UML Profile for SDR Hardware/Software Adequacy Verification

Software-Based Communications (SBC) Workshop: From Mobile to Agile Communications
September 13-16, 2004

Jean-Etienne Goubard
THALES
Jean-etienne.goubard@fr.thalesgroup.com
Plan

A3S project

Profile Definition
- QoS and Fault tolerance profile
- PIM and PSM for software radio profile

Profile use for software radio modeling
- Hardware
- Software
- Deployment

Verification process
The A3S project

- Adéquation Architecture - Application Système (A3S)
- French research program of collaborative projects - RNRT
- Funded by French Ministry of industry
- 2 years project - started in Sep. 2003

Consortium

- Thales
 - telecommunication system provider
- Softeam
 - company, UML CAD tool provider - Objecteering
- Lester, University of South Brittany
 - academic, SoC design tool, IP design
- Mitsubishi Electric ITE
 - research lab, mobile and infrastructure manufacturer
The A3S goals

Performance prediction of a SDR system before effective implementation (at design phase)

Methodological approach for SDR based on UML
- create an A3S profile for SDR physical layer representation
- UML tool support: Objecteering™ from Softeam
- UML description of
 - SW radio application
 - HW platform
- non functional characteristics and parameters collection

Processes behaviour verification engines (Lester)
- structural coherence verification
- execution model (period coherence, deadline, iteration number...)
- mapping coherence (enough memory resources)
- scheduling
- timing performance - memory use - FPGA use (max and trace)
Relation between OMG profiles and A3S profile

OMG profiles

- QoS and fault tolerance profile
- Real Time, scheduling and performances profile
- Software Radio profile

Use and extend some of elements of

A3S profile
Use of the Software Radio profile

Hardware

- All hardware elements are **CommEquipement**
- They are communicating through **DigitalPort**
- DigitalPort are connected through **CommEquipementConnector**

- **A3S inherits from these elements**

A3S software radio model elements
Use of the QoS and Fault Tolerance Profile

- Definition of the QoS language which will be used in the model
 - Creation of a set of QoSCharacteristics dedicated to the A3S usage
 - mostly reuse QoSCharacteristic already defined in the QoS profile
 - definition of new QoSCharacteristics
 - possibility of inheritance and aggregation of QoSCharacteristics

- Assembly of QoS Characteristics will be grouped in a A3S QoSCatalog representing the QoS language.
- Each A3S stereotype will be associated to a specific QoSCharacteristic

```
<<QoSCharacteristic>>
a3s-FPGA-QoS

<<QoSDimension>>
MaxOperatingFrequency:integer
{ direction(increasing), unit(MHz) }

<<QoSDimension>>
LogicalCellNumber[0..1]:integer
{ direction(increasing) }
...
```
Use of the QoS language, first method

- QoS language (PIM) will be used to specify the QoS of PSM radio elements.

<table>
<thead>
<tr>
<th>PIM</th>
<th>PSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3S PIM elements</td>
<td>A3S PSM elements</td>
</tr>
<tr>
<td>(ex: FPGA)</td>
<td>(ex: FPGA-pentek-3292)</td>
</tr>
<tr>
<td>QoSCharacteristic</td>
<td>QoSValue</td>
</tr>
</tbody>
</table>

- QoS stereotypes on dependencies describe how the QoS is applied.
Use of the QoS language, second method

- More commonly used method
- Use of a context to specify how the QoS is applied
- Logical operator for fine granularity QoS definition

```
Execution-FPGA1 <<QoSOffered>>
{ context a3s-FPGA-QoS inv:
  MaxOperatingFrequency=300
  and LogicalCellNumber=14336 }
```

```
<<QoSValue>>
Execution-FPGA1: a3s-FPGA-QoS

MaxOperatingFrequency=300
LogicalCellNumber=14336
```

```
<<a3s-FPGA>>
FPGA-pentek-3292
```
QoS through user friendly interface

- User Friendly interface
- Fully integrated to the UML tool
- Specific to the A3S element
 - FPGA
 - DSP
 - FIFO
 - ...
- Allow in-design verification
 - Checklist
 - calculation
 - combination

- Translation user interface ➔ UML classes

- Time saving for A3S model elaboration
Use of the QoS profile, UML tool

Example of the result of the user input
Library approach

- **UML design**
 - Hardware components
 - Software components
 - Hardware platform
 - Software platform

- **Advantages**
 - Importation
 - 3rd party
 - Components catalogue
 - Extendable

A3S Project

- hwComponentLib
- hwPlateforms
- swComponentLib
- swApplications

- a3s-HWComponentLib
- a3s-HWPlateforms
- a3s-SWComponentLib
- a3s-SWApplication

- hwComponents
- boards
- swComponents
- codeFonctionnalities

- a3s-CommEquipement
- a3s-Boards
- a3s-SWComponent
- a3s-ObjectCode

- codeModules

- a3s-Module
Library approach

- UML design
 - Hardware components
 - Software components
 - Hardware platform
 - Software platform

provided by previous projects or third parties

HW/SW system design
Library approach

Hardware

Software

+ Associated characteristics
A3S profile
An activity graph is used in order to design the Waveform functional aspect.

Example for a UMTS transmitter.
- There may be several iterations per a3s-operation.
- Each iteration can be processed on a specific a3s-processor

- So
 - Each a3s-operation is linked to a QoS-Characteristic
 - Each iteration of an a3s-operation is categorized by a QoSValue
Software functional deployment

Placement of functional elements on Hardware Architecture
Deployement, general view

Pentek board

PC board

Deployed A3s-SWComponentInstances

Daughter board

A3S profile
XMI ➔ “portability” (“standard”)

Service ➔ verification through web
(verify anywhere ➔ mobility)

Allow other UML tool to produce
A3S verifiable models
Next improvements

- Use of QoS and Fault Tolerance profile elements in software design

- Automatic translation of Software iteration from user interface informations to UML elements

- Use of Real Time scheduling and performances elements (sequence diagrams for timing visualisation ?)
Many thanks for your attention.

Questions?