Model Driven,
Component Based
Development for CBDDS

THE VALUE OF PERFORMANCE.
NORTHROFP GRUMMAN

OMG DDS Information Day
March 20, 2013

Mark Hayman
Consulting Systems Architect
Northrop Grumman Corporation

Component Based DDS (CBDDYS) NORTHROP GRUMMAN
Full Application Framework Support for DDS Middleware —

« CBDDS is a commercial term for the comprehensive, integrated suite of the following
seven OMG open standards

— LwCCM?, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C?

« Supports architecture development at a higher level of abstraction
— On a more comprehensive application vs. messaging DRE software framework

* Encapsulation of event queue/dispatch, threading model, boilerplate code app
lifecycle management, extensions and connection management in a “container”

* CCM Generic Interaction Support (GIS) encapsulates DDS or any other middleware
functionality inside a “connector” with APlIs defined by local IDL interfaces

« DDS4CCM APIs for DDS access are middleware agnostic and vendor independent

« CBDDS extends DDS to fill in the holes needed to define a complex, full featured
DRE architecture with open standard vs. custom solutions

Application Components Software Framework Foundation Options
Possible Application Framework - Run-Time 1) CBDDS Application Framework
Middleware : :
Messaging Framework 2) DDS Messaging Framework
Framework
Sub-Layers OS Abstraction & Utilities Framework 3) OS Level Framework
0OS, Comms, Network Stack (1) Most comprehensive software
Distributed, Real-time & Embedded (DRE) Processing HW Environment framework ch0|_ce, embodle_s the hlghest
number of architecture quality attributes
LLWCCM: Lightweight CORBA Component Model (3) Simplest software framework choice, embodies

2D&C: Deployment and Configuration of Component-based Distributed Applications the least number of architecture quality attributes

Why Are We Using CBDDS? NORTHROP GRUMMAN
It Addresses All Five of Our Guiding Architectural Tenets — am—

« We have adopted CBDDS as our application = : .
framework technology of choice to meet a o Guéd'er‘r?Aécrﬁi*t‘étchf:ﬂ OTSif;ets-
larger set of goals and requirements > y

e MDA Model Driven Architecture
— CBDDS addresses all five architectural tenets e CBA Component Based Architecture
_ e SOA Service Oriented Architecture
« DDS by itself only fully addresses two of our «EDA Event Driven Architecture (DOA)

five guiding tenets (OA & EDA)
— Future OMG RPC4DDS spec anticipated to add SOA support
— New MDA tooling is much more useful for CBDDS, but can help DDS-only users as well

» High performance not compromised to improve modularity, reuse and
portability, as well as functionality, scalability and time/cost of development

— The integrated CBDDS solution is designed to target distributed, real-time & embedded
(DRE) operational technology (OT) domains

— Insignificant pub-sub run-time overhead — run-time performance the same as DDS

» Threading model encapsulation adds ~1-2% overhead, but most proprietary
frameworks incur that too unless they do all their work in DDS Reader threads

— Collocated components using request-reply with “local” IDL interfaces also offer very high
performance (IDL “interface” definitions become virtual function calls)

« CBDDS adds structure, which is the very definition of architecture
— MDA tools leverage this structure, and component based development (CBD) principles

Focus of this presentation

CBDDS MDA Tooling Development History NORTHAOE CRUMMAN.

« NGC! has been helping the OT community develop CBDDS technology since 2008

— Many customer & NGC funded sponsorships of OSS/commercial middleware implementations and MDE tooling

« Early recognition: MDA tooling for DDS in general was lacking for architecture & design
— In 2008-2009 time frame, DDS specific tooling mostly limited to run-time debug & integration

* Initial efforts began with the CoSMIC GME-based research tool from Vanderbilt ISIS
— CoSMIC already supported CCM and D&C artifact generation, but had no DDS support
— Leveraged expertise of Dr. James Hill at IUPUI and Vanderbilt ISIS to improve it
+ Added DDS4CCM, AMI4CCM & improved D&C support to CoSMIC — still available
— Established tool use for CBDDS as a viable, desirable and necessary approach (D&C CDP files are complex)

« Soon looked toward UML-based, commercially supported alternatives
— Easier to develop a fully integrated, MDA-driven, soup-to-nuts systems/software engineering approach
» SysML UML profile for systems architecture
« CBDDS UML profile for component-level software architecture supporting a CBD? process
» Vanilla UML for class-level, intra-component software design & implementation
— Added support for CBDDS architecture/design, rather than just deployment planning (primary CoSMIC strength)

« Began dual development efforts with Zeligsoft (now PrismTech) and Atego in 2009
— Zeligsoft already proficient in CBD for its SDR products, Atego was our sector’s enterprise UML tool vendor
— CoSMIC generated artifacts and research results used as gold standard reference for both efforts
— Today we have two capable commercial products available to support OMG CBDDS and DDS open standards

INGC: Northrop Grumman Corporation
2CBD: Component Based Development (process)

MDA Tools are Available to Support CBD for NORTHROP CRUMMAN
CBDDS and Auto-Generation of Critical Artifacts

Fle Edt Vew Took Dagram Window Help _ex
DF sBRY XIo 8 - BL&l &
@ o Qo= o

EE G-

« Component Based Architecture (CBA)

Packages v # X [# Camerascheduler_asm_disg % [3 SurveillanceProcessor_asm ... X [[38 artGallery_diag X -x

= T 4 » captured as a PIM
@] +ACS Profile {isAssembly}
(] +Publisher Source Ttems SurveillanceProcessor_asm

B o sz rpcosseomeseson @G * Maps to a CBDDS IDL and D&C PSM

GPS_Sub
00 +artGalery L [StateControlFacet
oy o< TargetsPub {isAssembly} B EarD A

el » Key auto-generated OA artifacts drive

(0 +SurveilanceProcessor_asm StatecontrolFacet

T 3B Womoo o v & the overall process (IDL 3.5, D&C 4.0)

=] +CameraScheduler_asm
1 @< {Hcamerac ST

-] +Camerascheduler_asm
#1-§] +5urveilancePracessor_asm
-] +ArtGallery
B0 +components
£ +AGControl
(0 +5P_Control_comp

