
OMG mathsig/2022-09-01

1
Please contact mathsig-chair@omg.org regarding permissions.

SysML Model Transformations Using Relational Orientation

C.E. Dickerson, S. Ji, M.K. Wilkinson

Mathematical Formalism DSIG

12th of September 2022

GENERAL USE RESTRICTIONS
Any unauthorized use of this document may violate copyright laws, trademark laws, and

communications regulations and statutes. This document contains information which is protected by

copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced

or used in any form or by any means--graphic, electronic, or mechanical, including photocopying,

recording, taping, or information storage and retrieval systems--without permission of the copyright

owner.

REFERENCES
[1] C. E. Dickerson and S. Ji, Essential Architecture and Principles of Systems Engineering, Boca Ratton: CRC

Press, 2021.

[2] OMG, MDA Guide v2.0, 2014.

[3] OMG, UPR: UML Profile for ROSETTA, v1.0, 2019

[4] C. E. Dickerson et al., "Architecture Definition in Complex System Design Using Model Theory," in IEEE

Systems Journal, vol. 15, no. 2, pp. 1847-1860, June 2021.

[5] OMG, Systems Modeling Language (SysMLTM), v1.6, 2019.

[6] S. Friedenthal, A. Moore and R. Steiner. A practical guide to SysML: the systems modeling language.

Morgan Kaufmann, 2014.

[7] L. Delligatti, SysML distilled: A brief guide to the systems modeling language. Addison-Wesley, 2013.

[8] M. Wilkinson and T. Rabbets, Don’t Panic - The Absolute Beginner’s Guide to Architecture and

Architecting, INCOSE UK, Ilminster, 2020.

[9] M. Wilkinson, A Systems Journey – From Theory to Practice and Back Again, Keynote Address, INCOSE

Conference on Systems Engineering Research (CSER), 2022.

[10] Systems and software engineering – System life cycle processes, ISO/IEC/IEEE 15288:2015, 2015.

[11] Systems and software engineering – Architecture description, ISO/IEC/IEEE 42010:2011, 2011.

[12] C. E. Dickerson, S. Ji and R. Roslan, "Formal methods for a system of systems analysis framework applied

to traffic management," 2016 11th System of Systems Engineering Conference (SoSE), 2016, pp. 1-6.

TABLE OF CONTENTS
1 Introduction

2 Model Types and Transformations

3 Future Work

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

2
Please contact mathsig-chair@omg.org regarding permissions.

1. Introduction

1.1 Purpose
The purpose of this paper is to offer a distilled summary of transformations of graphical models that

have been expressed in SysML diagrams, from Use Cases through Sequence Diagrams. Model

transformations using a mathematically based relational orientation method have been taken from

[1] and are summarized in Section 2. The figures are under copyright but are used with permission. All

figure numbers in this paper are taken from the original source for clarity.

In its mission to develop mathematically based model transformations for OMG standards, the

Mathematical Formalism DSIG has drawn from concepts in OMG standards such as Model Driven

Architecture [2] complemented by an extensive body of non-normative references in Section 3.2 of

UPR 1.0 [3], recently published research [4], and SysML related publications such as [5-7].

1.2 Context
The model transformations presented in this paper reflect the achievements of more than a decade

of research with industrial end users of MBSE including but not limited to Jaguar Land Rover, Rolls-

Royce, and BAE Systems. These transformations mark the practical completion of the 2nd objective for

system architects in the Math DSIG mission statement [https://www.omg.org/maths/].

The next objective of the DSIG focuses on expressing the underlying mathematical formalisms for

MBSE via OMG model-based standards. Details are proposed in Section 3. With previous success in

the standardization of relational transform through the adoption of UPR 1.0, it is envisioned that the

goals of the OMG Mathematical Formalism DSIG are achievable. However, to ensure success, we

believe that engagement with authoritative communities beyond the OMG is essential. These

communities include for example, the International Council on Systems Engineering (INCOSE) and the

International Organization for Standardization (ISO).

A link has already been established with INCOSE via the Architecture Working Group (AWG) of the

INCOSE UK Chapter, whose programme of work aims to clarify and formalize architecture concepts

and improve architecting methods. In addition to contributing to international standards, the group

and its members have published a variety of practitioners guides and an introductory book [8]. Current

activities include workstreams focused on formalization through modelling, and this work is being

supported by the authors of this paper, who are contributing their foundational research [4] to the

endeavor. A contextual summary of the work of the AWG was provided in a keynote address at the

CSER 2022 conference [9].

