Securing access to Distributed Pub-Sub Information in a System-of-Systems and GIG Environment

Gerardo Pardo-Castellote, Ph.D.
Gabriela Cretu-Ciocarlie, Ph.D.

http://www.rti.com

The Real-Time Middleware Experts

OMG Real-time, Embedded and Enterprise-Scale Time-Critical Systems workshop,
May 2010
Background

- Distributed pub/sub systems...
 - are built on top of a shared information space
 - assume information availability where and when it is needed
Distributed pub/sub systems…
- are built on top of a shared information space
- assume information availability where and when it is needed

As systems expand, we need to prevent adversaries from…
- compelling DDS entities to publish
- Fooling DDS entities into subscribing to data that is not authentic
- learning about data outside their purview
Scope / Disclaimer

- Security problem is broad...
- GIG deploys/integrates many technologies
- This talk focuses on the aspects that concern/affect systems built using the OMG Data-Distribution Service
- It is anticipated that these systems will need to be integrated into broader security policies...
- ... this latter issue is not directly addressed by the talk.
GIG is a composition of systems

- DDS deployed within a subsystem
- DDS deployed to bridge subsystems

- Different security domains
- Different communities, even nationalities
- Evolving need to share – could depend on mission or political context
Outline

- **Background:**
 - Mechanisms Available

- Securing DDS applications in a (partitioned) OS

- Securing DDS applications within a DDS Domain

- Securing DDS applications across DDS Domains

- Conclusions
Available Mechanisms

- Networking Bus
- Router
- DO178
- Common Criteria
- FIPS
- MILS
- Apps
- DDS
- OS
- Transport
- Apps
- DDS
- OS
- Transport

© 2010 Real-Time Innovations, Inc.
Available Mechanisms

What is the Cyber Perimeter?
- Firewall
- Devices
- Physical security

What are the Threats?

© 2010 Real-Time Innovations, Inc.
Available Mechanisms

- Networking Bus
- Router

Application Managed
Leverage DDS Arch/QoS
- Domains
- Discovery
- Partitions
- USER_DATA QoS
- ignore APIs
- content-aware data

© 2010 Real-Time Innovations, Inc.
Available Mechanisms

Middleware Managed
Message/element security
- Confidentiality
- Integrity
- Load managed QoS profiles
- Filters, content aware

Networking Bus

© 2010 Real-Time Innovations, Inc.
Available Mechanisms

- Controlled HW access
 - e.g. Ports & SELinux
 - SELinux, WRS, GH
 - netfilter

Networking Bus
Available Mechanisms

Transport Managed
- Configurable
- NIC binding, Domains
- Works with HW
- Extensible
- Leverage protocols
- (D)TLS/SSL, IPSec
- Type handling

Networking Bus
Available Mechanisms

Safety, Separation, and Certification Concerns

Networking Bus

DO178
Common Criteria
FIPS
MILS

Apps
DDS
OS
Transport

Router

Apps
DDS
OS
Transport
Available Mechanisms

Cross Domain Solutions
- DDS Router
- Allow/deny filters
- On DDS SCE
- Domain Isolation
- Bridging to existing certified guard
- Build RTPS guard

Networking Bus

© 2010 Real-Time Innovations, Inc.
Available Mechanisms

- Networking Bus
- Router
- Apps
- DDS
- OS
- Transport
- DO178
- Common Criteria
- FIPS
- MILS

GIG Integration
- WS/DDS Efforts
- Web Authentication
- Transports
- Protocols and bridging

© 2010 Real-Time Innovations, Inc.
Holistic Security

Transports
- Bridging to other protocols, transforms
- Integrate encryption
- Tie identity to app
- Or just a pipe

Networking Bus

© 2010 Real-Time Innovations, Inc.
Available Mechanisms

Distributed Security
- No ‘one’ solution
- Cyber Defense
- MAC, RBAC
- Key Management

© 2010 Real-Time Innovations, Inc.
Outline

- Background:
 - Mechanisms Available

- Securing DDS applications in a (partitioned) OS

- Securing DDS applications within a DDS Domain

- Securing DDS applications across DDS Domains

- Conclusions
Operating System Security Integration

- Trusted operating systems (such as SELinux, Trusted Solaris) provide fine-grained access control for system resources:
 - Network ports
 - Inter-process communication (IPC) objects

- These policies can be mapped to the required resources to join a DDS domain
 - DDS Wire Protocol standard specifies ports used for discovery, default ports for user data
 - For a configured system, there is a required set of ports and/or IPC objects that must be used to join the domain

- This requires no changes to DDS, and provides another mechanism for domain separation
Integration with SE Linux

- Linux feature primarily developed by NSA
- Integrated into the kernel version 2.6. Available out-of-the-box in distributions from RedHat, Ubuntu, etc.

