CNCF Overview

Dan Kohn, Executive Director, @dankohn1

This presentation is available at:
https://github.com/cncf/presentations
Cloud Native Computing Foundation

• Non-profit, part of the Linux Foundation; founded Dec 2015

Graduated

Prometheus
Monitoring

OPENTRACING
Distributed
Tracing API

fluentd
Logging

GRPC
Remote Procedure Call

Orchestration

envoy
Service Mesh

Jaeger
Distributed Tracing

Vitess
Storage

CoreDNS
Service Discovery

Alibaba Cloud

AWS

Azure

Cisco

Dell Technologies

docker

Fujitsu

Google Cloud

IBM Cloud

Intel

JD.COM

Mesosphere

Oracle

Pivotal

Red Hat

Samsung

SAP

VMware

Incubating

Container Runtime

Container Runtime

Networking API

LINKERD
Service Mesh

OPA
Open Policy Agent

CI/CD

CI/CD

Tooling

Sandbox

ROOK
Storage

Spiffe
Identity Spec

SPIRE
Identity

Graduated

Alibaba Cloud

AWS

Azure

Cisco

Dell Technologies

docker

Fujitsu

Google Cloud

IBM Cloud

Intel

JD.COM

Mesosphere

Oracle

Pivotal

Red Hat

Samsung

SAP

VMware

Incubating

Container Runtime

Container Runtime

Networking API

LINKERD
Service Mesh

OPA
Open Policy Agent

CI/CD

CI/CD

Tooling

Sandbox

ROOK
Storage

Spiffe
Identity Spec

SPIRE
Identity

Platinum members:
Today the Linux Foundation is much more than Linux

Security
We are helping global privacy and security through a program to encrypt the entire internet.

Networking
We are creating ecosystems around networking to improve agility in the evolving software-defined datacenter.

Cloud
We are creating a portability layer for the cloud, driving de facto standards and developing the orchestration layer for all clouds.

Automotive
We are creating the platform for infotainment in the auto industry that can be expanded into instrument clusters and telematics systems.

Blockchain
We are creating a permanent, secure distributed ledger that makes it easier to create cost-efficient, decentralized business networks.

Web
We are providing the application development framework for next generation web, mobile, serverless, and IoT applications.

Let’s Encrypt

We are regularly adding projects; for the most up-to-date listing of all projects visit tlfprojects.org
52 Companies in the End User Community

Bloomberg box CapitalOne® COMCAST CRUISE DENSO ebay GitHub

Goldman Sachs indeed intuit JD.COM Kuelap Layer Morgan Stanley NAIC

Nasdaq NCsoft The New York Times NIPR Olark Pinterest Pusher

reddit ricardo.ch salesforce SAP Concur shopify showmax Spotify Spredfast

Squarespace SteelHouse Stix textkernel THREDUP Ticketmaster® Twilio Twitter

Vevo Werkspot Wikimedia Foundation Woorank WP Engine Yahoo! Japan Zalando

Plus 4 non-public members
Kubernetes in Search Trends

Google Trends

- Kubernetes - Mesos - Docker Swarm
- Cloud Foundry - OpenStack

WeChat

Dec 2017 Feb 2018 Jan 2018

Kubernetes OpenStack
30 Highest Velocity Open Source Projects

2016-11 to 2017-10

https://www.cncf.io/blog/2017/06/05/30-highest-velocity-open-source-projects
CNCF Project Maturities

- **INNOVATORS**
- **TECHIES**
- **EARLY ADOPTERS**
 - "VISIONARIES"
- **EARLY MAJORITY**
 - "PRAGMATISTS"
- **LATE MAJORITY**
 - "CONSERVATIVES"
- **LAGGARDS**
 - "SKEPTICS"

SANDBOX

INCUBATION

GRADUATION

"THE CHASM"
CNCF Structure

- **Governing Board**
 - Mainly vendors
 - Fund the organization
 - Marketing and strategic direction

