
Ada Language Mapping Specification

New Edition: June 1999

 paid up,
fied ver-
pyright in
g con-

ire use
y be
at are
r protect

 an
ent does

iable for
Copyright 1995, 1996 BNR Europe Ltd.
Copyright 1998, Borland International
Copyright 1991, 1992, 1995, 1996 Digital Equipment Corporation
Copyright 1995, 1996 Expersoft Corporation
Copyright 1996, 1997 FUJITSU LIMITED
Copyright 1996 Genesis Development Corporation
Copyright 1989, 1990, 1991, 1992, 1995, 1996 Hewlett-Packard Company
Copyright 1991, 1992, 1995, 1996 HyperDesk Corporation
Copyright 1998 Inprise Corporation
Copyright 1996, 1997 International Business Machines Corporation
Copyright 1995, 1996 ICL, plc
Copyright 1995, 1996 IONA Technologies, Ltd.
Copyright 1996, 1997 Micro Focus Limited
Copyright 1991, 1992, 1995, 1996 NCR Corporation
Copyright 1995, 1996 Novell USG
Copyright 1991,1992, 1995, 1996 by Object Design, Inc.
Copyright 1991, 1992, 1995, 1996 Object Management Group, Inc.
Copyright 1996 Siemens Nixdorf Informationssysteme AG
Copyright 1991, 1992, 1995, 1996 Sun Microsystems, Inc.
Copyright 1995, 1996 SunSoft, Inc.
Copyright 1996 Sybase, Inc.
Copyright 1998 Telefónica Investigación y Desarrollo S.A. Unipersonal
Copyright 1996 Visual Edge Software, Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modi
sion. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the co
the included material of any such copyright holder by reason of having used the specification set forth herein or havin
formed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may requ
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license ma
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents th
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible fo-
ing themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details
Object Management Group specification in accordance with the license and notices set forth on this page. This docum
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MANAGE-
MENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF TITLE
OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR PARTICU-
LAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed above be l

 profi
 Object

ize devel
 to indi-

-graphic,
thout
s sub-
at
, Inc.
e

ers to
errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages, including loss ofts,
revenue, data or use, incurred by any user or any third party. The copyright holders listed above acknowledge that the
Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may author-
opers, suppliers and sellers of computer software to use certification marks, trademarks or other special designations
cate compliance with these materials. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any means-
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--wi
permission of the copyright owner. RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government i
ject to restrictions as set forth in subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause
DFARS 252.227.7013 OMGÆ and Object Management are registered trademarks of the Object Management Group
Object Request Broker, OMG IDL, ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of th
Object Management Group, Inc. X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage read
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

v
v

v

vi

vi

vii

-1
1-2
-3
-3
-3

1-3
1-3

1-4
1-4
-4
-4

1-5
1-5
-5

1-5
1-6
1-6
1-6

1-7
-7
-7
-7
-8
-8
-9
-9
-9
0

10
-10
11

-12
12
-12

12
12
Preface .
0.1 About CORBA Language Mapping Specifications

0.1.1 Alignment with CORBA

0.2 Definition of CORBA Compliance.

0.3 Acknowledgements .

0.4 References .

1. Ada Language Mapping. 1
1.1 Overview .

1.1.1 Ada Implementation Requirements 1
1.1.2 Calling Convention. 1
1.1.3 Memory Management. 1
1.1.4 Tasking .
1.1.5 Ada Type Size Requirements

1.2 Mapping Summary. .
1.2.1 Interfaces and Tagged Types.

1.2.1.1 Client Side . 1
1.2.1.2 Forward Declarations 1
1.2.1.3 Server Side .

1.2.2 Operations .
1.2.3 Attributes . 1
1.2.4 Inheritance .
1.2.5 Data Types .
1.2.6 Exceptions .
1.2.7 Names and Scoping .

1.3 Lexical Mapping .
1.3.1 Mapping of Identifiers 1
1.3.2 Mapping of Literals . 1

1.3.2.1 Integer Literals . 1
1.3.2.2 Floating-Point Literals 1
1.3.2.3 Fixed Point Literals 1
1.3.2.4 Character Literals 1
1.3.2.5 Wide Character Literals 1
1.3.2.6 String Literals . 1
1.3.2.7 Wide String Literals 1-1
1.3.2.8 Enumeration Literals 1-

1.3.3 Mapping of Constant Expressions 1
1.3.3.1 Mapping of Operators 1-

1.4 Mapping of Names. 1
1.4.1 Identifiers . 1-
1.4.2 Scoped Names . 1

1.5 Mapping of IDL Files . 1-
1.5.1 File Inclusion . 1-
Ada Language Mapping i

Contents

-13
-13
-13

-13

-13

14
-14
-14
15
-15
-16
-16
17
-17
17

-22

-23

-23

-23

-24

-24

1-25

-27

-28

-29

-29

-30

-31

-31
32
32

-33
33
-34
-34
5

-36

37

-38
1.5.2 Comments. 1
1.5.3 Other Pre-Processing . 1
1.5.4 Global Names . 1

1.6 CORBA Subsystem . 1

1.7 Mapping Modules . 1

1.8 Mapping for Interfaces (Client-Side Specific) 1-
1.8.1 Object Reference Types 1
1.8.2 Interfaces and Inheritance. 1
1.8.3 Mapping Forward Declarations 1-
1.8.4 Object Reference Operations 1
1.8.5 Widening Object References 1
1.8.6 Narrowing Object References. 1
1.8.7 Nil Object Reference . 1-
1.8.8 Type Object . 1
1.8.9 Interface Mapping Examples 1-

1.9 Mapping for Basic Types . 1

1.10 Mapping for Fixed Type. 1

1.11 Mapping for Boolean Type. 1

1.12 Mapping for Enumeration Types . 1

1.13 Mapping for Structure Types . 1

1.14 Mapping for Union Types . 1

1.15 Mapping for Sequence Types .

1.16 Mapping for String Types. 1

1.17 Mapping for Wide String Types . 1

1.18 Mapping for Arrays . 1

1.19 Mapping for Constants . 1

1.20 Mapping for Typedefs . 1

1.21 Mapping for TypeCodes . 1

1.22 Mapping for Any Type . 1
1.22.1 Handling Known Types 1-
1.22.2 Handling Unknown Types 1-

1.23 Mapping for Exception Types . 1
1.23.1 Exception Identifier . 1-
1.23.2 Exception Members . 1

1.23.2.1 Standard Exceptions 1
1.23.2.2 Application-Specific Exceptions 1-3
1.23.2.3 Example Use . 1

1.24 Mapping for Attributes (Client-Side Specific) 1-

1.25 Mapping for Operations (Client-Side Specific) 1
ii Ada Language Mapping

Contents

1-39

1-39

-39
-39
-40

1-40

-40

1-41

1-42

1-43

-45

1-49

1-50

-50

-51

-52

-52

-52

-53

-53

1-54

-55

1-55

-55

-56

56

-56

1-56

1-61

1-61

-62

1-62

1-63

1-63

1-63
1.26 Argument Passing Considerations

1.27 Tasking Considerations .

1.28 Mapping of Pseudo-Objects to Ada 1
1.28.1 Mapping Rules . 1
1.28.2 Object Semantics . 1

1.29 NamedValue .

1.30 NVList . 1

1.31 Request. .

1.32 Context .

1.33 TypeCode .

1.34 ORB . 1

1.35 Object. .

1.36 Current .

1.37 Policy . 1

1.38 DomainManager. 1

1.39 ConstructionPolicy . 1

1.40 Server-Side Mapping - General . 1

1.41 Implementing Interfaces. 1

1.42 Implementing Operations and Attributes 1

1.43 Server-Side Mapping Examples . 1

1.44 PortableServer .

1.45 PortableServer.AdapterActivator . 1

1.46 PortableServer.Current .

1.47 PortableServer.IdAssignmentPolicy 1

1.48 PortableServer.IdUniquenessPolicy 1

1.49 PortableServer.ImplicitActivationPolicy 1-

1.50 PortableServer.LifeSpanPolicy. 1

1.51 PortableServer.POA .

1.52 PortableServer.POAManager .

1.53 PortableServer.RequestProcessingPolicy

1.54 PortableServer.ServantActivator. 1

1.55 PortableServer.ServantLocator .

1.56 PortableServer.ServantManager .

1.57 PortableServer.ServantRetentionPolicy

1.58 PortableServer.ThreadPolicy .
Ada Language Mapping iii

Contents
iv Ada Language Mapping

Preface
tion

this
0.1 About CORBA Language Mapping Specifications

The CORBA Language Mapping specifications contain language mapping informa
for the following languages:

• Ada

• C

• C++

• COBOL

• IDL to Java

• Java to IDL

• Smalltalk

Each language is described in a separate stand-alone volume.

0.1.1 Alignment with CORBA

The following table lists each language mapping and the version of CORBA that
language mapping is aligned with.

Language Mapping Aligned with CORBA version

Ada CORBA 2.0

C CORBA 2.1

C++ CORBA 2.3

COBOL CORBA 2.1
 Ada Language Mappings June 1999 v

ng is

hey
e,
ng

d

 by
0.2 Definition of CORBA Compliance

The minimum required for a CORBA-compliant system is adherence to the
specifications in CORBA Core and one mapping. Each additional language mappi
a separate, optional compliance point. Optional means users aren’t required to
implement these points if they are unnecessary at their site, but if implemented, t
must adhere to the CORBA specifications to be called CORBA-compliant. For instanc
if a vendor supports C++, their ORB must comply with the OMG IDL to C++ bindi
specified in this manual.

Interoperability and Interworking are separate compliance points. For detailed
information about Interworking compliance, refer to the Common Object Request
Broker: Architecture and Specification, Interworking Architecture chapter.

As described in the OMA Guide, the OMG’s Core Object Model consists of a core an
components. Likewise, the body of CORBA specifications is divided into core and
component-like specifications. The structure of this manual reflects that division.

The CORBA specifications are divided into these volumes:

1. The Common Object Request Broker: Architecture and Specification, which
includes the following chapters:

• CORBA Core, as specified in Chapters 1-11

• CORBA Interoperability , as specified in Chapters 12-16

• CORBA Interworking , as specified in Chapters 17-21

2. The Language Mapping Specifications, which are organized into the following
stand-alone volumes:

• Mapping of OMG IDL to the Ada programming language

• Mapping of OMG IDL to the C programming language

• Mapping of OMG IDL to the C++ programming language

• Mapping of OMG IDL to the COBOL programming language

• Mapping of OMG IDL to the Java programming language

• Mapping of Java programming language to OMG/IDL

• Mapping of OMG IDL to the Smalltalk programming language

0.3 Acknowledgements

The following companies submitted parts of the specifications that were approved
the Object Management Group to become CORBA (including the Language Mapping
specifications):

IDL to Java CORBA 2.3

Java to IDL CORBA 2.3

Smalltalk CORBA 2.0

Language Mapping Aligned with CORBA version
vi Ada Language Mappings June 1999

rk

2,

C
• BNR Europe Ltd.

• Defense Information Systems Agency

• Expersoft Corporation

• FUJITSU LIMITED

• Genesis Development Corporation

• Gensym Corporation

• IBM Corporation

• ICL plc

• Inprise Corporation

• IONA Technologies Ltd.

• Digital Equipment Corporation

• Hewlett-Packard Company

• HyperDesk Corporation

• Micro Focus Limited

• MITRE Corporation

• NCR Corporation

• Novell USG

• Object Design, Inc.

• Objective Interface Systems, Inc.

• OC Systems, Inc.

• Open Group - Open Software Foundation

• Siemens Nixdorf Informationssysteme AG

• Sun Microsystems Inc.

• SunSoft, Inc.

• Sybase, Inc.

• Telefónica Investigación y Desarrollo S.A. Unipersonal

• Visual Edge Software, Ltd.

In addition to the preceding contributors, the OMG would like to acknowledge Ma
Linton at Silicon Graphics and Doug Lea at the State University of New York at
Oswego for their work on the C++ mapping specification.

0.4 References

The following list of references applies to CORBA and/or the Language Mapping
specifications:

IDL Type Extensions RFP, March 1995. OMG TC Document 95-1-35.

The Common Object Request Broker: Architecture and Specification, Revision 2.
February 1998.

CORBAservices: Common Object Services Specification, Revised Edition, OMG T
Document 95-3-31.

COBOL Language Mapping RFP, December 1995. OMG TC document 95-12-10.
Ada Language Mapping References June 1999 vii

o-

, S.

E

COBOL 85 ANSI X3.23-1985 / ISO 1989-1985.

IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

XDR: External Data Representation Standard, RFC1832, R. Srinivasan, Sun Micr
systems, August 1995.

OSF Character and Code Set Registry, OSF DCE SIG RFC 40.1 (Public Version)
(Martin) O’Donnell, June 1994.

RPC Runtime Support For I18N Characters — Functional Specification, OSF DC
SIG RFC 41.2, M. Romagna, R. Mackey, November 1994.

X/Open System Interface Definitions, Issue 4 Version 2, 1995.
viii Ada Language Mappings June 1999

 Ada Language Mapping 1
.2.
Note – The Ada Language Mapping specification is aligned with CORBA version 2

The OMG document used to update this chapter was ptc/99-03-11.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 1-2

“Mapping Summary” 1-4

“Lexical Mapping” 1-7

“Mapping of Names” 1-12

“Mapping of IDL Files” 1-12

“CORBA Subsystem” 1-13

“Mapping Modules” 1-13

“Mapping for Interfaces (Client-Side Specific)” 1-14

“Mapping for Basic Types” 1-22

“Mapping for Boolean Type” 1-23

“Mapping for Enumeration Types” 1-23

“Mapping for Structure Types” 1-24

“Mapping for Union Types” 1-24
Ada Language Mapping updated June 1999 1-1

1

5).

:
s
1.1 Overview

The Ada language mapping provides the ability to access and implement CORBA
objects in programs written in the Ada programming language (ISO/IEC 8652:199
The mapping is based on the definition of the ORB in Common Object Request Broker
Architecture and Specification. The Ada language mapping uses the Ada language’
support for object oriented programming—packages, tagged types, and late
binding—to present the object model described by the CORBA Architecture and
Specification.

“Mapping for Sequence Types” 1-25

“Mapping for Wide String Types” 1-28

“Mapping for Arrays” 1-29

“Mapping for Constants” 1-29

“Mapping for Typedefs” 1-30

“Mapping for TypeCodes” 1-31

“Mapping for Any Type” 1-31

“Mapping for Exception Types” 1-33

“Mapping for Attributes (Client-Side Specific)” 1-37

“Mapping for Operations (Client-Side Specific)” 1-38

“Argument Passing Considerations” 1-39

“Tasking Considerations” 1-39

“Mapping of Pseudo-Objects to Ada” 1-39

“NamedValue” 1-40

“NVList” 1-40

“Request” 1-41

“Context” 1-42

“TypeCode” 1-43

“ORB” 1-45

“Object” 1-49

“Server-Side Mapping - General” 1-52

“Implementing Interfaces” 1-52

“Implementing Operations and Attributes” 1-53

“Server-Side Mapping Examples” 1-53

Appendix B, “Glossary of Ada Terms” 1-64

Section Title Page
1-2 Ada Language Mapping updated June 1999

1

 to
type
itive
ce.

s in
l for
nts

ages,
g.

