
DDS in a Component-Based Architecture

Protima Banerjee

protima.x.banerjee@lmco.com

Lockheed-Martin Mission Systems & Training

March 2013

Session #

Motivation: Component-Based Architectures

• A Component-based architecture consists of:
– A set of common core software components

– A common data model showing data shared between
components

– A set of common service interfaces used by components to
access platform-specific functions

• A Component-based architecture allows for:• A Component-based architecture allows for:
– An open development model that allows many developers to

provide combat system products

– Incremental capability development

– Incremental capability upgrades

– Rapid technology insertion and more effective transition of R&D
products by a system integrator

• Example: Navy’s Software Product Line Architecture

High Level Component Model

Core Common Component

Sub-Component 1

Sub-Component 2

Sub-

Component 3 Platform

Independent

Implementation

Common System Service Interfaces (Middleware Services, etc.)

System Service Implementations

Implementation

Platform

Specific

Codebase

Components can be composed of sub-components which may be auto-nomous or

semi-autonomous.

Architectural Considerations

• Component-based systems are designed with these goals:
– Standards-based, components decoupled from one another

– Make use of COTS where applicable

– Robust to expected failures

– Provide redundancy where applicable

• Inter-component communication is key
– Common Data Model across components provides data – Common Data Model across components provides data

structures

– Common Messaging Service Interface provides the messaging
mechanism

– Examples of a Messaging Service implementation may be:
• The OMG Data Distribution Service (DDS) a middleware standard from

the Object Management Group (OMG)

• Java Messaging Service (JMS)

• Common Object Request Broker Architecture (CORBA)

Messaging is fundamental to Component-based systems! Components can be.

Messaging Between Components

Component 3

(C++)

Common Messaging
Service I/F

Platform 2
Implementation

Component 1

(Java)

Common Messaging
Service I/F

Platform 2
Implementation

Component 1

(Java)

Common Messaging
Service I/F

Platform 1
Implementation

Component 2

(C++)

Common Messaging
Service I/F

Platform 1
Implementation

DDS Messaging

Platform 2
Implementation

JMS Messaging

Platform 2
Implementation

Platform 1
Implementation

Platform 1
Implementation

On Platform 1, Component 1

communicates with Component 2 using

DDS as the underlying transport.

On Platform 2, Component 1

communicates with Component 3 using

JMS as the underlying transport.

Component does not need to be aware of underlying transport, but the

underlying transport can provide features to facilitate component interactions.

Messaging in a Component Based System

• Propose that there are four aspects that characterize inter-component

communications:

– Message Data Definition – Syntactic Definition

• Shows data field names, data types

– Message Data Definition – Semantic Defintion

• Shows data relationships including inheritance, aggregation, etc.

– Messaging Behavior – Syntactic– Messaging Behavior – Syntactic

• Shows which messages are sent and received by which components

• Shows which transports are used to communication messages

– Messaging Behavior – Semantic

• Shows message transmission characteristics

• Provides knowledge about the message flows in a system

Not all middleware implementations provide all of these!

Why is Messaging Behavior Important?

• A system integrator needs to understand all four
characteristics of a message exchange:
– Data model and data relationships

– Physical aspects of messaging behavior:
• Eg. What transports and interfaces are being used for the

exchange?

• What network resources are being used and how intensively?• What network resources are being used and how intensively?

– Semantic aspects of messaging behavior:
• Eg. Is the message transmitted reliably or best-effort?

• Does the message have a periodicity?

• Will old messages be re-transmitted to new subscribers that come
up after the system has been running?

• Is an error condition indicated if a message is not received after a
certain amount of time?

A robust messaging service should include parameters that define behavior.

The Data Distribution Service (DDS)

• What is DDS?
– DDS is an OMG standard for decentralized publish / subscribe

messaging
• Recommended by the Naval Open Architecture Computing

Environment (OACE) and Net-Centric Solutions for Interoperability
(NESI)

• DDS provides the following key capabilities for component-
based development:based development:
– Interoperability across vendors

– Data domains and partitions to segregate specific component-
interactions

– Support for a variety of underlying transports to allow network-
level tuning

– Upcoming Security features to support secure interactions
between specific components

The Data Distribution Service (DDS)

• Our focus here: DDS and Messaging Behavior
– DDS provides the system integrator the ability to

control messaging behavior between components at a
detailed level.

– DDS is unique in this regard.