- **Technical Oversight Committee**
 - 9 top technical architects
 - Admit new projects
 - Acts as a resource to projects

- **End User Community**
 - Real end users of these technologies
 - Communicate back requirements
 - And good and bad experiences

Marketing Committee

- • Mainly vendors
- • Fund the organization
- • Marketing and strategic direction
220+ Members and Growing

Platinum Members

- Alibaba Cloud
- AWS
- Azure
- Cisco
- Dell Technologies
- Docker
- Fujitsu
- Google Cloud
- Huawei
- IBM Cloud
- Intel
- JD.COM
- Mesosphere
- Oracle
- Pivotal
- Red Hat
- Samsung
- SAP
- VMware

Gold Members

- AT&T
- Baidu 百度
- DigitalOcean
- JFrog
- NEC
- NetApp
- Salesforce
- Sumo Logic
- SUSE
- Tencent Cloud
- ZTE

End User Members

- Bloomberg
- Capital One
- Comcast
- eBay
- DENSO
- GitHub
- Box
- Cruise
- Layer
- Nasdaq
- New York Times
- Internet

End User Supporters

- Indeed
- Intuit
- JD.COM
- Morgan Stanley
- Netflix
- PLAHER
- Reddit
- Ricardo
- SAP Concur
- Shopify

Academic/Nonprofit

- Goldman Sachs
- NAIC
- NCsoft
- Pinterest
- Salesforce
- Spotify
- Showmax
- Speedfast
- STIX
- Textkernel
- ThredUp
- Ticketmaster

© 2018 Cloud Native Computing Foundation
220+ Members and Growing (Silver 1)
220+ Members and Growing (Silver 2)
Migrating Legacy Monoliths to Cloud Native Microservices Architectures on Kubernetes

Dan Kohn, Executive Director

This presentation is available at:
https://github.com/cncf/presentations
Non-Virtualized Servers: Sun (2000)

- Launching a new application? Buy a new server; or a rack of them!
- Building block of your application is physical servers
Virtualization: VMWare (2001)

- Releases for server market in 2001
- Popularizes virtual machines (VMs)
- Run many VMs on one physical machine, meaning you can buy fewer servers!
- Architectural building block becomes a VM
IaaS: AWS (2006)

- Amazon Web Services (AWS) creates the Infrastructure-as-a-Service market by launching Elastic Compute Cloud (EC2) in 2006
- Rent servers by the hour
- Convert CapEx to OpEx
- Architectural building block is also a VM, called an Amazon Machine Image (AMI)
PaaS: Heroku (2009)

- Heroku popularizes Platform-as-a-Service (PaaS) with their launch in 2009
- Building block is a buildpack, which enables containerized 12-factor applications
 - The process for building the container is opaque, but:
 - Deploying new version of an app is just: git push heroku
Open Source IaaS: OpenStack (2010)

- OpenStack brings together an extraordinarily diverse group of vendors to create an open source Infrastructure-as-a-Service (IaaS)
- Competes with AWS and VMWare
- Building block remains a VM
Open Source PaaS: Cloud Foundry (2011)

- Pivotal builds an open source alternative to Heroku’s PaaS and launches the Cloud Foundry Foundation in late 2014
- Building block is Garden containers, which can hold Heroku buildpacks, Docker containers and even non-Linux OSes
Containers: Docker (2013)

- Docker combines LXC, Union File System and cgroups to create a containerization standard adopted by millions of developers around the world.
- Fastest uptake of a developer technology ever.
- Enables isolation, reuse and immutability.

Timeline:
- 2000: Non-Virtualized Hardware
- 2001: Virtualization
- 2006: IaaS
- 2009: PaaS
- 2010: Open Source IaaS
- 2011: Open Source PaaS
- 2013: Containers
Cloud Native: CNCF (2015)

- Cloud native computing uses an open source software stack to:
 - segment applications into microservices,
 - packaging each part into its own container
 - and dynamically orchestrating those containers to optimize resource utilization
What Have We Learned?

