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Introduction and Goal 

• Why Python: 
• Python is a popular language due to its robust dynamic scripting 

language features and runtime supports 
• Rapid prototyping 

• Web scripting, XML processing, 

• GUI/database applications 

• Steering scientific applications 

• Many complex applications are based on Python with high-
performance cores implemented using other technologies  

• Currently, no standardized DDS Python mapping available and 
for developers to use DDS in their Python applications 

• Hence the project goal is to 
• Implement a Python bridge for DDS to allow Python applications 

to participate in DDS data exchanges 

• Allow Python developers to interact with DDS data spaces 
directly 

• Eliminate the need to generate Python wrappers for topic-
specificC/C++ mapping codes 



Typical Approach Puts the Bridge Above 

the Topic/Application level 
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Typical Approach Implies Regeneration of 

Glue for Each New Topic 

• Use vender provided tools such as “idlpp”, to generate the 
C/C++ mappings from type definitions 

• Use some wrapper tools such as Boost.Python or SWIG, to 
wrap C/C++ code into bridges 
• Type/application-specific interfaces 

• General DDS API 

• Applications use these generated python classes to pub/sub 

• Issues: 
• Wrappings are type/application-specific 

• Requires extra steps outside of Python to generate the 
bridge objects 

• When topic definition changes, need to re-generate all the 
bridging objects and the application codes 

• Disruptive to Python’s dynamic/interpretive language 
features 

• Solutions: A generic Python DDS bridge implementation 
 

 



Tech-X Implemented an Architecture for a 

Generic Python DDS Bridge 
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Our Approach Allows Dynamic Generation 

of Python Topic Code 

• Import PyDDS as a python module into Python 
application codes 
• We are aware of another PyDDS implementation 

from Github: https://github.com/forrestv/pyDDS 

• Dynamically generate topic-specific DDS 
classes using services provided by PyDDS 

• Interact with DDS subsystem directly via PyDDS 
and the generated topic-specific objects 

• Benefits: 
• No need to use tools outside of Python 

• No need to re-generate Python bridges when IDL 
changes 

• More natural Python application development 
flow 



PyDDS Relies on Boost.Python, Python 

and OpenSplice 

Key components fall into 3 main categories: 

• General DDS API 

• Managing various entities and built-in data types 
(DomainParticipant, Publisher/Subscriber, QoS, 
WaitSet, etc.) 

• Type management facility 

• Internalizing type definitions 

• Generating typed objects 

• Type specific API 

• DataReaders/DataWriters 

• Listeners* 

 



Current Status 

• Implementation based on OpenSplice Community 
Edition version 5.4.1/5.5.1 

• Linux and Windows platforms 

• With stock Python installation 2.6 or later 

• Boost library is optional for end-users 

• Supports for simple topic types using IDL 

• All basic types and strings 

• Supports for programmatic construct of topic types 

• Simple read/write 

• WaitSets/Conditions 

• Listener callbacks 

• Some support for SimD-like abstractions 

 



General DDS Entity Example:  

Joining a data domain/partition 

# A one-stop interface into the pydds global factory methods 

import PyDDS;  

pydds=PyDDS.PyDDS() 

dp=pydds.create_participant(“”) # DomainParticipant Factory 

publisher=dp.create_publisher(publisherQos) 

 

 

# For higher abstraction, PyDDS defines a default dataspace object.   

# It can be explicitly instantiated or generated by PyDDS with 

# default (nameless, partitionless) dataspace automatically. 

# A Dataspace object can instantiate default subscriber/publisher 
# objects with default QoS policies automatically on demand. 

