see Figure 11.22). Note that there might be intervening activities prior to
when the Sequence Flow loops back upstream.

[IThiswill map to a BPEL4WS while activity.
[_1The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

Al the activities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the activity for the while, usually within a sequence.

BPMN Adopted Specification 195

Tokens from two different Location of BPEL4AWS
.| levels converging indicate Structured Element while

a loop J| as datermined by the loop

. |0 Problem and f : ' : Communicate
| Resclution : :] Results

|._ J Mo
Figure 11.22 - Example of a Loop from a Decision with Two Alternative Paths

Loop/Switch Combinations From a Gateway

Thistype of loop is created by a Gateway that has three or more outgoing Sequence Flow. One Sequence Flow loops back
upstream while the others continue downstream (see Figure 11.23). Note that there might be intervening activities prior to
when the Sequence Flow loops back upstream.

[_IThis maps to both a BPEL4WS while and a switch. Both activities will be placed within a sequence, with the while
preceding the switch.

[_JFor the while:
[_The Condition for the Sequence Flow that loops back upstream will map to the condition of the while.

Al the activities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the activity for the while, usually within a sequence.

[For the switch:

[For each additional outgoing Sequence Flow there will be a case for the switch. The details for mapping to a
switch from a Gateway can be found in Section 11.6, “Gateways,” on page 171.

196 BPMN Adopted Specification

This path, since it results in &
loop, will be part of the
BPEL4WS whila element.

Tokens from wo different levels . ;
| converging indicate & loop

Cancal Order

—

Location of BPELAWS : Yiag - p| Send Confirmation
while : | |
for Path 1 as determined by the loop and a -
switch 3
for paths 2 and 3 These two paths will be part of a
— BPEL4AWS swilch element,

Figure 11.23 - Example of a Loop from a Decision with more than Two Alternative Paths

Interleaved Loops

This is a situation where there at least two loops involved and they are not nested (see Figure 11.24). Multiple looping
situations can map, as described above, if they are in a sequence or are fully nested (e.g., one while inside another while).
However, if the loops overlap in a non-nested fashion, as shown in Figure 11.24, then the structured element while cannot
be used to handle the situation. Also, since a flow is acyclic, it cannot handle the behavior either.

BPMN Adopted Specification 197

This is the section of the
.| Process that will be separated
into a sel of derved processes

Reconfigure I

Test Level 2

Result of Test

Assemble
Components

Test Level 1 Package Product

Recaonfigure |

Tokens from two different kops
conveming at the same location

indicate interleaved loops
Figure 11.24 - Example of Interleaved Loops

To handle this type of behavior, parts of the BPEL4AWS process will have to be separated into one or more derived
processes that are spawned from the main process and will also spawn or call each other (note that the examples below
are using a spawning technique). Through this mechanism, the linear and structured elements of BPEL4WS can provide
the same behavior that is shown through a set of cyclesin a single BPMN diagram. To do this:

[_1The looping section of the process, where the loops first merge back (upstream) into the flow until al the paths have
merged back to Normal Flow, shall be separated from the main processinto a set of derived processes that will spawn
each other until al the looping conditions are satisfied.

[1The section of the Process that is removed will be replaced by a (one-way) invoke to spawn the derived process,
followed by areceive to accept the message that the looping sections have completed and the main process can
continue (see Figure 11.25).

[_The name of the invoke will be in the form of:

1 Spawn_[(loop target)activity.Name]_Derived Process’
[_The name of the receive will bein the form of:

[_1'[(loop target)activity.Name]_Derived Process Completed”

198 BPMN Adopted Specification

==jmvoka=>
Assemble
Components

ZErecae=>
L =
DNE-WEY=> Configure
SpawT_ -
Product
TestLevell_ Derived_Process
Derived Process — —
Completed

== jnvokes>
Package
Product

Figure 11.25 - Example of the BPEL4WS Pattern for Substituting for the Derived Process

[_JFor each location in the Process where a Sequence Flow connects upstream, there will be a separate derived

BPEL4WS process.
[_1The name of the derived process will be in the form of:
1] (loop target)activity.Name]_Derived_Process’

1Al Gateways in this section will be mapped to switch elements, instead of while elements (see Figure 11.26).

[IEach timethere is a Sequence Flow that loops back upstream, the activity for the switch case will be a (one-way)
invoke that will spawn the appropriate derived process, even if the invoke spawns the same process again.

[T he name of the invoke will the same as the one describe above.

At the end of the derived process a (one-way) invoke will be used to signal the main process that all the derived
activity has completed and the main process can continue.

[T he name of the invoke will be in the form of:

_1'[(loop target)activity.Name]_Derived Process Completed”

=<invoka>>
Configure_
Product

<<jrvokes=
Test_Level 1

RunTestz

L.

==Process=> Corfigure_Product Derved Process

<<One-way==
Spawn_
Configure_
Product
Derived_Process

<<phe-way>>
Configure_
Product
erived Process_
Completed

L]

<EOME-WRYE
Spawn_
Configura_
Product
Derived_Process

<<imvoke=s
Test_Level 2

<ONE-Way=>
Configure_
Praduct
Derived_Process
Completed

Figure 11.26 - Example of a BPEL4WS Pattern for the Derived Process

BPMN Adopted Specification

199

Infinite Loops

This type of loop is created by a Sequence Flow that loops back without an intervening Gateway to create alternative
paths (see Figure 11.27). While this may be a modeling error most of the time, there may be situations where this type of
loop is desired, especially if it is placed within a larger activity that will eventually be interrupted.

[_IThiswill map to awhile activity.
[_1The condition of the while will be set to an expression that will never evaluate to True, such as condition”1 =0."

1Al the activities that span the distance between where the loop starts and where it ends, will be mapped and
placed within the activity for the while, usually within a sequence.

The Token amives back The loop creates a
| upstream without going | EFEL4WS
) through a Decision = a while

Post Status an
Web Site

Increment Tally

| | : : ' The activities ane
. .| contained within a

| A tof] Aot A 1of 1 Sequence
- within the whila

Figure 11.27 - Example: An Infinite Loop

Handling Link Events as Go To Objects

As was seen in Figure 10.44, Figure 10.45, and Figure 10.46, Link Intermediate Events can be used as Go To Objects.
The basic impact of using them in such away is that they are a substitute using a single, longer Sequence Flow to make
the same connection between two objects. Thus, the mapping to BPEL4WS should be done by considering them as just a
single Sequence Flow. This means that the Intermediate Events are not mapped to any BPEL4WS element. Instead a
conceptual Sequence Flow will be used, with the Source and Target of that Sequence Flow being the Source of the
Sequence Flow going into the Source Link Event and the Target of the Sequence Flow coming out of the Target Link
Event (see Figure 11.28). The mapping at this point can done using all the mapping consideration described in this
Chapter.

200 BPMN Adopted Specification

Configure Product Test Product

- Reconfigure
The Target of the " [The combination of these -| The Source of the
DE”VB‘jFE’Eq”e“DE .| objects creates a derived Derived Sequence
low Sequence Flow for mapping 1o Flow
BPELAWS

Figure 11.28 - Example: A Pair of Go To Link Events are Treated as a Single Sequence Flow

Changes Since 1.0 Draft Version

These are the changes since the last publicly released version:

« The details of this section were added.

11.17.1 BPMN Elements that Span Multiple BPEL4AWS Sub-Elements

Figure 11.19 is repeated below in Figure 11.29 to illustrate how BPMN objects may exist in two separate sub-elements of
a BPEL4WS structured element at the same time. Since BPMN allows free form connections of activities and Sequence
Flow, it is possible that two (or more) Sequence Flow will merge before all the Sequence Flow that map to a BPEL4AWS
structure element have merged. The sub-elements of a BPEL4WS structured elements are also self contained and thereis
no cross sub-element flow. For example, the cases of a switch cannot interact; that is, they cannot share activities. Thus,
one BPMN activity will need to appear in two (or more) BPEL4WS structured elements.

There are two possible mechanisms to deal with the situation.

[First, the activities are simply duplicated in all appropriate BPEL4WS elements.

[1Second, the activities that need to be duplicated can be removed from the main process and placed in a derived
process that is called (invoked) from all locations in the BPEL4WS el ements as required.

[_1The name of the derived process will be in the form of:
[1[(target)object.Name] Derived Process”
In Figure 11.29 displays this issue with an example. In that example, two Sequence Flow merge into the “Include History
of Transactions” Task. However, the Decision that precedes the Task has three (3) alternatives. Thus, the Decision maps
to a BPEL4WS switch with three (3) cases. The three cases are not closed until the “Include Standard Text” Task,

downstream. This means that the “Include History of Transactions’ Task will actually appear in two (2) of the three (3)
cases of the switch.

Note — the use of a BPEL4WS flow will be able to handle the behavior without duplicating activities, but aflow will not
always be available for use in these situations, particularly if a BPEL4WS pick is required.

BPMN Adopted Specification 201

1af3 Location of

Partial Two
Established with '"“'”diﬁf':"”g"' *| Recombination .| TokenDs in
good Credit N art one Tokan

and Location of
. Final
Recombination

.) Iri I ude History of
Established with

ransactions

\

20f3

InTude Standard
Text

[Tﬁkan - \T/V |_

Gof3

Figure 11.29 - Example: Activity that spans two paths of a BPELAWS Structured Element

Example 11.8 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is
shown in Figure 11.29. Note that there are two invoke elements that have the same name attribute
(“IncludeHistoryof Transactions”).

<!--Continue with the process-->

<switch name="TypeofCustomer">
<!-- name="Established with Good Credit" -->
<case condition="bpws:getVariableProperty (ProcessData,CreditType) >"Yes, Good”">
<invoke name="IncludeApologyText" ...>
<!--This also exists in the other case-->
<invoke name="IncludeHistoryofTransactions" ...>
</case>
<!--name="Established with poor Credit" -->
<case condition="bpws:getVariableProperty (ProcessData,CreditType) >"Yes, Poor”">
<!--This also exists in the other case-->
<invoke name="IncludeHistoryofTransactions" ...>
</case>
<!--name="Default (New)" -->
<otherwise>
<!--Nothing happens here-->
<empty/>
</otherwise>
</switch>
<invoke name="IncludeStandardText" ...>
<!--Continue with the process-->

Example 11.8 - Example: BPMN Elements that Span Multiple BPEL4AWS Sub-Elements

Changes Since 1.0 Draft Version
 This section was added.

202 BPMN Adopted Specification

BPMN Adopted Specification 203

204 BPMN Adopted Specification

12 BPMN by Example

This section will provide an example of a business process modeled with BPMN. The process that will be described is a
process that BPMI has been using to develop this notation. It is a process for resolving issues through e-mail votes (see
Figure 12.1). This Process is small, but fairly complex and will provide examples for many of the features of BPMN.
There are some unusual features of this business process, such as infinite loops. Although not a typical process, it will
help illustrate that BPMN can handle simple and unusual business processes and still be easily understandable for readers
of the Diagram. The sections below will isolate segments of the Process and highlight the modeling features as the
workings of the Process is described. In addition, samples of BPEL4WS code are provided to demonstrate how a BPMN

Diagram maps to BPEL4WS.

Receive Issue
List

Yes

e ——

Reduce to
Two Solutions

Discussion
Cycle

O,

Announce Collect Votes

Issues

E-Mail Voters
that have to
Change Votes

f—>
No

e

Timed Out
[1 week]

Prepare
Results

Post Results
on Web Site

E-Mail Results
of Vote

Deadline
Warnin Vote
Issue 9 Vate
Announcement
Announcement Change Vote

Vote R Message

Dealine
arning

Reduce number of
Voting Members
and Recalculate

Vote

Re-announce
Vote with
warning to voting
members

NO—»-

T
Vote annf)uncment
with V\nlarning
H

Voting Members

Figure 12.1 - E-Mail Voting Process

The Process has a point of view that is from the perspective of the manager of the Issues List and the discussion around
this list. From that point of view, the voting members of the working group are considered as external Participants who

will be communicated with by messages (shown as Message Flow).

BPMN Adopted Specification 205

12.1 The Beginning of the Process

The Process starts with Timer Start Event that is set to trigger the Process every Friday (see Figure 12.2).

A Loop:
From "Yes"
Alternative of the
"2nd Time?"
Decision

User Activity

Receive Issue Review Issue Discussion To Task:
List List Cycle "Announce Issues
Start on O+ for Vote"
Friday
Collapsed
4 AN AN Sub-Process
Issue List Issue Voting List

[0 to 5 Issues]

Figure 12.2 - The Start of the Process

The Issue List Manager will review the list and determine if there are any issues that are ready for going through the
discussion and voting cycle. Then a Decision must be made. If there are no issues ready, then the Process is over for that
week--to be taken up again the following week. If there are issues ready, then the Process will continue with the
discussion cycle. The “Discussion Cycle” Sub-Process is the first activity after the “Any issues ready?’ Decision and this
Sub-Process has two incoming Sequence Flow, one of which originates from a downstream Decision and is thus part of a
loop. It is one of aset of five complex loops that exist in the Process. The contents of the “Discussion Cycle” Sub-Process
and the activities that follow will be described below.

12.1.1 Mapping to BPEL4WS

BPEL4WS processes must begin with a receive activity for instantiation (i.e., it “bootstraps” itself). The “E-Mail Voting
Process” is scheduled to start every Friday as shown by the Timer Start Event. Therefore, an additional Process will have
to be created and implemented that will run indefinitely and will send a starting message with the list of Issues to the “E-
Mail Voting Process’ every Friday. Figure 12.3 shows this Process as starting that the beginning of the Working Group
and continuing until the end of the Working Group. Even this Process needs a message to be sent to it to signal the start
of the Working Group. There may be another Process defined that sends that message, but that Process is not shown here.
In addition, the mapping from the Starter Process to BPEL4WS is not shown here.

206 BPMN Adopted Specification

W orking

Group Still
Check Status of Active? [Send]
Working Group Yes Send Current
Issue List
W orking Friday at 6
Group PM Pacific ~
Active Time

Issue List

Figure 12.3 - The Ongoing Starter Process

» Within the main Process (see Figure 12.2), the “Receive Issue List” Task will map to a BPEL4AWS receive that hasiits
createl nstance attribute set to “yes.” Thiswill receive starting message and start the process.

» Thisreceive will be placed inside a sequence since other activities follow the activity. The message to be received will
contain all the variable partsthat will be used in the process and their initialized values.

Note — the names of BPD objects have all non-alphanumeric characters stripped from them when they are mapped to
BPEL4WS name el ements to match the BPEL4WS element restrictions.

The model er-defined properties of the Process will be placed in a BPEL4WS variables element named “ processData.”
The same variables element will be used in all derived processes in this example.

» The“Review Issue List” Task will map to a BPEL4AWS invoke. This TaskType is User, which means that the invoke
will be synchronous and an outputVariable included.

Mapping an Exclusive Gateway (Decision)
« The"Any Issues Ready?’ Exclusive Gateway (Decision) will map to a BPEL4WS switch.

» The Gatefor the“No” Sequence Flow will map to the otherwise case of the switch. This otherwise will only contain an
empty activity since there is nothing to do and the Process is over.

Note that empty does not have any corresponding activity in the BPMN Diagram, but is derived through the Diagram
configuration.

» TheGatefor the“Yes’ Sequence Flow will map to other case for the switch. This casewill have a condition that checks
the number of issues that are ready. This case will handle the remainder of the Process that is shown in Figure 12.1.

This is done because the switch is a block structure and needs a definitive ending point and since the otherwise is
connected to the end of the Process, then the end of the Process is the ending point that the case must use. The actual
activities that make up the rest of the Process will be distributed among a set of BPEL4WS processes instead of all being

BPMN Adopted Specification 207

within the case. The case will only contain an invoke that will call another process (as a web service). The distribution of
the Process activities is due to the overall Diagram configuration that includes three upstream Sequence Flow that define
some interleaving loops.

The Impact of Interleaved Loops

If the loop shown in this section of the model were merely a simple loop, and perhaps the only loop, then a BPEL4AWS
while would be used to handle the loop. In this situation, though, the looping is handled through a set of derived processes
that are accessed by invoking them (as a web service). There would no specific Diagram element to represent these
derived processes; indeed, a modeler would not want to create a set of related Processes to handle complex looping.
While an execution engine can easily handle a complex set of language documents and elements, a business person
developing and monitoring this process will want to see the Process in an easy-to-read format (such as BPMN) that
contains the information in a more comprehensive, less distributed format. See “Interleaved Loops’ on page 197 for
details about how interleaved loops are mapped to BPEL4WS.

In this example, all derived processes will be named “[(target of loop) activity.Name]_Derived Process.” Any naming
scheme will work as long as all the processes have unigue names.

» Thus, to handle the rest of the Process, a derived nested process named “ Discussion_Cycle Derived Process’ is cre-
ated and then

» A BPEL4WSinvokeis used to access this process from the “ Yes’ case of the “Any issuesready?’ switch.

We shall see that later in the Process the same process is accessed through another invoke, marking the source of the loop.

All the sub-processes and derived processes in the BPEL4WS documents must be started with the receive of a message
and then a reply to send a message back to the calling process.

» Thismeansthat areceive will be the first activity inside a sequence that will be the main activity of these processes.
These receive activities will have the createl nstance attribute set to “ Yes.” A named “internal,” a portType name “pro-
cessPort” will be created to support al of these process to process communications. The WSDL operations that will
support these communications will all be named “ call_<process name>" (as noted above, the processes are actually
spawned).

The “Discussion Cycle” Sub-Process shown in Figure 12.2 will continue the sequence (after the instantiating receive) for
the “Discussion_Cycle Derived Process’ process.

» Since “Discussion Cycle” is a Sub-Process it will map to a separate BPEL4WS process that is access through an
invoke.

Mapping an Activity Loop Condition

The “Discussion Cycle” Process has a loop marker. In this situation, the looping mechanism is simple. The attributes of
the Sub-Process will tell us the details. The “Discussion Cycle” Sub-Process's relevant attributes are: LoopType:
“Standard”; LoopCondition: DiscussionOver = “FALSE"; and TestTime: “After.”

» This means that the invoke that calls the process will be enclosed within awhile activity when the BPELAWS is
derived.

* The LoopType will map to a BPEL4WS while. The LoopCondition of the Process (as shown above) will map to
the “DiscussionOver = False” will be the condition for the while.