• Core Building Block:
 - Servers ➔ Virtual Machines ➔ Buildpacks ➔ Containers

• Isolation Units
 - From heavier to lighter weight, in spin-up time and size

• Immutability
 - From pets to cattle

• Provider
 - From closed source, single vendor to open source, cross-vendor
Avoid Vendor Lock-in

Open source software stack enables deployment on any public, private cloud or hybrid cloud.
Enable Unlimited Scalability

Scales from several nodes on your laptop to tens of thousands of self-healing multi-tenant nodes.
Increase Agility and Maintainability

By splitting applications into microservices with explicitly described dependencies
Improve Efficiency and Resource Utilization

Via a central orchestrating process that dynamically manages and schedules microservices.
Achieve Resiliency

To failures of individual containers, machines, and even data centers and to varying levels of demand
Cloud Native Enables High Performance

High-performing teams deploy more frequently and have much faster lead times.

- 200x more frequent deployments
- 2,555x shorter lead times

They make changes with fewer failures, and recover faster from failures.

- 3x lower change failure rate
- 24x faster recovery from failures

2016 State of DevOps Report Infographic from Puppet
Cloud Native applications architectures are the default choice for greenfield applications.
Greenfield Application Design

• The leading choice for cloud native orchestration is: **kubernetes**

 - Selected by top enterprises and startups like Bloomberg, Box, Reddit and the New York Times
 - One of the highest development velocity projects in the history of open source
 - Amazing group of technology giants and startups cooperating to rapidly improve
In the long run we are all dead. Economists set themselves too easy, too useless a task, if in tempestuous seasons they can only tell us, that when the storm is long past, the ocean is flat again.

– John Maynard Keynes
...too easy, too useless a task...
The Real World Consists of Brownfield Applications

The gross world product is about $100 trillion and almost all of it flows through brownfield applications, which are generally monoliths.
Nearly All Production Applications Are Monoliths
How About a Rewrite?

- The Second System Syndrome says that many rewrites end in failure.
- The existing system evolves faster than the second one can catch up.
Monoliths Are the Antithesis of Cloud Native

Inflexible, tightly-coupled, brittle
Step One Is to Stop Digging
Step Two is Lift-and-Shift Your Monolith

StatefulSets are helpful for providing stable, persistent storage and unique network identifiers to your monolith.
Chip Away at the Monolith

As different parts of your monolith need upgrades or improvements, consider chipping away at that functionality and moving it to its own microservice.
New Functionality Can Go in New Apps

Write new functionality in separate applications optimized for it, such as Node.js for OAuth or Go for performance sensitive tasks.
Start with Stateless Services

Kubernetes delivers the largest immediate value today for stateless services, such as application front end servers that need resiliency, load-balancing, autoscaling, etc.
Transition Your Data Stores Last

Supporting stateful services like Postgres or Redis remains the most challenging part of working with Kubernetes and should likely go last in any transition.
Consider Complementary Projects

Consider the constellation of CNCF projects (and their competitors) to provide related services.
Evolving Your Monolith into a Microservice
And Eventually You Have a Collection
Kubernetes and Greenfield

Avoid the “soft bigotry of low expectations” of thinking that you need to do a greenfield rewrite to get the benefits of cloud native
Kubernetes and Brownfield applications
More Info on Evolving Monoliths

- **Box**
 - https://architect.io/box-co-founder-on-moving-to-microservices-and-the-promise-of-kubernetes-a49f01b1c0c0

- **Key Bank**
 - https://developers.redhat.com/blog/2016/10/27/the-fast-moving-monolith-how-we-spded-up-delivery-from-every-three-months-to-every-week/

- **TicketMaster**

- **Wikipedia**
 - https://kubernetes.io/case-studies/wikimedia/

- **GitHub**
 - https://githubengineering.com/kubernetes-at-github/
HOW GOOD IS OUR CODE?

