Multiple Independent Levels of Safety & Security (MILS): High Assurance Architecture

Gordon M. Uchenick
Sr. Mentor/Principal Engineer
What is High Assurance?

- To the FAA:
 - One failure per 10^9 (1 Billion) hours of operation
 - How long is a Billion hours? Do the math!
 - $1,000,000,000$ hours $\times \frac{1\text{ day}}{24\text{ hours}} \times \frac{1\text{ year}}{365.25\text{ days}}$
 - $114,077$ YEARS!

- For National Security Systems processing our most valuable data under most severe threat:
 - Failure is *Unthinkable*

- *How do we implement systems that we can trust to be this robust?*
Industry Standards

- RTCA DO-178B, *Software Considerations in Airborne Systems and Equipment Certification*
- ARINC-653, *Avionics Application Software Standard Interface*
- ISO-15408, *Common Criteria for Information Technology Security Evaluation*
- DCID 6/3, *Protecting Sensitive Compartmented Information Within Information Systems*
<table>
<thead>
<tr>
<th>Common Criteria</th>
<th>MSLS / MLS Separation Accreditation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Robustness (EAL3)</td>
<td>System High Closed Environment</td>
</tr>
<tr>
<td>Medium Robustness (EAL4+)</td>
<td>System High Open Environment</td>
</tr>
<tr>
<td>High Robustness (EAL6+)</td>
<td>Multi Level Separation</td>
</tr>
<tr>
<td>DCID 6/3 Protection Level 5</td>
<td>Multi Nation Separation Accreditation</td>
</tr>
<tr>
<td>DO-178B Level A</td>
<td>Failure is Catastrophic</td>
</tr>
</tbody>
</table>
Fail-first, Patch-later

- Most commercial computer security architectures
 - The result of systems software where security was an afterthought
 - Operating systems
 - Communications architectures
 - **Reactive** response to problems
 - Viruses, Worms, and Trojan Horses
 - Hackers and Attackers
 - Problems are only addressed *after* the damage has been done

- Inappropriate approach for mission critical systems
 - Does not safeguard information or the warfighter
 - **Proactive** measures are required to *prevent* damage
Reactive approach failures:

- How many PC anti-virus programs can detect or quarantine malicious device drivers?

 - None!

- What can an Active-X web download do to your PC?

 - Anything!
What happens when network data is processed in privilege mode?
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Wild Creatures of the Net: Worms, Virus, . . .
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Under MILS Network Data and Privilege Mode Processing are Separated
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Monolithic Applications

Monolithic Applications

Monolithic Application Extensions

MLS Requires Evaluatable Systems!

User Mode

Privilege Mode

Kernel

Fault Isolation

Periods Processing

Network I/O

Information Flow

Data isolation

Auditing

DAC

MAC

Device drivers
The Whole Point of MILS

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Really very simple:

- Dramatically reduce the amount of safety/security critical code

So that we can

- Dramatically increase the scrutiny of safety/security critical code
The MILS Architecture

Three distinct layers (John Rushby, PhD)

- **Separation Kernel**
 - Separate process spaces (partitions)
 - Secure transfer of control between partitions
 - Really small: 4K lines of code

- **Middleware**
 - Application component creation
 - Provides secure end-to-end inter-object message flow
 - Device Drivers, File Systems, Network Stacks, CORBA, DDS

- **Applications**
 - Implement application-specific security functions
 - Firewalls, Cryptomod, Guards, Mapplet Engine, CDS, Multi-Nation Web Server, etc.
Separation Kernel
- Microprocessor Based
 - Time and Space Multi-Threaded Partitioning
 - Data Isolation
 - Inter-partition Communication
 - Periods Processing
 - Minimum Interrupt Servicing
 - Semaphores
 - Synchronization Primitive’s

MILS Middleware
- Traditional RTOS Services
 - Device Drivers
 - File Systems
 - Token and Trusted Path
- Traditional Middleware
 - CORBA (Distributed Objects)
 - Data Distribution (Pub-Sub)
 - Web Services
- Partitioning Communication System (PCS)
 - Global Enclave Partition Comm
 - TCP, UDP, Rapid-IO, Firewire, ...
 - Partition Based Attestation

And nothing else!
Why Does Neatness Count?

Safety and Security enforcing functions must be:

- **Non-bypassable**
 - Enforcing functions cannot be circumvented

- **Evaluatable**
 - Enforcing functions are small enough and simple enough for mathematical verification

- **Always Invoked**
 - Enforcing functions are invoked each and every time

- **Tamperproof**
 - Subversive code cannot alter the enforcing data or functions
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Application Modules
- CSCI (Main Program)
 - SL (S) Application
 - SL (U) Application
 - SL (TS) Application
 - MLS Downgrader

Rushby’s Middleware

Kernel
- Fault Isolation
- Periods Processing

Privilege Mode
- Auditing
- Network I/O
- DAC

Data isolation
- MAC

Applicaiton Kernel
- Device drivers
- File systems

Evaluatable Applications
On an Evaluatable Infrastructure
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

The MILS Architecture

- MILS SEPARATION KERNEL
- Processor

Middleware

U (SL)
Application

C (SL)
Application

S (SL)
Application

TS (SL)
Application

TS/S (MLS)
Application
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

U (SL)
Application Middleware
Windows

C (SL)
Application Middleware
Linux

S (SL)
Application Middleware
Mac OS X

TS (SL)
Application Middleware
Solaris

TS/S (MLS)
Minimal Middleware
Minimal Runtime

A MILS Workstation? (later…)