208 BPMN Adopted Specification

The default value for the “ DiscussionOver” property is False, thus an activity within the Sub-Process will have to change
it to True before the while loop is over. The logical opposite of the expression that is shown in the Sub-Process attributes
is used since the EvaluationCondition property is “after.” However, a while will test the condition prior to running the
activity within. This means that to insure that the activity is always performed at least once (to mimic the behavior of an
“until”) a LoopCounter variable will always be added to a the while condition for an BPMN activity that hasits TestTime
attribute set to “After.”

» The LoopCounter will beinitialized to zero, and an assign will be added to the sequence prior to the while element.

» The activity of the while will be changed to a sequence, with the invoke for the Sub-Process, whichiis

« Followed by an assign that will increment the LoopCounter variable, inside the sequence.

We will look into the details of the “Discussion Cycle” Sub-Process in Section 12.2, “The First Sub-Process,” on page
211.

BPEL4WS Sample for the Beginning of the Process

Example 12.1 displays some sample BPEL4WS code that reflects the portion of the Process that was just discussed and is
shown in Figure 12.2.

BPMN Adopted Specification 209

<process name="EMailVotingProcess">
<!-- The Process data is defined first-->
<sequences
<!--This starts the beginning of the Process. The process that sends the
starting message every Friday is related to the Timer Start Event and is
not shown here.-->
<receive partnerLink="Internal" portType="tns:processPort"
operation="receivelIssuelList" variable="processData" createlnstance="Yes"/>
<invoke name="ReviewIssuelList" partnerLink="Internal"
portType="tns:internalPort" operation="sendIssueList"
inputVariable="processData" outputVariable="processData"/>
<switch name="Anyissuesready">
<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,NumIssues)>0">
<!--A chunk of this process is separated into a derived process so that it can be
called from a complex loop. Thus, it is called from here and from ”Collect Votes”
as part of a loop-->
<invoke name="Discussion Cycle Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Discussion Cycle Derived Process" inputVariable="processData"
outputVariable="processData"/>
</case>
<!--name="No" -->
<otherwise>
<!--This is one of the two ways to the end of the Process-->
<empty/>
</otherwise>
</switch>
</sequence>
</process>

<process name="Discussion Cycle Derived Process">
<!-- The Process data is defined first--»>
<sequences>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle Derived Process" variable="processData"
createInstance="Yes"/>
<!--The first Sub-Process has a loop condition, so it is within a while-->
<assign name="Discussion Cycle initialize loopCounter"s
<copy>
<from expression="0"/>
<to variable="Discussion Cycle loopCounter" part="loopCounter" />

</copy>
</assigns>
<!--Since the TestTime is “After” the Sub-Process has to be performed before the
while-->

<invoke name="Discussion Cycle" partnerLink="Internal"

210 BPMN Adopted Specification

portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<while condition="bpws:getVariableProperty (ProcessData,DiscussionOver)=false">
<!--This calls the first Sub-Process-->
<sequence>
<invoke name="Discussion Cycle" partnerLink="Internal"
portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<assigns>
<copy>
<from expression=
"bpws :getVariableProperty (Discussion Cycle loopCounter, LoopCounter)+1"/>
<to variable="Discussion Cycle loopCounter" part="LoopCounter"/>
</copy>
</assign>
</sequence>
</whiles>
<!--This calls the first another derived process to handle the rest of the
work-->
<invoke name="Announce Issues Derived Process" partnerLink="Internal"
portType="tns:processbPort" operation="call Announce Issues Derived Process"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle Derived Process" variable="processData"
createInstance="Yes"/>
</sequence>
</process>
<!--A lot of other activity follows (not shown)-->

Example 12.1 - BPEL4AWS Sample for Beginning of E-Mail Voting Process

12.2 The First Sub-Process

Figure 12.4 shows the details of the “Discussion Cycle” as an Expanded Sub-Process.

BPMN Adopted Specification

211

Discussion Cycle

This Task returns
the value of the
/| DiscussionOver to

Issue Voting List True or False

[0 to 5 Issues]

E-Mail

Discussion
Deadline
Warning

Announce
Issues for
Discussion

Allow 1 week for the
discussion of the Issues — -
through e-mail or calls

W ait until

Thursday, 9am

Evaluate
Discussion
Progress

Delay 6 days from
Announcement
Conference
Callin

Discussio
Week?

Check Calendar
for Conference
Call

Moderate
Conference Call
Discussion

The Sub-Process will repeat
e of the DiscussionOver
e variable is False

Calendar

Figure 12.4 - “Discussion Cycle” Sub-Process Details

The Sub-Process starts of with a Task for the Issue List Manager to send an e-mail to the working group that a set of
Issues are now open for discussion through the working group’s message board. Since this Task sends a message to an
outside Participant (the working group members), an outgoing Message Flow is seen from the “Discussion Cycle’ Sub-
Process to the “Voting Members’ Pool in Figure 12.1. Basically, the working group will be discussing the issues for one
week and proposing additional solutions to the issues. After the first Task, three separate parallel paths are followed,
which are synchronized downstream. This is shown by the three outgoing Sequence Flow for that activity.

The top paralel path in the figure starts with a long-running Task, “Moderate E-mail Discussion,” that has a Timer
Intermediate Event attached to its boundary. Although the “Moderate E-Mail Discussion” Task will never actually be
completed normally in this model, there must be an outgoing Sequence Flow for the Task since Start and End Events are
being used within the Process. This Sequence Flow will merged with the Sequence Flow that comes from the Timer
Intermediate Event. A merging Exclusive Gateway is used in this situation because the next object is a joining Parallel
Gateway (the diamond with the cross in the center) that is used to synchronize the three parallel paths. If the merging
Gateway was not used and both Sequence Flow connected to the joining Gateway, the Process would have been stuck at
the joining Gateway that would wait for a Token to arrive from each of the incoming Sequence Flow.

The middle parallel path of the fork contains an Intermediate Event and a Task. A Timer Intermediate Event used in the
middle of the Process flow (not attached to the boundary of an activity) will cause adelay. Thisdelay is set to 6 days. The
“E-Mail Discussion Deadline Warning” Task will follow. Again, since this Task sends a message to an outside Participant,
an outgoing Message Flow is seen from the “Discussion Cycle” Sub-Process to the “Voting Members’ Pool in Figure
12.1.

The bottom parallel path of the fork contains more than one object, first of which is Task where the issue list manager
checks the calendar to see if there is a conference call this week. The output of the Task will be an update to the variable
“ConCall,” which will be true or false. After the Task, an Exclusive Gateway with its two Gates follows. The Gate for
labeled “default” Flow directly to an merging Exclusive Gateway, for the same reason as in the top parallel path. The
Gate for the “Yes” Sequence Flow will have a condition that checks the value of the “ConCall” variable (set in the

212 BPMN Adopted Specification

previous Task) to see if there will be a conference call during the coming week. If so, the Timer Intermediate Event
indicates delay, since all conference calls for the working group start at 9am PDT on Thursdays. The Task for moderating
the conference call follows the delay, which is followed the merging Gateway.

The merging Gateways in the top and bottom paths and the “E-Mail Discussion Deadline Warning” Task all flow into a
joining Gateway. This Gateway waits for all three paths to complete before the Process Flow to the next Task, “Evaluate
Discussion Progress.” The issue list manager will review the status of the issues and the discussions during the past week
and decide if the discussions are over. The DiscussionOver variable will be set to TRUE or FALSE, depending on this
evaluation. If the variable is set to FALSE, then the whole Sub-Process will be repeated, since it has looping set and the
loop condition will test the DiscussionOver variable.

12.2.1 Mapping to BPEL4AWS

« The“Discussion Cycle” Sub-Process itself maps to a BPEL4WS process.

Because it is a Sub-Process within a higher-level Process (the “ E-Mail Voting” Process), it isinvoked from the higher-
level Process. The invoke sends a message from one (higher-level) BPEL4WS process to the other (lower-level) pro-
cess for instantiation.

« This means that the process being instantiated must have areceive to start it off.

» The process being instantiated must have areply to end it, since it is being synchronously called.

The receive and reply are not actually shown in the BPMN Diagram, but it is derived from this invoke relationship of
“Discussion Cycle” Process being a Sub-Process to the “E-Mail Voting” Process.

» Given this, the activity of the BPEL4WS process will be a sequence with the derived receive as the first activity.

The Diagrams elements of Figure 12.4 will determine the remaining activity(ies) of the sequence.

» The Sub-Process starts off with a Task, which maps to a BPEL4WS invoke (which is after the automatically generated
receive that starts the process).

» After thefirst Task, three separate parallel paths are followed. The forking of the flow marks the start of a BPEL4WS
flow. The flow will extend until the Parallel Gateway, which joins the three paths.

The Upper Parallel Path

In the upper parallel path of the fork, the Task, “Moderate E-mail Discussion,” has a Timer Intermediate Event attached
to its boundary. Because of this,

» the Task isplaced in its own scope with a faultHandlers.

» The Task itself is mapped to a BPEL4WS invoke (synchronous), and will be placed in alower-level flow, for reasons
described below.

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do this,

» AneventHandlersis added to the scope.

* An onAlarmisincluded in the eventHandlers and the for attribute is set to the duration that is defined in the Timer
Intermediate Event.

*The onAlarm contains a throw with a fault name after the Intermediate Event with “_Exit” appended.

BPMN Adopted Specification 213

The catch of a faultHandlers will be triggered by the fault generated by the above throw. Since the Timer Intermediate
Event leads direction to the Exclusive Gateway, there is no specific activity that must be performed in response the to
time-out. The main purpose is to exit the Task. Thus,

« A faultHandlersis added to the scope.

 The catch in the faultHandl ers has a faultName set to Intermediate Event with “_Exit” appended.
«the catch will contain an empty activity.

The Middle Parallel Path
The middle parallel path of the fork has a string of two objects.

» Even though this series of objects appearsin the middle of a BPEL4WS flow, they will be place within a sequence ele-
ment.

In these situations, the sequence will continue until there is a location in the Diagram where there are multiple incoming
Sequence Flow. When more than one Sequence Flow converge it marks the end of a BPEL4WS structure (as determined
by structures that have been created by upstream objects). In this case, the Parallel Gateway also marks the end of the
higher-level flow. The sequence will be listed in the higher-level flow without a source sub-element. This means that the
sequence will be instantiated when the higher-level flow begins since it has no dependencies on any other activity. The
sequence will have two activities:

« First, the Timer Intermediate Event used in this situation will map to a BPEL4WS wait (set to 6 days).

» Second, the “E-Mail Discussion Deadline Warning” Task will map to an invoke that follows the wait. In addition, this
invoke can be asynchronous since aresponse is not required. This means that the outputVariable will not be included.

This middle path of the fork could have been configured in BPEL4WS without a sequence and with links instead. Thisis
an example of a situation where a BPMN configuration may derive two possible BPEL4WS configurations. Since both
BPEL4WS configurations will handle the appropriate behavior, it is up to the implementation of the BPMN to BPEL4AWS
derivation to determine which configuration will be used. BPMN does not provide any specific recommendation in these
situations. However, the lower parallel path of the Process can also be modeled with a sequence or with links, and, to
show how links would be used, this section of the Process will be mapped to elements in a flow that have dependencies
specified by links.

The Lower Parallel Path

The lower parallel path of the fork has a number of objects and, as just described above, will be mapped to BPEL4WS
elements connected with links. The path also contains a Decision, which can map to a switch, as will happen later in the
process, but in this situation the Decision is mapped to links controlled by transitionConditions.

» Thefirst object is a Task, which will map to an invoke (synchronous) that has two source elements referring to two of
the links. There are two Target links because the Task is followed by the Gateway with itstwo Gates. Thisis done
instead of a switch with a case and an otherwise.

 The ConditionExpression for the Gate labeled “Y es” will map to the source element’ s transitionCondition. The
expression checks the value of the “ConCall” property (set in the previous Task) to seeif therewill be aconference
call during the coming week.

» The Gate labeled “No” has a condition of default. For a switch, this would map to the otherwise element. However,
since aswitch is not being used, the source element’ s transitionCondition must be the inverse of all the other
transitionConditions for the activity. The expression of the other source will be placed inside a“not” function.

214 BPMN Adopted Specification

The invoke will be listed in the higher-level flow without a source sub-element. This means that the invoke will be
instantiated when the higher-level flow begins since it has no dependencies on any other activity. The remaining elements
of the higher-level flow will have a source element. Thus, they will not be instantiated until the source of the link has
completed.

» The"Yes' Gate from the Gateway leads to a Timer Intermediate Event, which will map to await.
« The for element of the wait will set to for 9am PDT on the next Thursday.
« Thiswait will have atarget element that corresponds to the target element from the previous invoke.

» The wait will also have atarget element to link to the following invoke.

» The“No" Gate from the Gateway |eads to a merging Exclusive Gateway, which means that nothing is expected to hap-
pen down this path. Thus, thiswill map to an empty.

 This empty will have atarget element that corresponds to the target element from the previous invoke.

» The Task for moderating the conference call follows the wait, which will map to an invoke (synchronous).

 Thisinvoke will have atarget element that corresponds to the target element from the previous wait.
There are three link elements in the flow:
« Onelink will have a source of the first invoke and a target of the wait.
» Onelink will have a source of the first invoke and a target of the empty.
« Onelink will have a source of the first wait and atarget of the last invoke.
As mentioned above, the Parallel Gateway marks the end of the flow.

Finally, there will be a reply at the end of the sequence that corresponds to the initial receive and lets the parent process
know that the (sub) process has been completed.

After the Parallel Paths are Joined

The Task “Evaluate Discussion Progress’ is intended to occur only when all the parallel paths have completed, and thus,
it will

» Map to aninvoke that follows the closing of the flow.

BPMN Adopted Specification 215

BPEL4WS Sample for the First Sub-Process
Example 12.2 displays some sample BPEL4WS code that reflects the portion of the Process as described above and

shown in Figure 12.4.

<process name="Discussion Cycle"s>

<!-- The Process data is defined first--»>

<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData" createlnstance="Yes"/>
<invoke name="AnnouncelIssuesforDiscussion" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"

inputVariable="processData"/>

<flow>

<links>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday, 9am"/>

<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</links>

<!-- This is the first of the three paths of the fork. -->

<scope>
<invoke name="ModerateEmailDiscussion" partnerLink="internal"

portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>

<faultHandlers>
<catch faultName="7Days Exit">
<empty/>
</catchs>
</faultHandlers>
<eventHandlers>
<onAlarm for="tns:0OneWeek">
<throw faultName="7Days Exit"/>
</catch>
</eventHandlers>

</scope>
<!-- This is the second of the three paths of the fork.

-->

216 BPMN Adopted Specification

<sequence>
<wait name="Delay6daysfromDiscussionAnnouncement" for="P6D"/>
<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionWarning"
inputVariable="processData">
</invoke>
</sequence>
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"
inputVariable="processData" outputVariable="processData'">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"

<source linkName="CheckCalendarforConferenceCalltoEmpty"

</invoke>
<!-- name="Yesgs" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</invoke>
<!-- name="otherwise" -->
<empty>
<target linkName="CheckCalendarforConferenceCalltoEmpty" />
</empty>
</flow>
<invoke name="EvaluateDiscussionProgress" partnerLink="internal"
portType="tns:internalPort" operation="receiveDiscussionStatus"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData"/>
</sequence>
</process>

transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>

transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>

Example 12.2 - BPEL4AWS Sample of “Discussion Cycle” Sub-Process Details

12.3 The Second Sub-Process

Figure 12.5 shows the next section of the Process, which includes the expanded details of the “Collect Votes” Sub-

Process.

BPMN Adopted Specification

217

A Loop:
From Unnamed

Sub-Process
(parallel box) Collect Votes

—

Conference
Callin Voting
Week?

Check Calendar
for Conference
Call

D Yes ‘
Wait until

Thursday, 9am

Moderate
Conference Call
Discussion

Calendar

Announce
Issues

Moderate E-mail
Discussion

From Sub-Process: E-Mail Vote
"Discussion Cycle" Deadline Warning
Delay 6 Days

— .
Receive Vote Increment Tally

Vote Vote Tally
A Loop:

Prepare
Results
From Task:

"Re-announce Vote with
warning to voting members"

E-Mail Results
of Vote

To Decision:
"Did Enough
Members Vote?"

Post Results
on Web Site

-~

Figure 12.5 - “Collect Votes” Sub-Process Details

This part of the process starts out with a Task for the issue list manager to send out an e-mail to announce to the working
group, and the voting members in particular, which lets them know that the issues are now ready for voting. Since this
Task sends a message to an outside Participant (the working group members), an outgoing Message Flow is seen from the
“Announce Issues’ Task to the “Voting Members’ Pool in Figure 12.1. This Task is also a target for one of the complex
loops in the Process.

The “Collect Votes’ Sub-Process follows the Task, and is also a target of one of the looping Sequence Flow. This Sub-
Process is basically a set of four parallel paths that extend from the beginning to the end of the Sub-Process.

218 BPMN Adopted Specification

The first branch of the fork leads to a Decision that determines whether or not a conference call will occur during the
upcoming week, after the Working Group’s schedule has been checked. Basically, if there was a call last week, then there
will not be a call this week and vice versa. The appropriate variable that was updated in the “Discussion Cycle” Process
will be used again.

The second and third branches forks work the same way as the similar activities in the “Discussion Cycle” Sub-Process,
except that the “Moderate E-Mail Discussion” Task does not have a Timer Intermediate Event attached. This is not
necessary since the whole Sub-Process is interrupted after 7 days through the Intermediate Event attached to the Sub-
Process boundary. The “E-Mail Vote Deadline Warning” Task sends a message to an outside Participant (the working
group members), thus, an outgoing Message Flow is seen from the “ Collect Votes” Sub-Process to the “Voting Members’
Pool in Figure 12.1.

The fourth branch of the fork is rather unique in that the Diagram uses a loop that does not utilize a Decision. Thus, it is,
asit isintended to be, an infinite loop. The policy of the working group is that voting members can vote more than once
on an issue; that is, they can change their mind as many times as they want throughout the entire week. The first Task in
the loop receives a message from the outside Participant (the working group members), thus, an incoming Message Flow
is seen from the “Voting Members’ Pool to the “Collect Votes’ Sub-Processin Figure 12.1. The Timer Intermediate Event
attached to the boundary of the Sub-Process is the mechanism that will end the infinite loop, since all work inside the
Sub-Process will be ended when the time-out is triggered. All the remaining work of the Process is conducted after the
time-out and Flow from the Timer Intermediate Event.

