Model Driven Legacy Integration™

OMG Web Services Workshop 2003

Rüdiger Schilling, CEO
Delta Software Technology GmbH
rschilling@d-s-t-g.com
Model Driven Legacy Integration

Overview

The Task

From MDA to MDLI

Generated PSM and Code

Tool Support

Summary
Model Driven Legacy Integration

The Task
The Dream: Web Services

(Clipped from ebXML Technical Architecture)
The Reality: Integration

Clients

CORBA, EJB, DCOM, ODBC, JDBC, etc.

Middle Tier

Services

To Business Partners:
EDI, Web Services, .Net, SOAP, ebXML, etc.
How Can We Protect Software Investment?

• The problem remains
 – Tracking the *next best thing*
 – Protecting your investment in existing software base
 – Retaining qualified staff
 – Maintaining existing code base

• Integrating what you’ve built
 – *With what you will build!*
Model Driven Legacy Integration

The Task

Remote Applications

Local Applications

WebService Applications

Internet Applications

“Legacy”

Mission Critical Application Portfolio
The Task

Mismatch of
- Formats
- Granularity
- Behaviour
- “Culture”

Internet Applications

Quality Aspects
- Performance
- Security
- Data Integrity

“Legacy”
The Task

Mismatches to Overcome

 Formats
- Mapping of data types and data formats
- Flattening of groups, overlay structures and arrays
- Various message formats
- Various middleware APIs

 Granularity
- Conventional function and call interfaces with coarse grain interfaces ➔ sometimes more than 100 KB per call
- Fine grain OO interfaces ➔ set/get methods
- (R)DBMS interfaces with insufficient encapsulation
- No single perfect interface
- "Multi-grain" interfaces for Web Services
The Task

Mismatches to Overcome

- **Behaviour**
 - Transactions vs. sessions
 - Stateful servers vs. stateless clients and middle tier
 - Tightly vs. (very) loosely coupled systems

- **“Culture”**
 - Client developers and server developers (on legacy platforms) think in different concepts and languages
 - A Java programmer hardly accepts a bean that looks like COBOL …
 - … and vice versa
The Task

Quality Aspects to Observe

- **Performance**
 - Mission critical, enterprise class applications with high transaction volumes
 - No impact on existing users of systems allowed

- **Security**
 - Integration into existing security architectures
 - Auditing, Logging

- **Data Integrity**
 - Managed access to data
 - No J/ODBC to production database
Model Driven Legacy Integration

From MDA to MDLI
MDA Transformation Pattern

- **Transformation (Mapping)**
 - Automatic, using generators
 - Optionally controlled by additional data (marks, parameters etc.)

- **Different transformation concepts**
 - Templates, patterns ...
 - *Generator technology itself is not part of the standards process*

- **Multi-platform transformation**

- **Direct transformation**
 - PIM/PSM to Code
From MDA to MDLI
Integration PIMs and PSMs (1)

“Horizontal” integration
e.g. of two application systems

1 Discovery
2 Composition
3 Production via Generators
4 Runtime
From MDA to MDLI
Integration PIMs and PSMs (2)

Integration Model:

1. **Discovery**
2. **Composition**
3. **Production via Generators**
4. **Runtime**
5. **Alternative approach**

"Vertical" integration

E.g. of a legacy system into a Web Services Platform

- **PIM**
 - Interface Model
 - Legacy System

- **PSM**
 - Model
 - Legacy System Implementation
 - Legacy Adapter
 - Generated Legacy Adapter
 - Model (WSDL)
 - Generated Proxy
 - Web Services Platform
 - Adaptive Proxy
 - Generated Proxy
 - Web Services Platform
From MDA to MDLI
Platform Independent Integration Model

Based on

- OMG Standard EDOC-ECA/CCA
 - Enterprise Distributed Object Computing
 - Enterprise/Component Collaboration Architecture

That defines how
“… classes, collaborations and activity graphs are used to model
at varying and mixed levels of granularity
the structure and behaviour of the components that comprise a
(distributed) system …”

Well suited for
- Integration PIMs
- Service Oriented Architectures (SOAs),
e.g. Web Services
From MDA to MDLI

OMG-Standard EDOC-ECA/CCA

ECA as the normal form

MDA Mappings

Web Services (WSDL)

ebXML (BPSS)

J2EE (Java RMI)

CORBA

MOM (MQ-Series)

The standard way to model and tool for multiple technologies

Source: Data Access Technologies, Inc.
From MDA to MDLI

EDOC-CCA Modelling of Components
From MDA to MDLI
EDOC-CCA Modelling of Collaborations

UML Collaboration Diagram

CCA Notation

Seller Composition

Validate : OrderValidation
 : checkOrder
 : reject
 : CheckCustomer
 : acceptOrder

Process : OrderProcessing
 : doOrder
 : ProcessedOrder

Seller : Sells
 : SendOrder
 : GetDenied
 : GetConfirmation

CustomerComponent
 : GetDenied
 : GetConfirmation
 : EnqStatus

CustBean : CustomerComponent
 : SendOrder
 : GetDenied
 : GetConfirmation

Model Driven Legacy Integration © 2003 Delta Software Technology GmbH
Integration PIM – Contents

