
Data Distribution Service for Python

Applications

Nanbor Wang and Svetlana Shasharina

Tech-X Corporation
www.txcorp.com

Project funded by DOE Grant:
DE-SC0000842 and Tech-X Corporation

http://www.txcorp.com/

Introduction and Goal

• Why Python:
• Python is a popular language due to its robust dynamic scripting

language features and runtime supports
• Rapid prototyping

• Web scripting, XML processing,

• GUI/database applications

• Steering scientific applications

• Many complex applications are based on Python with high-
performance cores implemented using other technologies

• Currently, no standardized DDS Python mapping available and
for developers to use DDS in their Python applications

• Hence the project goal is to
• Implement a Python bridge for DDS to allow Python applications

to participate in DDS data exchanges

• Allow Python developers to interact with DDS data spaces
directly

• Eliminate the need to generate Python wrappers for topic-
specificC/C++ mapping codes

Typical Approach Puts the Bridge Above

the Topic/Application level

Domain Participant

Netwotk

Subscriber Publisher

Writer Reader

TopicWriter TopicReader

Python Bridge

Python Applications

Python Bridge

Data Publishing Logic Data Subscribing Logic

Typical Approach Implies Regeneration of

Glue for Each New Topic

• Use vender provided tools such as “idlpp”, to generate the
C/C++ mappings from type definitions

• Use some wrapper tools such as Boost.Python or SWIG, to
wrap C/C++ code into bridges
• Type/application-specific interfaces

• General DDS API

• Applications use these generated python classes to pub/sub

• Issues:
• Wrappings are type/application-specific

• Requires extra steps outside of Python to generate the
bridge objects

• When topic definition changes, need to re-generate all the
bridging objects and the application codes

• Disruptive to Python’s dynamic/interpretive language
features

• Solutions: A generic Python DDS bridge implementation

Tech-X Implemented an Architecture for a

Generic Python DDS Bridge

Domain Participant

Netwotk

Subscriber Publisher

Writer Reader

TopicWriter TopicReader

pyDDS Services

Python Applications

Type

Meadata

generates

Our Approach Allows Dynamic Generation

of Python Topic Code

• Import PyDDS as a python module into Python
application codes
• We are aware of another PyDDS implementation

from Github: https://github.com/forrestv/pyDDS

• Dynamically generate topic-specific DDS
classes using services provided by PyDDS

• Interact with DDS subsystem directly via PyDDS
and the generated topic-specific objects

• Benefits:
• No need to use tools outside of Python

• No need to re-generate Python bridges when IDL
changes

• More natural Python application development
flow

PyDDS Relies on Boost.Python, Python

and OpenSplice

Key components fall into 3 main categories:

• General DDS API

• Managing various entities and built-in data types
(DomainParticipant, Publisher/Subscriber, QoS,
WaitSet, etc.)

• Type management facility

• Internalizing type definitions

• Generating typed objects

• Type specific API

• DataReaders/DataWriters

• Listeners*

Current Status

• Implementation based on OpenSplice Community
Edition version 5.4.1/5.5.1

• Linux and Windows platforms

• With stock Python installation 2.6 or later

• Boost library is optional for end-users

• Supports for simple topic types using IDL

• All basic types and strings

• Supports for programmatic construct of topic types

• Simple read/write

• WaitSets/Conditions

• Listener callbacks

• Some support for SimD-like abstractions

General DDS Entity Example:

Joining a data domain/partition

A one-stop interface into the pydds global factory methods

import PyDDS;

pydds=PyDDS.PyDDS()

dp=pydds.create_participant(“”) # DomainParticipant Factory

publisher=dp.create_publisher(publisherQos)

For higher abstraction, PyDDS defines a default dataspace object.

It can be explicitly instantiated or generated by PyDDS with

default (nameless, partitionless) dataspace automatically.