Figure 12.5 shows that there are Two Tasks that follow the time-out. First, a Task will prepare all the voting results, then
a Task will send the results to the voting members. A Document Object, “Issue Votes,” is shown in the Diagram to
illustrate how one might be used, but it will not map to anything in the execution languages. The remaining activities of
the Process will be described in the next section.

12.3.1 Mapping to BPEL4WS

The Loops Cause Derived Sub-Processes

» Thefirst Task of this section of the Processis also atarget for one of the complex loops in the Process, thus, it will map
to an invoke (asynchronous) that is placed inside another derived process (“Announce_Issues Derived Process’).

» Thisderived processwill beinvoked from “Discussion_Cycle Derived Process,” after the “ Discussion Cycle” process
has been completed, as part of the Normal Flow and then from another part of the Process as part of the looping flow.

 Thus, “Announce_lssues Derived Process’ will require a (instantiation) receive to accept the message from
“Discussion_Cycle Derived Process’ and from “Issues wo_Magjority Derived Process’ (aswe shall see later).

» The“Collect Votes” Sub-Process follows the Task, but is also atarget of one of the looping Sequence Flow. Thus, it
will also be set inside a derived process (“Collect_Votes Derived Process’).

« In addition, “Collect_Votes Derived Process’ will require a (instantiation) receive to accept the message from
“Announce_lssues Derived Process’ and from the fault handler of “Collect Votes’ (aswe shall see later).

» The“Collect Votes’ Sub-Process will map to an invoke (asynchronous) and the details will be in a process referenced
through the invoke.

BPMN Adopted Specification 219

The BPEL4WS Sample of the Derived Sub-Processes
Example 12.3 shows sample BPEL4WS code that defines the two derived processes.

<process name="Announce Issues Derived Process">

<!-- This starts the middle section of the Process and is call from
the first time and then from “Collect Votes” during a loop-->
<!-- The Process data is defined first-->
<sequence>

<receive partnerLink="Internal" portType="tns:processPort"
operation="call Announce Issues Derived Process"
variable="processData" createlInstance="Yes"/>

<invoke name="AnnouncelssuesforVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteAnnouncement" inputVariable="processData"/>

<invoke name="Collect Votes Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Collect Votes Derived Process" inputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort"
operation="call Announce Issues Derived Process"
variable="processData" createlInstance="Yes"/>

</sequence>
</process>

<process name="Collect Votes Derived Process">

<!-- this calls the second Sub-Process and then continues. It is also
called from “Collect Votes” as part of a loop-->
<!-- The Process data is defined first-->
<sequences>

<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes Derived Process" variable="processData"

createInstance="Yes"/>
<invoke name="Collect Votes" partnerLink="Internal" portType="tns:processPort"

operation="call Collect Votes" inputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes Derived Process" variable="processData"
createInstance="Yes"/>

</sequence>

</process>

Example 12.3 - BPEL4WS Sample that sets up the Access for the Second Sub-Process

The Paths of the Sub-Process
The “Collect Votes Sub-Process is basically a set of four parallel paths that extend from the beginning to the end of the
Sub-Process.

« Thus, the activity for the process will be a flow.

220 BPMN Adopted Specification

The Upper Parallel Path

The first branch of this Sub-Process is basically the same as the upper parallel of the previous Sub-Process. An invoke, a
wait, and an empty will be created. In addition, three links will be created to handle the dependencies between the
elements, including the branching created by the Exclusive Gateway. See “The Lower Parallel Path” on page 214 for the
details of the mappings.

The Middle Two Parallel Paths

The second and third branches of the fork are rather straightforward mappings of:
» Two Tasks to invokes (one synchronous and one asynchronous), and
« A Timer Intermediate Event to a delay.

« Inaddition, onelink is created so that one of the invokes will wait for the delay.

The Lower Parallel Path

The fourth branch of the fork is the location the infinite loop.
» Thisloop will map to a BPEL4WS while with a condition of “1=0," which will always be false.

 Insidethewhileisasequence of two invokes (one synchronous and one asynchronous), which are mapped from the two
Tasksin the loop.

Exiting the Second Sub-Process

To exit out of the infinite loop and the whole “Collect Votes’ Sub-Process,

» A scope will bewrapped around the main flow of the process, which will include an eventHandlers and a faultH-
andlers.

The Timer Intermediate Event must be set up to create a fault at the appropriate time. To do this,

« AnonAlarmwill be placed inside the eventHandlers. The timing of the onAlarmwill be determined by the time setting
in the Intermediate Event.

« Within the onAlarm, athrow will afault name after the Intermediate Event with “_Exit” appended.

» The catch element of the faultHandlers will be triggered by the fault generated by the above throw.

» The activity for the catch will be a sequence and will be the source of al the remaining activities of the Process,
since all the remaining Segquence Flow begins from the Timer Intermediate Event.

*The first three Tasks, as shown in the figure, will map to invokes. The latter two will be placed within a
flow.

The Document Objects shown in the figure is not mapped into BPEL4WS. The remainder of the Process will be described
in the next section.

BPMN Adopted Specification 221

BPEL4WS Sample for the Second Sub-Process
Example 12.4 shows sample BPEL4WS code that defines the “Collect Votes’ Sub-Process.

<process name="Collect Votes">
<!--This is a nested process for the E-Mail Voting collection. It consists of
an all and a faultHandlers (for a time-out). The all will never complete
normally since there is an infinite loop inside. The timeout is intended to
be the normal way of ending the process-->
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData" createInstance="Yes"/>
<scope>
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</links>
<!--This is the first of the four paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"
inputVariable="processData" outputVariable="processData">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>
<source linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yes" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</waits>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData"s>
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>
<!-- name="otherwise" -->
<empty>
<target linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
<!-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>
<!--This is the third of the four paths of the fork.-->
<wait name="Delayé6daysfromVoteAnnouncement" for="PeD">
<source linkName="Delayé6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>

</waits>

222 BPMN Adopted Specification

<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteWarning"
inputVariable="processData'">
<target linkName="Delay6daysfromVoteAnnouncementtoEMailVote DeadlineWarning"/>
</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the
all is intended to be an infinite loop that is eventually
interrupted by the Time Out. This is necessary since any voter can
change their vote until the deadline. -->
<while condition="1=0">
<sequence>
<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="receiveVote" variable="processData"/>
<invoke name="IncrementTally" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveTotal"
inputVariable="processData" outputVariable="processData"/>
</sequence>
</whiles>
</flows>
<eventHandlerss>
<onAlarm for="P7D">
<throw faultName="7days Exit"/>
</onAlarm>
</eventHandlers>
<faultHandlers>
<catch faultName="7days Exit">

<!-- The BPMN Diagram shows that the Timer Intermediate Event connects directly
to the rest of the Process. Thus, they will show up in this activity set. -->
<sequence>

<invoke name="PrepareResults" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveResults"
inputVariable="processData" outputVariable="processData"/>
<flow>
<invoke name="PostResultsonWebSite" partnerLink="internal"
portType="tns:internalPort" operation="postVotingResults"
inputVariable="processData"/>
<invoke name="EMailResultsofVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
inputVariable="processData"/>
</flow>

<!--the rest of the process is not shown-->

</faultHandlers>
</scope>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData" createInstance="Yes"/>
</sequence>
</process>

Example 12.4 - BPEL4AWS Sample of the Second Sub-Process

BPMN Adopted Specification 223

12.4 The End of the Process

Figure 12.6 shows the last section of the Process, which includes a complex set of Decisions and loops.

To Sub-Process:
"Discussion Cycle"

To Task:
"Announce Issues ¢+——
for Vote"

Reduce to
Two Solutions

E-Mail Voters
that have to
Change Votes

2nd
Time?

Ssues w/
Majority?

A

From Task:
"E-Mail Results of
Vote"

Members

Reduce number of
Voting Members
and Recalculate

Vote

Have the
members
een warned

Re-announce
Vote with
warning to voting
members

To Sub-Process:
"Collect Votes"

Figure 12.6 - The last segment of the E-Mail Voting Process

This segment of the Process continues from where the last segment left off (as described in the section above). It contains
four Decisions that interact with each other and create loops to upstream activities.

224 BPMN Adopted Specification

The first Decision, “Did Enough Members Vote?,” is necessary since two-thirds of the voting members are required to
approve any solution to an issue. If less than two-thirds of the voting members cast votes, which sometimes happens, the
issues can't be resolved. This Decision Flow to another Decision for both of its Alternatives. The “No” Alternative is
followed by the “Have the Members been Warned?' Decision. If a voting member misses a vote, they are warned. If they
miss a second vote, they lose their status as a voting member and the voting percentages are recal culate through a Task
(“Reduce number of Voting Members and Recalculate Vote”). If they haven't yet been warned, then awarning is sent and
the voting week is repeated.

If all issues are resolved, then the Process is done. If not, then another Decision is required. The voting is given two
chances before it goes back to another cycle of discussion. The first time will see areduction of the number of solutions
to the two most popular based on the vote (more if there are ties). Some voting members will have to change their votes
just because their solution is no longer valid. These two activities are placed in a Sub-Process to show how a Sub-Process
without Start and End Events can be used to create a simple set of parallel activities. Informally, thisis called a “parallel
box.” It is not a special object, but another use of Sub-Processes. For simple situations, it can be used to show a set of
parallel activities without the extra clutter of alot of Sequence Flow. In actuality, these two Tasks cannot actually be done
in parallel, but they are modeled this way to highlight the optional use of Start and End Events.

After the parallel box, the flow loops back to the “Collect Votes” Sub-Process. If there already has been two cycles of
voting, then the process Flow back to the “Decision Cycle” Sub-Process.

12.4.1 Mapping to BPEL4WS

As mentioned above, the entire contents of this segment follow a Timer Intermediate Event, which means they are
contained in the faultHandlers of the scope within the “Collect Votes’ process.

» Each of the Decisions in this section will map to a BPEL4WS switch.

The First Decision

The first Decision, “Did Enough Members Vote?,” Flow to another Decision for both of its Alternatives.
« Thus, each of the switch cases will contain another switch.
The “No” Alternative is followed by the “Have the Members been Warned?’ Decision.

» Each Alternative from this Decision is followed by a Task, which maps to Invokes (one synchronous and the other
asynchronous).

The “No (default)” Alternative leads to a loop.

» Thisloopingis handled by using an invoke (asynchronous) to the “Collect_Votes Derived Process’ process, which
was created just for the purpose of thisloop (since it isin the context of a more complex looping situation).

Notice that the “Issues w/o Majority?’ Decision can be reached through the alternative paths from two different
Decisions. This creates a situation that has two impacts on the Mapping to Execution Languages. First, it creates a section
of the Process in which the Alternatives from two Decisions overlap. This is possible in a graph-structured Diagram like
BPMN, but in a block-structured (and acyclic) language like BPEL4AWS, these two sections cannot overlap because they
have different block boundaries. This means that this section must be repeated in some way in both of the appropriate
switch case activities. All these elements could be actually duplicated or they can be separated into a derived process and
then invoked from the appropriate place. The later method was used in this example (see Example 12.5 and Example
12.6).

BPMN Adopted Specification 225

Note — At this point, BPMN does not specify whether a reused section of a BPMN Diagram should map to a derived process
that is invoked from each location of duplication, or whether the section should remain intact and be duplicated in each
appropriate location. Thisis|eft up to the specific implementation of BPMN since both solutions will behave equivalently.

The second impact of the multiple incoming Sequence Flow into the “Issues w/o Majority?’ Decision has to do with how
the three visible loops are created (actually there are five loops). Normally, Sequence Flow [oops will map to a BPEL4AWS
while. If there are multiple loops in the Process they have to be physically separated or completely nested because of the
block-structured nature of the BPEL4WS looping elements. The alternative paths of the Decisions cannot be mixed and
till maintain the BPEL4WS blocks they way that the end of the “E-mail Voting” Process mixes the paths.

A different type of looping mechanism is required. This method requires the creation of a set of derived processes that
can reference each other and also themselves. In this way, a block-structured language can simulate a set of interleaving
loops (as seen in a graph-structured Diagram).

» Thus, inthisBPMN example, derived processes were created to mark places where |oops can be targeted within the
BPEL4WS code from the “downstream” elements.

» A BPEL4WS invokeis used to re-perform activities that had already been executed in the process.

226 BPMN Adopted Specification

BPEL4WS Sample for the End of the Process
Example 12.5 displays the BPEL4WS code for first part of the end of the “E-Mail Voting Process.”

<!--This segment of the code is within the context of the “Collect
Votes” nested process-->
<catch property="tns:0OneWeek" type="duration"s>

<!--The BPMN Diagram shows that the Timer Intermediate Event connects directly to the
rest of the Process. Thus, they will show up in this activity set-->
<!--The first two actions are not shown-->
<sequence>

<invoke name="PrepareResults" partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveResults" inputVariable="processData"
outputVariable="processData"/>
<invoke name="EMailResultsofVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="gendVotingResults" inputVariable="processData"/>
<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getVariableProperty (ProcessData, NumVoted) >
(.7)* (bpws:getVariableProperty (ProcessData, NumvVWGM)) ">

BPMN Adopted Specification 227

<switch name="Havethemembersbeenwarned">

<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,VotersWarned)=true">

<sequences>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"
partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveNumVoters" inputVariable="processData"

outputVariable="processData"/>
<!--Some elements of the process were separated into a derived
process since they would have been repeated. They would have
been repeated because they are arrived by alternative paths that

do not close a set of alternative paths. -->

<invoke name="Issues_wo Majority Derived Process" partnerLink="Internal"
portType="tns:processbPort"
operation="call Issues wo Majority Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</case>
<!-- name="No (otherwise)" -->
<otherwise>

<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"

partnerLink="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote" inputVariable="processData"

outputVariable="processData"/>
<invoke name="Collect Votes_ Derived Process" partnerLink="Internal"

portType="tns:processPort"
operation="call Collect_ Votes_Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwises>
</switch>

</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<!l-- Some elements of the process were separated into a derived process since they

would have been repeated. They would have been repeated because they are
arrived by alternative paths that do not close a set of alternative paths
<invoke process="Issues wo Majority Derived Process" partnerLink="Internal"
portType="tns:processbPort"
operation="call Issues wo Majority Derived Process"
inputVariable="processData" outputVariable="processData"/>

</otherwise>
</switch>
</sequence>
</catch>

Example 12.5 - Sample BPEL4WS code for the last section of the Process

228 BPMN Adopted Specification

Example 12.6 shows the BPEL4WS code for the Process from the “Issues w/o Mgjority?” Decision until the end of the
Process or loops.

» The mappings are afairly straightforward set of switches.

If all issues are resolved, then the Process is done. If not, then another Decision is required.
« The“paralel box,” asisany forking situation, will map to a BPEL4WS flow.

After the parallel box, the flow loops back to the “Collect Votes’ Sub-Process.

» Thislooping is handled by using an invoke (asynchronous) to the “ Announce Issues Derived Process’ process, which
was created just for the purpose of thisloop.

If there has already been two cycles of voting, then the process Flow back to the “Decision Cycle” Sub-Process.

« Thislooping is handled by using an invoke (asynchronous) to the “Discussion_Cycle Derived_Process’ process,
which was created just for the purpose of this loop.

BPMN Adopted Specification 229

Example 12.5 displays the BPEL4WS code for the final derived process of the “E-Mail Voting Process.”

<process name="Issues wo Majority Derived Process">
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Issues wo Majority Derived Process" variable="processData"

createInstance="Yes"/>

<switch name="IssueswoMajority">
<case name="Yes" condition="NoMajority=true">

<switch name="2ndTime">

<!-- name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,VotedOnce)=true">
-=>

<!--This is done to do the complex looping situation.
<invoke name="Discussion Cycle Derived Process" partnerLink="Internal"

portType="tns:processPort"
operation="call Discussion Cycle Derived Process"

inputVariable="processData" outputVariable="processData"/>

</case>

name="No (otherwise)"-->

<l--
<otherwise>

<sequence>

<flow>
<invoke name="ReducetoTwoSolutions" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveSolutions"

inputVariable="processData" outputVariable="processData"/>
<invoke name="EMailVotersthathavetoChangeVotes" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteWarning"

inputVariable="processData"/>

</flow>
<invoke process="Announce Issues Derived Process" partnerLink="Internal"

portType="tns:processbPort"
operation="call Announce Issues Derived Process"

inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwises>
</switch>

</case>

<otherwise name="Nootherwise">
<!l-- This is one of the two ways to the end of the Process. -->
<empty/>

</otherwise>

</switch>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Issues wo Majority Derived Process" variable="processData"

createInstance="Yes"/>

</sequence>

</process>
Example 12.6 - Sample BPEL4WS code for derived process for repeated elements

BPMN Adopted Specification

230

Annex A
(informative)

E-Mail Voting Process BPEL4WS

A.1 Introduction

Thisannex provides the complete BPEL4WS code for the example BPMN business process that is described in the“BPMN by
Example’ chapter.