1.3 Definition of Key Terms
In 2020 [4] the authors of this paper published the results of several years of research and engagement

with the ISO. The purpose of the 2020 paper was to first offer definitions of key terms used in the

current ISO standards for systems and software engineering [10, 11] that had a consistent

mathematical basis. These were necessary for the mathematical specification of an architecture

definition technical process.

Building on [4], Dickerson and Ji [1] offered further analysis of the terms and comparative discussions

with alternative definitions. These details and be found in [1] and [4] for the terms Structure,

Architecture, System, and Model. For the term Semantic Structure, the concept had been introduced

as early as 2013 but not elaborated in detail until 2016 in an IEEE conference paper [12].

The reader is cautioned that the use of language in these terms is mathematically oriented. The usage

is similar to software engineering but for this reason there are subtle differences with the object-

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

3
Please contact mathsig-chair@omg.org regarding permissions.

oriented usage of fundamental terms such as class, object and relation. With this in mind the following

four definitions are offered without further motivation or explanation.

Structure is junction and separation of the objects of a collection defined by a property of

the collection or its objects.

Architecture is structural type in conjunction with consistent properties that can be

implemented in a class of structure of that type.

In first order model theory, a Model is a relational structure for which the interpretation of a

sentence in the Predicate Calculus becomes valid (true).

A System is a set of interrelated elements that comprise a whole, together with an

environment.

Semantic Structure is a structure whose objects are semantic types.

Each of the semantic structures used in Section 2 will be the ‘clean’ structure of an object-oriented

diagram in UML/SysML such as a Use Case Diagram, Activity Diagram, or a Sequence Diagram.

However, for the sake of simplicity and clarity, domain knowledge from a tutorial on an air traffic

control system [1] will be interpreted into the semantic structures to create domain structures. The

underlying model definition and transformation process employed in Section 2 does not depend on

the knowledge details of the domain structures.

1.4 Relational Orientation
Overview. Relational orientation is an architectural technique for abstraction that expresses the

concepts of a system in terms of relations among elements. In first order model theory, a relational

structure is a collection of mathematical relations (in the sense of set theory). Concepts are expressed

formally using the (first order) predicate calculus. A first order model is defined to be a relational

structure that is the image of an injective mapping of one or more sentences in the first order

predicate calculus (a sentence being a fully quantified well-formed formula). In other words, the

model ‘faithfully’ realizes the sentences. Relational orientation is then a technique that supports the

modelling of systems.

The relational orientation on systems supports a general systems methodology that employs a

principle of model specification and relational transformation for the purpose of system description,

analysis, and design. In relational orientation, the specification of a model associated with a system is

the specification of:

• Entities associated with the system

• Sentences (declarations) about the entities

• Modeling elements to instantiate the sentences

• A semantic structure on the modeling elements

• Interpretations of the sentences into the semantic structure

Entities are abstractions that admit logical or physical existence. The entities of the system can include

elements, classes (of elements), and properties of the system e.g., functionality. Note that there may

be entities associated with the system which are not part of it, e.g., elements of the operating

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

4
Please contact mathsig-chair@omg.org regarding permissions.

environment and context of the system. The sentences are the basis for system specification. A system

model is valid when the interpretation of each sentence it represents is true within the semantic

structure of the model.

Refer to UPR 1.0 [3] Section 6.2.1 and the references there for further details and explanation.

Application to object-oriented graphical models. A graphical representation of a model is a collection

of vertices and edges for encoding the semantic information captured by the sentences. The modeling

elements in this case are the vertices. The edges, which represent relationships between vertices, are

represented as pairs of vertices. The underlying structure is a (discrete) graph and therefore also has

a matrix representation. It is clear then that the object-oriented graphical models of UML and SysML

can be represented by matrices.

A simple example is in the figure below. The Design Objectives 𝑦1, 𝑦2, and 𝑦3 could be three activities

from an Activity Diagram in which the first two must be performed before the third one. This defines

two binary relations which are represented as two ordered pairs (𝑦1, 𝑦3) and (𝑦2, 𝑦3) based on the

usual (row, column) notation for cells in the matrix (M). If the entities of the Target Model 𝑥1, 𝑥2, and

𝑥3 are three system elements; and the transformation matrix (Q) is the functional allocation of 𝑦1 to

𝑥1 , 𝑦2 to 𝑥2 , and 𝑦3 to 𝑥3 then the relations in the matrix (M) are transformed into the matrix (N).