TargetsSub GimbalControlRecept

CC_StatusPub

0] +AGSP
-0 +doc ‘%] Current Work: e ez - - eillanceP i eillancef " eillanceF fasm| diag - Rational ® Software Arcl (=) (0] |3
’»!C.Jgnvls File Edit Diagram Navigate Search Run Project Modeling SNATools Window Help L
=00 +AGsp
G- +HanGallery ImagesS: TargetsSub ExtCommandsFacet [mifd (SN 3 | 5l Q- | 9~ &~ 7 | o DDS4cCM| EC/C++ GiiModeling
(] +25urveillnceProcessor o — = =
-0 +3CameraModes Sy | AR PLUMing CN cls c|B 1 —v Av s B [v Zav ="
@0 +Camera
= (1 +GimbalGPS SKYE . | [Project Explorer 3 B & % ¥ <8 [ArtcalleryContext_diag 12 SurveillanceProcessor_asm_diag 3 =8
51 (@ +GG_Status_conn oot - = - — —
(g +GPS_conn = < 3 ArtGalleryModel [Mode! trunk/z [| ¢]SurveillanceProcessor_asm & Palette b
-5 +66_status_msg b (2 Diagrams o s magenio BT UnprocessedimagesSub & Unproce T ¢ o
0 3 +eps. - o) & CamershvaiatieSun
i ? iz . SubsystemstatusSut SRR & < g Models ® 2 Tergetshd 13 S .| | @ umL common
. 3266 2/14/13 12:47 PM hay =
9 00 +ightsensor S v EgArGallery 3266 2/14/13 12:47 PM hay s pp— & Assembly 3
2 j ::otmnsensnv v Eaassemblies ~ & SchacleRequestRecopt | g | & GmbaControRecept i A Connection
® ointClickttode b £ Deployment = Targetssut - . 5 cam S
@ o ConnectorStatusListenerC...
e - = B3 SurveillanceProcessor_asm Systembanager camp | @) = CamersContoRecsst — 2 Loy
=188 +I0L Profile i £ é = @ Interface Port
1 +5ystem E b ¢ Events k
. STE & CCMPart
[Dipackeces [@[F[| @ %[@) KT} | b £ CameraModes_asm g ' Dataspace
Output. Sk b B3 CameraScheduler_asm !
4 i = st| || (= Target Structure @
- - - b 3 doc & SysmemStatuzpub ¢ [T som .
Artisan Studio IDL Profile P st s G5 .]~ S
b £]SurveillanceProcessor asm = M- = preemmanest o[5 SiateContralfacet o o =
. b | - 3 lor—=conmracet oy wsonconromtge oy ¢, = Excommerastecert | @ | * T | [o osetaniobace O Comeasediecan” gy £ Cmeneniiesn) & Node Instance
AIG emimagespu E : 1
U M L'based CBDDS DESIQH & » gms:”: e ?T ‘T - : a ctetontofacet g L L) & Interconnect Instance
= StenTagete {5 = SateControace | P . Bridoe Instance
D I t Pl - t | 3 ArtGalleryContext_diag S) [9
eployment Planning too) e SO, | e - .
= SystemStatusSu
B2 ports - - 1 J
] : 2 v @s5b | = AnCorioRec
B fal] 7| & oupue v HAGSP a8 o Sy = e]
For Help, press F1 b B3 1ArGallery & SubsystemStatuspus | HSManager comp |Gy onroeeet Lo| o setontoRatet e oo comp | 1 S =
. a g [IS— : = 66 Satasin =
= B3 2surveillanceProcessor)2 AurSensorStatusS] ey
b o AuxSersorStatus conn g = P2 L u Ao) B s sasn
- Q= s s
. . . . b B3 HSManager_defn
* Integration with Eclipse IDE in b 23 Subsystemstatas_comn e
P £2 SystemStatus_conn 1 e
our Scalable Node Architecture b ‘S AvconwoLo i ' oo
1 i 1 Properties 52 ¥ Tasks| &l Console| [Problems| €] Error Log | LJll Bookmarks 5 = .= 0
P 'H ExtCommands_obj
(SNA) SDK offers ability to very « <ports GPS. sub Zeligsoft CX for CBDDS
b ‘E AuxSensorStatus_msg
quickly build & deploy initial DRE b ElAuSensorSiaus msgseq | || Dosacc___ teme:
b {3 SubsystemsStatus_msg General Has CSL: =]
“ H ” . .
b i SubsystemsStatus_msgSe: Interfaces D | Pl |
executable architecture sy -msgses s Conjugated: eployment Planning too
b {0 SystemStatus_msg Stereotypes
Skeletons W/O Wr|t| ng a Sl n gle b g Systemstatus_msgSeq Documentation | portrype : T ArtGallery::ports::AGSP::GimbalGPS:-GPS_conn:DDS_Listen ¥ 2 o
b £33CameraModes [+ Constraints
line of code e — > -
5 g¢ §f © <Port>GPS_Sub Writable Autosized

Component Based Software Lifecycle Process wormmor causmoan
Agile, Iterative Six-Step Process Driven by Standard File Artifacts —

Tool-Centric CBD Software Lifecycle Process View

« Zeligsoft CX « Zeligsoft CX
» Artisan Studio * Eclipse * Artisan Studio

Deployment
Planning Tool

=) Design Tool > IDE Tool

Fot |t

Agile process iterations early & often, incrementally building up from an early executable “skeleton” architecture

Architecture
& System
Design
System
Integration,
Test &
Verification

gystem Software Component
. Design & (S O Component Component Compop s Deployment, -
C Interface . . Packaging & . >
omponent Desian Software Design Implementation Assembl Integration &
Definition 9 y Reuse
SNA CBD Software Lifecycle Process

O]

~ Component_comp

&

Key
CPP, HJ CDP J CDD J Artifacts
7
» IDE: Integrated Development Environment + SNA: Scalable Node Architecture + CDP: Component Deployment Plan
* CBD: Component Based Development « IDL: Interface Definition Language (OMG) + CDD: Component Domain Descriptor

OMG IDL Defines All CBDDS Elements

Components, Connectors, Messages, Interfaces & Basic Def’s

IDL 3.5 File
Taxonomy
Supported by
MDA Tools

5 Standard File
Types

Use of optional
file extensions
enables “smart”
build by an SDK

*_defn.idl files are
#included by *_msg.idl
& *_obj.idl files
—>

NORTHROFP GRUMMAN

*_msg.idl files are #included by *_conn.idl files

*_msg.idl File

\ 4 | X erann idl Fil
* _conn.idl File

*_obj.idl File

IDL “struct”
Defines a pub-sub
port (data type)

*_defn.idl File

IDL primitive
definitions
Common includes

——- = Defined By

_
-
_
_

*_conn.idl & *_obj.idl
files are #included by
*_comp.idl files

IDL offers vendor, programming language & middleware independent format

v

| * eramn idl Fil

*_comp.idl File |

IDL “component”
Defines a
component 7

* OMG standards exist for IDL to C++ or C++11 mappings, IDL to Java, IDL to Python, etc.

