
Model-Driven Health Tools (MDHT)
CDA Tools Overview

http://mdht.projects.openhealthtools.org

13 July 2010 MDHT CDA Tools Overview 2

CDA Tools Objectives

• Accelerate and lower cost of adopting CDAr2 standard
• Define new CDA templates and implementation guides in UML
• Complete MDA lifecycle from UML to Java code
• Open source reference implementation with EPL license

• Author template constraints and implementation guides (IG)
� UML structure and OCL constraints

• Reuse templates
� As parent template with additional constraints

� Include within new document or section templates

• Generate complete application-ready Java libraries
• Generate IG specification documentation (future)

13 July 2010 MDHT CDA Tools Overview 3

Generate Java APIs for CDA

• Transform UML and OCL to EMF Ecore models
• Generate complete application-ready Java libraries

� Generate developer-friendly, domain-specific Java APIs
� Design simplified “façade” API for application use cases

• Programmatic creation of CDA documents that conform to IG templates
� e.g., EMR system adapters that export or import CDA

• Save CDA XML document
� Template Java class (CCD ProblemAct) mapped to templateId via registry

• Parse/load CDA documents
� templateId mapped to Java class, e.g. ProblemObservation, Medication

• Validate CDA document for template compliance
� Goal: complete validation via Java, generated from UML, equivalent to

current NIST schematron rules

13 July 2010 MDHT CDA Tools Overview 4

CCD Template Model for Problems Section
•

13 July 2010 MDHT CDA Tools Overview 5

IHE Template Model (subset)
•

13 July 2010 MDHT CDA Tools Overview 6

HITSP Template Model (C32 and C83)
•

13 July 2010 MDHT CDA Tools Overview 7

Domain Specific Java APIs for Templates
PatientSummary doc = HitspFactory.eINSTANCE.createPatientSummary() .init();
II id = DatatypesFactory.eINSTANCE.createII("2.16.8 40.1.113883.3.72",

"CCD_HITSP_C32v2.4_16SectionsWithEntries_Rev6_Notes ");
doc.setId(id);

ActiveProblemsSection problemList = doc.createProblemListSection();

Condition condition = HitspFactory.eINSTANCE.createCondition() .init();
problemList.addAct(condition);

ProblemObservation obs =
CCDFactory.eINSTANCE.createProblemObservation().ini t();

condition.addObservation(obs);

ProblemHealthStatus healthStatus =
CCDFactory.eINSTANCE.createProblemHealthStatus().in it();

obs.addObservation(healthStatus);
CE healthStatusValue = DatatypesFactory.eINSTANCE.cr eateCE("xyz",

"2.16.840.1.113883.1.11.20.12", "ProblemHealthStatu sCode", null);
healthStatus.getValue().add(healthStatusValue);

13 July 2010 MDHT CDA Tools Overview 8

MDHT Project Benefits for CDA
• Standards organizations

� Formalize representation of CDA implementation guide conformance rules
� Replace current practice of using MS Word for specification development
� UML specification is testable for consistency and use of best practices
� Enables automated model-driven development and code-generation

� Automate publication of implementation guides in multiple formats (PDF and XHTML) and alternative content
structure (ballot document vs. implementer view)

� Automate generation of CDA instance validator from specification model (using Java and OCL)

• Business Analysts
� Consistent format of published implementation guide between different standards organizations (HL7, IHE, and

HITSP)
� Cross-referenced, hyperlinked reference material accelerates analysis and EHR mapping
� Publish a “developer view” of implementation guide that combines conformance rules from all inherited templates

and base CDA type

• Java Implementers
� Reduce Development Cost: Time and resources for analysis and implementation of CDA content and

conformance rules
� Reduce Maintenance Cost: High quality, domain-specific API for programmatic access to CDA content, and

validating conformance with standard implementation guide rules (e.g. CCD and HITSP C32/C83)
� Future support possible for non-Java implementation languages

13 July 2010 MDHT CDA Tools Overview 9

Authoring CDA Templates

• We created a UML class for each template and specified all conformance rules
using property redefinitions, directed associations, or using OCL expressions
(for only one rule).

• We found that the most intuitive and efficient editor for template definitions is a
spreadsheet-style table editor. This editor directly modifies the underlying UML
model, but with a different interface from the typical class diagram.

• UML class diagrams may also be created as views of the model, or used as an
alternative design interface.

• A separate model was created for CCD, and those template classes were
referenced as base types in a new implementation guide model: the
Tuberculosis follow up progress note

13 July 2010 MDHT CDA Tools Overview 10

MDHT Authoring Interface

13 July 2010 MDHT CDA Tools Overview 11

Add a new Template
• Easy reuse and reference to

templates in other IG models.
• Dialog wizard to create a new

template that conforms to
another base template.

• For example:

• Add: TB Encounter

• Select base: CCD
Encounters Activity

• Check off inherited
attributes that will be
restricted

• Then use Table editor to
refine the new
constraints.

13 July 2010 MDHT CDA Tools Overview 12

Class Diagrams
We are working on integrating an open source UML class diagram editor provided by the Eclipse
UML2Tools project, but it is not yet ready for end-users. When templates are created using the
table editor, one or more class diagrams may be created as views of the model.

13 July 2010 MDHT CDA Tools Overview 13

Publishing IGs

• The UML model created with template definitions is automatically transformed to
DITA XML (OASIS standard), which is then published to PDF and Eclipse Help
HTML format using the open source DITA-OT toolkit.

• Automatic generation of example XML instance snippets for each template,
included in the published IG.

• Separate developer documentation: Includes the complete aggregate list of all
inherited elements and conformance rules. Thus, a developer does not need to
"follow the breadcrumbs" of template conformance references. Example
provided in PDF output.

13 July 2010 MDHT CDA Tools Overview 14

13 July 2010 MDHT CDA Tools Overview 15

Generate XML Example

13 July 2010 MDHT CDA Tools Overview 16

Developer Documentation (PDF)

13 July 2010 MDHT CDA Tools Overview 17

Validating CDA Instances

• The template conformance rules represented in UML are transformed to OCL as
part of the automated code generation.

• The resulting Java classes encapsulate all validation rules and may be used to
parse and validate a CDA document instance.

• We have created an example web application that may be used to validate CDA
documents for implementation guides that we have modeled. See
http://cdatools.org

• We are integrating validation from the generated Java libraries into the Eclipse
open source XML instance editor. This editor already includes good support for
"content assist" and validation based on the CDA.xsd schema. But we have
used the Eclipse extension points to also validate CDA instances using the
conformance rules that go beyond schema structure.

13 July 2010 MDHT CDA Tools Overview 18

Validation on a Web Application

13 July 2010 MDHT CDA Tools Overview 19

Validation Results on Web

13 July 2010 MDHT CDA Tools Overview 20

Validation in XML Editor