BPMN Adopted Specification 231

<definitions
targetNamespace="http://www.website.com"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" >

<message name="processDataMessage">
<part name="NumIssues" type="xsd:integer"/>
<part name="NoMajority" type="xsd:boolean"/>
<part name="VotedOnce" type="xsd:boolean"/>
<part name="NumVoted" type="xsd:integer"/>
<part name="VotersWarned" type="xsd:boolean"/>
<part name="LoopCounter" type="xsd:integer"/>
</message>
<!--processDataMessage will be received with the following parts:
NoMajority (set to false)
VotedOnce (set to false)
NumVoted (set to false)
VotersWarned (set to false)
LoopCounter (set to 0)
starting message every Friday is not shown here.-->
</definitionss>

<!-- The Main Process -->
<process name="EMailVotingProcess">
<variables>
<variable name="processData" messageType="processDataMessage"/>
<!--processDataMessage will be received with the following parts:
NumIssues (set to the number of unresolved Issues)
NoMajority (set to false)
VotedOnce (set to false)
NumVoted (set to false)
VotersWarned (set to false)
LoopCounter (set to 0)

starting message every Friday is not shown here.-->
</variables>
<sequences
<!--This starts the beginning of the Process. The process that sends the
starting message every Friday is not shown here.-->

<receive partnerLink="Internal" portType="tns:processPort"
operation="receivelssuelList" variable="processData" createlnstance="Yes"/>

<invoke name="ReviewIssueList" partnerLink=“Internal" portType="tns:internalPort"
operation="sendIssuelList" inputVariable="processData"
outputVariable="processData"/>

<switch name="AnyIssuesReady">

232 BPMN Adopted Specification

<!--name="Yes" -->
<case condition="bpws:getVariableProperty (ProcessData,NumIssues)>0">
<!-- A chunk of this process is separated into a derived process so that
it can be called from a complex loop. -->
<invoke name="Discussion_ Cycle Derived Process" partnerLink="Internal"
portType="tns:processPort" operation="call Discussion Cycle Derived Process"
inputVariable="processData" outputVariable="processData"/>
</case>
<!--name="No" -->
<otherwise>
<!--This is one of the two ways to the end of the Process.-->
<empty/>
</otherwises>
</switch>
</sequence>

<!-- A Derived Process -->
<process name="Discussion_ Cycle Derived Process">
<variables>
<variable name="processData" messageType="processDataMessage"/>
<variable name="Discussion Cycle loopCounter" messageType="loopCounterMessage"/>
</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion_Cycle Derived Process" variable="processData"
createInstance="Yes"/>
<!--The first Sub-Process has a loop condition, so it is within a while-->
<assign name="Discussion Cycle initialize_ loopCounter"s>
<copy>
<from expression="0"/>
<to variable="Discussion Cycle loopCounter" part="loopCounter" />
</copy>
</assign>
<!--Since the TestTime is “After” the Sub-Process has to be performed before the
while-->
<invoke name="Discussion Cycle" partnerLink="Internal"
portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<while condition="bpws:getVariableProperty (ProcessData,DiscussionOver)=false">
<!--This calls the first Sub-Process-->
<sequence>
<invoke process="Discussion Cycle" partnerLink="Internal"
portType="tns:processPort operation="call Discussion Cycle"
inputVariable="processData" outputVariable="processData"/>
<assigns>
<copy>
<from expression=
"bpws:getVariableProperty (Discussion Cycle loopCounter, LoopCounter)+1"/>

BPMN Adopted Specification

233

<to variable="Discussion Cycle loopCounter" part="LoopCounter"/>
</copy>
</assign>
</sequence>
</while>
<!--This calls the first another derived process to handle the rest of the
work-->
<invoke name="Announce Issues Derived Process" partnerLink="Internal"

portType="tns:processbPort" operation="call Announce Issues Derived Process"

inputVariable="processData" outputVariable="processData"/>
</sequence>

</process>

</process>

<!-- A Derived Process -->

<process name="Announce Issues Derived Process'>

<!-- This starts the middle section of the process.
<variables>

-->

<variable name="processData" messageType="processDataMessage"/>
</variabless>

<sequences

<receive partnerLink="Internal" portType="tns:processPort"

operation="call Announce_Issues_Derived Process" variable="processData"
createInstance="Yes"/>

<invoke name="AnnouncelssuesforVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteAnnouncement" inputVariable="processData"/>

<invoke name="Collect Votes_Derived Process" partnerLink="Internal"
portType="tns:processPort" operation="call Collect Votes Derived Process"
inputVariable="processData" outputVariable="processData"/>

<reply partnerLink="Internal" portType="tns:processPort"

operation="call Announce Issues_ Derived Process"

variable="processData" createInstance="Yes"/>
</sequence>

</process>

<!-- A Derived Process -->

<process name="Collect Votes Derived Process">

<!--this calls the second Sub-Process. After the Collect Votes Sub-Process
times out, the rest of the process will be in the fault handler
of that process. Calls from there will loop back into other processes.-->
<variables>

<variable name="processData" messageType="processDataMessage"/>
</variabless>

<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes_Derived Process" variable="processData"
createInstance="Yes"/>
<invoke name="Collect Votes" partnerLink="Internal" portType="tns:processPort"

operation="call Collect Votes" inputVariable="processData"
outputVariable="processData"/>

234 BPMN Adopted Specification

<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect_ Votes_ Derived Process" variable="processData"

createInstance="Yes"/>
</sequence>

</process>
<!-- A Derived Process -->
<process name="Issues_wo_Majority Derived Process">

<variables>
<variable name="processData" messageType="processDataMessage"/>
</variabless>
<sequences
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Issues wo Majority Derived Process" variable="processData"
createInstance="Yes"/>
<switch name="IssueswoMajority"s>
<case name="Yes"
condition="bpws:getVariableProperty (ProcessData,NoMajority)=true">
<switch name="2ndTime">

<!-- name="Yeg" -->
<case condition="bpws:getVariableProperty (ProcessData, VotedOnce)=true">

<!--This is done to do the complex looping situation. -->
<invoke name="Discussion_ Cycle Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Discussion Cycle Derived Process"
inputVariable="processData" outputVariable="processData"/>

</case>
<!-- name="No (otherwise)" -->
<otherwise>

<sequence>

<flow>
<invoke name="ReducetoTwoSolutions" partnerLink="internal"

portType="tns:internalPort" operation="sendReceiveSolutions"
inputVariable="processData" outputVariable="processData"/>
<invoke name="EMail Voters that have to Change Votes"
partnerLink="WGVoter" portType="tns:emailPort"
operation="sendVoteWarning" inputVariable="processData"/>

</flows>
<invoke process="Announce_ Issues_ Derived Process" partnerLink="Internal"

portType="tns:processPort"
operation="call Announce_Issues_ Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwises>
</switch>

</case>
<otherwise name="Nootherwise">
<!-- This is one of the two ways to the end of the Process. -->
<empty/>

</otherwises>

BPMN Adopted Specification

235

</switch>
</sequence>
</process>
<!-- A User Built Process -->
<process name="Discussion Cycle'">
<!--This defines the first Sub-Process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>
</variables>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData"
createInstance="Yes"/>
<invoke name="AnnounceIssuesforDiscussion" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionAnnouncement"
inputVariable="processData"/>
<flow>
<links>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</links>
<!-- This is the first of the three paths of the fork. -->
<scope>
<invoke name="ModerateEmailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>
<faultHandlers>
<catch faultName="7Days Exit">
<empty/>
</catch>
</faultHandlers>
<eventHandlers>
<onAlarm for="tns:OneWeek">
<throw faultName="7Days Exit"/>
</catch>
</eventHandlers>
</scope>
<!-- This is the second of the three paths of the fork. -->
<sequence>
<wait name="Delayé6daysfromDiscussionAnnouncement" for="P6&D"/>
<invoke name="EMailDiscussionDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendDiscussionWarning"
inputVariable="processData">
</invokes>
</sequence>
<!-- This is the third of the three paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"

236 BPMN Adopted Specification

inputVariable="processData" outputVariable="processData">
<source linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData, conCall)=true"/>
<source linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yeg" -->
<wait name="WaituntilThursday9am" for="P6DTIH">
<target linkName=
"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>

<!-- name="otherwise" -->
<empty>
<target linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
</flow>

<invoke name="EvaluateDiscussionProgress" partnerLink="internal"
portType="tns:internalPort" operation="receiveDiscussionStatus"
inputVariable="processData" outputVariable="processData"/>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Discussion Cycle" variable="processData"/>
</sequence>
</process>

<!-- A User Built Process -->
<process name="Collect Votes">
<!--This is a process for the E-Mail Voting collection. It consists of an all and a
timeout event handler. The all will never complete normally since there is an
infinite loop inside. The timeout is intended to be the normal way of ending the
process. -->
<variables>
<variable name="processData" messageType="processDataMessage"/>
</variabless>
<sequence>
<receive partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData" createInstance="Yes"/>
<scope>
<flow>
<links>
<link name="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
<link name="CheckCalendarforConferenceCalltoWaituntilThursday9am"/>
<link name="CheckCalendarforConferenceCalltoEmpty"/>
<link name="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

BPMN Adopted Specification

237

</links>
<!--This is the first of the four paths of the fork. -->
<invoke name="CheckCalendarforConferenceCall" partnerLink="internal"
portType="tns:internalPort" operation="receiveCallSchedule"
inputVariable="processData" outputVariable="processData">
<target linkName="CheckCalendarforConferenceCalltoWaituntilThursday9am"
transitionCondition="bpws:getVariableProperty (processData,conCall)=true"/>
<target linkName="CheckCalendarforConferenceCalltoEmpty"
transitionCondition="not (bpws:getVariableProperty (processData,conCall)=true)"/>
</invoke>
<!-- name="Yeg" -->
<wait name="WaituntilThursday9am" for="P6DT9H">
<source linkName=
"CheckCalendarforConferenceCalltoWaituntilThursday9am">
<target linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>
</wait>
<invoke name="ModerateConferenceCallDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendConCall"
inputVariable="processData" outputVariable="processData">
<source linkName="WaituntilThursday9amtoModerateConferenceCallDiscussion"/>

</invoke>
<!-- name="otherwise" -->
<empty>
<source linkName="CheckCalendarforConferenceCalltoEmpty"/>
</empty>
<l-- This is the second of the four paths of the fork. -->

<invoke name="ModerateEMailDiscussion" partnerLink="internal"
portType="tns:internalPort" operation="sendDiscussion"
inputVariable="processData" outputVariable="processData"/>
<!--This is the third of the four paths of the fork.-->
<wait name="Delay6daysfromVoteAnnouncement" for="P6D">
<target linkName="Delayé6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
</wait>
<invoke name="EMailVoteDeadlineWarning" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVoteWarning"
inputVariable="processData'">
<source linkName="Delay6daysfromVoteAnnouncementtoEMailVoteDeadlineWarning"/>
</invoke>
<!--This is the fourth of the four paths of the fork. This branch of the all is
intended to be an infinite loop that is eventually interrupted by the Time
Out. This is necessary since any voter can change their vote until the
deadline. -->
<while condition="1=0">
<sequence>
<receive name="ReceiveVote" partnerLink="WGVoter" portType="tns:emailPort"
operation="receiveVote" variable="processData"/>
<invoke name="IncrementTally" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveTotal"
inputVariable="processData" outputVariable="processData"/>

238

BPMN Adopted Specification

</sequence>
</while>
</flows>
<eventHandlers>
<onAlarm for="P7D">
<throw faultName="7days Exit"/>
</onAlarms>
</eventHandlers>
<faultHandlers>
<catch faultName="7days Exit">
<!-- The BPMN Diagram shows that the Timer Intermediate Event connects
directly to the rest of the Process. Thus, they will show up in
this activity set. -->
<sequence>
<invoke name="PrepareResults" partnerLink="internal"
portType="tns:internalPort" operation="sendReceiveResults"
inputVariable="processData" outputVariable="processData"/>
<flow>
<invoke name="PostResultsonWebSite" partnerLink="internal"
portType="tns:internalPort" operation="postVotingResults"
inputVariable="processData"/>
<invoke name="EMailResultsofVote" partnerLink="WGVoter"
portType="tns:emailPort" operation="sendVotingResults"
inputVariable="processData"/>
</flow>
<switch name="DidEnoughMembersVote">
<!-- name="No" -->
<case condition="bpws:getVariableProperty (ProcessData, NumVoted) >
(.7) * (bpws:getVariableProperty (ProcessData, NumVWGM)) ">
<switch name="Havethemembersbeenwarned">
<!-- name="Yeg" -->
<case condition="bpws:getVariableProperty (ProcessData,
VotersWarned) =true" >
<sequence>
<invoke name="ReducenumberofVotingMembersandRecalculateVote"
partnerLink="internal" portType="tns:internalPort"
operation="sendReceiveNumVoters" inputVariable="processData"
outputVariable="processData"/>
<!--Some elements of the process were separated into a derived process
since they would have been repeated. They would have been
repeated because they are arrived by alternativepaths that do not
close a set of alternative paths. -->

<invoke name="Issues_wo Majority Derived Process" partnerLink="Internal"
PortType="tns:processPort"

operation="call Issues wo Majority Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</case>
<!-- name="No (otherwise)" -->

BPMN Adopted Specification 239

<otherwise>
<sequence>
<invoke name="ReannounceVotewithwarningtovotingmembers"
partnerLink="WGVoter" portType="tns:emailPort"
operation="sendReannounceVote" inputVariable="processData"
outputVariable="processData"/>
<invoke name="Collect_ Votes_Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Collect_ Votes_Derived Process"
inputVariable="processData" outputVariable="processData"/>

</sequence>
</otherwises>
</switch>
</case>
<!-- name="Yes (otherwise)" -->
<otherwise>
<l-- Some elements of the process were separated into a derived process

since they would have been repeated. They would have been repeated
because they are arrived by alternative that do not close a set of
alternative paths. -->
<invoke process="Issues wo Majority Derived Process" partnerLink="Internal"
portType="tns:processPort"
operation="call Issues_wo Majority Derived_ Process"
inputVariable="processData" outputVariable="processData"/>
</otherwises>
</switch>
</sequence>
</catch>
</faultHandlers>
</scope>
<reply partnerLink="Internal" portType="tns:processPort"
operation="call Collect Votes" variable="processData"/>
</sequence>
</process>

240 BPMN Adopted Specification

Annex B
(informative)

BPMN Element Attributes and Types

This annex provides the complete set of BPMN Element Attributes and the definition of types that support the Attributes. All
the tablesin this annex also appear in Chapters 8, 9, and 10.

B.1 Business Process Diagram Attributes

The following table displays the set of attributes of a Business Process Diagram:

Table B.1 - Business Process Diagram Attributes

Attributes Description
Id : Object Thisisaunique Id that distinguishes the Diagram from other Diagrams.
Name : String Nameis an attribute that is text description of the Diagram.

Version (0-1) : String

This defines the Version number of the Diagram.

Author (0-1) : String

This holds the name of the author of the Diagram.

Language (0-1) : String

This holds the name of the language in which text iswritten. The default is English.

ExpressionLanguage (0-1) :
String

A Language MAY be provided sothat the syntax of expressions usedin the Diagram
can be understood.

QueryLanguage (0-1) : String

A Language MAY be provided so that the syntax of queries used in the Diagram can
be understood.

CreationDate (0-1) : Date

This defines the date on which the Diagram was create (for this Version).

ModificationDate (0-1) : Date

This defines the date on which the Diagram was last modified (for this Version).

Pools (1-n) : Pool

A BPD SHALL contain one or more Pools. The boundary of one of the Pools MAY
beinvisible (especialy if thereisonly one Pool in the Diagram). Refer to “Pool” on
page 75 for more information about Pools.

Documentation (0-1) : String

The modeler MAY add optional text documentation about the Diagram.

BPMN Adopted Specification

241

B.2 Process Attributes

The following table displays the set of attributes of a Process:

Table B.2 - Process Attributes

Attributes Description
Id : Object Thisisaunique Id that identifies the object from other objects within the Diagram.
Name : String Name is an attribute that is text description of the object.

ProcessType (None | Private |
Abstract | Collaboration) None :
String

ProcessTypeis an attribute that provides information about which lower-level
language the Pool will be mapped. By default, the ProcessType is None (or
undefined). A Private ProcessType MAY be mapped to an executable BPELAWS
process. An Abstract ProcessTypeisalso called the public interface of aprocess (or
other web services) and MAY be mapped to an abstract BPEL4WS process. A
Collaboration ProcessType is also considered a“global” processand MAY be
mapped to languages such as ebXML or WS Choreography. However, these
mappings are not provided in this version of the specification.

If the Processis to be used to create a BPEL4WS document, then the attribute
MUST be set to Executable or Abstract.

Status (None | Ready | Active |

Cancelled | Aborting | Aborted |

Completing | Completed) None :
String

The Status of a Process is determined when the Process is being executed by a
process engine. The Status of aProcess can be used within Assignment Expressions.

GraphicalElements (0-n) :
Object

The Graphical Elementsattributeidentifiesall of the objects (e.g., Events, Activities,
Gateways, and Artifacts) that are contained within the Process.

Assignments (0-n) : Assignment

One or more assignment expressionsMAY be made for the object. The Assignment
SHALL be performed as defined by the AssignTime attribute (see below). The
details of Assignment isdefined in “Assignment on page 268.”

Properties (0-n) : Property

Modeler-defined Properties MAY be added to a Process. These Properties are
“local” to the Process. All Tasks, Sub-Process objects, and Sub-Processes that are
embedded SHALL have access to these Properties. The fully delineated name of
these properties is “ <process name>.<property name>" (e.g., “Add
Customer.Customer Name”). If aprocessis embedded within another Process, then
the fully delineated name SHAL L also be preceded by the Parent Process name for
as many Parents there are until the top level Process. Further details about the
definition of a Property can befound in “Property on page 270.”

AdHoc False : Boolean

AdHoc is aboolean attribute, which has a default of False. This specifies whether
the Processis Ad Hoc or not. The activities within an Ad Hoc Process are not
controlled or sequenced in aparticul ar order, their performanceis determined by the
performers of the activities. If set to True, then the Ad Hoc marker SHALL be
placed at the bottom center of the Process or the Sub-Process shape for Ad Hoc
Processes.

242

BPMN Adopted Specification

Table B.2 - Process Attributes

Attributes

Description

[AdHoc = True only]
AdHocOrdering (0-1)
(Sequential | Parallel) Parallel :
String

If the Processis Ad Hoc (the AdHoc attribute is True), then the AdHocOrdering
attribute MUST be included. This attribute defines if the activities within the
Process can be performed in Parallel or must be performed sequentially. The default
setting is Parallel and the setting of Sequential is arestriction on the performance
that may be required due to shared resources.

[AdHoc = True only]

AdHocCompletionCondition
(0-1) : Expression

If the Processis Ad Hoc (the AdHoc attribute is True), then the
AdHocCompletionCondition attribute MUST beincluded. Thisattribute definesthe
conditions when the Process will end.

SuppressJoinFailure False :
Boolean

This attribute is included for mapping to BPEL4WS. This specifies whether or not
aBPEL4WS joinFailure fault will be suppressed for all activitiesin the BPEL4AWS
process.

EnablelnstanceCompensation
False : Boolean

This attribute is included for mapping to BPELA4AWS. It specifies whether or not a
compensation can be performed after the Process has completed normally.

Categories (0-n) : String

The modeler MAY add one or more defined Categories that can be used for
purposes such as reporting and analysis.

Documentation (0-1) : String

The modeler MAY add text documentation about the Process.

B.3 Common Graphical Object Attributes
The following table displays a set of common attributes for BPMN graphical objects (Flow Objects, Swimlanes, Artifacts, and

Connecting Objects).

Table B.3 - Common Graphical Object Attributes

Attributes

Description

Id : Object

Thisisaunique Id that identifies the object from other objects within the Diagram.