—the

 these
ed by

pping
 an

 for
The mapping specifies how CORBA objects (objects defined by IDL) are mapped
Ada packages and types. Each CORBA object is represented by an Ada tagged
reference. The operations of mapped CORBA objects are invoked by calling prim
subprograms defined in the package associated with that object’s CORBA interfa

1.1.1 Ada Implementation Requirements

The mapping is believed to map completely and correctly any legal set of definition
the IDL language to equivalent Ada definitions. The style of this mapping is natura
Ada and does not impact the reliability either of CORBA implementations or of clie
or servers built on the ORB. The mapping itself does not require any changes to
CORBA.

The Ada language mapping can be implemented in a number of ways. Stub pack
ORB packages, and data types may vary between implementations of the mappin
This is a natural consequence of using an object-oriented programming language
implementation of a package should not be visible to its user.

1.1.2 Calling Convention

Like IDL, Ada allows the passing of parameters to operations using in , out, and in
out modes and returning values as results. The Ada language mapping preserves
in/out modes in an operation’s subprogram specification. Parameters may be pass
value or by reference.

1.1.3 Memory Management

The mapping permits automatic memory management; however, the language ma
does not specify what kind, if any, of memory management facility is provided by
implementation.

1.1.4 Tasking

The mapping encourages implementors to provide tasking-safe access to CORBA
services.

1.1.5 Ada Type Size Requirements

The sizes of the Ada types used to represent most IDL types are implementation
dependent. That is, this mapping makes no requirements as to the ’SIZE attribute
any types except numeric types and string.
Ada Language Mapping Overview June 1999 1-3

1

ing

 be a
ckage
rom

d

 a

 full
 full
1.2 Mapping Summary

Table 1-1 summarizes the mapping of IDL constructs to Ada constructs. The follow
sections elaborate on each of these constructs.

1.2.1 Interfaces and Tagged Types

1.2.1.1 Client Side

An IDL interface is mapped to an Ada package and a tagged reference type. The
package name will be mapped from the interface name. If the interface has an
enclosing scope (including a subsystem “virtual scope”), the mapped package will
child package of the package mapped from the enclosing scope. The mapped pa
will contain the definition of a tagged reference type for the object class, derived f
the reference type mapped from the parent IDL interface, if the IDL interface is a
subclass of another interface, or from an implementation-defined common root
reference type, CORBA.Object.Ref , if the interface is not a subclass of another
interface. This allows implementations of the mapping to offer automatic memory
management and improves the separation of an interface and its implementation.

The mapped package also contains definitions of constants, types, exceptions, an
subprograms mapped from the definitions in the interface or inherited by it.

1.2.1.2 Forward Declarations

Forward declarations result in the instantiation of a generic package that provides
reference type that can be used until the interface is fully defined. The generic
instantiation also defines a nested generic package that is instantiated within the
interface definition and provides conversion from the forward reference type to the

Table 1-1 Summary of IDL Constructs to Ada Constructs

IDL construct Ada construct

Source file Library package

Module Package (Child Package if nested)

Interface Package with Tagged Type (Child Package if
nested)

Operation Primitive Subprogram

Attribute “Set_ attribute ” and “ Get_attribute ” subpro-
grams

Inheritance:
Single
Multiple

Tagged Type Inheritance
Tagged Type Inheritance for first parent;
cover functions with explicit widening and
narrowing for subsequent parents

Data types Ada types

Exception Exception and record type
1-4 Ada Language Mapping updated June 1999

1

o the

hild

oot,

on
 is

pe
 type

 an
 be
eval

pe.

l are
ts.

d
, and
interface reference type and vice versa. This allows clients that hold references t
interface to convert explicitly those references to the forward reference type when
required.

1.2.1.3 Server Side

The server-side mapping of an IDL interface creates a “.Impl” package that is a c
of the client-side interface package. The package contains a declaration for the
Object type, derived from the parent interface's object type or from a common r
CORBA.Object.Object , with a (possibly private) extension provided to allow the
implementor to specify the actual data components of the object.

1.2.2 Operations

Each operation maps to an Ada subprogram with name mapped from the operati
name. In the client-side package, the first (controlling) parameter to the operation
the reference type for the interface. In the server side package, the controlling
parameter is a general access-to-variable type. Operations with non-void result ty
that have only in-mode parameters are mapped to Ada functions returning an Ada
mapped from the operation result type; otherwise, operations are mapped to Ada
procedures. A non-void result is returned by an added parameter to a procedure.

1.2.3 Attributes

The Ada mapping models attributes as pairs of primitive subprograms declared in
interface package, one to set and one to get the attribute value. An attribute may
read-only, in which case only a retrieval function is provided. The name of the retri
function is formed by prepending “Get_ ” to the attribute name. “Set_ ” is used to
form the names of attribute set procedures. Like operations, a first controlling
parameter is added. In client-side packages, the controlling parameter is of the
reference type, while in server-side packages, it is a general access-to-variable ty

1.2.4 Inheritance

IDL inheritance allows an interface to be derived from other interfaces. IDL
inheritance is interface inheritance; the only associated semantics at the IDL leve
that a child object reference has “access to” all the operations of any of its paren
Reflection of IDL inheritance in mapped code is a function solely of the language
mapping.

Single inheritance of IDL interfaces is directly mapped to inheritance in the Ada
mapping (i.e., an interface with a parent is mapped to a tagged type that is derive
from the tagged type mapped from the parent). The definitions of types, constants
exceptions in the parent package are renamed or subtyped so that they are also
“inherited” in accordance with the IDL semantics.
Ada Language Mapping Mapping Summary June 1999 1-5

1

with
ent
at

e.
fined
mber

e

s of

ot
s
The client-side of multiple inheritance in IDL maps to a single Ref tagged type, as
single inheritance, where the parent type is the first interface listed in the IDL par
interface list. The IDL compiler must generate additional primitive subprograms th
correspond to the operations inherited from the second and subsequent parent
interfaces listed in the IDL.

1.2.5 Data Types

The mapping of types is summarized in Table 1-2.

1.2.6 Exceptions

An IDL exception maps directly to an Ada exception declaration of the same nam
The optional body of an exception maps to a type that is an extension of a prede
abstract tagged type. The components of the record will be mapped from the me
of the exception body in a manner similar to the mapping of record types.
Implementors must provide a function that returns the exception members from th
Ada-provided Exception_Occurrence for each exception type.

1.2.7 Names and Scoping

Modules are mapped directly to packages. Nested modules map to child package
the packages mapped from the enclosing module.

This mapping supports the introduction of a subsystem name that serves as a ro
virtual module for all declarations in one or more files. When specified, subsystem
create a library package.

Table 1-2 Summary of Mapping Types

Type(s) Mapping

Numeric Corresponding Ada numeric types

char Character

boolean Boolean

octet Interfaces.Unsigned_8

any CORBA.Any (representation implementation
defined)

struct record with corresponding components

union discriminated record

enum enumerated type

sequence instantiation of pre-defined generic pack-
age

string Ada.Strings type

arrays array types
1-6 Ada Language Mapping updated June 1999

1

s
n of

to
ing

ith

may

L
tion
 an
ls.

).
 "as

 7).
 the
Files (actually inclusion streams) create a package to contain the “bare” definition
defined in IDL's global scope. The package name is formed from the concatenatio
the file name and _IDL_File .

Lexical inclusion (#include) is mapped to with clauses for the packages mapped
from the included files, modules, and interfaces.

1.3 Lexical Mapping

This section specifies the mapping of IDL identifiers, literals, and constant
expressions.

1.3.1 Mapping of Identifiers

IDL identifiers follow rules similar to those of Ada but are more strict with regard
case (identifiers that differ only in case are disallowed) and less restrictive regard
the use of underscores. A conforming implementation shall map identifiers by the
following rules:

• Remove any leading underscore.

• Where “_” is followed by another underscore, replace the second underscore w
the character ‘U. ’

• Where “_” is at the end of an identifier, add the character ’U’ after the underscore.

• When an IDL identifier collides with an Ada reserved word, insert the string
“IDL_” before the identifier.

These rules cannot guarantee that name clashes will not occur. Implementations
implement additional rules to further resolve name clashes.

1.3.2 Mapping of Literals

IDL literals shall be mapped to lexically equivalent Ada literals or semantically
equivalent expressions. The following sections describe the lexical mapping of ID
literals to Ada literals. This information may be used to provide semantic interpreta
of the literals found in IDL constant expressions in order to calculate the value of
IDL constant or as the basis for translating those literals into equivalent Ada litera

1.3.2.1 Integer Literals

IDL supports decimal, octal, and hexadecimal integer literals.

A decimal literal consists of a sequence of digits that does not begin with 0 (zero
Decimal literals are lexically equivalent to Ada literal values and shall be mapped
is."

An octal literal consists of a leading ‘0’ followed by a sequence of octal digits (0 ..
Octal constants shall be lexically mapped by prepending “8#” and appending “#” to
IDL literal. The leading zero in the IDL literal may be deleted or kept.
Ada Language Mapping Lexical Mapping June 1999 1-7

1

al

teger
 the

ger

ix,

y

rt,
its.
imal

r
A hexadecimal literal consists of “0x” or “0X” followed by a sequence of hexadecim
digits (0 .. 9, [a|A] .. [f|F]). Hexadecimal literals shall be lexically mapped to Ada
literals by deleting the leading “0x” or “0X,” prepending “16#” and appending “#.”

1.3.2.2 Floating-Point Literals

An IDL floating-point literal consists of an integer part, a decimal point, a fraction
part, an ‘e’ or ‘E,’ and an optionally signed integer exponent.

Note – IDL before version 1.2 allowed an optional type suffix [f, F, d, or D].

The integer and fraction parts consist of sequences of decimal digits. Either the in
part or the fraction part, but not both, may be missing. Either the decimal point and
fractional part or the ‘e’ (or ‘E’) and the exponent, but not both, may be missing.

A lexically equivalent floating point literal shall be formed by appending to the inte
part (or “0” if the integer part is missing):

• a “.” (decimal point), the fraction part (or “0” if the fraction part is missing), or

• an “E” and the exponent (or “0” if the exponent is missing).

Optionally, the ending “E0” may be left off if the IDL did not have an exponent.

Note – For implementations choosing a mapping for the pre-1.2 optional type suff
the following rule should be observed: If a type suffix is appended, the above
construction should be appended to the Ada mapping of the type suffix followed b
“ ’ (“, and a closing “)” should be appended.

1.3.2.3 Fixed Point Literals

An IDL fixed-point literal consists of an integer part, a decimal point, a fraction pa
and a ‘d’ or ‘D’.The integer and fraction parts consist of sequences of decimal dig
Either the integer part or the fraction part, but not both, may be missing. The dec
point may be missing if the fraction part is missing.

A lexically equivalent fixed point literal shall be formed by appending to the intege
part (or “0” if the integer part is missing):

• a “.” (decimal point),

• the fraction part (or “0” if the fraction part is missing).
1-8 Ada Language Mapping updated June 1999

1

d by

nt

s.
ter

 IDL
1.3.2.4 Character Literals

IDL character literals are single graphic characters or escape sequences enclose
single quotes. The first form is lexically equivalent to an Ada character literal.
Table 1-3 supplies lexical equivalents for the defined escape sequences. Equivale
character literals may also be used, but are not recommended when used in
concatenation expressions.

1.3.2.5 Wide Character Literals

IDL wide character literals have the form of a character literal with an “L”prefix.

1.3.2.6 String Literals

An IDL string literal is a sequence of IDL characters surrounded by double quote
Adjacent string literals are concatenated. Within a string, the double quote charac
must be preceded by a ‘\’. A string literal may not contain the “nul” character.
Lexically equivalent Ada string literals shall be formed as follows:

• If the string literal does not contain escape sequences (does not contain ‘\’), the
literal is lexically equivalent to a valid Ada literal.

Table 1-3 Lexical Equivalents for the Defined Escape Sequences

Description IDL
Escape

Octal
Value

Applicable to Ada Lexical Mapping

char wchar

newline \n 012 4 4 Ada.Characters.Latin_1.LF

horizontal tab \t 011 4 4 Ada.Characters.Latin_1.HT

vertical tab \v 013 4 4 Ada.Characters.Latin_1.VT

backspace \b 010 4 4 Ada.Characters.Latin_1.BS

carriage return \r 015 4 4 Ada.Characters.Latin_1.CR

form feed \f 014 4 4 Ada.Characters.Latin_1.FF

alert \a 007 4 4 Ada.Characters.Latin_1.BEL

backslash \\ 134 4 4 Ada.Characters.Latin_1.Reverse_
Solidus

question mark \? 077 4 4 Ada.Characters.Latin_1.Question

single quote \’ 047 4 4 Ada.Characters.Latin_1.Apostrophe

double quote \” 042 4 4 Ada.Characters.Latin_1.Quotation

octal number \ooo ooo 4 4 Character’val(8#ooo#)

hex number \xhh N/A 4 Character’val(16#hh#)

unicode
character

\uhhhh N/A 4 Wide_Character’val(16#hhhh#)
Ada Language Mapping Lexical Mapping June 1999 1-9

1

s must

es.
y
trings

L”.

n
 on

nt
, may

ral
sion

y

ed
• If the IDL literal contains escape sequences, the string must be partitioned into
substrings. As each embedded escape sequence is encountered, three partition
be formed:

• one containing a substring with the contents of the string before the escape
sequence,

• one containing the escape sequence only, and

• one containing the remainder of the string.

The remainder of the string is checked (iteratively) for additional escape sequenc
The substrings containing an escape sequence must be replaced by their lexicall
equivalent Ada character literals as specified in the preceding section. These subs
must be concatenated together (using the Ada “&” operator) in the original order.
Finally, adjacent strings must be concatenated.

1.3.2.7 Wide String Literals

Wide string literals are identical to string literals except that they are prefixed with “
Lexically equivalent Ada wide string literals may be formed by following the above
rules for strings, but substituting wide characters.

1.3.2.8 Enumeration Literals

Enumeration literals are specified by IDL identifiers. Mapping rules for enumeratio
literals are the same as for identifiers (see Section 1.3.1, “Mapping of Identifiers,”
page 1-7).

1.3.3 Mapping of Constant Expressions

In IDL, constant expressions are used to define the values of constants in consta
declarations. A subset, those expressions that evaluate to positive integer values
also be found as:

• the maximum length of a bounded sequence,

• the maximum length of a bounded string, or as

• the fixed array size in complex declarators.