Dan Kohn
Executive Director, CNCF
ORCHESTRATION.
CONTAINERIZATION.
MICROSERVICES.
“I haven’t tasted tap water in a long time....” Doug Evans said. “You have to be agile and tactile, and be available to experiment. Literally, you have to carry bottles of water through the dark.”
Our new software consultancy produces what we call "raw code", guaranteed NOT to have passed through CI or any kind of onerous "testing". The result is a palpably richer and more authentic software experience.

7:08 PM - 4 Jan 2018
OUR SOFTWARE IS NOT AS GOOD AS SQLITE

- Developed mainly by one highly-regarded developer, Richard Hipp
- 100% branch test coverage
- Millions of test cases
- 1,000 times as much test code as product code

https://www.sqlite.org/testing.html
Software fuzzer built by Michał Zalewski that uses genetic algorithms to find bugs
SQLITE STILL HAS BUGS!

When Zalewski ran American Fuzzy Lop against SQLite, he found 22 bugs(!!!) in 30 minutes of work.

Note that SQLite quickly fixed all of the bugs and incorporated AFL into their release process.

But our code is not as good as SQLite’s!
HOW BIG IS OUR APP?
LINUX

17 M SLOCs
DEPLOYMENT PLATFORM

KUBERNETES
35 M SLOCs
FRAMEWORK

NODEJS
12.3 M SLOCs
3RD PARTY LIBRARIES

2.5 M SLOCs
OUR CODE IS ONLY 40 K SLOCs
OUR APPLICATION SOFTWARE STACK

- Linux
- Landscape
- Node_modules
- Node.js
- Kubernetes

- 51.9%
- 25.7%
- 18.5%
- 3.8%
OUR CODE IS <0.1% OF OUR SOFTWARE STACK
ALL OF THIS CODE IS VULNERABLE

OUR CODE
40 K SLOCs

3RD PARTY LIBRARIES
2.5 M SLOCs

NODEJS
12.3 M SLOCs

KUBERNETES
35 M SLOCs

LINUX
17 M SLOCs
SPEC TRE & MELTDOWN IN LINUX

OUR CODE
40 K SLOCs

3RD PARTY LIBRARIES
2.5 M SLOCs

NODEJS
12.3 M SLOCs

KUBERNETES
35 M SLOCs

LINUX
17 M SLOCs
SPEC TRE & MELTDOWN IN LINUX

OUR CODE
40 K SLOCs

3RD PARTY LIBRARIES
2.5 M SLOCs

NODEJS
12.3 M SLOCs

KUBERNETES
35 M SLOCs

LINUX
17 M SLOCs

DivideConcept
Heartbleed
SPEC TRE & MELTDOWN IN LINUX

OUR CODE
40 K SLOCs

3RD PARTY LIBRARIES
2.5 M SLOCs

NODEJS
12.3 M SLOCs

KUBERNETES
35 M SLOCs

LINUX
17 M SLOCs

DivideConcept

Heartbleed

subPath
SPECTRE & MELTDOWN IN LINUX

- Spectre and Meltdown
- subPath
- Heartbleed
- DivideConcept
- 3rd PARTY LIBRARIES
 - NODEJS
 - 12.3 M SLOCs
 - KUBERNETES
 - 35 M SLOCs
 - LINUX
 - 17 M SLOCs
- OUR CODE
 - 40 K SLOCs
- 3rd PARTY LIBRARIES
 - 2.5 M SLOCs
The power of open source is the ability to leverage thousands of other developers that are finding bugs and making fixes to the software we depend on.
But a software patch does not help until we have deployed it into production.
How can we have the confidence that that deployment won’t break anything?
The power of open source is the ability to leverage thousands of other developers that are finding bugs and making fixes to the software we depend on.

But a software patch does not help until we have deployed it into production.