Processor
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

- Extend single node enforcement to multiple nodes
- Do not add new threats to data Confidentiality or Integrity
- Enable distributed Reference Monitors to be **NEAT**
- Optimal inter-node communication
 - Minimizing added latency (first byte)
 - Minimizing bandwidth reduction (per byte)
- Fault tolerance
 - Infrastructure must have no single point of failure
 - Infrastructure must support fault tolerant applications
The Partitioning Communications System (PCS) is communications middleware for MILS

- Always interposed in inter-node communications
- Interposed in some intra-node communications also
- Parallels Separation Kernel’s policies
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

PCS Specific Requirements

- Strong Identity
 - Nodes within enclave
- Separation of Levels/Communities of Interest
 - Need cryptographic separation
- Secure Configuration of all Nodes in Enclave
 - Federated information
 - Distributed (compared) vs. Centralized (signed)
- Secure Loading: signed partition images
- Secure Clock Synchronization
- Suppression of Covert Channels
 - Bandwidth provisioning & partitioning
 - Network resources: bandwidth, hardware resources, buffers
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Inter-node Communication
Partitioning the Channel

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

- Network middleware provides libraries for application use
 - e.g.,
 - Real-time CORBA
 - Data Distribution Service
 - DBMS libraries
 - Web-based libraries (.NET, Web Objects, etc.)
- Run in application partitions
- Provide application with higher level interface to network libraries (e.g., Socket libraries)

- Some applications use socket libraries directly
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

System Architecture with PCS

Application

CORBA, DDS, Web, etc.

MILS Socket Lib

PCS

Network Protocols & Drivers
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

PCS Cross-Node Information Flow

Node 1

PCS (MLS)
U (SL)
S (SL)
TS (SL)
TS,S (ML)
MW
MW
MW
MW

Node 2

PCS (MLS)
U (SL)
S (SL)
TS (SL)
TS,S (ML)
MW
MW
MW
MW

Separation Kernel

Processor

Processor
Real-time MILS CORBA

- Real-time CORBA can take advantage of PCS capabilities
 - Real-time CORBA + PCS = Real-time MILS CORBA
 - Additional application-level security policies are enforceable because of MILS SK and PCS foundation
- Real-time MILS CORBA represents a single enabling application infrastructure
Synthesis yields an unexpected benefit

- Flexibility of Real-time CORBA allows realization of MILS protection
- **MILS is all about location awareness**
 - Well designed MILS system separates functions into separate partitions
 - Takes advantage of the MILS partitioning protection
- **Real-time CORBA is all about location transparency**
 - The application code of a properly designed distributed system built with Real-time CORBA will not be aware of the location of the different parts of the system.
 - CORBA flexibility allows performance optimizations by rearranging what partitions each system object executes in.

System layout can be corrected late in the development cycle

Combination of MILS and Real-time CORBA allows system designer

- **Rearrange system functions to take advantage of protection without introducing new threats to data confidentiality and integrity**
MILS DDS

- OMG Data Distribution Specification
 - Data-centric publish-subscribe

- PCS protects DDS implementations from
 - Attack by other partitions
 - Network attacks
 - Covert channels

- DDS can take advantage of PCS capabilities
 - PCS + DDS = MILS DDS
 - Application-level security policies are enforceable because of MILS SK and PCS foundation
Web Services Overview

- The Web is all about the user interface
- Web Services are all about providing dynamic services driven from and to feed the user interface
- Programmable application logic accessible using standard Internet protocols
Web Services Over PCS

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Application

Web Services Security

Web Client, Servers, Services

Partitioning Communications System

Separation Kernel
High Assurance MILS Workstation

Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

Application (User Mode) Partitions

MILS Separation Kernel

Supervisor Mode
MMU, Inter Partition Communications Interrupts

Processor

RT CORBA DDS
Guest OS / Run-Time Libraries

RT CORBA DDS
Guest OS / Run-Time Libraries

RT CORBA DDS
Minimum Run-Time Library

S, TS
(SL)

TS
(SL)

S, TS
(MLS)

Network Interface Unit (MSL)
File Sys. Driver (MSL)
Token Service Driver (MSL)
Display Manager (MSL)

PC System (MLS)

Trusted Path

RT CORBA DDS
Guest OS / Run-Time Libraries

MSL

MLS

SL
Multiple Independent Levels Of Safety And Security (MILS): High Assurance Architecture

I/O Device

I/O Device

I/O Device

Crypto

Display Manager

Token Service Driver

File Sys. Driver

Network Interface Unit

PCS

RT CORBA DDS

Guest OS / Run-Time Libraries

RT CORBA DDS

Guest OS / Run-Time Libraries

RT CORBA DDS

Minimum Run-Time Library

MILS Workstation Network Access

Application (User Mode) Partitions

Network Interface Unit

Trusted Path

PCS

Trusted Path

File Sys. Driver

File Sys. Drive
Really very simple:

- Dramatically reduce the amount of safety/security critical code

So that we can

- Dramatically increase the scrutiny of safety/security critical code

To make

- Development, certification, and accreditation more practical, achievable, and affordable.