CORBA in Control Systems

Dr. Shahzad Aslam-Mir, Prism Technologies
Dr. James L. Paunicka, Boeing
Eric J. Martens, Boeing
• Sam’s slides:
 – Intro
 – Control Systems
 – Importance of CORBA in Control
 – Current schools of thought on CORBA applicability in control systems
 – Historical perceived limitations on CORBA use in control loops
 – Case studies
Flight Control Example

- Standards-based CORBA middleware used in live flight of a commercial rotorcraft UAV in May 2002
 - Flight test was collaboration between Boeing and Georgia Tech School of Aerospace Engineering
 - Boeing – embedded software architecture, integration of software on embedded processing platform
 - Georgia Tech – flight vehicle, vehicle control software
Flight Control Example

- Flight test was part of the DARPA IXO (Information eXploitation Office) SEC (Software Enabled Control) program

- Significant technical direction from Air Force Research Laboratory
 - Information Systems, Advanced Architecture and Integration organization
 - Air Vehicles, Control Systems Development and Applications organization

- Leverages OCP (Open Control Platform) being developed on the SEC program
 - Middleware platform that adapts Boeing Bold Stroke software technology to the domain of flight vehicle control
 - ACE/TAO
 - Run-time optimizations to support flight vehicle control
 - API for flight vehicle control applications ("Controls API")
 - Developed by Boeing-led team that also includes Georgia Tech, University of California-Berkeley, and Honeywell
• SEC funds two technology areas
 – Control technology for flight vehicles
 » Fixed-wing and rotorwing UAVs
 » Multiple research teams from industry and academia
 – Enabling Software technology
 » Adapt Boeing Bold Stroke software technology to the domain of flight vehicle control
Commercial UAV Flight Vehicle

• Yamaha R-Max autonomous helicopter
 – Couple hundred pounds,
 – 10-foot main rotor diameter

• Fitted with open systems avionics platform for SEC program experimentation
 – Sensors
 » IMU (Inertial Measurement Unit), GPS, sonar for altimeter, magnetometer for compass
 – Actuators
 » Throttle, main rotor, tail rotor
 – Comms
 » Wireless ethernet
 » Wireless serial link
 – Onboard compute platform
 » Single 266-MHz Pentium II processor
R-Max Vehicle
Autonomous Helicopter Electronics

R-Max Actuators (blades & throttle)

Yamaha Control System (YCS)

Yamaha R/Max Sensors

YCS Actuator Cmd’s

R-Max Actuators (blades & throttle)

Open Systems Equipment Bay

Actuator Command Path Switch (Pilot & YCS controlled)

R/C Link

R/C Pilot Control Box

Yamaha Hardware Side

Wireless Ethernet Link

Wireless Serial Link

R/C Pilot Control Box

Open Systems Avionics

YCS System & Sensor Data

YCS Actuator Cmd’s

GIT Actuator Cmd’s

IMU

GPS

Sonar

Magnetometer
Flight Test Embedded Software Architecture

• Major Elements
 – Lowest level – VxWorks RTOS and appropriate BSP (Board Support Package)
 – Middleware level – Open Control Platform from SEC program
 – Application software level – multiple components written by Georgia Tech

• Run-time configuration of CORBA-based software
 – Middleware triggered execution of multiple software components with EC (Event Channel)
 » 100 Hz operation
 • Triggered the start of inner-loop control processing with the arrival of IMU data
 – Middleware mediated I/O among the various aircraft sensors, flight control actuators, and multi-level control loops
 – Implemented a software reconfiguration in flight
 » Neural net adaptive controller switching to a conventional inverting controller
Flight Test Embedded Software

- Multiple Application Components, including
 - I/O Handler
 - Navigation Processing
 » Also handles data link updates
 - Controller Processing

- OCP Frame Manager launches 100-Hz loop after 16-byte IMU burst
 - Pushes an event to start I/O Handler

- Other components also initiated in 100-Hz frame with event pushes

- Middleware-Based Reconfiguration accomplished with OCP activating and deactivating different controllers

WindView Plot of OCP-Based Application
Flight Test Timeline

- R/C (Radio Control) pilot performed take-off (and subsequent landing) using baseline Yamaha flight control system
- While in flight, rotorcraft switched to open systems research flight control system
 - With RT-CORBA-based flight control program
- Transition between vehicle controllers (neural net to conventional inverting controller) triggered by ground station command and accomplished by middleware

Video from Flight Test
• Sam’s slides:
 – Analysis of where we are
 – Conclusions