
Model Driven, 

Component Based 

Development for CBDDS 

March 20, 2013 

Mark Hayman 
Consulting Systems Architect 

Northrop Grumman Corporation 

OMG DDS Information Day 



Component Based DDS (CBDDS) 
Full Application Framework Support for DDS Middleware 

• CBDDS is a commercial term for the comprehensive, integrated suite of the following 
seven OMG open standards 

– LwCCM1, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C2 

• Supports architecture development at a higher level of abstraction 

– On a more comprehensive application vs. messaging DRE software framework 

• Encapsulation of event queue/dispatch, threading model, boilerplate code, app 
lifecycle management, extensions and connection management in a “container” 

• CCM Generic Interaction Support (GIS) encapsulates DDS or any other middleware 
functionality inside a “connector” with APIs defined by local IDL interfaces 

• DDS4CCM APIs for DDS access are middleware agnostic and vendor independent 

• CBDDS extends DDS to fill in the holes needed to define a complex, full featured 
DRE architecture with open standard vs. custom solutions 

2 

OS, Comms, Network Stack  

OS Abstraction & Utilities Framework 

Messaging Framework 

Application Framework - Run-Time Application Framework - Deployment Possible 

Middleware 

Framework 

Sub-Layers 

Application Components 

Distributed, Real-time & Embedded (DRE) Processing HW Environment 

(3) Simplest software framework choice, embodies 

the least number of architecture quality attributes 

3) OS Level Framework 

2) DDS Messaging Framework 

1) CBDDS Application Framework 

(1) Most comprehensive software 

framework choice, embodies the highest 

number of architecture quality attributes 

Software Framework Foundation Options 

1LwCCM: Lightweight CORBA Component Model 
2D&C: Deployment and Configuration of Component-based Distributed Applications 



Why Are We Using CBDDS? 
It Addresses All Five of Our Guiding Architectural Tenets 

• We have adopted CBDDS as our application                                  
framework technology of choice to meet a                                                     
larger set of goals and requirements 

– CBDDS addresses all five architectural tenets 

• DDS by itself only fully addresses two of our                                                  
five guiding tenets (OA & EDA) 

– Future OMG RPC4DDS spec anticipated to add SOA support 

– New MDA tooling is much more useful for CBDDS, but can help DDS-only users as well 

• High performance not compromised to improve modularity, reuse and 
portability, as well as functionality, scalability and time/cost of development 

– The integrated CBDDS solution is designed to target distributed, real-time & embedded 
(DRE) operational technology (OT) domains 

– Insignificant pub-sub run-time overhead – run-time performance the same as DDS 

• Threading model encapsulation adds ~1-2% overhead, but most proprietary 
frameworks incur that too unless they do all their work in DDS Reader threads 

– Collocated components using request-reply with “local” IDL interfaces also offer very high 
performance (IDL “interface” definitions become virtual function calls) 

• CBDDS adds structure, which is the very definition of architecture 
– MDA tools leverage this structure, and component based development (CBD) principles 

3 

• Our 5 Guiding Architectural Tenets: 
• OA Open Architecture (MOSA) 
• MDA Model Driven Architecture 
• CBA Component Based Architecture 
• SOA Service Oriented Architecture 
• EDA Event Driven Architecture (DOA) 

Focus of this presentation 



CBDDS MDA Tooling Development History 

• NGC1 has been helping the OT community develop CBDDS technology since 2008 
– Many customer & NGC funded sponsorships of OSS/commercial middleware implementations and MDE tooling 

• Early recognition: MDA tooling for DDS in general was lacking for architecture & design 
– In 2008-2009 time frame, DDS specific tooling mostly limited to run-time debug & integration 

• Initial efforts began with the CoSMIC GME-based research tool from Vanderbilt ISIS 
– CoSMIC already supported CCM and D&C artifact generation, but had no DDS support 

– Leveraged expertise of Dr. James Hill at IUPUI and Vanderbilt ISIS to improve it 

