
Behavioral Modeling

Object Modeling with OMG UML Tutorial Series

Gunnar Övergaard, Bran Selic, Conrad
Bock and Morgan Björkander

UML Revision Task Force

1

© 1999-2001 OMG and Contributors: Crossmeta, EDS, IBM, Enea Data, Hewlett-Packard, IntelliCorp, Kabira Technologies, Klasse Objecten,
Rational Software, Telelogic, Unisys

Behavioral Modeling with UML 2

Overview

! Tutorial series
! UML Quick Tour
! Behavioral Modeling

! Part 1: Interactions and Collaborations
! Gunnar Övergaard, Jaczone AB

! Part 2: Statecharts
! Bran Selic, Rational Software
! Morgan Björkander, Telelogic

! Part 3: Activity Graphs
! Conrad Bock, Kabira Technologies

Behavioral Modeling with UML 3

Tutorial Series

! Lecture 1: Introduction to UML:
Structural and Use Case Modeling

! Lecture 2: Behavioral Modeling with
UML

! Lecture 3: Advanced Modeling with UML

[Note: This version of the tutorial series is based on OMG UML
Specification v. 1.4, UML Revision Task Force recommended final draft,
OMG doc# ad/01-02-13.]

Behavioral Modeling with UML 4

Tutorial Goals

! What you will learn:
! what the UML is and what is it not
! UML’s basic constructs, rules and diagram

techniques
! how the UML can model large, complex systems
! how the UML can specify systems in an

implementation-independent manner
! how UML, XMI and MOF can facilitate metadata

integration
! What you will not learn:

! Object Modeling
! Development Methods or Processes
! Metamodeling

Behavioral Modeling with UML 5

! The UML is a graphical language for
! specifying
! visualizing
! constructing
! documenting

the artifacts of software systems
! Added to the list of OMG adopted technologies in

November 1997 as UML 1.1
! Most recent minor revision is UML 1.3, adopted in

November 1999
! Next minor revision will be UML 1.4, planned to be

adopted in Q2 2001
! Next major revision will be UML 2.0, planned to be

completed in 2002

Quick Tour

Behavioral Modeling with UML 6

UML Goals

! Define an easy-to-learn but semantically rich visual
modeling language

! Unify the Booch, OMT, and Objectory modeling
languages

! Include ideas from other modeling languages
! Incorporate industry best practices
! Address contemporary software development issues

! scale, distribution, concurrency, executability, etc.
! Provide flexibility for applying different processes
! Enable model interchange and define repository

interfaces

Behavioral Modeling with UML 7

OMG UML Evolution

<<document>>
UML 1.1

<<document>>
UML 1.2

<<document>>
UML 1.3

<<refine>>

<<document>>
UML 1.4

<<document>>
UML 2.0

<<refine>>

<<refine>>

<<refine>>

Q3 1997
(OMG Adopted
Technology)

Q2 1998

Q3 1999

Q3 2000
(planned minor revision)

2001
(planned major revision)

Editorial revision
with no significant
technical changes.

ISO Publicly
Available

Specifications
(PAS)

Other relevant
standards TBA

<<informalLiaison>>

<<formalLiaison>>

Unification of major
modeling languages,
including Booch, OMT
and Objectory

Behavioral Modeling with UML 8

OMG UML 1.3 Specification

! UML Summary
! UML Semantics
! UML Notation Guide
! UML Standard Profiles

! Software Development Processes
! Business Modeling

! UML CORBAfacility Interface Definition
! UML XML Metadata Interchange DTD
! Object Constraint Language

Behavioral Modeling with UML 9

Tutorial Focus: the Language

! language = syntax + semantics
! syntax = language elements (e.g. words)

are assembled into expressions (e.g.
phrases, clauses)

! semantics = the meanings of the syntactic
expressions

! UML Notation Guide – defines UML’s
graphic syntax

! UML Semantics – defines UML’s
semantics

Behavioral Modeling with UML 10

Unifying Concepts

! classifier-instance dichotomy
! e.g. an object is an instance of a class OR

a class is the classifier of an object
! specification-realization dichotomy

! e.g. an interface is a specification of a class
OR
a class is a realization of an interface

! analysis-time vs. design-time vs. run-
time
! modeling phases (“process creep”)
! usage guidelines suggested, not enforced

Behavioral Modeling with UML 11

Language Architecture

! Metamodel architecture
! Package structure

Behavioral Modeling with UML 12

Metamodel Architecture

<<metamodel>>
MOF Meta-
metamodel

<<metamodel>>
UML Metamodel

User Model

:Foo

Meta-Metamodel Layer
(M3): Specifies meta-
metaclasses for the
UML metamodel

Metamodel Layer (M2):
Specifies metaclasses
for the UML
metamodel, such as
Class

Model Layer (M1): Specifies
classes for the UML user
models, such as
Passenger, Ticket,
TravelAgency

User Objects Layer (M0):
User objects that are
instances of UML user
model classes, such as
instances of Passenger,
Ticket, TravelAgency

:Bar :Baz

Behavioral Modeling with UML 13

Package Structure

<<metamodel>>
UML

Model
Management

Behavioral
Elements

Foundation
package

dependency

Behavioral Modeling with UML 14

Package Structure

Collaborations State Machines Activity Graphs

Behavioral Elements

Model
Management

Foundation

Use Cases

Common
Behavior

Behavioral Modeling with UML 15

Behavioral Modeling

! Part 1: Interactions and Collaborations
! Part 2: Statecharts
! Part 3: Activity Diagrams

Behavioral Modeling with UML 16

Interactions

! What are interactions?
! Core concepts
! Diagram tour
! When to model interactions
! Modeling tips
! Example: A Booking System

Behavioral Modeling with UML 17

What are interactions?

! Interaction: a collection of
communications between instances,
including all ways to affect instances,
like operation invocation, as well as
creation and destruction of instances

! The communications are partially
ordered (in time)

Behavioral Modeling with UML 18

Interactions: Core Elements

name

attr values

Instance
(object,
data value,
component
instance
etc.)

An entity with a unique identity and
to which a set of operations can be
applied (signals be sent) and which
has a state that stores the effects of
the operations (the signals).

Action A specification of an executable
statement.
A few different kinds of actions are
predefined, e.g. CreateAction,
CallAction, DestroyAction, and
UninterpretedAction.

Construct Description Syntax

textual

Behavioral Modeling with UML 19

Interaction: Core Elements (cont’d)

Stimulus A communication between two
instances.

Operation A declaration of a service that can
be requested from an instance to
effect behavior.

Construct Description Syntax

textual

A specification of an asynchronous
stimulus communicated between
instances.

