Evaluating Adaptive Resource Management for Distributed Real-Time & Embedded Systems

Nishanth Shankaran, Xenofon Koutsoukos, Douglas C. Schmidt, & Aniruddha Gokhale

Department of EECS, Vanderbilt University
Nashville, TN
Motivation

- **Context**
 - End-to-end QoS requirements
 - Resources constraints
 - e.g., Total ship computing, autonomous air surveillance

- **Problem**
 - Operate in *open* & unpredictable environment
 - No accurate *apriori* knowledge of resource availability/demand
 - Need to avoid over-utilization & under-utilization

- **Solution**
 - *Adaptive resource management*
Case Study: DRE Multimedia System (1/2)

- System Architecture
 - Data Source
 - UAV
 - Data Distributor
 - Base Station
 - Data Sinks
 - End Receivers
- Application QoS
 - Latency
 - Inter-frame delay (jitter)
 - Frame rate
 - Picture resolution
- System Resources
 - UAV computing power
 - Network bandwidth
Case Study: DRE Multimedia System (2/2)

- Application Classes
 - Guaranteed & best-effort
- Application Parameters
 - Frame rate, picture resolution, & compression scheme
- System condition (current resource utilization)
 - Under-utilization
 - Large amount of residual resources
 - Over-utilization
 - Loss of resources & increase in resource demand
- Effective utilization
 - Desired system condition
Hybrid Adaptive Resource Management Middleware (HyARM)

- **Central Controller**
 - Hybrid control theoretic techniques
 - Modify application input parameters via application adapters based on current resource utilization

- **Application Adapters**
 - Modify application input parameters based on inputs from central controller

- **Resource Monitors**
 - Observe resource utilization
 - Per application & net system resource utilization

HyARM performs

- Online monitoring of resource utilization & application QoS
- Dynamically modifies application input parameters
- Manages
 - System resource utilization
 - Application performance (QoS)

HyARM features a *feedback control loop*
Implementing HyARM with Real-time CORBA (1/2)

- **Software Infrastructure**
 - Real-time CORBA
 - A/V Streaming Service
- **CORBA Servants**
 - Monitors
 - Controller
 - Application & Application Adapters
- **Monitors**
 - Implement the Observer Pattern
 - CPU Monitor
 - Network Monitor
Implementing HyARM with Real-time CORBA (1/2)

- Application - Video Encoder
- Application Adapter
 - Modify input frame rate and/or resolution and/or compression scheme
- Controller
 - Compute application input frame rate & / or resolution & /or compression scheme

Legend
- - - - - - Remote Object Call
n applications \(\{ T_i \mid 1 \leq i \leq n \} \)

m resources \(\{ R_j \mid 1 \leq i \leq m \} \)

Sampling period \(T_s \)

\(U(k) \) : resources utilization at sampling period \(k \)

\(U_g(k) \) : resource utilization of guaranteed applications

\(U_{be}(k) \) : resource utilization of best-effort applications

\(U^s \) : Desired utilization set-point

\(U_g^s \) : Desired utilization set-point of guaranteed applications specified at system initialization
\(U_{be}^s(k) \): Desired utilization set-point of best-effort applications

\[U_{be}^s(k) = \max \{ (U^s - U_g(k)), 0 \} \]

Objective

\[\max (U(k)) \text{ subject to } U_j(k) \leq U_j^s \{ R_j | 1 \leq i \leq m \} \]

Application parameters

- *Continuous* variables
 - Resolution
- *Discrete* variables
 - Frame rate
 - Compression scheme
Hardware Testbed & QoS Requirements

- **Processors**
 - PIII 600 MHz
 - Memory 256 MB
 - RT Linux (Timesys)

- **Software**
 - Ffmpeg 0.4.9-pre1
 - Iftop 0.16
 - ACE 5.4.3 + TAO 1.4.3

- 1 Guaranteed & 1 best-effort application in each UAV

- Resource utilization set-point (each resource)
 - System utilization 0.69
 - Guaranteed 0.50

Emulated Wireless Link
Empirical Results : Resource Utilization (1/2)

- Compared resource utilization of
 - CPU
 - UAV1
 - UAV2
 - Wireless Network (emulated)
Empirical Results : Resource Utilization (2/2)

- Results indicates resource utilization is maintained within bounds
- HyARM
 - Adapts to resource availability & demand
 - Ensures effective & adaptive resource management for DRE systems
Empirical Results: Latency & Jitter (1/2)

- Compared real-time video properties
 - Latency
 - Jitter
- Results indicates HyARM enables better real-time performance
 - Lower latency & jitter for guaranteed applications
Empirical Results: Latency & Jitter (2/2)

- HyARM
 - Improves overall system performance
 - Ensures QoS requirements of guaranteed applications are met
Related Work

- Feedback Control Scheduling (FCS)
 - Dynamically adjust resource allocation
 - Software feedback loop
 - Designed & implemented using control theoretic methodologies
 - Can operate only on continuous control variable
 - Not applicable to
 - Avionics
 - Total ship computing
- CAMRIT applied control theoretic techniques
 - TCP buffer used as indictor of network resource utilization
 - Performs resource management of network resource
 - All applications are of the same priority
- QuO
 - Bridge between application QoS requirements & QoS capabilities of network
 - Relies on underlying network to handle fluctuations in network resource availability / demand
Future work

- De-centralized controller
- Upgrade implementation of HyARM from CORBA to CCM
- Use MDD to model & develop adaptation algorithms
- Resource Allocation and Control Engine (RACE)
 - Pluggable framework for variety of resource allocation & adaptation algorithms
 - Resource allocation – bootstrapping
 - Runtime adaptation
 - Manages system resource utilization & application performance
Concluding Remarks

- HyARM ensures
 - Effective resource utilization
 - QoS requirements of guaranteed applications are met
- HyARM enables adaptive resource management for DRE systems
 - Improves
 - Resource utilization
 - Application Performance
 - Preserves application relative priority
- Source available for download at http://www.dre.vanderbilt.edu/~nshankar/HyARM