• Added DDS4CCM, AMI4CCM & improved D&C support to CoSMIC – still available 

– Established tool use for CBDDS as a viable, desirable and necessary approach (D&C CDP files are complex) 

• Soon looked toward UML-based, commercially supported alternatives 
– Easier to develop a fully integrated, MDA-driven, soup-to-nuts systems/software engineering approach 

• SysML UML profile for systems architecture 

• CBDDS UML profile for component-level software architecture supporting a CBD2 process 

• Vanilla UML for class-level, intra-component software design & implementation 

– Added support for CBDDS architecture/design, rather than just deployment planning (primary CoSMIC strength) 

• Began dual development efforts with Zeligsoft (now PrismTech) and Atego in 2009 
– Zeligsoft already proficient in CBD for its SDR products, Atego was our sector’s enterprise UML tool vendor 

– CoSMIC generated artifacts and research results used as gold standard reference for both efforts 

– Today we have two capable commercial products available to support OMG CBDDS and DDS open standards 

1NGC: Northrop Grumman Corporation 
2CBD: Component Based Development (process) 4 



MDA Tools are Available to Support CBD for 

CBDDS and Auto-Generation of Critical Artifacts 

5 

• Component Based Architecture (CBA) 

captured as a PIM 

• Maps to a CBDDS IDL and D&C PSM 

• Key auto-generated OA artifacts drive 

the overall process (IDL 3.5, D&C 4.0) 

Artisan Studio IDL Profile 
UML-based CBDDS Design & 

Deployment Planning tool 

Zeligsoft CX for CBDDS 
UML-based CBDDS Design & 

Deployment Planning tool 

• Integration with Eclipse IDE in 

our Scalable Node Architecture 

(SNA) SDK offers ability to very 

quickly build & deploy initial DRE 

“executable architecture” 

skeletons w/o writing a single 

line of code 



Component Based Software Lifecycle Process 
Agile, Iterative Six-Step Process Driven by Standard File Artifacts 

6 

IDL CDP CDD 

• Zeligsoft CX 
• Artisan Studio • Eclipse 

• Zeligsoft CX 
• Artisan Studio 

Design Tool IDE Tool 
Deployment 

Planning Tool 

System Software 
Design & 

Component 
Definition 

Component 
Interface 

Design 

Component 
Packaging & 

Assembly 

Component 
Deployment, 
Integration & 

Reuse 

Component 
Software Design 

Component 
Implementation 

1 2 5 6 4 3 

A
rc

h
it
e
ct

u
re

 
&

 S
y
st

e
m

 
D

e
si

g
n
 

S
y
st

e
m

 
In

te
g
ra

ti
o
n
, 

Te
st

 &
 

V
e
ri
fi
ca

ti
o
n
 

SNA CBD Software Lifecycle Process 

Key 

Artifacts 
CPP, H SO 

• IDE: Integrated Development Environment 

• CBD: Component Based Development 

• SNA: Scalable Node Architecture 

• IDL: Interface Definition Language (OMG) 

• CDP: Component Deployment Plan 

• CDD: Component Domain Descriptor 

Tool-Centric CBD Software Lifecycle Process View 

Agile process iterations early & often, incrementally building up from an early executable “skeleton” architecture 



IDL 3.5 File 

Taxonomy 

Supported by 

MDA Tools 

- 

5 Standard File 

Types 

- 

Use of optional 

file extensions 

enables “smart” 

build by an SDK 

OMG IDL Defines All CBDDS Elements 
Components, Connectors, Messages, Interfaces & Basic Def’s 

7 

• IDL offers vendor, programming language & middleware independent format 
• OMG standards exist for IDL to C++ or C++11 mappings, IDL to Java, IDL to Python, etc. 