Figure 6-1 Simple example of a Transformational Frame (Q) in matrix form [3]

The transformation is computed according to the formula,

(𝑦𝑖 , 𝑦𝑗) ∈ 𝑴 with (𝑦𝑖 , 𝑥𝑘), (𝑦𝑗 , 𝑥𝑙) ∈ 𝑸 implies (𝑥𝑘 , 𝑥𝑙) ∈ 𝑵

The Relational Oriented Systems Engineering Technology Tradeoff and Analysis (ROSETTA) framework

is a matrix representation of the relational orientation on systems. The figure above is a simple

example of how it can be applied to the object-oriented graphical models of UML and SysML. ROSETTA

provides a facility for interpretation of concepts between system architects and systems (and

software) engineers, among other things. The name of the (mathematical) framework bears an

intentional similarity to the Rosetta stone which provided the means to interpret between the Greek,

Egyptian and Hieroglyphics demotic languages.

Integrated model of architecture and system. Figure 4.11 from [1] provides a logical model of an

integration of the definitions in Section 1.3 for architecture and system. More precisely, it is a semantic

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

5
Please contact mathsig-chair@omg.org regarding permissions.

structure that can be populated with domain knowledge. The graphical nature of the structure

exposes the binary predicates (relations) of the terms in the definitions of architecture and system.

Because the interpretation of (predicate) sentences into relational structures is a first order model,

the semantic structure in figure 4.11 becomes the basis for defining models of a system of interest

and the relational transformations between them. This will be exploited extensively in the next

section.

©Figure 4.11 Integrated model of architecture and system [1]

2. Model Types and Transformations
Object-oriented diagrams in SysML provide a collection of model types for defining the models of a

system of interest and transformations between them. The ‘clean’ structure (i.e., without domain

knowledge) of an object-oriented diagram in UML/SysML expresses a model type. Taking a relational

orientation, ROSETTA provides a method for a model definition and transformation process that does

not depend on the knowledge details interpreted into the semantic structures. However, for the sake

of simplicity and clarity, domain knowledge from a tutorial on an air traffic control system [1] will be

interpreted into the semantic structures to create domain structures.

The object-oriented model types used in this section are based on: the Use Case Diagram, the Activity

Diagram, Class or Block Diagrams, and the Sequence Diagram. There is an abundance of well-known

literature with examples and guidance for the drawing of diagrams. Friedenthal [6] and Delligatti [7]

are two popular examples. The methods of these two books generally fall into the category of object-

oriented systems engineering.

The methods for transforming between the diagrams as first order models is one of the primary

concerns of ROSETTA [3] and is demonstrated in detail in the tutorial chapters of the book by

Dickerson and Ji [1]. The methods in [1] and [3] fall into the category of relational-oriented systems

engineering. The feasibility and practicality of the relational approach has been demonstrated in

multiple deliveries of post graduate systems engineering modules as well as government sponsored

research and commercialization projects. Refer to Annex A-4 of [1] for a distilled summary.

Comparison of the object and relational oriented approaches is beyond the scope of this paper.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

6
Please contact mathsig-chair@omg.org regarding permissions.

In the remainder of the section, the sequence of ordered parings of models and transformations

between the models is a realization of the mathematically defined Architecture Definition technical

process in [4]. It follows a ‘top-down’ approach for the sake of logical flow but in practice transitions

between two ordered pairings of models can be sequenced in whatever manner is practical.

2.1 Functionality to Behavior
This subsection shows how to transform object-oriented models beginning with system functionality

represented by Use Case Diagrams and concluding with the specification of use case description tables

that map to Activity Diagrams.

©Figure 5.5 Specification of system functionality [1]

The representation of system functionality by a Use Case Diagram is actually a transformation of a

model of the actors in the system environment into properties of the system. Figure 5.5 [1] illustrates

a transformation of an external view of the system boundary into use cases. Associations between

actors in the environment and (functional) properties of the system (as a black box) are based on

interactions.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

7
Please contact mathsig-chair@omg.org regarding permissions.

©Figure 5.6 First-level functional decomposition [1]

Functional decomposition can be accomplished by specifying included use cases. The source model in

Figure 5.6 [1] is taken exactly as specified in the Use Case Diagram. If the functionality represented by

a use case is decomposed into lower level functionalities, then the inclusion relation can represent

the decomposition. Thus, in the figure,

Use Case 1 → [(Use Case 1, Use Case 1.1); (Use Case 1, Use Case 1.2)]

Each inclusion relation creates an ordered pair but there is no implication of ordering between the

pairs of inclusions.