How can we have the confidence that that deployment won’t break anything?

The Answer is CONTINUOUS INTEGRATION (CI)
WHAT KIND OF TESTS SHOULD CI RUN?
WHAT KIND OF TESTS SHOULD CI RUN?

Unit testing of individual portions of our source code in isolation?
WHAT KIND OF TESTS SHOULD CI RUN?

- Unit testing of individual portions of our source code in isolation?
- Integration testing, where we work with external systems like a database?
WHAT KIND OF TESTS SHOULD CI RUN?

- Unit testing, testing individual portions of our source code in isolation?
- Integration testing, where we work with external systems like a database?
- Regression testing, where we add a test after a failure
WHAT KIND OF TESTS SHOULD CI RUN?

- Unit testing: testing individual portions of our source code in isolation?
- Integration testing: where we work with external systems like a database?
- Regression testing: where we add a test after a failure?
- Smoke testing, also known as build verification testing?
WHAT KIND OF TESTS SHOULD CI RUN?

- Unit testing, testing individual portions of our source code in isolation?
- Integration testing, where we work with external systems like a database?
- Regression testing, where we add a test after a failure?
- Smoke testing, also known as build verification testing?

All of the above.
HOW GOOD IS OUR CODE?
HOW GOOD IS OUR CODE?

NOT GOOD ENOUGH
We need to build in the systems and processes that enable us to continuously improve it
ORCHESTRATION.
CONTAINERIZATION.
MICROSERVICES.
If you don't have a CI system capable of building your application, then Kubernetes is the least of your problems. Focus on CI first.

12:38 PM - 10 Jun 2016
CONTINUOUS INTEGRATION (CI)

Continuous integration (CI) just means constant testing. But what is testing?
TESTING IS LIKE SCIENCE

We have a hypothesis of what we believe our code should do, but we don’t know for sure until we test against objective reality.
Karl Popper defined science as

BEING TESTABLE AND FALSIFIABLE
What do Continuous Integration, Science, and Entrepreneurship all have in common?
What do Continuous Integration, Science, and Entrepreneurship all have in common? They each require comparing an idealized conception to the often brutal truth of objective reality.
HOW DOES CONTINUOUS INTEGRATION FIT INTO THE CLOUD NATIVE JOURNEY?
CLOUD NATIVE TRAIL MAP

1. CONTAINERIZATION
 - Currently deployed with Docker containers.
 - Key requirements and dependencies: Basic Kubernetes, code running as an application, can be containerized.
 - Core teams should purchase cloud solutions first, with applications to be implemented later, based on cost.

2. CI/CD
 - Watch Container Integration: Continuous Delivery/CiCd. CI/CD use case that changes into your project code automatically runs in a new container being built, tested, and deployed to your deployment environment, making it easy to manage.
 - Setup automated build, test, and release testing.

3. ORCHESTRATION
 - Kubernetes, Prometheus, and Kubernetes Podlications solution.
 - You should select a Certified Kubernetes Distributor, such as GKE, or installer

4. SERVICE MESH AND DISCOVERY
 - Consul services as a powerful, flexible tool for service discovery.
 - Consul has an easy-to-use service mesh architecture.
 - They can help in your testing, monitoring, and load balancing.

5. DISTRIBUTED DATABASE
 - When you need more resiliency and scalability than a single database, there is no substitute for running MySQL, at scale through sharding.

6. NETWORKING
 - Network policy definition: Contain a single database.
 - When you need more resiliency and scalability than a single database, there is no substitute for running MySQL, at scale through sharding.

7. MESSAGING
 - When you need high-performance than Kafka, RethinkDB can be a substitute for messaging.

8. CONTAINER RUNTIME
 - Support for container runtime.
 - The most common, container runtime, includes Docker, and OCI.

9. SOFTWARE DISTRIBUTION
 - Software distribution.
 - When you need high-performance than Kafka, RethinkDB can be a substitute for messaging.

