Using a Real-time, QoS-based ORB to Intelligently Manage Communications Bandwidth in a Multi-Protocol Environment

Bill Beckwith
Objective Interface Systems, Inc.
+1 703 295 6500
bill.beckwith@ois.com
http://www.ois.com
OMG Real-time and Embedded Workshop
July 2002

The Nature of CORBA

- ORBs abstract away network semantics
 - Application design is much less constrained by the communications infrastructure
 - But the application developer has little direct control over the communication paths and parameters used
- Thus, ORBs make it difficult to
 - Control communication channels
 - Much less manage communications bandwidth
 - Much less schedule the communications channels
The Nature of Real-time CORBA

- Real-time CORBA provides abstracts for timeliness
 - Allows applications to schedule distributed schedule processor workload
 - Real-time CORBA spec provides ProtocolProperties for controlling communication resources on a per ORB basis
 - But, real-time ORBs do not typically allow for coordination of processor resources with communication resources
- Thus, Real-time CORBA ORBs still make it difficult to
 - Manage communication bandwidth on a connection-by-connection basis
 - Granular control over scheduling of communication resources

What is QoS?

- QoS = Quality of Service
- QoS means different things to different people
- QoS definition for this presentation
 - The parameters offered by a communications transport for affecting the characteristics of one communication channel vs. another
 - Not a scheduling parameter (see Dynamic Scheduling)
Why QoS?

- Facilitates transports that can
 - maintain priority
 - distribute bandwidth
 - guarantee jitter
 - bound latency
 - etc.
- A needed general abstraction of what transports offer

Most ORBs Ignore QoS

- Middleware and ORBs have traditionally ignored transport QoS
- Middleware can’t tell transport to favor one connection over another
- Middleware must live with either
 - Bad: Default settings or
 - Worse: semantics of TCP layered on top of native transport
Quality of Service in a Real-time CORBA Application

Quality of Service = size and characteristics of pipe

Processor Scheduling
- Most real-time theory ignores the unsolvable problem
 - Scheduling multi-processor, multi-node, multi-transport distributed systems
 - Instead focuses on simpler scheduling of one processor in one system
- The harder problem is natural to the real-world problems
 - Exists in many real-time systems
 - Is not going away
End-to-end Latency and Jitter

- Crucial to identify and isolate the sources of latency and jitter
 - Key to understanding the benefits of QoS
- Contributors to latency and jitter
 - Application
 - Real-time ORB
 - Replaceable transport plug-in
 - Communications transport (protocol stack and media)*
 - Operating system (thread dispatching, interrupts, …)
 - Higher priority activities (interrupts, …)

* Frequently the largest contributor in my experience

Application Latency and Jitter

- Mostly within the control of the application engineer
- ORB should facilitate application’s control of scheduling requirements (i.e. Dynamic Scheduling for CORBA)
- ORB should aid developer in avoiding priority inversions and priority deadlock
Real-time ORB
Latency and Jitter

- A virtue or vice of the ORB implementation
- Depends on the quality of ORB implementation
- Is well within the control of the real-time ORB implementer
- A well implemented real-time ORB should add very little or no jitter
- Real-time ORBs exist that add very little latency
- Real-time ORBs exist without priority inversions

Real-Time ORB Priority Testing
Boeing Second Phase Test Results – Nov 20, 2000

Client Propagated Priority Policy Using ORBexpressRT on powerpc1 and powerpc2

runtime in seconds
Replaceable Transport Plug-in
Latency and Jitter

- Also may be developed by application engineer
- Can introduce additional latency and jitter if poorly designed
- A properly engineered transport shouldn’t introduce jitter

Communications Transport
Latency and Jitter

- Frequently the significant source of latency and jitter
- More advanced transports offer hope
 - Hope is spelled “Q” “o” “S”
 - Some are bandwidth oriented
 - Others are priority oriented
Operating System
Latency and Jitter