Categories (0-n) : String

The modeler MAY add one or more defined Categories that can be used for
purposes such as reporting and analysis.

Documentation (0-1) : String

The modeler MAY add text documentation about the object.

BPMN Adopted Specification

243

B.4 Common Flow Object Attributes

The following table displays the set of attributes common to BPMN Flow Objects (Events, Activities, and Gateways), and
which extends the set of common graphical object attributes (see Table B.3).

Table B.4 - Common Flow Object Attributes

Attributes

Description

Name : String

Name is an attribute that istext description of the object.

Assigments (0-n) : Assignment

One or more assignment expressions MAY be made for the object. For activities,
the Assignment SHALL be performed as defined by the AssignTime attribute. The
Details of the Assignment isdefined in “ Assignment on page 268.”

Pool : Pool

A Pool MUST beidentified for the object to identify its location. The attributes of a
Pool can befoundin “Pool on page 263.”

Lanes (0-n) : Lane

If the Pool has morethan one Lane, thenthe Id of at least one Lane MUST be added.
ThereMAY bemultiple Laneslisted if the Lanes are organized in matrix or overlap
in anon-nested manner, The attributes of aLane can befound in “Laneon

page 263.”

B.5 Events

B.5.1 Common Event Attributes
The following table displays the set of attributes common to the three types of Events, and which extends the set of common

Flow Object attributes (see Table B.4).

Table B.5 - Common Event Attributes

Attributes

Description

EventType (Start | End |

Intermediate) Start : String

The EventType MUST be of type Start, End, or Intermediate.

244

BPMN Adopted Specification

B.5.2 Start Event

The following table displays the set of attributes of a Start Event, which extends the set of common Event elements (see

Table B.5).

Table B.6 - Start Event Attributes

Attributes

Description

Trigger (None | Message | Timer
| Rule | Link | Multiple) None :
String

Trigger isan attribute (default None) that defines the type of trigger expected for
that Start. The next six rows define the attributes that are required for each of the
Trigger types.

TheTrigger list MAY be extended to include new types. These new TriggersMAY
have a new modeler- or tool-defined Marker to fit within the boundaries of the
Event.

[Message Trigger only]
Message : Message

If the Trigger is a Message, then the a Message MUST be supplied. The attributes
of aMessage can be found in “Message on page 269.”

[Message Trigger only]

Implementation (Web Service |
Other | Unspecified) Web
Service : String

This attribute specifies the technology that will be used to receive the message. A
Web service is the default technology.

[Timer Trigger only]
TimeDate (0-1) : Date

If the Trigger isa Timer, then a TimeDate MAY be entered. If a TimeDate is not
entered, then a TimeCycle MUST be entered (see the attribute below).

[Timer Trigger only]
TimeCycle (0-1) : String

If the Trigger isaTimer, then aTimeCycle MAY be entered. If a TimeCycleis not
entered, then a TimeDate MUST be entered (see the attribute above).

[Rule Trigger only]
RuleName : Rule

If the Trigger isaRule, then aRule MUST be entered. The attributes of a Rule can
befoundin “Rule on page 271.”

[Link Trigger only] If the Trigger isaLink, then the Linkld MUST be entered.
Linkld : String
[Link Trigger only] If the Trigger isaLink, then the ProcessRef MUST be entered. The identified

ProcessRef : Process

Process MAY be the same Process as that of the Link Event.

[Multiple Trigger only]
Triggers (2-n) : Trigger

If the Trigger attribute is a Multiple, then alist of two or more Triggers MUST be
provided. Each Trigger MUST have the appropriate data (as defined above). The
Trigger MUST NOT be of type None or Multiple.

BPMN Adopted Specification

245

B.5.3 End Event

The following table displays the set of attributes of a End Event, which extends the set of common Event elements (see

Table B.5).

Table B.7 - End Event Attributes

Attributes

Description

Result (None | Message | Error |
Cancel | Compensation | Link |
Terminate | Multiple) None :
String

Result is an attribute (default None) that defines the type of result expected for that
End.

The Cancel Result MUST NOT be used unless the Event is used within a Process
that is a Transaction.

The Result list MAY be extended to include new types. These new Results MAY
have a new modeler- or tool-defined Marker to fit within the boundaries of the
Event.

[Message Result only]
Message : Message

If the Result is a Message, then the Message MUST be supplied. The attributes of a
Message can be found in “Message on page 269.”

[Message Trigger only]

Implementation (Web Service |
Other | Unspecified) Web
Service : String

Thisattribute specifiesthe technology that will be used to send the message. A Web
service is the default technology.

[Error Result only]
ErrorCode : String

If the Result is an Error, then the ErrorCode MUST be supplied.

[Compensation Result only]
Activity : Object

If the Result is a Compensation, then the Object of the Activity that needs to be
compensated MUST be supplied.

[Link Result only]
Linkld : String

If the Result isaLink, then the Linkld MUST be entered.

[Link Result only]
ProcessRef : Process

If the ResultisaLink, thenthe ProcessRef MUST be entered. Theidentified Process
MAY be the same Process as that of the Link Event.

[Multiple Result only]
Results (2-n) : Result

If the Result attributes is a Multiple, then alist of two or more Results MUST be
entered. Each Result on thelist MUST have the appropriate data as specified for the
above attributes. The Result MUST NOT be of type None, Terminate, or Multiple.

246

BPMN Adopted Specification

B.54

The following table displays the set of attributes of an Intermediate Event, which extends the set of common Event elements
(see Table B.5).

Intermediate Event

Table B.8 - Intermediate Event Attributes

Attributes

Description

Trigger (None | Message | Timer
| Error | Cancel | Link |
Compensation | Rule | Multiple)
Message : String

Trigger isan attribute (default M essage) that definesthe type of trigger expected for
that Intermediate Event.

The None and Link Trigger MUST NOT be used when the Event is attached to the
boundary of an Activity. The Multiple, Rule, and Cancel Triggers MUST NOT be
used when the Event is part of the Normal Flow of the Process. The Cancel Trigger
MUST NOT be used when the Event is attached to the boundary of an Activity that
isnot a Transaction or if the Event is not contained within a Process that isa
Transaction.

TheTrigger list MAY be extended to include new types. These new TriggersMAY
have a new modeler- or tool-defined Marker to fit within the boundaries of the
Event.

Target (0-1) : Object

A Target MAY beincluded for the Intermediate Event. The Target MUST be an
activity (Sub-Process or Task). This means that the Intermediate Event is attached
to the boundary of the activity and is used to signify an exception or compensation
for that activity.

[Message Trigger only]
Message : Message

If the Trigger is a Message, then the Message MUST be supplied. The attributes of
aMessage can be found in “Message on page 269.”

[Message Trigger only]

Implementation (Web Service |
Other | Unspecified) Web
Service : String

This attribute specifies the technology that will be used to send or receive the
message. A Web service isthe default technology.

[Timer Trigger only]
Timedate (0-1) : Date

« If the Trigger isaTimer, then a TimeDate MAY be entered.

« If aTimeDate is not entered, then a TimeCycle MUST be entered (see the
attribute below).

[Timer Trigger only]
TimeCycle (0-1) : String

« If the Trigger isa Timer, then aTimeCycle MAY be entered.

« If aTimeCycleis not entered, then a TimeDate MUST be entered (see the
attribute above).

BPMN Adopted Specification

247

Table B.8 - Intermediate Event Attributes

Attributes Description
[Error Trigger only] For an Intermediate Event within Normal Flow:
ErrorCode : String « If the Trigger is an Error, then the error code MUST be entered. This

“throws’ the error.
For an Intermediate Event attached to the boundary of an Activity:

« If the Trigger is an Error, then the error code MAY be entered. This
“catches’ the error.

« If thereis no error code, then any Error SHALL trigger the Event.

« If thereis an error code, then only an Error that matches the error code
SHALL trigger the Event.

[Compensation Trigger only] For an Intermediate Event within Normal Flow:

Activity : Object « If the Trigger isa Compensation, then the Object of the Activity that needsto
be compensated MUST be supplied. This “throws’ the compensation.

For an Intermediate Event attached to the boundary of an Activity:

This Event “catches’ the compensation. No further information is required. The

Object of the activity the Event is attached to will provide the Id necessary to match

the compensation event with the event that “threw” the compensation.

[Rule Trigger only] If the Trigger isaRule, then aRule MUST be entered. The attributes of a Rule can
RuleName : Rule befoundin “Rule on page 271."

[Link Trigger only] If the Trigger isaLink, then the Linkld MUST be supplied.

Linkld : String

[Link Trigger only] If the Trigger isaLink, then the ProcessRef MUST be entered. The identified
ProcessRef : Process Process MAY be the same Process as that of the Link Event.

[Multiple Trigger only] If the Trigger attribute is a Multiple, then each Trigger on the list MUST have the
Triggers (2-n) : Trigger appropriate data as specified for the above attributes. The Trigger MUST NOT be

of type None or Multiple.

248 BPMN Adopted Specification

B.6 Activities

B.6.1 Common Activity Attributes

The following table displays the set of attributes common to both a Sub-Process and a Task, and which extends the set of
common Flow Object attributes (see Table B.4) -- Note that Figure 10.57 and Figure 10.58 contain additional attributes that
must be included within this set if extended by any other attribute table.

Table B.9 - Common Activity Attributes

Attributes

Description

ActivityType (Task | Sub-
Process) Task : String

The ActivityType MUST be of type Task or Sub-Process.

Status (None | Ready | Active |

Cancelled | Aborting | Aborted |

Completing | Completed) None :
String

The Status of an activity is determined when the activity is being executed by a
process engine. The Status of an activity can be used within Assignment
Expressions.

Properties (0-n) : Property

Modeler-defined Properties MAY be added to an activity. These Properties are
“local” tothe activity object. These Propertiesare only for use within the processing
of the activity. The fully delineated name of these properties are “ <process
name>.<sub-process name>.<property name>" (e.g., “Add Customer.Review
Credit.Status”). Further details about the definition of a Property can be found in
“Property on page 270.”

InputSets (0-n) : Input

The InputSets attribute defines the data requirements for input to the activity. Zero
or more InputSets MAY be defined. Each Input set is sufficient to allow the activity
to be performed (if it hasfirst been instantiated by the appropriate signal arriving
from an incoming Sequence Flow).

[Input: for InputSets only]
Inputs (1-n) : Artifact

One or More Inputs MUST be defined for each InputSet. An Input is an Artifact,
usually a Document Object. Note that the Artifacts MAY also be displayed on the
diagram and MAY be connected to the activity through an Association--however, it
is not required for them to be displayed.

OutputSets (0-n) : Output

The OutputSets attribute defines the data requirements for output from the activity.
Zero or more OutputSets MAY be defined. At the completion of the activity, only
one of the OutputSets may be produced--It is up to the implementation of the
activity to determine which set will be produced. However, the | ORules attribute
MAY indicate arelationship between an OutputSet and an InputSet that started the
activity.

[Output: for OutputSets only]
Outputs (1-n) : Artifact

One or more Outputs MUST be defined for each OutputSet. An Output is an
Artifact, usually aDocument Object. Notethat the ArtifactsMAY also be displayed
on the diagram and MAY be connected to the activity through an Association--
however, it is not required for them to be displayed.

BPMN Adopted Specification

249

Table B.9 - Common Activity Attributes

Attributes

Description

IORules (0-n) : Expression

The IORules attribute is an expression that defines the relationship between one
InputSet and one OuputSet. That is, if the activity isinstantiated with a specified
InputSet, then the output of the activity MUST produce the specified OutputSet.
Zero or more |ORules may be entered.

StartQuantity 1 : Integer

The default valueis 1. The value MUST NOT be lessthan 1. This attribute defines
the number of Tokens that must arrive from a single Sequence Flow before the
activity can begin.

LoopType (None | Standard |
Multiinstance) None : String

LoopTypeis an attribute and is by default None, but MAY be set to Standard or
Multilnstance. If so, the Loop marker SHALL be placed at the bottom center of the
activity shape (see Figure 9.5 and Figure 9.13).

A Task of type Receivethat hasits Instantiate attribute set to True MUST NOT have
a Standard or Multilnstance LoopType.

Standard Loop Attributes

Thefollowing are additional attributes of a Standard Loop Activity (wherethe LoopType attribute is set to “ Standard”), which
extends the set of common activity attributes (see Table B.9).

Table B.10 - Standard Loop Activity Attributes

Attributes

Description

LoopCondition : Expression

Standard Loops MUST have a boolean Expression to be evaluated, plus the timing
when the expression SHALL be evaluated. The attributes of an Expression can be
found in “Expression on page 269.”

LoopCounter : Integer

The LoopCounter attribute is used at runtime to count the number of loopsand is
automatically updated by the process engine. The LoopCounter attribute MUST be
incremented at the start of aloop. The modeler may use the attribute in the

L oopCondition Expression.

LoopMaximum (0-1) : Integer

The Maximum an optional attribute that providesisasimpleway to add acapto the
number of loops. This SHALL be added to the Expression defined in the
L oopCondition.

TestTime (Before | After) After :

The expressions that are evaluated Before the activity begins are equivalent to a
programming while function.

String
The expression that are evaluated After the activity finishes are equivalent to a
programming until function.
250 BPMN Adopted Specification

Multi-Instance Loop Attributes

The following are additional attributes of a Multi-Instance Loop Activity (where the LoopType attributeis set to
“Multilnstance”), which extends the set of common activity attributes (see Table B.9).

Table B.11 - Multi-Instance Loop Activity Attributes

Attributes Description

MI_Condition : Expression Multilnstance Loops MUST have a numeric Expression to be evaluated--the
B Expression MUST resolve to an integer. The attributes of an Expression can be
found in “Expression on page 269.”

LoopCounter : Integer The LoopCounter attribute is only applied for Sequential Multilnstance Loops and
for processes that are being executed by a process engine. The attribute is updated
at runtime by a process engine to count the number of loops as they occur. The
LoopCounter attribute MUST be incremented at the start of aloop. Unlike a
Standard loop, the modeler does not use this attribute in the MI_Condition
Expression, but it can be used for tracking the status of aloop.

MI_Ordering (Sequential | This applies to only Multilnstance Loops. The M1_Ordering attribute defines
Parallel) Sequential : String whether the loop instances will be performed sequentially or in parallel.
Sequential M1_Ordering is amore traditional 1oop.

Parallel MI_Ordering is equivalent to multi-instance specifications that other
notations, suchasUML Activity Diagramsuse. If set to Parallel, the Parallel marker
SHALL replace the Loop Marker at the bottom center of the activity shape (see

Figure 9.8 and Figure 9.13).
[Parallel MI_Ordering only] This attribute is equivalent to using a Gateway to control the flow past a set of
MI_FlowCondition (None | One | Parallel paths.
| All | Complex) All : String « An MI_FlowCondition of “None” is the same as uncontrolled flow (no

Gateway) and meansthat all activity instances SHALL generate atoken that
will continue when that instance is completed.

* An MI_FlowCondition of “One” isthe same as an Exclusive Gateway and
means that the Token SHALL continue past the activity after only one of the
activity instances has completed. The activity will continue its other
instances, but additional Tokens MUST NOT be passed from the activity.

* AnMI_FlowCondition of “All” isthe same as a Parallel Gateway and means
that the Token SHALL continue past the activity after all of the activity
instances have compl eted.

« An MI_FlowCondition of “Complex” is the same as a Complex Gateway.
The ComplexMI1_FlowCondition attribute will determine the Token flow.

[Complex MI_FlowCondition If the MI_FlowCondition attribute is set to “ Complex,” then an Expression Must be
only] entered. This Expression that MAY reference Process data. The expression SHALL
ComplexMI_FlowCondition determinewhen and how many Tokenswill continue past the activity. The attributes
(0-1) : Expression of an Expression can be found in “ Expression on page 269.”

BPMN Adopted Specification 251

B.6.2 Sub-Process

The following table displays the set of attributes of a Sub-Process, which extends the set of common activity attributes (see
Table B.9).

Table B.12 - Sub-Process Attributes

Attributes Description

SubProcessType (Embedded | SubProcessType is an attribute that defines whether the Sub-Process details are
Independent | Reference) embedded within the higher level Process or refers to another, re-usable Process.
Embedded : String The default is Embedded.

IsATransaction False : Boolean | IsATransaction determines whether or not the behavior of the Sub-Process will
follow the behavior of a Transaction (see “ Sub-Process Behavior asa
Transaction on page 59.”)

Transaction (0-1) : Transaction If the Transaction attribute is False, then a Transaction MUST NOT be identified.
If the Transaction attribute is True, then a Transaction MUST be identified. The
attributes of a Transaction can be found in “Transaction on page 271"

Note that Transactions that are in different Pools and are connected through
Message Flow MUST have the same Transactionld.

Embedded Sub-Process

The following are additional attributes of a Embedded Sub-Process (where the SubProcessType attributeis set to
“Embedded”), which extends the set of Sub-Process attributes (see Table B.12).

Table B.13 - Embedded Sub-Process Attributes

Attributes Description

GraphicalElements (0-n) : The Graphical Elementsattributeidentifiesall of the objects(e.g., Events, Activities,
Object Gateways, and Artifacts) that are contained within the Embedded Sub-Process.
AdHoc False : Boolean AdHoc is aboolean attribute, which has a default of False. This specifies whether

the Embedded Sub-Processis Ad Hoc or not. The activities within an Ad Hoc
Embedded Sub-Process are not controlled or sequenced in a particular order, there
performance is determined by the performers of the activities.

[AdHoc = True only] If the Embedded Sub-Processis Ad Hoc (the AdHoc attribute is True), then the
AdHocOrdering (0-1) AdHocOrdering attribute MUST be included. This attribute defines if the activities
(Sequential | Parallel) Parallel ; | Within the Process can be performed in Parallel or must be performed sequentially.
String The default setting is Parallel and the setting of Sequential is arestriction on the
performance that may be required due to shared resources.

[AdHoc = True only] If the Embedded Sub-Processis Ad Hoc (the AdHoc attribute is True), then a
AdHocCompletionCondition Completion Condition MUST be included, which defines the conditions when the
(0-1) : Expression Processwill end. The Ad Hoc marker SHALL be placed at the bottom center of the

Process or the Sub-Process shape for Ad Hoc Processes.

252 BPMN Adopted Specification

Independent Sub-Process Attributes

The following are additional attributes of a Independent Sub-Process (where the SubProcessType attributeis set to
“Independent”), which extends the set of Sub-Process attributes (see Table B.12).

