Implementation of a
Fault-Tolerant Real-time Event Channel

Chris Gill & Huang-Ming Huang
Dept. of Computer Science and Engineering
Washington University
One Brookings Drive
St. Louis, MO 63130

{cdgill, hh1}@cse.wustl.edu

This work was supported in part by the DARPA PCES program,
contracts F33651-01-C-1847 and F33615-03-C-4111

OMG Real-time and Embedded Systems Workshop
Reston, VA, USA July 14, 2004
Implementation of a Fault-Tolerant Real-Time Event Channel

FT/RT Event Channel (FTRTEC)

- Provide fault-tolerance (fail-stop) within real-time constraints
- Offer useful configuration knobs, e.g., to Quality Connectors
 - Replicas: where and how many, transactional replication depths
- Service-level implementation
 - Less dependent on ORB-level FT features (mainly need IOGR abstraction)
Implementation of a Fault-Tolerant Real-Time Event Channel

FTRTEC Fault-Detection and Fail-Over

- Maintain connections
 - Connected == alive
 - Among primary/replicas
 - To replication manager service
 - Current implementation uses TCP
- Communication of replica updates
 - Must be transactional
 - To given depth of replication
 - But need not be synchronous
 - CORBA AMI or two-way calls ok
 - But not (unreliable) one-ways

Replicated Event Channels
Implementation of a Fault-Tolerant Real-Time Event Channel

Subscription Replication Trade-Offs

- Risk vs. Blocking times
 - Transaction depth to tradeoff reliability and responsiveness
 - Requires two phase protocol for all replicated objects
 - Use two-way or AMI for assured-replication
 - To specified depth
 - Use oneway operations for soft-replication
 - Beyond specified depth
Implementation of a Fault-Tolerant Real-Time Event Channel

Message vs. State Replication

- Multi-faceted Objects:
 - Facade to flatten representation
 - Message-based replication
 - At object, not ORB level
- Transient vs. persistent state
 - Only replicate subscriptions currently
 - Use transactions for assurance
 - Protects the event stream
 - Even during subscription
 - Protecting events is plausible
 - Using redundant paths
 - But would require split/join semantics
 - Potential area of future work
Implementation of a Fault-Tolerant Real-Time Event Channel

Two-Way vs. AMI Calls for Replication

Transaction depth = 3

- Initial two-way call from client to primary
- Two-way calls to the next replica result in sequential processing of updates
- AMI calls to replicas from primary instead allow overlapped processing of updates
- Offers replication speed-up for transaction depth > 2
Implementation of a Fault-Tolerant Real-Time Event Channel

Experimental Testbed

- 2 Pentium-IV 2.5 GHz machines with 500MB RAM, 512KB cache
- 2 Pentium-IV 2.8 GHz machines with 500MB RAM, 512KB cache
- KURT-Linux 2.4.18
- 100 Base-T Ethernet, isolated network for experiment runs
- ACE version 5.3.5 / TAO version 1.3.5 (pre-release version)
- Experiments were run as root in real-time scheduling class
Implementation of a Fault-Tolerant Real-Time Event Channel

Original FTRTEC vs. RTEC Benchmarks

- Metrics: event throughput, subscription latency (TAO RTEC is baseline)
- TAO FT/RT EC vs. TAO RTEC, no replicas for FTRTEC
- 2 2.8 GHz Pentium boxes, KURT-Linux, Ethernet
- Suppliers/consumers on same machine, EC on a separate machine
- FTRTEC two-way event overhead/fail-over trade-off (AMI optimization WIP)

Baseline EC vs. FTRTEC Latency Comparison
Implementation of a Fault-Tolerant Real-Time Event Channel

Current FTRTEC vs. RTEC Latency Benchmark

- We made several key FTRTEC improvements
 - Client EC gateway uses a separate ORB (event pushes bypass IOGR interceptors)
 - Moved IOGR service context processing to not impact events
 - Removed a redundant service context id check from FTCORBA core
- And re-ran experiments with pre-release TAO 1.4
Implementation of a Fault-Tolerant Real-Time Event Channel

Subscription Time Scalability

- Metrics: subscription latency/depth with two-way vs. AMI replication
- 2 2.8 GHz + 2 2.6 GHz Pentium boxes, KURT-Linux, Ethernet
- AMI/two-way active replication from primary to replicas up to transaction depth
- One-way semi-active replication after transaction depth

![Graph showing FTRTEC Subscription Time](image-url)
Implementation of a Fault-Tolerant Real-Time Event Channel

FTRTEC Normal, Fail-Over Event Latency

- Metrics: fail-over latency versus normal event latency
- 2 2.8 GHz & 2 2.6 GHz Pentium boxes, KURT-Linux, Ethernet
- Approximately a factor of 15 greater latency for fail-over (still, > 80 Hz)

FTRTEC Normal and Failover Event Latency

![Graph showing comparison of normal and failover event latency with transaction depth](image-url)
Concluding Remarks

• Using CORBA AMI optimizes primary to replica updates
 – Exploits overlapped processing of updates
 – While still allowing transactional semantics
• Able to trade-off real-time performance with fault-tolerance
• Removing replication mechanisms from event paths is key
• FT/RT Event Channel is available open-source
 – ACE version 5.3.5 / TAO version 1.3.5 and later
• FT/RT EC integrated into LMCO MINERS demo in December
• Thanks to Joe Cross (DARPA), and Sylvester Fernandez and David Mattioli (LMCO)
• Thanks also to Andy Gokhale, Bala Natarajan, and Doug Schmidt at Vanderbilt University