
©
 E

ric
 A

U
D

RA
S

-
Ph

ot
oA

lto

By Franck BARBIER

�

Enterprise Model-Driven Development with BLU AGE™
A Netfective Technology White Paper
by M. Franck BARBIER

Contact address

NETFECTIVE TECHNOLOGY
79, rue Jean-Jacques Rousseau 92150 Suresnes, France
www.netfective.com www.bluage.com
fbarbier@netfective.com

Content
I.	 Model-Driven Development	 3
II.	 Blueprints to Enterprise Model-Driven Development	 3
III.	 Model-Driven Development = No Code?	 3
	 Figure 1. A simple UML® model with its associated constraints	 4
	 Figure 2. MDD spirit	 4
IV.	 Characterization of Enterprise Model-Driven Development	 5
V.	 BLU AGE™ EMDD Method	 5
V.I	 Most Stories Rely on the Natural Language : A Case Study about the New York City Penitentiary	 5
V.II	 The Seven Sins of Modeling	 6
V.III	 PIMs	 7
	 Figure 3. PIM of the NYCP Information System	 7
	 Figure 4. Use Cases of the NYCP Case Study	 8
	 Figure 5. GUIs	 8
V.IV	 EMDD Process	 9
	 Figure 6. EMDD Process	 9
	 Figure 7. A metaphor for the incorporation of a BSP into BLU AGE™	 10
	 Figure 8. Screen kinematics modeling based on Activity Diagrams	 10
V.V	 BLU AGE™ Metamodel	 10
	 Figure 9. BLU AGE™ Metamodel, a coercive modeling framework	 10
VI.	 Incremental Maintenance	 11
VII.	 Conclusion	 11
Bibliography	 12
Acknowledgments	 12

�

I.	 Model-Driven Development
In the late ‘90’s object-oriented modeling reached maturity.
This lead to unifying OO methods in the Unified Modeling
Language (UML®) [1-2]. Despite this notable progress, software
production remained small-scale and the need for imagining
“modern” industrial approaches, became evident. In the early
2000’s, the Model Driven Architecture® or MDA® initiative [3]
aimed at tackling this problem by laying down the foundations
of model-centric development. This was mainly based on the
idea of model transformation [3-4]. Other acronyms derived
from MDA® appeared, especially those of MDE which stands for
Model-Driven Engineering, and MDD, which means Model-Driven
Development. The two previous acronyms are fairly free from the
MDA® specification itself which, like UML®, is standardized by
the Object Management Group™ (OMG™).

Beyond the deep technological nature of MDx (x = A, E or D),
potential users who intend to investigate this innovative software
development paradigm, obviously expect notable economical
progress. This includes the ability to increase productivity due to
modeling, a better fulfillment of time-to-market constraints by
means of the easy and straightforward transformation of models
into code and deployable applications. Taken as a whole, this

corresponds to shorter returns on investments. However, there
is no in-depth survey which actually proves that MDx increases
profits in general.

In fact, while MDx benefits from having roots like object-
orientation that induces reusability and maintainability, it is
disadvantaged by the deep nature of modeling and models
that are not accessible and understandable by average persons.
This includes some software professionals. In this respect,
the coexistence of MDx with other software development
paradigms cannot be ignored, especially that of Rapid Application
Development (RAD) which, from the beginning, promotes GUIs
in applications as the first key entry point. Models, due to their
abstract nature, may not be qualified as “natural” and “intuitive”
for software developers. From experience, it is indeed difficult
to convince them to replace code by models because they fail
to have something concrete. Model executability is, in this
scope, another way of facilitating MDx. Besides, model-based
communication with non software specialists is tricky. Indeed,
the latter prefer tangible software artifacts like GUIs to models.
So, a smooth break is required to make MDx more appealing and
efficient.

II.	 Blueprints to Enterprise Model-Driven Development
This White Paper is intended to demonstrate the necessity of
moving from MDD to Enterprise Model-Driven Development
(EMDD) from a conceptual viewpoint. From a practical perspective,
it also describes an EMDD method which is made realistic through
the use of two tools. MagicDraw™ (www.magicdraw.com) is a UML®
modeler from the No Magic company. It fully supports UML® 2.x
and XMI®� 2.x. Based on its capability plus its offering of an open
API, MagicDraw™ enables the implementation of tailored MDD
rules and processes. BLU AGE™ (www.bluage.com) is an J2EE .NET
application generator from the Netfective Technology company.
It relies on decorated XMI® models, which constitute its inputs.
�	 XMI® is the standardized XML DTD for recording UML® models.

