DDS in a Component-Based Architecture

Protima Banerjee
protima.x.banerjee@lmco.com

Lockheed-Martin Mission Systems & Training
March 2013
Motivation: Component-Based Architectures

• A Component-based architecture consists of:
 – A set of common core software components
 – A common data model showing data shared between components
 – A set of common service interfaces used by components to access platform-specific functions

• A Component-based architecture allows for:
 – An open development model that allows many developers to provide combat system products
 – Incremental capability development
 – Incremental capability upgrades
 – Rapid technology insertion and more effective transition of R&D products by a system integrator

• Example: Navy’s Software Product Line Architecture
Components can be composed of sub-components which may be auto-nomous or semi-autonomous.
Architectural Considerations

• Component-based systems are designed with these goals:
 – Standards-based, components decoupled from one another
 – Make use of COTS where applicable
 – Robust to expected failures
 – Provide redundancy where applicable

• Inter-component communication is key
 – Common Data Model across components provides data structures
 – Common Messaging Service Interface provides the messaging mechanism
 – Examples of a Messaging Service implementation may be:
 • The OMG Data Distribution Service (DDS) a middleware standard from the Object Management Group (OMG)
 • Java Messaging Service (JMS)
 • Common Object Request Broker Architecture (CORBA)

Messaging is fundamental to Component-based systems!
Messaging Between Components

On Platform 1, Component 1 communicates with Component 2 using DDS as the underlying transport.

On Platform 2, Component 1 communicates with Component 3 using JMS as the underlying transport.

Component does not need to be aware of underlying transport, but the underlying transport can provide features to facilitate component interactions.
Propose that there are four aspects that characterize inter-component communications:

- **Message Data Definition – Syntactic Definition**
 - Shows data field names, data types
- **Message Data Definition – Semantic Definition**
 - Shows data relationships including inheritance, aggregation, etc.
- **Messaging Behavior – Syntactic**
 - Shows which messages are sent and received by which components
 - Shows which transports are used to communication messages
- **Messaging Behavior – Semantic**
 - Shows message transmission characteristics
 - Provides knowledge about the message flows in a system

Not all middleware implementations provide all of these!
A robust messaging service should include parameters that define behavior.
The Data Distribution Service (DDS)

• What is DDS?
 – DDS is an OMG standard for decentralized publish / subscribe messaging
 • Recommended by the Naval Open Architecture Computing Environment (OACE) and Net-Centric Solutions for Interoperability (NESI)

• DDS provides the following key capabilities for component-based development:
 – Interoperability across vendors
 – Data domains and partitions to segregate specific component-interactions
 – Support for a variety of underlying transports to allow network-level tuning
 – Upcoming Security features to support secure interactions between specific components
The Data Distribution Service (DDS)

• Our focus here: DDS and Messaging Behavior
 – DDS provides the system integrator the ability to control messaging behavior between components at a detailed level.
 – DDS is unique in this regard.

• DDS Quality of Service
 – DDS provides twenty-six Quality of Service (QoS) parameters assignable to all communications entities
 – Semantics of message behavior can be defined in a standards-based way
 – Is well-suited for providing the under-lying transport for a component-based architecture for this reason
Background: DDS Topic Based Publish/Subscribe

- For a given message exchange, the publishing application creates a Domain Participant, Publisher and Data Writer
- The Data Writer is bound to a Topic
- The Data Writer writes data to a Topic

- The subscribing application creates a Domain Participant, Subscriber and Data Reader
- The Data Reader is bound to a Topic
- The Data Reader receives the data published to the Topic
Background: DDS Quality of Service

- QoS Policies assignable to all entities in the DDS message exchange
- Allows for a very granular definition of messaging behavior for specific application threads and timelines
Behavioral DDS QoS Policies that Support Component Interactions

• Deadline
 – At least one message must be received within a specified time period

• Destination Order
 – Received messages can be delivered either by send or receipt timestamp order

• Durability
 – Messages are re-transmitted to late-joining subscribers

• History
 – Up to N (possibly infinite) messages are retained in a local queue.

• Lifespan
 – The “shelf-life” of a message. Old messages are discarded by the system.

• Presentation
 – Message ordering by a logical sequence number. Topics can be grouped and the ordering occur within a logical topic group.

• Reliability
 – Should messages be sent reliably or best-effort?

• Time-Based Filter
 – Can only a sub-set of messages within a specified time window be considered useful?

• User Data, Group Data, Topic Data
 – Allow publisher/subscriber authentication policies to be put in place
Challenge: Managing Messaging Behavior

• Challenges for the system integrator:
 – Messaging behavior is likely to change frequently over time as systems evolve
 • Behavior may change even when message structures stay consistent
 – The same message may participate in multiple exchanges, each of which has a unique behavior
 • For example, a message may have both reliable and unreliable subscribers.
 – Messaging behavior should be communicated in a concise way to component developers, in a manner than can be interpreted easily into code.
 • Automated generation of QoS XML Profiles
 – Messaging behavior must be consistent between components otherwise communications at the system level will fail

Calls for Messaging Behavioral Model to be overlaid on a Messaging Data Model.
Approach: Add to Existing UML/SysML Models

• Benefits:
 – Behavior and data could be captured in a single repository
 – Accessible using a single toolset

• Considerations:
 – Existing UML/SysML paradigm may not be appropriate for messaging behavioral semantics
 • Explore DDS Profile for UML
 – Extraction of the behavioral semantics is also required
 • Ideally, would like the behavioral model to produce an XML configuration that could then be provided to software
 • Code generation would also be ideal
 – Configuration management
 • Easy for messaging behaviors to get out of sync with the model unless the process is tightly controlled

DDS Profile for UML is a standards-based approach to modeling DDS QoS.
DDS in Component Based Systems: Some Other Thoughts

• Testability is critical to message exchanges between components:
 – Vendor-specific tools are currently available:
 • For example, RTI provides a DDS Monitoring, Analyzing and Recording capabilities
 • However, integration tools that are not tied to a specific DDS implementation are desirable
 – Trouble-shooting message exchange problems between vendors limited to tools at the wire protocol level
 • Wireshark DDS Dissector
 • Wire level data is difficult to analyze; difficult to collect and retain for long periods of time

Focus on this area would have a huge return on investment for system integrators.
Conclusion

• A Component-based architectures allow for:
 – Incremental capability development
 – Incremental capability upgrades
 – Rapid technology insertion

• DDS Middleware is critical to component-based architectures
 – Provides a standardized means of defining both message data types as well as message exchange behaviors
 – Model-based definition of message behavior is a current challenge
 – System integrators would benefit from industry focus in the area of vendor-independent DDS tools
Questions?