Model for Real-Time CORBA

Applying the UML profile for Schedulability, Performance and Time

Ben Watson
watson@tripac.com
Tri-Pacific Software Inc.
www.tripac.com

Overview

- A brief overview of the issues addressed by the submission.
- Stereotypes used for the schedulability model.
- UML diagrams for the Real-Time CORBA interfaces.
- An approach for modeling Real-Time CORBA applications
The Profile

- Goals
 - Enable the construction of models that could be used to make quantitative predictions regarding the characteristics of schedulability, performance and time
 - Facilitate communication of design intent between developers in a standard way
 - Enable interoperability between various analysis and design tools

- Concepts addressed
 - Resources
 - Time
 - Concurrency

Problem Domains

- Quantitative analysis techniques
 - Schedulability
 - Performance
 - Queuing Theory

- Quality of Service
 - Specify the QoS (requirements)
 - Determine that QoS is met
 - Consumer - Provider model
 - Required QoS – Offered QoS
 - Potentially complex calculations
Profile Domain Packages

UML Stereotypes

- A set of UML stereotypes are defined for each domain package.
 - A stereotype assigns semantics to UML elements.
 - Multiple stereotypes can be assigned to a single element.
- Each stereotype has one or more tagged values associated with it.
 - The tagged values supply data about named qualities (time, arrival pattern, usage, etc.)
Profile Stereotypes for Resource Model

Profile stereotypes (cont.)
Profile for Schedulability

Using Stereotypes

TS=Time Stamp
ET=Execution Time
WCET=Worst-case Execution Time
Applying the Profile to a Model

- Create a UML model for the application.
 - Classes, associations, states, messages
 - Class diagrams, sequence diagrams, state diagrams, activity diagrams
- Classify the schedulability semantics
 - Classes as SAScheduled, SAResource, SAAction
 - Associations as SAEvents, SATriggers
 - Messages as SATriggers
- Assign the tagged value parameters
- The model is ready for analysis.

Real-Time CORBA UML Model

- A model for a Real-Time CORBA application.
- Start with the UML representation for the Real-Time CORBA IDL.
- Use a simple client – server application to illustrate a layered model.
- Describe where the schedulability profile is applied.
A Layered Model

Application

RTCORBA

Operating System

Hardware

Adding Schedulability Analysis

Applying Analysis Stereotypes

Application Layer

1. RtClient: SASchedulable, SAAction, SAResponse, SAUses
2. RtServer: SASchedulable, SAAction, SAResponse, SAUses, SAResource
3. ConnectionControls: SAResource
4. Hardware layer description: SAEEngine and SAResource

RTCORBA Layer

1. Each Interface or interface operation: Refinements for SASchedulable, SAAction, SAResponse, SAUse
2. Each Policy: Refinements for SAEEngine, SAResource and SAAction
3. Considerably more functional detail.

Operating System Layer

1. Still more refinements with more details.

Hardware Layer

1. More details on processor utilization.
2. More details on communication channels as SAEEngines.
Summary

- UML can be used to express functionally correct systems.
- The profile for schedulability, analysis and time provides a mechanism to express real-time and QoS quantities.
- A Real-Time CORBA application can be modeled using a layered approach. The layers expose lower level details that affect QoS.
- Powerful schedulability and performance tools can analyze the model to enable schedulability and performance design.

Thank you!