• Easy to test for, hard to isolate
• Caused by:
 – Poor scheduling/dispatching
 – Badly designed interrupt handlers
 – Non-real-time protocol stacks
 – Bad algorithms in support libraries
 • Watch out for printf()!
 – Poor priority management in support libraries
 • No priority inheritance in O/S mutexes
 • Running protocol stacks at lower priorities
• Only use RTOSes for real-time systems

Jitter Caused by
High Priority or Other Activities

• May or may not be under application developers control
• Where possible, remove spurious interrupts
 – If your invocations across IEEE 1394 are showing large jitter:
 Unplug the Ethernet cable from your board!
• Bus contention by I/O devices, etc.
Various Communications
Transports

- Ethernet
 - Random hardware interrupts
 - Variable workload caused by each interrupt
 - Hubs add less latency, more jitter
 - Switches add latency, less jitter
 - No QoS with standard Ethernet
 - Various technologies for switched Ethernet QoS

Various Communications
Transports (cont.)

- TCP/IP
 - Fine with Ethernet if you have no low latency, bounded latency or jitter requirements ;-)
 - Needlessly duplicates reliability that may be available as a QoS parameter in a lower level transport (e.g. ATM virtual circuits)
 - Many protocol stacks turn Ethernet’s random interrupts into random workloads
Various Communications
Transports (cont.)

- ATM
 - Random hardware interrupts
 - Variable workload caused by each interrupt
 - Complex set of QoS parameters allow some throttling of data flow
- IEEE 1394/FireWire
 - Periodic interrupts
 - Variable workload caused by each interrupt
 - QoS is isochronous bandwidth allocation

Various Communications
Transports (cont.)

- Reflective memory
 - No hardware interrupts
 - Contention for media is bounded
 - Highly predictable
 - Little available QoS parameters
- Switched Fabrics (RACEway, RapidIO, Myrinet, Infiniband)
 - No hardware interrupts
 - No media contention (N x N traffic)
 - QoS is priority for resolving contention if N is exceeded

© 2002 Objective Interface Systems, Inc.
ORBeXpress RT: A QoS-based, Real-time ORB

- Allows full control of QoS on user defined transports on a per-connection basis
- Blends user control of
 - Processor scheduling and
 - Communications channel scheduling
- Allows for any processor and communications resource scheduling algorithm
- Supports wide range of optimization criteria
 - Bounded latency (hard real-time) systems
 - High throughput, cost constrained soft real-time systems
- Introduced Real-Time QoS Interceptors™
 - Give full control to the developer to manage the ORBs use of QoS and each communication channel
 - Default interceptor conforms to Real-time CORBA 1.0 specification

User Replaceable Transports with QoS

- ORBeXpress GT was the first ORB with user replaceable transports with or in lieu of TCP/IP
- ORBeXpress RT evolved this architecture for replaceable transports by allowing application developers to define new classes of QoS as supported by their plug-in transport
Separating Application Design from Scheduling

- ORBs are a golden opportunity for managing application scheduling
- Requires access to and control of
 - Threads
 - Resource management
 - Communication channels
- As a result ORBexpress RT allows developers to separate
 - application design from
 - application scheduling

Portability Across Communication Protocols

- Combining
 - Management of processor availability and
 - Communications QoS
- Yields improved ability to port an application among differing communications protocols
- Porting then involves
 - Easy porting of source code
 - Completely new scheduling analysis
Summary

- Scheduling communications resources is important
- Coordinating the scheduling of communications resources with processor resources is essential
- Products exist that allow for this coordinated scheduling

Further Information

- Real-time CORBA 1.0
 - OMG CORBA 2.6.1 specification, chapter 24
- Real-time CORBA 2.0: Dynamic Scheduling
- Tests of various communication technologies
 - Lockheed Martin Advanced Technology Labs’ Agent and Distributed Objects Quality of Service (QoS)
- Information about CORBA for Real-Time, Embedded, and High Performance Applications
 - http://www.ois.com/resources/corb-1.asp
- Real-time and embedded CORBA discussion forum
 - http://www.realtime-corba.com