The decoration of models occurs through UML® stereotypes and
tagged values predefined and accessible by means of a UML®
profile provided by Netfective Technology. BLU AGE™ guarantees
a 100% code generation, application packaging and deployment,
provided that its coercive modeling method (the content of
this White Paper) is punctiliously respected. This White Paper
presents some screenshots coming from these two CASE tools.
Like MagicDraw™ and BLU AGE™, all marks and brands cited and
used in this White Paper remain the intellectual property of their
authors.

III.	 Model-Driven Development = No Code?
Advantages linked to MDD result from the foundation
principles of software engineering in general and specification
in particular. Models, through their abstract nature, favor early
detection of problems, these being omissions, requirement
misunderstandings and so on. Favoring does not however mean
guarantying model consistency and completeness: all formalized
requirements in a model are not contradictory, requirements are
formalized so that they are neither ambiguous nor incomplete.
So, even if MDD implies model checking, until now, there is no
special focus on the built models’ quality and more generally how
model-centric software and information system development
leverages productivity and speeds up time-to-market delivery. In
fact, the key contribution of MDD is the definition of a rigorous
model management framework rather than a precise, even new,
modeling technology. To that extent, UML® is the preferred, but
non exclusive, modeling language of MDD.

In the context of MDD, a Platform-Independent Model or PIM
represents business requirements in a more or less advanced
formal, graphical and/or textual form. For instance, a UML® Class
Diagram plus some textual constraints (Figure 1) written with the
Object Constraint Language or OCL [5], a UML® additive. Technical
constraints often come next and MDD proposes the idea of a
Platform-Specific Model or PSM, which is primarily a derivation

of a PIM as shown in Figure 2 and secondarily, a description of
a software system. For example, this system can be a software
architecture omitting implementation details but referring to
a special software technology. PSMs are the supports by which
execution environment constraints may be first integrated and
next satisfied seamlessly.Figure 1. A simple UML® model with its
associated constraints

Site

Company

Contact Organizational role

Role
role code : StringOrganization

1 * *

1..*

1

0..24

affiliation

context Site inv:
-- the role of a given site (as an organization) are included in
-- the role set of the site’s company.
company.role->includesAll(role)

context Contact inv:
-- the union of all roles of the site and the company of a
-- given contact’s site includes the roles played by this
-- contact
(affiliation.company.role->union(affiliation.role)) ->
includesAll(organizational role.role)

context Role inv:
Role.allInstances()->isUnique (role code)

Transformation

PIM

PSM
J2EE

.NET

Technology Version

J2EE 1.5

...

J2EE 1.4

Presentation
framework

JSF

...

Struts

Persistence framework

Hibernate

...

Native CPM EJBs

Etc.J2EE server

JBoss

...

SJSAS

�

Figure 1. A simple UML® model with its associated constraints

In complex cases, several closely related PIMs may show how
requirements are detailed and refined. The moving from PIMs
to PSMs is also not so radical as shown in Figure 2. Several
PSMs also exist, each results from lightweight or heavyweight
choices like J2EE or .NET, the choice of a J2EE server, the
choice of a RDBMS, the choice of a version of a J2EE server or a
RDBMS, etc. The fact that technical constraint satisfactions are
embodied in PSM appearances, demonstrates the ability of the

model transformation rules and process to control and to trace
model dependencies through code. MDD greatly and intensively
emphasizes metamodeling, XML-based model and metamodel
formats, open extensible model transformation languages
and metalanguages and consequently, corresponding tools for
managing models and their transformations (see [4] for a quite
complete list of tools).

Figure 2. MDD spirit

Unfortunately, in MDD, the major attention is often rather
devoted to model format management than model contents. From
a semantic viewpoint, we mean that high-quality transformation
rules cannot in any way transform a semantically poor PIM (a model
whose content poorly represents the upstream requirements)
into an adequate PSM, even if the latter is technically sound. In
this scope, the table with options on the right hand side of Figure
2 governs a set of transformation rules which generate, more or
less automatically, a PSM from a PIM. The modeling constructions
which are allowed in the PIM, are processed in compliance with
those accepted by the PSM; Notations at each level may indeed
partially differ since modeling goals are different. However,
ensuring that the PSM is an enhanced trustworthy image of the
PIM (an isomorphism exists between the two), is not enough.
The need for guarantying that the requirements formalized in
PIMs are not altered during the transformation activity, is also
important.

The main question is: To what point is the delivery of decorated
models with platform-dependent features realistic? In other
words, can we definitively believe that we can do it without
writing code? In practice, a MDD process stops when the material
in models does not enable the automatic generation of code. This
means that applications appear in code templates or skeletons.