An IDL constant expression shall be mapped to an Ada static expression or a lite
with the same value as the IDL constant expression. The value of the IDL expres
must be interpreted according to the syntax and semantics in the Common Object
Request Broker: Architecture and Specification. The mapping may be accomplished b
interpreting the IDL constant expression yielding an equivalent Ada literal of the
required type or by building an expression containing operations on literals, scop
names, and interim results that mimic the form and semantics of the IDL literal
expression and yield the same value.
1-10 Ada Language Mapping updated June 1999

1

t
sed

ions
lent

cion
nal
1.3.3.1 Mapping of Operators

Table 1-4 provides the correspondence between IDL operators in a valid constan
expression and semantically equivalent Ada operators. This information may be u
to provide semantic interpretation of the operators found in IDL constant express
or as the basis for translating expressions containing those operators into equiva
Ada expressions..

Note that the following IDL semantics (from the CORBA spec) requires some coer
of types. Differences in applicability of operators to types may force some additio
type conversions to obtain Ada expressions semantically equivalent to the IDL
expressions.

Mixed type expressions (e.g., integers mixed with floats) are illegal.

Table 1-4 IDL Operators and Semantically Equivalent Ada Operators

IDL
Operator

IDL
symbol

Applicable Types Ada
Operator

Supported by Ada Types

Integer Floating
point

Boolean Modular
Integer

Signed
Integer

Floating
Point

or | √ or √ √
xor ^ √ xor √ √

and & √ and √ √

shift << √ Interfaces.
Shift_Left

√

>> √ Interfaces.
Shift_Right

√

add + √ √ + √ √ √

- √ √ - √ √ √

multiply * √ √ * √ √ √

/ √ √ / √ √ √

% √ rem √ √ √

unary - √ √ - √ √ √

+ √ √ + √ √ √

~ √ not √ √

-(value - 1) √
Ada Language Mapping Lexical Mapping June 1999 1-11

1

all

ions:

 their

 their

es.

 Ada

iteral

rary
s

, and
1.4 Mapping of Names

1.4.1 Identifiers

The lexical mapping of IDL identifiers is specified in Section 1.3.1, “Mapping of
Identifiers,” on page 1-7. All identifiers in the Ada interfaces generated from IDL sh
be mapped from the corresponding IDL identifiers.

1.4.2 Scoped Names

Name scopes in IDL have the following corresponding Ada named declarative reg

• The “global” name space of IDL files are mapped to Ada “_IDL_File” library
packages.

• IDL modules are mapped to Ada child packages of the packages representing
enclosing scope.

• IDL interfaces are mapped to Ada child packages of the packages representing
enclosing scope.

• All IDL constructs scoped to an interface are accessed via Ada expanded nam
For example, if a type mode were defined in interface printer, then the Ada
type would be referred to as Printer.Mode.

These mappings allow the expanded name mechanism in Ada to be used to build
identifiers corresponding to IDL scoped names.

1.5 Mapping of IDL Files

1.5.1 File Inclusion

While the Common Object Request Broker: Architecture and Specification document
states that “Text in files included with a #include directive is treated as if it
appeared in the including file,” a more natural Ada mapping for these includes is
mapping to Ada “with clauses.” This is consistent with the primary use of the
preprocessor facility which is to make available definitions from other IDL
specifications and avoids the problem of redundant Ada type declarations that a l
interpretation of the inclusion would cause.

The presence of an include directive in a file shall result in Ada with clauses to lib
units mapped from the definition in “included” files sufficient to provide visibility (a
defined by the Ada language) to all definitions referenced in included files.

Note – The simplest implementation of this requirement might be to include with
clauses for all included “file packages,” module packages, interface (sub)packages
transitively, all inclusions of the included file. However, significant readability and
maintainability benefits can be gained from withing only definitions actually used.
1-12 Ada Language Mapping updated June 1999

1

ode.

d in

 be
ion, if

tem-
ged.
ee

he

ed

,

 child

shall
ule or
le
1.5.2 Comments

The handling of comments in IDL source code is not specified; however,
implementations are encouraged to transfer comment text to the generated Ada c

1.5.3 Other Pre-Processing

Other preprocessing directives (other than #include) shall have the effect specifie
the CORBA specification.

1.5.4 Global Names

The naming scope defined by an IDL file outside of any module or interface shall
mapped to an Ada package whose name shall be formed by removing the extens
any, from the IDL source file name and appending “_IDL_File . ” If all the IDL
statements in a file are enclosed by a single module or interface definition, the
generation of this “file package” is optional.

Note – Not generating the “file package” when not needed, permits operating sys
specific file naming rules to be isolated from the resulting Ada, and so is encoura
However, it may complicate an implementation of the withing rules for inclusion. S
above.

1.6 CORBA Subsystem

The Ada mapping relies on some predefined types, packages, and functions. In t
CORBA specification, these are logically defined in a module named CORBA that is
automatically accessible. All Ada compilation units generated from an IDL
specification shall have (non-direct) visibility to the CORBA subsystem (through a
with clause.)

In the examples presented in this document, CORBA definitions may be referenc
without explicit selection for simplicity. In practice, identifiers from the CORBA
module would require the CORBA package prefix.

1.7 Mapping Modules

Modules define a name scope and can contain the declarations of other modules
interfaces, types, constants, and exceptions.

Top level modules (i.e., those not enclosed by other modules) shall be mapped to
packages of the subsystem package, if a subsystem is specified, or root library
packages otherwise. Modules nested within other modules or within subsystems
be mapped to child packages of the corresponding package for the enclosing mod
subsystem. The name of the generated package shall be mapped from the modu
name.
Ada Language Mapping CORBA Subsystem June 1999 1-13

1

dules,

 the

ith its
g
 with

ll be

ce

f

lled

en it

.

ions

type

, but
Packages mapped from modules form an enclosing name scope for enclosed mo
interfaces, or other declarations.

Declarations scoped within an IDL module shall be mapped to declarations within
corresponding mapped Ada package.

1.8 Mapping for Interfaces (Client-Side Specific)

An IDL interface shall be mapped to a child package of the package associated w
enclosing name scope (if any) or to a root library package (if there is no enclosin
name scope). This “interface package” shall define a new controlled tagged type,
name “Ref ,” used to represent object references for the mapped interface. This
reference type shall be derived from an implementation-specific type named
“CORBA.Object.Ref ” or from its parent Ref type as specified in Section 1.8.2,
“Interfaces and Inheritance,” on page 1-14.

The declarations of constants, exceptions, and types scoped within interfaces sha
mapped to declarations with the mapped Ada package.

1.8.1 Object Reference Types

The use of an interface type in IDL denotes an object reference. Each IDL interfa
shall be mapped to an Ada controlled type. For interface A, the object reference type
shall be named A.Ref (type Ref in Appendix A). All reference types shall be part o
CORBA.Object.Ref’CLASS (i.e., they are derived from CORBA.Object.Ref
or one of its descendants).

The IDL interface operations are defined as primitive operations of the Ada contro
tagged type, Ref . For example, if an interface defines an operation called Op with no
parameters and My_Ref is a reference to the interface type, then a call would be
written A.Op(My_Ref) .

The Ref controlled tagged type shall release automatically its object reference wh
is deallocated, assigned a new object reference, or passes out of scope.

A reference type is a private type (i.e., its implementation is not visible to clients)

1.8.2 Interfaces and Inheritance

The reference type associated with a derived interface will inherit all of the operat
of all of its parents as follows:

1. The operations of the first-named parent will be inherited through Ada’s tagged
inheritance.

2. The operations of other parents shall be generated by the IDL compiler. The
signature of the generated operation will be mapped as for the parent interface
the controlling parameter shall be of the child interface reference type.
1-14 Ada Language Mapping updated June 1999

1

his
o the
ard

s.

me
e

ge

e
 the

s_nil.
tion.

.
1.8.3 Mapping Forward Declarations

In IDL, a forward declaration defines the name of an interface without defining it. T
allows definitions of interfaces that refer to each other. This presents a challenge t
mapping since Ada packages cannot “with” each other. An explicit mapping of forw
declarations is defined in order to break this withing problem.

Conforming implementations shall provide a generic package, CORBA.Forward , with
the following specification that will be used in the mapping of forward declaration

with CORBA.Object;
generic
package CORBA.Forward is

type Ref is new CORBA.Object.Ref with null record;

generic
type Ref_Type is new CORBA.Object.Ref with private;

package Convert is
function From_Forward(The_Forward : in Ref)

return Ref_Type;
function To_Ref (The_Forward : in Ref)

return Ref_Type
renames From_Forward;
function To_Forward (The_Ref : in Ref_Type)

return Ref;
end Convert;

end CORBA.Forward;

An instantiation of CORBA.Forward shall be performed for every forward
declaration of an interface. The name of the instantiation shall be the interface na
appended by “_Forward . ” All references to the forward declared interface before th
full declaration of the interface shall be mapped to the Ref type in this instantiated
package.

Within the full declaration of the forward declared interface, the nested Convert
package shall be instantiated with the actual Ref type. The name of the instantiation
shall be Convert_Forward . Implementations of the contained To_Forward and
From_Forward subprograms shall allow clients of the forward declaration packa
to convert freely from the actual Ref to the forward Ref and vice versa. Clients
holding an instance of a valid reference for an interface may have to convert thos
references to the corresponding forward references for references mapped before
actual interface declaration.

1.8.4 Object Reference Operations

CORBA defines three operations on any object reference: duplicate, release, and i
Note that these operations are on the object reference, not the object implementa
Conforming implementations shall provide these operations as follows:

• The Duplicate operation shall be provided by assignment in the Ada language
Ada Language Mapping Mapping for Interfaces (Client-Side Specific) June 19991-15

1

e so
,

d,
be

sists
nts.

iew

d
to

 more
t
• The other two operations shall be provided in the pre-defined package
CORBA.Object (see Section 1.35, “Object,” on page 1-49) as follows:

-- Duplicate unneeded, use assignment

function Is_Nil(Self : Ref) return Boolean;

procedure Release(Self : in out Ref);

The Is_Nil operation returns True if the object reference contains an empty
reference.

The Release procedure indicates that the caller will no longer access the referenc
that associated resources may be deallocated. If the given object reference is nil
Release does nothing. After a call to Release , a call to Is_Nil must return
TRUE.

1.8.5 Widening Object References

Widening of tagged types is supported by Ada through explicit type conversion an
implicitly, through parameter passing and assignment. Any object reference may
widened to the base type CORBA.Object.Ref using Ada syntax. Widening using
Ada syntax is supported for object references in the “primary line of descent” of a
particular object reference. The primary line of descent of an object reference con
of its single or first-named parent and, recursively, their single or first-named pare

For the definitions:

COR : CORBA.Object.Ref;
My_Ref : Foo.Ref;

the Ada language provides a natural mechanism to widen object references via v
conversion:

COR := CORBA.Object.Ref(My_Ref);

An all purpose widening and narrowing method, To_Ref , is defined for all interfaces
that provide object reference operations. This function shall support widening (an
narrowing) along all lines of descent. For example, to widen an object reference
CORBA.Object.Ref , the To_Ref method defined in the CORBA.Object package
would be used as follows:

function To_Ref (Self : Ref’CLASS) return Ref;
COR := CORBA.Object.To_Ref(My_Ref);

1.8.6 Narrowing Object References

Often it is necessary to convert an object reference from a more general type to a
specific, derived type. In particular, the root object reference IDL type Object mus
often be narrowed to a specific interface object reference type. Conforming
1-16 Ada Language Mapping updated June 1999

1

g

e,
nce.

t

mer
ns

e

ifies
 “nil”

ined
g
implementations must provide a To_Ref primitive subprogram in each interface
package to perform and check the narrowing operation. Unlike widening, narrowin
cannot be accomplished via normal Ada language mechanisms.

Each interface mapping shall include a function with specification:

function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS) return
Ref;

The provided implementation shall be able to narrow any ancestor of the interfac
regardless of whether the ancestor was defined through single or multiple inherita
If The_Ref cannot be narrowed to the desired interface, this function shall raise
CORBA.Bad_Param.

Narrowing an object reference can require a remote invocation (to either the targe
object or to an Interface Repository) to verify the relationship between the actual
object and the desired narrow interface. For cases where the application program
wishes to avoid the possibility of this remote invocation, conforming implementatio
must provide a primitive subprogram in each interface package to perform an
unchecked narrow operation. Each interface mapping shall include a function with
specification:

function Unchecked_To_Ref(The_Ref : in
CORBA.Object.Ref’CLASS) return Ref;

Regardless of whether or not The_Ref is known to support the desired interface, th
provided implementation returns a narrowed reference.

1.8.7 Nil Object Reference

ORBs are required to define a special value of each object reference which ident
an object reference that has not been given a valid value. Conceptually, this is the
value. This mapping relies on the Is_Nil function to detect unintialized object
references, and does not require or allow definition of a Nil constant.

1.8.8 Type Object

Each occurrence of pre-defined type Object shall be mapped to
CORBA.Object.Ref.

Type Object is a full (non-pseudo) object type. However, because it is the pre-def
root type for the Object class, its implementation does not conform to the mappin
rules for interfaces and its implementation is left unspecified. See Section 1.35,
“Object,” on page 1-49 for more information.

1.8.9 Interface Mapping Examples

The following IDL specification:
Ada Language Mapping Mapping for Interfaces (Client-Side Specific) June 19991-17

1

File barn.idl

typedef long measure;
interface Feed {
 attribute measure weight;
};
interface Animal {
 enum State {SLEEPING, AWAKE};
 boolean eat(inout Feed bag);
 // returns true if animal is full
 attribute State alertness;
 readonly attribute Animal parent;
};
interface Horse : Animal{
 void trot(in short distance);
};

is mapped to these Ada packages:

with CORBA;

package Barn_IDL_FILE is
type Measure is new CORBA.Long;

end Barn_IDL_FILE;

with CORBA;
with CORBA.Object;
with Barn_IDL_FILE;
package Feed is

type Ref is new CORBA.Object.Ref with null record;
procedure Set_Weight

(Self : in Ref;
To : in Barn_IDL_FILE.Measure);

function Get_Weight
(Self : in Ref) return Barn_IDL_FILE.Measure;

function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
return Ref;

end Feed;

with CORBA.Object;
with Feed;
package Animal is

type Ref is new CORBA.Object.Ref with null record;
type State is (SLEEPING, AWAKE);

procedure Eat
(Self : in Ref;
Bag : in out Feed.Ref;
Returns : out Boolean);
-- returns true if animal is full
1-18 Ada Language Mapping updated June 1999

1

lar

h
procedure Set_Alertness
(Self : in Ref;
To : in State);

function Get_Alertness
(Self : in Ref) return State;

function Get_Parent(Self : in Ref) return Ref’CLASS;
function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)

return Ref;
end Animal;

with Animal;

package Horse is
type Ref is new Animal.Ref with null record;
subtype State is Animal.State;
procedure Trot

(Self : in Ref;
Distance : in CORBA.Short);

function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)
return Ref;

end Horse;

The following illustrates the use of the forward reference mapping to resolve circu
definitions. Consider the two files:

File chicken.idl:

#ifndef CHICKEN
#define CHICKEN
interface Chicken;
#include “egg.idl”
interface Chicken {
 Egg lay();
};
#endif

File egg.idl:

#ifndef EGG
#define EGG
interface Egg;
#include “chicken.idl”
interface Egg {
 Chicken hatch();
};
#endif

This use of IDL presents a difficult problem for the Ada mapping since two Ada
packages cannot “with” each other. The solution is to define the operations in eac
interface in terms of a “forward” type; therefore, the circularity can be resolved.
Ada Language Mapping Mapping for Interfaces (Client-Side Specific) June 19991-19

1

package Chicken_IDL_FILE is

end Chicken_IDL_FILE;

with CORBA.Forward;
package Chicken_Forward is new CORBA.Forward;

with CORBA.Forward;
package Egg_Forward is new CORBA.Forward;

with CORBA.Object;
with Chicken_Forward;
with Egg_Forward;

package Egg is
type Ref is new CORBA.Object.Ref with null record;
function Hatch (Self : in Ref)

return Chicken_Forward.Ref;
function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)

return Ref;
package Convert is new Egg_Forward.Convert(Ref);

end Egg;

with CORBA.Object;
with Egg;
with Chicken_Forward;

package Chicken is
type Ref is new CORBA.Object.Ref with null record;
function Lay

(Self : in Ref) return Egg.Ref;
function To_Ref(The_Ref : in CORBA.Object.Ref’CLASS)

return Ref;
package Convert is new Chicken_Forward.Convert(Ref);

end Chicken;

The next example includes mapping of multiple inheritance.

