DDS in Low-Bandwidth Environments

Workshop on Real-time, Embedded and Enterprise-Scale Time-Critical Systems
April 17-19, 2012, Concorde La Fayette, Paris, France

Jaime Martin Losa
CTO eProsima
JaimeMartin@eProsima.com
+34 607 91 37 45
www.eProsima.com
Agenda

- DDS in Low-Bandwidth environments
 - Motivations
 - DDS Behaviour out-of-the-box
 - Poor performance
 - Reasons
 - Optimizations Required
 - Performance after optimizations
 - Available Market Products/ Success Cases
 - Optimization Details
 - Discovery
 - Data Compression
 - Protocol
Motivations

DDS in Low Bandwidth Environments
Motivations

- Currently, DDS main market is Defense
 - Defense applications use intensively radio & satellite links
- Features of Tactical Radio & Satellite links:
 - Low Bandwidth: Even 2400 bps or less.
 - Shared Bandwidth: Even 32 nodes or more.
 - Disconnections and Packet Loss
 - High latency.
Motivations (II)

- **Radio link typical Capabilities:**
 - VHF Radio (Range 20 km): < 64 kbps shared
 - UHF Radio (Range 1 km): < 1 Mbps shared
 - 4-32 nodes sharing bandwidth in the same Radio net.
 - High latency, Packet loss, disconnections

- **Satellite link typical capabilities**
 - Channel bandwidth: from 64 kbps to several Mbps
 - High latency, Packet loss, disconnections
Motivations (III)

- Real Example: Spanish Army
 - Uses VHF, UFH and Satellite links intensively for Data Transmissions.
 - Propietary comms solutions for their different C2 systems
 - Poor Performance
 - Lack of Interoperability
DDS Behaviour
out-of-the-box

DDS in Low Bandwidth Environments
DDS Behaviour out-of-the-box

- Very Long discovery times
- Very Low effective throughput
- Example: 6 nodes, VHF Radios (4800 bps-shared), RTI DDS
 - Discovery: >45 Min! (unusable)
 - Effective throughput: <100 bps! (unusable)
Poor performance: Reasons

- Chatty discovery protocol
 - Requires dozens of messages for a single system
 - Number of messages = $K \times (\text{Number of Nodes})^2$
- Large Protocol Headers
 - RTPS typical header is 56 bytes long
- DDS does not compress data.
- QoS default values are not the best suited for this scenario.
Optimizations required

- **Discovery**: Reduce the number of messages
 - Should be of the order of number of nodes
 - The payload of the discovery messages should be small

- **Protocol**:
 - Reduce header length

- **Compress data and metadata**

- **Use Multicast for data, metadata & heartbeats**

- **Qos**: Set up according bandwidth and latency

- **Nack Based Reliability, Use of flow controllers, Type optimization…**
Performance after optimizations

- Discovery:
 - Number of messages = \(O(\text{number of nodes}) \)
 - Very small message payload, 100-150 bytes.
- RTPS Headers
 - Reduced from 56 to 26 bytes
- Data Compression:
 - 50%-80% of compression for typical C2 data
- Multicast for Data, Discovery metadata and heartbeats
- Nack Based Reliability, Use of flow controllers, Type optimization…
Performance Example

- **Example**: 6 nodes, VHF Radios (4800 bps-shared), RTI DDS

<table>
<thead>
<tr>
<th></th>
<th>Out of the Box</th>
<th>Optimized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery Time</td>
<td>>45 min</td>
<td><20 seg</td>
</tr>
<tr>
<td>Effective data throughput</td>
<td><100 bps</td>
<td>>2000 bps (*1)</td>
</tr>
</tbody>
</table>

(*1) Radio Effective bandwidth decreases with number of nodes.

- **Example app**: C2 system: squadrons of 6 tanks
 - Quick System Startup
 - Update position and status every 5 seconds
 - Bandwidth Room for alarms, tactical chat, enemy positions, etc.
Available Market Products

- eProsima Low Bandwidth Plugins for RTI DDS
 - eProsima LB Discovery Plugins
 - eProsima LB Compression Transport
 - eProsima LB Optimized RTPS Transport
 - eProsima LB Simulation Transport
 - Allow Radio/Satellite link simulation
 - All plugins can be used together.

