A Framework for Coherent Functional Description and Hardware Abstraction in RF Front Ends

By:
St. Saber Lafi1 Pr. Ammar Kouki2
Pr. Jean Belzile2 Pr. Adel Ghazel1

1: École Supérieure des Communications de Tunis, Tunis, Tunisie
2: École de technologie supérieure, Montréal, Québec, Canada

SUP’COM & ÉTS © 2006 – 2007
Goals

- Presentation of the hardware abstraction interest in RF front-ends
- Presentation of the proposed hardware abstraction approach in RF front-ends
- Presentation of a RF design framework based on hardware abstraction concepts
Outline

- Motivations
- Hardware abstraction definition
- Hardware abstraction in RF front-ends
- Existent approaches
- Our hardware abstraction framework
- Conclusion
Motivations

- Tremendous wireless networks evolution
- Multiple communication services
- Software defined radio concept
 - Awareness, reconfigurability, interoperability
- Need for codesign for more optimal performance
- Wireless market growth:
 - Customized products
 - Time-to-market reduction
 - Cost reduction
 - Reliable and low consumption handheld terminals
The Dilemma

Such ambitious objectives need:
- An adaptive design flow
- A fully automatic (or semi-automatic) design and synthesis processes
- A high-level description of systems and subsystems

Then, hardware abstraction becomes interesting and more, essential!
Hardware Abstraction (1/2)

Definition:

Hardware abstraction (HA) is a method of masking physical details of hardware, allowing the designer to focus on the effects rather than the details resulting of manipulating directly the hardware. It is a way to describe the functionality without handling the intrinsic architecture of communication equipments [1, 2, 3].

HA advantages and provision:

- RF front-end (RFFE) HA is based up on a functional description which offers:
 - A compact way to describe the overall system
 - Hiding subsystems and physical details
 - Facilitating high-level simulation
 - Making design process more reliable and almost fully automatic
Existent Approaches (1/6)

- **In baseband side:**
 - HAL (WWRF & SDRF definition) [4]
 - OMG’s UML profile for software radio [5]

- **In RFFE:**
 - OMG’s UML profile for software radio [5]

OMG’s contribution:

- UML profile for software radio aims to enable the development of UML tools to support the development of software radio applications and systems [5]
- OMG has defined a set of UML stereotypes to describe communication equipments
- The UML profile for software radio includes the specification for:
 - Application and device components
 - Communication equipments
 - Infrastructure

Existent Approaches (3/6)

- Application and Device components package [5]:
 - Defines the basic types, application and device components for software radio

- Communication equipment package [5]:
 - Defines basic RF devices’ stereotypes

- Infrastructure package [5]:
 - Defines communication channel, radio services, management and deployment.

Abstraction Hierarchy

Ports are the interfaces that ensure the communication between equipments (either analog or digital)

- Communication Equipment
- IODevice
 - RF component (ampli, frequency converter, filter, antenna)
 - Ports (Input/Output, Analog/Digital)
Critics:
- Attributes were checked regarding some criteria:

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficiency</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Redundancy</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Completeness (¹)</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

(¹) Completeness regarding the number of devices already described (i.e. coupler)
Some devices are not represented by OMG:

Coupler

- P_{in}
- I_s
- P_D
- P_C

Four Analog Ports

AGC

- P_{in}
- P_{DC}
- G
- P_{out}
- $Ctrl$
Research Methodology

1. Classify OMG attributes by category
2. Prove their completeness

1. Determine the relationships between them
2. Deduce a minimal set of attributes describing each RF component

1. Deduce a minimal set of attributes describing all types of RF component
2. Prove its completeness
Our HA framework (2/13)

Classify:
- OMG attributes can be classified into four planes:
 - Electrical Parameters
 - Temperature and Ageing effects
 - Form Factor
 - Cost and market constraints
Simplify and Generalize:

Regarding the OMG contribution, the idea is to:

1. Figure out a minimal sets of attributes that FULLY describes each RF component (Simplify)
2. Figure out a minimal set of attributes that FULLY describes all RF components (Generalize)

Advantages:
- Description Completeness
- Description Genericalness
- Description Efficiency
Generalize:

A device is a black box characterized by:

- A functionality (transfer function)
- Input / Output / Configuration Parameters

\[f([x_i]_{1 \leq i \leq m}) \]

CommEquipment

\[x_1 \rightarrow \ldots \rightarrow x_k \rightarrow f([x_i]_{1 \leq i \leq m}) \rightarrow y_1 \rightarrow \ldots \rightarrow y_n \]

\[x_{k+1} \leq i \leq m \]: Inputs
\[x_{k+1} \leq i \leq m \]: Config. Params
\[y_1 \leq l \leq n \]: Outputs

