OMG's Third
Software-Based Communications Workshop:
Realizing the Vision

Hardware in the Loop
Functional Verification Methodology

by Pascal Giard
Jean-François Boland, Jean Belzile
M.Ing. Student
École de technologie supérieure
Motivation: Overview

- Heterogeneous designs
 - Multiple languages, tools and abstraction levels

- Incremental design
 - Multiple refinements toward the target

⇒ Requires co-simulation
Motivation: Software Defined Radio

- Complex heterogeneous design
- Segmented implementation process
- Software Communication Architecture (SCA)
Goals: Part 1

- Reduce time spent on verification
 - Code reuse
 - Early hardware verification
 - Open standards
- Support multiple
 - Modeling languages
 - Levels of abstraction
Goals: Part 2

- Support co-simulation
 - Different languages
 - Different abstraction levels
 - Different “physical” locations
- Flexible and expendable framework:
 - Allow extensions for other 3rd party tools
 - Allow external contributions
Outline

- Problems
- Proposed Methodology
- Proposed Framework
- Open issues
- Conclusions and Future Work
Problems: Part 1

- Core of verification: **Communication**
- Verification methodologies:
 - PC simulation
 - In-Circuit Emulation (ICE)
Problems: Part 2

- COTS tools:
 - Expensive
 - Hard to customize
 - Close standards
 - Incompatible
 - Inflexible
Outline

- Problems
- *Proposed Methodology*
- Proposed Framework
- Open issues
- Conclusions and Future Work
Proposed Methodology: Part 1

- Reduce simulation time with distributed processing
- Use traditional verification flow
 - Top-down approach
 - From specifications to final implementation
 - Multiple refinements toward target
Proposed Methodology: Part 2

- Use distributed object architecture for:
 - Verification/simulation communication
 - Internal DUV communication
Outline

- Problems
- Proposed Methodology
- **Proposed Framework**
- Open issues
- Conclusions and Future Work
Proposed Framework: Overview

- An ORB for everyone
- FPGA for Hardware In the Loop (HIL) verification
- 2 phases:
 - Initial version
 - First expansion
Proposed Framework: Models

- Component 1
- Component 2
- Tool 1
- Tool 2
- Tool B
- Tool X
- ORB
- ORB 1
- ORB 2
- Comp. A
- Comp. B
- Comp. X
- Application environment
- Tools environment
- ORB wrapper
Proposed Framework: First phase

- Design spreads across two locations
- Communication via ORB
- FPGA hardware
- Multiple languages and abstraction levels
Proposed Framework: 2nd phase

- Deploy on multiple nodes
- Broader tool base
Outline

- Problems
- Proposed Methodology
- Proposed Framework
- *Open issues*
- Conclusions and Future Work
Open issues: Part 1

- **Large deployment**
 - E.g. Using a Cluster for HDL simulation

```
PC
(SystemC sim)
```

```
Cluster
(HDL sim)
```

```
Cluster
(Matlab)
```

```
DevBoard
```

```
Product prototype
```

```
GIOP
```

OMG: SBC Workshop 2007 Pascal Giard, École de technologie supérieure
Open issues: Part 2

- Communication performance
 - Latency
 - Throughput
 - Fragmentation
 - Etc.

[Diagram showing FPGA, Adapter, ORB, Transport, Softcore CPU, and System Control]
Outline

- Problems
- Proposed Methodology
- Proposed Framework
- Open issues
- Conclusions and Future Work
Conclusion: Part 1

- Distributed object architecture verification
 - Hardware In the Loop
 - Cluster farms
 - Etc.
- Promotes open standards
- Promotes code reuse
- Promotes early hardware verification
Conclusion: Part 2

- Seamless integration of multiple:
 - levels of abstraction
 - design languages
 - “physical” location
- Allows progressive refinements towards target platform
- Provides an expendable framework
- Supports traditional verif. flow
Future Work

- **Short term:**
 - Complete implementation
 - Other application areas

- **Mid term:**
 - Performance evaluation
 - Support more 3rd party tools

- **Long term:**
 - Integration with the GreenSocs project
Questions?

Thank you for listening!

Contact me at

Pascal.Giard.1@ens.etsmtl.ca
Hidden slides
Related works

- VirginiaTech’s CARH
 - Service-Oriented Architecture for Validating System-Level designs
 - Integrates CORBA to OSCI SystemC
 - Requires modifications to OSCI SystemC compiler
 - Not meant for hardware component interoperability \(\Rightarrow\) different scope