DDS in a Component-Based Architecture

Protima Banerjee
protima.x.banerjee@Imco.com

Lockheed-Martin Mission Systems & Training
March 2013

Session #



i
Motivation: Component-Based Architectures—7

A Component-based architecture consists of:
— A set of common core software components

— A common data model showing data shared between
components

— A set of common service interfaces used by components to
access platform-specific functions

A Component-based architecture allows for:

— An open development model that allows many developers to
provide combat system products

— Incremental capability development
— Incremental capability upgrades

— Rapid technology insertion and more effective transition of R&D
products by a system integrator

 Example: Navy’s Software Product Line Architecture



High Level Component Model e

Platform
~ Independent
Implementation

E—

Platform
Specific
Codebase

Components can be composed of sub-components which may be auto-nomous or

semi-autonomous.




A

Architectural Considerations 1

« Component-based systems are designed with these goals:
— Standards-based, components decoupled from one another
— Make use of COTS where applicable
— Robust to expected failures
— Provide redundancy where applicable

* Inter-component communication is key

— Common Data Model across components provides data
structures

— Common Messaging Service Interface provides the messaging
mechanism
— Examples of a Messaging Service implementation may be:

 The OMG Data Distribution Service (DDS) a middleware standard from
the Object Management Group (OMG)

* Java Messaging Service (JMS)
 Common Object Request Broker Architecture (CORBA)

Messaging is fundamental to Component-based systems!




Messaging Between Components

Component 1 Component 2

(Java) (C++)

Common Messaging Common Messaging
Service I/F Service I/F

Platform 1 Platform 1
Implementation Implementation

On Platform 1, Component 1
communicates with Component 2 using
DDS as the underlying transport.

Component 1 Component 3

(Java) (C++)

Common Messaging Common Messaging
Service I/F Service I/F

Platform 2 Platform 2
Implementation Implementation

On Platform 2, Component 1
communicates with Component 3 using
JMS as the underlying transport.

Component does not need to be aware of underlying transport, but the

underlying transport can provide features to facilitate component interactions.




A
Messaging in a Component Based SystePr/f//

* Propose that there are four aspects that characterize inter-component
communications:

— Message Data Definition — Syntactic Definition
* Shows data field names, data types
— Message Data Definition — Semantic Defintion
* Shows data relationships including inheritance, aggregation, etc.
— Messaging Behavior — Syntactic
* Shows which messages are sent and received by which components
* Shows which transports are used to communication messages
— Messaging Behavior — Semantic
* Shows message transmission characteristics
* Provides knowledge about the message flows in a system

Not all middleware implementations provide all of these!




A

Why is Messaging Behavior Important? 1

e A system integrator needs to understand all four
characteristics of a message exchange:

— Data model and data relationships

— Physical aspects of messaging behavior:

* Eg. What transports and interfaces are being used for the
exchange?

* What network resources are being used and how intensively?

— Semantic aspects of messaging behavior:
* Eg.Is the message transmitted reliably or best-effort?
* Does the message have a periodicity?

* Will old messages be re-transmitted to new subscribers that come
up after the system has been running?

* Is an error condition indicated if a message is not received after a
certain amount of time?

A robust messaging service should include parameters that define behavior.




A

The Data Distribution Service (DDS) 1

e What is DDS?
— DDS is an OMG standard for decentralized publish / subscribe
messaging

 Recommended by the Naval Open Architecture Computing
Environment (OACE) and Net-Centric Solutions for Interoperability
(NESI)

 DDS provides the following key capabilities for component-
based development:
— Interoperability across vendors

— Data domains and partitions to segregate specific component-
interactions

— Support for a variety of underlying transports to allow network-
level tuning

— Upcoming Security features to support secure interactions
between specific components



A

The Data Distribution Service (DDS) 1

e Our focus here: DDS and Messaging Behavior

— DDS provides the system integrator the ability to
control messaging behavior between components at a
detailed level.