Table B.14 - Independent Sub-Process Attributes

Attributes

Description

DiagramRef : Business Process
Diagram

The BPD MUST be identified. The attributes of a BPD can be found in “Business
Process Diagram Attributes on page 28.”

ProcessRef : Process

A Process MUST be identified. The attributes of a Process can be found in
“Processes on page 29"

InputPropertyMaps (0-n) :
Expression

Multipleinput mappingsMAY be made between properties of the Independent Sub-
Process and the properties of the Process referenced by this object. These mappings
arein the form of an expression (although a modeling tool can present thisto a
modeler in any number of ways).

OutputPropertyMaps (0-n) :
Expression

Multiple output mappings MAY be made between properties of the Independent
Sub-Process and the properties of the Process referenced by this object. These
mappingsarein theform of an expression (although amodeling tool can present this
to amodeler in any number of ways).

Reference Sub-Process Attributes

The following table displays the set of attributes of a Reference Sub-Process (where the SubProcessType attribute is set to
“Reference”), which extends the set of Sub-Process attributes (see Table B.12).

Table B.15 - Reference Sub-Process Attributes

Attributes

Description

SubProcessRef : Task

The Sub-Process being referenced MUST be identified. The attributes for the Sub-
Process element can be found in Figure .

BPMN Adopted Specification

253

B.6.3 Task

The following table displays the set of attributes of a Task, which extends the set of common activity object attributes (see

Table B.9).

Table B.16 - Task Attributes

Attributes

Description

TaskType (Service | Receive |
Send | User | Script | Abstract |
Manual | Reference | None) None
: String

TaskTypeis an attribute that has a default of Service, but MAY be set to Send,
Receive, User, Script, Abstract, Manual, Reference, or None. The TaskType will be
impacted by the Message Flow to and/or from the Task, if Message Flow are used.
A TaskType of Receive MUST NOT have an outgoing Message Flow. A TaskType
of Send MUST NOT have an incoming Message Flow. A TaskType of Script,
Manual, or None MUST NOT have an incoming or an outgoing Message Flow.
The TaskTypelist MAY be extended to include new types.

The attributes for specific settings of TaskType can be found in Figure through
Figure.

Service Task Attributes

The following table displays the set of attributes of a Service Task (where the TaskType attribute is set to “ Service”), which
extends the set of Task attributes (see Table B.16).

Table B.17 - Service Task Attributes

Attributes

Description

InMessage : Message

A Message for the InMessage attribute MUST be entered. This indicates that the
Message will be sent at the start of the Task, after the availability of any defined
InputSets. A corresponding outgoing Message Flow MAY be shown on the
diagram. However, the display of the Message Flow is not required.

OutMessage : Message

A Message for the OutMessage attribute MUST be entered. The arrival of this
message marks the completion of the Task, which may cause the production of an
OutputSet. A corresponding incoming Message Flow MAY be shown on the
diagram. However, the display of the Message Flow is not required.

Implementation (Web Service |
Other | Unspecified) Web Service
: String

This attribute specifies the technology that will be used to send and receive the
messages. A Web service is the default technology.

254

BPMN Adopted Specification

Receive Task Attributes

The following table displays the set of attributes of a Receive Task (where the TaskType attribute is set to “ Receive”), which
extends the set of Task attributes (see Table B.16).

Table B.18 - Receive Task Attributes

Attributes Description

A Message for the Message attribute MUST be entered. This indicates that the
Message will be received by the Task. The Message in this context is equivalent to
an in-only message pattern (Web service). A corresponding incoming Message
Flow MAY be shown on the diagram. However, the display of the Message Flow is
not required.

Message : Message

Instantiate False : Boolean Receive Tasks can be defined as the instantiation mechanism for the Process with
the Instantiate attribute. This attribute MAY be set to true if the Task isthe first
activity after the Start Event or a starting Task if thereis no Start Event. Multiple
Tasks MAY have this attribute set to True.

Implementation (Web Service | | Thisattribute specifies the technology that will be used to receive the message. A
Other | Unspecified) Web Service | Web serviceis the default technology.

: String

Send Task Attributes

Thefollowing table displays the set of attributes of a Send Task (where the TaskType attributeis set to “ Send”), which extends
the set of Task attributes (see Table B.16).

Table B.19 - Send Task Attributes

Attributes Description

A Message for the Message attribute MUST be entered. This indicates that the
Message will be sent by the Task. The Message in this context is equivalent to an
out-only message pattern (Web service). A corresponding outgoing Message Flow
MAY be shown on the diagram. However, the display of the Message Flow is not
required.

Message : Message

Implementation (Web Service | | Thisattribute specifiesthe technology that will be used to send the message. A Web

Other | Unspecified) Web Service | Serviceis the defauilt technology.
: String

BPMN Adopted Specification 255

User Task Attributes

Thefollowing table displays the set of attributes of a User Task (where the TaskType attribute is set to “User”), which extends
the set of Task attributes (see Table B.16).

Table B.20 - User Task Attributes

Attributes

Description

Performers (1-n) : String

One or more Performers MAY be entered. The Performers attribute defines the
human resource that will be performing the Task. The Performers entry could bein
the form of aspecificindividual, agroup, or an organization. Additional parameters
that help define the Performers assignment can be added by a modeling tool.

InMessage : Message

A Message for the InMessage attribute MUST be entered. This indicates that the
Message will be sent at the start of the Task, after the availability of any defined
InputSets. A corresponding outgoing Message Flow MAY be shown on the
diagram. However, the display of the Message Flow is not required.

OutMessage : Message

A Message for the OutMessage attribute MUST be entered. The arrival of this
message marks the completion of the Task, which may cause the production of an
OutputSet. A corresponding incoming Message Flow MAY be shown on the
diagram. However, the display of the Message Flow is not required.

Implementation (Web Service |
Other | Unspecified) Web Service
: String

Thisattribute specifiesthe technology that will be used by the Performersto perform
the Task. A Web service is the default technology.

Script Task Attributes

The following table displays the set of attributes of a Script Task (where the TaskType attribute is set to “ Script”), which
extends the set of Task attributes (see Table B.16).

Table B.21 - Script Task Attributes

Attributes

Description

Script (0-1) : String

The modeler MAY include a script that can be run when the Task isperformed. If a
script is not included, then the Task will act equivalent to a TaskType of None.

256

BPMN Adopted Specification

Manual Task Attributes

The following table displays the set of attributes of a Manual Task (where the TaskType attributeis set to “Manual”), which
extends the set of Task attributes (see Table B.16):

Table B.22 - Manual Task Attribute

Attributes Description

One or more Performers MAY be entered. The Performers attribute defines the
human resource that will be performing the Manual Task. The Performers entry
could be in the form of a specific individual, agroup, or an organization.

Performers (0-n) : String

Reference Task Attributes

The following table displays the set of attributes of a Reference Task (where the TaskType attribute is set to “ Reference”),
which extends the set of Task attributes (see Table B.16).

Table B.23 - Reference Task Attributes

Attributes Description

The Task being referenced MUST be identified. The attributesfor the Task element

TaskRef : Task
can befoundin Figure.

B.7 Gateways

B.7.1 Common Gateway Attributes

The following table displays the attributes common to Gateways, and which extends the set of common Flow Object attributes
(see Table B.4).

Table B.24 - Common Gateway Attributes

Attributes Description

GatewayTypeisby default XOR. The GatewayType MAY be set to OR, Complex,
or AND. The GatewayType will determine the behavior of the Gateway, both for
incoming and outgoing Sequence Flow, and will determinetheinternal indicator (as

shown in Figure 9.15).

GatewayType (XOR | OR |
Complex | AND) XOR : String

BPMN Adopted Specification 257

B.7.2 Exclusive Gateways (XOR)
Data-Based

The following table displays the attributes for an Data-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to XOR. The following attributes extend the set of common Gateway attributes (see Table B.24).

Table B.25 - Data-Based Exclusive Gateway Attributes

Attributes

Description

XORType (Data | Event) Data :
String

XORTypeis by default Data. The XORType MAY be set to Event. Since Data-
Based XOR Gateways is the subject of this section, the attribute MUST be set to
Datafor the attributes and behavior defined in this section to apply to the Gateway.

MarkerVisible False : Boolean

This attribute determines if the XOR Marker is displayed in the center of the
Gateway diamond (an“X"). The marker isdisplayed if the attributeis Trueand it is
not displayed if the attribute is False. By default, the marker is not displayed.

Gates (0-n) : Gate

There MAY be zero or more Gates. Zero Gates are alowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.

If there are zero or only one incoming Sequence Flow (i.e, the Gateway isacting as
aDecision), then there MUST be at |east one Gate. In this case, if thereis no
DefaultGate, then there MUST be at least two Gates.

[Gate]

OutgoingSequenceFlow :
SequenceFlow

Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
have its Condition attribute set to Expression and MUST have avalid
ConditionExpression. Theattributes of a Sequence Flow canbefoundin “ Sequence
Flow on page 266.”

If thereisonly one Gate (i.e., the Gateway isacting only asaMerge), then Sequence
Flow MUST have its Condition set to None.

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressionsMAY be made for each Gate. The Assignment
SHALL be performed when the Gate is selected. The details of Assignment is
defined in “Assignment on page 268.”

DefaultGate (0-1) : Gate

A Default Gate MAY be specified.

[Gate]

OutgoingSequenceFlow :
SequenceFlow

If there is a DefaultGate, then it MUST have an associated Sequence Flow. The
Sequence Flow SHALL have the Default Indicator. The Sequence Flow MUST
have its Condition attribute set to Default. The attributes of a Sequence Flow can be
found in “ Sequence Flow on page 266.”

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressions MAY be made for the DefaultGate. The
Assignment SHALL be performed when the DefaultGate is selected. The details of
Assignment is defined in “ Assignment on page 268.”

258

BPMN Adopted Specification

Event-Based

The following table displays the attributes for an Event-Based Exclusive Gateway. These attributes only apply if the
GatewayType attribute is set to XOR. The following attributes extend the set of common Gateway attributes (see Table B.24).

Table B.26 - Event-Based Exclusive Gateway Attributes

Attributes

Description

XORType (Data | Event) Event :
String

XORType is by default Data. The XORType MAY be set to Event. Since Event-
Based XOR Gateways is the subject of this section, the attribute MUST be set to
Event for the attributes and behavior defined in this section to apply to the Gateway.

Gates (2-n) : Gate

There MUST be two or more Gates. (Note that this type of Gateway does not act
only asaMerge--it isalways a Decision, at least.)

[Gate]

OutgoingSequenceFlow :
SequenceFlow

Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
have its Condition attribute set to None (there is not an evaluation of a condition
expression). The attributes of a Sequence Flow can be found in “ Sequence Flow on
page 266.”

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressionsMAY be made for each Gate. The Assignment
SHALL be performed when the Gate is selected. The details of Assignment is
defined in “ Assignment on page 268.”

B.7.3 Inclusive Gateways (OR)

The following table displays the attributes for an Inclusive Gateway'. These attributes only apply if the Gateway Type attribute
is set to OR. The following attributes extend the set of common Gateway attributes (see Table B.24).

1. Inclusive Gateways may be updated to include a DefaultGate attribute. Thisis currently an Open Issue.

BPMN Adopted Specification

259

Table B.27 - Inclusive Gateway Attributes

Attributes Description

Gates (0-n) : Gate There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.

If there are zero or only one incoming Sequence Flow (i.e, the Gateway is acting as
aDecision), then there MUST be at |east two Gates.

[Gate] Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST

OutgoingSequenceFlow : have its Condition attribute set to Expression and MUST have avalid

SequenceFlow ConditionExpression. The ConditionExpression MUST be unique for all the Gates
within the Gateway. The attributes of a Sequence Flow can befoundin “ Sequence
Flow on page 266"

If thereisonly one Gate (i.e., the Gateway isacting only asaMerge), then Sequence
Flow MUST have its Condition attribute set to None.

[Gate] One or more assignment expressionsMAY be made for each Gate. The Assignment
Assigments (0-n) : Assignment | SHALL be performed when the Gate is selected. The details of Assignment is
defined in “ Assignment on page 268.”

DefaultGate (0-1) - Gate A Default Gate MAY be SDECIfled
[Gate] If there is a DefaultGate, then it MUST have an associated Sequence Flow. The
OutgoingSequenceFlow : Sequence Flow SHALL have the Default Indicator. The Sequence Flow MUST

have its Condition attribute set to Default. The attributes of a Sequence Flow can be

SequenceFlow -
found in “ Sequence Flow on page 266.”

[Gate] One or more assignment expressions MAY be made for the DefaultGate. The
Assigments (0-n) : Assignment | Assignment SHALL be performed when the DefaultGate is selected. The details of
Assignment is defined in “ Assignment on page 268.”

260 BPMN Adopted Specification

B.7.4 Complex Gateways

Thefollowing table displays the attributes for a Complex Gateway. These attributes only apply if the GatewayType attribute is
set to Complex. The following attributes extend the set of common Gateway attributes (see Table B.24).

Table B.28 - Complex Gateway Attributes

Attributes Description

Gates (0-n) : Gate There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.
If there are zero or only one incoming Sequence Flow, then there MUST be at |east

two Gates.
[Gate] Each Gate MUST have an associated Sequence Flow. Each Gate MUST have an
OutgoingSequenceFlow : associated Sequence Flow. The Sequence Flow MUST have its Condition attribute
SequenceFlow set to None. The attributes of a Sequence Flow can befound in “Sequence Flow on
page 266.”

If thereisonly one Gate (i.e., the Gateway isacting only asaMerge), then Sequence
Flow MUST have its Condition attribute set to None.

[Gate] One or more assignment expressionsMAY be made for each Gate. The Assignment
Assigments (0-n) : Assignment | SHALL be performed when the Gate is selected. The details of Assignment is
defined in “Assignment on page 268.”

IncomingCondition (0-1) : If there are Multiple incoming Sequence Flow, an IncomingCondition expression
Expression MUST be set by the modeler. Thiswill consist of an expression that can reference

Sequence Flow names and or Process Properties (Data).

OutgoingCondition (0-1) : If there are Multiple outgoing Sequence Flow, an OutgoingCondition expression
MUST be set by the modeler. Thiswill consist of an expression that can reference

Expression) .
(outgoing) Sequence Flow Ids and or Process Properties (Data).

BPMN Adopted Specification 261

B.7.5 Parallel Gateways (AND)

The following table displays the attributes for a Parallel Gateway. These attributes only apply if the GatewayType attribute is
set to AND (Parallel). The following attributes extend the set of common Gateway attributes (see Table B.24).

Table B.29 - Parallel Gateway Attributes

Attributes

Description

Gates (0-n) : Gate

There MAY be zero or more Gates. Zero Gates are allowed if the Gateway is last
object in a Process flow and there are no Start or End Events for the Process.

If there are zero or only one incoming Sequence Flow (i.e, the Gateway isacting as
afork), then there MUST be at |east two Gates.

[Gate]

OutgoingSequenceFlow :
SequenceFlow

Each Gate MUST have an associated Sequence Flow. The Sequence Flow MUST
have its Condition attribute set to None. The attributes of a Sequence Flow can be
found in “ Sequence Flow on page 266.”

[Gate]
Assigments (0-n) : Assignment

One or more assignment expressionsMAY be made for each Gate. The Assignment
SHALL be performed when the Gate is selected. The details of Assignment is
defined in “ Assignment on page 268.”

B.8 Swimlanes (Pools and Lanes)

B.8.1 Common Swimlane Attributes

The following table displays a set of common attributes for Swimlanes (Pools and Lanes), and which extends the set of
common graphical object attributes (see Table B.3).

Table B.30 - Common Swimlane Attributes

Attributes

Description

Name : String

Name is an attribute that istext description of the Swimlane.

262

BPMN Adopted Specification

B.8.2 Pool

Thefollowing table displays the identified attributes of a Pool, and which extends the set of common Swimlane attributes (see

Table B.30).

Table B.31 - Pool Attributes

Attributes

Description

Process (0-1) : Process

The Process attribute defines the Process that is contained within the Pool. Each
Pool MAY have a Process. The attributes for a Process can be found in “Process
Attributes on page 242.”

Participant : Participant

The Modeler MUST define the Participant for a Pool. The Participant can be either
aRoleor an Entity. Thisdefinestherolethat aparticular Entity or Rolethe Pool will
play in aDiagram that includes collaboration. The attributesfor a Participant can be
found in “ Participant on page 270.”

Lanes (1-n) : Lane

There MUST one or more Lanes within a Poal. If thereis only one Lane, then that
L ane shares the name of the Pool and only the Pool name is displayed. If thereis
more than one Lane, then each Lane hasto have its own name and all names are
displayed. The attributes for a Lane can be found in “Lane on page 90.”

BoundaryVisible True : Boolean

This attribute defines if the rectangular boundary for the Pool is visible. Only one
Pool in the Diagram MAY have the attribute set to False.

B.8.3 Lane

Thefollowing table displaysthe identified attributes of aLane, and which extends the set of common Swimlane attributes (see

Table B.30).

Table B.32 - Lane Attributes

Attributes

Description

ParentPool : Pool

The Parent Pool MUST be specified. There can be only one Parent. The attributes
for aPool can be found in “Swimlanes (Pools and L anes) on page 262.”

ParentLane (0-1) : Lane

ParentLaneis an optional attribute that is used if the Lane is nested within another
Lane. Nesting can be multi-level, but only the immediate parent is specified.

BPMN Adopted Specification

263

B.9 Artifacts

B.9.1 Common Artifact Attributes

The following table displays the identified attributes common to Artifacts, and which extends the set of common graphical

object attributes (see Table B.3).

Table B.33 - Common Artifact Attributes

Attributes

Description

ArtifactType (DataObject |
Group | Annotation) DataObject :
String

The ArtifactType MAY be set to DataObject, Group, or Annotation.
The ArtifactTypelist MAY be extended to include new types.

Pool (0-1) : Pool

A Pool MAY be added to identify its location. Artifacts, such as Annotations, can
be placed outside of any Pool. Also, aGroup may stretch across multiple Pools. The
attributes for a Pool can be foundin “Pool on page 87.”

Lanes (0-n) : Lane

If the Pool has more than one Lane, then aLane MUST be added. There MAY be
multiple Lanes listed. The attributes for a Lane can be found in “Lane on page 90.”