Developers have thus to provide the very last implementation
details and tuning. The difficulty is the control of such finishing
touches to models, especially when these touches become
sizeable. Experience shows that, for instance, performance
improvement is often a cause of being at odds with the MDD
spirit. In reality, it is thus difficult to avoid code writing, like for
example providing glue code to be connected with specialized
APIs. Psychologically, if software developers draw the conclusion
that building models plus writing adaptation code is detrimental
to productivity, there is a risk that they dismiss MDD. So, ideally,
one expects from MDD the fact that no code is required. Since
the models are rich enough, the adopted MDD rules and process
enables the transformation of these models into complete and
reliable code. Consequently, applications based on this code are
easily and straightforwardly packaged for later deployment.

�

IV.	 Characterization of Enterprise Model-Driven Development
While MDD stresses model transformation concepts, techniques
and tools, a limited focus has been put on modeling simplicity and
intuition, as well as effective requirements validation through
model validation. Validation goes beyond model checking in
the sense that model reading and thus understanding is hard
for average software developers, not to mention final users! For
instance, an interesting application of MDD-based validation
might be the generation of sentences in a weakened, scope-
limited natural language. See for instance Figure 1 in which
the OCL constraints benefit from being translated into English.
Models expressed in a formal or semi-formal language like the
UML® are indeed much too far from the way average users think,
see and “touch” applications.

A key issue behind MDD is also model evolution management
through requirements extensions and/or adaptations. No survey
has really demonstrated that maintaining models is easier than
maintaining code. This is a cause for concern in [6]. Moreover,
the following question remains: How do MDD techniques and
tools make upstream models (whose fluctuation cycles are
those of requirements) perpetually consistent and inline with
downstream models (which are subject to technological changes
and improvements)? Besides, between PIMs and PSMs, several
model layers may also exist and each intermediate model marks
one of the different varied outputs of the chosen transformation
rules and process. In short, while MDD is obviously a significant
advance, it is not really clear how it addresses productivity issues,
how returns on investment occurs, or what is the added value
of MDD compared to competitors like RAD for instance. This
global MDD assessment may be considered as rather pessimistic.
However, from a different viewpoint [7], another demystification
of MDD reinforces the vision of this White Paper. A breakthrough
is in fact required: Enterprise Model-Driven Development.

Enterprise Model-Driven Development (EMDD) is the completion
of MDD with well-proven software development technologies
like RAD as well as the true integration of economical factors in

a model-centric software development process. It is the building
of maintainable, componentized (e.g., SOA) applications, which
support requirements engineering methods, especially through
early requirements validation, and time-to-market delivery.
Moreover, such applications obey to classical software quality
concerns. The latter issue is notably addressed by MDD, which
by definition complies with and applies all of the precepts of
software engineering.

In short, EMDD = MDD + GUI-driven development + requirements
management and adaptation that fulfill time-to-market demands.
The latter point covers the idea of end-to-end management and
adaptation from requirements capture to application generation,
as well as test and deployment through model construction and
maintenance.
EMDD may intentionally be compared to extreme modeling (the
shadow of extreme programming) in which models have to lose
their unappealing nature. Extreme modeling emphasizes model
executability which corresponds to the simulation of models by
means of instances and event occurrences, etc. If models are rich
enough for 100% code generation, designers are therefore better
convinced of the power of MDD. From a practical perspective,
models may become direct (early) testing supports. This is the
heart of the maintenance activity which consequently becomes
less uncoupled (i.e., not deferred) from the development activity
itself. Different techniques may make models more worthwhile
software artifacts for developers. As shown below, screens play
a great role in such an approach. They form logical sequences
of execution (in relation with models) and make models more
tangible, especially from the users’ perspective.

EMDD is above all a pragmatic approach of software development.
It is sketched in [8] and presented as “the reconciliation” of Activity
Modeling and Usage-Centered Design. How EMDD precepts may
be put into practice is now illustrated by means of an example
and a proposal for an EMDD method.

V.	 BLU AGE™ EMDD Method
In this section, we emphasize the requirements engineering
phaSE : this is an interview between a software engineer (SE)
and the application’s buyer (AB). We illustrate the need for

building high-quality PIMs before thinking about any PIM-to-PSM
transformation. For that, one may remember the seven modeling
sins formulated by B. Meyer in [9].

V.I	 Most Stories Rely on the Natural Language : A Case Study about the New York City Penitentiary

Below is an interview with the New York City Penitentiary (NYCP)
director and the software engineer.