This IDL:

interface Asset {
...

 void op1();
 void op2();
 ...
};
1-20 Ada Language Mapping updated June 1999

1

interface Vehicle {
 ...
 void op3();
 void op4();
 ...
};
interface Tank : Vehicle, Asset {
 ...
};

produces the following Ada code:

with CORBA;
package Asset is

type Ref is new CORBA.Object.Ref with null record;

procedure op1 (Self : Ref);
procedure op2 (Self : Ref);

function To_Ref (Self : CORBA.Object.Ref’CLASS)
 return Ref;
end Asset;

with CORBA;
package Vehicle is

type Ref is new CORBA.Object.Ref with null record;

procedure op3 (Self : Ref);
procedure op4 (Self : Ref);

function To_Ref (Self : CORBA.Object.Ref’CLASS)
 return Ref;
end Vehicle;

with CORBA;
with Vehicle, Asset;
package Tank is

type Ref is new Vehicle.Ref with null record;
function To_Ref (Self : CORBA.Object.Ref’CLASS)

 return Ref;

procedure op1 (Self : Ref);
procedure op2 (Self : Ref);

end Tank;
Ada Language Mapping Mapping for Interfaces (Client-Side Specific) June 19991-21

1

Ada

e, the

4;

t;
1.9 Mapping for Basic Types

Several basic numeric types are defined in IDL. These types shall be mapped to
(sub)types. The following Ada types shall be defined in the package “CORBA” with
correspondence to IDL types, as shown in Table 1-5.

If supported, and the supported representations conform to the requirements abov
following declarations, as shown in Table 1-6, should be used.

Use of the corresponding Interfaces.C types may not meet the requirements.

Table 1-5 Ada Types with Correspondence to IDL Types

Ada Type IDL Type Required Range and Representation
Short short integer, range -(2**15) .. (2**15 - 1)

Long long integer, range -(2**31) .. (2**31 - 1)

Long_Long long long integer, range -(2**63) .. (2**63 - 1)

Unsigned_Short unsigned short integer, range 0 .. (2**16 - 1)

Unsigned_Long unsigned long integer, range 0 .. (2**32 - 1)

Unsigned_Long_Long unsigned long
long

integer, range 0 .. (2**64 - 1)

Float float floating point, ANSI/IEEE 754-1985
single precision

Double double floating point, ANSI/IEEE 754-1985
double precision

Long_Double long double floating point, ANSI/IEEE 754-1985
double extended precision

Char char 8 bit ISO Latin-1 (8859.1) character set

Wchar wchar multi-byte character of negotiated character set

Octet octet integer, must include 0 .. 255

Table 1-6 Declarations

Ada Type Definition
CORBA.Short type Short is new Interfaces.Integer_16;

CORBA.Long type Long is new Interfaces.Integer_32;

CORBA.Long_Long type Long_Long is new Interfaces.Integer_64;

CORBA.Unsigned_Short type Unsigned_Short is new Interfaces.Unsigned_16;

CORBA.Unsigned_Long type Unsigned_Long is new Interfaces.Unsigned_32;

CORBA.Unsigned_Long_Long type Unsigned_Long_Long is new Interfaces.Unsigned_6

CORBA.Float type Float is new Interfaces.IEEE_Float_32;

CORBA.Double type Double is new Interfaces.IEEE_Float_64;

CORBA.Long_Double type Long_Double is new Interfaces.IEEE_Extended_Floa

CORBA.Char subtype Char is Standard.Character;

CORBA.Wchar subtype Wchar is Standard.Wide_Character;

CORBA.Octet type Octet is new Interfaces.Unsigned_8;
1-22 Ada Language Mapping updated June 1999

1

e of
,

er of
e of

e

ped
er
1.10 Mapping for Fixed Type

The IDL fixed type shall be mapped to an equivalent Ada decimal type. The nam
the mapped type shall be “Fixed_ ” prepended to the IDL specified number of digits
followed by “_”, followed by the IDL specified scale factor. The corresponding Ada
type definition shall have a digits value that is the same as the IDL-specified numb
digits, and a delta that is a power of 10 with an exponent that is the negative valu
the IDL-specified scale factor.

For example, the following IDL definition:

typedef fixed<8,2> Megabucks [3];

will map to:

type Fixed_8_2 is delta 0.01 digits 8;
type Megabucks is array(Integer range 0 .. 2) of Fixed_8_2;

1.11 Mapping for Boolean Type

The IDL boolean type shall be mapped to the CORBA Boolean type. The packag
CORBA will contain the definition of CORBA.Boolean as a subtype of
Standard.Boolean as follows:

subtype Boolean is Standard.Boolean;

For example, the following IDL definition:

typedef boolean Result_Flag;

will map to

type Result_Flag is new CORBA.Boolean;

1.12 Mapping for Enumeration Types

An IDL enum type shall map directly to an Ada enumerated type with name map
from the IDL identifier and values mapped from and in the order of the IDL memb
list. For example, the IDL enumeration declaration:

enum Color {Red, Green, Blue};

has the following mapping:

type Color is (Red, Green, Blue);
Ada Language Mapping Mapping for Fixed Type June 1999 1-23

1

ed

 from
c.

e an
n the
ver
ray

ll be
e
 the

hall

1.13 Mapping for Structure Types

An IDL struct type shall map directly to an Ada record type with type name mapp
from the struct identifier and each component formed from each declarator in the
member list as follows:

• If the declarator is a simple_declarator, the component name shall be mapped
the identifier in the declarator and the type shall be mapped from the type_spe

• If the declarator is a complex_declarator, a preceding type definition shall defin
array type. The array type name shall be mapped from the identifier contained i
array_declarator prepended to “_Array.” The type definition shall be an array, o
the range(s) from 0 to one less than the fixed_array_size(s) specified in the ar
declarator, of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array sha
created that preserves the indexing order specified in the IDL declaration. In th
component definition, the name shall be mapped from the identifier contained in
array_declarator and the type shall be the array type.

For example, the IDL struct declaration below:

struct Example {
 long member1, member2;
 boolean member3[4][8];
};

maps to the following:

type Member3_Array is array(0..3, 0..7) of CORBA.Boolean;
type Example is record
 Member1: CORBA.Long;
 Member2: CORBA.Long;
 Member3: Member3_Array;

end record;

1.14 Mapping for Union Types

An IDL union type shall map to an Ada discriminated record type. The type name s
be mapped from the IDL identifier. The discriminant shall be formed with name
“Switch ” and shall be of type mapped from the IDL switch_type_spec. A default
value for the discriminant shall be formed from the ‘first value of the mapped
switch_type_spec. A variant shall be formed from each case contained in the
switch_body as follows:

• Discrete_choice_list: For case_labels specified by “case ” followed by a const_exp,
the const_exp defines a discrete_choice. For the “default ” case_label, the
discrete_choice is “others . ” If more than one case_label is associated with a
case, they shall be “or”ed together.

• Variant component_list: The component_list of each variant shall contain one
component formed from the element_spec using the mapping in Section 1.13,
“Mapping for Structure Types,” on page 1-24 for components.
1-24 Ada Language Mapping updated June 1999

1

 at

within
ned in

 array.

pes
).

uence

iable.
For example, the IDL union declaration below:

union Example switch (long) {
 case 1: case 3: long Counter;
 case 2: boolean Flags [4] [8];
 default: long Unknown;
};

maps to the following:

type Flags_Array is array(0..3, 0.. 7) of Boolean;
type Example(Switch : CORBA.Long := CORBA.Long’first) is
record

case Switch is
when 1 | 3 =>

Counter: CORBA.Long;
when 2 =>

Flags: Flags_Array;
when others =>

Unknown : CORBA.Long;
end case;

end record;

1.15 Mapping for Sequence Types

IDL defines a sequence as a “one-dimensional array with two characteristics: a
maximum size (which is fixed at compile time) and a length (which is determined
run time).” The syntax is:

<sequence_type> :=
“sequence” “<” <simple_type_spec> “,” <positive_int_const>

“>” “sequence” “<” <simple_type_spec> “>”

Note that a simple_type_spec can include any of the basic IDL types, any scoped
name, or any template type. Thus, sequences can also be anonymously defined
a nested sequence declaration. A sequence type specification can also be contai
a typedef, in a declaration of a struct member, or in a definition of a union case.

A sequence is mapped to an Ada type that behaves similarly to an unconstrained

Two Ada generic package specifications, CORBA.Sequences.Bounded and
CORBA.Sequences.Unbounded define the interface to the sequence type
operations. Conforming implementation of the packages defining the sequence ty
shall provide value semantics for assignment (as opposed to reference semantics

Thus, the implementation of assignment of one sequence variable to another seq
variable must first destroy the memory of the target sequence variable and then
perform a deep-copy of the second sequence variable to the target sequence var
Ada Language Mapping Mapping for Sequence Types June 1999 1-25

1

d are
ation

o the
Each sequence type declaration shall correspond to an instantiation of
CORBA.Sequences.Bounded or CORBA.Sequences.Unbounded , as
appropriate. The formal of the generic packages and the actual arguments provide
implementation defined. The name and scope of the instantiation is left implement
defined.

The following sequence types in DrawingKit:

IDL File: drawing.idl

module Fresco {
interface DrawingKit {
 typedef sequence<octet> Data8;
 typedef sequence<long, 1024> Data32;
};
};

map to generic package instantiations, as follows:

package Fresco is
end Fresco;

with CORBA.Sequences;
with CORBA.Object;

package Fresco.DrawingKit is

type Ref is new CORBA.Object.Ref with null record;
package IDL_SEQUENCE_octet is

new CORBA.Sequences.Unbounded
(CORBA.Octet);

type Data8 is new IDL_SEQUENCE_octet.Sequence;

package IDL_SEQUENCE_1024_long is
new CORBA.Sequences.Bounded

(CORBA.Long, 1024);
type Data32 is new IDL_SEQUENCE_1024_long.Sequence;

end Fresco.DrawingKit;

Note that for the purposes of other rules, the “type mapped from” a sequence
declaration is the “.Sequence” type of the instantiated package. This is relevant t
rules for Typedefs (“Mapping for Typedefs” on page 1-30) and for other template
types. Thus, in the previous example, the instantiated “.Sequence ” type is followed
by a type derivation. Also, the following declaration:

typedef sequence<sequence<octet>> Ragged8;

will map to
1-26 Ada Language Mapping updated June 1999

1

tring

ge

g the
e
with CORBA.Sequences.Unbounded;
...
package IDL_SEQUENCE_octet is

CORBA.Sequences.Unbounded(CORBA.Octet);

package IDL_SEQUENCE_SEQUENCE_octet is
new CORBA.Sequences.Unbounded

(IDL_SEQUENCE_octet.Sequence);

type Ragged8 is new IDL_SEQUENCE_SEQUENCE_octet.Sequence

1.16 Mapping for String Types

The IDL bounded and unbounded strings types are mapped to Ada’s predefined s
packages or functional equivalent.

Conforming implementations shall provide an unbounded string type in the packa
CORBA. The CORBA.String type shall be a derivation of
Ada.Strings.Unbounded.Unbounded_String or a functionally equivalent
package with equivalent primitive operations. Conforming implementations shall
define a CORBA.Null_String constant. In addition to the subprograms provided
by Ada.Strings.Unbounded , conforming implementations shall provide the
following additional functions in package CORBA:

function To_CORBA_String (Source : Standard.String)
return CORBA.String;

function To_Standard_String (Source : CORBA.String)
return Standard.String;

An unbounded IDL string shall be mapped to the type CORBA.String .

Conforming implementations shall provide a CORBA.Bounded_Strings package
with the same specification and semantics as
Ada.Strings.Bounded.Generic_Bounded_Length .

The CORBA.Bounded_Strings package has a generic formal parameter “Max”
declared as type Positive and establishes the maximum length of the bounded
string at instantiation. A generic instantiation of the package shall be created usin
bound for the IDL string as the associated parameter. The name and scope of th
instantiation is left implementation defined.

For example, the IDL declaration:

typedef string Name;

maps to

type Name is new CORBA.String;

while the following declaration:
Ada Language Mapping Mapping for String Types June 1999 1-27

1

ined

ated
ope of
typedef string<512> Title;

may map to

with CORBA.Bounded_Strings;
package CORBA.Bounded_String_512 is new
 CORBA.Bounded_Strings(512);

at the library level, and

type Title is new CORBA.Bounded_String_512.Bounded_String;

in the corresponding interface package.

1.17 Mapping for Wide String Types

The IDL bounded and unbounded wide strings types are mapped to Ada’s predef
wide string packages or functional equivalent.

An unbounded IDL wide string shall be mapped a derivative of the type
CORBA.Wide_String or functional equivalent.

Conforming implementations shall provide a CORBA.Bounded_Wide_Strings
package with the same specification and semantics as
Ada.Strings.Wide_Bounded.Generic_Bounded_Length .

The CORBA.Bounded_Wide_Strings package has a generic formal parameter
“Max” declared as type Positive and establishes the maximum length of the
bounded string at instantiation. A generic instantiation of the package shall be cre
using the bound for the IDL string as the associated parameter. The name and sc
the instantiation is left implementation defined.

For example, the IDL declaration:

typedef wstring WName;

maps to

type WName is new CORBA.Wide_String;

while the following declaration:

typedef wstring<512> WTitle;

may map to

with CORBA.Bounded_Wide_Strings;
package CORBA.Bounded_Wide_String_512 is new
 CORBA.Bounded_Wide_Strings(512);

at the library level, and
1-28 Ada Language Mapping updated June 1999

1

r as

n
ier
 be
ied in

e

the

n
r

hall
t

The

ue.
type WTitle is new
CORBA.Bounded_Wide_String_512.Bounded_String;

in the corresponding interface package.

