Integrating DDS into secure net-centric systems: A pragmatic approach

RTESS, Washington DC, July 2008

Ariel Salomon
Senior Software Engineer
Real-Time Innovations, Inc.
ariel.salomon@rti.com

Gerardo Pardo-Castellote, Ph.D.
Chief Technology Officer
Real-Time Innovations, Inc.
gerardo@rti.com
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with Role-Based Access Control (RBAC)
- Additional Concerns
- Conclusion
Motivation

- Net-centric systems rely on information sharing…
 - They are built on top a Shared Information Space or Common-Operational Picture
 - They assume information availability where and when it is needed
- As the system scope expands Security/IA becomes a concern
 - Information flow must be restricted to the intended/authorized recipients
 - Can no longer assume a single protection domain.
Application Requirements

- High-level goal:
 “control and restrict access to information such that it is only accessible to the intended/authorized recipients.”

- Secondary goals include:
 - guaranteed access to the information by the authorized users
 - prevent denial of service attacks
 - audit trails
 - ensure non-repudiation (guarantee identity of the source of the information)
 - deployable within the exiting Internet Environment

- This breaks down into
 - Functional requirements:
 - Authentication, Confidentiality, Integrity
 - Availability
 - Non-functional requirements:
 - Manageability, Accountability, Assurance
 - Deployment requirements:
 - Work in WAN environment, operate across NATs / IPv6 / lossy and bandwidth-constrained channels
 - Work in conjunction with other network security measures
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
DDS Communications model

Provides a “**Global Data Space**” that is accessible to all interested applications.

- Data objects addressed by **Domain**, **Topic** and **Key**
- Subscriptions are **decoupled** from Publications
- Contracts established by means of **QoS**
- Automatic **discovery** and **configuration**
Security Terminology

- **Principals and Subjects**
 - The active entities
 - Principals are the entities that can be granted access control (e.g. the human users).
 - Subjects are active computer-system entities that bound to principals and operate on their behalf. Subjects perform the actions on the objects.

- **Objects**
 - The passive entities
 - can be accessed or manipulated
 - e.g. memory, files, sockets, semaphores, etc.

- **Access operations**
 - the actions that can be performed on the objects
 - e.g. read memory, write a message on a socket.

- **Security model**
 - The architecture, concepts, and algorithms used to define the access control restrictions on the objects and the access rights given to principals.
 - Examples are Mandatory Access Control (MAC), Role-based Access Control (RBAC), Discretionary Access Control (DAC), etc.

- **Security policy**
 - a set of goals, rules, and regulations regarding the access rights to information and objects.
 - defines what is allowed and what is not allowed within a particular security model.
 - Examples are the Bell LaPadula model, the Biba model, Chinese Wall, etc.
Discovery records about entities are also security objects.

security subject

Topic “green” Topic “orange”
DDS communications model

- Publisher declares information it has and specifies the Topic
 - and the offered QoS contract
 - and an associated listener to be alerted of any significant status changes
- Subscriber declares information it wants and specifies the Topic
 - and the requested QoS contract
 - and an associated listener to be alerted of any significant status changes
- DDS automatically discovers publishers and subscribers
 - DDS ensures QoS matching and alerts of inconsistencies
DDS access control model

Joining a domain is an access operation

- Participant A declares credentials (ID) it has to join domain
- Participant B declares credentials it has to join domain
- DDS limits discovery
 - Verify credentials received over discovery, apply security policy
 - Do not communicate with peers if they do not have proper credentials
 - Output: Provide notification, audit trail for access failures
DDS access control model

Creating a reader or writer is an access operation

- Participant A declares credentials (ID) it has to join domain, publish data
 - and creates writer with topic, offered QoS contract, listener, ...
- Participant B declares credentials it has to join domain, subscribe to data
 - and creates reader with topic, requested QoS contract, listener, ...
- DDS limits discovery to allowed publishers and subscribers
 - Verify credentials received over discovery, apply security policy
 - Do not communicate with peers if they do not have proper credentials
 - Output: Provide notification, audit trail for access failures
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
 - Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
Proposed DDS Security Model (Pardo, 2007)