A given middleware standard implementation provides an IDL to language compiler

* Model generated IDL -> IDL compiler generated source = large percentage of design code base

* NGC’s SNA SDK currently uses tao_idl and rtiddsgen IDL compilers (others in future)
File extensions not part of tools — NGC SDK conventions/suggestions only

« Modular structure leveraged to auto-generate makefiles for entire component-based projects
* Run CCM IDL compiler on all types, only run DDS IDL compiler on *_defn.idl & *_msg.idl files

« Supports component/port reuse & modularity (vs. all IDL in one project IDL file)
 IDL import & export feature of all CBDDS MDA tools enables basic model interchange using IDL

MDA tool modular IDL 3.5 convention offers many advantages & important features

IDL templated IDL “interface”
“module” Defines a client-
\\\ Defines a connector \\ service port
_\\\ ‘\ //\’\/
—_—_—_ e — AN
I \ v\ _\\ - AN
\ \\ \ \\
A S L] /
——-t /
\ - | /
| N “TT=n /
= I \\ \\\ Test? comp -’P/
D- @ D = €
\
\v
N —————————

Examples of Modular IDL 3.5

Important for Modularity, Reuse & Tool Interoperability

// File: EX Common_defn.idl
// Example definitions package
// Well-defined, using OMG IDL

module EX
{
const long TEST CONSTANT = 9876;
typedef double SystemTime;
enum ReturnStatus {
SUCCESS,
FAILURE
}i
typedef string<512> BoundString;
// more...

};

N types from a single UML package

// Example pub-sub message /
// Well-defined, using OMG IDL 4

#include “EX Common_defn.idl”
#pragma ndds typesupport
“EX PubSub_msgSupport.h"

module EX
{
struct PubSub msg
{
SystemMode modeID;
JobID_t jobID; //@key
StatusEnum status;
ErrorEnum errorVal;
SystemTime startTime;
unsigned long long duration;
short currPicCount;
boolean valid;
}; //@top-level true

};

ONE struct/union per file, any/all required
types #included from *_defn.idl file(s)

8

NORTHROFP GRUMMAN

* Modeling & generation of
IDL for definitions & DDS
messages also useful to
DDS-only users

// File: EX PubSub_conn.idl
// Example module instantiation of one or more connectors
// Well-defined, using OMG IDL 3.5

#include <Components.idl>
#include <ccm dds.idl>

// File: EX PubSub msg.idl /

@ ~ 7] #include “EX PubSub msg.idl®
P - #pragma ciao lem “EX PubSub_connE.idl"
.
- module AGSP
{
_———— f typedef sequence<PubSub _msg> PubSub_msgSeq;
/ S module CCM DDS::Typed<PubSub msg, PubSub msgSeq> PubSub_conn;
/ }:
/ RS
Test2 comp ~o - — -
@\ S ONE “connector” module instantiation per file
’ \ S <
N\
N\

// File: EX ControlService obj.idl
// Example request-reply service
// Well-defined, using OMG IDL

#include “EX Common defn.idl”
#pragma ciao lem
“EX ControlService objE.id1l"™

module EX
{
interface ControlService_ obj
{
ReturnStatus changeState (
in SystemState newState) ;
SystemState getCurrentState();
ReturnStatus setMode (
in SystemMode newMode) ;
SystemMode getCurrentMode () ;
boolean setStateTimeout (
inout TimeStruct timer,
in long timeValue) ;
};
}i

// File: EX Test2 comp.idl
// Example component definition
// Well-defined, using OMG IDL 3.5

#include <Components.idl>

#include “EX PubSub_conn.idl"“

#include “EX MyMsg conn.idl™

#include “EX ControlService_obj.idl"
#pragma ciao lem “EX Component compE.idl"

module EX
{

component Test2_comp

{
attribute string myProp;

uses ControlService obj ClientRecept;

port PubSub_conn: :DDS_Write ExamplePub;
port MyMsg conn::DDS_Listen MyMsgSub;

ONE interface per file, any/all required
types #included from *_defn.idl file(s)

ONE component per file, plus optional home

Model Element to CBDDS Artifact Mappings NORTHAOE CRUMMAN.

» Each of the model elements in this table creates a corresponding artifact in
a source project file system on generation

* Models can contain other types and elements as desired, but only the
uniguely stereotyped elements in this table will generate CBDDS artifacts

* File system directory

* Two results:

D&C Target Domain (CDD)

D&C

Model Element that Generates a| Artisan |Zeligsoft CX * IDL “module” (namespace) block
File System Artifact Studio Icon Icon inside generated IDL files of children
File{ Package (Directory) 0 P * Prefix on generated IDL filenames
- —
System IDL Module (k &
y - odule (keyword) - = *_comp.idl File
IDL Component (type, mono impl) 2] £ *_obj.idl File
IDL Interface g = ~
IDL < - " il Fil
IDL Connector (pkg stereotype) a f _conn.idl File ——
*_msg.idl File
IDL Message (msg, sequence) = ‘98
IDL Definitions | *_defn.idl File
o
(5]

=
@ 7
\ *.cdd File

*.cdp File

— 0

D&C Deployment Plan (CDP)