- Success Case: Spanish Army
 - Spanish Army selected DDS for C2 interoperability.
 - Intensive use of VHF Radios
 - Implemented already in three main C2 systems.
Available Market Products (II)

- OpenSplice Supports ZLIB compression and static discovery
- OpenDDS, CoreDx, others: ?
Discovery Optimization Details

DDS in Low Bandwidth Environments
Overview

- What is discovery?
- Discovery phases
 - Participant discovery phase
 - Endpoint discovery phase
- eProsima LBDP
 - Endpoints Plugin: LBEDP
 - Participant Plugin: LBPDP
- User Traffic Hints.
What is discovery?

- The process by which domain participants find out about each other’s entities
 - Each participant maintains database on other participants in the domain and their entities

- Happens automatically behind the scenes
 - “anonymous publish-subscribe”

- **Does not** cross domain boundaries

- **Dynamic** discovery
 - Participants must refresh their presence in the domain or will be aged out of database
 - QoS changes are propagated to remote participants
Discovery phases

- Two consecutive phases
 - Participant discovery phase
 - Participants discover each other
 - Best-effort communication
 - Endpoint discovery phase
 - Participants exchange information about their datawriter and datareader entities
 - Reliable communication

- Steady state traffic to maintain liveliness of participants
Participant discovery phase

- Participants periodically announce their presence using RTPS DATA message
 - Contains participant GUID, transport locators, QoS
 - Initially sent to all participants in “initial peers” list, then sent periodically to all discovered participants
 - Sent using best-effort
Endpoint discovery phase

- DataWriter/DataReader discovery
 - Send out pub/sub DATA to every new participant
 - NACK for pub/sub info if not received from a known participant
 - Send out changes/additions/deletions to each participant

- Uses reliable communication between participants

- DDS matches up local and remote entities to establish communication paths
Discovery start-up traffic

User creates Data Writer Foo
Send DATA to participants in database

Already know about B
Add B to database of participants
random sleep

Add A to database of participants
random sleep

Participant created on A
Send DATA to peer hosts

Participant created on B
Send DATA to peer hosts

DataWriter DATA Foo
(sent reliably)

Add publication C to database of remote publications
Discovery steady-state traffic

Node A

Update liveliness of participant B
Periodic announcement of participant DATA

lease duration

Participant DATA B is not received
Remove participant and its pubs/subs from database

Node B

DATA participant B
Periodic announcement of participant DATA

Update liveliness of participant A
B goes down

DATA participant A
participant DATA send period

DATA participant A
Discovery Implementation

- Discovery is implemented using DDS entities known as Built-in Data Writers and Built-in Data Readers
 - Uses same infrastructure as user defined Data Writers/Data Readers
 - Participant data is sent best effort
 - Publication/subscription data is sent reliably

- Three Built-in topics (keyed):
 - DCPSParticipant
 - DCPSPublication
 - DCPSSubscription
Discovery phases: Visually

A: Hello!
B: Pleased to meet you!

End of First Phase

A: These are my Pubs
B: ok

A: ok
B: Now These are my Pubs
A: ok

A: These are my Subs
B: ok

B: Now These are my Subs
A: ok

End of Second Phase
Endpoints Discovery Optimization

- **Goals:**
 - Reduce the discovery information transmitted.
 - Reduce net traffic: Less Packets.

- **Scenario:**
 - We now most details of the participant applications in advance.

- **Solution:**
 - Suppress second discovery phase.
 - Information about endpoints stored in XML files.
Endpoints Discovery Optimization

Participant 1
- Participant Built-in Data Writer
- Participant Built-in Data Reader
- Publication Built-in Data Writer
- Publication Built-in Data Reader
- Subscription Built-in Data Writer
- Subscription Built-in Data Reader

Participant 2
- Participant Built-in Data Writer
- Participant Built-in Data Reader
- Publication Built-in Data Writer
- Publication Built-in Data Reader
- Subscription Built-in Data Writer
- Subscription Built-in Data Reader

Participant Data Msg

Best Effort

XML

XML

XML

XML
File Based Discovery

B: Pleased to meet you!
A: Hello!

B: These are my Pubs
A: These are my Pubs
B: ok
A: ok

B: Now These are my Pubs
A: ok

A: These are my Subs
B: ok

B: Now These are my Subs
A: ok

End of First Phase
End of Second Phase

Data of pubs and subs of each participant loaded from a XML File
Participant Discovery Optimization

- **Goals:**
 - Reduce even more the discovery information transmitted.

- **Scenario:**
 - We now most details of the participant applications in advance.