1.18 Mapping for Arrays

IDL defines multidimensional, fixed-size arrays by specifying a complex_declarato

• any of the declarators in a typedef,

• any of the declarators in a member of a struct, or

• the declarator in any element of a union.

A complex_declarator is formed by appending one or more array size bounds to
identifiers.

An IDL complex_declarator maps to an Ada array type definition. A type definitio
shall define an array type. The array type name shall be mapped from the identif
contained in the array_declarator prepended to “_Array.” The type definition shall
an array, over the range(s) from 0 to one less then the fixed_array_size(s) specif
the array declarator, of the type mapped from the IDL type contained in the type
specification. If multiple bounds are declared, a multiple dimensional array shall b
created that preserves the indexing order specified in the IDL declaration. In the
component definition, the name shall be mapped from the identifier contained in
array_declarator and the type shall be the array type.

SeeSection 1.13, “Mapping for Structure Types,” on page 1-24, “Mapping for Unio
Types” on page 1-24, and Section 1.19, “Mapping for Constants,” on page 1-29 fo
more information.

1.19 Mapping for Constants

An IDL constant shall map directly to an Ada constant. The Ada constant name s
be mapped from the identifier in the IDL declaration. The type of the Ada constan
shall be mapped from the IDL const_type as specified elsewhere in this section.
value of the Ada constant shall be mapped from the IDL constant expression as
specified in Section 1.3.3, “Mapping of Constant Expressions,” on page 1-10. This
mapping may yield a semantically equivalent literal of the correct type or a
syntactically equivalent Ada expression that evaluates to the correct type and val

For example, the following IDL constants:

const double Pi = 3.1415926535;
const short Line_Buffer_Length = 80;

shall map to
Ada Language Mapping Mapping for Arrays June 1999 1-29

1

tor
sting

ype
shall
cified
e
e

h
The
ition
Pi : constant CORBA.Double := 3.1415926535;
Line_Buffer_Length : constant CORBA.Short := 80;

The following IDL constants:

const long Page_Buffer_Length =
 (Line_Buffer_Length * 60) + 2;
const long Legal_Page_Buffer_Length = (80 * 80) + 2;

may be mapped as

Page_Buffer_Length : constant CORBA.Long := 4802;
Legal_Page_Buffer_Length : constant CORBA.Long := 6402;

or

Page_Buffer_Length : constant CORBA.Long :=
(Line_Buffer_Length * 60) + 2;

Legal_Page_Buffer_Length : constant CORBA.Long :=
 (80 * 80) + 2;

1.20 Mapping for Typedefs

IDL typedefs introduce new names for types. An IDL typedef is formed from the
keyword “typedef ,” a type specification, and one or more declarators. A declara
may be a simple declarator consisting of an identifier, or an array declarator consi
of an identifier and one or more fixed array sizes. An IDL typedef maps to an Ada
derived type.

Each array_declarator in a typedef shall be mapped to an array type. The array t
name shall be the identifier contained in the array_declarator. The type definition
be an array over the range(s) from 0 to one less than the fixed_array_size(s) spe
in the array declarator of the type mapped from the IDL type contained in the typ
specification. If multiple bounds are declared, a multiple dimensional array shall b
created that preserves the indexing order specified in the IDL declaration.

Each simple declarator for a non-reference type (i.e., a type not in
CORBA.Object.Ref’CLASS) shall be mapped to a derived type declaration. Eac
simple declarator for a reference type shall be mapped to a subtype declaration.
type name shall be the identifier provided in the simple declarator. The type defin
shall be the mapping of the typespec, as specified elsewhere in this section.

For example, the following IDL typedefs:

typedef string Name, Street_Address[2];
typedef Name Employee_Name;
typedef enum Color {Red, Green, Blue} RGB;
interface Base {};
typedef Base Root;

will be mapped to
1-30 Ada Language Mapping updated June 1999

1

nd

 IDL

st of

s
ped
w

om
tion.

 type

ts of
type Name is new CORBA.String;
type Street_Address is array(0 .. 1) of CORBA.String;
type Employee_Name is new Name;
type Color is (Red, Green, Blue);
type RGB is new Color;

subtype Root is Base.Ref;

1.21 Mapping for TypeCodes

TypeCodes are values that represent invocation argument types, attribute types, a
Object types. They can be obtained from the Interface Repository or from IDL
compilers and they have a number of uses:

• In the Dynamic Invocation interface: to indicate types of the actual arguments.

• By an Interface Repository: to represent type specifications that are part of the
declarations.

• As a crucial part of the semantics of the any type. Abstractly, TypeCodes consi
a “kind” field and a “parameter list.”

The Ada mapping of TypeCode is provided by the pseudo-object
CORBA.TypeCode.Object type declared in the CORBA.TypeCode package
nested within the CORBA package (see Section 1.33, “TypeCode,” on page 1-43). It
implementation is left unspecified. The primitive operations of TypeCode are map
from the pseudo-IDL contained in the CORBA specification. These operations allo
the matching of two TypeCodes, and extraction of the “kind” and “parameter list” fr
it. The contents of the parameter list shall be as specified in the CORBA specifica

Note – These operations do not include the ability to construct a TypeCode. Two
TypeCodes are equal if the IDL type specifications from which they are compiled
denote equal types. One consequence of this is that all types derived from an IDL
have equal TypeCodes.

All occurrences of type TypeCode in IDL shall be mapped to the
CORBA.TypeCode.Object type.

All conforming implementations shall be capable (if asked) of generating constan
type CORBA.TypeCode.Object for all pre-defined and IDL-defined types. The
name of the constant shall be “TC_” prepended to the mapped type name.

1.22 Mapping for Any Type

An Ada mapping for the IDL type any must fulfill two different requirements:

1. Handling values whose types are known.

2. Handling values whose types are not known at implementation compile time.
Ada Language Mapping Mapping for TypeCodes June 1999 1-31

1

e

d
:

ode

reed

e;
The first item covers most normal usage of the any type, the conversion of typed
values into and out of an any . The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with an Ada compiler.

The following specifies a set of Ada facilities that allows both of these cases to b
handled in a type safe manner.

1.22.1 Handling Known Types

For each distinct type T in an IDL specification, pre-defined or IDL-defined,
conforming implementations shall be capable of generating functions to insert an
extract values of that type to and from type Any. The form of these functions shall be

function From_Any(Item : in Any) return T;

function To_Any(Item : in T) return Any;

An attempt to execute From_Any on an Any value that does not contain a value of
type T shall result in the raising of CORBA.Bad_Typecode.

In addition, the following function shall be defined in package CORBA:

function Get_Type(The_Any : in Any) return TypeCode.Ref;

This function allows the discovery of the type of an Any.

1.22.2 Handling Unknown Types

Certain applications may receive and wish to handle objects of type Any that contain
values of a type not known at compile time, and, thus, for which a matching TypeC
constant is not available. The TypeCode facility allows the decomposition of any
TypeCode to a point where all components of a type are of pre-defined (and thus
known) type. In order to extract the value associated with each component of this b
of Any, conforming implementations shall provide an iterator
CORBA.Iterate_Over_Any_Elements defined as follows:

generic
 with procedure Process(The_Any : in Any;
 Continue: out Boolean);
procedure CORBA.Iterate_Over_Any_Elements(In_Any: in Any);

A conforming implementation of Iterate_Over_Any_Elements shall iteratively
call Process for each component of In_Any . The The_Any argument to Process
shall contain both the TypeCode and the value(s) of the component of the In_Any .
Each component may itself be compound and may be of previously unknown typ
therefore, the type of the component The_Any is another Any. Through the recursive
use of the iterator, the input In_Any can be decomposed to the point that all
1-32 Ada Language Mapping updated June 1999

1

fe
ue

is
ion is
 ORB

gory)
ecific.
 as

t the
ss

e

r.

an

nstant
components are of known (eventually of pre-defined) type. At that point, a type sa
conversion of the form From_Any discussed above may be applied to obtain the val
of the decomposed component.

No facilities are defined or required for composing Any values of previously unknown
types.

1.23 Mapping for Exception Types

An IDL exception is declared by specifying an identifier and a set of members. Th
member data contains descriptive information, accessible in the event the except
raised. Standard exceptions are predefined as part of IDL and can be raised by an
given the occurrence of the corresponding exceptional condition. Each standard
exception has member data that includes a minor code (a more detailed subcate
and a completion status. Exceptions can also be declared that are application-sp
The raising of an application-specific exception is bound to an interface operation
part of the operation declaration. This does not imply that the corresponding
implementation for the operation must raise the exception; it merely announces tha
declared operation may raise any of the listed exception(s). A programmer has acce
to the value of the exception identifier upon a raise.

An application-specific exception is declared with a unique identifier (relative to th
scope of the declaration) and a member list that contains zero or more IDL type
declarations.

1.23.1 Exception Identifier

The IDL exception declaration shall map directly to an Ada exception declaration
where the name of the Ada exception is mapped from the IDL exception identifie

For example, the following IDL exception declaration:

exception null_exception{};

will map to the following Ada exception declaration:

Null_Exception: exception;

A programmer must be able to access the value of the exception identifier when
exception is raised. A language-defined package, Ada.Exceptions , is provided by
Ada. The package contains a declaration of type Exception_Occurrence . Each
occurrence of an Ada exception is represented by a distinct value of type
Exception_Occurrence .

An Ada exception handler may contain a choice_parameter_specification .
This declares a constant object of type Exception_Occurrence . Upon the raise of
an exception, this constant represents the actual exception being handled. This co
value can be used to access the fully qualified name using the function,
Ada Language Mapping Mapping for Exception Types June 1999 1-33

1

e of

L

.
ions

ng

Exception_Name , in the package Ada.Exceptions . Therefore, mapping an IDL
exception declaration to an Ada exception declaration provides access to the valu
the exception identifier by default.

1.23.2 Exception Members

Members are additional information available in the event of a raise of the
corresponding exception. Members can contain any combination of permissible ID
types.

The following declarations shall be contained in package CORBA:

type IDL_Exception_Members is abstract tagged null record;

procedure Get_Members(From: in
Ada.Exceptions.Exception_Occurrence;

 To: out IDL_Exception_Members) is abstract;

1.23.2.1 Standard Exceptions

A set of standard run-time exceptions is defined in the IDL language specification
Each of these exceptions has the same member form. The following IDL declarat
appear for standard exceptions:

#define ex_body {unsigned long minor; completion_status completed;}
enum completion_status {COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE};
enum exception_type {NO_EXCEPTION, USER_EXCEPTION,

SYSTEM_EXCEPTION};

The following declarations shall exist in package CORBA:

type completion_Status is (COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE);

type Exception_Type is (NO_EXCEPTION, USER_EXCEPTION,
SYSTEM_EXCEPTION);

type System_Exception_Members is new IDL_Exception_Members with
record

Minor : CORBA.Long;
Completed : Completion_Status;

 end record;
procedure Get_Members(From: in Ada.Exceptions.

Exception_Occurrence;
To: out System_Exception_Members);

For each standard exception specified in the CORBA specification, a correspondi
Ada exception and exception members type derived from
System_Exception_Members shall be declared in package CORBA. However, the
name Initialization_Failure will be used for the Initialize exception to avoid
conflict with the Ada Initialize procedure.
1-34 Ada Language Mapping updated June 1999

1

ith

ct
e

all be
apped
For example, the IDL standard exception declaration below:

exception UNKNOWN ex_body;

maps to the following:

UNKNOWN: exception;
type Unknown_Members is new System_Exception_Members
 with null record;

The Unknown_Members type will be used to hold the current values associated w
the raised exception. The derived Get_Members function may be used to access the
values.

1.23.2.2 Application-Specific Exceptions

For an application-specific exception declaration, a type extended from the abstra
type, IDL_Exception_Members , shall be declared where the type name will be th
concatenation of the exception identifier with “_Members.” Each member shall be
mapped to a component of the extension. The name used for each component sh
mapped from the member name. The type of each exception member shall be m
from the IDL member type as specified elsewhere in this document.

The mapping shall also provide a concrete function, Get_Members , that returns the
exception members from an object of type:

Ada.Exceptions.Exception_Occurrence.

Note – The use of the strings associated with Exception_Message and
Exception_Information in the language-defined package Ada.Exceptions
may be used by the implementor to “carry” the exception members. This may
effectively render these predefined subprograms useless. If so, this fact shall be
documented.

For example, the following IDL exception declaration:

exception access_error {
 long file_access_code;
 string access_error_description;
 }

will map to the following:

Access_error : exception;

type Access_Error_Members is new CORBA.IDL_Exception_Members
with

record
File_Access_Code : CORBA.Long;
Access_Error_Description : CORBA.String;
Ada Language Mapping Mapping for Exception Types June 1999 1-35

1

ption
 end record;
procedure Get_Members(From: in
Ada.Exceptions.Exception_Occurrence;

To : out Access_Error_Members);

For consistency, the Members type and the Get_Members function must be
generated even if the corresponding IDL exception has zero members. For an exce
declaration without members:

exception a_simple_exception{};

the mapping will be as follows:

A_Simple_Exception : exception;
type A_Simple_Exception_Members is new

CORBA.IDL_Exception_Members with null record;
procedure Get_Members(From: in
Ada.Exceptions.Exception_Occurrence;

To: out A_Simple_Exception_Members);

1.23.2.3 Example Use

The following interface definition:

interface stack {
 typedef long element;
 exception overflow{long upper_bound;};
 exception underflow{};
 void push (in element the_element)
 raises (overflow);
 void pop (out element the_element)
 raises (underflow);
};

maps to the following in Ada:

package Stack is

...

type Element is new CORBA.Long;

Overflow : exception;
type Overflow_Members is new CORBA.IDL_Exception_Members

with record
Upper_Bound : CORBA.Long;

end record;
procedure Get_Members(From: in Ada.Exceptions.
1-36 Ada Language Mapping updated June 1999

1

 raise:
Exception_Occurrence;
To: out Overflow_Members;

Underflow : exception;
type Underflow_Members is new CORBA.IDL_Exception_Members

 with null record;
function Get_Members(From: in Ada.Exceptions.

Exception_Occurrence;
To: out Underflow_Members);

...
end stack;

The following usage of the stack illustrates access to members upon an exception

with Ada.Text_IO;
with Ada.Exceptions;
with Stack;
use Ada;

procedure Use_stack is
 ...