- Provides hybrid of concepts and capabilities drawn from:
 - mandatory access controls,
 - mandatory integrity controls,
 - role-based access control (RBAC)
 - type enforcement architecture.

- Enforces mandatory access control policies
 - Confine user programs and system services to the minimum amount of privilege they require to do their jobs.

- Configured by means of policies
 - Reputation of being hard to program… Require expert consulting
Example: Using SE Linux to Secure DDS Domains

- **SE Linux Type Enforcements can be used to restrict access to DDS domains**
 - DDS maps domains to ports and SE Linux can restrict access which processes can open a given port number
 - Once in the cloud, all is available without other precautions

- **SE Linux can also be used to restrict Topic access**
 - DDS Interoperability allows tying Topics to separate ports
 - SE Linux generally does not have enough granularity to restrict writing to a Topic

- Provides hybrid of concepts and capabilities drawn from:
 - mandatory access controls,
 - mandatory integrity controls,
 - role-based access control (RBAC)
 - type enforcement architecture.

- **Enforces mandatory access control policies**
 - Confine user programs and system services to the minimum amount of privilege they require to do their jobs.
SE Linux and DDS

- SE Security policies can be developed to limit with ports a process might send to or receive from.
- Mapping of DDS wire protocol to ports allows SE Linux to enforce access control to DDS Domains within a computer.
- RTI has partnered with Tresys to develop DDS SE-Linux policies.
- Performance impact of type enforcement is reasonably small:

![Graph showing RTI DDS 4.3d Latency (IPv4) on SELinux]
DDS in a MILS Kernel

- One of the MILS Kernel goals is to provide an isolated sandbox where Guest-OS and applications can run
 - Ideally the Guest OS and application runs without modification
 - MILS Kernel manages network access ensuring separation even when accessing common network hardware.
 - Cryptographic separation typically enforced by hardware TOEs
 - Information flows between different level partitions brokered by security guards (hardware/software)

- MLS partitions can be problematic for the middleware
 - Unclear whether this is required by applications or MLS partitions with be dedicated to upgrades/downgrades

- Area of active research
Outline

- Background:
 - Mechanisms Available

- Securing DDS applications in a (partitioned) OS

- **Securing DDS applications within a DDS Domain**

- Securing DDS applications across DDS Domains

- Conclusions
Security within a DDS Domain

- Applications built on DDS access the network OS stack
- OS-provided protection can limit access to a specific domain from within the OS
- Is this enough?
 ... NO ..
 The OS can only protect from applications running within
 Moreover complex systems require finer grain of control

RTPS / UDP / Ethernet
Standard security concerns must be addressed with the right granularity

- **Authentication**
 - Verify the identity of an entity (e.g., a DDS participant)
 ... Must occur independently of where / which OS this is running on

- **Authorization**
 - Ensure that only allowed entities can perform operations
 ... What are the relevant operations to protect within a DDS system?

- **Data integrity**
 - Data is not altered between sender and receiver

- **Data confidentiality**
 - Unauthorized entities cannot view data on the wire, (i.e., encryption)
 .. What is the granularity for this authorization (Domain, Topic, Content)?

- **Availability**
 - Data is available at all times
Authentication

- In general authentication comes down to...
 - Something you have (e.g. certificate)
 - Something you know (e.g. password)
 - Who you are/do (e.g. as identified by a biometric characteristic, signature, etc.)
 - Or combination: Multifactor authentication (e.g. Secure ID)

- For DDS applications we must authenticate Computers / Applications / DDS participants
 - Certificates seem the most practical approach
 - Alternatively could be the combination of an IP address of a trusted computer and IPSec-type labeling provided by that computer.
 - Or in case of an interactive application it could also rely on authenticating the user that runs the application
Authorization

• Authorization and access controls fit naturally into the publish/subscribe paradigm

• Two approaches:
 – DDS Application/DDS Participant (User) identity
 • Traditional role-based access control (RBAC)
 • Each application is given a set of roles
 • Each role has well-defined permissions for publishing and subscribing to various topics
 • Complexity scales with the number of unique applications and roles
 • Works well in mixed-privilege environments
 – Topic-driven
 • Attribute or credential-based per topic
 • Each application given credentials to the Topics/attributes it can access
 • Complexity scales with the number of unique attributes and topics
 • Useful for strict isolation enforcement within and among DDS domains
Authorization (2)

- **Capabilities and attestations**
 - Think of them as documents signed by a trusted authority that certify DDS privileges
 - “User A is allowed to publish topic X” or “Any entity holding tokens A and B are allowed to publish topic Y”
 - Useful for applying access control in a decentralized manner
 - Reduces communications complexity

- **Labeling and/or tagging data**
 - Cross domain solutions or guards, e.g., radiant mercury, often require security markers to enable Multi-Layer Security (MLS)
 - Providing hooks for data labeling facilitates interoperability in these environments
 - E.g., networks carrying both classified and unclassified data
The approach based in two ideas:
- Secure Domains
- Confidential Topics