A Dataspace object can instantiate default subscriber/publisher
objects with default QoS policies automatically on demand.

myDataspace

 = pydds.connect_dataspace

 (“Domain name”, “Partition name”)

dp=myDataspace.get_participant()

publisher=myDataspace.get_publisher()

General DDS API Example:

Manipulating QoS Policy Sets

Instantiate QoS objects and manipulating them using

standard entity calls for QoS policy manipulations

and some SimD-like calls

publisherQos=pydds.PulisherQos()

publisher.get_default_publisher_qos(publisherQos)

publisherQos.set_partition(“Example Partition”)

myTopicQoS = pydds.TopicQos()

myTopicQoS.set_reliable()

myTopicQoS.set_transient()

myTopicQoS.set_keep_last (3)

Topic Type Definition

Management Examples

• Parsing IDL Files

• Or, Constructing a type programmatically

• Current status
• Support all primitive types and strings

• Need supports for sequences, arrays, nested structs

Getting a hold to the Type Manager

idlFilePath=os.getcwd()+’/HelloWorld.idl’

ddsTypeManager=pydds.get_type_namager()

ddsTypeManager.parseIDL(idfFilePath)

Creating a Type Factory

typebuilder=ddsTypeManager.DDSTypeFatory([‘module’,’list’],’topic

name’, sourceURL)

typebuilder.add_primitive(DDSTYPES_LONG, ‘userID’)

typebuilder.add_primitive(DDSTYPES_STRING, ‘message’)

typebuilder.add_keys([‘userID’])

helloWorldMetaClass = typebuilder.complete_type()

Using the Topic Type Metaclasses

• Get a hold of a metaclass and inquire about the type
information

• All type-specific operations use type metaclasses

• Similarly, registering the type definition with DDS

acquire the metaclass object from the type manager

helloWorldType=ddsTypeManager.getTypeByName(‘HelloWorldData::Msg’)

topicTypeName=helloWorldType.pydds__getTypename()

keyStr=helloWorldType.pydds__getKeys() # Comma-separated keys

Create an object instance of the type

helloWorld = helloWorldType()

helloWorld.userID=1001

helloWorld.message=‘Hello World’

Create a sequence of HelloWorld Objects

helloWorldSeq=pydds.ObjectSeq(helloWorldType)

helloWorldSeq[0].userID=1002

helloWorldSeq[0].message=‘Hello again!’

dp.register_type(helloWorldType, topicTypeName)

Type-specific Operation Examples:

Create Topics, Readers, Writers

Creating/Finding a topic in the data space

Last argument specifies the URI of the topic structure

helloTopic = dp.create_topic(‘HelloWorld_Msg’, topicTypeName,

HelloWorldTopicQos)

Creating topic-specific reader/writer:

helloReader = subscriber.create_reader (helloTopic, readerQoS)

helloWriter = publisher.create_writer (helloTopic, writerQoS)

More Type-specific Operation Examples:

Simple Writing and Reading DDS Samples

creating a sample

helloSample=helloWorldType()

helloSample.userID=1001

helloSample.message=“Wow!”

publishing the sample

status = helloWriter (helloSample)

Simple read is straightforward

sampleSeq=pydds.ObjectSeq(helloWorldType)

infoSeq = pydds.SampleInfoSeq()

status=helloReader.take(sampleSeq,

 infoSeq,

 pydds.LENGTH_UNLIMITED,

 pydds.ANY_SAMPLE_STATE,

 pydds.ANY_VIEW_STATE,

 pydds.ANY_INSTANCE_STATE)

Building a WaitSet Example

creating a WaitSet object

myWaitSet=pydds.WaitSet()

termCond=pydds.GuardCondition()

newMsgCond=helloReader.create_readcondition

 (pydds.NOT_READ_SAMPLE_STATE, pydds.ANY_VIEW_STATE,

 pydds.ALIVE_INSTANCE_STATE)

wrtrCond=helloReader.get_statuscondition()

wrtrCond.set_enabled_statuses(pydds.LIVELINESS_CHANGED_STATUS)

myWaitSet.attach_condition(termCond)

myWaitSet.attach_condition(newMsgCond)

myWaitSet.attach_condition(wrtrCond)