B.9.2 Data Object

The following table displays the attributes for Data Objects, and which extends the set of common Artifact attributes (see
Table B.33). These attributes only apply if the ArtifactType attribute is set to DataObject:

Table B.34 - Data Object Attributes

Attributes

Description

Name : String

Name is an attribute that istext description of the object.

State (0-1) : String

Stateisan optional attribute that indicates theimpact the Process has had on the Data
Object. Multiple Data Objectswith the sasmename MAY share the same state within
one Process.

Properties (0-n) : Properties

Modeler-defined Properties MAY be added to a Data Object. The fully delineated
name of these properties are “ <process hame>.<task name>.<property name>"
(e.g., “Add Customer.Review Credit Report.Score”). Further details about the
definition of a Property can be found in “Property on page 270.”

RequiredForStart True :
Boolean

The default value for this attribute is True. This meansthat the Input is required for
the activity to start. If set to False, then the activity MAY start within the input, but
MAY accept the input (more than once) after the activity has started.

ProducedAtCompletion True :
Boolean

The default value for this attribute is True. This means that the Output will be
produced when the activity has been completed. If set to False, then the activity
MAY produce the output (more than once) before it has completed.

264

BPMN Adopted Specification

B.9.3 Text Annotation

The following table displays the attributes for Annotations, and which extends the set of common Artifact attributes (see
Table B.33). These attributes only apply if the ArtifactType attribute is set to Annotation.

Table B.35 - Text Annotation Attributes

Attributes Description
Text : String Text isan attribute that istext that the model er wishes to communicate to the reader
of the Diagram.
B.9.4 Group

The following table displays the attributes for Groups, and which extends the set of common Artifact attributes (see
Table B.33). These attributes only apply if the ArtifactType attribute is set to Group.

Table B.36 - Group Attributes

Attributes Description

Name (0-1) : String Name is an optional attribute that is text description of the Group.

B.10 Graphical Connecting Objects

B.10.1 Common Connecting Object Attributes

The following table displays the set of attributes common to Connecting Objects (Sequence Flow, Message Flow, and
Association), and which extends the set of common graphical object attributes (see Table B.3).

Table B.37 - Common Connecting Object Attributes

Attributes Description

Name : String Name is an attribute that is text description of the object.

Source is an attribute that identifies which Flow Object the Connecting Object is
connected from. Note: there are restrictions as to what objects Sequence Flow and
M essage Flow can connect. Refer to the Sequence Flow Connections section and the
Message Flow Connections section for each Flow Object, Swimlane, and Artifact.

Source : Object

Target is an attribute that identifies which Flow Object the Connecting Object is
connected to. Note: there are restrictions as to what objects Sequence Flow and

M essage Flow can connect. Refer to the Sequence Flow Connections section and the
Message Flow Connections section for each Flow Object, Swimlane, and Artifact.

Target : Object

BPMN Adopted Specification 265

B.10.2 Sequence Flow

Thefollowing table displays the set of attributes of a Sequence Flow, and which extends the set of common Connecting Object
attributes (see Table B.37).

Table B.38 - Sequence Flow Attributes

Attributes Description

ConditionType (None | By default, the ConditionType of a Sequence Flow is None. This means that there
Expression | Default) None : isno evaluation at runtime to determine whether or not the Sequence Flow will be
used. Once a Token is ready to traverse the Sequence Flow (i.e., the Sourceisan
activity that has completed), then the Token will do so. The normal, uncontrolled
use of Sequence Flow, in asequence of activities, will have aNone ConditionType
(see Figure 10.1). A None ConditionType MUST NOT be used if the Source of the
Sequence Flow is an Exclusive Data-Based or Inclusive Gateway.

The ConditionType attribute MAY be set to Expression if the Source of the
Sequence Flow isa Task, a Sub-Process, or a Gateway of type Exclusive-Data-
Based or Inclusive.

If the ConditionType attribute is set to Expression, then acondition marker SHALL
be added to the line if the Sequence Flow is outgoing from an activity (see Figure
10.2). However, a condition indicator MUST NOT be added to the lineif the
Sequence Flow is outgoing from a Gateway.

An Expression ConditionType MUST NOT be used if the Source of the Sequence
Flow is an Event-Based Exclusive Gateway, a Complex Gateway, a Parallel
Gateway, a Start Event, or an Intermediate Event. In addition, an Expression
ConditionType MUST NOT be used if the Sequence Flow is associated with the
Default Gate of a Gateway .

The ConditionType attribute MAY be set to Default only if the Source of the
Sequence Flow is an activity or an Exclusive Data-Based Gateway. If the
ConditionType is Default, then the Default marker SHALL be displayed (see
Figure 10.3).

[ConditionType is set to If the ConditionType attribute is set to Expression, then the ConditionExpression
Expression only] attribute MUST be defined as avalid expression. The expression will be evaluated
ConditionExpression : at runtime. If the result of the evaluation is TRUE, then a Token will be generated
Expression and will traverse the Sequence--Subject to any constraintsimposed by a Source that
isaGateway.

Quantity 1 : Integer The default valueis 1. The value MUST NOT be less than 1. This attribute defines
the number of Tokensthat will be generated down the Sequence Flow.

String

266 BPMN Adopted Specification

B.10.3 Message Flow

The following table displays the identified attributes of a Message Flow, and which extends the set of common Connecting
Object attributes (see Table B.37).

Table B.39 - Message Flow Attributes

Attributes Description
Message (0-1) : Message Message is an optional attribute that identifies the Message that is being sent. The
attributes of a Message can be found in “Message on page 269.”

B.10.4 Association

The following table displays the identified attributes of a Association, and which extends the set of common Connecting
Object attributes (see Table B.37).

Table B.40 - Association Attributes

Attributes Description

Directionis an attribute that defines whether or not the Association shows any
directionality with an arrowhead. The default is None (no arrowhead). A value of
To meansthat the arrowhead SHALL be at the Source object. A value of From
means that the arrowhead SHALL be at the Target Artifact. A value of Both means
that there SHALL be an arrowhead at both ends of the Association line.

Direction (None | To | From |
Both) None : String

BPMN Adopted Specification 267

B.11 Supporting Types

B.11.1 Assignment

The following table displays the set of attributes of an Assignment, which is used in the definition of attributes for Process,
Activities, Events, Gateways, and Gates.

Table B.41 - Assignment Attributes

Attributes Description
To : Property The target for the Assignment MUST be a Property of the Process or the activity
itself.
From : Expression The Expression MUST be made up of a combination of VValues, Properties, and

Attributes, which are separated by operators such asadd or multiply. The expression
language is defined in the ExpressionL anguage attribute of the Business Process
Diagram - see “Business Process Diagram Attributes on page 241.”

AssignTime (0-1) (Start | End) An Assignment MAY have aAssignTime setting. If the Object isan activity (Task,
Start : String Sub-Process, or Process), then the Assignment MUST have an AssignTime.

A value of Start meansthat the assignment SHALL occur at the start of the activity.
This can be used to assign the higher-level (global) Properties of the Process to the
(local) Properties of the activity as an input to the activity.

A value of End means that the assignment SHALL occur at the end of the activity.
This can be used to assign the (local) Properties of the activity to the higher-level
(global) Properties of the Process as an output to the activity.

B.11.2 Entity
The following table displays the set of attributes of an Entity, which is used in the definition of attributes for a Participant.

Table B.42 - Entity Attributes

Attributes Description

Name is an attribute that istext description of the Entity.

Name : String

268 BPMN Adopted Specification

B.11.3 Expression

Thefollowing table displays the set of attributes of an Expression, which isused in the definition of attributes for Start Event,
Intermediate Event, Activity, Complex Gateway, and Sequence Flow.

Table B.43 - Expression Attributes

Attributes Description

An Expression MUST be entered to provide a mathematical expression to be either
tested as True or False or to be evaluated to update the value of Properties (e.g.,
assignment).

Expression : String

B.11.4 Message

The following table displays the set of attributes of a Message, which is used in the definition of attributes for a Start Event,
End Event, Intermediate Event, Task, and Message Flow.

Table B.44 - Message Attributes

Attributes Description
Name : String Name is an attribute that is text description of the Message.
Properties (0-n) : Property Multiple PropertiesMAY entered for the Message. The attributes of a Property can

be found in “Property on page 270.”

This definesthe source of the Message. The attributes for a Participant can be found

From : Participant
in “Participant on page 270.”

This definesthe target of the Message. The attributes for a Participant can be found

To : Participant
in “Participant on page 270.”

B.11.5 Object

The following table displays the set of attributes of an Object, which is used in the definition of attributes for all graphical
elements.

Table B.45 - Object Attributes

Attributes Description
Id : String The Id attribute provides a unique identifier for al objects on adiagram. That is,
each object MUST have a different value for the Objectld attribute.

BPMN Adopted Specification 269

B.11.6 Participant

The following table displays the set of attributes of a Participant, which is used in the definition of attributes for a Pool,

Message, and Web service.

Table B.46 - Participant Attributes

Attributes

Description

ParticipantType (Role | Entity)
Role : String

Each Property has a Name (e.g., name="Customer Name”).

[ParticipantType = “Role” only]
Role (0-1) : Role

If the ParticipantType = Role, then aRole MUST beidentified. The attributes for a
Role can be found in “Role on page 270.”

[ParticipantType = “Entity” only]
Entity (0-1) : Entity

If the ParticipantType = Entity, then an Entity MUST be identified. The attributes
for an Entity can be found in “Entity on page 268.”

B.11.7 Property

The following table displays the set of attributes of a Property, which is used in the definition of attributes for a Process and

common activity attributes:

Table B.47 - Property Attributes

Attributes Description
Name : String Each Property has a Name (e.g., name="Customer Name").
Type : String Each Property has a Type (e.g., type="String"). A Property may be of type Set,

which allows child Properties.

[Type = “Set” only]
Correlation (0-1) False : Boolean

If the ConditionType attribute is set to Expression, then the ConditionExpression
attribute MUST be defined. Otherwise, it is not valid.

This attribute is included for mapping to BPEL4WS. The Property will map to a
correlationSet and the child Properties will be properties of that correlationSet.

B.11.8 Role

The following table displays the set of attributes of a Role, which is used in the definition of attributes for a Participant.

Table B.48 - Role Attributes

Attributes

Description

Name : String

Name is an attribute that istext description of the Role.

270

BPMN Adopted Specification

B.11.9 Rule

The following table displays the set of attributes of a Rule, which is used in the definition of attributes for Start Event and

Intermediate Event.

Table B.49 - Rule Attributes

Attributes

Description

Name : String

Name is an attribute that istext description of the Rule.

RuleExpression (0-1) :
Expression

A RuleExpression May be entered. In some cases the Rule itself will be stored and
maintained in a separate application (e.g., a Rules Engine). The attributes of an
Expression can be found in “Expression on page 269.”

B.11.10Transaction

The following table displays the set of attributes of a Transaction, which is used in the definition of attributes for a Sub-

Process.

Table B.50 - Transaction Attributes

Attributes

Description

Transactionld : String

The Transactionld attribute provides an identifier for the Transactions used within
adiagram.

TransactionProtocol : String

Thisidentifies the Protocal (e.g., WS-Transaction or BTP) that will be used to
control the transactional behavior of the Sub-Process.

TransactionMethod
(Compensate | Store | Image)
Compensate : String

TransactionMethod is an attribute that defines the technique that will be used to
undo a Transaction that has been cancelled. The default is Compensate, but the
attribute MAY be set to Store or Image.

B.11.11Web Service

The following table displays the set of attributes of an Web Service, which isused in the definition of attributes for Message
Start Event, Message Intermediate Event, Message End Event, Receive Task, Send Task, Service Task, and User Task.

Table B.51 - Web Service Attributes

Attributes

Description

Participant : Participant

A Participant for the Web Service MUST be entered. Note, this will map to the
BPEL4WS partnerLink. The attributes for a Participant can be found in
“Participant on page 270.”

Interface : String

(akaportType) An Interface for the Web Service MUST be entered.

Operation : String

One or more Operations for the Web Service MUST be entered.

BPMN Adopted Specification

271

272 BPMN Adopted Specification

A

Activity:

Abstract Process:

AND-Join:

AND-Split:

Arbitrary Cycles:

Artifact:

Annex C
(informative)

Glossary

An activity is a generic term for work that company or
organization performs via business processes. An activity
can be atomic or non-atomic (compound). The types of
activities that are a part of a Process Model are: Process,
Sub-Process, and Task.

An Abstract Process represents the interactions between a
private business process and another process or
participant.

(from the WIMC Glossary!) An AND-Join is a point in the
Process where two or more parallel executing activities
converge into a single common thread of Sequence Flow.
See “Join.”

(from the WfMC Glossaryz) An AND-Split is a point in the
Process where a single thread of Sequence Flow splits into
two or more threads which are executed in parallel within
the Process, allowing multiple activities to be executed
simultaneously. See “Fork.”

(From the Workflow Patterns Initiativez). Pattern #11: A
point in a workflow process when one or more activities can

be done repeatedly®.

An Artifact is a graphical object that provides supporting
information about the Process or elements within the
Process. However, it does not directly affect the flow of the
Process. BPMN has standardized the shape of a Data
Object. Other examples of Artifacts include critical success
factors and milestones.

1. The underlined termsin this definition were changed from the original definition. “Process” isused in place of

" u

“workflow.

Sequence Flow” is used in place of “control.”

2. http:/tmitwww.tm.tue.nl/research/patterns/patterns.htm
3. http:/tmitwww.tm.tue.nl/research/patterns/arbitrary _cycles.htm

BPMN Adopted Specification

273

o u

274

Association:

Atomic Activity:

B

Business Analyst:

Business Process:

Business Process Diagram:

Business Process Management:

BPM System:
C

Cancel Activity:

Cancel Case:

Choreography:

An Association is a dotted graphical line that is used to
associate information and Artifacts with Flow Objects. Text
and graphical non-Flow Objects can be associated with the
Flow Objects and Flow.

An atomic activity is an activity not broken down to a finer
level of Process Model detail. It is a leaf in the tree-
structure hierarchy of Process activities. Graphically it will
appear as a Task in BPMN.

A Business Analyst is an individual within an organization
who defines, manages, or monitors Business Processes.
They are usually distinguished from the IT specialists or
programmers who implement the Business Process within
a BPMS.

A Business Process is displayed within a Business Process
Diagram (BPD). A Business Process contains one or more
Processes.

A Business Process Diagram (BPD) is the diagram that is
specified by BPMN. A BPD uses the graphical elements
and that semantics that support these elements as defined
in this specification.

Business Process Management (BPM) encompasses the
discovery, design, and deployment of business processes.

In addition, BPM includes the executive, administrative,

and supervisory control of those processes?.

The technology that enables BPM.

(From the Workflow Patterns Initiative5). Pattern #20: An
enabled activity is disabled, i.e. a thread waiting for the

execution of an activity is removed®.
(From the Workflow Patterns Initiativez). Pattern #21: A
case, i.e.workflow instance, is removed completely’.

Choreography is an ordered sequence of B2B message
exchanges.

From “Business Process Management: the Third Wave,” by Howard Smith and Peter Fingar, pg 4. 2003, Meghan-Kiffer

Press. ISBN 0-929652-33-9

http://tmitwww.tm.tue.nl/research/patterns/patterns.htm
http://tmitwww.tm.tue.nl/research/patterns/cancel_activity.htm
http://tmitwww.tm.tue.nl/research/patterns/cancel_case.htm

BPMN Adopted Specification

Collaboration:

Collaboration Process:

Collapsed Sub-Process:

Compensation Flow:

Compound Activity:

Controlled Flow:

D

Decision:

BPMN Adopted Specification

Collaboration is the act of sending messages between any
two Participants in a BPMN model. The two Participants
represent two separate BPML processes.

A Collaboration Process depicts the interactions between
two or more business entities.

A Collapsed Sub-Process is a Sub-Process that hides its
flow details. The Collapsed Sub-Process object uses a
marker to distinguish it as a Sub-Process, rather than a
Task. The marker is a small square with a plus sign (+)
inside.

Compensation Flow is defines the set of activities that are
performed during the roll-back of a transaction to
compensate for activities that were performed during the
Normal Flow of the Process. Compensation can also be
called from a Compensate End or Intermediate Event.

A compound activity is an activity that has detail that is
defined as a flow of other activities. It is a branch (or trunk)
in the tree-structure hierarchy of Process activities.
Graphically, it will appear as a Process or Sub-Process in
BPMN.

Flow that proceeds from one Flow Object to another, via a
Sequence Flow link, but is subject to either conditions or
dependencies from other flow as defined by a Gateway.
Typically, this is seen as a Sequence flow between two
activities, with a conditional indicator (mini-diamond) or a
Sequence Flow connected to a Gateway.

Decisions are locations within a business process where
the Sequence Flow can take two or more alternative paths.
This is basically the “fork in the road” for a process. For a
given performance (or instance) of the process, only one of
the forks can be taken. A Decision is a type of Gateway.
See “Or-Split.”

275

Deferred Choice:

Discriminator:

E

End Event:

Event Context:

Exception:

(From the Workflow Patterns Initiative®). Pattern #17: A
point in the workflow process where one of several
branches is chosen. In contrast to the XOR-split, the choice
is not made explicitly (e.g. based on data or a decision) but
several alternatives are offered to the environment.
However, in contrast to the AND-split, only one of the
alternatives is executed. This means that once the
environment activates one of the branches the other
alternative branches are withdrawn. It is important to note
that the choice is delayed until the processing in one of the
alternative branches is actually started, i.e. the moment of

choice is as late as possible®.

(From the Workflow Patterns Initiativel). Pattern #8: The
discriminator is a point in a workflow process that waits for
a number of incoming branches to complete before
activating the subsequent activity. From that moment on it
waits for all remaining branches to complete and “ignores"

them. Once all incoming branches have been triggered, it

resets itself so that it can be triggered againlo.

As the name implies, the End Event indicates where a
process will end. In terms of Sequence Flow, the End Event
ends the flow of the Process, and thus, will not have any
outgoing Sequence Flow. An End Event can have a
specific Result that will appear as a marker within the
center of the End Event shape. End Event Results are
Message, Error, Compensation, Link, and Multiple. The
End Event shares the same basic shape of the Start Event
and Intermediate Event, a circle, but is drawn with a thick
single line

An Event Context is the set of activities that can be
interrupted by an exception (Intermediate Event). This can
be one activity or a group of activities in an expanded Sub-
Process.

