Welcome

16 July 2008

Chris Raistrick, Kennedy Carter

Experiences in the Use of MDA and UML in Developing NATO Standards

chris.raistrick@kc.com
Use of MDA and UML in Developing NATO Standards

DODAF OV-1

- NATO Aircraft (Manned or Unmanned) plug-and-play equipped
- NATO Weapon (and Launcher) plug-and-play ready
- Integrated Air Picture
- Time Sensitive Mission Data
- Weapon release programme
- NATO Rapid Reaction Force
- Lethality Service User

Broker
- Publish
- Subscribe

- Store Description Data
- Store Load-out Configuration Data

Rapid Integration and Test

Discovered Lethality Service with NATO Network Enabled Capability

Lethality Service User

Mission Plan
NATO Aircraft, Launcher & Weapon Interoperability – Teams

Team 1: ALWI Technical Architecture
Consensus document for standards adoption

Team 2: Plug and Play Methodology and Architecture
Development of plug-and-play approach using MDA

Team 3: Universal Aircraft-Store Interface
Assessment of USAF Universal Armament Interface (UAI) approach

Team 4: Plug and Play Implementation
Realizing MDA based specifications in aircraft hardware and software

Use of MDA and UML in Developing NATO Standards
Plug and Play Weapons

In a perfect world...
It should be possible to load any of these weapons...

...onto any of these airframes...
...and make available a set of common core capabilities...
...even if some weapon-specific capabilities are not available
Plug and Play Weapons

In the real world...
Weapons have differing capabilities and different comms interactions...

...and each aircraft has a different execution environment...
Plug and Play Domain Architecture

- Achieves weapon type independence
- Achieves comms platform independence
- Achieves execution platform independence

Software System

Weapon Control

Existing Weapon | Future Weapon

Communications

Existing Comms Technology | Future Comms Technology

xUML Execution Platform

Any Operating System | Any Language

Target Hardware

Weapon specific plug-ins

Comms specific plug-ins

Language specific plug-ins
The ALWI Domain Architecture

Network Level Services

Mission Level Services

Weapon Control Services

Plug-in Weapon Control

Comms Services

Plug-in Comms Services

UML Execution Services

Plug-in Execution Technologies

Use of MDA and UML in Developing NATO Standards
The Data-Code Spectrum

A primary goal was to *avoid changing existing certified modules at all costs*

When adding a new weapon to an existing aircraft
1. Capture weapon-specific behaviour *in data* if possible, but if not possible...
2. Capture weapon-specific behaviour *in separate, small modules* (domains)

Fully Data Driven,
for weapons that have capabilities that can be fully described in data

Partially Data Driven,
for weapons that have capabilities that can be partially described in data, but require some additional code

Fully Concrete,
for weapons whose behaviour is so special they require dedicated code modules

Data Tables (Objects)

Plug-in domains

Use of MDA and UML in Developing NATO Standards
Weapon Control Domain Classes – Overview

The Weapon Control Domain is a metamodel…

…that captures in data the behaviour of each weapon.
Use of MDA and UML in Developing NATO Standards

Weapon Control Domain Regions

Receive Input Messages | Determine New Weapon State | Send Output Messages and Execute Weapon Actions

“Common Services” API

Weapon Plug-in
Generic State Machines and Messages

Use of MDA and UML in Developing NATO Standards
Generic State Machines and Messages – Adding A New Effector

Use of MDA and UML in Developing NATO Standards

(Part of) State Machine for Photon Torpedo

(Non) State Machine for Photon Torpedo

[Flux Generator Failure] / DeactivateFluxG

PhononGeneration

entry / RunGenerator

[Flux Generator fully loaded]

(Data Set Table for Input Message Causing Transition::PHOTON TRANSITIONS)

<table>
<thead>
<tr>
<th>weaponTypeName</th>
<th>inputMessageName</th>
<th>oldStateName</th>
<th>newStateName</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHOTON TORPEDO</td>
<td>INITIALIZATION_COMPLETE</td>
<td>INITIALIZATION</td>
<td>STANDBY</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>XRAAM_COMP_MODE</td>
<td>STANDBY</td>
<td>XRAAM_COMPATIBILITY_MODE</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>ACTIVATE_FLUX_GENERATOR</td>
<td>STANDBY</td>
<td>PHOTON_GENERATION</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>FLUX_GENERATOR_FULLY_LOADED</td>
<td>PHOTON_GENERATION</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>ASSIGN_TARGET</td>
<td>ACTIVE</td>
<td>TARGET_ASSIGNED</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>DEACTIVATE</td>
<td>ACTIVE</td>
<td>STANDBY</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>TARGET_REJECT</td>
<td>TARGET_ASSIGNED</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>NO_TARGET</td>
<td>TARGET_ASSIGNED</td>
<td>ACTIVE</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>LAUNCH_TORPEDO</td>
<td>TARGET_ASSIGNED</td>
<td>FREE_FLIGHT</td>
</tr>
<tr>
<td>PHOTON TORPEDO</td>
<td>FLUX_GENERATOR_FAILURE</td>
<td>PHOTON_GENERATION</td>
<td>STANDBY</td>
</tr>
</tbody>
</table>
Plug and Play Implementation
Mapping PIM (xUML) to PSI (AADL)

<table>
<thead>
<tr>
<th>xUML</th>
<th>(Software) AADL (Hardware)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>System</td>
</tr>
<tr>
<td>State Machine</td>
<td>Process</td>
</tr>
<tr>
<td>Signal Event</td>
<td>Thread (Group)</td>
</tr>
<tr>
<td>Operation</td>
<td>Subprogram</td>
</tr>
<tr>
<td>Attribute</td>
<td>Data</td>
</tr>
<tr>
<td>Service</td>
<td>Port</td>
</tr>
<tr>
<td>Interaction</td>
<td>Connection</td>
</tr>
<tr>
<td>Actor</td>
<td>Device</td>
</tr>
</tbody>
</table>

Use of MDA and UML in Developing NATO Standards
The ALWI Process

The ALWI process can be summarised as...

- Build and test a system model, using a precise modelling formalism
- Populate the code generator with the system model and platform-specific configuration, and generate the target system

System Model

- Certified ALWI PIMs
- Plug-in Weapon Data
- Plug-in Weapon Code

System Generator

- Platform-Specific Implementation Generator
- Plug-in PIM-PSI Mappings

Generated System

- Generated Platform-Specific Implementation
- Runtime Layer
Summary

- From the ALWI Final Report:
 “The proposed methodology for standardizing platform independent services is based on the Object Management Group (OMG) Model Driven Architecture™ (MDA®) initiative. The combination of MDA common services and common ICDs promises to offer ‘plug and play’ in the long term.”

- The ALWI xUML architecture and MDA process are to be used as the starting point for a new NATO Study (SG125) for Unmanned Airborne Vehicles...

JCGUAV Unmanned Air Systems (UAS)
MALE/HALE/Weaponization ST

Proposed NIAG Study on Weaponizing
Unmanned Air Systems (UAS)

1 April 2008
Experiences in the Use of MDA and UML in Developing NATO Standards

16 July 2008

Chris Raistrick, Kennedy Carter

chris.raistrick@kc.com