• A given middleware standard implementation provides an IDL to language compiler 
• Model generated IDL -> IDL compiler generated source = large percentage of design code base 

• NGC’s SNA SDK currently uses tao_idl and rtiddsgen IDL compilers (others in future) 

• File extensions not part of tools – NGC SDK conventions/suggestions only 
• Modular structure leveraged to auto-generate makefiles for entire component-based projects 

• Run CCM IDL compiler on all types, only run DDS IDL compiler on *_defn.idl & *_msg.idl files 

• MDA tool modular IDL 3.5 convention offers many advantages & important features 
• Supports component/port reuse & modularity (vs. all IDL in one project IDL file) 

• IDL import & export feature of all CBDDS MDA tools enables basic model interchange using IDL 

*_defn.idl File 

IDL primitive 
definitions  
Common includes 

*_defn.idl File 

IDL primitive 
definitions  
Common includes 

*_comp.idl File 

IDL “component” 
Defines a 
component 

*_comp.idl File 

IDL “component” 
Defines a 
component 

*_conn.idl & *_obj.idl 
files are #included by 
*_comp.idl files 

*_obj.idl File 

IDL “interface” 
Defines a client- 
service port 

*_obj.idl File 

IDL “interface” 
Defines a client- 
service port 

*_defn.idl files are 
#included by *_msg.idl 
& *_obj.idl files 

*_msg.idl File 

IDL “struct” 
Defines a pub-sub 
port (data type) 

*_msg.idl File 

IDL “struct” 
Defines a pub-sub 
port (data type) 

= Defined By 

*_conn.idl File 

IDL “struct” 
Defines a pub-sub 
port (data type) 

*_conn.idl File 

IDL templated 
“module” 
Defines a connector 

*_msg.idl files are #included by *_conn.idl files 



Examples of Modular IDL 3.5 
Important for Modularity, Reuse & Tool Interoperability 

8 

// File: EX_Test2_comp.idl 

// Example component definition 

// Well-defined, using OMG IDL 3.5 

 

#include <Components.idl> 

#include “EX_PubSub_conn.idl“ 

#include “EX_MyMsg_conn.idl“ 

#include “EX_ControlService_obj.idl“ 

#pragma ciao lem “EX_Component_compE.idl" 

 

module EX 

{ 

  component Test2_comp 

  { 

    attribute string myProp; 

 

    uses ControlService_obj ClientRecept; 

 

    port PubSub_conn::DDS_Write ExamplePub; 

    port MyMsg_conn::DDS_Listen MyMsgSub; 

  }; 

}; 

// File: EX_PubSub_conn.idl 

// Example module instantiation of one or more connectors 

// Well-defined, using OMG IDL 3.5 

 

#include <Components.idl> 

#include <ccm_dds.idl> 

#include “EX_PubSub_msg.idl“ 

#pragma ciao lem “EX_PubSub_connE.idl" 

 

module AGSP 

{ 

  typedef sequence<PubSub_msg> PubSub_msgSeq; 

  module CCM_DDS::Typed<PubSub_msg, PubSub_msgSeq> PubSub_conn; 

}; 

 

// File: EX_ControlService_obj.idl 

// Example request-reply service 

// Well-defined, using OMG IDL 

 

#include “EX_Common_defn.idl” 

#pragma ciao lem 

   “EX_ControlService_objE.idl“ 

 

module EX 

{ 

  interface ControlService_obj 

  { 

    ReturnStatus changeState( 

      in SystemState newState); 

    SystemState getCurrentState(); 

    ReturnStatus setMode( 

      in SystemMode newMode); 

    SystemMode getCurrentMode(); 

    boolean setStateTimeout ( 

      inout TimeStruct timer, 

      in long timeValue); 

  }; 

}; 

// File: EX_PubSub_msg.idl 

// Example pub-sub message 

// Well-defined, using OMG IDL 

 

#include “EX_Common_defn.idl” 

#pragma ndds typesupport 

   “EX_PubSub_msgSupport.h“ 

 

module EX 

{ 

  struct PubSub_msg 

  { 

    SystemMode modeID; 

    JobID_t jobID; //@key 

    StatusEnum status; 

    ErrorEnum errorVal; 

    SystemTime startTime; 

    unsigned long long duration; 

    short currPicCount; 

    boolean valid; 

  }; //@top-level true 

}; 

// File: EX_Common_defn.idl 

// Example definitions package 

// Well-defined, using OMG IDL 

 

module EX 

{ 

  const long TEST_CONSTANT = 9876;   

  typedef double SystemTime; 

  enum ReturnStatus { 

    SUCCESS,  

    FAILURE 

  }; 

  typedef string<512> BoundString; 

  // more... 