Module/Package View

CX Project Explorer & Studio Package Browser

Zeligsoft CX for CBDDS

=

[Project Explorer £2 = 3» ¥ =0

g ArtGallery 2t
b Ezassemblies
¥ Eacomponents
b T AGControl
v] AGSP
Com pon ent P B2 AuxSensorController_comp
~ B CameraControlAdapter_comp
Type
v E3src
£]CameraControlAdapter_comp
P B CameraDataAdapter_comp
P B3 Gimbal_GPS_Adapter_comp
P B3 HSManager_comp
P B3 HumanTrackerMode_comp
Packag €S b miImageDiffMode_comp
become dirs b & LightSensorAdapter_comp
on source P ExMissionControlBridge_comp
n I'Oj ect P B2 ModeUtilities_comp
. P B3 MotionSensorAdapter_comp
generation £
P B3 PointClickMode
P B3 Scheduler
SystemManager_comp

assemblies

components

P B3 doc

v Eaports —~=
i B
P Ea 1ArtGallery

Definitions < E3 2SurveillanceProcessor
Package Type b e3Auxsensorstatus_conn
1 HSManager_defn
Connector) E2 SubsystemStatus_conn
Type P B3 SystemStatus_conn
b 5 AuxControl_obj
b 'H ExtCommands_obj
Interface __— g stateControl_obj
Type b ¢ AuxSensorStatus_msg
b & AuxSensorStatus_msgSeq
Mess age / {X] SubsystemsStatus_msg
Tvpe P " SubsystemStatus_msgSeq
yp b ¢Z]SystemStatus_msg [~

10 o i D)

* Project static architecture view in model

used to define and generate project
source tree

— Initially populated with modular IDL 3.5

and D&C 4.0 descriptor files

— Developers add business logic classes to

initial component executor stubs

Integrated soup-to-nuts SDK offers
architecture, design, eventual coding &
implementation, deployment planning,

launch & debug in a common tool
— Integrated steps include:

— Entire process can be completed in just a
few minutes for a small set of components

For initial executable skeleton architecture w/o
code added to “your code goes here” callback
stubs

Define components, connectors & ports

Create instances & connections in an assembly

Create a domain & basic deployment plan

(including component server process instances

as needed for deployment)

Generate IDL and D&C artifacts
Auto-gen makefiles and build project
Compile (IDL & source in one compile)
Launch executable architecture

Test & Debug

NORTHROFP GRUMMAN

Artisan Studio IDL Profile

: Packages v X
ERF ot Galler,
(] +ACS Profile
-] +Publisher Source Items
-] +Custom Styles v2
- +Externals
= +artGallery
@-(+assemblies

=1 +components components
- @1 +AGControl

Gallery i

assembliesj

= +aGsP
Com p onent -] +auxSensorController_comp
Ty pe . e -_f—CameraControIAdapter_comp
; CoE- sre

i 3 E] +CameraControladapter_comp
-] +CameraDataAdapter_comp
-] +Gimbal_GPS_adapter_comp

Packages (] +HSManager_comp
become dirs -] +HumanTrackerMode_comp
-] +ImageDiffMode_comp
on spurce {1 +LightSensoradapter_comp
pra j ect -] +MissionControlBridge_comp
genefrat ion -] +ModeUtilities_comp

-] +MotionSensorAdapter_comp
‘ -] +PointClickMode
4] +Scheduler
| -] +SystemManager_comp
(] +doc

= D +ports
= +aGsp

Def' ’]IthﬂS & {:_] +14rtGallery

Packad ge Typ e =1 +25urveillanceProcessor

=+ {_@ +AuxSensorStatus_conn
] +HSManager_defn

Connegctor W&}, +SubsystemStatus_conn

TyF e - (@ +5ystemStatus_conn
| ﬂ +AuxSensorStatus_msg
PR ﬂ +5ubsystemStatus_msg
M €3S ag € [+ E +SystemStatus_msg s
T) pe @@ +AuxControl_obj
By @ +ExtCommands_obj
7 [+ ? +5tateControl_obj
Interface 4+3CameraModes
Ty pe -] +Camera
- +GimbalGPs ~|

Craiors [AE S [B@)

Component Assembly Hierarchy Example

Artisan Studio IDL Profile

NORTHROFP GRUMMAN

{isAssembly}
SurveillanceProcessor_asm

ImagesPub
LKA

Imagess%

TargetsPub =
KH

ScheduleRequestRecep

{isAssembly}
CameratModes_asm

Unprocessedimagessub 9

3 k<

GPS_Sub

ggameraAvailableSub

_StateControlFacet |

”__@ CameraControlRecept

A GimbalControlRecept
ScheduleStatusSub

fo g

UnprocessedimagesPub {

StateControlFacet
CameraDataAdapter_comp

TargetsSub E%l % |‘<¥Ia‘|Gimba|CDntrolRecept

Systar
Ll TargetsSub ExtCommandsFacet |5.2|

SystemimagesHu

KH

SystemTargetsPub

CantrolFacet mp

= |

Systemtdanager_comp

mStatusPub GPS_Sub

CameraControlRece{ = StateControlRecept

L

CameraControlFacet

StateControlFacet
CameraControlidapter_comp
CameraAvailablePub
CC_StatusPub

Q_SchedulestatusSub
ScheduleStatusSup2

ExtCommandsReceft ‘

@ \?[Auxs:enso rStatussub

ModeControlRecept
@ =1 ModeControlF acet

{isAssembly}
CameraScheduler_asm

RSI éScheduleStatusPub

ScheduleRequestFag@/GpS 20

@

@Eameraﬂ\vailable i q]

StateControlFace

GimbalControlF acet

GPS_Pub

Gimbal_GPS_Adapter_comp
StateControlFacet

GG_StatusPub

AlUxsensorstatussub

SubsystemaatusSuW

ubsystemnStatussub2

-
MissionControlBridge_co--F‘ StateControlFacet
o=

SystemStatusSuhlgé‘ |§5]]%StateControlFacet

GPS_Sub 3 |

KK SubsystemStatusPub
HSManager_comp

GPS sm{é‘ g yé\ éLS StatusSub

CC| StatusSub GG_ StatusSub

AR B AuxSensorStatusPub v
AuxSensorstatussubz AuxSensorController_comp

E AuxControlRecept

AuxControlFacet

StateControlFacet
LightSensorAdapter_comp

LS_StatusPub

StateControlF acet

o=

@ MS_StatUSSu%

N i m%m@

AuxControlFacet $:
StateCaontrolFacet
MotionSensorAdapter_comp
MS_StatusPub

« A formal Architecture Description Language (ADL) for CBDDS enables indirect auto-generation (IDL -> compiles to a source
language) of a large percentage of the operational software for a software intensive system

