Use of MDA in the SIAP Program

Presented at:
MDA Implementers’ Workshop:
Succeeding with Model Driven Systems
May 17-20, 2004 – Orlando, FL

By:
Basil Krikeles and Robert Merenyi, ALPHATECH, Inc.
John Brtis, The MITRE Corporation

©2004 – The MITRE Corporation
Agenda

- Single Integrated Air Picture (SIAP)
- The Integrated Architecture Behavioral Model (IABM) PIM
- From PIM to PSM – Procedure, Verification, Validation
- Issues
- Summary
Problem Definition

Operational Problem:
- Engagements constrained by
 - Procedural controls
 - Target ID
 - Sensor limitations
- Lack of interoperability among
 - Weapon Systems
 - Sensors
 - C4I

Operational Elements:
- Single Integrated Air Picture
- Combat Identification
- Integrated Fire Control
- Automated Battle Management Aids
- Attack Operations
- Passive Defense / Early Warning
Process Overview

- Integrated Architecture Behavior Model (IABM) requirements sourced from all Services
- JSSEO outputs test requirements for Joint Interoperability Test Command (JITC)
- JSSEO produces IABM for use by Services
 - PIM developed by industry, university, FFRDC and government team
 - Distributed through Program Offices to primes
The SIAP Goal

- A federation of peers over the network implementing the same processing logic
 - Each peer is a Platform-Specific Implementation (PSI) of the same IABM PIM
 - Peers are deployed on heterogeneous platforms
- Peers can share consistent information such as Combat ID
 - Common functionality implemented and maintained commonly
- Each peer can generate an improved, more complete, picture of the battlespace by utilizing information received from other peers
- Specifications for the shared behavior are expressed in a form that is not susceptible to human error or interpretation by the contractors
- Verification and validation of correct performance can be accomplished uniformly across all weapons systems
Using MDA to Implement SIAP

- Critical processing logic (business rules) captured in the IABM (PIM), guaranteed to be applied uniformly across all IABM Peers
- Requirements and specifications encapsulated in the IABM are precise and not subject to interpretation by prime contractors
- Potential n to 1 reduction in the maintenance cost of the core processing logic (n Weapon Systems, 1 IABM)
- Separates functionality and implementation
 - Provides design stability as implementation technologies evolve and improve
Cost Implications of MDA

OMG Presentation

Conventional Development Total Cost = Cost of System A + Cost of System B

- Analysis/Design
- Coding
- Integration
- Testing
- Program Mgt

System A
- a
- b
- c
- d
- e
- f

System B
- a
- b
- c
- d
- e
- f

Duplicate Effort

IABM Development (PIM)

- Analysis/Design
- Coding
- Integration
- Testing
- Program Mgt

System A (PSM)
- a
- b
- c
- d
- e
- f

System B (PSM)
- a
- b
- c
- d
- e
- f

MDA Cost Savings over n Weapon Systems = n * (a + b + c)

The cost of both PIM development and maintenance is amortized across multiple systems.
Overview of IABM Approach

OMG Presentation

Core domains capture common behaviour to ensure uniformly applied processing rules in a net-centric environment.

Isolates application from hardware devices and data buses.

Isolates application from underlying execution technologies.

Run-Time Interface Domain

Isolates application from user interface formats and devices.

Target Execution Environment

(Processors / Operating System / Language)

Target Hardware

- Weapons
- Sensors
- Comms

- Adaptation Layer
 - Sensor Interface Comms Domain

- User Interface Domain
 - HUD/HDDs
 - Displays
 - Other Tools

Isolates application from user interface formats and devices.
Notional PIM-to-PSI Transformation

Requirements Development

IABM in iUML

Platform libraries

TA-x (tool)

Xform rules in iUML

Compiler (tool)

Platform-Specific Model Compiler

Transformation Development

iCCCG (tool)
PSM Generation

Creation of Customized Code Generator
- Platform Translation Rules (Transformation model)
- Compiler Meta Model

Creation of Target Executable
- Platform-Specific Build Set (PSBS)
- Legacy headers & libraries
- Generated C++ (PSM)

Execution Flow
- PSMC (exe)
- g++
- Executable binary

Tools and Components
- Compiler Generator
- Platform-Specific Model Compiler (PSMC)
- Platform-Specific Implementation (PSI)
- xUML
- g++
PSI Verification and Validation

Simulation Test Objectives

- Does PSI behave as an expected instance of the IABM?
 - Can be verified using stub interface code
- Does PSI behave as expected by weapon system platform?
 - Initial stub testing can reveal early performance numbers
 - Final testing requires fully populated platform library code
SIAP System Development Process

OMG Presentation

[Diagram showing the SIAP System Development Process with various stages and steps, including development, testing, and integration phases.]
Challenges

• Tools supporting MDA are still evolving
 – UML standards for interchange and transformations being defined

• Configuration Management unique to the MDA process
 – See Wednesday’s “Practical MDA” sessions

• Horizontal acceptance
 – New government procurement paradigm
 – Affects prime’s business model
Summary

• SIAP is an important goal of the DoD that is now being addressed using a novel approach both in terms of development as well as government procurement

• The Joint SIAP System Engineering Organization has adopted Model Driven Architecture with xUML as their development and deployment methodology

• Shared processing logic is captured in JSSEO’s Integrated Architecture Behavior Model (IABM) – an xUML model can be deployed in multiple weapons systems