The_Overflow_Members : Stack.Overflow_Members;
begin

 ...

exception

when Stack_Error: Stack.Overflow =>
Stack.Get_Members(Stack_Error,The_Overflow_Members;
Text_IO.Put_Line (“Exception raised is “ &

Exceptions.Exception_Name (Stack_Error));
Text_IO.Put_Line (“exceeded upper bound = “ &

CORBA.Long’image(The_Overflow_Members.Upper_Bound));

 ...

end Use_stack;

1.24 Mapping for Attributes (Client-Side Specific)

Read-only attributes shall be mapped to an Ada function with name formed by
prepending “Get_ ” to the mapped attribute name. Read-write attributes shall be
mapped to an Ada function with name formed by prepending “Get_ ” to the mapped
attribute name and an Ada procedure with name formed by prepending “Set_ ” to the
mapped attribute name. The Set procedure takes a controlling parameter of object
reference type and name “Self ,” and a parameter with name “To.” The type of the To
parameter shall be mapped from the attribute type, except for an attribute of the
enclosing interface type, which shall be mapped as Ref’CLASS . The Get function
Ada Language Mapping Mapping for Attributes (Client-Side Specific) June 19991-37

1

te of

g

on
 the

ters
ion

he

 be

L

 be
rs (it

nal

is no

g
takes a controlling parameter only, of object reference type and name “Self .” The
Get function returns the type mapped from the attribute type, except for an attribu
the enclosing interface type, which shall be mapped as Ref’CLASS .

Examples of mapped attributes may be found in Section 1.8.9, “Interface Mappin
Examples,” on page 1-17.

1.25 Mapping for Operations (Client-Side Specific)

Operations shall map to an Ada subprogram with name mapped from the operati
identifier. The first argument to operation subprograms will refer to the object that
operation is being performed on. It shall be an “in ” mode argument with the name
“Self ” and shall be of the mapped object reference type, Ref .

IDL interface operations with non-void result type that have only in-mode parame
shall be mapped to Ada functions returning an Ada type mapped from the operat
result type. Otherwise, (non-void IDL interface operations that have out-mode
parameters, or void operations) operations shall be mapped to Ada procedures. T
non-void result, if any, is returned via an added argument with name “Returns .” This
result argument shall follow all other parameter arguments.

Each specified parameter in the operation declaration and the result type shall be
mapped to an argument of the mapped subprogram. The argument names shall
mapped from the parameter identifier in the IDL. The argument mode shall be
preserved from the IDL. The argument or return type shall be mapped from the ID
type, except in the case of an argument or return type that is of the enclosing IDL
interface type. Arguments or result types of the enclosing IDL interface type shall
mapped to Ref’CLASS. This is necessary to prevent multiple controlling paramete
removes the ambiguity as to which parameter control dispatching.)

If an operation in an IDL specification has a context specification, then an additio
argument with name “In_Context ,” of in mode and of type
CORBA.Context.Object (see Section 1.32, “Context,” on page 1-42) shall be
added after all IDL specified arguments and before the Returns argument, if any. The
In_Context argument shall have a default value of
CORBA.ORB.Get_Default_Context (see Section 1.34, “ORB,” on page 1-45).

IDL oneway operations are mapped the same as other operations; that is, there
indication whether an operation is oneway or not in the mapped Ada specification.

Note – Implementations are encouraged to add a comment to the generated
specification that states that the operation is oneway .

The specification of exceptions for an IDL operation is not part of the generated
operation.

Examples of mapped operations may be found in Section 1.8.9, “Interface Mappin
Examples,” on page 1-17.
1-38 Ada Language Mapping updated June 1999

1

es.

s.

t

.

ould
 the
 that
da

d with
bjects

is

 rules

ng

ich

tion
1.26 Argument Passing Considerations

The existing Ada language parameter passing conventions are followed for all typ
The mapping for in , out , and inout parameters to the Ada “in , ” “ out , ” and “in
out ” parameter modes obviates the need for any special parameter passing rule

1.27 Tasking Considerations

An implementation should document whether access to CORBA services is tasking-
safe. An operation is tasking-safe if two tasks within an Ada program may perform tha
operation and the effect is always as if they were performed in sequence.

Unless otherwise noted, it should be assumed that a CORBA operation is not tasking-
safe, given current semantics of the CORBA specification, which is non-reentrant

For implementations which support tasking-safe operations, the implementation sh
further document the blocking behavior of CORBA operations. Blocking may be at
task or program level: when an Ada task calls a CORBA operation, it is preferred
only the task, and not the whole Ada program, be blocked. Refer to the POSIX A
binding, IEEE-Std 1003.5-1992, for further discussion.

1.28 Mapping of Pseudo-Objects to Ada

CORBA pseudo-objects are not first class objects. There are no servers associate
pseudo objects, they are not registered with an ORB, and references to pseudo-o
are not necessarily valid across computational contexts.

This mapping provides a standard binding for the pseudo-objects, the pre-defined
environment for CORBA. Implementation of pseudo-objects are not specified in th
mapping.

1.28.1 Mapping Rules

In general, the pseudo-objects are mapped from the pseudo-IDL according to the
specified in preceding sections of this chapter.

The types representing pseudo-objects are not derived from CORBA.Object.Ref .
Ada also supports “object semantics” better than some other OOPLs. This mappi
allows the types associated with pseudo-objects are to be named Object and support
copy semantics in assignment. The Self parameter will be of the Object type and
in out mode, except when the operation is obviously a query-only function, in wh
case the Object parameter is in mode.

Conforming implementations shall raise appropriate CORBA exceptions on detec
of an error condition.

Other exceptions to these general mapping rules are noted in the following text.
Ada Language Mapping Argument Passing Considerations June 1999 1-39

1

om a
nts of
r

of the

 do

cord

1.28.2 Object Semantics

Conforming implementations shall implement copy semantics for assignment of
pseudo-objects of an Object type (i.e., assignment of a value of a type mapped fr
pseudo-object as an Object to another object shall result in a copy of all compone
the original). Conforming implementations shall implement reference semantics fo
assignment of pseudo-object of a Ref type (i.e., assignment of a value of a type
mapped from a pseudo-object as a Ref to another object shall result in a sharing
components of the objects).

Conforming implementations shall ensure that implementations of pseudo-objects
not “leak” memory.

1.29 NamedValue

NamedValue is used only as an element of NVList . NamedValue contains an
optional name, an any value, and labeling flags. Legal flag values are ARG_IN,
ARG_OUT, and ARG_INOUT, in bitwise combination with IN_COPY_VALUE. The
type Flags is mapped in accordance with the mapping rules. Appropriate Flag
constants must be defined by the implementation. NamedValue is mapped to a re
in the CORBA package in conformance with the mapping.

type Flags is new CORBA.Unsigned_Long;
ARG_IN: constant Flags;
ARG_OUT: constant Flags;
ARG_INOUT: constant Flags;
IN_COPY_VALUE: constant Flags;
type NamedValue is record

Name : Identifier;
Argument : Any;
Arg_Modes : Flags;

end record;

1.30 NVList

NVList is a list of NamedValues . The CORBA.NVList package provides the
mapping for the NVList pseudo-object. The Ref type is the mapping for the reference
and, unlike most pseudo-objects, is fully a CORBA reference types. New
NamedValues may be constructed only as part of an NVList through one of the
add_item functions. An additional version of Add_Item that uses a NamedValue
argument is provided.

package CORBA.NVList is

type Ref is new CORBA.Object.Ref with null record;

procedure Add_Item
(Self : in Ref;
Item_Name : in Identifier;
1-40 Ada Language Mapping updated June 1999

1

 A

to

t of
Item : in Any;
Item_Flags : in Flags);

procedure Add_Item
(Self : in Ref;
Item : in NamedValue);

-- free and free_memory are unneeded

procedure Get_Count
(Self : in Ref;
Count : out CORBA.Long);

private
... implementation defined ...

end CORBA.NVList;

1.31 Request

Request provides the primary support for the Dynamic Invocation Interface (DII).
new request on a particular target object may be constructed using the
Create_Request operation in the Object interface. Arguments and contexts may
be provided to the Create_Request operation or may be added after construction
via the Add_Arg operation in the Request interface. Requests can be transferred
a server and responses obtained synchronously through the Invoke operation. The
Send operation may be used to transfer a request to a server without waiting for
results. Results, output arguments, and exceptions may be obtained later with the
Get_Response operation. The CORBA.Request package provides the Ada
interface to the Request pseudo-object and is mapped in conformance with the
mapping rules, except for the arguments to Add_Arg . The pseudo-IDL for Add_Arg
includes five arguments (a name, a TypeCode, a void * for the actual value, an
argument length, and a Flag value) that have been replaced by a single argumen
type NamedValue in the Ada mapping.

package CORBA.Request is

type Object is private;

procedure Add_Arg
(Self : in out Object;
Arg : in NamedValue);

procedure Invoke
(Self : in out Object;
Invoke_Flags : in Flags);

procedure Delete
(Self : in out Object);

procedure Send
(Self : in out Object;
Invoke_Flags : in Flags);
Ada Language Mapping Request June 1999 1-41

1

ent of
procedure Get_Response
(Self : in out Object;
Response_Flags : in Flags);

private
... implementation defined ...

end CORBA.Request;

1.32 Context

A Context supplies optional context information associated with a method
invocation. Package CORBA.Context provides the Ada interface for this capability.
If an error in processing occurs, the CORBA system exception BAD_CONTEXT is
returned. Conforming implementations must ensure adequate memory managem
dynamically allocated components.

package CORBA.Context is

type Ref is private;

procedure Set_One_Value
(Self : in Ref;
Prop_Name : in Identifier;
Value : in CORBA.String);

procedure Set_Values
(Self : in Ref;
Values : in CORBA.NVList.Ref);

procedure Get_Values
(Self : in Ref;
Start_Scope : in Identifier;
This_Object : in Boolean := TRUE;
Prop_Name : in Identifier;
Values : out CORBA.NVList.Ref);

procedure Delete_Values
(Self : in Ref;
Prop_Name : in Identifier);

procedure Create_Child
(Self : in Ref;
Ctx_Name : in Identifier;
Child_Ctx : out Ref);

-- Delete not needed

private
... implementation defined ...
1-42 Ada Language Mapping updated June 1999

1

end CORBA.Context;

1.33 TypeCode

A TypeCode represents IDL type information. It is intimately related to type Any. For
this reason, package TypeCode that defines the Object type for TypeCode is a
subpackage nested within the CORBA package. See Section 1.21, “Mapping for
TypeCodes,” on page 1-31 for more information.

package CORBA is

type TCKind is
(tk_null, tk_void,
 tk_short, tk_long, tk_ushort, tk_ulong,
 tk_float, tk_double, tk_boolean, tk_char,
 tk_octet, tk_any, tk_TypeCode, tk_Principal,
 tk_objref,tk_struct, tk_union, tk_enum, tk_string,
 tk_sequence, tk_array, tk_alias, tk_except,
 tk_longlong, tk_ulonglong, tk_longdouble,
 tk_widechar, tk_wstring, tk_fixed,
 tk_value, tk_valuebox,
 tk_native, tk_abstract_interface);

type ValueModifier is new Short;
VTM_NONE : constant ValueModifier := 0;
VTM_CUSTOM : constant ValueModifier := 1;
VTM_ABSTRACT : constant ValueModifier := 2;
VTM_TRUNCATABLE : constant ValueModifier := 3;

type Visibility is new Short;
PRIVATE_MEMBER : constant Visibility := 0;
PUBLIC_MEMBER : constant Visibility := 1;

package TypeCode is

type Object is private;

Bounds : exception;
type Bounds_Members is new CORBA.IDL_Exception_Members

 with null record;

procedure Get_Members

 (From : in Ada.Exceptions.Exception_Occurrence;
To : out Bounds_Members);

BadKind : exception;
type BadKind_Members is new

CORBA.IDL_Exception_Members
 with null record;
Ada Language Mapping TypeCode June 1999 1-43

1

procedure Get_Members
 (From : in Ada.Exceptions.Exception_Occurrence;

To : out BadKind_Members);

function Equal(Self : in Object; TC : in Object)
 return CORBA.Boolean;

function "="(Left, Right : in Object) return Boolean
 renames Equal;

function Equivalent(Self : in Object; TC : in Object)
 return CORBA.Boolean;

function Get_Compact_TypeCode(Self: in Object)
 return Object;

function Kind(Self : in Object) return TCKind;

function Id(Self : in Object)
return CORBA.RepositoryId;

function Name(Self : in Object)
return CORBA.Identifier;

function Member_Count(Self : in Object)
 return Unsigned_Long;

function Member_Name
 (Self : in Object;
 Index : in CORBA.Unsigned_Long)

return CORBA.Identifier;

function Member_Type
 (Self : in Object;
 Index : in CORBA.Unsigned_Long) return Object;

function Member_Label
 (Self : in Object;
 Index : in CORBA.Unsigned_Long) return CORBA.Any;

function Discriminator_Type(Self : in Object)
return Object;

function Default_Index(Self : in Object)
return CORBA.Long;

function Length(Self : in Object)
 return CORBA.Unsigned_Long;

function Content_Type(Self : in Object) return Object;

function Fixed_Digits(Self : in Object)
 return CORBA.Unsigned_Short;
1-44 Ada Language Mapping updated June 1999

1

ations
function Fixed_Scale(Self : in Object)
 return CORBA.Short;

function Member_Type
 (Self : in Object;
 Index : in CORBA.Unsigned_Long) return Object;

function Type_Modifier(Self : in Object)
 return CORBA.ValueModifier;

function Concrete_Base_Type(Self : in Object)
return Object;

end TypeCode;

1.34 ORB

An ORB is the programmer interface to the Object Request Broker. The package
CORBA.ORB provides the Ada interface to the Request Broker. Package ORB is
specified as a finite state machine rather than an object. None of the mapped oper
contain the Self parameter specified in the pseudo-object mapping rules.

package CORBA is -- additional items

type PolicyErrorCode is new Short;

InvalidName : exception;
type InvalidName_Members is new

CORBA.IDL_Exception_Members
 with null record;

procedure Get_Members
(From : in Ada.Exceptions.Exception_Occurrence;
 To) : out InvalidName_Members);

InconsistentTypeCode : exception;
type InconsistentTypeCode_Members is

 new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in Ada.Exceptions.Exception_Occurrence;
 To) : out InconsistentTypeCode_Members);

PolicyError : exception;
type PolicyError_Members is new

CORBA.IDL_Exception_Members
with null record;

procedure Get_Members
(From : in Ada.Exceptions.Exception_Occurrence;
 To) : out PolicyError_Members);
Ada Language Mapping ORB June 1999 1-45

1

type RepositoryId is new String;
type Identifier is new String;
type ServiceType is new Unsigned_Short;
type ServiceOption is new Unsigned_Long;
type ServiceDetailType is new Unsigned_Long;

Security : constant ServiceType := 1;

 -- ...
end CORBA;

package CORBA.ORB is

type Octet_Sequence is new
CORBA.Sequences.Unbounded(Octet);

type ServiceDetail is record
 service_detail_type : ServiceDetailType;
 service_detail : Octet_Sequence.Sequence;

end record;

package IDL_SEQUENCE_ServiceOption is
new CORBA.Sequences.Unbounded(ServiceOption);

package IDL_SEQUENCE_Service_Detail is
new CORBA.Sequences.Unbounded(ServiceDetail);

type ServiceInformation is record
service_options :

IDL_SEQUENCE_ServiceOption.Sequence;
service_details :