Also in the figure, there is no decomposition of the functionality represented in Use Case 2. The

semantic transformation then acts on this use case as an identity mapping:

Use Case 2 → Use Case 2

Note that in these first two examples of model specification and transformation, the figures that

represent the process are for the semantic structures themselves with no reference to domain

knowledge. In the examples in the remainder of Section 2, domain knowledge will be added in order

to help with visualization of the process.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

8
Please contact mathsig-chair@omg.org regarding permissions.

©Figure 5.7 Specification of Use Case description [1]

When the functionalities in the use cases are decomposed to a level that is actionable, they can be

associated with actions that form the basic flow of actions through the system. This is the basis for an

Activity Diagram. Rather than transform from the functional decomposition, it will be useful to make

a direct mapping of the included use cases (when they are actionable) into a structured table that is

commonly known as a Use Case Description. This table is a sematic structure.

Figure 5.7 [1] depicts such a mapping for the Air Traffic Control System (ATCS) that is the subject of

the tutorial chapters of [1]. When domain knowledge is interpreted into Use Case 1, it becomes

‘Manage Air Traffic’. There are three included use cases in the tutorial and they each are actionable:

Use Case 1.1: Track Aircraft

Use Case 1.2: Assess Flight Path

Use Case 1.3: Manage Aircraft

The source model in Figure 5.7 [1] can be revised to reflect the three actionable included use cases.

These are then mapped to the three actions that form the basic flow of actions through the system.

The table represents the processes of the ATCS in a baseline scenario in which the system would

operate under intended conditions.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

9
Please contact mathsig-chair@omg.org regarding permissions.

©Figure 5.8 Mapping of Use Case description into basic flow of actions [1]

The information in a Use Case description table is sufficient without further interpretation for mapping

into an Activity diagram that shows the flow of actions for the actors and the system. This is depicted

in Figure 5.8 [1]. The Activity diagram is for the ATCS (as a black box system) and a compliant aircraft

(the actor). As previously noted, the interpretation of Use Case 1 led to three included use cases, each

of which are actionable. Thus the diagram on the right side of the figure will need a third Basic Action

when domain knowledge is included.

2.2 Functional Allocation to Subsystem Interoperation
This subsection shows how to transform object-oriented models beginning with functional allocation

of basic behaviors represented by Activity Diagrams into Class or Block Diagrams, and concludes with

the specification of interoperations that can be synthesized into Sequence Diagrams.

©Figure 6.10 Functional allocation to the system set [1]

The Activity diagram for the ATCS (as a black box system) is further elaborated (i) to show interactions

with an ATC Controller as well as a Compliant Aircraft, and (ii) define system flows of the two ATCS

components, an Air Traffic Radar (ATR) and an Air Traffic Management System (ATMS). The integrated

model of architecture and system provides a logical structure for understanding the interrelation

between the first level system hierarchy represented by a Class or Block Diagram and the system

behavior represented by an Activity Diagram.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

10
Please contact mathsig-chair@omg.org regarding permissions.

Figure 6.10 [1] depicts how functional allocation can be accomplished with engineering precision by

associating operations of the system elements with actions to be performed by the elements.

©Figure 6.11 Specification of system structure model [1]

As depicted in the integrated model of architecture and system in Figure 6.11 [1], the interrelations

between the 1st level system hierarchy, the system environment, and the relational structure must be

understood before intended (as well as inherent) interactions between them can be specified. In the

system structure model, the flow of actions will be the basis of specifying intended interactions (e.g.,

message exchange) between elements.

©Figure 6.12 Synthesis of essential architecture [1]

As depicted in Figure 6.12 [1], in order to specify the system architecture, the Sequence Diagram is

the object-oriented model type that provides an interrelational structure within which to realize the

myriad of properties defined in the previous diagrams. In terms of object-oriented model elements,

the model transformations are realized by the following associations: Class → Objects → Lifelines;

Operations → Function Calls. Synthesis and normalization will also be needed.

It is challenging to map the transformation and synthesis in general terms but the example from the

ATCS tutorial makes clear the details of how the associations are being realized. These details are

depicted in Figure 6.13 [1].

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

11
Please contact mathsig-chair@omg.org regarding permissions.

©Figure 6.13 Details of the synthesis transformation [1]

The figure provides details of the synthesis for creating the ATCS Sequence diagram. The actions in

the Activity diagram in Figure 6.7 [1] of the tutorial have been associated with the class operations

that enable them. The associated flow at the subsystem level of the ATCS represents the internal

processes of the ATCS as a system. This flow is now seen to progress downwards through the lifelines

of the Sequence diagram.