}; 

• Modeling & generation of 

IDL for definitions & DDS 

messages also useful to 

DDS-only users 

ONE struct/union per file, any/all required 

types #included from *_defn.idl file(s) 

N types from a single UML package 

ONE interface per file, any/all required 

types #included from *_defn.idl file(s) 

ONE component per file, plus optional home 

ONE “connector” module instantiation per file 



Model Element to CBDDS Artifact Mappings 

9 

Model Element that Generates a 

File System Artifact 
Artisan 

Studio Icon 
Zeligsoft CX 

Icon 

Package (Directory) 

IDL Module (keyword) 

IDL Component (type, mono impl) 

IDL Interface 

IDL Connector (pkg stereotype) 

IDL Message (msg, sequence) 

IDL Definitions 

D&C Target Domain (CDD) 

D&C Deployment Plan (CDP) 

• Each of the model elements in this table creates a corresponding artifact in 
a source project file system on generation 

• Models can contain other types and elements as desired, but only the 
uniquely stereotyped elements in this table will generate CBDDS artifacts 

File 

System 

IDL 

D&C 

• File system directory 

• Two results: 
• IDL “module” (namespace) block 

inside generated IDL files of children 

• Prefix on generated IDL filenames 

*_defn.idl File 

*_msg.idl File 
*_conn.idl File 

*_obj.idl File 

*_comp.idl File 

*.cdd File 

*.cdp File 



Module/Package View 
CX Project Explorer & Studio Package Browser 

10 

• Project static architecture view in model 
used to define and generate project 
source tree 

– Initially populated with modular IDL 3.5 
and D&C 4.0 descriptor files 

– Developers add business logic classes to 
initial component executor stubs 

• Integrated soup-to-nuts SDK offers 
architecture, design, eventual coding & 
implementation, deployment planning, 
launch & debug in a common tool 

– Integrated steps include: 

• Define components, connectors & ports 

• Create instances & connections in an assembly 

• Create a domain & basic deployment plan 
(including component server process instances 
as needed for deployment) 

• Generate IDL and D&C artifacts 

• Auto-gen makefiles and build project  

• Compile (IDL & source in one compile) 

• Launch executable architecture 

• Test & Debug 

– Entire process can be completed in just a 
few minutes for a small set of components 

• For initial executable skeleton architecture w/o 
code added to “your code goes here” callback 
stubs 

 

Definitions 

Package Type 

Component 

Type 

Interface 

Type 

Message 

Type 

Connector 

Type 

Packages 

become dirs 

on source 

project 

generation 

assemblies 

components 

ports 

Definitions 

Package Type 

Component 

Type 

Interface 

Type 

Message 

Type 

Connector 

Type 

Packages 

become dirs 

on source 

project 

generation 

assemblies 

components 

ports 

Zeligsoft CX for CBDDS Artisan Studio IDL Profile 



Component Assembly Hierarchy Example 
Artisan Studio IDL Profile 

11 

• A formal Architecture Description Language (ADL) for CBDDS enables indirect auto-generation (IDL -> compiles to a source 
language) of a large percentage of the operational software for a software intensive system 

• The structural “boxes and lines” on block diagrams, as defined in Component & Connector (C&C) style views 

• CBDDS graphical notations and component diagrams are proving invaluable at NGC for cross-program understanding & sharing 