IDL_SEQUENCE_Service_Detail.Sequence;
end record;
type ObjectId is new CORBA.String;

package IDL_SEQUENCE_ObjectId is new

 CORBA.Sequences.Unbounded(ObjectId);
type ObjectIdList is new IDL_SEQUENCE_ObjectId.Sequence;

function Object_To_String
 (Obj : in CORBA.Object.Ref'CLASS)
 return CORBA.String;

procedure String_to_Object
 (From : in CORBA.String)
 To : in out CORBA.Object.Ref’CLASS);

-- Dynamic Invocation related operations

procedure Create_List
 (Count : in CORBA.Long;
 New_List : out CORBA.NVList.Object);

procedure Create_Operation_List
1-46 Ada Language Mapping updated June 1999

1

 (Oper : in CORBA.OperationDef.Ref;
 New_List : out CORBA.NVList.Object);

function Get_Default_Context
return CORBA.Context.Object;

-- Service information operations

procedure Get_Service_Information
 (Service_Type : in ServiceType;
 Service_Information : out ServiceInformation;
 Returns : out Boolean);

-- initial reference operations

function List_Initial_Services return ObjectIdList;

function Resolve_Initial_References
(Identifier : ObjectId)

 return CORBA.Object.Ref

-- TypeCode creation operations
 function create_struct_tc
 (Id : in RepositoryId;
 Name : in Identifier;
 Members : in StructMemberSeq)

return CORBA.TypeCode.Object;

function create_union_tc
 (Id : in RepositoryId;
 Name : in Identifier;
 Discriminator_Type : in CORBA.TypeCode.Object;
 Members : in UnionMemberSeq)

return CORBA.TypeCode.Object;

 function create_enum_tc
 (Id : in RepositoryId;
 Name : in Identifier;
 Members : in EnumMemberSeq)

return CORBA.TypeCode.Object;

 function create_alias_tc
 (Id : in RepositoryId;
 Name : in Identifier;
 Original_Type : in CORBA.TypeCode.Object)

return CORBA.TypeCode.Object;
Ada Language Mapping ORB June 1999 1-47

1

 function create_exception_tc
 (Id : in RepositoryId;
 Name : in Identifier;
 Members : in StructMemberSeq)

return CORBA.TypeCode.Object;

 function create_interface_tc
 (Id : in RepositoryId;
 Name : in Identifier)

return CORBA.TypeCode.Object;

 function create_string_tc
 (Bound : in CORBA.Unsigned_Long)

return CORBA.TypeCode.Object;

 function create_wstring_tc
 (Bound : in CORBA.Unsigned_Long)

return CORBA.TypeCode.Object;

 function create_fixed_tc
 (Digits : in CORBA.Unsigned_Short;
 Scale : in CORBA.Short)

return CORBA.TypeCode.Object;

 function create_sequence_tc
 (Bound : in CORBA.Unsigned_Long;
 Element_Type : in CORBA.TypeCode.Object)

return CORBA.TypeCode.Object;

 function create_recursive_sequence_tc
 (Bound : in CORBA.Unsigned_Long;
 Offset : in CORBA.Unsigned_Long)

return CORBA.TypeCode.Object;

 function create_array_tc
 (Length : in CORBA.Unsigned_Long;
 Element_Type : in CORBA.TypeCode.Object)

return CORBA.TypeCode.Object;

 function create_native_tc
 (Id : in RepositoryId;
 Name : in Identifier)

return CORBA.TypeCode.Object;

 -- Thread related operations
 function Work_Pending return Boolean;
 procedure Perform_Work;
 procedure Shutdown(Wait_For_Completion : in Boolean);

 procedure Run;
1-48 Ada Language Mapping updated June 1999

1

nt.

nt-
 -- policy related operations
 function Create_Policy
 (The_Type : in PolicyType;
 Val : Any);

end CORBA.ORB;

1.35 Object

Object is the root of the IDL interface hierarchy. While Object is a normal
CORBA object (not a pseudo-object), its interface is described here because it
references other pseudo-objects and its implementation will necessarily be differe
The package CORBA.Object provides the Ada interface and includes a Ref type that
is the root for client-side interfaces. See Section 1.8, “Mapping for Interfaces (Clie
Side Specific),” on page 1-14 for more information.

package CORBA is

type PolicyType is new Unsigned_Long;

type Flags is new Unsigned_Long;

package CORBA.Object is

type Ref is new Ada.Finalization.Controlled with private;

function Get_Interface(Self : in Ref)
 return Ref’CLASS; -- will return

CORBA.InterfaceDef.Ref;

function Is_Nil(Self : in Ref) return Boolean;
function Is_Null(Self : in Ref) return Boolean

renames Is_Nil;

-- duplicate unneeded, use assignment

procedure Release(Self : in out Ref);

function Is_A
 (Self : Ref;
 Logical_Type_Id : String) return Boolean;

function Non_Existent(Self : Ref) return Boolean;

function Is_Equivalent
(Self : Ref;
Other_Object : Ref’CLASS) return Boolean;
Ada Language Mapping Object June 1999 1-49

1

 Ada
rrent

ecurity
function Hash
(Self : Ref;
Maximum : Unsigned_Long) return Unsigned_Long;

procedure Create_Request
(Self : in Ref;
Ctx : in CORBA.Context.Object;
Operation : in Identifier;
Arg_list : in CORBA.NVList.Object;
Result : access NamedValue;
Request : out CORBA.Request.Object;
Req_Flags : in Flags);

function Get_Policy(Policy_Type : PolicyType)
 return CORBA.Policy.Ref;

function Get_Domain_Managers(Self : Ref)
 return CORBA.DomainManager.DomainManagersList;

type SetOverrideType is (SET_OVERRIDE, ADD_OVERRIDE);
function Set_Policy_Overrides

(Self : in Ref;
Policies : CORBA.Policy.PolicyList;
Set_Add : SetOverrideType);

private
 ...
end CORBA.Object;

1.36 Current

Provides standardized access to computation context information. Little needed in
since language provides direct access to tasking and task-related information. Cu
references are locality constrained.

package CORBA.Current is

 type Ref is new CORBA.Object.Ref with null record;

private
 ... implementation defined ...
end CORBA.Current;

1.37 Policy

Provides access to choices that may affect operations. The Policy interface is the
abstract base type for access to the various policies assigned. For example, the S
Service defines a Security Policy that is derived from this reference type.
1-50 Ada Language Mapping updated June 1999

1

.

package CORBA.Policy is

type Ref is abstract new CORBA.Object.Ref with null
record;

function Get_Policy_Type(Self: Ref) return PolicyType;
function Copy(Self: Ref) return Ref;
-- Destroy unneeded

package IDL_SEQUENCE_Policy is new
CORBA.Sequences.Unbounded

 (Ref);
type PolicyList is new IDL_SEQUENCE_Policy.Sequence;

private

... implementation defined ...

end CORBA.Policy;

1.38 DomainManager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains

• Creating and accessing policies.

package CORBA.DomainManager is

type Ref is new CORBA.Object.Ref with null record;

function Get_Domain_Policy
(Self : Ref;
Policy_Type : PolicyType)
return CORBA.Policy.Ref;

package IDL_SEQUENCE_DomainManager is
new CORBA.Sequences.Unbounded(Ref);

type DomaingManagerList is
new IDL_SEQUENCE_DomainManager.Sequence;

end CORBA.DomainManager;
Ada Language Mapping DomainManager June 1999 1-51

1

 at

da

or
ce.

ed

 and
y

r-

 be
age

er

ping
d
1.39 ConstructionPolicy

Allows callers to assign membership of a particular object references to a domain
creation time.

package CORBA.ConstructionPolicy is

type Ref is new CORBA.Policy.Ref with null record;

procedure Make_Domain_Manager
(Self : in Ref;
Object_Type : in CORBA.InterfaceDef.Ref;
Constr_Policy : in Boolean);

end CORBA.ConstructionPolicy;

1.40 Server-Side Mapping - General

This mapping refers to the portability constraints for an implementation written in A
as the server side mapping. The term server here is not meant to restrict
implementations to the situation where method invocations cross address space
machine boundaries. This section addresses any implementation of an IDL interfa

1.41 Implementing Interfaces

The implementation of an IDL interface shall be mapped to a child package, nam
Impl , of that interface’s client side interface package. The specification of this
package shall contain subprograms associated with the IDL interface’s operations
the declaration of a record type, Object . The operation subprograms are invoked b
the ORB. The object record is used to hold member data employed by the
implementation of an interface.

If the interface has no parents, the type Object shall be declared as an (implemento
defined) extension of PortableServer.Servant_Base . If the interface has a
single parent, the type Object shall be an extension of the Object type mapped
from the parent interface. If the interface has multiple parents the type Object shall
be an extension of the Object type mapped from the first-named parent interface.

While the development and maintenance of the Impl package is explicitly the
responsibility of the user, the IDL translator of a conforming implementation shall
able to generate an incomplete Impl package specification. At minimum, the pack
specification shall contain:

• The package declaration.

• A declaration of the Object type. The declaration shall, at least, specify the prop
type derivation (as described above), but may otherwise be left incomplete.

• The specification of the primitive subprograms representing the server-side map
of the interface’s attributes and operations. The mapping rules for attributes an
operations are contained below.
1-52 Ada Language Mapping updated June 1999

1

to the

stub

n
hat

ll
 calls.

d in
1.42 Implementing Operations and Attributes

The parameters passed to an implementation subprogram parallel those passed
client side stub except that the type of the Self parameter is access Object ,
where Object is described above, rather than the reference type declared in the
package.

Thus, all operation and attribute implementations will be primitive on the type
Object . This allows to have a different inheritance hierarchy than that reflected i
IDL. It allows inherited operations to be overridden by implementations (a facility t
cannot be expressed in IDL). It also allows for alternate and delegating
implementations that are not reflected in IDL.

To implement these facilities, conforming implementations are required to force a
calls made to the mapped operation and attribute subprograms to be dispatching

1.43 Server-Side Mapping Examples

The following IDL interface:

File cultivation.idl:

#include “barn.idl”

interface Plow {
 long row();
 void attach(in short blade);
 void harness(in Horse power);
};

causes the IDL translator to generate, in addition to the client packages discusse
previous sections, the following implementation specification:

with CORBA;
with CORBA.Object;
with Horse;

package Plow.Impl is
 type Object is new PortableServer.Servant_Base with

private;
function Row

(Self : access Object)
return CORBA.Long;

procedure Attach
(Self : access Object;
Blade : in CORBA.Short);

procedure Harness
(Self : access Object;
Power : in Farm.Horse.Ref);

private
Ada Language Mapping Implementing Operations and Attributes June 1999 1-53

1

ping.
type Object is new PortableServer.Servant_Base with
record

 -- (implementation data)
end record;

end Plow.Impl;

The placement of the object record in the private part is not mandated by this map

1.44 PortableServer

The subsystem root for the Portable Object Adapter.

package PortableServer is

package POA_Forward is new CORBA.Forward;

type Servant is -- ...

function "="(Left, Right: in Servant) return Boolean;

function Get_Default_POA (For_Servant : in Servant)
return POA_Forward.Ref;

package IDL_SEQUENCE_Octet is
new CORBA.Sequences.Unbounded(CORBA.Octet);

type ObjectId is new IDL_SEQUENCE_Octet.Sequence;

ForwardRequest : exception;
type ForwardRequest_Members is

new CORBA.IDL_Exception_Members with
record

forward_reference : CORBA.Object.Ref;
end record;

procedure Get_Members
(From : in CORBA.Exception_Occurrence;
To : out ForwardRequest_Members);

type ThreadPolicyValue is (ORB_CTRL_MODEL,
SINGLE_THREAD_MODEL);

type LifespanPolicyValue is (TRANSIENT, PERSISTENT);

type IdUniquenessPolicyValue is (UNIQUE_ID,MULTIPLE_ID);

type IdAssignmentPolicyValue is (USER_ID, SYSTEM_ID);

type ImplicitActivationPolicyValue is
(IMPLICIT_ACTIVATION,
 NO_IMPLICIT_ACTIVATION);
1-54 Ada Language Mapping updated June 1999

1

type ServantRetentionPolicyValue is (RETAIN, NON_RETAIN);

type RequestProcessingPolicyValue is
(USE_ACTIVE_OBJECT_MAP_ONLY, USE_DEFAULT_SERVANT,
 USE_SERVANT_MANAGER);

end PortableServer;

1.45 PortableServer.AdapterActivator

package PortableServer.AdapterActivator is

type Ref is new CORBA.Object.Ref with null record;

function unknown_adapter
(Self : Ref;
parent : PortableServer.POA_Forward.Ref;
name : CORBA.String)
return Boolean;

end PortableServer.AdapterActivator;

1.46 PortableServer.Current

package PortableServer.Current is

type Ref is new CORBA.Current.Ref with null record;

NoContext : exception;
type NoContext_Members is new CORBA.IDL_Exception_Members

 with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out NoContext_Members);

function get_POA(Self : Ref)
return PortableServer.POA_Forward.Ref;

function get_object_id(Self : Ref) return ObjectId;

end PortableServer.Current;

1.47 PortableServer.IdAssignmentPolicy

package PortableServer.IdAssignmentPolicy is

type Ref is new CORBA.Policy.Ref with null record;
Ada Language Mapping PortableServer.AdapterActivator June 1999 1-55

1

function Get_value (Self : Ref)
return IdAssignmentPolicyValue;

end PortableServer.IdAssignmentPolicy;

1.48 PortableServer.IdUniquenessPolicy

package PortableServer.IdUniquenessPolicy is

type Ref is new CORBA.Policy.Ref with null record;

function Get_value (Self : Ref)
return IdUniquenessPolicyValue;

end PortableServer.IdUniquenessPolicy;

1.49 PortableServer.ImplicitActivationPolicy

package PortableServer.ImplicitActivationPolicy is

type Ref is new CORBA.Policy.Ref with null record;

function Get_value (Self : Ref)
return ImplicitActivationPolicyValue;

end PortableServer.ImplicitActivationPolicy;

1.50 PortableServer.LifeSpanPolicy

package PortableServer.LifespanPolicy is

type Ref is new CORBA.Policy.Ref with null record;

function Get_value (Self : Ref)
return LifespanPolicyValue;

end PortableServer.LifespanPolicy;

1.51 PortableServer.POA

package PortableServer.POA is

type Ref is new CORBA.Object.Ref with null record;

AdapterAlreadyExists : exception;
type AdapterAlreadyExists_Members is

new CORBA.IDL_Exception_Members with null record;
1-56 Ada Language Mapping updated June 1999

1

procedure Get_Members
(From : in CORBA.Exception_Occurrence;
To : out AdapterAlreadyExists_Members);

AdapterInactive : exception;
type AdapterInactive_Members is new

CORBA.IDL_Exception_Members
 with null record;

procedure Get_Members
(From : in CORBA.Exception_Occurrence;
 To : out AdapterInactive_Members);

AdapterNonExistent : exception;
type AdapterNonExistent_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out AdapterNonExistent_Members);

InvalidPolicy : exception;
type InvalidPolicy_Members is

new CORBA.IDL_Exception_Members
with

record
Index : CORBA.Unsigned_Short;

end record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out InvalidPolicy_Members);