Signal «Signal»
Name

parameters

Behavioral Modeling with UML 20

Interaction: Core Relationships

Link A connection between instances.

Attribute Link A named slot in an instance, which
holds the value of an attribute.

Construct Description Syntax

textual

Behavioral Modeling with UML 21

Example: Instance

triangle : Polygon
center : Point = (2,2)
vertices : Point* = ((0,0), (4, 0), (2,4))
borderColor : Color = black
fillColor : Color = white

triangle : Polygon

triangle

: Polygon

underlined name

attribute links

Behavioral Modeling with UML 22

Example: Instances and Links

Joe : Person Jill : Person

: Family

husband wife

Behavioral Modeling with UML 23

Operation and Method

Triangle

+ move (in dist : Point)
+ scale (in factor : Real)

foreach v in vertices do
v.x := v.x + dist.x;
v.y := v.y + dist.y

foreach v in vertices do
v.x := factor * v.x;
v.y := factor * v.y

Behavioral Modeling with UML 24

Interaction Diagram Tour

! Show interactions between instances in
the model
! graph of instances (possibly including links)

and stimuli
! existing instances
! creation and deletion of instances

! Kinds
! sequence diagram (temporal focus)
! collaboration diagram (structural focus)

Behavioral Modeling with UML 25

Interaction Diagrams

x y z

Sequence Diagram

a

b

c

Collaboration Diagram

x y

z

1.1: a
1.2: c

1.1.1: b

Behavioral Modeling with UML 26

Sequence Diagram

name : Classobject symbol

lifeline

activation

other

stimulus

name (…)

return

: Class

create

new (…)

delete

Behavioral Modeling with UML 27

Arrow Label

predecessor sequence-expression return-value := message-name argument-list

3.7.4: move (5, 7)

A3, B4 / C3.1: res := getLocation (fig)

predecessor sequence number
return value message name argument list

move (5, 7)

3.7 *[1..5]: move (5, 7) iteration

3.7 [z > 0]: move (5, 7) condition

Behavioral Modeling with UML 28

Different Kinds of Arrows

Procedure call or other
kind of nested flow of
control

Flat flow of control

Explicit asynchronous
flow of control

Return

UML 1.4: Asynchronous

UML 1.4: Variant of async

Behavioral Modeling with UML 29

Example: Different Arrows

caller exchange callee

Flat Flow

lift receiver

dial tone

dial digit

dial digit

ringing tone ringing signal

lift receiver

teller : Order : Article

Nested Flow

getValue

price

getName

appl err handl alarm

Asynchronous Flow

unknown

alarm

UML 1.4: Asynchronous flow
UML 1.4: Alternative notation
for async flow

Behavioral Modeling with UML 30

Recursion, Condition, etc.

calculator filter value

[x < 0]: transform ()

[x > 0]: getValue ()

getValue ()

iterate ()

Behavioral Modeling with UML 31

Collaboration Diagram

redisplay ()stimulus

1: displayPositions (window)

1.1 *[i := 1..n]: drawSegment (i)

: Controller : Window

wire :Wire
{new}
: Line

left : Bead right : Bead

1.1.1a: r0 := position () 1.1.1b: r1 := position ()

wire

«local» line

contents {new}

window

«self»

window «parameter»

1.1.2: create (r0, r1)
1.1.3: display (window)

1.1.3.1 add (self)

object symbol link symbol

standard
stereotype

standard
stereotype

standard
stereotype

standard
constraint

standard
constraint

Behavioral Modeling with UML 32

When to Model Interactions

! To specify how the instances are to
interact with each other.

! To identify the interfaces of the
classifiers.

! To distribute the requirements.

Behavioral Modeling with UML 33

Interaction Modeling Tips
! Set the context for the interaction.
! Include only those features of the instances

that are relevant.
! Express the flow from left to right and from

top to bottom.
! Put active instances to the left/top and

passive ones to the right/bottom.
! Use sequence diagrams

! to show the explicit ordering between the stimuli
! when modeling real-time

! Use collaboration diagrams
! when structure is important
! to concentrate on the effects on the instances

Behavioral Modeling with UML 34

Example: A Booking System

Behavioral Modeling with UML 35

Use Case Description: Change Flt Itinerary

! Actors: traveler, client account db, airline
reservation system

! Preconditions: Traveler has logged in
! Basic course:

! Traveler selects ‘change flight itinerary’ option
! System retrieves traveler’s account and flight itinerary from client account

database
! System asks traveler to select itinerary segment she wants to change;

traveler selects itinerary segment.
! System asks traveler for new departure and destination information;

traveler provides information.
! If flights are available then …
! …
! System displays transaction summary.

! Alternative course:
! If no flights are available then…

Behavioral Modeling with UML 36

Sequence Diagram: Change Flight Itinerary

: Booking SystemTraveler Airline Reservation System

change flight itinerary

get customer account

get itinerary
present itinerary

select segment

present detailed info

update information
available flight

:
:

Client Account DBMSClient Account DBMS

Behavioral Modeling with UML 37

Collaboration Diagram: Change Flt Itinerary

Traveler Client Account DBMS

Airline Reservation System

: Booking System

7: update information

2: get customer account
3: get itinerary

4: present itinerary

8: available flight

1: change flight itinerary
5: select segment

6: present detailed info

Behavioral Modeling with UML 38

Collaboration

! What is a collaboration?
! Core concepts
! Diagram tour
! When to model collaborations
! Modeling tips
! Example: A Booking System

Behavioral Modeling with UML 39

What is a collaboration?

! Collaboration: a collaboration defines
the roles a set of instances play when
performing a particular task, like an
operation or a use case.

! Interaction:an interaction specifies a
communication pattern to be performed
by instances playing the roles of a
collaboration.

Behavioral Modeling with UML 40

Collaborations: Core Elements

Collaboration A collaboration describes how an
operation or a classifier, like a
use case, is realized by a set of
classifiers and associations used
in a specific way.
The collaboration defines a set of
roles to be played by instances
and links, possibly including a
collection of interactions.

Construct Description Syntax

Name

An interaction describes a
communication pattern between
instances when they play the
roles of the collaboration.

Interaction

Behavioral Modeling with UML 41

Collaborations: Core Elements (cont’d)

Collaboration-
Instance

A collection of instances which
together play the roles declared
in a collaboration.

Construct Description Syntax

Name

A collection of stimuli
exchanged between instances
playing specific roles according
to the communication pattern of
an interaction.

Interaction-
Instance

All new in UML 1.4

Behavioral Modeling with UML 42

Collaborations: Core Elements (cont’d)

Classifier
Role

A classifier role is a specific role
played by a participant in a
collaboration. It specifies a restricted
view of a classifier, defined by what
is required in the collaboration.