 

myDataspace  

   = pydds.connect_dataspace 

         (“Domain name”, “Partition name”) 

dp=myDataspace.get_participant() 

publisher=myDataspace.get_publisher() 

 



General DDS API Example:  

Manipulating QoS Policy Sets 

# Instantiate QoS objects and manipulating them using 

# standard entity calls for QoS policy manipulations 

# and some SimD-like calls  

publisherQos=pydds.PulisherQos() 

publisher.get_default_publisher_qos(publisherQos) 

publisherQos.set_partition(“Example Partition”) 

 

 

myTopicQoS = pydds.TopicQos() 

myTopicQoS.set_reliable() 

myTopicQoS.set_transient() 

myTopicQoS.set_keep_last (3) 

 



Topic Type Definition  

Management Examples 

• Parsing IDL Files 

 

 

 

• Or, Constructing a type programmatically  

 

 

 

 

• Current status 
• Support all primitive types and strings 

• Need supports for sequences, arrays, nested structs 

# Getting a hold to the Type Manager 

idlFilePath=os.getcwd()+’/HelloWorld.idl’ 

ddsTypeManager=pydds.get_type_namager() 

ddsTypeManager.parseIDL(idfFilePath) 

# Creating a Type Factory 

typebuilder=ddsTypeManager.DDSTypeFatory([‘module’,’list’],’topic

name’, sourceURL) 

typebuilder.add_primitive(DDSTYPES_LONG, ‘userID’) 

typebuilder.add_primitive(DDSTYPES_STRING, ‘message’) 

typebuilder.add_keys([‘userID’]) 

helloWorldMetaClass = typebuilder.complete_type() 



Using the Topic Type Metaclasses 

• Get a hold of a metaclass and inquire about the type 
information 

 

 

 

 

• All type-specific operations use type metaclasses 

 

 

 
 
 
 
 

• Similarly, registering the type definition with DDS 

# acquire the metaclass object from the type manager 

helloWorldType=ddsTypeManager.getTypeByName(‘HelloWorldData::Msg’) 

topicTypeName=helloWorldType.pydds__getTypename() 

keyStr=helloWorldType.pydds__getKeys() # Comma-separated keys 

# Create an object instance of the type 

helloWorld = helloWorldType() 

helloWorld.userID=1001 

helloWorld.message=‘Hello World’ 

# Create a sequence of HelloWorld Objects 

helloWorldSeq=pydds.ObjectSeq(helloWorldType) 

helloWorldSeq[0].userID=1002 

helloWorldSeq[0].message=‘Hello again!’ 

dp.register_type(helloWorldType, topicTypeName) 



Type-specific Operation Examples:  

Create Topics, Readers, Writers 

# Creating/Finding a topic in the data space 

# Last argument specifies the URI of the topic structure 

helloTopic = dp.create_topic(‘HelloWorld_Msg’, topicTypeName, 

HelloWorldTopicQos) 

 

# Creating topic-specific reader/writer: 

helloReader = subscriber.create_reader (helloTopic, readerQoS) 

helloWriter = publisher.create_writer (helloTopic, writerQoS) 

 



More Type-specific Operation Examples:  

Simple Writing and Reading DDS Samples 

# creating a sample 

helloSample=helloWorldType() 

helloSample.userID=1001 

helloSample.message=“Wow!” 

# publishing the sample 

status = helloWriter (helloSample) 

  

# Simple read is straightforward 

sampleSeq=pydds.ObjectSeq(helloWorldType) 

infoSeq = pydds.SampleInfoSeq() 

status=helloReader.take(sampleSeq, 

                        infoSeq, 

        pydds.LENGTH_UNLIMITED, 

        pydds.ANY_SAMPLE_STATE, 

           pydds.ANY_VIEW_STATE, 

                        pydds.ANY_INSTANCE_STATE) 

  



Building a WaitSet Example 

# creating a WaitSet object 

myWaitSet=pydds.WaitSet() 

 

termCond=pydds.GuardCondition() 

newMsgCond=helloReader.create_readcondition 

  (pydds.NOT_READ_SAMPLE_STATE, pydds.ANY_VIEW_STATE, 

   pydds.ALIVE_INSTANCE_STATE) 

wrtrCond=helloReader.get_statuscondition() 

wrtrCond.set_enabled_statuses(pydds.LIVELINESS_CHANGED_STATUS) 

myWaitSet.attach_condition(termCond) 

myWaitSet.attach_condition(newMsgCond) 

myWaitSet.attach_condition(wrtrCond) 