— DDS is unigue in this regard.

e DDS Quality of Service

— DDS provides twenty-six Quality of Service (QoS)
parameters assignable to all communications entities

— Semantics of message behavior can be defined in a
standards-based way

— |s well-suited for providing the under-lying transport
for a component-based architecture for this reason



Background: DDS Topic Based Publish/ Subscribe

* For a given message exchange, the « The subscribing application

publishing application creates a creates a Domain Participant,
Domain Participant, Publisher and Subscriber and Data Reader
Data Writer « The Data Reader is bound to a
 The Data Writer is bound to a Topic Topic
 The Data Writer writes data to a « The Data Reader receives the
Topic data published to the Topic

DDS Data Writer DDS Data Reader

DDS Publisher DDS Publisher

DDS I_Dc_>main DDS Domain
Participant

Participant

DDS Domain



Background: DDS Quality of Service

* QoS Policies assignable to all entities in the DDS message exchange

* Allows for a very granular definition of messaging behavior for specific
application threads and timelines

Publisher Requested vs. Offered Compatibility Subscriber
Side QoS Side QoS

DDS Data Writer

DDS Data Reader

DDS Publisher DDS Publisher

DDS Domain
Participant

DDS Domain
Participant

DDS Domain




Behavioral DDS QoS Policies that
Support Component Interactions

* Deadline * Presentation
— At least one message must be received — Message ordering by a logical sequence
within a specified time period number. Topics can be grouped and the

. . ordering occur within a logical topic group.
» Destination Order

. .y
— Received messages can be delivered either Rellablhty

by send or receipt timestamp order — Should messages be sent reliably or best-
effort?

 Durability

e Ti - :
— Messages are re-transmitted to late-joining Time-Based Filter

subscribers — Can only a sub-set of messages within a
. specified time window be considered
* History useful?

— Up to N (possibly infinite) messages are « User Data, Group Data, Topic Data
retained in a local queue. ! !

. — Allow publisher/subscriber authentication
* Llfespan policies to be put in place
— The “shelf-life” of a message. Old

messages are discarded by the system.



A

Challenge: Managing Messaging Behavior 1

* Challenges for the system integrator:

— Messaging behavior is likely to change frequently over time as systems
evolve

* Behavior may change even when message structures stay consistent

— The same message may participate in multiple exchanges, each of which
has a unique behavior

* For example, a message may have both reliable and unreliable
subscribers.

— Messaging behavior should be communicated in a concise way to

component developers, in a manner than can be interpreted easily into
code.

* Automated generation of QoS XML Profiles

— Messaging behavior must be consistent between components otherwise
communications at the system level will fail

Calls for Messaging Behavioral Model to be overlaid on a Messaging Data Model.



Approach: Add to Existing UML/SysML Models 4/

e Benefits:
— Behavior and data could be captured in a single repository
— Accessible using a single toolset

* Considerations:
— Existing UML/SysML paradigm may not be appropriate for
messaging behavioral semantics
* Explore DDS Profile for UML

— Extraction of the behavioral semantics is also required

* |deally, would like the behavioral model to produce an XML
configuration that could then be provided to software

* Code generation would also be ideal
— Configuration management

e Easy for messaging behaviors to get out of sync with the model unless
the process is tightly controlled

DDS Profile for UML is a standards-based approach to modeling DDS QoS.




DDS in Component Based Systemes: —F
Some Other Thoughts

e Testability is critical to message exchanges
between components:

— Vendor-specific tools are currently available:

* For example, RTI provides a DDS Monitoring, Analyzing and
Recording capabilities

* However, integration tools that are not tied to a specific DDS
implementation are desirable
— Trouble-shooting message exchange problems
between vendors limited to tools at the wire protocol
level
* Wireshark DDS Dissector

* Wire level data is difficult to analyze; difficult to collect and
retain for long periods of time

Focus on this area would have a huge return on investment for system integrators.




. /
Conclusion =g

A Component-based architectures allow for:
— Incremental capability development
— Incremental capability upgrades
— Rapid technology insertion
 DDS Middleware is critical to component-based
architectures

— Provides a standardized means of defining both message
data types as well as message exchange behaviors

— Model-based definition of message behavior is a current
challenge

— System integrators would benefit from industry focus in
the area of vendor-independent DDS tools



Questions?







