Composability Problems and Mitigation in Real-Time Software Defined Radio (SCA) Systems

- David F. Carlson, Chronolytics Inc.
- Raymond Lindenmayer, Harris Inc., RFCD

The full length paper is available at:
Agenda

- Future Situational Awareness: Customer requirements
- SCA Background
- Composability Shortfalls
- Mitigations to Shortfalls
 - Active Objects
 - Rate Monotonic Analysis
 - Deadline Monotonic Analysis
- Recommendation
"At the end of the day, squads and platoons will continue to win our battles..."

"In an expeditionary environment, they must be so well networked with other Joint capabilities that whichever are in contact can win."

CSA’s JEM White Paper, APR 05

Gaps Mitigated
1. Converged Joint Voice/Data
2. SA Capability
3. Mounted to Dismounted
4. Complex Terrain LOS / BLOS
5. Joint, Air to Ground
6. Limited BC OTM
Background on SCA

- SCA is a collection of CORBA interfaces known as the Core Framework (CF)
- The SCA specifies a POSIX subset known as the AEP
- The functions of the CF are implemented by the Operating Environment (OE)
- The radio applications designed to the CF are known as Waveforms (WF)
Goals of SCA

• Ease of integration
• Standardize WFs so that investment can be amortized and interoperability ensured
• Separate applications (WF) from the platform such that low-end single WF or high-end multi-WF platforms can exist
Problem Statement: SCA is Not (Currently) a Component Architecture

- Component architecture enables increased SW developer productivity by providing function with the otherwise required “global knowledge” of the CF and OE
- Current SCA has limited sense of “capacity” of shared resources
- Synchronous CORBA interfaces (SMI) suggest a conventional “thread & mutex” implementation
- “thread & mutex” widely recognized throughout the OO and RT communities as non-scalable and non-composable
- No deadline/latency contracts
Mitigation for Composability

- Active Object (AO) is a common design pattern used to improve composability
Limitations to Active Object

- Still based on “global” priority. Weak latency guarantees.
- Blocking SMI CORBA in CF effectively prevents latency guarantees
- Pthread per-object fails to scale down to “lightweight” objects
- Fails to compose with multiple / ordered protected objects (nested locks)

David Carlson / Ray Lindenmayer
OMG RT 2006
Mini RMA Tutorial

• Tasks (tasklets) must be non-blocking
• Tasklets run at fixed priority proportional to their utilization
• Context switching is “zero” overhead
• Schedulability of n-tasks:

\[U(n) = n(2^{1/n} - 1) \]

• Which converges for large \(n \) to \(\ln(2) \) or 69%
• For a schedulable set of tasks, RMA is known to be optimal (for fixed priority scheduling)
Rate Monotonic Alternatives to “Thread & Mutex”

- Simulation community has used RMA frequency-based scheduling since the early 90’s
- In the early 90’s RMA extended to sporadic tasks – Deadline Monotonic Scheduling
- DMS used very successfully within the RT control community (vis., large printing equipment)
Advantages of Deadline Monotonic Scheduling

- Facilitates “design for latency”
- SW requirements for real-time operation are allocated from system requirements (Tracability)
- Active Objects are used as “anonymous” latency contract servers
- Specification of RT components possible based on deadline/latency and utilization
DMS Scheduling Contracts

David Carlson / Ray Lindenmayer
OMG RT 2006
DMS Advantages to Software Defined Radios

David Carlson / Ray Lindenmayer
OMG RT 2006
DMS Advantages to Software Defined Radios

- Integration largely superposition of components
- RT “owned” by framework – performance/metrics centralized. Overruns/failures are tracked
- Framework permits components design of reusable toolkit rather than integration time tweaks of OE thread model
- Apps written to CF/Toolkit -- abstracted from “global” OE/HAL/POSIX
- DMS provides lingua-franca for defining real-time components
Next Steps

• Improve RT ORB features that support Asynchronous Messaging (AMI)
• Get involved with setting direction for future SCA updates that will allow the flexibility of (if not require) RMA-based solutions