Message A message specifies one
communication between instances.
It is a part of the communication
pattern given by an interaction.

Construct Description Syntax

/ Name

label

Behavioral Modeling with UML 43

Collaborations: Core Relationships

Association
Role

An association role is a specific
usage of an association needed
in a collaboration.

Generalization A generalization is a taxonomic
relationship between a more
general element and a more
specific element. The more
specific element is fully consistent
with the more general element.

Construct Description Syntax

Behavioral Modeling with UML 44

Classifier-Instance-Role Trichotomy

! An Instance is an
entity with behavior
and a state, and has
a unqiue identity.

! A Classifier is a
description of an
Instance.

! A Classifier Role
defines a usage (an
abstraction) of an
Instance.

id

ClassName

/ RoleName

«originates from»

«conforms to»

«view of»

Behavioral Modeling with UML 45

Classifier-Instance-Role Trichotomy (cont’d)

ClassifierRoleClassifier

Operation-1 (…)
Operation-2 (…)
Operation-3 (…)

Attribute-1
Attribute-2
Attribute-3

Instance
AttributeValue-1
AttributeValue-2
AttributeValue-3

Operation-1 (…)
Operation-3 (…)

Attribute-1
Attribute-2

«originates from» «conforms to»

•The attribute values of an Instance corresponds to the attributes of its
Classifier.
•All attributes required by the ClassifierRole have corresponding attribute
values in the Instance.
•All operations defined in the Instance’s Classifier can be applied to the
Instance.
•All operations required by the ClassifierRole are applicable to the Instance.

Behavioral Modeling with UML 46

Different Ways to Name a Role

/ ClassifierRoleName : ClassifierName

A role name is preceeded by a ‘/’

/ Parent : PersonExample: / Parent : Person

instanceName / ClassifierRoleName : ClassifierName

Charlie / Parent Charlie / Parent : Person

Charlie : PersonExample: : Person Charlie

A classifier name is preceeded by a ‘:’

Behavioral Modeling with UML 47

Association and Association Role

Class-1 Class-2

«view of» «view of»«view of»

0..5

3..4

{changeable}

{frozen}/ Role-1 / Role-2

•An Association Role specifies the required
properties of a Link used in a
Collaboration.
•The properties of an AssociationEnd may
be restricted by a AssociationEndRole.

AssociationClass Class

AssociationRoleClassifierRole ClassifierRole

Behavioral Modeling with UML 48

Example: A School

/ Teacher : Person / Student : Person

: Faculty : Course

position : Text program : Text
1 tutor student *

faculty member *

faculty 1

1 lecturer

given course *
participant *

taken course *

Behavioral Modeling with UML 49

Role Model vs. Class Model

The Classes give the complete description while the
Roles specify one usage.

/ Teacher : Person / Student : Person

: Faculty : Course

position : Text program : Text

Person

Faculty Course

name : Text
position : Text
program : Text

1 *

1

* 1

* *

*

0..1

*

* *
*1

*

0..1

Extra attribute

Resulting multiplicity

Resulting multiplicity

Role Model Class Model

Behavioral Modeling with UML 50

A Collaboration and Its Roles

CollaborationName

Classifier-1 Classifier-2

roleName-1
roleName-2

roleName-3

A Collaboration
and how its roles
are mapped onto
a collection of
Classifiers and
Associations.

Behavioral Modeling with UML 51

Patterns in UML

Observer

CallQueue SlidingBarIcon

Subject Handler

queue : List of Call
source : Object
waitAlarm : Alarm
capacity : Integer

reading : Real
color : Color
range : Interval

Handler.reading = length (Subject.queue)
Handler.range = {0..Subject.capacity}

Constraint that must
be fulfilled in each instance
of this pattern.

Behavioral Modeling with UML 52

Generalization Between Collaborations

ObserverCallQueue SlidingBarIcon
Subject Handler

SupervisorManagedQueue Controller
ManagerSubject

•All roles defined in the parent are present
in the child.
•Some of the parent’s roles may be
overridden in the child.
•An overridden role is usually the parent of
the new role.

Behavioral Modeling with UML 53

Collaboration Diagram Tour

! Show Classifier Roles and Association
Roles, possibly together with extra
constraining elements

! Kinds
! Instance level – Instances and Links
! Specification level – Roles

! Static Diagrams are used for showing
Collaborations explicitly

Behavioral Modeling with UML 54

Collaboration Diagram at Specification Level

/ Teacher : Person / Student : Person

: Faculty : Course

position : Text program : Text

1 tutor student *

faculty 1

faculty member * 1 lecturer

given course * * taken course

* participant

UML 1.4: The diagram shows the contents of a Collaboration

Behavioral Modeling with UML 55

Collaboration Diagram at Instance Level

John / Teacher

Alice / Student

Bob / Student

Sara / Teacher

: Faculty

English : Course

faculty member

faculty member

faculty

faculty

lecturer

tutor

tutor

student

student

given course

taken course taken course

participant

participant

UML 1.4: The diagram shows the contents of a
CollaborationInstance

Behavioral Modeling with UML 56

Collaborations including Interactions

x y z

Sequence Diagram

a

b

c

Collaboration Diagram

x y

z

1.1: a
1.2: c

1.1.1: b

UML 1.4: The diagrams show the contents
of a CollaborationInstance with an
InteractionInstance superposed

Behavioral Modeling with UML 57

Roles on Sequence Diagrams

/ X / Y / Z

Sequence Diagram

a

b

c

UML 1.4: The diagram shows the contents of a
Collaboration with an Interaction superposed

Behavioral Modeling with UML 58

Collaboration Diagram with Constraining Elements

/ Generator : Printer Device

: Laser Printer : Line Printer

Constraining Element
(A Generalization is not
an AssociationRole)

Behavioral Modeling with UML 59

Static Diagram With Collaboration and Classifiers

ObserverCallQueue SlidingBarIcon
Subject Handler

SupervisorManagedQueue Controller
ManagerSubject

Behavioral Modeling with UML 60

When to Model Collaborations

! Use Collaborations as a tool to find the
Classifiers.

! Trace a Use Case / Operation onto
Classifiers.

! Map the specification of a Subsystem
onto its realization (Tutorial 3).

Behavioral Modeling with UML 61

Collaboration Modeling Tips

! A collaboration should consist of both
structure and behavior relevant for the
task.

! A role is an abstraction of an instance,
it is not a class.