 

# Waiting and Acting on Waitsets 

condList=pydds.ConditionSeq(3) 

timeout=pydds.Duration(3,0) 

myWaitSet.wait(condList, timeout) 



Using A WaitSet Example 

# Waiting and Acting on Waitsets 

condList=pydds.ConditionSeq(3) 

timeout=pydds.Duration(3,0) 

myWaitSet.wait(condList, timeout) 

for i in range(len(condList)): 

 if (termCond.is_same_condition(condList[i]): 

  # Handle terminate signal 

    elif (newMsgCond.is_same_condition(condList[i]): 

  # Handle new sample available 

 elif (wrtrCond.is_same_condition(condList[i]): 

  # Handle writer joining/leaving  

 else: 

  # something is wrong…. 

 

# Cleaning up  

myWaitSet.detach_condition(wrtrCond) 

… 



Simple Event-based Listener Examples 

• PyDDS provides several “listener objects” for calling Python 

callback functions 

 

 

• Implementing Python callbacks as functions 

 

 

 

# Getting a hold to a DataReaderListener 

exListener=pydds.DataReaderListener() 

def data_handler(reader): 

 dataSeq=pydds.ObjectSeq(helloWorldType) 

 infoSeq=pydds.SampleInfoSeq() 

 reader.read(dataSeq,infoSeq,…) # No need to downcast!! 

 … 

exListener.set_on_data_available(data_handler) 

# each callback can be set separately  

listenerMask=pydds.DATA_AVAILABLE_STATUS |  

             pydds.REQUESTED_DEADLINE_MISSED 

helloReader.set_listener(exListener, listenerMask) 



More Event-based Listener Examples 

• Alternative, implement a set of related callbacks as 

member functions in a class 
class appEventLogic: 

 def __inti__(self,more_args): 

  # define and initialize internal states 

 def deadline_missed(self, reader, status): 

  … 

 def liveliness_changed(self,reader, status): 

  … 

 def newdata(self,reader): 

  … 

 

applicationLogic=appEventLogic(more_args) 

exListener.set_on_deadline_missed(lambda r,s:  

   applicationLogic.data_handler(r,s)) 

exListener.set_on_data_available(lambda r: 

           applicationLogic.newdata(r)) 



Example Applications under Developments 

• The flying shape example using Pygame 
• Show interoperability with other DDS 

implementations 

• HPC/multi-physics simulation monitoring/steering 
applications 
• Tech-X has vast expertise in high-performance, 

heterogeneous, parallel, multi-physics simulations 

• Python’s fast prototyping capability often helps 
integrating these computational/simulation modules 

• Similarly, Python has shown to help GPU/OpenCL 
kernel development by handling all the error-prone, 
architecture dependent configuration code 

• Coupled with DDS, we can provide monitoring and 
steering capabilities to real-time data processing 

For more information, please visit: http://www.txcorp.com/ 

http://www.txcorp.com/


Conclusion and Future Work 

• DDS for Python marries two robust and dynamic 

technologies 

• Currently, we support most key DDS features over 

OpenSplice Community Versions but leverage key 

Python dynamic language features 

• Will be available soon  

• Further work includes: 

• Support for most standard API 

• Support for compound data types 

 

 Please come to see our talk on scientific DDS applications 

During OpenSplice’s Users Meeting 



Future Work: Enhancing PyDDS API 

• Provide Higher-level of abstractions 
• Better dataspace support  

• Configuration can be done outside the code using XML files 

• Waitset abstraction – automatic clean up and traversal 
dispatch of handlers 

• Single handler class support for Listeners 

• Allow whole-sale replacement of all listener callbacks 

• Enhance Python API  
• Borrow more from the new C++ PSM 

• Allow tweaking QoS with a list of policy objects 
tqos.set([History.keep_last(3), Reliability.Reliable()]) 

• More Pythonism 

• More use of exceptions 

• E.g., read operations can return a tuple 
(dataSeq, infoSeq) = reader.read(max_length, conditions) 