- **Interfaces of involved (legacy) components**
 - Methods or functions, parameters, data elements
 - Data base structures – object based view

- **Composition of services to be provided**
 - Ports, protocols and messages
 - Components, compositions and (external) interfaces
 - Choreography:
 “… specifies the intended external behavior of a component …”

- **Mapping between encapsulated functions and services**
 - Data elements and parameters
 - Internal choreography: function calls, sequences, conditions
 - Managed access to data bases
Model Driven Legacy Integration

Generated PSM and Code
Multiple Layers

- "Separation of Concerns" by multiple layers
- Adaptive Proxy
 - Client representation of service
- Technology Adapter
 - Technical transformations
 - Connection to middleware
- Application Adapter
 - Transformation from legacy architecture to service architecture
 - Paradigm mapping
- Target Dev. Environment integration
- Deployment data

Generated PSM and Code

- Model Driven Legacy Integration
- © 2003 Delta Software Technology GmbH
Generated PSM and Code

Application Adapter

- Mapping of service interfaces to legacy functions
 - Move data, activate functions, evaluate results

- Object-relational mapping
 - Encapsulated and managed access to data bases

- Implementation of choreographies
 - Following application logic
 - Enforce operation completeness and data integrity
 - Session logic vs. transactions

- State management
 - Depending on server transaction logic and correlation of choreographies (external vs. internal)

- Support different message versions at runtime
Generated PSM and Code

Technology Adapter

- Transformation of formats
 - Data types and structures
 - Message formats and encoding
- Pack and unpack compound messages
 - Pre-fetch and cache management
- Connection to Middleware
 - Call and respond
 - Handle events and exceptions
- Connection to local operating system
 - Physical transactions
 - Work space implementation for state management
Generated PSM and Code

Adaptive Proxy

- Interfaces, Classes and Methods
 - Generated as defined PIM
 - Java, EJB, C#, C++ etc.

- Opaque representation of service
 - Hiding legacy server and middleware

- Acts like a class locally implemented and instantiated
 - No specific data types, objects or operations
 - No “culture clash” for client or middle-tier programmer

- Seamless integration into target development environment

- Deployment data as necessary
Model Driven Legacy Integration

Tool Support

SCORE® Integration Suite
Tool Support
SCORE Integration Suite

Integration in Motion

Composition
Repository
Production
Discovery

Integrated Development Platform
Tool Support
SCORE Integration Suite

Discovery
- Discover application function and parameters
- Discover data store models and access paths
- Discover external services with UDDI, WSDL, IDL ...
- Reuse existing model elements (PIM + PSM)
- Composition repository based on XML and MOF standards

Composition
- Create and refine PIM
- Interface rightsizing, operations, methods, data stores, data mapping, complex business rules ...
- Transformation attributes

Production
- Transform PIM to platform-specific model (PSM) and from the PSM to source code
- Client, middleware and server
- Native code generation
- New platform only a click away
Tool Support

Production of Web Services

Web Service Client: Java, HTML, .Net, ...

Web Services Platform

Java Proxy (Web Service)

Technology Adapter

Java Classes or EJBs generated as Web Services for WS Platform (incl. WSDL)

e.g. Cape Clear 4 Server

Technology Adapter

Application Adapter

Legacy Function

Running on the same or a remote platform (e.g. a Mainframe)
Tool Support
From Legacy to Web Services

SCORE Integration Suite
Composition Manager

Integration Model (Composition)

Discovery → Composition → Production

Legacy Interfaces

Platform Tool
e.g. Cape Clear 4 Studio

Package and Deploy to Web Services Platform

WSDL → Java Proxy (Web Service)
Model Driven Legacy Integration

Summary

Integration in Motion™
Integration in Motion
The Task - Revisited

Remote Applications

Local Applications

WebService Applications

Internet Applications

Mission Critical Application Portfolio

“Legacy”

Model Driven Legacy Integration © 2003 Delta Software Technology GmbH
Adaptive Services for Integration

Service-Based Integration Architecture

Remote Applications

WebService Applications

Internet Applications

Local Applications

“Legacy”

Mission Critical Application Portfolio

Model Driven Legacy Integration © 2003 Delta Software Technology GmbH
Three Aspects of Adaptive Services

- **Act intelligently**
- **Focus on business needs**
- **Manage technical details**
- **Sessions, transactions, data mapping, object-relational, composite services and applications, business logic ...**

- **Service Quality**
 - Mission critical applications
 - Experience counts - creating tools, diverse platforms, large applications, real projects
 - Non-invasive integration, managed data access, audit, security, high performance ...

- **Service Agility**
 - Thrive in a changing world
 - Intelligently absorb changes
 - Ensure consistency
 - Interface definitions, merging, versioning, concurrent platform support ...

- **Interface Intelligence**
Model Driven Legacy Integration

More about Cape Clear 4
www.capeclear.com

More about EDOC-CCA and tools
www.enterprise-component.com

All about
Model Driven Legacy Integration
and
SCORE Integration Suite

www.d-s-t-g.com