SE : For a given criminal case, can you have several prisoners?
AB : Yes, but we try to avoid it. I must also tell you that we include
all the judicial decisions related to the incarceration in the prison
file, such as:

the convictions
the shortened criminal sentences
and the final discharges of the prisoner

Each of these judicial decisions is recorded in the prison file with
their respective numbers (1, 2 or 3). Each decision has a date. The
convictions include the length of imprisonment (in number of
days) to be carried out. Shortened sentences include the amount
of time the sentence is shortened by. The final discharge includes
the date of discharge.
SE : For example, can a prisoner have multiple shortenings of his
criminal sentence?





AB : Yes.
SE : You previously said that you registered the motive of the
crime. Is it the motive for the conviction that the prisoner was
sent to prison for?
AB : Yes, it is true that for the same crime there can be convicts
condemned for different motives.
SE : Could you give me examples of some motives?
AB : Yes, for example :

01-theft and various misdemeanors
02-assault and battery
03-fraud
04-carrying of a weapon without a license
05-drunk driving
12-breach of trust
14-homicide
15-procuring for prostitutes, etc.










�

SE : For a given crime, there could possibly be several motives
behind the conviction. Do you only record one?
AB : Yes, the main one.
SE : You also previously stated that you recorded the date when
the criminal act was committed. However, is it possible that
for a particular crime there may be several dates of crime? For
example, a fraud may take place from a certain date to a certain
date. So, for a specific crime, can there be several crime dates?
AB : We only record one crime date.
SE : Could you give me examples of some crime dates?
AB : Yes, for example, “during the month of April and May 1996”
or “around December 6th, 1993”.
SE : I would like to go back to the judicial decisions related to
the incarceration. Can several judicial decisions (for example,
shortened sentences) be registered on the same date for the
same prisoner?
AB : No. I understand what you are saying. You think that one
prisoner can receive two judicial decisions on the same date. For
example two shortened sentences, of the same length, could
be decided; each decision being linked to a different crime for
which the prisoner is in prison. What you mean to ask is : Can two
judgments, of the same kind, concerning the same prisoner, be
registered on the same day?
SE : Yes.
AB : The answer is no. However, the judge can decide the same
day to shorten the sentence or to condemn the convict to prison.
It rarely occurs.
SE : Would you register the fact that a particular judgment,
linked to the incarceration of a given prisoner was made by a
certain jurisdiction?

AB : No. It does not matter to us which jurisdictions make
judgments for these crimes.
SE : But what about the main crime, for which the prisoner is
incarcerated, don’t you record the original jurisdiction?
AB : Yes.
SE : Speaking of jurisdictions, can there be two of them with the
same name?
AB : No.
SE : In your prison files, do you keep all the information on
prisoners who have “legally” left the penitentiary?
AB : No. We only keep information on prisoners who are currently
serving their prison sentence.
SE : Including prisoners under remand?
AB : Yes, of course.
SE : OK, I have got very interesting inputs about your information
system. Now, what about your functional requirements?
AB : That is quite simple. I require the enforcement of law
decisions, namely incarcerating a person. In such case, some
information is created including a new prisoner record, its main
criminal case, etc. The other kind of law decision to be enforced
is when decisions are taken against existing prisoners, namely
convictions, shortened sentences and final discharges. Finally, I
must also be able to compute which prisoners are under remand.
That is all for the moment.
SE : OK, thank you, I am going to build the UML® models.

V.II	 The Seven Sins of Modeling

The seven sins of modeling are, in alphabetic order: ambiguity,
contradiction, forward reference, noise, over-specification, silence
and wishful thinking [9]. Within the questionnaire above, each of
these seven sins is illustrated. An evident expected outcome of
MDD is how to better address requirements engineering issues;
the presumed advantage of models compared to code. We show
here that there is no miracle. An EMDD method must be grounded
on efficient requirements engineering techniques which produce
sin-free models. For that, no automated MDD process is nowadays
a reasonable proven solution. So, requirements, as shown below,
must still be managed “manually”.

Ambiguity is characterized by an element in the requirements
document that makes it possible to interpret a feature of the
problem in at least two different ways. For instance, the prison
director said: “However, an incarceration decision has obviously
been taken against him.” Later in the text, he talked about another
kind of decision: “I must also tell you that we include all the judicial
decisions related to the incarceration in the prison file, (…)”. The
ambiguity here relies on the fact that an incarceration decision,
which is by definition unique for a given prisoner, is a completely
distinct concept from decisions (e.g., convictions) related to the
prisoner’s incarceration.