! Look for
! initiators (external)
! handlers (active)
! managed entities (passive)

Behavioral Modeling with UML 62

Example: A Booking System

Behavioral Modeling with UML 63

Use Case Description: Change Flt Itinerary

! Actors: traveler, client account db, airline
reservation system

! Preconditions: Traveler has logged in
! Basic course:

! Traveler selects ‘change flight itinerary’ option
! System retrieves traveler’s account and flight itinerary from client account

database
! System asks traveler to select itinerary segment she wants to change;

traveler selects itinerary segment.
! System asks traveler for new departure and destination information;

traveler provides information.
! If flights are available then …
! …
! System displays transaction summary.

! Alternative course:
! If no flights are available then…

Behavioral Modeling with UML 64

Booking System: Change Flt Itinerary Collaboration

: Traveler : Client Account DBMS

: Airline Reservation System

/ Flight Itinerary Modifier

/ ARS Protocol

/ Flight Itenerary Form / DBMS Protocol

/ Itinerary/ Account

6: get itinerary

7: get itinerary1: change flight itinerary

10: present
2: create modifier

5: create 8: create

3: get customer account

4: get customer account

9: display

Behavioral Modeling with UML 65

Wrap Up: Interactions & Collaborations

! Instances, Links and Stimuli are used
for expressing the dynamics in a model.

! Collaboration is a tool for
! identification of classifiers
! specification of the usage of instances
! expressing a mapping between different

levels of abstraction

! Different kinds of diagrams focus on
time or on structure

Behavioral Modeling with UML 66

Behavioral Modeling

! Part 1: Interactions and Collaborations
! Part 2: Statecharts
! Part 3: Activity Diagrams

Behavioral Modeling with UML 67

Overview

! Basic State Machine Concepts
! Statecharts and Objects
! Advanced Modeling Concepts
! Case Study
! Wrap Up

Behavioral Modeling with UML 68

ONONON

Automata

! A machine whose output behavior is not only
a direct consequence of the current input, but
of some past history of its inputs

! Characterized by an internal state which
represents this past experience

ONONONONONON ONONON

OFFOFFOFF

Behavioral Modeling with UML 69

off

on

State Machine (Automaton) Diagram

! Graphical rendering of automata
behavior

Lamp OnLamp OnLamp On

Lamp OffLamp OffLamp Off

off

on

Behavioral Modeling with UML 70

Outputs and Actions

! As the automaton changes state it can
generate outputs:

on

off

Lamp On
print(”on”)
Lamp OnLamp On
print(”on”)print(”on”)

Lamp
Off

Lamp Lamp
OffOff

off

on

Moore automaton

on

off

Lamp
On

Lamp Lamp
OnOn

Lamp
Off

Lamp Lamp
OffOff

off

on/print(”on”)print(”on”)

Mealy automaton

Behavioral Modeling with UML 71

Extended State Machines

! Addition of variables (“extended state”)

off

on

Lamp OnLamp OnLamp On

Lamp OffLamp OffLamp Off

off

on/ctr := ctr + 1

ctr : Integerctrctr : Integer: Integer

Behavioral Modeling with UML 72

A Bit of Theory

! An extended (Mealy) state machine is defined
by:
! a set of input signals (input alphabet)
! a set of output signals (output alphabet)
! a set of states
! a set of transitions

! triggering signal
! action

! a set of extended state variables
! an initial state designation
! a set of final states (if terminating automaton)

Behavioral Modeling with UML 73

top

Basic UML Statechart Diagram

ReadyReadyReady

stop

/ctr := 0stop

StateStateState

TriggerTriggerTrigger

ActionActionAction

Initial
pseudostate

Initial Initial
pseudostatepseudostate

TransitionTransitionTransition

Final
state
Final Final
statestate

DoneDoneDone

“top” state“top” state“top” state

Behavioral Modeling with UML 74

What Kind of Behavior?

! In general, state machines are suitable
for describing event-driven, discrete
behavior
! inappropriate for modeling continuous

behavior

timetime

thresholdthreshold

Behavioral Modeling with UML 75

Event-Driven Behavior

! Event = a type of observable occurrence
! interactions:

! synchronous object operation invocation (call event)
! asynchronous signal reception (signal event)

! occurrence of time instants (time event)
! interval expiry
! calendar/clock time

! change in value of some entity (change event)

! Event Instance = an instance of an event
(type)
! occurs at a particular time instant and has no

duration

Behavioral Modeling with UML 76

The Behavior of What?

! In principle, anything that manifests
event-driven behavior
! NB: there is no support currently in UML

for modeling continuous behavior
! In practice:

! the behavior of individual objects
! object interactions

! The dynamic semantics of UML state
machines are currently mainly specified
for the case of active objects

Behavioral Modeling with UML 77

Basic State Machine Concepts

Statecharts and Objects

Advanced Modeling Concepts

Case Study

Wrap Up

Behavioral Modeling with UML 78

Object Behavior - General Model

! Simple server model:

Handle
Request
HandleHandle

RequestRequest

Initialize
Object

InitializeInitialize
ObjectObject

Terminate
Object

TerminateTerminate
ObjectObject

Wait for
Request
Wait forWait forWait for
RequestRequestRequest

void:offHook ();
{busy = true;
obj.reqDialtone();
…
};

Handling depends on
specific request type

Handling depends on Handling depends on
specific request typespecific request type

Behavioral Modeling with UML 79

Object Behavior and State Machines

! Direct mapping:

HandleHandle
EventEvent

InitializeInitialize
ObjectObject

TerminateTerminate
ObjectObject

Wait forWait for
EventEvent

on

off

Lamp
On

Lamp Lamp
OnOn

Lamp
Off

Lamp Lamp
OffOff

off

on/print(”on”)

stop

Behavioral Modeling with UML 80

Handle
Request
HandleHandle

RequestRequest

Initialize
Object

InitializeInitialize
ObjectObject

Terminate
Object

TerminateTerminate
ObjectObject

Wait for
Request

Wait forWait for
RequestRequest

Handle
Request
HandleHandle

RequestRequest

Initialize
Object

InitializeInitialize
ObjectObject

Terminate
Object

TerminateTerminate
ObjectObject

Wait for
Request

Wait forWait for
RequestRequest

Object and Threads

•Passive objects: depend on external power (thread
of execution)
•Active objects: self-powered (own thread of
execution)

Behavioral Modeling with UML 81

Passive Objects: Dynamic Semantics

•Encapsulation does not protect the object from
concurrency conflicts!
•Explicit synchronization is still required