» The structural “boxes and lines” on block diagrams, as defined in Component & Connector (C&C) style views

CBDDS graphical notations and component diagrams are proving invaluable at NGC for cross-program understanding & sharing

Component Assembly Hierarchy Example
Artisan Studio IDL Profile

NORTHROFP GRUMMAN

{isAssembly}

SurveillanceProcessor_asm

ImagesPub
LKA

TargetsPub G

{isAssembly}
Cameratodes_asm

UnprocessedlmagesSub . - @
GPS_Sub B

CameraAvailableSup

UnprocessedimagesPub {

StateControlFacet
CameraDataAdapter_comp

CameraControlRecgpt

UleRequestRecep A GimbalControlRecept
duleStatusSub
{isAssembly} ®
CameraModes _asm
ImagesPub < \podieckalenigiusiiubl
GPS_Sub
& {isAssembly} K< {isAssembly} GE: it = 2
PointClickMode_asm Kl HumanTrackerMode_asm1 K Sheraaval B e o ot b
L argetsPutin, embly}
Systermnimag : = OigieratafitdiRecent.ro cortrolF ace
K§<_ 1Tf K}FW k lg?{ lé%[ﬁsi tatussub
SystemTarge
ControlFace x
. (< yé\]é\ LS_StatusSub
Subsyst e 5G_Statuss — AuxControlRecept
@ {isAssembly} {isAssembly} @< mi @
i : A I StateControlFacet =
R ImageDifiMode_asm s HumanTi _asm2 fd<= EatusPub o= =
,ontrouer_;conip MS_StatusSu @
—— <

xsﬂsr” A

CameraControladapter_cormp

CameraControlFacet
StateControlFacet

CameraAvailablePub
CC_StatusPub

GimbalControlFacet

GPS_Puh :
Gimbal_GPS_Adapter_comp
StateControlFacet r
GG_StatusPub

o

AuxControlFacet

StateControlFacet
LightSensorAdapter_comp

LS_StatusPub

AuxControlFacet {
StateCantrolFacet
MotionSensorAdapter_comp
MS_StatusPub

ScheduleRequestRecept

12

StateControlFacet

ScheduleStatusSub GimbalControlRecept

Component Assembly Hierarchy Example
Artisan Studio IDL Profile

ImagesPub =g

TargetsPub

GimbalControlRecept
duleStatusSub

ImagesPub

1 avgetsPu!i"

Systemlmag

SystemTargs

ImagesPub g

CaontrolFace

Subsyst

4 PCIP_CmdFacet
(O] ModeutiiitiesFacet

PCPC_StatusRec

PCMM_StatusFacet

J ScheduleStatusSub

SchedueRequwReceptE

>AF
s

GPS_Sub

7 CameraControlRecept

ScheduleStatusSub A GimbalControlRecept

ScheduleRequestRecept

13

StateControlFacet

:gl CameraControlRecept

ScheduleRequestRecept StateControlFacet

ScheduleStatusSub GimbalControlRecept A

ScheduleStatusSub GimbalContralRecept

Component Assembly Hierarchy Example
Zeligsoft CX for CBDDS

NORTHROFP GRUMMAN

£ SurveillanceProcessor_asm

(©]
a

@ ImagesSub

@ ControlFacet

@ ImagesPub |

@ TargetsPub
a

@ TargetsSub

W —

L @ SystemimagesPub

@ SystemTargetsPub
g-—

@ SubsystemStatusSub

—0@0—

a

.v,

TargetsSub

SystemManager_comp

@ StateControlFacet

CameraModes_asm

@ UnprocessedimagesSub

@ UnprocessedimagesPub |

@ CameraAvailableSub

@ CameraControlRecept

@ ScheduleRequestRecept @
]

=

@ CameraControlRecept

AR

@ ScheduleStatusSub

Qg GPS_Sub
<

O

o StateControlFacet

@ GimbalControlRecept

CameraDataAdapter_comtpj

@ CameraAvailablePub |

@ CameraControlFacet |

a CameraContmIAdapter_con:%

(|8
‘ @ CC_StatusPub

@ SystemStatusPub

" eHoHA—AaF

@ ExtCommandsFacet
’ 2] |
ControlBridge_comp @ @ ExtCommandsRecept ‘

@ StateControlFacet

@ [GPS_Sub
@ AuxS)

@ (@]
@‘ @ GimbalControlRecept @ StateControlFacet (‘3
|, @ ScheduleStatusSub L
Q ®

<‘K @ ScheduleStatusSub2

| @ StateControlRecept

@ o StateControlFacet 6
| '

@ B ModeCirolREcept @ GimbalControlFacet !
B @ ScheduleRequestFacet

ensorStatusSub

@ SubsystemStatusSub2

@ SubsystemStatusPub }

@ SystemStatusSub

@ GPS_Sub

—

@ StateControlFacet

e o
O cameraScheduler asm
i B «

@ ScheduleStatusPub

@ ModeControlFacet

oO—

@ CameraAvailableSub

@ GPS_Sub

o
— 2
O

o]

=—da

g

Gimbal_GPS_Adapte r_com:pj

‘ o GG_StatusPub

o StateControlFacet

]
@] LightSensorAdapter comp

@ AuxControlFacet .
@]

HSManager_comp

@ AuxSensorStatusSub ’[=
L9 2
écl LS_StatusPub
@ GPS_Sub @ AuxControlRecept ‘
i - (O R [
Fi

$ @ StateControlFacet] State(_‘gntrclf—'aceté) s m"% & @ CC StatusSub o StateControl aceto S o _con%
- = = J
o A D rSEAISSTE ‘G @ GG_StatusSub @ AuxControlFacet o

&
(: @ AuxSensorStatusSub2

@ AuxSensorStatusPub .

.

