A
o’

TECH-X

SIMULATIONS EMPOWERING
YOUR INNOVATIONS

Data Distribution Service for Python
Applications

Nanbor Wang and Svetlana Shasharina

Tech-X Corporation
WWW.IXCOorp.com

Project funded by DOE Grant:
DE-SC0000842 and Tech-X Corporation

http://www.txcorp.com/

A Introduction and Goal

« Why Python:
« Python is a popular language due to its robust dynamic scripting
language features and runtime supports
« Rapid prototyping
» Web scripting, XML processing,
« GUl/database applications
« Steering scientific applications

« Many complex applications are based on Python with high-
performance cores implemented using other technologies

« Currently, no standardized DDS Python mapping available and
for developers to use DDS in their Python applications

* Hence the project goal is to
* Implement a Python bridge for DDS to allow Python applications
to participate in DDS data exchanges
« Allow Python developers to interact with DDS data spaces
directly

« Eliminate the need to generate Python wrappers for topic-
specificC/C++ mapping codes

N Typical Approach Puts the Bridge Above
the Topic/Application level

Python Applications

Python Bridge Python Bridge

Data Publishing Logic Data Subscribing Logic

T Wrier
Domalin Participant

Netwotk

,\ Typical Approach Implies Regeneration of
Glue for Each New Topic

« Use vender provided tools such as “idlpp”, to generate the
C/C++ mappings from type definitions

« Use some wrapper tools such as Boost.Python or SWIG, to
wrap C/C++ code into bridges

« Type/application-specific interfaces
« General DDS API
« Applications use these generated python classes to pub/sub
* Issues:
« Wrappings are type/application-specific
* Requires extra steps outside of Python to generate the
bridge objects

« When topic definition changes, need to re-generate all the
bridging objects and the application codes

« Disruptive to Python’s dynamic/interpretive language
features

« Solutions: A generic Python DDS bridge implementation

N\ Tech-X Implemented an Architecture for a
Generic Python DDS Bridge

Python Applications

| | |

\L generates? v v ,],
pyDDS Serwces

A
P S

Domain Participant

Netwotk

,\ Our Approach Allows Dynamic Generation
of Python Topic Code

* Import PyDDS as a python module into Python
application codes

« We are aware of another PyDDS implementation
from Github: https://github.com/forrestv/pyDDS

« Dynamically generate topic-specific DDS
classes using services provided by PyDDS

 Interact with DDS subsystem directly via PyDDS
and the generated topic-specific objects

* Benefits:
* No need to use tools outside of Python

* No need to re-generate Python bridges when IDL
changes

* More natural Python application development
flow

N\ PyDDS Relies on Boost.Python, Python
and OpenSplice

Key components fall into 3 main categories:

« General DDS API

« Managing various entities and built-in data types
(DomainParticipant, Publisher/Subscriber, QoS,
WaitSet, etc.)

« Type management facility
* Internalizing type definitions
« Generating typed objects

* Type specific API
« DataReaders/DataWriters
* Listeners*

Current Status

Implementation based on OpenSplice Community
Edition version 5.4.1/5.5.1

 Linux and Windows platforms
« With stock Python installation 2.6 or later
* Boost library is optional for end-users

Supports for simple topic types using IDL
 All basic types and strings
Supports for programmatic construct of topic types
Simple read/write
WaitSets/Conditions
Listener callbacks
Some support for SimD-like abstractions

X General DDS Entity Example:
Joining a data domain/partition

A one-stop interface into the pydds global factory methods
import PyDDS;

pydds=PyDDS . PyDDS ()

dp=pydds.create_ participant (“”) # DomainParticipant Factory
publisher=dp.create publisher (publisherQos)

For higher abstraction, PyDDS defines a default dataspace object.
It can be explicitly instantiated or generated by PyDDS with
default (nameless, partitionless) dataspace automatically.

A Dataspace object can instantiate default subscriber/publisher
objects with default QoS policies automatically on demand.

myDataspace
= pydds.connect dataspace
(“Domain name”, “Partition name”)

dp=myDataspace.get participant()
publisher=myDataspace.get publisher ()

N General DDS API Example:
Manipulating QoS Policy Sets

Instantiate QoS objects and manipulating them using
standard entity calls for QoS policy manipulations

and some SimD-like calls
publisherQos=pydds.PulisherQos ()
publisher.get default publisher gos (publisherQos)
publisherQos.set partition(“Example Partition”)

myTopicQoS = pydds.TopicQos ()
myTopicQoS.set reliable()
myTopicQoS.set transient()
myTopicQoS.set keep last (3)

N Topic Type Definition
Management Examples

» Parsing IDL Files

Getting a hold to the Type Manager
idlFilePath=os.getcwd()+’' /HelloWorld.idl’
ddsTypeManager=pydds.get type namager ()
ddsTypeManager .parseIDL (idfFilePath)

* Or, Constructing a type programmatically

Creating a Type Factory
typebuilder=ddsTypeManager .DDSTypeFatory ([‘module’ ,’1list’],’ topic
name’ , sourceURL)

typebuilder.add primitive (DDSTYPES LONG, ‘userID’)
typebuilder.add primitive (DDSTYPES STRING, ‘message’)
typebuilder.add keys ([‘userID’])

helloWorldMetaClass = typebuilder.complete type ()

* Current status
« Support all primitive types and strings
* Need supports for sequences, arrays, nested structs

A

Using the Topic Type Metaclasses

* Get a hold of a metaclass and inquire about the type
Information

acquire the metaclass object from the type manager
helloWorldType=ddsTypeManager .getTypeByName (‘HelloWorldData: :Msg’)
topicTypeName=helloWorldType.pydds getTypename ()
keyStr=helloWorldType.pydds getKeys() # Comma-separated keys

» All type-specific operations use type metaclasses

Create an object instance of the type
helloWorld = helloWorldType ()

helloWorld.userID=1001
helloWorld.message="‘Hello World’

Create a sequence of HelloWorld Objects
helloWorldSeg=pydds.ObjectSeq(helloWorldType)
helloWorldSeq[0] .userID=1002

helloWorldSeq[0] .message="'Hello again!’

