Launching Real-Time CORBA into Space

Motivation and Implementation
Contents

- Motivation
- Technologies
- Example Applications
SciSys (Space and Defence) Ltd

- Part of CODASciSys plc, a Systems and Software House founded in 1980
 - 750 staff, 120 of whom work in Space and Defence

- European experts in satellite control centres
 - ESOC, EUMETSAT, EUTELSAT, UK MoD...

- On Board Software (OBS) Group formed in 1996:
 - Flight Software e.g. CryoSat, XMM/Integral and Beagle2
 - Digital Signal Processing e.g. Multi-Mission Imager
 - Advanced Technology Investigations for British National Space Centre (BNSC), European Space Agency (ESA) and UK MoD, e.g.:
 - Intelligent Systems,
 - Formation Flying, Guidance, Navigation and Control (GNC),
 - CORBA, Remote Agents, CCSDS-SOIF
Motivation

- Trends and Issues in European Space Industry
 - Increasing diversity and complexity of missions
 - Increased reliance with on-board autonomy
 - Increased use of ground automation
 - Common software kernels (space, ground)
 - Falling budgets (want more for less…)
 - Increased role of COTS, Re-use & Open Source…
Motivation

Emerging requirements for a software framework to solve the following issues:

- Deployment of technologies that improve mission performance
 - e.g. autonomous on-board scheduling of tasks without direct ground contact
 - e.g. distributed station keeping for multi-sats
- Increased number of processors used to cope with mission complexity
 - Predictable scheduling of processors, data-buses and combined system becomes complex
- Reduced costs and risks
 - reduces development and integration effort
 - improved software quality through clear system definition of components that can be proven in isolation
 - Increases flexibility on-board, allowing re-configurations and upgrades
 - enables increased software re-use between missions
Motivation

- In general, Middleware provides a convenient layer of abstraction to provide a solution to both issues:
 - Design and implement each autonomous function as a discrete, re-usable component
 - Location transparency allows flexible system building during integration, test and flight

- ... but predictable behaviour still required so that performance of control functions on-board spacecraft can be guaranteed
Technologies

- Sponsored by BNSC and ESA, SciSys have been looking at the application of the Real-Time CORBA standard to provide this middleware abstraction layer:
 - Attractive because it is an open, mature standard with support for a variety of platforms
 - Provides an abstraction above kernel task scheduling (well understood within space community), allowing event-driven software
 - Events are real, asynchronous and possibly external to system (e.g. incoming packet, RTOS timer interrupt, hardware interrupt)

- But need to take account of the existing constraints within the Space environment…
Technologies

- Resource constrained environment
 - Radiation-tolerant processors with low production runs results in lower performance than current "state-of-the-art", e.g. 20 MHz
 - Similar issues with memory, e.g. 5-20 Mbytes

- Communication links:
 - Space links characterised by small bandwidth, long latency, packet errors
 - On-board data buses evolving from 1553 (low bit rate, master-slave bus) to CANbus and SpaceWire (high bit rate network)
 - High number of serial links (analogue, digital pulse and digital discrete)
Technologies

- High availability, real-time systems
 - Run-time Environment
 - Ravenscar profile of Ada95, e.g. ORK
 - RTOS, e.g. VxWorks, RTEMS
 - Programming Languages:
 - Ada95 and ANSI C (not C++ or Java!)
 - Predictable response times
 - Rate monotonic scheduling
 - Predictable memory usage
 - Implies not using a heap

- Missions have long life-times
 - Requirement of supplier support for life-time of mission
 - Customers generally requires source-code
 - In-flight remote upgrades only!
Technologies

- Communications Protocols:
 - Use of TCP/IP within spacecraft discounted because of non-deterministic timing characteristics
 - no priority model
 - CCSDS Spacecraft On-board InterFaces (SOIF)
 - Current standardisation effort within international space community (inc. ESA, NASA, Japan)
 - Layered communications architecture based on OSI model
 - Data Link, Network and Transport Layer service definitions
 - Application Layer service definitions, including…
Technologies

- **SOIF Message Transfer Service**
 - Sending of discrete arbitrary-sized messages across connections between distributed applications

 - Priority ordered delivery, dependant upon lower-layer communication protocols e.g.
 - direct onto SpaceWire network
 - over “SOIF” transport layer protocol (simplified TCP/IP, e.g. SCPS-TP?)

- SciSys providing European lead in service specification (with JPL)
Technologies

- Embedded Real-Time ORB
 - Market survey (2000) found none suitable for embedding in spacecraft
 - SciSys developed prototype ORB – “microORB”
 - IDL-to-C mapping, (Ada95 support under development), Real-Time CORBA specification, variety of OSs (RTEMS, VxWorks, VDK, Linux, POSIX), AMI, IIOP, GIOP mapping to SOIF Message Transfer Service
 - Light-weight Naming and Trader services
Example Applications

- **RATE II**
 - BNSC sponsored simple CORBA in Space demonstrator
 - SSTL’s UoSAT-12 mini-satellite in LEO
 - TCP/IP over space link to control centre
 - Simple C application using microORB deployed on UoSAT-12 in May 2003
 - Attitude Determination using Fuzzy Logic integrated with UoSAT-12 flight software
 - Communicating over space link using CORBA/IIOP with Windows GUI using ORBacus in control centre
Example Applications

- **RAMA**
 - ESA CryoSat mission’s Data Handling subsystem (written in Ada95) re-engineered as autonomous agents communicating using Real-Time CORBA within a simulated spacecraft
 - ESA-sponsored investigation into deterministic distributed computation model using Real-Time CORBA and SOIF Message Transfer Service
 - Demonstration of operator-driven on-line replacement of an agent (mechanism and effects on predictability)
Future Directions

- Fault-tolerant computing
 - Cold/warm-standby processors (e.g. bank of non-rad-hardened to reduce cost)

- Software Engineering process
 - AADL, UML Profile for Schedulability, Performance and Time Specification

- OMG Space Domain Task Force
 - SciSys are the BNSC representatives
 - RFI 2 CORBA-based Space Communications
Conclusions

- Trends within Space industry leading to use of real-time and embedded middleware

- RT-CORBA provides many of the characteristics required and is being actively investigated through consideration of issues, prototyping and practical demonstrators