., @ LS_StatusSub
Q 25

@ MS_StatusSub

;*'O

Q

4 @ MS_StatusPub

» C&C style Component Assembly diagrams offer a “software schematic” view of your run-time structural architecture
» Shows system run-time composition using standard “software parts”
+ Similar to hardware schematics connecting standard hardware parts

» Connections drawn in an MDA modeling tool are automatically established during the deployment launch phase by the D&C
deployment framework — big time/code savings to developers

14

Component Assembly Hierarchy Example
Zeligsoft CX for CBDDS

TGP CLReLAN

£ | SurveillanceProcessor_asm

(6]

.‘ns

dns
=

15

= ImagesPub

@ TargetsPub L

@ TargetsSub

@ StateControlFacet

asm &

n Sub

1@ Unproc

@ UnprocessedimagesPub,

. @ CameraAvailableSub

gjn GPS_Sub
<

L@ CameraControlRecept

+ é @ GimbalControlRecept

[
.E Cameral:)a':aAuiapter_compa
o StateControlFacet. ' 1
O
| am
@ CameraAvailablePub |
@ CameraC pter_comp
@ CameraControlFacet O'
@ StateControlFacet ('3
i e
—e

@ CC_StatusPub

D12

o~

@ ScheduleRequestRecept

@ ScheduleStatusSub

i |CameraModes_asm
[
ControlFacet -
- B Glmt:al_GPs_Auapter_cmrqnE
plControlFacet |
= —mvaoov-—-or--0]
|
: L @ GPS_Pub L.
PointClickMode asm €| T il
@l gesPub .@ .", -A:é. O
1 2 @ GG_StatusPub
GJ
1 |
©} @7 ControlFacet .. g
@' ’ il Adapter_comp
d xControlFacet
Q ﬂ Q: —“o“ '] an
L | Ljop—— =
L @ LS_StatusPub
eControlFacet, I : 5l
O Moti Adapter_comp
xControlFacet L
= ———0
) E = : L]
i I ImageDiffMode_asm — - | HumanTrackerMode a @ Unproc ib st
L ' Az =70 é : - ac AvailableSub @ MS_StatusPub
f * e
@ TargetsPub (=2 | é ST g | = GPS_Sub
| T i 5)
@ StateControlFacet Oé—‘ O' é) O- @ CameraControlRecept
’ 1
@]f @ GimbalControlRecept
]
s 1 [A

Component Assembly Hierarchy Example

Zeligsoft

CX for CBDDS

TGP CLReLAN

£ | SurveillanceProcessor_asm

Unproc I @ UnprocessedimagesPub [
& ImagesPub ;- 1 @ Unp :
. . _asm .1 (.'.amemDa':aAﬂapter_compE
@ TargetsPub _ - B '
T o StateControlFacet, _
I O' (1]
@ StateControlFacet 2 L
Ol
@ TargetsSub @ CameraAvailablePub | i
1 CameraCi pter_comp
@ CameraControlFacet | .
@ StateControlFacet | |,
O(e
e

i |CameraModes_asm

PointClickMode_asm

4]
n

B
n

0O-@-0

@ TargetsPub g

|
@ StateControlfacet () =—

—O

L

D=—1D

VEe—

8 ———
@ CC_StatusPub

[
ControlFacet '
] Glmbal_GPS_Mapter_compa
plControlFacet '
|
@ GPS_Pub | .
—-“—O;
L gl

@ GG_StatusPub

|] PointClickMode_asm
[@i Pub
= @ Images| 8 a = a |
= = a PC ImageProcessing_comp < @ UnprocessedimagesSub
|2 et
ModeUtilities PCMM_comp ModeUtilities PCPC_comp
el um
s 5 s o~
'@ ModeUtilitiesFacet ‘n R @ PCIP_CmdFacet @ PCPC_StatusRecept
@ ModeUtilitiesRecept @ CameraAvailableSub
£ b @ GPs_sub | & GPS_Sub
@ StateC comp & |
F @ ModeUtilitiesRecept
€] PePe.CmdRecept @ PCPC CmdFacet | 1 pc pictureControl_co im0, = POP CdRecest
&l = = *' @ PCPC_StatusFacet
O; @ PCMM StatusFacet @ PCMM_StatusRecept ‘»‘ ‘O:
2 ' <‘Z & CameraAvailableSub
& YL |4 @ CameraControlRecept @ CameraControlRecept
- < @ ScheduleStatusSub 3 éi @ GimbalControlRecept @ GimbalControlRecept

P, a],

a ScheduleRequestReceth @ ScheduleStatusSub

[@ ScheduleRequestRecept

l, @ ScheduleStatusSub

2]

@ ScheduleRequestRecept @ ScheduleStatusSub

16

17

* Allocation style Domain & Deployment diagrams capture QoS,
config & aspects of system resource utilization for resource

allocation and concurrency

[@) ArtGallery 2

Configure

P @ ArtGalleryDomain
w £ ArtGallery
% SP_Control_comp
~ £ SurveillanceProcessor_asm

£ AuxSensorController_comp
8] AuxSensorStatus_conn
i8] CC_Status_conn
i8] CameraAvailable_conn
4~ CameraControlAdapter_comp
£ CameraDataAdapter_comp

-

£1] CameraModes_asm

£ CameraScheduler_asm

i8] GG_Status_conn

8] GPS_conn

£ Gimbal_GPS_Adapter_comp
£ HSManager_comp

8l Images_conn

-

£¥ LightSensorAdapter_comp

i8] MS_Status_conn

£¥ MissionControlBridge_comp

£ MotionSensorAdapter_comp

8] ScheduleStatus_conn

i8] SubsystemStatus_conn

i SystemManager_comp

8] SystemStatus_conn

i8] Targets_conn

i8] Unprocessedimages_conn
i8] Systemimages_conn

1 Properties £

Deploy

S

A

@) ArtGalleryDomain
< [§ ArtGalleryDomain :: Computerl
v & AuxSensorController_proc
£]ArtGallery :: SurveillancePro
v w CameraControlAdapter_proc
£ ArtGallery :: SurveillancePro
P & CameraDataAdapter_proc
«# CameraScheduler_proc
£ ArtGallery :: SurveillancePro
£] ArtGallery :: SurveillancePro
P« Gimbal_GPS_Adapter_proc
P w4 HSManager_proc
P w# LightSensorAdapter_proc
b
p

4

«# MissionControlBridge_proc
4 MotionSensorAdapter_proc
D % SystemManager_proc
< [§ ArtGalleryDomain :: Computer2
v 4 HumanTrackerMode_procl

£1ArtGallery :: SurveillanceProcessor_asm ::
£] ArtGallery :: SurveillanceProcessor_asm

v w ImageDiffMode_proc

£ ArtGallery :: SurveillanceProcessor_asm
£] ArtGallery :: SurveillanceProcessor_asm ::

< (& ArtGalleryDomain :: Computer3
D & HumanTrackerMode_proc2
P w& PC_ImageProcessing_proc
P w4 PC_ModeManager_proc
D & PC_PictureControl_proc

Domain Diagram & Deployment Plan Editor
Zeligsoft CX for CBDDS

NORTHROFP GRUMMAN

‘ 5] ArtGalleryDomain

‘ @ |

| ControlNode

N

Computerl

o

NarrowbandMessagin

Q|

.