« Similarly, registering the type definition with DDS

dp.register type (helloWorldType, topicTypeName)

\ Type-specific Operation Examples:
Create Topics, Readers, Writers

Creating/Finding a topic in the data space

Last argument specifies the URI of the topic structure
helloTopic = dp.create topic(‘HelloWorld Msg’,6 topicTypeName,
HelloWorldTopicQos)

Creating topic-specific reader/writer:
helloReader = subscriber.create reader (helloTopic, readerQoS)

helloWriter = publisher.create writer (helloTopic, writerQoS)

,\ More Type-specific Operation Examples:
Simple Writing and Reading DDS Samples

creating a sample
helloSample=helloWorldType ()
helloSample.userID=1001
helloSample.message="Wow!"”

publishing the sample

status = helloWriter (helloSample)

Simple read is straightforward
sampleSegq=pydds.ObjectSeq (helloWorldType)
infoSeq = pydds.SampleInfoSeq()
status=helloReader. take (sampleSeq,
infoSeq,
pydds . LENGTH UNLIMITED,
pydds .ANY SAMPLE STATE,
pydds .ANY VIEW STATE,
pydds .ANY INSTANCE STATE)

9
V

Building a WaitSet Example

creating a WaitSet object
myWaitSet=pydds.WaitSet ()

termCond=pydds .GuardCondition ()
newMsgCond=helloReader.create readcondition

(pydds .NOT READ SAMPLE STATE, pydds.ANY VIEW STATE,
pydds .ALIVE INSTANCE STATE)

wrtrCond=helloReader.get statuscondition ()

wrtrCond.set enabled statuses (pydds.LIVELINESS CHANGED STATUS)
myWaitSet.attach condition (termCond)
myWaitSet.attach condition (newMsgCond)
myWaitSet.attach condition (wrtrCond)

Waiting and Acting on Waitsets
condList=pydds.ConditionSeq(3)
timeout=pydds.Duration(3,0)
myWaitSet.wait (condList, timeout)

A Using A WalitSet Example

Waiting and Acting on Waitsets
condList=pydds.ConditionSeq(3)
timeout=pydds.Duration(3,0)
myWaitSet.wait (condList, timeout)
for i in range(len(condList)):
if (termCond.is same condition (condList[i]):
Handle terminate signal
elif (newMsgCond.is same condition(condList[i]):
Handle new sample available
elif (wrtrCond.is_ same condition (condList[i]):
Handle writer joining/leaving
else:
something is wrong...

Cleaning up
myWaitSet.detach condition (wrtrCond)

A

Simple Event-based Listener Examples

» PyDDS provides several “listener objects” for calling Python
callback functions

Getting a hold to a DataReaderlistener
exListener=pydds.DataReaderListener ()

* Implementing Python callbacks as functions

def data_ handler (reader) :
dataSeg=pydds.ObjectSeq(helloWorldType)
infoSeg=pydds.SampleInfoSeq()
reader.read(dataSeq,infoSeq,..) # No need to downcast!!

exListener.set on _data available (data handler)
each callback can be set separately

listenerMask=pydds.DATA AVAILABLE STATUS |
pydds .REQUESTED DEADLINE MISSED

helloReader.set listener (exListener, listenerMask)

A

More Event-based Listener Examples

 Alternative, implement a set of related callbacks as
member functions in a class

class appEventlogic:
def inti (self,more_args):
define and initialize internal states
def deadline missed(self, reader, status):

def liveliness changed(self,reader, status):

def newdata (self, reader):

applicationLogic=appEventLogic (more_ args)

exListener.set on deadline missed(lambda r,s:
applicationLogic.data handler(r,s))

exListener.set on data available (lambda r:

applicationlLogic.newdata(r))

A

Example Applications under Developments

* The Tlying shape example using Pygame

« Show interoperability with other DDS
Implementations

« HPC/multi-physics simulation monitoring/steering
applications

 Tech-X has vast expertise in high-performance,
heterogeneous, parallel, multi-physics simulations

* Python’s fast prototyping capability often helps
Integrating these computational/simulation modules
« Similarly, Python has shown to help GPU/OpenCL

kernel development by handling all the error-prone,
architecture dependent configuration code

 Coupled with DDS, we can provide monitoring and
steering capabillities to real-time data processing

For more information, please visit: http://www.txcorp.com/

http://www.txcorp.com/

A

Conclusion and Future Work

 DDS for Python marries two robust and dynamic
technologies

* Currently, we support most key DDS features over
OpenSplice Community Versions but leverage key
Python dynamic language features

 Will be available soon

* Further work includes:
« Support for most standard API
« Support for compound data types

Please come to see our talk on scientific DDS applications
During OpenSplice’s Users Meeting

A Future Work: Enhancing PyDDS API

* Provide Higher-level of abstractions

+ Better dataspace support

« Configuration can be done outside the code using XML files

« Waitset abstraction — automatic clean up and traversal
dispatch of handlers

« Single handler class support for Listeners
« Allow whole-sale replacement of all listener callbacks

* Enhance Python API

 Borrow more from the new C++ PSM

 Allow tweaking QoS with a list of policy objects
tgos.set ([History.keep last(3), Reliability.Reliable()])

* More Pythonism

* More use of exceptions

* E.g., read operations can return a tuple
(dataSeq, infoSeq) = reader.read(max length, conditions)