Component Assembly Hierarchy Example 
Artisan Studio IDL Profile 

12 



Component Assembly Hierarchy Example 
Artisan Studio IDL Profile 

13 



Component Assembly Hierarchy Example 
Zeligsoft CX for CBDDS 

14 

• C&C style Component Assembly diagrams offer a “software schematic” view of your run-time structural architecture 

• Shows system run-time composition using standard “software parts” 

• Similar to hardware schematics connecting standard hardware parts 

• Connections drawn in an MDA modeling tool are automatically established during the deployment launch phase by the D&C 
deployment framework – big time/code savings to developers 



Component Assembly Hierarchy Example 
Zeligsoft CX for CBDDS 

15 



Component Assembly Hierarchy Example 
Zeligsoft CX for CBDDS 

16 



Domain Diagram & Deployment Plan Editor 
Zeligsoft CX for CBDDS 

17 

• Allocation style Domain & Deployment diagrams capture QoS, 
config & aspects of system resource utilization for resource 
allocation and concurrency 

• A Deployment “diagram” 
maps: 

• Each component 
instance to a 
component server 
process (+ container) 

• Processes to compute 
nodes (OS instances) 
defined for a Domain 



Domain Diagram & Deployment Plan Editor 
Artisan Studio IDL Profile 

18 

• The Deployment Plan editor in 
both tools allows users to set 
many configurable parameters 
post-design, later generated to 
a D&C CDP deployment plan 

• Per-instance user defined component 
attributes, accessible at run-time 

• Connector attributes, including topic 
names, domain IDs, QoS profiles & 
content filter expressions & 
parameters to auto-define content 
filtered topics 

• Component server OS process 
attributes, including  name, process 
priority, and core affinity for real-time 
tuning 

• Each deployment plan starts with a 1) Domain, 2) Top level assembly 
(contains component/connector instances & connections), and 3) a set 
of process instances created for the plan 



CBDDS Tools Allow Domain Customization 
Custom GIS Connectors Built and In Service at NGC 

• Publish Subscribe Attachment Transfer (PSAT) connector 

– High performance, general purpose & location independent pub-sub transport of 

wideband data with DDS signaling 

• Signal Processing Data Model (SPDM) connector 

– PSAT extension to support transport of OMG VSIPL++ or VSIPL1 blocks and views 

for signal and image processing applications 

• Application Instrumentation (AI) connector 

– CBDDS PSM simplification of the DDS PSM, providing a very easy to use 

encapsulation of in-development OMG AI standard for binary data instrumentation 

• Discovery connector 

– Directory services access to support dynamic, run-time registration, 

discovery/lookup and binding of component service endpoints and topic data 

19 1VSIPL = Vector, Signal & Image Processing Library 

GIS connectors can be built and deployed for team use by users w/o tool vendor support 



Support for User-Defined Connectors 
Example Showing Basic and Extended Port Types & Connectors 

20 

Service (Facet) 

Client (Receptacle) 

Sync or Async (AMI4CCM) 

Basic Port Types Extended Port Types 

DDS_Write, DDS_Update 

DDS_Listen, DDS_Read, 

DDS_StateListen, DDS_Get 

PSAT_Write 

PSAT_Listen 

SPDM PSAT_Base::PSAT_Write 

SPDM PSAT_Base::PSAT_Listen Discover (Data or Services) 

AI_Save 



Productivity and Quality Improvement Trends 
Model Driven, Component Based CBDDS In Practice 

• Use of our CBDDS-based SNA Platform continues to grow at Northrop Grumman 
– Used so far on 14 programs, up to 20 IRAD efforts, with plans and proposals for many more 

– Some efforts are large and complex - 100's of components, deep assembly trees, many compute nodes 

• Emerging themes common to all efforts using CBDDS & MDA tools include… 
– Significant productivity gains during design, reduced I&T efforts (shift of focus from I&T to design) 

– Complexity & SLOC reductions (56% reduction on one effort refactored to run on CBDDS) 

– Very high stability in executing systems 

– Shortened overall development times (= lower development costs) 