\ =
Computer2 | ‘ Computer3 |
B
|

-

WidebandFabric

@ |

& Tasks | El Console| [2. Problems | €] Error Log| LIl Bookmarks |

CameraModes_asm ::
11 CameraModes_asm ::

11 CameraModes_asm ::
CameraModes_asm ::

Human
Human

Imagel
Imagel

i

&

et v::ﬁ

General Name:

[Ls_status_conn

Model Element: = ArtGallery::assemblies::SurveillanceProcessor_asm::SurveillanceProcessor_asm::LS_Status_conn

)

(<

* A Deployment “diagram”
maps:

» Each component
instance to a
component server
process (+ container)

+ Processes to compute
nodes (OS instances)
defined for a Domain

Domain Diagram & Deployment Plan Editor

Artisan Studio IDL Profile

NORTHROFP GRUMMAN

ﬁi‘ » Each deployment plan starts with a 1) Domain, 2) Top level assembly

Computer?

hostihName = loc

ArtGalleryDomain
=i
ControlNode :
hosthlame = localhost
porthumber = 60073
= | =
Computer1 : Computer2 :
hosthame = localhost hosthame = localhost
porthlumber = 60070 porthlumber = 60071

porthlumber = €

e The Deployment Plan editor in

18

both tools allows users to set
many configurable parameters
post-design, later generated to
a D&C CDP deployment plan

e Per-instance user defined component
attributes, accessible at run-time

e Connector attributes, including topic
names, domain IDs, QoS profiles &
content filter expressions &
parameters to auto-define content
filtered topics

e Component server OS process
attributes, including name, process

priority, and core affinity for real-time

tuning

—Components & Yalues

| Default Value | Overide Value |

= [(O[&vailable Components

= gqu AntGallery
SP_Control_comp
- & SurveillanceProcessor_asm
AuxS ensorController_comp
+ @ AusSensorStatus_conn
+ . Cameradvailable_conn
CameraControl&dapter_comp
CameraD ataddapter_comp
‘ﬁ, CameraModes_asm
&4 CameraScheduler_asm
@ CC_Status_conn
@ GG_Status_conn
Gimbal_GPS_Adapter_comp
. GPS_conn
HSManager_comp
. Images_conn
LightSensor&dapter_comp
® L5_Status_conn
MissionControlBridge_comp
& MolianSensorAdaptet_comp
& DefaultSensitivity
+ . MS_Status_conn
& . ScheduleStatus_conn
+ .SubsyslemStatus_conn
E Systemb anager_comp
+ @ SystemStatus_conn
+ @ Tagets_conn
= .Unprocessedlmages_conn
+ @ consumer_filter
& domain_id
Gkey_fields
& max_sample_size
& psat_config
& qos_profile
& topic_name
+ . Systemlmages_conn
+ . SystemT argets_conn
= [Available Processes
+ AuxSensorConlroIIer_proc
+ CameraContlolAdaplel_proc
+ CameraDalaAdapter_proc
+ CameraScheduIer_ploc
+ [Gimbal GPS Adapter proc

o

ER R R

25 50
10
20000 30000
SNAHSNA_D...
AGSP:Unpro...

(contains component/connector instances & connections), and 3) a set
of process instances created for the plan

@Deployment Plan Editor []

i~ Plan Overview
Deployment l Locality Constraints l

=] Computerl
AuxSensorController_proc
CameraControlddapter_proc
[# CameraD atatdapter_proc
B CameraScheduler_proc
-l ArtGallery
=gl SurveilanceProcessor_asm
-l CameraScheduler_asm
SchedulerServer_comp
SchedulerStatus_comp
Gimbal_GPS_Adapter_proc
El HSManager_proc
-l ArtGallery
=] nag SurveillanceProcessor_asm
23 HSManager_comp
[# Light5 ensorddapter_proc
-{@ MissionControlBridge_proc
ll MotionSensorédapter_proc
Systemianager_proc
=] Computer2
HumanTrackerMode_procl
=] ImageDiffMode_proc
gl ArtGallery
=} SurveilanceProcessor_asm
-l CameraModes_asm
=] .ﬂ, ImageDiffMode_asm
ImageDiffMode_comp
ModeUtilities_comp

= Computer3
HumanTrackerMode_proc2
PC_ImageProcessing_proc
3] PC_ModeManager_proc
&3} PC_PictureControl_proc

=] ControlNode
= SP_Control_proc

=-dh ArtGallery
SP_Control_comp

Find

0K Cancel I

CBDDS Tools Allow Domain Customization NORTHROP GRUMMAN
Custom GIS Connectors Built and In Service at NGC —

Publish Subscribe Attachment Transfer (PSAT) connector

— High performance, general purpose & location independent pub-sub transport of
wideband data with DDS signaling

Signal Processing Data Model (SPDM) connector

— PSAT extension to support transport of OMG VSIPL++ or VSIPL! blocks and views
for signal and image processing applications

Application Instrumentation (Al) connector

— CBDDS PSM simplification of the DDS PSM, providing a very easy to use
encapsulation of in-development OMG Al standard for binary data instrumentation

Discovery connector

— Directory services access to support dynamic, run-time registration,
discovery/lookup and binding of component service endpoints and topic data

GIS connectors can be built and deployed for team use by users w/o tool vendor support

19 LVSIPL = Vector, Signal & Image Processing Library

Support for User-Defined Connectors
Example Showing Basic and Extended Port Types & Connectors