Contradiction covers the idea that two or more elements
define a feature of the system in an incompatible way. In the
requirements document, “the motive of the case” is recorded on
each prison file. It represents the motive of the case for which a
given prisoner was incarcerated. However, this prisoner may be
involved in other criminal cases with probably different motives.
Later, answering to a question, the penitentiary director said:
“Yes, it is true that for the same crime there can be convicts
condemned for different motives.” He contradicts himself in the
sense that he lets us suppose (or confirm?) that there are several

motives for the same prisoner. So, do we have to manage, and
thus record only one motive for a prisoner; That of the case for
which he is incarcerated? Or, on the contrary, will we be able to
know each motive linked to each case in which the prisoner is
involved? We choose the first solution in the model appearing in
Figure 3 (see also Section 6).

Forward reference refers to an element that uses features of the
problem not defined until later in the text. A forward reference
is not really a source of errors but disorients modelers in their
thought process. For instance, the prison director introduces
early in the conversation the important notion of “a prisoner
under remand” while the triggering question was not about
this point: “Can one prisoner enter the prison in relation with
several criminal cases?” In fact, a prisoner under remand has no
conviction decisions pronounced against him. This point has a
direct tangible link with whether or not he is involved in zero,
one or more than one cases.

Noise (redundancy may be considered as a subtype of noise)
is observable through the presence in the text of an element
that does not carry information relevant to any feature of the
problem. Like forward references, noises cause interferences in
the modeling thought and process. For instance, at a euphoric
outbreak, the director said: “However, since I’ve been director of
this prison, there have been no more prison breaks!”. What is the
relation with the information system the modeler is currently
designing? None.

Over-specification is the presence in the text of an element that
does not correspond to a feature of the problem but to features
of a possible solution. The notion of “a prisoner under remand” is
a possible source of over-specification. While this notion must be
treated as a first-class requirement in the information system to

Conviction

decision_type_number : Integer = 1
duration : Integer

Final_discharge

decision_type_number : Integer = 2
date_of_final_discharge : Date

Shortened_sentence

decision_type_number : Integer = 3
duration : Integer

Judicial_decision

decision_type_number : Integer
date_of_decision : Date

Criminal_case

criminal_case_number : String
date_of_crime_case : Date

Incarceration

date_of_incarceration : Date

prison_file_number : String

place_of_birth : String

given_name : String

date_of_birth : Date
surname : String

Prisoner

jurisdiction_name : String

Jurisdiction

Motive

motive_number : String
motive_label : String

NYCP

self <> jd implies self .decision_ty pe_number <> jd.decision_ty pe_number or self .prisoner <> jd.prisoner or self .date_of _decision <> jd.date_of _decision

Criminal_case.allInstances()->isUnique(jurisdiction.jurisdiction_name.concat(criminal_case_number))

Jurisdiction.allInstances()->isUnique(jurisdiction_name)

{redef ines Judicial_decision::decision_ty pe_number}

judicial_decision->includes(shortened sentence)

judicial_decision->includes(f inal discharge)

judicial_decision->includes(conv iction)

all->includes(main)

{redef ines prisoner}
{redef ines prisoner}

{redef ines prisoner}

1

*

1

*

1

*

niam+*

1

1..*
+all

1..*

+prisoner

1

*

1

*

1

*

1 *

�

be built, one must concomitantly anticipate that, as already said,
a prisoner under remand has no conviction decisions pronounced
against him. In terms of modeling, a bad idea is to materialize this
notion as an entity. In the model appearing in Figure 3, a “zero-to-
many” (i.e., “*”) UML® multiplicity is used for modeling the notion
of “a prisoner under remand”.

Silence is the worst sin. It is the existence of a feature of the
problem that is not covered by any element of the text. How can
one model what has never been said or written? This means that
models are continuously changing software artifacts. In fact, the

incompleteness of models is not only a mathematical notion but
also a human one. Interview management through crosscutting
questions for example, may help to transform silences into
emerging requirements.
Wishful thinking corresponds to an element that defines a
feature of the problem in such a way that a candidate solution
cannot realistically be validated with respect to this feature. In
the requirements text, the question “For a given criminal case,
can you have several prisoners?” yields the response “Yes, but
we try to avoid it.”. This answer is obviously a demand, but it
contradicts reality.

V.III	 PIMs

The move from the text in Section 5.1 to the model in Figure 3
is not easy and straightforward, as seen in Section 5.2, traps are
numerous. Independently of the quality of the UML® Class Diagram

in Figure 3, which may be measured by the fact that requirements
are fully captured and are not mutually contradictory, extra user-
oriented validation is required.

Figure 3. PIM of the NYCP Information System

In this scope, Figure 4 complements Figure 3 with another PIM:
Use cases.

