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UPR 1.0

e The aims of UPR 1.0 were to

— Fill the gaps by accessing, structuring and integrating

information across multiple system models for support of
CDD

— ldentify conflicting and harmonious requirements

— Support optimization and transformation of System
Architecture into Detailed Design

e UPR 1.0 proposed
— 10 stereotypes, and 1 library
— Facilitating annotation of models to identify information
— But the intent is Not to define new analysis techniques

CDD: constraint driven design



The ROSETTA Framework

* A mathematical framework, depicted in matrices. (See Clause
6.2 for more details [6], and [1-4] for research publications)

e Relational Transformation Source mOd?l
(Design Variables):
(see ad/2022-03-13) Y
X
— Unary y -
- CDD Target model N G2
— Binary (Design Objectives): X3
* Requirement dependency Vil v | va xq | Xo | X3
Sy | VY
M /|y / Q
Y3 v

(Yi;yj) € M with (y;, x), (¥j,x;) € Q implies (xp,x;) EN



Constraint Driven Design (CDD) in UPR 1.0

UPR 1.0 facilitates the modelling of metric constraints for CDD [6]

» A Variable is a measurable attribute that represents an element being
constrained and can take on a range of real values.

> A Constraintis a constantthat limits the values of a variable.
» A Comparison Operator, such as ‘<’, is used to model constraints.

A Design Objective is a measurable attribute of a system that the
system s intended to have or achieve e.g., a requirement.

A Design Variable is a variable under the design authority of the
engineer. It imparts system properties that achieve objectives e.g.,
a vehicle speed of > 100 mph can be achieved by reduced weight.
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UPR for CDD Modeling
Model annotation for information extraction
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Constraint Driven Design
Information required

Mathematical Viewpoint

ROSETTA seeks to access and annotate
key information from MBSE System Model.

Design algorithms use the information a
Feasible Design Space to seek solutions.

X2

N v,<30

Feasible Design Space

~

v

/
v
x

(Y

Information Required

Design Objective Constraints:
Vi o Yim

Design Variables: x,, ..., X
with Designh Ranges
S..S,, ...

n

Analytic Equations:

Y1 =Wy(Xy, ... X)
Yo = Wy(Xy, ..., X,)

Y = Win(Xy, ... Xp)
Feasible Design Space

expressed in terms of
Feasible Ranges g
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Capturing CDD information using UPR Stereotypes
UPR Foundation & Operator Library

 UPRConstraint & Sensitivity (Clause 7)

Extend UML Constraintand UML Dependency to facilitate the modeling of
Design Constraint and Design Variable; the mathematical relations between

them.
«stereotype»
UPRConstraint .
[Constraint] «stereotype»
Owned Attribute = O base_Constraint Sensitivity
inn = [Dependency]
= «Metaclass» «Metaclass»
O name —> - ,guoadies —
Constraint +correlationStrength : Real [0..1] De pendency

O value +analyticEquation : String [0..1]
O comparisonOperator +dataSourceType : DSTypeKind

O evaluate
O constrainedProperty

e QOperator Library (Clause 8)

A library of comparison operators to be used for modeling a UPRConstraint
|
e.g. =, >, <, etc. «OperatorSemantics»

EQ_Operator

[notation = =}

+applyTo( x : Een‘ent,'y": Bement ) : Boolean{query}
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Capturing CDD information using UPR Stereotypes
Design Constraints

e Design Constraints Package (Clause 9):
» Design Constraint extends UPRConstraint using
2 additional operationsand 1 attribute for model annotation and traceability

«stereotype»
UPRConstraint
[Constraint]

Owned Attribute = O base_Constraint

Mathematical Element Traceability Owned Operation =

O name
. O value
DOC ’ yl% © comparisonOperator
Yy, >20 P System Elements Traceability

O constrainedProperty €

— Constrains the Property of
T Class (SysML Requirement)
DOC,y.: «stereotype» UseCase
Y, <30 DesignObjectiveConstraint
[Constraint]
Owned Operation

attributes

+doclID : String [1]{id}

10
DOC: Design Objective Constraint
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Capturing CDD information using UPR Stereotypes
Design Variables

* Design Variable Package (Clause 10):
» Design Variable extends UPRConstraintusing
2 additional operationsand 3 attributes for model annotationand traceability

«stereotype»
UPRConstraint
[Constraint]