2.3 Functional Decomposition to Alternative Behaviors
The basic behaviors represented by initial Activity Diagrams must be extended to accommodate

alternative scenarios. This subsection returns to the Use Case diagram and shows how to transform

the object-oriented representations to extend the basic behaviors represented by the Activity

Diagrams. Control structures must be defined or revised to accommodate the integration of system

behaviors across the scenarios. This requires the ability to combine fragments and create objects in a

family of Sequence Diagrams.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

12
Please contact mathsig-chair@omg.org regarding permissions.

©Figure 7.8 Iterative functional decomposition for alternative behavior [1]

The definition of alternative behaviors begins with extensions of the basic functionality to

accommodate alternative scenarios. Similar to the included use cases for functional decomposition,

extended use cases provide a representation that supports modelling of alternative behavior. Specific

conditions must be met at the extension point in the base use case before the extended use case is

invoked. The model specification and transformation are depicted in Figure 7.8 [1].

©Figure 7.9 Specification of integrated behaviors [1]

The structure of the Use Case Description table has provisions for the information and associations

contained in Figure 7.9 [1]. If the extended use case is actionable it can be associated with an action

in the alternative Activity Diagram. The extension point in the base use case can be associated with a

decision node. This will create alternative flows in the Activity Diagram.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

13
Please contact mathsig-chair@omg.org regarding permissions.

©Figure 7.10 Synthesis of essential architecture with alternative behaviors [1]

The complexity of scenario integration can be mitigated by integrating an alternative control structure

for each scenario individually into the basic Sequence Diagram. This can evolve the basic control

structure into combined fragments using “if, then; else” statements and object creation. A family of

alternative diagrams linking each extended use case (associated with an alternative scenario)

eventually to an alternative interrelation structure (represented by a Sequence Diagram) can then be

specified. Figure 7.10 [1] depicts the transformation for the tutorial example.

3. Future Work
The communities contributing to the development of MBSE have for the past two decades focused on

modelling languages, tools, and to some extent methodologies. For example, a significant number of

challenges identified in the joint MBSE initiative by INCOSE and OMG have been addressed at various

levels of satisfaction through the evolution of standardized languages such as the SysML.

However, it has been observed that in the practical application of MBSE, models are often developed

without either explicit acknowledgement or exploitation of mathematical foundations, and the

benefits of mathematical precision are either not considered or only considered post model

development. An example is using mathematics to demonstrate confidence in the validity and

accuracy of models from different modelling teams. This is akin to and as erroneous as treating critical

specialist disciplines like system safety as a ‘bolt-on’ post design item to address their specialist

concerns.

Therefore, we propose that the upcoming works of the Mathematical Formalism DSIG should be

focused on the following objectives:

1. raising OMG awareness of research results within MBSE communities that establish the

benefits of applying mathematical methods and formalisms to support MBSE practices.

2. evolving the model transformation approach presented in this paper to specify formal

endogenous and exogenous transformations, thereby enabling consistent model

development and model synchronization.

mailto:mathsig-chair@omg.org

OMG mathsig/2022-09-01

14
Please contact mathsig-chair@omg.org regarding permissions.

3. advancing the formalisms in this paper to address emerging challenges in the integration of

digital engineering and MBSE. A collaboration between the Math DSIG and the Ontology

PSIG is considered a critical step for this mission and is planned.

4. collaborating with tool providers in the implementation of model transformations in

commercially available tools and standardization of the underlying formalisms via OMG.

Successful adoption and deployment of UPR 1.0 demonstrated the feasibility of this specific

task.

The details of the above future work will be informed by deriving prioritized needs for the

mathematical formalisms, based on continued collaboration with OMG groups and consultation with

key players from relevant industries on established engineering practices. The collaboration and

consultation will become a regular modus operandi to ensure benefits of the formalisms can be

established, evidenced and realized in practice. It is our goal that with successful completion of the

above objectives, MBSE practices will shift from being ‘largely unaware of mathematical foundations’

to ‘consciously exploiting mathematics throughout the practice of modelling’.

mailto:mathsig-chair@omg.org

	GENERAL USE RESTRICTIONS
	REFERENCES
	TABLE OF CONTENTS
	1. Introduction
	1.1 Purpose
	1.2 Context
	1.3 Definition of Key Terms
	1.4 Relational Orientation

	2. Model Types and Transformations
	2.1 Functionality to Behavior
	2.2 Functional Allocation to Subsystem Interoperation
	2.3 Functional Decomposition to Alternative Behaviors

	3. Future Work