Incarcerate

Take conviction decision

Take judicial decision Under remand

Take shortened sentence
decision

Take final discharge decision

NYCP
Director

Take conviction decision

Home

Submit

�

Figure 4. Use Cases of the NYCP Case Study

The missing link is how use cases interact with the information
system in Figure 3. To solve this problem, additional models
(e.g., Activity Diagrams, Sequence Diagrams) are important and
required. However, at this stage, MDD cannot be considered as
an easily accessible discipline for end-users, or even developers.
This is due to too much abstraction. Indeed, the adding of new

diagrams at this stage increases the amount of abstraction. Here,
abstraction is used in a pejorative sense, while it is recognized
for leveraging software quality in general; This is an underlying
principle behind MDD. In contrast, RAD (which attaches too much
importance to GUIs) may favorably complement the PIMs in
Figure 3 and in Figure 4 (Figure 5).

Figure 5. GUIs

In Figure 5, screen contents, dependencies and kinematics are
valuable assets for end-users. Moreover, the screen on the left
hand side of Figure 5 makes how the Take conviction decision use
case in Figure 4 is operated at runtime more concrete. While the
approach sketched in Figure 5 definitively has valuable properties,
it is required to be well integrated with the models in Figure 3
and Figure 4.
Only under these conditions, may one benefit from both abstract
and concrete material, each coming respectively from MDD and
RAD. Moreover, the expected integration must occur, as far as
possible, without code production (i.e., under the auspices of a
100% application generation spirit).

PIMs PIMs PSMs

Deployable application

BSPs

MAINTENANCE TEST

1 2 3 4

�

Figure 7. A metaphor for the incorporation of a BSP into
BLU AGE™

The third phase in Figure 6 is the instrumentation of what
occurs in Figure 2. For instance, checking J2EE 5 instead of J2EE
1.4 amounts to integrating J2EE 5-specific properties in PSMs.
The fourth and last step (phase 4, Figure 6) is the packaging of
all the necessary files and libraries before deployment. For 80%
of Web applications like the NYCP case study, the proposed
EMDD method ensures that no code has to be written. In such
a case, MDD really does make sense with respect to end-to-end
development preoccupations, roundtrip engineering.

In Figure 8, screens (e.g., home_screen and take_conviction_
decision_screen, which both also appear in Figure 5) are modeled
as states. The other states are called operations borne by
business objects inheriting from the entities in Figure 3. So, state
transitions match to screen sequences (take_conviction_decision
event in Figure 8 which maps to the Take conviction decision
hyperlink in Figure 5, left hand side), etc.

So, the challenge is to create a gateway with objects in models
and data in screens. The same goes for control flows in models,
which map to logical sequences in screens. In the proposed EMDD
process in Figure 6, screens are annotated with XMI®-like tags
(phase 1, Figure 6).
For instance, the Submit button of the Take conviction decision
screen in Figure 5 is assigned to an event of an Activity Diagram
(Figure 8). In the same way, the displayed data is typed based on
the types exposed in the Class Diagram extracted from Figure 3.
The first PIM-to-PIM transformation (phase 2, Figure 6) thus
represents a step of a method that integrates MDD and RAD
recipes.
The other key issue in Figure 6 is the handling of platform
specificities by means of interchangeable models named BLU AGE™
Shared Plugins (BSPs). BSPs are indeed models themselves,
expressed in the XMI® language. They refer to configuration data
which is, for flexibility, externalized from the transformation
engine. This enables the introduction of new platforms like
proprietary platforms or the management of platform evolutions
through news versions which are BSP variants. BSPs have to
replace obsolete BSPs when applications evolve according to new
technological targets. A metaphor of such a process is depicted
in Figure 7.

Figure 6. EMDD Process

V.IV	 EMDD Process

call_init_conviction

call_prisoner_allInstances

call_under_remand

take_conviction_decision_screen

prisoner_selection_screen

under_remand_screen

home_screen

<<AS_EXTSCREENS>>
external_screens

<<AS_SERVER>>
server_side

<<AS_SCREEN>>
main_screen

<<AS_REPORTS>>
reporting

under_remand

take_conviction_decision

take_final_discharge_decision

1

1

1

1

1

1

1

1

superclass

subclass

implementation

interface

business object’s
operation

signature’s
member

1

{xor}

1

*

*

*

*

*

1..*
1..*

1..*

* /caller

*
/callee

* * user

main

external

«metaclass»
Blu Age Use Case

«metaclass»
Blu Age Screen Process

«metaclass»
Blu Age Screen

«metaclass»
Blu Age Entity

«metaclass»
Blu Age Controller

«metaclass»
Blu Age Business Object

context Blu Age Service inv:
implementation->isEmpty() implies user->notEmpty()

