DDS for SCADA

Erik Boasson
Senior Engineer
PrismTech
erik.boasson@prismtech.com
The mismatch
What is DDS?

- Primarily, the DDS 1.2 standard
 - a programming model
 - an interface specification

- The standard operates at the level of an implementation
 - consequently, its applicability is a subset of that of the programming model
What is DDS?

☐ “DDS is not a good fit”
 ☐ refers to the implementation-level specification

☐ “as it stands today”
 ☐ standards can be extended and amended
What is SCADA?

- Supervisory Control and Data Acquisition
- In practice covers such things as
 - system monitoring
 - closed-loop control systems
 - operator interface to a system
What is SCADA?

- Supervisory Control and Data Acquisition
- In practice covers such things as
 - system monitoring
 - closed-loop control systems
 - operator interface to a system
What is SCADA?

- Feedback loop
 - thousands to millions of sensors and actuators
 - multi-layered control system

- Other aspects we ignore here
 - operator interfaces
 - off-line optimisation
 - post-mortem analysis
 - ...
What is SCADA?

- Control blocks
 - control blocks often a given
 - “only” need to parametrize them

- Interconnections
 - it matters which specific sensor you use
 - fairly static
DDS

- Typically viewed as publish-subscribe

- From the OMG DDS Portal:
 - DDS is the first open international middleware standard directly addressing publish-subscribe communications for real-time and embedded systems.
 - DDS introduces a virtual Global Data Space where applications can share information by simply reading and writing data-objects addressed by means of an application-defined Topic and a key.
DDS

- It really is the other way around:
 - DDS introduces a Global Data Space
 - pub-sub is a possible implementation
DDS and SCADA

- System state as a shared data space
 - containing measurement and control values

- Subscribe to individual measurements, &c.
 - topic per measurement, &c.

- Problem solved
DDS and SCADA

- System state as a shared data space
 - containing measurement and control values
- Subscribe to individual measurements, &c.
 - topic per measurement, &c.
- Problem solved — well, not quite!
Why not?

- DDS doesn’t scale nicely to millions of topics
 - or readers and writers for that matter

- resource consumption
- discovery times
- traffic overhead
Alternative mappings

- No requirement to have that many topics
- Must avoid fitting problems to solutions
If not this, then what?
A step back

- What can we throw out profitably?
 - multitude of QoS settings
 - detailed metadata

- Cost incurred by these
 - complexity in discovery
 - increased footprint
 - slower data handling
 - higher network load
 - ...

Copyright 2012, PrismTech - All Rights Reserved.
A step back

- Assume
 - processing equidistantly sampled signals
 - control loop is hard real-time
 - network is highly reliable
 - procedure for dealing with lost samples

- Then
 - only latest values need to be kept around
A step back

- Data space characteristics
 - millions of “topics”
 - one (or a handful of) data type(s)
 - a small selection of QoSs

- Control block naming
 - GUIDs will do in practice

- Operations
 - read & write
A step back

- Domain-specific DDS variant
- Self-evident that you can implement this
 - with a small footprint
 - including dynamic discovery
- Obviously not covering all aspects
Desiderata

- Integrated with rest of DDS
- Leverage DDS features
- Simple interface
Approach

- Transient data for subscriptions
- Dynamically mapping data to partitions
- One topic for data
Approach

- Partitions in a small system
 - one partition per node
 - a common partition

- Subscriptions in two partitions
 - in its own & the common partition

- Publishing partition chosen dynamically
 - one subscribing node: that node’s partition
 - multiple subscribing nodes: common partition
Approach

- Experiments show very load overhead
 - negligible CPU load
 - low memory overhead
 - ~10% network overhead

- Special care taken to minimise cost of updating values for which no subscriber exists
 - this is, after all, one of the real promises of DDS

- Potential for integrating into DDS proper
Conclusion
Conclusion

- DDS can be used as a foundation for domain-specific data spaces
- The large feature set of DDS can be a problem rather than a solution
- It is important to distinguish between the programming model & the implementation