– Excellent and extremely quick application framework portability between disparate target hardware 
architectures 

• Innate modularity feature of the CBDDS component model enabling improved reuse 
– Independent component, assembly & sub-system product development, as well as modular modeling 

approaches, further enabled by D&C progressive deployment features 

– Revised sector Software Reuse Library (SRL) built around component based software engineering approaches 

• CBDDS is helping to advance and improve MDA for software engineering in general 
– CBDDS ADL proving to be an excellent means of capturing, viewing and sharing high level software 

architectures between disparate teams 

– Early efforts to extend and integrate with our systems engineering SysML community 

– CDP deployment plans are powerful, yet complex, and definitely require a tool to generate them 

• Side benefit: forces teams to keep model up to date – vs. gen documentation, abandon it & start coding 

 

21 



Where is CBDDS Going in the Future? 

• Unified Component Model (UCM) 
– Future alternative to the LwCCM component model used today for CBDDS 

– Transition from LwCCM to UCM anticipated to be straightforward 

• Very similar in approach, common foundational technologies, IDL centric 

• Future UCM-based CBDDS framework to offer the following features: 
– Vendor, programming language & middleware agnostic APIs 

• Current LwCCM dependency on CORBA removed 

• Middleware products like DDS, CORBA, others… - become selectable options 

– Same fundamental GIS connector framework used today by LwCCM 

• All middleware options abstracted into connectors – no native middleware 

• Enables domain customization and extension 

– All-DDS transport option for both pub-sub and request-reply pattern oriented port APIs 

– Lighter weight, smaller memory/storage footprint, higher performance 

• Impact on CBDDS MDA tooling 
– Minimal - most model content & tooling capabilities are already either platform 

independent (PIM), or IDL specific (high level, middleware agnostic PSM) 

– Add support for extended ports for request-reply as well as pub-sub patterns 

– Updates to OMG D&C CDP descriptor file generation algorithms (backend generator) 

22 





Backup Slides 



Abstract 

A Component Based DDS (CBDDS) application framework encompasses an integrated suite of seven OMG open 

standard technologies, including CCM, DDS, DDS4CCM, AMI4CCM, CORBA, IDL and D&C (DEPL).  Two relatively 

new UML-based commercial tools are now generally available from vendors Atego and Zeligsoft to support the full 

CBDDS technology suite.  These tools offer significant productivity gains for development of distributed, real-time, 

embedded (DRE) component-based applications that leverage DDS, particularly for large, complex systems.  Their 

CBDDS UML profiles and workflows provide support for independent component-oriented engineering design and 

deployment planning methodologies, and they generate IDL 3.5 and D&C 4.0 compliant file artifacts to greatly simplify 

the construction of CBDDS deployments.  Supplemented by future DDS QoS file generation per a standardized 

UML4DDS profile, hierarchical CBDDS component & connector (C&C) style dynamic architecture views, plus DDS-

annotated IDL file output artifacts, there is also potential value for software intensive systems that leverage a simpler, 

less-structured, DDS-only messaging framework. 

  

This presentation will provide an overview of the comprehensive features and capabilities available in the Artisan Studio 

IDL Profile and Zeligsoft CX for CBDDS model-driven tool suites, citing real-world examples, custom DDS4CCM 

compliant “connector” extensions, and Model Driven Architecture (MDA) lessons learned at Northrop Grumman over 

the past 3 years through wide application of this technology.  We will cover the agile, model-based, component-based 

development (CBD) process we have established, driven primarily by standards-based file artifacts that enable use of 

any current or future tool at the various lifecycle stages of CBD development.  Finally, we will present the productivity 

gains we are seeing as a result of building complex DRE systems at the higher, more structured application framework 

layer of abstraction offered by CBDDS, and the numerous advantages offered by CBDDS over DDS in terms of MDA 

tooling, enforced modularity, portability, more efficient development, complexity reduction and scalability through 

threading model encapsulation, and improved component level software reuse. 