Waiting and Acting on Waitsets

condList=pydds.ConditionSeq(3)

timeout=pydds.Duration(3,0)

myWaitSet.wait(condList, timeout)

Using A WaitSet Example

Waiting and Acting on Waitsets

condList=pydds.ConditionSeq(3)

timeout=pydds.Duration(3,0)

myWaitSet.wait(condList, timeout)

for i in range(len(condList)):

 if (termCond.is_same_condition(condList[i]):

 # Handle terminate signal

 elif (newMsgCond.is_same_condition(condList[i]):

 # Handle new sample available

 elif (wrtrCond.is_same_condition(condList[i]):

 # Handle writer joining/leaving

 else:

 # something is wrong….

Cleaning up

myWaitSet.detach_condition(wrtrCond)

…

Simple Event-based Listener Examples

• PyDDS provides several “listener objects” for calling Python

callback functions

• Implementing Python callbacks as functions

Getting a hold to a DataReaderListener

exListener=pydds.DataReaderListener()

def data_handler(reader):

 dataSeq=pydds.ObjectSeq(helloWorldType)

 infoSeq=pydds.SampleInfoSeq()

 reader.read(dataSeq,infoSeq,…) # No need to downcast!!

 …

exListener.set_on_data_available(data_handler)

each callback can be set separately

listenerMask=pydds.DATA_AVAILABLE_STATUS |

 pydds.REQUESTED_DEADLINE_MISSED

helloReader.set_listener(exListener, listenerMask)

More Event-based Listener Examples

• Alternative, implement a set of related callbacks as

member functions in a class
class appEventLogic:

 def __inti__(self,more_args):

 # define and initialize internal states

 def deadline_missed(self, reader, status):

 …

 def liveliness_changed(self,reader, status):

 …

 def newdata(self,reader):

 …

applicationLogic=appEventLogic(more_args)

exListener.set_on_deadline_missed(lambda r,s:

 applicationLogic.data_handler(r,s))

exListener.set_on_data_available(lambda r:

 applicationLogic.newdata(r))

Example Applications under Developments

• The flying shape example using Pygame
• Show interoperability with other DDS

implementations

• HPC/multi-physics simulation monitoring/steering
applications
• Tech-X has vast expertise in high-performance,

heterogeneous, parallel, multi-physics simulations

• Python’s fast prototyping capability often helps
integrating these computational/simulation modules

• Similarly, Python has shown to help GPU/OpenCL
kernel development by handling all the error-prone,
architecture dependent configuration code

• Coupled with DDS, we can provide monitoring and
steering capabilities to real-time data processing

For more information, please visit: http://www.txcorp.com/

http://www.txcorp.com/

Conclusion and Future Work

• DDS for Python marries two robust and dynamic

technologies

• Currently, we support most key DDS features over

OpenSplice Community Versions but leverage key

Python dynamic language features

• Will be available soon

• Further work includes:

• Support for most standard API

• Support for compound data types

 Please come to see our talk on scientific DDS applications

During OpenSplice’s Users Meeting

Future Work: Enhancing PyDDS API

• Provide Higher-level of abstractions
• Better dataspace support

• Configuration can be done outside the code using XML files

• Waitset abstraction – automatic clean up and traversal
dispatch of handlers

• Single handler class support for Listeners

• Allow whole-sale replacement of all listener callbacks

• Enhance Python API
• Borrow more from the new C++ PSM

• Allow tweaking QoS with a list of policy objects
tqos.set([History.keep_last(3), Reliability.Reliable()])

• More Pythonism

• More use of exceptions

• E.g., read operations can return a tuple
(dataSeq, infoSeq) = reader.read(max_length, conditions)

