A Case Study in Secure Architectures for e-Business

Paul Horstmann, John Laurentiev, John Schuetz.
IBM/NIIIP, B/010, P/103, Poughkeepsie, NY
Horstman@us.ibm.com, laurentj@us.ibm.com, schuetz@us.ibm.com
Introduction/Agenda

• NIIP
 • National Industrial Information Infrastructure Protocols (NIIP) Consortium

• Projects
 • NIIP Project (1994–1998)
 ▪ C++/SOM/DSOM/X-Windows
 • NIIP SPARS (1998–2001)
 ▪ Java/RMI-IIOP/Java Client
 ▪ Java/HTTPS/DHTML

• The Future
NIIP

- Ad Tech Program
- Broad array of participants (users, vendors, universities)
- Focus on Engineering
- UNIX/C++/X-Windows
- Distributed Objects - CORBA (SOM/DSOM)
- Limited security focus, some DCE, early PKI and secure web servers (SHTTP)
NIIP Lessons Learned

• Distributed Objects is a Complicated Technology
 • Object trust and authentication issues not addressed
• No one (yet) worrying about firewalls
• Interoperability (much less security) across different ORBS severely limited
SPARS

- Deployment Program into production
- U.S. Shipyards, Suppliers
- Focus on Purchasing, Contract Management
- At start: Windows/C++/CORBA (Component Broker)
- At end: Windows/Java/Application Server (EJB) (RMI/IIOP)
- Security driven by US Navy (NAVSEA)
SPARS Security

- U.S. Navy largest customer
 - Drives security, encryption requirements
 - Limited classification levels supported (technical data)
- Large number of suppliers (thousands)
- Java Applet/Application desktop
 - IIOP causes firewall pain
 - Secure Tunnel (FIPS 140-1) protects RMI/IIOP
 - Object Security externalized (LDAP)
Secure Tunnel Details

- Creates a virtual Socks and/or X-windows proxy spanning as many as two firewalls.
- Both end "Proxies" are authenticated to one another using X.509 certificates.
- The end proxies connect to a middle proxy that can be reached by both parties.
- The end proxies negotiate a TLS session through the middle proxy.
 - Once the TLS session is established the data is never in the clear between the end proxies.
SPARS Lessons Learned

- Every Supplier has a different firewall technology
- Every supplier runs a different version of Windows, et al
- Customer required data checking → Fat Applet
- Fat Applet → Application, distributed with Tunnel Client
- Joys of distributing an installation disk/process
- Net: Worked well but a bear to support
SPARS Thin Client/VES Security

- Three Tier Architecture
 - Outer Webserver - locked down ports
 - Inner Application Server
 - Separate Data Server
 - Backup, Physical Control of data access
SPARS-SC

- Deployment Program
- Shipyards <-> Supplier e-Business
- U.S. Navy Data Security Requirements
 - Secure Interactions (transmission of data)
 - Multilevel data classifications - additional levels supported (NNPI/NOFORN)
 - Loooooooong shelf life - how to migrate/archive data
US Navy Data Classifications

NNPI – Naval Nuclear Propulsion Information

- Documents (or screens) containing NNPI information must be marked.
- No access by foreign nationals permitted (NOFORN).
- Encryption must be handled by FIPS 140-1 approved ciphermodules.
- The business processes implemented in the VES address Unclassified NNPI data.
SPARS–SC Security

- HTTPS
 - Standard OK for low-security data
 - FIPS 140–1 for NNPI/NOFORN
 - Physical Security (location of servers) as issue

- Data instances stored as Entity Beans
- Externalized security (DB/2) per instance
 - Supported both EJB and non-EJB access
- Externalized User/Group/Role structure in LDAP with separate User Registry Interface
- MOM-based legacy system integration
SPARS–SC Lessons Learned

- Thin Client easier to install/support
- Thin Client functional additions
 - Data encryption at client end
 - Digital Signatures
- Web Services/MOM limiting cross-enterprise IIOP use
The Future

- Web Services
 - Distributed Functions
 - Dynamically configured systems
- Distributed Security Models
- Enhanced focus on encryption
- Enhanced focus on Digital Signatures