PRESTO: Improvements of Industrial Real-time Embedded Systems Design and Development

Imran Quadri, PhD.

OMG Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems, 18th April 2012, Paris-France
Overview

- Introduction
- PRESTO
 - Overview
 - End User Case Studies
 - Challenges
- Conclusion
- Demo (THALES C&S Case study)
Introduction
Context: Real-Time Embedded Systems
Current design challenges

• Real-Time Embedded Systems (RTES) are exponentially increasing in complexity

• The “Design Productivity Gap” between Hardware and Software development
 - Increase in Time to Market and Overall Costs
What to do?

• Effective design methodologies needed
 o Elevation of design abstraction levels
 • Hand tuned coding at Register Transfer Level (RTL) ➔ High Level Synthesis (HLS) ➔
 o Co-Design (Y-Chart)
 o Component based approach (e.g. AADL)
 o IP-Reuse (e.g. OPC; IP-XACT)
 o Model Driven Engineering

• Increasing synergy
• Separation of concerns
PRESTO
(ImProvements of industrial Real Time Embedded SysTems deveOpment process)
PRESTO Overview: Objectives

• Improve upon current RTES practices
• System Level Exploration
 o To enable early functional and performance analysis, platform optimization and validation
 o Test traces exploitation (e.g. System functional/non functional requirements)
PRESTO Overview: Consortium Information

- Coordinator: Teletel (Greece)
- Budget: 8.6 M€
- Total Effort: 852 pm
- Start date: April 2011
- Duration: 36 Months

- 5 countries
 - 13 partners (8 SMEs)
PRESTO Overview: Consortium Information

Finland
- VTT
- MetaCase
- SarokalSolutions

Italy
- THALES

Greece
- teletel
- MILTECH
PRESTO Overview: Design Methodology

- Application models / Workloads
- Execution platform models
- Allocation / Mapping
- Simulation
- Execution Platform

Design Flow → Feedback
Modeling RTES for System Level Exploration

- System modeling (Hardware/Software and their allocation)
 - Approach: Classical Y-chart
 - Standards/Specifications:
 - MARTE, EAST-ADL, SDL, SCA ...
 - Integrating aspects:
 - Timing,
 - Performance,
 - WCET analysis
 - Schedulability
- Model refinements
 - Trace integration and visualization at model level
Trace Driven Analysis

• **Common Test Trace** format definition, generation and exploitation

• Types of traces:
 o Test cases/Specification traces,
 o Raw/Execution traces
 o Filtered traces/result scenarios

• Trace filtering
 o Relevant traces to reduce set of inputs/states for each trace

• Functional properties verification
 o End user initial system requirements, causal properties, etc.

• Non functional properties verification
 o Deadlines, periodic, sporadic behaviors, etc.
Software Design Flow Improvement

- Temporal logic in test scenarios
 - **Timing constraints**: Rate, latency, jitter, synchronization, etc
- Code instrumentation
 - Automatic code generation
- Trace generation, comparison
- Functional properties verified by generated traces from test executions
- Non functional properties verified by means of performance analysis tools
Hardware/Platform Design Flow Improvement

- Initial evaluation results from high level models via trace results
 - Performance estimation of application execution platform
- Virtual platforms
 - Application software binaries onto platform model (Simulation)
 - Compare different performance simulation models
- Simulation/Execution platform implementation results comparison
 - Useful for fast prototyping tool performance predictions
 - Refining initial platform models
End user case studies (MILTECH)

- Automated Test Equipment (ATE) for on-board communications based on SpaceWire (SpW)
 - Protocol Validation & Testing System for satellite on-board communications
 - SpaceWire standard support
 - Protocol Validation & Testing
 - Test cases development & execution
 - Protocol Emulators
End user case studies (THALES C&S)

- TDMA radio protocol case study
 - Part of a “Time Division Multiple Access” Radio Protocol
 - Supports only a single traffic corresponding to the transmission of short messages with fixed length
 - More details in subsequent demo
End user case studies (continued)

- **THALES Italy**
 - Frequency Hopping Ultra Wide Band (FH UWB) application for indoor position

- **TELETEL**
 - MANET device case study

- Several internal experiments for improving design practices
 - For e.g. VTT’s FFmpeg application implementation on Open Virtual Platform (OVP), **Panda Board**
Challenges in PRESTO

• Interexchange between:
 o Different standards, specifications or languages (**MARTE, SCA, SysML, AADL, EAST-ADL, fUML, SDL, SystemC ...**)
 o Different tools (**Modelio, MetaEdit+, Spectra CX, TimeSquare, ABSOLUT, MOSES, MSC Tracer...**)

• Adapting different end user design flows to the PRESTO methodology

• Positive influence on RTES community
Conclusion
Conclusion

• PRESTO
 o From high level design abstraction levels to execution platform implementation
• Improving existing RTES practices in several application domains
• Contribute to future revisions of OMG standards
 o MARTE, SysML...
• Demo———
Questions ?
Thanks!

Imran Quadri
SOFTEAM | ModelioSoft
Imran.quadri@softeam.fr

PRESTO Project Web Site:
http://www.presto-embedded.eu/

SOFTEAM R&D Web Site:
http://rd.softeam.com

ModelioSoft Web Sites:
http://www.modeliosoft.com
http://www.modelio.org
Modeling solutions.