- The approach is based on two ideas:
 - Secure Domains
 - Confidential Topics

- **Secure Domains**
 - Limit each Global Data Space (DDS *Domain*) to contain information at a single level of security
 - Only authorized participants are allowed to join a Domain
 - All domain communications are confidential
 - All information is accessible to all members of the domain

- **Confidential need-to-know Topics**
 - Within a Global Data Space allow participants to read and write *Topics* on a “need to know basis”
 - Separate “right to read” from “right to write”
 - Each Topic is authorized and protected separately
Confidential DDS Topics

- The RBAC model applied to DDS Topics

- Each **Topic** is assigned a list of “reader roles” and a list of “writer roles”.
 - ‘reader roles’ are the roles of the principals that can read the Topic
 - ‘writer roles’ are the roles of principals that can write the Topic

- Each **Participant** attached to the **Domain** is assigned a set of roles.
 - Write access to the **Topic** given only to **Participants** that have a role that appears in the list of “writer roles” for the **Topic**
 - Read access to the **Topic** given only to **Participants** that have a role that appears in the list of “reader roles” for the **Topic**
 - These access operation can be limited in terms of allowed QoS

- Result:
 - Limits access to the Topic only to the principals (the DDS **Participants**) that have the “need to know” for that Topic
 - A single domain can carry traffic of multiple security levels
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
Mandatory Access Control at Transport Layer

- Use DTLS – datagram flavor of TLS/SSL
 - TLS/SSL provides a handshake to transfer certificates and establish security context
- Once verified DTLS establishes secure communications between each pair of participants
- Also provides integrity from cryptographic hash

Disadvantages:
- Multicast is not supported
- All-or-nothing security
RTI Secure Transport

- DDS
- DTLS
- RTPS Discovery Traffic
- RTPS User Traffic

Domain Participant 1

- DTLS traffic
- DTLS handshaking
- Encrypted RTPS
- RTPS Discovery Traffic
- RTPS User Traffic

Domain Participant 2

- DTLS handshaking
- RTPS discovery
- RTPS user traffic

Application 1

Application 2
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
Operating System Security Integration

- Trusted operating systems (such as SELinux, Trusted Solaris) provide fine-grained access control for system resources:
 - Network ports
 - Inter-process communication (IPC) objects

- These policies can be mapped to the required resources to join a DDS domain
 - DDS Wire Protocol standard specifies ports used for discovery, default ports for user data
 - For a configured system, there is a required set of ports and/or IPC objects that must be used to join the domain

- This requires no changes to DDS, and provides another mechanism for domain separation
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
Performance Implications of Security for Real-Time Systems

- Real-time systems must balance need for security with system constraints:
 - Mechanisms for security can not introduce lack of availability
 - Especially a concern for small embedded systems, in which case hardware acceleration may be a necessity
- Two major classes of cryptographic methods
 - Symmetric methods relatively efficient, especially with hardware acceleration
 - Asymmetric cryptographic methods are several orders of magnitude more expensive, but are needed for authentication and non-repudiation
- DTLS Transport uses both types of cryptographic algorithms
 - symmetric methods for encryption and message integrity (AES, SHA-1, etc.)
 - asymmetric for authentication and key establishment (RSA, DSA, DH)
Performance: Latency

Encryption of data transported on Gigabit Ethernet between moderate-performance Linux workstations (2GHz Opteron).
Performance: Throughput (1kB)

Encryption of data transported on Gigabit Ethernet between moderate-performance Linux workstations (2GHz Opteron).