• DDS Quality of Service• DDS Quality of Service
– DDS provides twenty-six Quality of Service (QoS)

parameters assignable to all communications entities

– Semantics of message behavior can be defined in a
standards-based way

– Is well-suited for providing the under-lying transport
for a component-based architecture for this reason

Background: DDS Topic Based Publish/ Subscribe

• For a given message exchange, the

publishing application creates a

Domain Participant, Publisher and

Data Writer

• The Data Writer is bound to a Topic

• The Data Writer writes data to a

Topic

• The subscribing application

creates a Domain Participant,

Subscriber and Data Reader

• The Data Reader is bound to a

Topic

• The Data Reader receives the

data published to the TopicTopic data published to the Topic

DDS Domain

Topic A

DDS Domain

Participant

DDS Publisher

DDS Data Writer

DDS Domain

Participant

DDS Publisher

DDS Data Reader

.

Background: DDS Quality of Service

• QoS Policies assignable to all entities in the DDS message exchange

• Allows for a very granular definition of messaging behavior for specific

application threads and timelines

Publisher

Side QoS

Subscriber

Side QoS

Requested vs. Offered Compatibility

DDS Domain

Topic A

DDS Domain

Participant

DDS Publisher

DDS Data Writer

DDS Domain

Participant

DDS Publisher

DDS Data Reader

.

Behavioral DDS QoS Policies that

Support Component Interactions
• Deadline

– At least one message must be received

within a specified time period

• Destination Order

– Received messages can be delivered either

by send or receipt timestamp order

• Durability

• Presentation

– Message ordering by a logical sequence

number. Topics can be grouped and the

ordering occur within a logical topic group.

• Reliability

– Should messages be sent reliably or best-

effort?

• Time-Based Filter
– Messages are re-transmitted to late-joining

subscribers

• History

– Up to N (possibly infinite) messages are

retained in a local queue.

• Lifespan

– The “shelf-life” of a message. Old

messages are discarded by the system.

• Time-Based Filter

– Can only a sub-set of messages within a

specified time window be considered

useful?

• User Data, Group Data, Topic Data

– Allow publisher/subscriber authentication

policies to be put in place

.

Challenge: Managing Messaging Behavior

• Challenges for the system integrator:
– Messaging behavior is likely to change frequently over time as systems

evolve

• Behavior may change even when message structures stay consistent

– The same message may participate in multiple exchanges, each of which

has a unique behaviorhas a unique behavior

• For example, a message may have both reliable and unreliable

subscribers.

– Messaging behavior should be communicated in a concise way to

component developers, in a manner than can be interpreted easily into

code.

• Automated generation of QoS XML Profiles

– Messaging behavior must be consistent between components otherwise

communications at the system level will fail

Calls for Messaging Behavioral Model to be overlaid on a Messaging Data Model. .

Approach: Add to Existing UML/SysML Models

• Benefits:
– Behavior and data could be captured in a single repository

– Accessible using a single toolset

• Considerations:
– Existing UML/SysML paradigm may not be appropriate for

messaging behavioral semanticsmessaging behavioral semantics
• Explore DDS Profile for UML

– Extraction of the behavioral semantics is also required
• Ideally, would like the behavioral model to produce an XML

configuration that could then be provided to software

• Code generation would also be ideal

– Configuration management
• Easy for messaging behaviors to get out of sync with the model unless

the process is tightly controlled

DDS Profile for UML is a standards-based approach to modeling DDS QoS.

DDS in Component Based Systems:

Some Other Thoughts

• Testability is critical to message exchanges
between components:
– Vendor-specific tools are currently available:

• For example, RTI provides a DDS Monitoring, Analyzing and
Recording capabilities

• However, integration tools that are not tied to a specific DDS
implementation are desirableimplementation are desirable

– Trouble-shooting message exchange problems
between vendors limited to tools at the wire protocol
level

• Wireshark DDS Dissector

• Wire level data is difficult to analyze; difficult to collect and
retain for long periods of time

Focus on this area would have a huge return on investment for system integrators.

Conclusion

• A Component-based architectures allow for:

– Incremental capability development

– Incremental capability upgrades

– Rapid technology insertion

• DDS Middleware is critical to component-based
architecturesarchitectures

– Provides a standardized means of defining both message
data types as well as message exchange behaviors

– Model-based definition of message behavior is a current
challenge

– System integrators would benefit from industry focus in
the area of vendor-independent DDS tools

Questions?

