

Understanding tool requirements for Model Driven Architecture 1

W H I T E P A P E R

Understanding tool requirements for

Model Driven Architecture
Koos de Goede* and John Irizarry

February, 2008

* Koos de Goede is founder of @-portunity, an

emerging enterprise with core competencies in

Model Driven Architecture development. He can

be reached at koos@atportunity.com.

Introduction

Historically software design and development

efforts face numerous challenges, beginning

from the early stages of requirements gathering

and continuing on through the entire Software

Development Life Cycle. Software developers

often subscribe to legacy practices, taking a

code-only approach without employing the use

of separately defined models. The written code

forms their basis for expressing system models,

usually enacted by third-party programming

languages within development environments

such as Eclipse. This approach is informal,

intuitive and mostly living on whiteboards and

word documents, or even in the developer’s

head; dissipating instead of permeating

throughout the project lifecycle. The result is

that performance can only be predicted by

individual rather than organizational capability.

Model Driven Architecture (MDA™) solves this

problem by facilitating model-driven

development of Enterprise-Class applications

that are based on open standards and are able

to adapt to new hardware capabilities and

software platforms. MDA, however, can only

exist by means of high-quality tools that support

the MDA standards.

This document briefly touches upon the MDA

paradigm and intents to present a checklist of

what MDA tool suites should be capable of. The

checklist is illustrated with feature highlights

from Blueprint ME, @-portunity’s integrated

MDA development environment.

MDA Foundations

Being the product of the Object Management

Group’s (OMG™) open standard adoption

process, MDA enables enterprises to integrate

what has been built with what will be built

Understanding tool requirements for Model Driven Architecture 2

W H I T E P A P E R

”

based on well-established and open standards.

In MDA, models, expressed in a well-defined

notation, are the cornerstone in defining and

understanding systems. Models are created at

different levels of abstraction, separating the

concerns of the business from the technical

details of the actual software solution to be

developed. Basically, three different types of

models are constructed: one that contains the

business specifications, one for the high level

details of the platform and one that includes

technical details of the target platform. By

describing these models through a set of meta-

models, transformation amongst models is

facilitated, ultimately resulting in code

generation.

MDA Benefits

The bottom-line benefits of MDA are significant-

to business leaders and developers alike:

reduced cost throughout the application life-

cycle reduced development time for new

applications and improved quality of even more

complex systems. Moreover MDA allows for

rapid inclusion of emerging technology benefits

into existing systems. The realization that

modeling is critical to the success of every

enterprise-scale solution forms the impetus for

a growing consensus that MDA promotes:

• Platform independency

• Domain specificity

• Productivity

• Uniformity

• Consistency

Platform independency

MDA greatly reduces the time, cost and

complexity associated with re-targeting

applications for different platforms, including

those yet to be introduced.

Domain specificity

MDA enables implementations of industry

specific applications over diverse platforms,

through domain specific meta-models.

Productivity

MDA increases productivity, by permitting

developers, designers and system

administrators to use languages and concepts

they are comfortable with, while enabling

seamless communication and integration across

the teams.

Uniformity

As from the onset, models and their definitions

are structured to achieve consistency yielding

applications that are implemented in a uniform

manner; MDA increases the quality and

robustness of the end product.

Consistency

Through the ability to perform bi-directional

transformations, MDA assures that all models

reflect current-state consistently.

“ “MDA enables enterprises to integrate what has

 been built with what will be built based on well-

 established and open standards.”

Understanding tool requirements for Model Driven Architecture 3

W H I T E P A P E R

MDA Standards

The definition of the MDA concept started late

2000 using OMG’s open standard adoption

process, only to reach maturity with the

definition of the QVT specifications in 2007. The

definite MDA standards require models to be

compliant with OMG’s Meta-Object Facility

(MOF™). This guarantees that all models can be

related to each other in order to be parsed,

transferred, stored and transformed. More

concrete, the following standards must be

integrated in an MDA development

environment in order to support the start-to-

end model-driven development cycle:

• Meta-Object Facility (MOF)

• Unified Modeling Language (UML)

• Object Constraint Language (OCL)

• XML Metadata Interchange (XMI)

• Query/View/Transformations (QVT)

• Model-to-Text (M2T)

Meta-Object Facility (MOF)

MOF™ is an extensible model driven integration

framework for defining, manipulating and

integrating meta-data and data in a platform

independent manner.

Unified Modeling Language (UML)

UML® is a standardized specification language

for object modeling. It is a general-purpose

modeling language that includes a graphical

notation used to create an abstract model of a

system.

Object Constraint Language (OCL)

OCL is a precise text language that provides

constraint and object query expressions on any

MOF-based model or meta-model that cannot

otherwise be expressed by diagrammatic

notation.

XML Metadata Interchange (XMI)

XMI is a model driven XML Integration

framework for defining, interchanging,

manipulating and integrating XML data and

objects. XMI-based standards are in use for

integrating tools, repositories, applications and

data warehouses.

Query/View/Transformation (QVT)

QVT is a standard for writing transformation

specifications between MOF based meta-

models. A QVT engine is able to execute

transformations and create (or update) a target

model from a source model.