Handle
Request
HandleHandle

RequestRequest

Initialize
Object

InitializeInitialize
ObjectObject

Terminate
Object

TerminateTerminate
ObjectObject

Wait for
Request

Wait forWait for
RequestRequest

Behavioral Modeling with UML 82

anActiveObjectanActiveObject

##currentEventcurrentEvent : Event: Event

+ start ()+ start ()
+ poll ()+ poll ()
+ stop ()+ stop ()

Active Objects and State Machines

! Objects that encapsulate own thread of
execution

created

ready

start/^master.ready()

poll/^master.ack()

stop/

poll/defer

ready

created

start start/^master.ready() ready

Behavioral Modeling with UML 83

Active Objects: Dynamic Semantics

Run-to-completion model:
•serialized event handling
•eliminates internal concurrency
•minimal context switching overhead

ActiveObject:

Behavioral Modeling with UML 84

Active1Active1Active1 Active2Active2Active2

The Run-to-Completion Model

! A high priority event for (another) active
object will preempt an active object that is
handling a low-priority event

hi
hi

lo

Behavioral Modeling with UML 85

Basic State Machine Concepts

Statecharts and Objects

Advanced Modeling Concepts

Case Study

Wrap Up

Behavioral Modeling with UML 86

State Entry and Exit Actions

! A dynamic assertion mechanism

LampOnLampOnLampOn
entry/lamp.on();

exit/lamp.off();

e1e1

e2e2

Behavioral Modeling with UML 87

Resulting action sequence:
printf(“exiting”);
printf(“to off”);
lamp.off();

Resulting action sequence:Resulting action sequence:
printfprintf(“exiting”);(“exiting”);
printfprintf(“to off”);(“to off”);
lamp.off();lamp.off();

Order of Actions: Simple Case

! Exit actions prefix transition actions
! Entry action postfix transition actions

printf(“exiting”);
printf(“needless”);
lamp.off();

printfprintf(“exiting”);(“exiting”);
printfprintf(“needless”);(“needless”);
lamp.off();lamp.off();

off/off/printfprintf(“needless”);(“needless”);

off/off/printfprintf(“to off”);(“to off”); LampOffLampOffLampOff
entry/lamp.off();entry/lamp.off();

exit/exit/printfprintf(“exiting”);(“exiting”);

LampOnLampOnLampOn
entry/lamp.on();entry/lamp.on();

exit/exit/printfprintf(“exiting”);(“exiting”);

Behavioral Modeling with UML 88

Internal Transitions

! Self-transitions that bypass entry and
exit actions

LampOffLampOffLampOff
entry/lamp.off();entry/lamp.off();

exit/exit/printfprintf(“exiting”);(“exiting”);

off/null;

Internal transition
triggered by
an “off” event

Internal transitionInternal transition
triggered by triggered by
an “off” eventan “off” event

Behavioral Modeling with UML 89

ErrorErrorError
entry/entry/printfprintf(“error!”)(“error!”)

State (“Do”) Activities

! Forks a concurrent thread that executes
until:
! the action completes or
! the state is exited through an outgoing

transition

do/while (true) alarm.ring();

“do” activity“do” activity“do” activity

Behavioral Modeling with UML 90

Guards

! Conditional execution of transitions
! guards (Boolean predicates) must be side-effect free

SellingSellingSelling

UnhappyUnhappyUnhappy

HappyHappyHappy

bid bid [(value >= 100) & (value < 200)] /sell/sell

bid bid [value >= 200] /sell/sell

bid bid [value < 100] /reject/reject

Behavioral Modeling with UML 91

Static Conditional Branching

! Merely a graphical shortcut for
convenient rendering of decision trees

[(value >= 100) & (value < 200)] /sell/sell

[value >= 200] /sell/sell
[value < 100] /reject/reject

SellingSellingSelling

UnhappyUnhappyUnhappy

HappyHappyHappy

bidbid

Behavioral Modeling with UML 92

bid /gain := calculatePotentialGain(value)

SellingSellingSelling

UnhappyUnhappyUnhappy

HappyHappyHappy

Dynamic Conditional Branching

! Choice pseudostate: guards are evaluated at
the instant when the decision point is reached

[(gain >= 100) & (gain < 200)] /sell/sell

[gain >= 200] /sell/sell
[gain < 100] /reject/reject

Dynamic
choicepoint
DynamicDynamic

choicepointchoicepoint

Behavioral Modeling with UML 93

Hierarchical State Machines

! Graduated attack on complexity
! states decomposed into state machines

LampFlashingLampFlashingLampFlashingflash/flash/

1sec/1sec/
1sec/1sec/

FlashOffFlashOffFlashOff
entry/lamp.off()entry/lamp.off()

FlashOnFlashOnFlashOn
entry/lamp.on()entry/lamp.on()off/off/

LampOffLampOffLampOff
entry/lamp.off()entry/lamp.off()

LampOnLampOnLampOn
entry/lamp.on()entry/lamp.on()

on/on/
on/on/

on/on/

Behavioral Modeling with UML 94

“Stub” Notation

! Notational shortcut: no semantic
significance

LampFlashingLampFlashingLampFlashingflash/flash/

on/on/

FlashOnFlashOn

FlashOffFlashOff

off/off/

LampOffLampOffLampOff
entry/lamp.off()entry/lamp.off()

LampOnLampOnLampOn
entry/lamp.on()entry/lamp.on()

on/on/ on/on/

Behavioral Modeling with UML 95

LampFlashingLampFlashingLampFlashing

1sec/1sec/
1sec/1sec/

FlashOffFlashOffFlashOff
entry/lamp.off()entry/lamp.off()

FlashOnFlashOnFlashOn
entry/lamp.on()entry/lamp.on()off/off/

LampOffLampOffLampOff
entry/lamp.off()entry/lamp.off()

LampOnLampOnLampOn
entry/lamp.on()entry/lamp.on()

on/on/

Group Transitions

! Higher-level transitions

flash/flash/

on/on/

Default transition to
the initial pseudostate
Default transition toDefault transition to

the initial pseudostatethe initial pseudostate

Group transitionGroup transitionGroup transition

Behavioral Modeling with UML 96

Completion Transitions

! Triggered by a completion event
! generated automatically when an immediately

nested state machine terminates

CommittingCommittingCommitting

Phase1Phase1Phase1

Phase2Phase2Phase2
CommitDoneCommitDoneCommitDone

completion
transition (no trigger)

completion completion
transition (no trigger)transition (no trigger)

