Agenda

- Part 1
 - Introduction to MDD for RT/E systems & MARTE in a nutshell
- Part 2
 - Non-functional properties modeling
 - Outline of the Value Specification Language (VSL)
- Part 3
 - The timing model
- Part 4
 - A component model for RT/E
- Part 5
 - Platform modeling
- Part 6
 - Repetitive structure modeling
- Part 7
 - Model-based analysis for RT/E
- Part 8
 - MARTE and AADL
- Part 9
 - Conclusions
Embedded System Hardware is now Repetitive

- **Multicore**
 - Today 4 to 8 cores
 - Tomorrow: 16 to 64 cores

- **Processor meshes**
 - Ex: Tilera Tile64

- **SIMD units**
 - Data parallelism
The Future of Embedded Applications is **Parallel**

- **Multimedia**
 - Video coding/decoding
 - HDTV

- **Detection systems**
 - Radar
 - Sonar

- **Telecom**
 - Software radio
 - Wireless communications

Computation models
- Multidimensional signal processing
- Stream processing
- Data parallelism
Repetitive Structure Modeling

- **Motivation**
 - *Multidimensional regular parallelism*
 - Nested loops
 - Multiprocessor Systems
 - *Compact representation*
 - Application
 - Hardware platform
 - Association

- **Form**
 - New notation / stereotypes
Concepts of Repetitive Structure Modeling

- **Concepts**
 - **Shape** (extension of *multiplicity*)
 - To model multidimensional arrays
 - **Link topology** (extension of *connector* and *allocate*)
 - To model the topology of the links between multidimensional arrays
 - Pattern-based regular topologies

- **Basic idea: regular tiling of multidimensional arrays by multidimensional sub-arrays**
 - Regular spacing of points inside a tile
 - Regular spacing of tiles
 - Inherits from the Array-OL language
Shape Modeling

- **New notation**
 - Refinement of the multiplicity notation
 - Vector of UnlimitedNaturals

- **Examples**
 - $16 \rightarrow \{4,4\}$
 - $* \rightarrow \{512,128,*\}$
Link Topology Modeling

Profile

- **RSM**

Metaclasses

- **UML::Connector**
- **UML::ConnectorEnd**

Stereotypes

- **DefaultLink**
- **LinkTopology**
- **InterRepetition**

Stereotype Attributes

- **RepetitionSpaceDependence**: `IntegerVector [1]`
- **isModulo**: `Boolean = false`

- **PatternShape**: `ShapeSpecification [1]`
- **RepetitionSpace**: `ShapeSpecification [1]`

Stereotype Descriptions

- **Reshape**
- **Tiler**

Attributes

- **origin**: `IntegerVector`
- **paving**: `IntegerMatrix`
- **fitting**: `IntegerMatrix`
- **tiler**: `TilerSpecification`
Hardware Platform Example

- **SIMD unit**
 - 16 processors

- **Topology**
 - Toroidal 4×4 grid
 - Bidirectional connections
 - North-South
 - East-West
Tiling an Array

- **Needed shapes**
 - Array shape
 - Pattern shape
 - Repetition space shape

- **Tiler**
 - **Fitting**: regular spacing of the points of the tiles
 - Index i
 - Scanning the pattern
 - **Paving**: regular spacing of the tiles
 - Index r
 - Scanning the repetition space

```
origin+(paving fitting).\( (r) \mod \text{array.shape} \)
```
Graphical Interpretation of a Tiler (1/2)

- **Fitting**
 - Column vectors
 - Basis of the tile
 - Pattern shape
 - Bounds of the fitting

- **Paving**
 - Column vectors
 - Basis of the placement of the tiles
 - Repetition space
 - Bounds of the paving
 - Origin
 - Coordinates of the reference point of the reference tile

\[
F = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \text{pattern } s_{\text{pattern}} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \text{array } s_{\text{array}} = \begin{pmatrix} 6 \\ 6 \end{pmatrix}, \quad P = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad \text{repetition } s_{\text{repetition}} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}
\]
Graphical Interpretation of a Tiler (2/2)

- **Fitting**
 - Column vectors
 - Basis of the tile
 - Pattern shape
 - Bounds of the fitting

- **Paving**
 - Column vectors
 - Basis of the placement of the tiles
 - Repetition space
 - Bounds of the paving
 - Origin
 - Coordinates of the reference point of the reference tile

\[
F = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad o = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad P = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}
\]

\[s_{\text{pattern}} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \quad s_{\text{array}} = \begin{pmatrix} 4 \\ 6 \end{pmatrix}, \quad s_{\text{repetition}} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}\]
Application Example

- **Samples from 512 hydrophones around a submarine**
 - Shape of the input data = $512 \times \infty$
- **Repetition of FFTs**
 - For each hydrophone
 - Sliding window of 128 samples every 32 time steps
Distribution

- Refinement of Allocation
- Similar to the reshape stereotype of the connectors

Principle
- Tiling both ends
 - Two tilers
- With the same tiles
 - One pattern shape
 - One repetition space

Power of expression
- At least all HPF data distributions
Distribution Example

- Distribution of the FFT computations to the SIMD unit
 - No spatial distribution of the infinite dimension (time steps)
 - Bloc distribution of the 512 FFTs for each time step
 - Size of the bloc = 32
 - On the 16 elementary processors
Distribution Example

- **Distribution of the FFT computations to the SIMD unit**
 - No spatial distribution of the infinite dimension (time steps)
 - Bloc distribution of the 512 FFTs for each time step
 - Size of the bloc = 32
 - On the 16 elementary processors
Complex Hardware Example: Tile64

- **Challenge**
 - Model the architecture
 - In the most compact way

- **Proposal**
 - 8x8-repetition of the processing element
 - 4-repetition of the DDR2 controller
 - Factorization of the ports
Processing Element Repetition

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"

<<DefaultLink>>
<<Tiler>>
fitting = "{{0,0},{1,0}}",
origin = "{{0,0},{0,0}}",
paving = "{{0,0},{0,0}}"
DDR2 Controller Connection to the Grid
Conclusion on RSM

- General mechanism to handle
 - Multidimensional structures (arrays)
 - Tiling by sub-structures (non orthogonal or sparse tiles possible)
 - Links between such structures (cyclic or non cyclic connection patterns possible)

- Necessary to handle massive regular parallelism
 - Compactness of the model
 - Efficiency, maintainability, readability

- Relations with the rest of MARTE
 - Uses VSL
 - Benefits from the component model (flow ports)
 - Applies to both application and hardware components
 - Extends allocation

- Limitations
 - Handles only arrays (no fancier shapes)
 - Would benefit from a custom (visual) tiler editor
 - Under development