«metaclass»
Blu Age Service

«metaclass»
Blu Age Complex Service

«metaclass»
Blu Age Business Rule

«metaclass»
Blu Age Service Operation

«enum»
Blu Age Business Rule Formalism

text: String
type: Blu Age Business Rule Formalism

OCL
HQL
SQL
EJB QL

10

Figure 8. Screen kinematics modeling based on Activity Diagrams

V.V	 BLU AGE™ Metamodel

In fact, the proposed EMDD method is put against a coercive
modeling framework appearing in Figure 9. For clarity, the
modeling constructs required for constructing BSPs are not

provided. Only constructs for modeling end-user applications are
offered.

Figure 9. BLU AGE™ Metamodel, a coercive modeling framework

11

Each BLU AGE™ metaclass depicted in Figure 9 inherits from an
element of the UML® metamodel. For instance, the BLU AGE™
Service metaclass inherits from the Interface UML® metaclass.
This first creates a compliance with UML® and makes modeling
investments perennial. Next, instead of freely using UML®, a
source of probable failure in [7], business models must be instances

of the metamodel in Figure 9. The motivation behind this rule is
the lack of guidance currently provided by the UML® and many
associated tools. The move from MDD to EMDD indeed relies on
a more disciplined and rigorous approach, which may be imposed
by the coercive modeling framework in Figure 9.

VI. Incremental Maintenance

One key expectation of MDD is the ability to update models
in relation with new or adjusted clients’ requirements. Such a
maintenance has to occur based on a rapid cycle and in a cost-
effective way. Heavyweight changes like, for instance, database
restructuring generate high costs. As an illustration, the ability
to know and to manage motives, not only for the main criminal
case of a prisoner but for all criminal cases in which he is involved,
imposes the modification of the Class Diagram in Figure 3: the
UML® Association Class from Incarceration to the association
(Prisoner, [main] Criminal Case) moves to the association
(Prisoner, [all] Criminal Case). As for lightweight modifications,
which represent around 90% of all of the maintenance cases,
how may one prove that MDD actually reduces maintenance
costs? A convincing response is required because, for instance, in
[6], the author doubts the intrinsic claimed maintainability linked
to MDD: “Model multiplicity mandates integrity maintenance
among a system’s various models, increasing exponentially with
the number of diagrams. The recursive ripple effect of changing
any model, thus triggering the potential need to modify other
diagrams, renders intractable the problem of keeping coherent
all system views.” To sketch solutions for this tricky problem,
we propose in the NYCP case study, the adding of some new
functionality. In Figure 5 and in Figure 8, the Take shortened
sentence decision use case captured in Figure 4, is not taken
into account (the Take shortened sentence decision hyperlink is
disactivated in Figure 5). Since the possibility to take shortened

sentence decisions against prisoners is required in Section 5.1, we
consider that the implementation of the Take shortened sentence
decision creates the following maintenance tasks :

design of a new screen, similar to that on the right hand
side of Figure 5, which corresponds to the Take shortened
sentence decision use case;
extension of the Activity Diagram in Figure 8, via the
introduction of the take_shortened_sentence_decision
event between the home_screen state and a new state
named take_shortened_sentence_decision_screen;
design of an additional Activity Diagram for modeling the
behavior of the application when the take_shortened_
sentence_decision_screen is displayed and controlled, as well
as other possible Activity Diagrams to enhance the current
screens’ sequence (renewed ergonomics, etc.)
marking the inside of the new screen with XMI®-like tags in
order to enable phase (1) in Figure 6.

When done, keeping in mind the hypothesis of no technological
upgrade, the process in Figure 6 can be re-run without code
handling at any stage of the maintenance cycle. Again, the quality
of the model in Figure 3 is the key starting point (note that an
association between Prisoner and Shortened sentence pre-exists
and thus enables the previously described maintenance work).









VII.	 Conclusion

MDD is supposed to revolutionize the development of software
through models which are, as far as possible, substituted for
code. Code is nothing else than an operational model that
includes all of the required details, which themselves relate to
runtime platforms. Solving technical problems is however not
enough. Engineers, developers and end-users must be convinced
that MDD is productive, cost-effective, simple and intuitive. They
may indeed stumble over too much abstraction and unfinished
models, whose final touches are sizeable. EMDD aims at going
beyond MDD by incorporating concrete material in the early
phase of development, especially GUIs. EMDD also includes the
possibility of really avoiding code through executable models
and of 100% code generation. EMDD promotes the consistent
integration of models and GUIs. It also emphasizes requirements
engineering techniques that really take into account the famous
seven modeling sins. More generally, MDD remains an open
discipline since significant research challenges will exist in the
future [10]. One of the three challenge categories in [10] is “model
manipulation and management” as illustrated in this White
Paper.