Behavioral Modeling with UML 97

LampFlashingLampFlashingLampFlashing

off/off/
FlashOffFlashOffFlashOff

FlashOnFlashOnFlashOn

Triggering Rules

! Two or more transitions may have the same
event trigger
! innermost transition takes precedence
! event is discarded whether or not it triggers a

transition

on/
on/

Behavioral Modeling with UML 98

Deferred Events

! Events can be retained if they do not
trigger a transition

off/off/

LampOnLampOnLampOn
entry/lamp.on()entry/lamp.on()

on/on/

LampOffLampOffLampOff
entry/lamp.off()entry/lamp.off()

off/deferoff/defer

Deferred eventDeferred eventDeferred event

Behavioral Modeling with UML 99

Order of Actions: Complex Case

! Same approach as for the simple case

S1
exit/exS1

S1S1
exit/exS1exit/exS1

S11
exit/exS11

S11S11
exit/exS11exit/exS11

S2
entry/enS2

S2S2
entry/enS2entry/enS2

S21
entry/enS21

S21S21
entry/enS21entry/enS21

initS2initS2
E/E/actEactE

Actions execution sequence:

exS11 " exS1 " actE " enS2 " initS2 " enS21

Behavioral Modeling with UML 100

suspend/suspend/

History

! Return to a previously visited hierarchical
state
! deep and shallow history options

DiagnosingDiagnosingDiagnosing

Diagnostic1Diagnostic1Diagnostic1

Step11Step11Step11

Step12Step12Step12

Diagnostic2Diagnostic2Diagnostic2

Step21Step21Step21

Step22Step22Step22resume/resume/
H*H*H*

Behavioral Modeling with UML 101

Orthogonality

! Multiple simultaneous perspectives on the
same entity

ChildChild

AdultAdult

RetireeRetiree

ageage

PoorPoor

RichRich

financialStatusfinancialStatus

Behavioral Modeling with UML 102

Orthogonal Regions

! Combine multiple simultaneous descriptions

ChildChild

AdultAdult

RetireeRetiree

ageage

PoorPoor

RichRich

financialStatusfinancialStatus

PoorPoor

RichRich

financialStatusfinancialStatus

ChildChild

AdultAdult

RetireeRetiree

ageage

Behavioral Modeling with UML 103

OutlawOutlawOutlaw

LawAbidingLawAbidingLawAbiding PoorPoorPoor

RichRichRich

financialStatusfinancialStatuslegalStatuslegalStatus

Orthogonal Regions - Semantics

! All mutually orthogonal regions detect the
same events and respond to them
“simultaneously”
! usually reduces to interleaving of some kind

robBankrobBank// robBankrobBank//

Behavioral Modeling with UML 104

Catch22Catch22Catch22
sanityStatussanityStatus flightStatusflightStatus

Interactions Between Regions

! Typically through shared variables or
awareness of other regions’ state changes

(flying)/(flying)/

Crazy
entry/sane := false;

CrazyCrazy
entry/sane := false;entry/sane := false;

Sane
entry/sane := true;

SaneSane
entry/sane := true;entry/sane := true;

requestrequest
Grounding/Grounding/

Flying
entry/flying := true;

FlyingFlying
entry/flying := true;entry/flying := true;

Grounded
entry/flying := false;

GroundedGrounded
entry/flying := false;entry/flying := false;

(sane)/(sane)/

(~sane)/(~sane)/

sane : Booleansane : Booleansane : Boolean

flying : Booleanflying : Booleanflying : Boolean

Behavioral Modeling with UML 105

Transition Forks and Joins

! For transitions into/out of orthogonal
regions:

Staff
Member

StaffStaff
MemberMember

employeeemployee

ChildChildChild AdultAdultAdult RetireeRetireeRetiree

ageage

ManagerManagerManager

Behavioral Modeling with UML 106

Common Misuse of Orthogonality

! Using regions to model independent objects

ChildChild

AdultAdult

RetireeRetiree

ChildChild

AdultAdult

RetireeRetiree

Person1Person1 Person2Person2

Person1Person1 Person2Person2

Behavioral Modeling with UML 107

Basic State Machine Concepts

Statecharts and Objects

Advanced Modeling Concepts

Case Study

Wrap Up

Behavioral Modeling with UML 108

line card 1line card 1

line card Nline card NEnd userEnd user

unreliable
telecom lines

Case Study: Protocol Handler

! A multi-line packet switch that uses the
alternating-bit protocol as its link
protocol

SWITCHSWITCH

.

.

.

AB
sender

AB
receiver

End user

End user

AB
sender

AB
receiver

AB protocolAB protocolAB protocol

Behavioral Modeling with UML 109

packetizer unpackerReceiverSender

Alternating Bit Protocol (1)

! A simple one-way point-to-point packet
protocol

data(1)

ackA

pktA
data(1)

ack

ack

data(2)

ackB

pktB
data(2)

ack

ack
…etc.

AB protocolAB protocolAB protocol

Behavioral Modeling with UML 110

Alternating Bit Protocol (2)

! State machine specification

ackB/^ack
data/^pktA

ackA/^ack data/^pktB

timeout/^pktB

timeout/^pktA

Sender SM

AcceptPktA

WaitAckA

AcceptPktB

WaitAckB

pktA/^data
ack/^ackA

pktB/^data
ack/^ackB

timeout/^ackB

timeout/^ackA

RcvdPktA

WaitPktB

RcvdPktB

WaitPktA

Receiver SM

Behavioral Modeling with UML 111

Additional Considerations

! Support (control) infrastructure

SWITCHSWITCH

ABAB
receiverreceiver

ABAB
sendersender

operatoroperator
interfaceinterface

DBDB
interfaceinterface

SystemSystem
operatoroperator

DBaseDBase

AB linesAB lines
managermanager

Behavioral Modeling with UML 112

Control

The set of (additional) mechanisms and
actions required to bring a system into the
desired operational state and to maintain it in
that state in the face of various planned and
unplanned disruptions

For software systems this includes:
•system/component start-up and shut-down
•failure detection/reporting/recovery
•system administration, maintenance, and
provisioning
•(on-line) software upgrade

Behavioral Modeling with UML 113

Retrofitting Control Behavior

AcceptPktA

WaitAckA

AcceptPktB

WaitAckB

Failed

JustCreated Hardware
Audit

GettingData

ReadyToGo

Analysing
Failure

Behavioral Modeling with UML 114

The Control Automaton

! In isolation, the same control behavior
appears much simpler

Failed

JustCreated

Hardware
Audit

GettingData

ReadyToGo

Analysing
Failure

OperationalOperational

Behavioral Modeling with UML 115

Exploiting Inheritance

! Abstract control classes can capture the
common control behavior

AbstractController

Sender Receiver . . .

