Agenda

- Part 1
 - Introduction to MDD for RT/E systems & MARTE in a nutshell
- Part 2
 - Non-functional properties modeling
 - Outline of the Value Specification Language (VSL)
- Part 3
 - The timing model
- Part 4
 - A component model for RT/E
- Part 5
 - Platform modeling
- Part 6
 - Repetitive structure modeling
- Part 7
 - Model-based analysis for RT/E
- Part 8
 - MARTE and AADL
- Part 9
 - Conclusions
Component-based paradigms in the RTE domain

- Component architectures are increasingly used in RTE execution platforms
 - Need for manageable and reusable pieces of software
 - Key examples: Lightweight-CCM, SCA, Autosar

- Concept of component also used to structure System / Software engineering processes
 - Entities under analysis/design broken down into a series of components
 - Applicable at different stages of the process
 - Different kind: active vs. passive (e.g., UML active classes)
 - Examples of related languages: SysML, AADL

There is a need to provide modeling constructs to support these concepts at different levels of abstraction
What is a component in UML?

- UML distinguishes the notions of structured class and component
 - The kernel of the language defines *Class* and *Interface*
 - *StructuredClasses* defines *Port* and *Connector* and provide the ability to describe a *Class* as an assembly of parts
 - *Basic* and *PackagingComponent* define the notion of component realization and adds packaging capabilities

- **In any case, no support for flow-oriented communications**
General Component Model

- Introduced to cope with various component-based models
 - SysML, Spirit, AADL, Lightweight-CCM, EAST-ADL2, Autosar

- Does not imply any specific model of computation

- Relies mainly on UML structured classes, on top of which a support for SysML blocks has been added
 - Atomic and non-atomic flow ports
 - Flow properties and flow specifications

- But also providing a support for Lightweight-CCM, AADL and EAST-ADL2, Spirit and Autosar
The MARTE GCM subprofile
Example of component definition

- **Atomic flow port** typed by a Classifier

- **Standard UML port** typed by a class that uses the LocationAccess interface

- **Complex flow port** typed by a flow specification
Example of component usage

Outgoing atomic flow port

Incoming atomic flow port

UML delegation connector used with an atomic flow port

UML delegation connector used with a non-atomic flow port
RTE Model of Computation and Communication

- High-level modeling concepts for RT/E design
 - Qualitative aspects
 - E.g. concurrency and behavior
 - Quantitative aspects as real-time feature
 - E.g. deadline or period

- Allows expressing real-time constraints on component interfaces and connectors
 - Applicable whether component are active or passive

- For active components, introduces specific models of computation
 - Currently, active objects (e.g. Rhapsody, Rose RT, ACCORD)
 - Alternative MoCC can be defined using the MARTE foundations
RTE Model of Computation and Communication

- Provides high-level concepts for modeling qualitative real-time features on classes / structured classes / components
 - Real-Time Unit (RTUnit)
 - Generalization of the Active Objects of the UML 2
 - Owns at least one schedulable resource
 - Resources are managed either statically (pool) or dynamically
 - May have operational mode description (similar to AADL modes)
 - Protected Passive Unit (PPUnit)
 - Generalization of the Passive Objects of the UML2
 - Requires schedulable resources to be executed
 - Supports different concurrency policies (e.g. sequential, guarded)
 - Policies are specified either locally or globally
 - Execution is either immediateRemote or deferred
RTE Model of Computation and Communication (cont’d)

- Provides high-level concepts for modeling quantitative real-time features on classes / structured classes / components
 - Real-Time Behavior (RtBehavior)
 - Message Queue size and policy bound to a provided behavior
 - Real-Time Feature (RTF)
 - Extends UML Action, Message, Signal, BehavioralFeature
 - Relative/absolute/bound deadlines, ready time and miss ratio
 - Real-Time Connector (RteConnector)
 - Extends UML Connector
 - Throughput, transmission mode and max blocking/packet Tx time
Usage examples of the RTEMoCC extensions

Can be one of the following:
- sequential
- guarded
- concurrent

Characterizes the behavior with real-time features

ObstacleDetector class declared as “active”

isMain = true
main = start

isDynamic = false
isMain = false
poolSize = 10
poolPolicy = create

Can be one of the following:

- sequential
- guarded
- concurrent

Characterizes the behavior with real-time features

User
Modeling real-time features of components

Without a «rtUnit» stereotype, the component is considered as passive. It needs to be allocated on a computing resource (e.g., using the «allocate» stereotype).

Protected passive unit exchange between components with a sequential access policy.

Qualitative features on a component interface

Quantitative features on a component interface
Modeling real-time features of components (cont’d)

Qualitative features defined on actions of the computeTrajectory behavior

Qualitative features defined on the LocationAccess interface apply
Modeling real-time features of components (cont’d)
Extensibility

- All models of computation in the RTE domain not explicitly addressed by MARTE

- MARTE foundations (NFP, Time, GRM) allow third-parties to specify other model of computations that rely on the same semantic basis
 - Allows one to use MARTE features along with this user-defined MoCC