Owned Attribute = O base_Constraint

Mathematical Element Traceability Owned Operation =
O name
I . —3 O value
DeSIQn Ranges — O comparisonOperator
DR X, >8— JGETE System Elements Traceability
. constramedPropertye .
R,. X1 = 40 T — Constrains the Property of
Class
.. ] i «stereotype» | Sta_te
Initial DGSIgn: DesignVariable Constraint Action
ID: X, = 2 v [Constraint] .
Owned Operation «enumeration»
' - RangeKind
. ] +dveclD : Smng [1]"|d} enumeration literals
Feasible RangeS- +initialDesign : VaI\ueSpecification [0..1] designRange
FR.: x. > 15 +kind : RangeKind [1] feasibleRange
1- ™M =~ ~

FR,: X, <30 | | H
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Capturing CDD information using UPR Stereotypes
Analytic Equations

e Relational Structure and Design Modeling (Clause 11):

» DO to DV Sensitivity extends Sensitivity to model relations between Design
Constraint and Design Variable using

3 additional rules and 1 (refined) attributes for model annotation and traceability
» Objectoriented modeling of “mathematical models” *

«stereotype»
Sensitivity
. . (UPR Foundations)
Analytic Equation(s): / <o :
y]_ - W]_(X]_’ X2) - X]_ + 2X2 _— — +polynoMaIOoeffi;l'i;;t‘\lﬁ;eal [0..*{ordered}

3 | +dataSourceType : DSTypeKind [1]

+polynomialBase : Real [1] = 0.0 B erations
. DSTypeKind
derived
implied
«stereotype»
. . . DOtoDVSensitivity
DO: Design Objective [Dependency]
DV: Design Variable 'Owned Rule =
{} client_designobjective
. . {} supplier_designvariable
* ... using constants, variables, and types of 1

mathematical expressions (e.g. RSE)
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ROSETTA Mathematical Analyses Capability*
Implementation algorithms for RT-U transformations

4] GULAA pape — = e
Mass Air Flow Main Fuel Injection Timing Fuel Rail Pressure Low Pressure EGR Initial Design
1 ' 1 : 1 . 1
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*A multi-design objective and multi-design variable design problem
with three engine emission targets: CO2, NOx and Soot
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Application of UPR to Electric Vehicle(EV) Charging

Home - AMICC - Amicable Charging Research Project (projectamicc.com)

AMICC is a commercialisation project for EV wireless charging supported by
Innovate UK and funded by the Office for Zero Emission Vehicles (OZEV).

UPR facilities are being developed for  Ground assembly for WPT
metric constraints but are also needed #%
for logical constraints (e.g., topologies). ﬁ;ﬂ"‘

EV retrofitted with VA,
VIU and HMI for WPT

Design objective constraints include
o Rate of power transfer
o Electromagnetic field strength P/

Design variable constraints include
o VA size and circuit topologies
o Cooling for power transfer
o Communication protocols
VA: Vehicle assembly GA: Ground assembly
WPT: Wireless power transfer

VIU: Vehicle interface unit 15
HMI: Human Machine Interface


https://www.projectamicc.com/
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Experimental Setup for Wireless Power

Transfer (WPT)

* Similar physics compared with transformers

— Magnetic Flux Density B, =
e Design Objectives:

e Design Variables

Primary coils generate magnetic field which then induces currentin the secondary coil
toNa?l,
2(a?+22)3/2

Magnetic Flux Density emitted by the primary coil
Power Transferred to secondary coil

Currentin the primary coils

Separation of the coils

Radius of the coils (fixed)

Number of turns in the primary coil (fixed)

16



Wireless Charing for Electric Vehicle (EV)

Charge

Recall y,: Power Transferred, now with EVs VA: Vehicle Assembly Controller

P = wl3 k*LQ = cyl%,k?, where
* w: Operating Frequency (fixed)
I: GA Current

k: Coupling Coefficient o o
L: GA Inductance (fixed) —

Q: Quality Factor (fixed)

k depends on structural properties which are a mix
of
* discretevariables, e.g. logical circuit topology GA: Ground Assembly

* continuous variables, e.g. lateral misalighment Wireless Charging for EV
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Complex System Design Solutions

Example of Electromagnetic Field Emissions?

Parts of the problem that can be ‘understood’ by conventional CDD:

- Design of continuous naturee.g.,
B as function of GA & VA separation
B as function of GA & VA alignment

(SS)
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20
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Parts of the problem that requires further ‘development’ in CDD capability:

- Design of a discrete nature
B as function of coupling factor

ICampi T, Cruicani S, Maradei F, Feliziani M. Magnetic Field
during Wireless Charging in an Electric Vehicle According to
Standard SAE J2954. Energies. 2019;12:1795
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Context & Motivation

Model-based Systems Engineering offers machine readable,
traceable models

Models enable the realisation of Digital Threads
Practical Challenge:

— How to handle changes?