An Exception is an event that occurs during the
performance of the process that causes Normal Flow of the
process to be diverted exclusively from Normal Flow.
Exceptions can be generated by a time out, fault, message,
etc.

8. http:/tmitwww.tm.tue.nl/research/patterns/patterns.htm
9. http:/tmitwww.tm.tue.nl/research/patterns/deferred _choice.htm
10. http://tmitwww.tm.tue.nl/research/patterns/discriminator.htm

276

BPMN Adopted Specification

Exception Flow:

Exclusive Choice:

Expanded Sub-Process:

Flow:

Flow Object:

Fork:

Implicit Termination:

Exception Flow is a set of Sequence Flow that originates
from an Intermediate Event that is attached to the boundary
of an activity. The Process will not traverse this flow unless
an Exception occurs during the performance of that activity
(through an Intermediate Event).

(From the Workflow Patterns Initiative'). Pattern #4: A
point in the workflow process where, based on a decision

or workflow control data, one of several branches is

chosen??,

An Expanded Sub-Process is a Sub-Process that exposes
its flow detail within the context of its Parent Process. It will
maintain its rounded rectangle shape, but will be enlarged
to a size sufficient to display the Flow Objects within.

A Flow is a graphical line connecting two objects in a BPD.
There are two types of Flow: Sequence Flow and Message
Flow, each with their own line style. Flow is also used in a
generic sense (and lowercase) to describe how Tokens will
traverse Sequence Flow from the Start Event to an End
Event.

A Flow Object is one of the set of following graphical
objects: Events, Activities, and Gateways.

A fork is a point in the Process where a single flow is
divided into two or more Flow. It is a mechanism that will
allow activities to be performed concurrently, rather than
sequentially. BPMN uses multiple outgoing Sequence Flow
or an Parallel Gateway to perform a Fork. See “AND-Split.”

(From the Workflow Patterns Initiative13). Pattern #12: A
given subprocess should be terminated when there is
nothing else to be done. In other words, there are no active
activities in the workflow and no other activity can be made
active (and at the same time the workflow is not in

deadlock)®?.

11. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

12. http://tmitwww.tm.tue.nl/research/patterns/exclusive_choice.htm

13. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

14. http://tmitwww.tm.tue.nl/research/patterns/implicit_termination.htm

BPMN Adopted Specification

277

Interleaved Parallel Routing:

Intermediate Event:

Join:

Lane:

Merge:

Message:

(From the Workflow Patterns Initiativel). Pattern #18: A set
of activities is executed in an arbitrary order: Each activity
in the set is executed, the order is decided at run-time, and
no two activities are executed at the same moment (i.e.no
two activities are active for the same workflow instance at

the same time)*®.

An Intermediate Event is an event that occurs after a
Process has been started. It will affect the flow of the
process, but will not start or (directly) terminate the
process. An Intermediate Event will show where messages
or delays are expected within the Process, disrupt the
Normal Flow through exception handling, or show the extra
flow required for compensating a transaction. The
Intermediate Event shares the same basic shape of the
Start Event and End Event, a circle, but is drawn with a thin
double line.

A Join is a point in the Process where two or more parallel
Sequence Flow are combined into one Sequence Flow.
BPMN uses an Parallel Gateway to perform a Join. See
“AND-Join.”

An Lane is a sub-partition within a Pool and will extend the
entire length of the Pool, either vertically or horizontally.
Lanes are used to organize and categorize activities within
a Pool. The meaning of the Lanes is up to the modeler.

A Merge is a point in the process where two or more
alternative Sequence Flow are combined into one
Sequence Flow. BPMN uses multiple incoming Sequence
Flow or an XOR Gateway to perform a Merge. See “OR-
Join.”

A Message is the object that is transmitted through a
Message Flow. The Message will have an identity that can
be used for alternative branching of a Process through the
Event-Based Exclusive Gateway.

15. http://tmitwww.tm.tue.nl/research/patterns/interleaved _paralel_routing.htm

278

BPMN Adopted Specification

Message Flow:

Milestone:

Multiple Choice:

Multiple Instances:

Multiple Merge:

A Message Flow is a dashed line that is used to show the
flow of messages between two entities that are prepared to
send and receive them. In BPMN, two separate Pools in
the Diagram will represent the two entities.

(From the Workflow Patterns InitiativelG). Pattern #19: The
enabling of an activity depends on the case being in a
specified state, i.e.the activity is only enabled if a certain
milestone has been reached which did not expire yet.
Consider three activities A, B, and C. Activity A is only
enabled if activity B has been executed and C has not been
executed yet, i.e.A is not enabled before the execution B

and A is not enabled after the execution C17.

(From the Workflow Patterns Initiativel). Pattern #6: A point
in the workflow process where, based on a decision or

workflow control data, one or more branches are chosen!8,

(From the Workflow Patterns Initiativel). Patterns #13-16:
There are four defined patterns. 1. For one case an activity
is enabled multiple times. The number of instances of a
given activity for a given case is known at design time. 2.
For one case an activity is enabled multiple times. The
number of instances of a given activity for a given case is
variable and may depend on characteristics of the case or
availability of resources, but is known at some stage during
runtime, before the instances of that activity have to be
created. 3. For one case an activity is enabled multiple
times. The number of instances of a given activity for a
given case is not known during design time, nor it is known
at any stage during runtime, before the instances of that
activity have to be created. 4 For one case an activity is
enabled multiple times. The number of instances may not
be known at design time. After completing all instances of

that activity another activity has to be started!®.

(From the Workflow Patterns Initiative®). Pattern #7: Multi-
merge is a point in a workflow process where two or more
branches reconverge without synchronization. If more than
one branch gets activated, possibly concurrently, the
activity following the merge is started once for every

incoming branch that gets activated?°.

16. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

17. http://tmitwww.tm.tue.nl/research/patterns/milestone.htm

18. http://tmitwww.tm.tue.nl/research/patterns/multiple_choice.htm
19. http://tmitwww.tm.tue.nl/research/patterns/patterns.htm

BPMN Adopted Specification

279

N

N-out-of-M-Join:

Normal Flow:

O

OR-Join:

OR-Split:

P
Parallel Split:

Parent Process:

20
21
22

23
24

(From the Workflow Patterns Initiativel). Pattern #9: N-out-
of-M Join is a point in a workflow process where M parallel
paths converge into one. The subsequent activity should be
activated once N paths have completed. Completion of all

remaining paths should be ignored. Similarly to the

discriminator, once all incoming branches have “fired”, the

join resets itself so that it can fire again?®.

Normal Flow is the flow that originates from a Start Event
and continues through activities via alternative and parallel
paths until it ends at an End Event.

(from the WIMC Glossary?2) An Or-Join is a point in the
Process where two or more alternative activity(s) Process
branches re-converge to a single common activity as the
next step within the Process. (As no parallel activity
execution has occurred at the join point, no synchronization
is required.) See “Merge.”

(from the WfMC Glossaryl) An OR-Split is a point in the
Process where a single thread of Sequence Flow makes a
decision upon which branch to take when encountered with
multiple alternative Process branches. See “Decision.”

(From the Workflow Patterns Initiative23). Pattern #2:
Parallel split is required when two or more activities need to
be executed in parallel. Parallel split is easily supported by
most workflow engines except for the most basic
scheduling systems that do not require any degree of

concurrency??.

A Parent Process is the Process that holds a Sub-Process
within its boundaries.

. http:/tmitwww.tm.tue.nl/research/patterns/multiple_merge.htm
. http:/itmitwww.tm.tue.nl/research/patterns/n-out-of-m_join.htm
. The underlined terms in this definition were changed from the original definition. “Process” isused in place of

" u

“workflow.

Sequence Flow” is used in place of “control.”

. http:/tmitwww.tm.tue.nl/research/patterns/patterns.htm
. http:/tmitwww.tm.tue.nl/research/patterns/parallel_split.htm

280

BPMN Adopted Specification

Participant:

Pool:

Private Business Process:

Process:

R

Result:

S

Sequence:

Sequence Flow:

A Patrticipant is a business entity (e.g., a company,
company division, or a customer) or a business role (e.g., a
buyer or a seller), which controls or is responsible for a
business process. If Pools are used, then a Participant
would be associated with one Pool.

A Pool represents a Participant in a Process. It also acts as
a “swimlane” and a graphical container for partitioning a set
of activities from other Pools, usually in the context of B2B
situations. It is a square-cornered rectangle that is drawn
with a solid single line. A Pool acts as the container for the
Sequence Flow between activities. The Sequence Flow
can cross the boundaries between Lanes of a Pool, but
cannot cross the boundaries of a Pool. The interaction
between Pools, e.g., in a B2B context, is shown through
Message Flow.

A private business process is internal to a specific
organization and is the type of process that has been
generally called a workflow or BPM process. A single
private business process will map to a single BPML
document.

A Process is any activity performed within a company or
organization. In BPMN a Process is depicted as a network
of Flow Obijects, which are a set of other activities and the
controls that sequence them.

A Result is consequence of reaching an End Event. Results
can be of different types, including: Message, Error,
Compensation, Link, and Multiple.

(From the Workflow Patterns Initiative25). Pattern #1.:

Sequence is the most basic workflow pattern. It is required
when there is a dependency between two or more tasks so
that one task cannot be started (scheduled) before another

task is finished?®.

A Sequence Flow is a solid graphical line that is used to
show the order that activities will be performed in a
Process. Each Flow has only one source and only one
target.

25. http:/tmitwww.tm.tue.nl/research/patterns/patterns.htm
26. http:/tmitwww.tm.tue.nl/research/patterns/sequence.htm

BPMN Adopted Specification

281

Simple Merge:

Start Event:

Sub-Process:

Swimlane;:

Synchronizing Join:

Synchronization:

(From the Workflow Patterns Initiative Mt:/tmitwww.tm.tue.nl/
research/patterns/patterns.htm” on page 281) Pattern #5: A point in

the workflow process where two or more alternative
branches come together without synchronization. In other
words the merge will be triggered once any of the incoming

transitions are triggered?’.

A Start Event indicates where a particular Process will start.
In terms of Sequence Flow, the Start Event starts the flow
of the Process, and thus, will not have any incoming
Sequence Flow. A Start Event can have a Trigger that
indicates how the Process starts: Message, Timer, Rule,
Link, or Multiple. The Start Event shares the same basic
shape of the Intermediate Event and End Event, a circle,
but is drawn with a single thin line

A Sub-Process is Process that is included within another
Process. The Sub-Process can be in a collapsed view that
hides its details. A Sub-Process can be in an expanded
view that shows its details within the view of the Process in
which it is contained. A Sub-Process shares the same
shape as the Task, which is a rectangle that has rounded
corners.

A Swimlane is a graphical container for partitioning a set of
activities from other activities. BPMN has two different
types of Swimlanes. See “Pool” and “Lane.”

(From the Workflow Patterns Initiative?8). Pattern #10: A
point in the workflow process where multiple paths
converge into one single thread. If more than one path is
taken, synchronization of the active threads needs to take

place. If only one path is taken, the alternative branches

should reconverge without synchronizationzg.

(From the Workflow Patterns Initiative Mt-/tmitwww.tm.tue.nl/
research/patterns/patterns.htm” on page 281) Pattern #3:

Synchronization is required when an activity can be started
only when two parallel threads complete3.

27. http:/tmitwww.tm.tue.nl/research/patterns/simple_merge.htm

28. http:/tmitwww.tm.tue.nl/research/patterns/patterns.htm

29. http:/tmitwww.tm.tue.nl/research/patterns/synchronizing_join.htm
30. http:/tmitwww.tm.tue.nl/research/patterns/synchronization.htm

282

BPMN Adopted Specification

Task:

Token:

Transaction:

Trigger:

U

Uncontrolled Flow:

BPMN Adopted Specification

A Task is an atomic activity that is included within a
Process. A Task is used when the work in the Process is
not broken down to a finer level of Process Model detail.
Generally, an end-user and/or an application are used to
perform the Task when it is executed. A Task object shares
the same shape as the Sub-Process, which is a rectangle
that has rounded corners.

A Token is a descriptive construct used to describe how the
flow of a process will proceed at runtime. By tracking how
the Token traverses the Flow Objects, gets diverted through
alternative paths, and gets split into parallel paths, the
normal Sequence Flow should be completely definable.A
Token will have a unique identity that can be used to
separate multiple Tokens that may exist because of
concurrent process instances or the splitting of the Token
for parallel processing within a single process instance.

A Transaction is a set of coordinated activities carried out
by independent, loosely-coupled systems in accordance
with a contractually defined business relationship. This
coordination leads to an agreed, consistent, and verifiable
outcome across all participants.

A Trigger is a mechanism that signals the start of a
business process. Triggers are associated with a Start
Events and Intermediate Events and can be of the type:
Message, Timer, Rule, Link, and Multiple.

Flow that proceeds, unrestricted, from one Flow Object to
another, via a Sequence Flow link, without any
dependencies on another flow or any conditional
expressions. Typically, this is seen as a Sequence flow
between two activities, without a conditional indicator (mini-
diamond) or any intervening Gateway.

283

284 BPMN Adopted Specification

	Preface
	1 Scope
	2 Conformance
	3 Normative References
	3.1 Normative
	3.2 Non-Normative

	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Conventions
	6.1.1 Typographical and Linguistic Conventions and Style

	6.2 Dependency on Other Specifications
	6.3 Structure of this Document
	6.4 Acknowledgements

	7 Overview
	7.1 BPMN Scope
	7.1.1 Uses of BPMN
	7.1.2 Diagram Point of View
	7.1.3 Extensibility of BPMN and Vertical Domains

	8 Business Process Diagrams
	8.1 BPD Core Element Set
	8.2 BPD Complete Set
	8.3 Use of Text, Color, Size, and Lines in a Diagram
	8.4 Flow Object Connection Rules
	8.5 Business Process Diagram Attributes
	8.6 Processes

	9 Business Process Diagram Graphical Objects
	9.1 Common Graphical Object Attributes
	9.2 Common Flow Object Attributes
	9.2.1 Changes Since 1.0 Draft Version

	9.3 Events
	9.3.1 Common Event Attributes
	9.3.2 Start
	9.3.3 End
	9.3.4 Intermediate

	9.4 Activities
	9.4.1 Common Activity Attributes
	9.4.2 Sub-Process
	9.4.3 Task

	9.5 Gateways
	9.5.1 Common Gateway Features
	9.5.2 Exclusive Gateways (XOR)
	9.5.3 Inclusive Gateways (OR)
	9.5.4 Complex Gateways
	9.5.5 Parallel Gateways (AND)

	9.6 Swimlanes (Pools and Lanes)
	9.6.1 Common Swimlane Attributes
	9.6.2 Pool
	9.6.3 Lane

	9.7 Artifacts
	9.7.1 Common Artifact Definitions
	9.7.2 Data Object
	9.7.3 Text Annotation
	9.7.4 Group

	10 Business Process Diagram Connecting Objects
	10.1 Graphical Connecting Objects
	10.1.1 Common Connecting Object Attributes
	10.1.2 Sequence Flow
	10.1.3 Message Flow
	10.1.4 Association

	10.2 Sequence Flow Mechanisms
	10.2.1 Normal Flow
	10.2.2 Exception Flow
	10.2.3 Ad Hoc

	10.3 Compensation Association

	11 Mapping to BPEL4WS
	11.1 Business Process Diagram Mappings
	11.2 Business Process Mappings
	11.3 Common Flow Object Mappings
	11.4 Events
	11.4.1 Start Event Mappings
	11.4.2 End Event Mappings
	11.4.3 Intermediate Event Mappings

	11.5 Activities
	11.5.1 Common Activity Mappings
	11.5.2 Sub-Process Mappings
	11.5.3 Task Mappings

	11.6 Gateways
	11.6.1 Common Gateway Mappings
	11.6.2 Exclusive
	11.6.3 Inclusive
	11.6.4 Complex
	11.6.5 Parallel

	11.7 Pool
	11.8 Lane
	11.9 Artifacts
	11.10 Sequence Flow
	11.10.1 When to Map a Sequence Flow to a BPEL4WS Link

	11.11 Message Flow
	11.12 Association
	11.13 Exception Flow
	11.14 Compensation Association
	11.15 Assignment Mapping
	11.16 BPMN Supporting Type Elements
	11.17 Determining the Extent of a BPEL4WS Structured Element
	11.17.1 BPMN Elements that Span Multiple BPEL4WS Sub-Elements

	12 BPMN by Example
	12.1 The Beginning of the Process
	12.1.1 Mapping to BPEL4WS

	12.2 The First Sub-Process
	12.2.1 Mapping to BPEL4WS

	12.3 The Second Sub-Process
	12.3.1 Mapping to BPEL4WS

	12.4 The End of the Process
	12.4.1 Mapping to BPEL4WS

	A - E-Mail Voting Process BPEL4WS
	A.1 Introduction

	B - BPMN Element Attributes and Types
	B.1 Business Process Diagram Attributes
	B.2 Process Attributes
	B.3 Common Graphical Object Attributes
	B.4 Common Flow Object Attributes
	B.5 Events
	B.5.1 Common Event Attributes
	B.5.2 Start Event
	B.5.3 End Event
	B.5.4 Intermediate Event

	B.6 Activities
	B.6.1 Common Activity Attributes
	B.6.2 Sub-Process
	B.6.3 Task

	B.7 Gateways
	B.7.1 Common Gateway Attributes
	B.7.2 Exclusive Gateways (XOR)
	B.7.3 Inclusive Gateways (OR)
	B.7.4 Complex Gateways
	B.7.5 Parallel Gateways (AND)

	B.8 Swimlanes (Pools and Lanes)
	B.8.1 Common Swimlane Attributes
	B.8.2 Pool
	B.8.3 Lane

	B.9 Artifacts
	B.9.1 Common Artifact Attributes
	B.9.2 Data Object
	B.9.3 Text Annotation
	B.9.4 Group

	B.10 Graphical Connecting Objects
	B.10.1 Common Connecting Object Attributes
	B.10.2 Sequence Flow
	B.10.3 Message Flow
	B.10.4 Association

	B.11 Supporting Types
	B.11.1 Assignment
	B.11.2 Entity
	B.11.3 Expression
	B.11.4 Message
	B.11.5 Object
	B.11.6 Participant
	B.11.7 Property
	B.11.8 Role
	B.11.9 Rule
	B.11.10 Transaction
	B.11.11 Web Service

	C - Glossary

