		OMG Mathematical Formalism DSIG
A Brief Introduction to Category Theory for Systems and Software Engineers		
Part A: Foundations for Engineering		
OMG Q3, September 2024		
C.E. Dickerson Loughborough University	M.K. Wilkinson BAE Systems	K. Oppl Xephor Solutions
Mathsig: OMG Mathematical Formalism Domain Special Interest Group (DSIG)		mathsig/2024-09-01a

Brief History of Category Theory in Mathematics How has it been used in science and engineering?
In 1993 Rosen was perhaps first to note its relevance to the biological sciences [7].
Baez continues this type of investigation today [2; ACT 2023, paper 31].

OMG Mathematical Formalism DSIG

As a powerful language, or conceptual framework, it has come to occupy a central position in contemporary mathematics and theoretical computer science [5, §1.1].

Several authors have noted its potential relevance as a foundation or framework for systems engineering [8-10], or conceptual applications as in Spivak [3] **but**, In engineering research, it tends to focus on *gaining structural insights*. Breiner et al [10], and others note that application of the theory requires specific and advanced mathematical skills, typically not possessed by engineers.

To date, category theory has provided little impact on engineering practice.

OMG Mathematical Formalism DSIG A Critical Analysis of Category Theory for Engineering "I asked for the time of day, and you built me a clock!"

An engineer might say that this is a lot of work to answer a simple question about minimising drag.

One power of category theory [3] is *co-design of components* of a complex system such as a radar.

Compositions provide a rigorous method for reducing complexity:

Multiple design factors can be expressed as single compositions of properties of structural elements across domains.

But in mathematics, the details of properties are supressed in category theory.

Analysis for *co-design of a radar transmitter* and antenna, using power-aperture product. The diagrams have the same type of structure as the drag problem but different details: $a \in A$ is the radar range, $b \in B$ is power density (at range a), and $c \in C$ is the power received by an aircraft (at range a). Refer to [12] for further details.

Category theory is a useful language of architecture for system modeling & analysis [12].

OMG Mathematical Formalism DSIG The Big Ideas of Category Theory Systems of Structures vis-à-vis Categories A category is characterized by its morphisms (relations); not by its objects (classes). Engineering is concerned with structured sets related by structure-preserving maps. These are expressed in Concrete Categories (where the objects are sets). Category theory treats the notion of structure in a uniform manner. Almost every known mathematical structure or system of structures with the appropriate structure-preserving map yields a category [5, §1.2]. But not all categories are made of structured sets with structure-preserving maps.* Informally category theory can be conceived as patterns of relations and interrelations. *This can be a subject of future presentations, if there is interest. 13

References (1 of 2)

[1] NASA, "Engineering Elegant Systems: Systems as Mathematical Categories", 1 March 2019; online, https://ntrs.nasa.gov/api/citations/20190002135/downloads/20190002135.pdf

[2] Applied Category Theory Conference 2023; online https://www.appliedcategorytheory.org/

[3] B. Fong and D.I. Spivak, "Seven Sketches in Compositionality: An Invitation to Applied Category Theory", 16 October 2018. Available on arXiv:1803.05316v3 [math.CT]. <u>https://arxiv.org/abs/1803.05316</u>

[4] Oxford English Dictionary, 2018.

[5] Stanford Encyclopedia of Philosophy, "Category Theory", 29 August 2019. Available online at

https://plato.stanford.edu/entries/category-theory/

[6] S. Eilenberg and S. MacLane, "General Theory of Natural Equivalences", Transactions of the American Mathematical Society 58, no 2: 231-294, 1945.

[7] R. Rosen, "On models and modeling," in *Applied Mathematics and Computation*, vol. 56, no. 2/3, pp. 359–372, 1993.

OMG Mathematical Formalism DSIG