What we would like to explore:
— How could the UPR formalism facilitate synchronisation of models?



Model Synchronisation

= Two consistent models, M, and Mg
= Achangemadetoa M, denoted as A,
= Synchronisation means

a change Ag is mandatoryto Mg in order to
maintain the consistency between M,," and Mg’

= |ssues with manual synchronisation:labour intensive,
error-prone, lacking generality & repeatability

= Hence: Semi-automated, model transformations, T,
following a joint cognitive approach

21



A Concrete Example

. M,: Use Cases M,'": Revised Use Cases
" Scenarlo' Robotic Arm A Robotic Arm
a
— Inspector checks the part, if OK /.$ /.$
RIEt'A th 'ith t and g d Z'; %/
— OobOotTICArm en PICKS The part an 1
. p , p Inspector Assembler Inspector
places it on Assembler’s workbench :
— Assemblerfinally assembles the part @ T1
- Change to funCtlona“ty: Mﬁ: Activities Mﬁ’: Revised Activities
—_ From PiCk & Place’ to P|Ck & Assemble Inspector Robotic Arm Assembler Inspector Robotic Arm

1ck part from?
Inspector’s
workbench

= Benefit: &

— Higher efficiency with reduced safety
risks

1ck part from
Inspector’s
workbench

Place part on
Assemble part

Assembler’s

workbench
Dickerson & Ji, Essential Architecture and ®
Principles of Systems Engineering, Chapter 5

22



Synchronising Models

Ss

M_: Use Cases
a - MB Sa,
Robotic Arm
U1 Matrix Representation
1
v, L~ =  Row/Column Headers: Ways,, Wiy a
Inspector ‘/Assezb]er model elements

Ay T Waz:s Wayas az
= Matrix element:
. Wa Ss Wasa, || a3
T dependencies M
W; ; : in-model * Waus,, a4
Mp: Activities - i,j -IN-mode
Inspector Robotic Arm Assembler d epen d enCIeSI #S A Az U U 5s Sty St 4 a2 a3 %4
a e.g., A, is associated with U; s—j;
ick part from’
'"*1%;““'; = (Q;,;: cross-model Wi, A Qass,, Qaras
Wworkbenc a4 .
a
1 Pl dependencies W] 42 - e
workbench e.g., A, is concordant with s4
az 1 Wy,s i v e,
Wy,s Uy Qusas

23



M : Use Cases

Inspector
Ay

j U1
(g

Robotic Arm

T

Mﬁ: Activities

e

Assembler
A,

a;

Place part on
Assembler’s
workbench

as

Inspector Robotic Arm Assembler
az
ick part from
Inspector’s
workbench a,

Assemble part,

Aq

P

Ag

M,'": Revised Use Cases

Inspector

G

Robotic Arm

Assemble
Part

Mﬁ’: Revised Activities

Synchronising Changes

Inspector

Robotic Arm

Inspect part

ick part from
Inspector’s
workbench

Assemble
part

Wass ,, Wasa,
T Wa,sg Wara,
Way s Wasa,
/
M o Wa,s.,,
S A, A, Uy Uy Sg Sa, Sa, a, a, as ay
N QS,ss
Wau, Ay Qassy, Qa0
Wa,u,| Az Qazs,, Qaa,
Wy,s U Qu,a,
Wy,s U, €00,

24
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A Supporting Mathematical Formalism
[15]*

Synchronisation achieved through structure preserving

transformations:

 Semantic Transformation, QOH[; that preserves one structure into another,
e.g. Use Case to Activity Diagram, but without populated content

* Interpretation, I, and Ig, that interpret domain knowledge into the
structure to make them models

Iy
W, - Mg (Sa)
Qa—>,8 o [y
1
ek \ Lwep g ] Jap
Ws Mg (Sp)
Ig

*Preprint available soon
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Pathway for UPR 1.0 Evolution

e Scope of evolution is beyond UPR 1.0 RTF due to
— Inclusion of logical constraints, as seen in EV studies
— Supporting CDD automation
— Exploring structure preserving transformations for
* Model Synchronisation
* Model Synthesis

* Pathways
— UPR 2.0; or
— Merge into with SysML 2 in a later RTF?
— Collaboration with SE DSIG & Ontology PSIG
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