NORTHROFP GRUMMAN

i |Compute_asm
XFormAl_cor?ﬁ] ﬁlterT_com;::'] @ OpL_comp!-‘:l XFonnB_com'ﬁr“:] FllterU_comE OpM_comp : XFormAZ_cor%
: XFormA comp FilterT_comp ; OpL_comp XFormB_comp FilterU_comp OpM_comp : XFormA_comp
| 8 | | B | | B | BE B | B | | B | aE
o\ 0 0
@ XFormASvc \\QerTSvc @ OpLSvc @ XFormBSvc l @ FilterUSve J @ OpMSvc @ XFormASvc
AN N\ | |
SigProcl__comE] (@ SigProcZ_com;;] € @ OpL ’ SigProc3_combEl @ & OpM
’@ @ XFormB ® @' o XFormA2
@ 8 Fitet :
) . |
» @ RawDataSub » B @ VSIPL1Pub . » VSIPL1Sub B @ VSIPL2Pub ,’ o VSIPL2Sub D @ ProductPub B
| [@ AuxPub @ AuxSub
@ Controls1Sub
D—® D ’[
| @ Controls2Sub. @ Controls2Sub @ ControlsSub3
by D by} by}
—_.— = —{— —o—©o
@ StatusPub @ StatusPub @ SetupSub
@ StatusPub Service
@ ControlsSub3 To be connected at LISTOVELY
D run-t?me via Discovery Connector
r w @ Control
@ StatusSub)
V] & |
Morltor a=m @ SetupPub a ProdControl_comp
[w} SummaryStatusPub\ . @ SummaryStatusSub . ' @ UpdatePub
D — e D D D
i -8
Basic Port Types Extended Port Types
() Service (Facet) [DDS_write, DDS_Update B PSAT_Write B SPDM PSAT_Base::PSAT_Write (@ Al_Save
€ Client (Receptacle) {{ DDS_Listen, DDS_Read, & PSAT_Listen & SPDM PSAT Base::PSAT Listen <> Discover (Data or Services)
20 Sync or Async (AMI4ACCM) DDS_StateListen, DDS_Get

Productivity and Quality Improvement Trends NORTHROP GRUMMAN
Model Driven, Component Based CBDDS In Practice —

« Use of our CBDDS-based SNA Platform continues to grow at Northrop Grumman
— Used so far on 14 programs, up to 20 IRAD efforts, with plans and proposals for many more
— Some efforts are large and complex - 100's of components, deep assembly trees, many compute nodes

« Emerging themes common to all efforts using CBDDS & MDA tools include...
— Significant productivity gains during design, reduced I&T efforts (shift of focus from I&T to design)
— Complexity & SLOC reductions (56% reduction on one effort refactored to run on CBDDS)
— Very high stability in executing systems
— Shortened overall development times (= lower development costs)

— Excellent and extremely quick application framework portability between disparate target hardware
architectures

* Innate modularity feature of the CBDDS component model enabling improved reuse

— Independent component, assembly & sub-system product development, as well as modular modeling
approaches, further enabled by D&C progressive deployment features

— Revised sector Software Reuse Library (SRL) built around component based software engineering approaches

« CBDDS is helping to advance and improve MDA for software engineering in general

— CBDDS ADL proving to be an excellent means of capturing, viewing and sharing high level software
architectures between disparate teams

— Early efforts to extend and integrate with our systems engineering SysML community
— CDP deployment plans are powerful, yet complex, and definitely require a tool to generate them
» Side benefit: forces teams to keep model up to date — vs. gen documentation, abandon it & start coding

Where is CBDDS Going Iin the Future? NORTHROP CRUMMAN

» Unified Component Model (UCM)
— Future alternative to the LWCCM component model used today for CBDDS
— Transition from LwCCM to UCM anticipated to be straightforward
* Very similar in approach, common foundational technologies, IDL centric

« Future UCM-based CBDDS framework to offer the following features:
— Vendor, programming language & middleware agnostic APIs
» Current LWCCM dependency on CORBA removed
* Middleware products like DDS, CORBA, others... - become selectable options
— Same fundamental GIS connector framework used today by LWCCM
+ All middleware options abstracted into connectors — no native middleware
* Enables domain customization and extension
— AlI-DDS transport option for both pub-sub and request-reply pattern oriented port APIs
— Lighter weight, smaller memory/storage footprint, higher performance

* Impact on CBDDS MDA tooling

— Minimal - most model content & tooling capabilities are already either platform
independent (PIM), or IDL specific (high level, middleware agnostic PSM)

— Add support for extended ports for request-reply as well as pub-sub patterns
— Updates to OMG D&C CDP descriptor file generation algorithms (backend generator)

22

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN

—

THE VALUE OF PERFORMANCE.

NORTHROP GRUMMAN Backu P Slides
//—

A b St r aCt NORTHROFP GRUMMAN
///7

A Component Based DDS (CBDDS) application framework encompasses an integrated suite of seven OMG open
standard technologies, including CCM, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C (DEPL). Two relatively
new UML-based commercial tools are now generally available from vendors Atego and Zeligsoft to support the full
CBDDS technology suite. These tools offer significant productivity gains for development of distributed, real-time,
embedded (DRE) component-based applications that leverage DDS, patrticularly for large, complex systems. Their
CBDDS UML profiles and workflows provide support for independent component-oriented engineering design and
deployment planning methodologies, and they generate IDL 3.5 and D&C 4.0 compliant file artifacts to greatly simplify
the construction of CBDDS deployments. Supplemented by future DDS QoS file generation per a standardized
UML4DDS profile, hierarchical CBDDS component & connector (C&C) style dynamic architecture views, plus DDS-
annotated IDL file output artifacts, there is also potential value for software intensive systems that leverage a simpler,
less-structured, DDS-only messaging framework.

This presentation will provide an overview of the comprehensive features and capabilities available in the Artisan Studio
IDL Profile and Zeligsoft CX for CBDDS model-driven tool suites, citing real-world examples, custom DDS4CCM
compliant “connector” extensions, and Model Driven Architecture (MDA) lessons learned at Northrop Grumman over
the past 3 years through wide application of this technology. We will cover the agile, model-based, component-based
development (CBD) process we have established, driven primarily by standards-based file artifacts that enable use of
any current or future tool at the various lifecycle stages of CBD development. Finally, we will present the productivity
gains we are seeing as a result of building complex DRE systems at the higher, more structured application framework
layer of abstraction offered by CBDDS, and the numerous advantages offered by CBDDS over DDS in terms of MDA
tooling, enforced modularity, portability, more efficient development, complexity reduction and scalability through
threading model encapsulation, and improved component level software reuse.