\(f() \): functionality (transfer function)
Mathematically speaking,
- The device functionality can be modeled by a multi-dimensional transfer function f
- Inputs / Outputs / Config. parameters can be modeled by one-dimensional scalar matrices designated resp. $[x_i]$ and $[y_j]$

$$
\begin{bmatrix}
 y_1 \\
 M \\
 y_n
\end{bmatrix} = f
\begin{bmatrix}
 x_1 \\
 M \\
 x_m
\end{bmatrix}
$$
Hardware Framework Main Objective:

- MAINLY, fully (or at least semi-) automated process of topology choice of any RF system from *Functional Description* to *Synthesis*.
- However, currently no functional description nor synthesis steps exist in design cycle!
- Then, How to do?
 - We must adapt the RF design flow by integrating these two steps.
Our HA framework (7/13)

Our Proposal:

Specifications
Analysis
Synthesis
Implementation
Validation

UML Diagrams
XML Description
Functional Description
Our HA framework (7/13)

Our Proposal:

- Specifications
- Analysis
- Synthesis
- Implementation
- Validation

- Coherence Verification
- System-level Simulation
Our HA framework (7/13)

Our Proposal:

- Specifications
- Analysis
- Synthesis
- Implementation
- Validation

- Granularity Refine
- Technology Mapping
- Performance Simulation
Our HA framework (7/13)

Our Proposal:

- Specifications
- Analysis
- Synthesis
- Implementation
- Validation

Standard Processes
However, the following issues must be addressed:

A. The reuse of existent simulation and design tools
B. The communication between the different design stages: design data flow – transit between steps

Solutions:

A. **Issue A**: language and tool-neutral interfaces between the different design stages
B. **Issue B**: a proposed Q-matrix
Newer design scheme [3]:

- Specifications
- Functional Description
 - XML Description
 - UML Diagrams
- Validation
 - Tests & Measurements
- Implementation
 - Manufacturing
 - Coherence Verification
 - System Simulation
- Analysis
 - Granularity Refine
 - Technology Mapping
 - Performance Simulation
- Synthesis
 - VHDL-AMS, ADS, …
- Legend:
 - Interface
 - Design Step
 - Design Data Exchange

Now, let’s us focusing on the electrical plane!

Minimal set of electrical parameters

We need a generic representation of electrical parameters \Rightarrow \textit{Q-matrix}
Mathematical definition of Q-matrix [6]

\[Q_{ij} = \frac{b_j}{a_i} \text{ at } f = f_j \]

Where:

- \(b_j \): the reflected wave at the \(j^{th} \) port
- \(a_i \): the incident wave at the \(i^{th} \) port
- \(f_i \): frequency of the signal entering the \(i^{th} \) port
- \(f_j \): frequency of the signal leaving the \(j^{th} \) port
Then [6], \(Q \equiv Q[T, t, P, F]_{N \times N \times N_T \times N_t \times N_P \times N_f} \)

Where:
- \(T \): temperature
- \(t \): time (aging)
- \(P \): power
- \(F \): frequency
- \(N \): total number of ports
- \(N_t \): number of time steps
- \(N_T \): number of temperature points
- \(N_P \): number of power points
- \(N_f \): number of frequency points

Q-matrix:
- A multidimensional matrix which captures the electrical parameters of a RF component.
- Generalize and extend the port definition of the OMG specification
- Corresponds to a Input/Output and DC/RF port

Advantages:
- Generic (an extended [S] in function of temperature, time, frequency, power, device ports)
- Compact
- Complete
Conclusion (1/3)

- Communications trends issues:
 - Design schemes
 - Abstraction methodologies

- Hardware abstraction:
 - Definition and provision

- Existent approaches:
 - **Baseband**: various elaborated studies
 - **RF**: scarce contributions (OMG’s one is the most complete)
Conclusion (2/3)

● Our hardware abstraction framework:
 ● Based on the OMG’s one
 ● Proposes a novel design scheme
 ● Resolves the corresponding issues

● New design scheme
 ● High-level functional description (Specifications)
 ● Coherence verification (Analysis)
 ● Granularity refine and Technology mapping (Synthesis)
Conclusion (1/3)

- Issues:
 - Existent simulation and design tools reuse: (sol.: interfaces between design stages)
 - Communication between design stages (sol.: Q-matrix)

- However a lot of efforts are still needed:
 - Definition of synthesis building blocks
 - Extension of the HA mathematical formalism
 - …
Thank you!

Any Questions, please?