We show in this White Paper that EMDD is nowadays a reality
through the MagicDraw™ and BLU AGE™ CASE tools. MagicDraw™
makes the approach offered in this White Paper fully compliant
with usual standards (UML® 2.x, OCL 2.x, XMI® 2.x and MDA®) while
BLU AGE™ completes the modeling phase with the incorporation
the XML-based formalization of GUIs into business models and the
flexible management of platform particularities and variations
via BSPs. By means of an EMDD method, models truly constitute
the best support for business knowledge capitalization since
code is automatically and fully generated. This code remains the
intellectual property of the company practicing EMDD. In any
case, it may be directly modified even if one may consider that
as an inappropriate idea. More interestingly, changing BSPs is
the safer way for changing its nature and form (Java vs C#, JSF vs
Struts APIs, SQL92 vs SQL99, etc.).

12

Bibliography
[1] Object Management Group, UML Summary, Semantics and Notation Guide, version 1.1, September 1997
[2] Object Management Group, Unified Modeling Language: Superstructure, version 2.0, August 2005
[3] Object Management Group, MDA Guide Version 1.0.1, June 2003
[4] K. Czarnecki and S. Helsen, “Feature-based survey of model transformation approaches,” IBM Systems Journal, 45(3), pp. 621-645,
2006
[5] Object Management Group, Object Constraint Language OMG Available Specification Version 2.0, May 2006
[6] D. Dori, “Why Significant UML Change is Unlikely,” CACM, 45(11), pp. 82-85, 2002
[7] R. France, S. Ghosh, T. Dinh-Trong and A. Solberg, “Model-Driven Development Using UML 2.0: Promises and Pitfalls,” IEEE Computer,
39(2), pp. 59-66, 2006
[8] L. Constantine, “Activity Modeling: Toward a Pragmatic Integration of Activity Theory with Usage-Centered Design,” Lab-USE
Technical Paper, Draft – Revision 2.0, 2006
[9] B. Meyer, “On Formalism in Specifications,” IEEE Software, 2(1), pp. 6-26, 1985
[10] R. France and B. Rumpe, “Model-driven Development of Complex Software: A Research Roadmap,” Proc. ICSE Future of Software
Engineering, May 23-25, 2007

Acknowledgments

I wish to thank my colleagues from NETFECTIVE TECHNOLOGY, Albert FOUMENA NANGA, Tariq HAMADOUCH, Jean NEVEUX, Hafid
OUAHIDI, Frédéric VERMENOUZE and Kamal YOUBI, for their help about the formalization of the idea of EMDD.

J2EE .NET APPLICAT ION GENERATOR

blu age™
BLU AGE™ inputs

BLU AGE™ outputs

Packaged
application

Technical
components

UML model

XHTML
interface

Modeling
workspace

BLU AGE™ Profile
Intelligence BPI

BLU AGE™
Software Factory
BSF

Server

XMI-based
format for
UML & OCL
models

BLU AGE™
GUI Marker
BGM

BLU AGE™ Meta
Model Facade MMF

BLU AGE™ UML
 Business Profile

BLU AGE™
Shared Plugins BSP

BL
U

 A
G

E™
Co

nf
ig

 R
un

ne
r

Model

Query

Transformation

Packager

BL
U

 A
G

E™
Se

rv
er

 R
un

ne
r

Re
po

si
to

ry

PARTNERS

BLU AGE™ is a registered trademark of NETFECTIVE TECHNOLOGY - Trademarks are property of their respective owners

QR Code www.bluage.com

CONTACT
contact@bluage.com

THE BLU AGE™ GENERATOR
BLU AGE™, the application generator built
by the NETFECTIVE TECHNOLOGY R&D
department is a pragmatic implementation
of the MDA® (Model Driven Architecture®)
standard developed by the OMG™ (Object
Management Group™).

BLU AGE™ allows companies to shorten
their development cycles, to reduce
their implementation costs. BLU AGE™
also decreases the risks inherent to
requirements engineering by means of a
rigorous modeling method.

Based on BLU AGE™, Business Process
modeling, implementation and deployment
really create added value and quality in
companies’ information systems.

NETFECTIVE TECHNOLOGY is an OMG™ member.