WHAT IS CLOUD NATIVE?

Cloud native technologies, such as containers and microservices, empower organizations to develop and deploy scalable, agile applications that can scale in a dynamic, data-driven environment.

In order to achieve this characteristic, such systems are designed to be independent, scalable, and loosely coupled.

This approach allows organizations to quickly deploy new services and features, while adapting to changing business needs.

The Cloud Native Computing Foundation

The Cloud Native Computing Foundation seeks to define the standards of these technologies, through the development of open-source projects that align with these objectives, and which are portable to public, private, and hybrid clouds. We democratize the start of new patterns and practices to ensure innovation remains open and accessible for everyone.

HELP ALONG THE WAY

A. Training and Certification
 - Consider training programs from CNCF and the Kubernetes experts to become a Certified Kubernetes Administrator or a Certified Kubernetes Application Developer.

B. Consulting Help
 - If you want advice on Kubernetes and the surrounding ecosystem, consider leveraging a Kubernetes Certified Provider.

C. Join CNCF’s End User Community
 - For companies that want to offer cloud native services externally.

95 | Cloud Native Computing Foundation
Continuous Integration / Continuous Delivery (CI/CD)
PLEASE TRY THE INTERACTIVE LANDSCAPE NOW:

l.cncf.io
Recent News
Certified Kubernetes Conformance

- CNCF launched a software conformance program for Kubernetes
 - Implementations run conformance tests and upload results
 - New mark and more flexible use of Kubernetes trademark for conformant implementations
 - Taking submissions now for K8s 1.9 & 1.10
 - https://www.cncf.io/certification/software-conformance/
58 Certified Kubernetes Partners
CNCF MOOC and Online Training

- Free Introduction to Kubernetes self-paced course offered with edX

- Kubernetes Fundamentals course
 - Content maps to Certified Kubernetes Administrator (CKA) exam
 - $299, intermediate level

- Open source curriculum available for companies offering training
 - CKA Exam coupons available with a bulk discount
Online, Proctored Kubernetes Exams

- **Certified Kubernetes Administrator (CKA)**
 - Over 1,500 registrations already
 - https://www.cncf.io/certification/expert/cka/

- **Certified Kubernetes Application Developer (CKAD)**
 - Certifies that users can design, build, configure, and expose cloud native applications for Kubernetes
 - https://www.cncf.io/certification/expert/cka/ckad/

- **Both tests**
 - Tests consist of a set of scenarios to resolve from the command line over 3 hours; there is no multiple choice
 - Each exam is $300
 - Quarterly exam updates to match K8s releases
Kubernetes Certified Service Provider

A pre-qualified tier of vetted service providers who have deep experience helping enterprises successfully adopt Kubernetes through support, consulting, professional services and/or training.

Benefits

- Placement at the top of https://kubernetes.io/partners/
- Monthly private meetings with cloud native project leaders, TOC members, and representatives from the Governing Board
- Access to leads from the kubernetes.io for end users looking for support

Requirements

- Three or more certified engineers
- Demonstrable activity in the Kubernetes community including active contribution
- Business model to support enterprise end users

https://www.cncf.io/certification/kcsp/
KubeCon + CloudNativeCon

- China
 - **Shanghai**: November 14-15, 2018
 - Sponsorships **open**
- North America
 - Seattle: December 11 - 13, 2018
 - Sponsorships **open**
- Europe
 - Barcelona: May 21 - 23, 2018
KubeCon + CloudNativeCon Attendees

- San Francisco (Nov 2015)
- London (Mar 2016)
- Seattle (Nov 2016)
- Berlin (Mar 2017)
- Austin (Dec 2017)
- Copenhagen (May 2017)
Joining the CNCF is easy!

Join now: https://cncf.io/join

or

General Inquiries: info@cncf.io
PR: pr@cncf.io
Event Sponsorships: sponsor@cncf.io
Membership: memberships@cncf.io