- **UDPv4**: 500 Mb/s
- **DTLS Transport (AES128)**: 150 Mb/s
- **DTLS Transport (AES256)**: 120 Mb/s
- **DTLS Transport (IDEA-CBC)**: 90 Mb/s

1kB block size
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
Integrated DDS Security

- Integrating an access control model into DDS can provide additional benefits
 - Finer-grained security than above mechanisms
 - Native DDS mechanisms for notification within application
 - DDS discovery can be used to bootstrap multicast security mechanisms

- Role-based access control is a good model for net-centric systems

- Plugin architecture for secure reference monitor can be used to avoid limiting decisions about access control model, extensibility
Configuring an Application for Secure DDS

Credential:
Name = Ariel_Rti
Public Key = ABCD1234...
Security Level = Secret
Roles = Engineer, Staff (signature)

- When creating participant, specify credentials and policy management plugin (in QoS)
- DDS checks credentials on entity creation
 - Return error value
- DDS checks credentials on discovery match
 - Event used to notify via listener or waitset
 - Notification may be sent to peer if allowed by permissions
Notifications

- Of local application of rules: fail to create
 - e.g. new return code: DDS_RETCODE_NOT_PERMITTED

- Of application of rules to discovered entities: events via listener or waitset
 - on_participant_matched()
 - onRejectedCredential(ID)
 - onAccessDenied(handle, topic)

- And existing events
 - on_subscription_matched()
 - on_publication_matched()
Role-based Access Control for Domains

- Access to join domains is mediated by the security plugin
 - Domains can be used to segregate security levels
- Roles can be used to limit:
 - Which users can join a domain
 - Who can create topics in the domain

ROLES:
Ariel → engineer, staff ; SECRET
Gerardo → admin, staff ; SECRET
Joe → user ; UNCLASSIFIED

<table>
<thead>
<tr>
<th>Domain ID</th>
<th>Security Level</th>
<th>Join Domain roles</th>
<th>Create Topic roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Unclassified</td>
<td>staff, user, engineer, admin</td>
<td>engineer, admin</td>
</tr>
<tr>
<td>4</td>
<td>Secret</td>
<td>staff, admin</td>
<td>admin</td>
</tr>
</tbody>
</table>
Role-based Access Control for Topics

- Access to topics within a domain can also be mediated by the security plugin
- Roles can be used to limit who can write/read individual topics

ROLES:
Ariel → engineer, staff ; SECRET
Gerardo → admin, staff ; SECRET
Joe → user ; UNCLASSIFIED

<table>
<thead>
<tr>
<th>Domain ID</th>
<th>Topic</th>
<th>Write roles</th>
<th>Read roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Square</td>
<td>engineer</td>
<td>staff, user</td>
</tr>
<tr>
<td>3</td>
<td>Circle</td>
<td>admin</td>
<td>staff, user</td>
</tr>
<tr>
<td>3</td>
<td>Triangle</td>
<td>staff</td>
<td>engineer</td>
</tr>
</tbody>
</table>
Role-based Access Control for QoS?

- Access to topics can be parameterized further
- Roles can be used to limit allowed levels of service to write/read individual topics

ROLES:
- Ariel → engineer, staff ; SECRET
- Gerardo → admin, staff ; SECRET
- Joe → user ; UNCLASSIFIED

<table>
<thead>
<tr>
<th>Domain ID</th>
<th>Topic</th>
<th>Write roles</th>
<th>Read roles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Square</td>
<td>engineer</td>
<td>staff [RELIALBE], user [BE only]</td>
</tr>
<tr>
<td>3</td>
<td>Circle</td>
<td>admin</td>
<td>staff [KEEP ALL], user [KEEP LAST 1]</td>
</tr>
<tr>
<td>3</td>
<td>Triangle</td>
<td>staff</td>
<td>engineer</td>
</tr>
</tbody>
</table>

The security plugin can take additional information into account when making access decisions:

- QoS policies specified when creating entities
- Mandatory content filtering

```c
/* domain access control */
bool is_domain_join_permitted(credential, domain, participant_qos);

/* within-domain access control */
bool is_topic_create_permitted(credential, domain, topic, topic_qos);
bool is_read_permitted(credential, domain, topic, requested_qos, content_filter <inout>);
bool is_write_permitted(credential, domain, topic, offer_qos, content_filter <inout>);
```
DDS Protocol Updates for Security?