Behavioral Modeling with UML 116

Failed

JustCreated

Hardware
Audit

GettingData

ReadyToGo

Analysing
Failure

OperationalOperational

Exploiting Hierarchical States

AbstractController

Sender

Behavioral Modeling with UML 117

Basic State Machine Concepts

Statecharts and Objects

Advanced Modeling Concepts

Case Study

Wrap Up

Behavioral Modeling with UML 118

Wrap Up: Statecharts

! UML uses an object-oriented variant of
Harel’s statecharts
! adjusted to software modeling needs

! Used to model event-driven (reactive)
behavior
! well-suited to the server model inherent in the

object paradigm
! Primary use for modeling the behavior of

active event-driven objects
! systems modeled as networks of collaborating

state machines
! run-to-completion paradigm significantly simplifies

concurrency management

Behavioral Modeling with UML 119

Wrap Up: Statecharts (cont’d)

! Includes a number of sophisticated features
that realize common state-machine usage
patterns:
! entry/exit actions
! state activities
! dynamic and static conditional branching

! Also, provides hierarchical modeling for
dealing with very complex systems
! hierarchical states
! hierarchical transitions
! orthogonality

Behavioral Modeling with UML 120

Behavioral Modeling

! Part 1: Interactions and Collaborations
! Part 2: Statecharts
! Part 3: Activity Diagrams

Behavioral Modeling with UML 121

Activity Diagram Applications

! Intended for applications that need control
flow or object/data flow models …

! ... rather than event-driven models like state
machines.

! For example: business process modeling and
workflow.

! The difference in the three models is how
step in a process is initiated, especially with
respect to how the step gets its inputs.

Behavioral Modeling with UML 122

Control Flow

! Each step is taken when the previous one
finishes …

! …regardless of whether inputs are available,
accurate, or complete (“pull”).

! Emphasis is on order in which steps are
taken.

Not UML
Notation! Chart CourseChart Course Cancel TripCancel Trip

Analyze Weather InfoAnalyze Weather Info

Weather InfoStart

Behavioral Modeling with UML 123

Object/Data Flow

! Each step is taken when all the required input
objects/data are available …

! … and only when all the inputs are available
(“push”).

! Emphasis is on objects flowing between steps.

Design ProductDesign Product

Procure
Materials
Procure
Materials

Acquire CapitalAcquire Capital

Build
Subassembly 1

Build
Subassembly 1

Build
Subassembly 2

Build
Subassembly 2

Final
Assembly

Final
Assembly

Not UML
Notation

Behavioral Modeling with UML 124

State Machine

! Each step is taken when events are
detected by the machine …

! … using inputs given by the event.
! Emphasis is on reacting to environment.

Ready To StartReady To Start
Coin

Deposited

Ready For OrderReady For Order
Selection

Made

Dispense
Product

Dispense
Product

Return
Change
Return
Change

Cancel Button
Pressed

Not UML
Notation

Behavioral Modeling with UML 125

Activity Diagrams Based on State Machines

! Currently activity graphs are modeled
as a kind of state machine.

! Modeler doesn't normally need to be
aware of this sleight-of-hand ...

! ... but will notice that "state" is used in
the element names.

! Activity graphs will become independent
of state machines in UML 2.0.

Behavioral Modeling with UML 126

! Just like their state machine counterparts
(simple state and submachine state) except
that ...

! ... transitions coming out of them are taken
when the step is finished, rather than being
triggered by a external event, ...

! ... and they support dynamic concurrency.

Kinds of Steps in Activity Diagrams

Action! Action (State)

Subactivity! Subactivity (State)

Behavioral Modeling with UML 127

Action (State)

! An action is used for anything that does not
directly start another activity graph, like
invoking an operation on an object, or
running a user-specified action.

! However, an action can invoke an operation
that has another activity graph as a method
(possible polymorphism).

Action

Behavioral Modeling with UML 128

Subactivity (State)

! A subactivity (state) starts another activity
graph without using an operation.

! Used for functional decomposition, non-
polymorphic applications, like many workflow
systems.

! The invoked activity graph can be used by
many subactivity states.

Subactivity

Behavioral Modeling with UML 129

Example

POEmployee.sortMail Deliver Mail

POEmployee

sortMail() Check Out
Truck

Put Mail
In Boxes

Deliver Mail

Behavioral Modeling with UML 130

POEmployee

sortMail()

Activity Graph as Method

! Application is completely OO when all action states
invoke operations

! All activity graphs are methods for operations.

POEmployee.sortMail POEmployee.deliverMail

deliverMail()
«realize»

Check Out
Truck

Put Mail
In Boxes

PO Employee Deliver Mail Method

Behavioral Modeling with UML 131

Dynamic concurrency

! Applies to actions and subactivities.

! Not inherited from state machines.

! Invokes an action or subactivity any number of times in parallel,
as determined by an expression evaluated at runtime.
Expression also determines arguments.

! Upper right-hand corner shows a multiplicity restricting the
number of parallel invocations.

! Outgoing transition triggered when all invocations are done.

! Currently no standard notation for concurrency expression or
how arguments are accessed by actions. Attach a note as
workaround for expression. Issue for UML 2.0.

Action/Subactivity *

Behavioral Modeling with UML 132

Object Flow (State)

! A special sort of step (state) that represents
the availability of a particular kind of object,
perhaps in a particular state.

! No action or subactivity is invoked and
control passes immediately to the next step
(state).

! Places constraints on input and output
parameters of steps before and after it.

Class
[State]

Behavioral Modeling with UML 133

Object Flow (State)

! Take Order must have an output parameter
giving an order, or one of its subtypes.

! Fill Order must have an input parameter
taking an order, or one of its supertypes.

! Dashed lines used with object flow have the
same semantics as any other state transition.

Order
[Taken]Take Order Fill Order

Behavioral Modeling with UML 134

Coordinating Steps

! Initial state

! Final state

! Fork and join

! Inherited from state machines

Behavioral Modeling with UML 135

! Decision point and merge () are
inherited from state machines.

! For modeling conventional flow chart
decisions.

Coordinating Steps

Calculate
Cost

Charge
Account

Get
Authorization

[cost < $50]

[cost >= $50]

Behavioral Modeling with UML 136

! Synch state () is inherited from state
machines but used mostly in activity graphs.

! Provides communication capability between
parallel processes.

Coordinating Steps

State machine
notation

InspectInstall
Foundation

Build
Frame

Install
Electricity

in Foundation

Put
On

Roof

Install
Electricity
In Frame

Install
Electricity
Outside

Install
Walls

* *

Behavioral Modeling with UML 137

Convenience Features (Synch State)

! Forks and joins do not require composite
states.

! Synch states may be omitted for the common
case (unlimited bound and one incoming and
outgoing transition).