Secure Domains
- Limit each Global Data Space (DDS Domain) to contain information at a single level of security
- Only authorized participants are allowed to join a Domain
- All domain communications are confidential
- All information is accessible to all members of the domain

Confidential need-to-know Topics
- Within a Global Data Space allow participants to read and write Topics on a “need to know basis”
- Separate “right to read” from “right to write”
- Each Topic is authorized and protected separately
Underlying proposed DDS Security Model: Secure DDS Domains

- Each DDS **domain** implements MAC at a single security level.
- Each DDS domain is configured with a CA. The PK of the CA is compiled into each application.
- The CA gives certificates to each Participant that is allowed to join the domain.
- When participants discover each other they use the pre-configured CA PK to verify their peer’s certificate to join the domain.

Result:
- Limits access to the domain only to the principals (the DDS **Participants**) that have the proper security clearance.
- Mandatory Access Control (MAC) is therefore applied to each DDS **Domain** separately.
Underlying proposed DDS Security Model: Confidential DDS Topics

- The RBAC model applied to DDS Topics

- Each **Topic** is assigned a list of “reader roles” and a list of “writer roles”.
 - ‘reader roles’ are the roles of the principals that can read the Topic
 - ‘writer roles’ are the roles of principals that can write the Topic

- Each **Participant** attached to the **Domain** is assigned a set of roles.
 - Write access to the **Topic** given only to **Participants** that have a role that appears in the list of “writer roles” for the **Topic**
 - Read access to the **Topic** given only to **Participants** that have a role that appears in the list of “reader roles” for the **Topic**

- Result:
 - Limits access to the Topic only to the principals (the DDS **Participants**) that have the “need to know” for that Topic
 - A single domain can carry traffic of multiple security levels
Confidentiality

• Granularities
 – Data/Element:
 • Symmetric and asymmetric encryption possible from application layer via data marshalling/serialization handlers
 – Message:
 • IPsec
 • SSL/(D)TLS
 – Inter-domain:
 • DDS Routing Service, TCP Transport (SSL/TLS)

• Considerations:
 – Key management and distribution
 – Performance implications
 – Multicast restrictions (e.g., asymmetric encryption)
Performance Impact Study: Median Latency

- Note: Performance is CPU bound and will vary by type
- Latency of data is very similar for the baseline and SELinux cases
- Overhead for IPsec is not fixed
 - The cost increases as the packet size increases
Batched throughput is very similar for the baseline and SELinux cases.

Significantly lower throughput with full IPsec:
- Maximum throughput is reached quickly due to batching of small packets.
- Maximum difference in throughput between baseline and SELinux: 15.6 Mbps.
Data and Message Integrity

- Data Integrity via Application Layer
 - Symmetric crypto:
 - Message Authentication Code (MAC) computed on data elements or payload in marshalling/serialization handler
 - Asymmetric crypto:
 - Digital signatures computed on digest of payload or element(s)
 - Provides non-repudiation

- Integrity via Transport/Network Layer or Routing Service
 - Integrity and non-repudiation included “for free” with IPsec, TLS/SSL encryption

- Similar performance and key/identity management considerations from previous slide
Outline

- **Background:**
 - Mechanisms Available

- Securing DDS applications in a (partitioned) OS

- Securing DDS applications within a DDS Domain

- Securing DDS applications across DDS Domains

- Conclusions
DDS Domain Authentication, Isolation

- Same authentication techniques can be applied to DDS “DDS Gateway” applications bridging the Domains
 - DDS Routing Service (Bridge)
 - Web-Enabled DDS Gateway

- Additional access control policies might be applied at the DDS Gateway
 - Expose only Certain Topics
 - Remove fields
 - Introduce delays
 - Introduce Noise
Domain Isolation in a System of Systems
DDS Security: What is missing?

- What should DDS security look like?
 - A security model defined for DDS applications
 - A flexible set of extensions/interceptors in the DDS API
 - Standard security mechanisms built-in to DDS-RTPS protocol
 - Standard mapping of DDS-RTPS to TLS

- Adding these mechanisms to the middleware does not obviate or undermine the aforementioned security mechanisms outside the middleware
 - Security mechanisms in the middleware can be used in conjunction with other mechanisms
 - However, if the goal is to secure middleware messages and participation, it should be defined in the middleware
Conclusions

- There are some mechanisms within DDS that can be used to achieve common security features
 - Unfortunately, effectively securing DDS systems in this manner requires a lot of system tuning and specialized knowledge
 - Defending and managing systems using these mechanisms can be ad-hoc and will not be interoperable

- What do we want instead?
 - Standardization of DDS mechanisms and security model
 - Added convenience
 - Reduce development time and complexity
 - Encourage security engineering
 - Achieve interoperability
 - Integrate with external security infrastructure