- In addition to integrated access control, protocol updates could provide:
 - Encapsulated key management protocol
 - Secure wrapper for DDS submessages

- Potential benefits
 - Variable level of security for different topics
 - Confidentiality and/or integrity and source authentication
 - Use of shared keys to support multicast security
Agenda

- Motivation & Requirements
- Net-centric approach to DDS Security
- Proposed DDS Security Model
- Pragmatic Implementation of Secure Domains
 - Mandatory Access Control at Transport Layer
 - Operating System Security Integration
 - Performance Implications for Real-Time
- Integrated DDS Security with RBAC
- Additional Concerns
- Conclusion
Additional Concern: Security Policy Management

- Complex systems require complex security policies
- Dynamic net-centric systems require dynamic security policies
- Authorization management for complex, dynamic net-centric systems needs to be agile for effective update when the system changes

Recommendation: Model-Based Security

Benefits
- Cost savings
- Enabled agility (growth, re-use)
- Improved security

Ulrich Lang, Ph.D.
Chief Executive Officer
ObjectSecurity LLC
ulrich.lang@objectsecurity.com
Solution: OpenPMF 2.0

Specify security requirements in abstract models

Generate enforceable security policies automatically

Protect & monitor applications automatically, e.g. for SOA
Solution: OpenPMF 2.0

Model-driven security management product
- Mainstream within 5 years (Gartner)

Benefits
- Align business and IT security
- Cost saving
- Enable IT agility (+ growth)
- Improved security

OpenPMF 2.0 for DDS
- Specify fine-grained, customizable authorization rules for DDS
- Governs information flows between DDS publishers and subscribers
- Related to XACML architecture, but with model-driven security support
- Next steps: Extend model-driven security management support for DDS

OpenPMF 2.0 Model-Driven Security Example

- Example: HIPAA healthcare regulatory requirement
- Security requirements mapped from EA layer of abstraction…
- …via fine-grained machine-enforceable authorization rules (OpenPMF PDL, XACML) …
- …to automatic run-time authorization enforcement of information flows (fine-grained, policy-driven, context-aware, content-aware etc.)

Example - Healthcare (HIPAA): “every doctor is only allowed to access the patient record of the patient they are currently treating, unless the patient is treated in a crisis context, or the patient consents etc. etc.”

Simplified rule excerpt: allow information flow if “caller X.509 cert. id doctor1” via “firewall IP…” calling “file patient1” on “database IP…” and from “hospital IP…” and “doctor1 is treating patient1” and/or “patient1 crisis”… (XACML or PDL):

Distributed runtime enforcement & monitoring (SOA, XACML, DDS, CORBA/CCM, …)
Additional Concern: Wide-Area Network (WAN) Support

- **Requirements**
 - Integrate DDS peers across more complex network configurations
 - Provide secure communication over WAN

- **Possible forms of solution**
 - WAN Transport architecture using NAT traversal protocols directly between peers
 - WAN Router architecture using statically configured proxy applications

- In both cases, access control mechanisms must be used to avoid introducing vulnerabilities
Additional Concern: OS Mechanisms for Multiple Levels of Security (MLS)

- Partitioned operating systems or hypervisors can provide multiple virtual machines each running at different security levels.
- If each partition can separately configure the allowed set of ports or IPC objects, DDS access can be segregated by security level.
- Partitioned CPU and memory resources can provide additional protection against denial-of-service due to a badly behaved component at a lower security level.
- These operating system mechanisms can be used to compartmentalize systems with more complex management of security policies.
Conclusion

- Security and Information Assurance is critical for net-centric systems as system scope expands
 - Systems getting more complex, more interconnected
 - More avenues of attack

- Today: Mechanisms exist for coarse levels of access control to critical data in DDS systems
 - Secure transport (DTLS)
 - Secure operating systems

- Future: Integrated DDS security will meet needs of systems as complexity increases
 - Fine-grained access control, scalable mechanisms
 - Capabilities to manage, control, and provide assurance