Model-to-Text (M2T)

M2T enables transformations of models to

various text artifacts such as code, deployment

specifications, reports and application

documentation.

Tool Ecosystem: Polluted

Even before the crystallization of OMG’s MDA

standards, the tooling ecosystem attained a

new category: MDA tools. Many of these tools

claim to enable MDA development, but reality

shows that only the code-generation part of

MDA is supported. As a result, model-driven

development has become a buzzword, the main

objective believed to be the automation of

100% code generation. On the contrary, MDA

should be used advantageously at various

stages of the Software Development Life Cycle

in order to enrich development methodologies

Understanding tool requirements for Model Driven Architecture 4

W H I T E P A P E R

”

and to enforce architecture conformance. The

key technologies embodied within MDA tools

should be focused towards enabling developers

to maximize their activities during the MDA

process.

Towards a Healthy Ecosystem

Essential to any MDA tool is the need to

integrate all required technologies. Blueprint

Modeling Environment (Blueprint ME) is the

first integrated MDA modeling and

development environment offering

interoperability of all ingredients of the MDA

process.

Based upon and fully integrated with the Eclipse

IDE, Blueprint ME is an extendible environment

that allows integration with a variety of

programming languages and features the

following facilities in line with OMG’s MDA

standards.

• Meta-modeling

• UML modeling

• Model-to-model transformations

• Model-to-text transformations

• Transformations execution

• Model repository

Meta-modeling

The meta-modeling facility combines the

creation of meta-models and UML Profiles.

Meta-models can be considered as an explicit

description of how a domain-specific model is

built. As UML alone is not able to represent the

semantics of a meta-model in a convenient way,

UML profiles are used to provide additional

queries and constraints to a UML model.

UML modeling

The UML modeling facility includes a UML 2.1

compliant visual modeler that supports UML

profiles and constraint validation. The UML

modeler’s hierarchical process structure

facilitates the orderly construct of flows

depicting the MDA process.

Model-to-model transformations

The model-to-model transformation facility

enables the definition of model

transformations. This facility is based on QVT

Operational and includes a highly intuitive

graphical user interface that features test and

debug facilities. Within the model-to-model

transformations facility, users can associate

models through drag and drop operations and

define the structure of the transformation

model. The specifics of every operation can be

defined using a property editor that guides the

user towards further definition of

transformation centric rules. Step-by-step

analysis and test of transformations are handled

by the integrated transformation debugger.

Historical data on transformations is maintained

and recorded.

“ “Many MDA tools claim to enable Model-driven

 development, but reality shows that only the

 code-generation part of MDA is supported.”

Understanding tool requirements for Model Driven Architecture 5

W H I T E P A P E R

”

Model-to-text transformations

The model-to-text transformation facility

permits the design of artifacts in compliance

with the M2T standard. The interface includes

split window editors that separate template

definition from the queries. The M2T

implementation is template driven. Textual

artifacts can be generated in arbitrary forms

supporting regeneration without loss of manual

changes made to previously generated output.

The template editor can be extended with a

user defined syntax coloring scheme.

Transformation execution engine

The transformation execution engine enables

the user to define workflows to perform

multiple sequential transformations (both QVT

and M2T). Workflows can be defined in a way

that the output of one transformation is the

input of the next.

Model repository

The model repository facilitates storage for

reusable modeling artifacts. The repository

includes versioning and keeps track of artifact

changes. The model repository allows storage of

Models, meta-models, UML profiles, UML

libraries, transformations and workflow

definitions.

Usability

Last but not least, usability is a key factor when

it comes to MDA tool suites. The most

important usability requirements are the

interoperability between the various standards

and the integration of these standards and

facilities in one single development

environment. Blueprint ME combines those

requirements with a highly intuitive user

interface including features like real-time

transformation debugging that allows users –

both experienced and novice – to understand

the complexity of MDA and unleash the power

of model-driven development.

Blueprint ME integrated MDA IDE

Blueprint ME, is the first integrated modeling

environment that allows end users to effectively

produce complete designs in compliance with

OMG's Model Driven Architecture standards

(MOF, UML, OCL, XMI, QVT and M2T).

To find out more about Blueprint ME, please

visit www.atportunity.com.

“ “Last but not least, usability is a key factor when

 it comes to MDA tool suites.”

W H I T E P A P E R

About @-portunity

@-portunity is an emerging enterprise with core competencies in Model Driven Architectures. Our

management team is comprised of seasoned professionals with years of collective experience in the areas

of Software Architecture Development, and advanced Software Development Methodologies as applied in

resolving real world situations. Our flagship product, the Blueprint Modeling Environment, is the first

integrated suite of tools that allows end users to effectively produce complete designs in compliance with

OMG's Model Driven Architecture standards. @-portunity is member of the Object Management Group™.

To find out more visit us at www.atportunity.com.

© Copyright 2008 @-portunity B.V. No part of this publication may be reproduced or transmitted by any form or by any

means without the prior written permission of the publishers. All registered trademarks and copyrights are understood

and recognized by @-portunity.