Build
Frame

Install
Foundation

Install
Electricity

in Foundation

Put
On

Roof

Install
Electricity
In Frame

Install
Electricity
Outside

Install
Walls

Inspect

Activity diagram
notation

Behavioral Modeling with UML 138

Convenience Features (Synch State)

! Object flow states can be synch states

Obj
[S2]

A11 A12 A13

A21 A22 A23

Behavioral Modeling with UML 139

Convenience Features

! Fork transitions can have guards.

Register
Bug

Evaluate
Impact

Fix
Bug

Revise
Plan

Release
Fix

Test
Fix

[priority = 1]

Register
Bug

Evaluate
Impact

Fix
Bug

Revise
Plan

Release
Fix

Test
Fix

[priority = 1]

[else]

! Instead of doing this:

Behavioral Modeling with UML 140

Convenience Features

! Partitions are a grouping mechanism.
! Swimlanes are the notation for partitions.
! They do not provide domain-specific semantics.
! Tools can generate swimlane presentation from

domain-specific information without partitions.

Register
Bug

Evaluate
Impact

Fix
Bug

Revise
Plan

Release
Fix

Test
Fix

[priority = 1]

Management

Support

Engineering

Behavioral Modeling with UML 141

Convenience Features

! Signal send icon

Signal

Coffee
Pot

Wake Up

Get Cups

Turn on Coffee Pot

Coffee Done

Drink Coffee

Signal

! … translates to a transition
with a send action.

! Signal receipt icon

! … translates to a wait state (a
state with no action and a
signal trigger event).

Behavioral Modeling with UML 142

Ca
se

 S
tu

dy
partition

Submission Team Task Force Revision Task Force

Issue RFP

Evaluate initial
submissions

Submit
specification

draft

Collaborate with
competitive
submitters

Develop
technology

specification

action state

RFP
[issued]

[optional]

control flow

Finalize
specification

Specification
[initial

proposal]

input value

Begin

object flow

initial state

join of control
conditional
fork

fork of control

Specification
[final

proposal]

Ad
ap

te
d

fro
m

Ko
br

yn
, “

U
M

L
20

01
”

C
om

m
un

ic
at

io
ns

 o
f t

he
 A

C
M

O
ct

ob
er

 1
99

9

Behavioral Modeling with UML 143

Ca
se

 S
tu

dy
Ad

ap
te

d
fro

m
Ko

br
yn

, “
U

M
L

20
01

”
C

om
m

un
ic

at
io

ns
 o

f t
he

 A
C

M
O

ct
ob

er
 1

99
9

Evaluate initial
submissions

Evaluate final
submissions

Vote to
recommend

Enhance
specification

Implement
specification

Revise
specification

Finalize
specification

Specification
[final

proposal]

Specification
[adopted]

Recommend
revision

Specification
[revised]

[NO][YES]

[else] [Enhanced]

decision

final state

guard

Collaborate with
competitive
submitters

Behavioral Modeling with UML 144

When to Use Activity Diagrams

! Use activity diagrams when the
behavior you are modeling ...
! does not depend much on external events.
! mostly has steps that run to completion,

rather than being interrupted by events.
! requires object/data flow between steps.
! is being constructed at a stage when you

are more concerned with which activities
happen, rather than which objects are
responsible for them (except partitions
possibly).

Behavioral Modeling with UML 145

Activity Diagram Modeling Tips

! Control flow and object flow are not
separate. Both are modeled with state
transitions.

! Dashed object flow lines are also
control flow.

! You can mix state machine and
control/object flow constructs on the
same diagram (though you probably do
not want to).

Behavioral Modeling with UML 146

Activity Diagram Modeling Tips

Request
Return

Get Return
Number

Ship Item

Item
[returned]

Receive
Item

Restock
Item

Credit
Account

Item
[available]

Customer Telesales WarehouseAccountingFrom UML
User Guide:

Behavioral Modeling with UML 147

Ac
tiv

ity
 M

od
el

in
g

Ti
ps

Request
Return

Get Return
Number

Ship Item

Item
[returned]

Receive
Item

Restock
Item

Credit
Account Item

[available]

Customer Telesales WarehouseAccounting

Behavioral Modeling with UML 148

Activity Diagram Modeling Tips

! Activity diagrams inherit from state machines the
requirement for well-structured nesting of composite
states.

! This means you should either model as if composite
states were there by matching all forks/decisions with
a correspond join/merges …

! … or check that the diagram can be translated to one
that is well-nested.

! This insures that diagram is executable under state
machine semantics.

Behavioral Modeling with UML 149

Activity Diagram Modeling Tips

Well-nested:

Behavioral Modeling with UML 150

Not well-nested:

Activity Diagram Modeling Tips

Apply structured coding principles. (Be careful with goto’s!)

Behavioral Modeling with UML 151

Activity Diagram Modeling Tips

Can be translated to well-nested
diagram on earlier slide:

Behavioral Modeling with UML 152

Wrap Up: Activity Diagrams

! Use Activity Diagrams for applications that are
primarily control and data-driven, like business
modeling …

! … rather than event-driven applications like
embedded systems.

! Activity diagrams are a kind of state machine until
UML 2.0 …

! … so control and object/data flow do not have
separate semantics.

! UML 1.3 has new features for business modeling that
increase power and convenience. Check it out and
give feedback!

Behavioral Modeling with UML 153

Preview - Next Tutorial

! Advanced Modeling with UML
! Model management
! Standard elements and profiles
! Object Constraint Language (OCL)

Behavioral Modeling with UML 154

References

! [UML 1.3] OMG UML Specification v. 1.3,
OMG doc# ad/06-08-99

! [UML 1.4] OMG UML Specification v. 1.4, UML
Revision Task Force recommended final draft,
OMG doc# ad/01-02-13.

Behavioral Modeling with UML 155

Further Info
! Web:

! UML 1.4 RTF: www.celigent.com/omg/umlrtf
! OMG UML Tutorials: www.celigent.com/omg/umlrtf/tutorials.htm
! UML 2.0 Working Group:

www.celigent.com/omg/adptf/wgs/uml2wg.htm
! OMG UML Resources: www.omg.org/uml/

! Email
! uml-rtf@omg.org
! Contributors:

! Gunnar Övergaard: gunnar.overgaard@jaczone.com
! Bran Selic: bselic@rational.com
! Conrad Bock: conrad.bock@kabira.com
! Morgan Björkander: morgan.bjorkander@telelogic.se

! Conferences & workshops
! UML World 2001, New York, June 11-14, 2001
! UML 2001, Toronto, Canada, Oct. 1-5, 2001
! OMG UML Workshop 2001, San Francisco, Dec. 3-6, 2001