- **Solution:**
 - Reduce the participant information transmitted.
 - Information about participants stored in XML files.
LBPDP: Discovery Entities

Participant 1
- Participant Built-in Data Writer
- Participant Built-in Data Reader
- Publication Built-in Data Writer
- Publication Built-in Data Reader
- Subscription Built-in Data Reader
- Subscription Built-in Data Writer

Participant 2
- Participant Built-in Data Writer
- Participant Built-in Data Reader
- Publication Built-in Data Writer
- Publication Built-in Data Reader
- Subscription Built-in Data Writer
- Subscription Built-in Data Reader

Reduced Participant Data Msg

XML

Best Effort
Results

- Number of messages = $O(\text{number of nodes})$
- Very small message payload, 100-150 bytes
- Very low discovery times.
Data Compression Optimization details

DDS in Low Bandwidth Environments
Compression details

- Compression at Transport Level
- Several compression libs used
- Several modes of operation
Compression at transport level

- **Compression at Transport Level**
 - Stackable: Use it in any transport: UDP, Serial, Ad hoc...
Several compression libs

- Several compression libs used:
 - ZLIB
 - BZIP2
- Easy to add more by the user.
 - Through Public API.
- Tested:
 - LZO : LZO1X, LZO1B & LZO1F
 - UCL : UCL_NRV2B, UCL_NRV2D & UCL_NRV2E
Several modes of operation:

- Fixed Algorithm
- Algorithm depending on packet size.
- Automatic: when CPU is not the bottleneck, the plugin select the best algorithm for each package.
RTPS Optimization Details

DDS in Low Bandwidth Environments
Optimized RTPS: Overview

- Optimized RTPS for low bandwidth scenarios
- Implemented as a transport.
Optimized RTPS

- RTPS Optimizations:
 - RTPS Header from 20 bytes to 1 byte.
 - RTPS SubmessageHeader from 4 to 3 byte.
 - RTPS extraflags for DATA and DATA_FRAG eliminated (1 byte)
 - ReaderID and WriterID from 4 to 1 byte each (so 2^3 writers or readers per participant)
 - SequenceNumber from 8 to 5 or less bytes (more than enough for these scenarios)
 - ...

- Save more than 30 bytes!
eProsima LB RTPS: Implemented as a transport

- Implemented as a transport
- Stackable:
 - Can be used with any transport and it is stackable, so for example you could use:
 - LB RTPS -> UDP
 - LB RTPS -> Compression Transport -> UDP
About eProsima
About eProsima

- Experts on middleware, focused on DDS.
- OMG Members.
- RTI DDS Distributor for Spain and Portugal.
About eProsima: Products And Services

- **eProsima Products:**
 - DDS based: Plugins, add-ons, adaptors, etc

- **Services:**
 - Communication modules, App development, DDS training, Support.

- **R&D:**
 - R&D Projects with enterprises and universities.

- **Quality: ISO 9001**
 - Design, Development, Marketing and Support of Software.
Customers (I)

- **Amper Programas:**
 - BMS
 - Simacet (Main Spanish C2 System)

- **Cassidian:**
 - UAVs - Neuron, Atlante
 - Ground Station Comm Server

- **INDRA:**
 - Defense (BMS, UAV PASI)
 - Air Traffic Control,
 - SESAR, ATC Interoperability

- **Spanish Army:**
 - IDT :Tactical Data Interface
Customers (II)

- Isdefe
- Spanish Army: JCISAT, DGAM
- CATEC-FADA: R&D Aerospatial
- Santa Barbara: Armoured Vehicles
- RTI
- GMV
Customers (III)

- Tecnobit: COSMOS, Reserved Projects.
- IKERLAN: R&D.
- Navantia: F105 (Aegis)
- Boeing: Atlantida, Swim suit
eProsima Products.- Index

- **eProsima Low Bandwidth Tools for DDS:**
 - Set of plugins to enable DDS communications over low bandwidth links, optimizing the protocol and compressing the data.
 - Includes a simulation plugin to simulate different links such as Tactical Radios and Satellites

- **eProsima Client-Server:**
 - RPC over DDS

- **eProsima DDS-Web Services Bridge**
 - Enables DDS Enterprise Integration

- **eProsima DDS Non-Intrusive Recorder.**
 - Stores DDS communication history in a data base.
Thank you!

Jaime Martin Losa
CTO eProsima
JaimeMartin@eProisma.com
+34 607 91 37 45
www.eProsima.com