NoServant : exception;
type NoServant_Members is new CORBA.IDL_Exception_Members

with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out NoServant_Members);

ObjectAlreadyActive : exception;
type ObjectAlreadyActive_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out ObjectAlreadyActive_Members);

ObjectNotActive : exception;
type ObjectNotActive_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out ObjectNotActive_Members);
Ada Language Mapping PortableServer.POA June 1999 1-57

1

ServantAlreadyActive : exception;
type ServantAlreadyActive_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out ServantAlreadyActive_Members);

ServantNotActive : exception;
type ServantNotActive_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out ServantNotActive_Members);

WrongAdapter : exception;
type WrongAdapter_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out WrongAdapter_Members);

WrongPolicy : exception;
type WrongPolicy_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out WrongPolicy_Members);

function create_POA
(Self : Ref;
adapter_name : CORBA.String;
a_POAManager : PortableServer.POAManager.Ref;
policies : CORBA.Policy.PolicyList)
return Ref’CLASS;

function find_POA
(Self : Ref;
adapter_name : CORBA.String;
activate_it : CORBA.Boolean)
return Ref’CLASS;

procedure destroy (Self : in Ref;
etherealize_objects : in CORBA.Boolean;
wait_for_completion : in CORBA.Boolean);

function create_thread_policy
(Self : Ref;
value : ThreadPolicyValue)
return PortableServer.ThreadPolicy.Ref;

function create_lifespan_policy
1-58 Ada Language Mapping updated June 1999

1

(Self : Ref;
value : LifespanPolicyValue)
return PortableServer.LifespanPolicy.Ref;

function create_id_uniqueness_policy
(Self : Ref;
value : IdUniquenessPolicyValue)
return PortableServer.IdUniquenessPolicy.Ref;

function create_id_assignment_policy
(Self : Ref;
value : IdAssignmentPolicyValue)
return PortableServer.IdAssignmentPolicy.Ref;

function create_implicit_activation_policy
(Self : Ref;
value : ImplicitActivationPolicyValue)
return PortableServer.ImplicitActivationPolicy.Ref;

function create_servant_retention_policy
(Self : Ref;
value : ServantRetentionPolicyValue)
return PortableServer.ServantRetentionPolicy.Ref;

function create_request_processing_policy
(Self : Ref;
value : RequestProcessingPolicyValue)
return PortableServer.RequestProcessingPolicy.Ref;

function Get_the_name (Self : Ref) return CORBA.String;

function Get_the_parent (Self : Ref) return Ref’CLASS;

function Get_the_POAManager
(Self : Ref)
return PortableServer.POAManager.Ref;

function Get_the_activator
(Self : Ref)
return PortableServer.AdapterActivator.Ref;

procedure Set_the_activator
(Self : in Ref;
 To : in PortableServer.AdapterActivator.Ref);

function get_servant_manager (Self : Ref)
return PortableServer.ServantManager.Ref;

procedure set_servant_manager
(Self : in Ref;
imgr : in PortableServer.ServantManager.Ref);
Ada Language Mapping PortableServer.POA June 1999 1-59

1

function get_servant (Self : Ref) return Servant;

procedure set_servant
(Self : in Ref; p_servant : in Servant);

function activate_object
(Self : Ref;
p_servant : Servant)
return ObjectId;

procedure activate_object_with_id
(Self : in Ref;
id : in ObjectId;
p_servant : in Servant);

procedure deactivate_object
(Self : in Ref;
oid : in ObjectId);

function create_reference
(Self : Ref;
intf : CORBA.RepositoryId)
return CORBA.Object.Ref;

function create_reference_with_id
(Self : Ref;
oid : ObjectId;
intf : CORBA.RepositoryId)
return CORBA.Object.Ref;

function servant_to_id
(Self : Ref;
p_servant : Servant)
return ObjectId;

function servant_to_reference
(Self : Ref;
p_servant : Servant)
return CORBA.Object.Ref;

function reference_to_servant
(Self : Ref;
reference : CORBA.Object.Ref’CLASS)
return Servant;

function reference_to_id
(Self : Ref;
reference : CORBA.Object.Ref’CLASS)
return ObjectId;

function id_to_servant
1-60 Ada Language Mapping updated June 1999

1

(Self : Ref;
oid : ObjectId)
return Servant;

function id_to_reference
(Self : Ref;
oid : ObjectId)
return CORBA.Object.Ref;

package Convert is new
PortableServer.POA_Forward.Convert(Ref);

end PortableServer.POA;

1.52 PortableServer.POAManager

package PortableServer.POAManager is

type Ref is new CORBA.Object.Ref with null record;

AdapterInactive : exception;
type AdapterInactive_Members is

new CORBA.IDL_Exception_Members with null record;
procedure Get_Members

(From : in CORBA.Exception_Occurrence;
 To : out AdapterInactive_Members);

procedure activate (Self : in Ref);

procedure hold_requests
(Self : in Ref;
wait_for_completion : in CORBA.Boolean);

procedure discard_requests
(Self : in Ref;
wait_for_completion : in CORBA.Boolean);

procedure deactivate
(Self : in Ref;
etherealize_objects : in CORBA.Boolean;
wait_for_completion : in CORBA.Boolean);

end PortableServer.POAManager;

1.53 PortableServer.RequestProcessingPolicy

package PortableServer.RequestProcessingPolicy is

type Ref is new CORBA.Policy.Ref with null record;
Ada Language Mapping PortableServer.POAManager June 1999 1-61

1

function Get_value (Self : Ref)
return RequestProcessingPolicyValue;

end PortableServer.RequestProcessingPolicy;

1.54 PortableServer.ServantActivator

package PortableServer.ServantActivator is

type Ref is new PortableServer.ServantManager.Ref
with null record;

function incarnate
(Self : in Ref;
oid : in ObjectId;
adapter : in PortableServer.POA.Ref)
return Servant;

procedure etheralize
(Self : in Ref;
oid : in PortableServer.ObjectId;
adapter : in PortableServer.POA_Forward.Ref;
serv : in PortableServer.Servant;
cleanup_in_progress : in CORBA.Boolean;
remaining_activations : in CORBA.Boolean);

end PortableServer.ServantActivator;

1.55 PortableServer.ServantLocator

package PortableServer.ServantLocator is

type Ref is new PortableServer.ServantManager.Ref
with null record;

type Cookie is -- ... native

procedure preinvoke
(Self : in Ref;
oid : in ObjectId;
adapter : in PortableServer.POA.Ref;
operation : in CORBA.Identifier;
the_cookie : out Cookie;
Returns : out Servant);

procedure postinvoke
(Self : in Ref;
 oid : in ObjectId;
1-62 Ada Language Mapping updated June 1999

1

adapter : in PortableServer.POA.Ref;
operation : in CORBA.Identifier;
the_cookie : in Cookie;
the_servant : in Servant);

end PortableServer.ServantLocator;

1.56 PortableServer.ServantManager

package PortableServer.ServantManager is

type Ref is new CORBA.Object.Ref with null record;

end PortableServer.ServantManager;

1.57 PortableServer.ServantRetentionPolicy

package PortableServer.ServantRetentionPolicy is

type Ref is new CORBA.Policy.Ref with null record;

function Get_value (Self : Ref)
return ServantRetentionPolicyValue;

end PortableServer.ServantRetentionPolicy;

1.58 PortableServer.ThreadPolicy

package PortableServer.ThreadPolicy is

type Ref is new CORBA.Policy.Ref with null record;

function Get_value (Self : Ref) return ThreadPolicyValue;

end PortableServer.ThreadPolicy;
Ada Language Mapping PortableServer.ServantManager June 1999 1-63

1

ssary

en
e set

 for a
led
pe

ted

de

lared
class
ms,

ined

 time.

ted)
in
rm

 type
used
Appendix A Glossary of Ada Terms

A.1 Glossary Terms

This appendix defines terms used in the document that are not defined in the glo
of the CORBA specification. These definitions are quoted mostly from the Ada 95
Reference Manual (ISO/IEC 8652:1995).

Class A class is a set of types that is closed under derivation, which means that if a giv
type is in the class, then all types derived from that type are also in the class. Th
of types of a class share common properties, such as their primitive operations.

Class-wide t ypes Class-wide types are defined for (and belong to) each derivation class rooted at a
tagged type. Given a subtype S of a tagged type T, S’Class is the subtype_mark
corresponding subtype of the tagged class-wide type T’Class. Such types are cal
“class-wide” because when a formal parameter is defined to be of a class-wide ty
T’Class, an actual parameter of any type in the derivation class rooted at T is
acceptable.

Controlled t ype A controlled type supports user-defined assignment and finalization. Objects are
always finalized before being destroyed.

Package Packages are program units that allow the specification of groups of logically rela
entities. Typically, a package contains the declaration of a type along with the
declarations of primitive subprograms of the type, which can be called from outsi
the package, while the inner working remains hidden from outside users.

Primitive o perations The primitive operations of a type are the operations (such as subprograms) dec
together with the type declaration. They are inherited by other types in the same
of types. For a tagged type, the primitive subprograms are dispatching subprogra
providing run-time polymorphism. A dispatching subprogram may be called with
statically tagged operands, in which case the subprogram body invoked is determ
at compile time. Alternatively, a dispatching subprogram may be called using a
dispatching call, in which case the subprogram body invoked is determined at run

Subs ystems A library unit is a “top-level” separately compiled program unit, and is always a
package, subprogram, or generic unit. Library units may have other (logically nes
library units as children, and may have other program units physically nested with
them. A root library unit, together with its children and grandchildren and so on, fo
a subsystem.

Tagged type The values of a tagged type have a run-time type tag, which indicates the specific
from which the value originated. An operand of a class-wide tagged type can be
in a dispatching call; the tag indicates which subprogram body to invoke.
1-64 Ada Language Mapping updated June 1999

1

 by
”

Within g, withs, with clause The Ada mechanism to gain visibility to a compilation unit is to include a “with
clause” naming that compilation unit. Such a compilation unit is said to be “withed”
the current unit. Conversely, the current unit “withs” the named unit. This “withing
allows use of declarations from the “withed” unit through a “selected component”
notation consisting of the withed unit name, “.”, and the declaration name.
Ada Language Mapping PortableServer.ThreadPolicy June 1999 1-65

1

1-66 Ada Language Mapping updated June 1999

Index

Ada Language Mapping Index-1

Symbols
’SIZE 1-3

A
Ada Implementation Requirements 1-3
Ada package 1-4
Alternative Mappings for C++ 1-64
Any 1-31
Arguments, Passing 1-39
Arrays 1-29
Attributes 1-5, 1-37, 1-53
Attributes, Server Side 1-53

B
Boolean 1-23

C
Calling Convention 1-3
Comments 1-13
compliance vi
Constant Expressions 1-10
Constants 1-29
Context 1-42
CORBA

contributors vi
CORBA package 1-13
core, compliance vi

E
Exceptions 1-6, 1-33
Exceptions, Application-Specific 1-35
Exceptions, Example 1-36
Exceptions, Identifier 1-33
Exceptions, Members 1-34
Exceptions, Standard 1-34

F
Forward Declaration 1-19
Forward Declarations 1-4, 1-15

G
Global Names 1-13

I
Identifiers 1-7
IDL file 1-13
include 1-12
Inheritance 1-5, 1-14
interface package 1-14
Interfaces 1-4, 1-14, 1-52
Interfaces, Server Side 1-52
interoperability, compliance vi
interworking

compliance vi

L
Literals 1-7
Literals, Character 1-9

Literals, Floating-Point 1-8
Literals, Integer 1-7
Literals, String 1-9

M
Memory Management 1-3
Modules 1-13

N
NamedValue 1-40
Names 1-6, 1-12
Narrowing 1-16
Nil 1-17
NVList 1-40

O
Object 1-17, 1-49
Object Reference 1-14
Object Reference Operations 1-15
Operations 1-5, 1-38, 1-53
Operations, Server Side 1-53
Operators 1-11
ORB 1-45

R
Request 1-41

S
Sequence 1-25
Sequence Types 1-25
server 1-52
string 1-3
String Types 1-27
Summary of IDL Constructs to Ada Constructs 1-4

T
Tagged Types 1-4
Tasking 1-3, 1-39
TypeCode 1-31, 1-43
Typedefs 1-30
Types 1-6
Types, Any 1-31
Types, Array 1-29
Types, Boolean 1-23
Types, Enumeration 1-23
Types, Exception 1-33
Types, Sequence 1-25
Types, Size Requirements 1-3
Types, String 1-27, 1-28
Types, Structure 1-24
Types, TypeCodes 1-31
Types, Typedefs 1-30
Types, Union 1-24

W
Wide String Types 1-28
Widening 1-16

	0.1 About CORBA Language Mapping Specifications
	0.1.1 Alignment with CORBA

	0.2 Definition of CORBA Compliance
	0.3 Acknowledgements
	0.4 References
	Ada Language Mapping
	1.1 Overview
	1.1.1 Ada Implementation Requirements
	1.1.2 Calling Convention
	1.1.3 Memory Management
	1.1.4 Tasking
	1.1.5 Ada Type Size Requirements

	1.2 Mapping Summary
	1.2.1 Interfaces and Tagged Types
	1.2.2 Operations
	1.2.3 Attributes
	1.2.4 Inheritance
	1.2.5 Data Types
	1.2.6 Exceptions
	1.2.7 Names and Scoping

	1.3 Lexical Mapping
	1.3.1 Mapping of Identifiers
	1.3.2 Mapping of Literals
	1.3.3 Mapping of Constant Expressions

	1.4 Mapping of Names
	1.4.1 Identifiers
	1.4.2 Scoped Names

	1.5 Mapping of IDL Files
	1.5.1 File Inclusion
	1.5.2 Comments
	1.5.3 Other Pre-Processing
	1.5.4 Global Names

	1.6 CORBA Subsystem
	1.7 Mapping Modules
	1.8 Mapping for Interfaces (Client-Side Specific)
	1.8.1 Object Reference Types
	1.8.2 Interfaces and Inheritance
	1.8.3 Mapping Forward Declarations
	1.8.4 Object Reference Operations
	1.8.5 Widening Object References
	1.8.6 Narrowing Object References
	1.8.7 Nil Object Reference
	1.8.8 Type Object
	1.8.9 Interface Mapping Examples

	1.9 Mapping for Basic Types
	1.10 Mapping for Fixed Type
	1.11 Mapping for Boolean Type
	1.12 Mapping for Enumeration Types
	1.13 Mapping for Structure Types
	1.14 Mapping for Union Types
	1.15 Mapping for Sequence Types
	1.16 Mapping for String Types
	1.17 Mapping for Wide String Types
	1.18 Mapping for Arrays
	1.19 Mapping for Constants
	1.20 Mapping for Typedefs
	1.21 Mapping for TypeCodes
	1.22 Mapping for Any Type
	1.22.1 Handling Known Types
	1.22.2 Handling Unknown Types

	1.23 Mapping for Exception Types
	1.23.1 Exception Identifier
	1.23.2 Exception Members

	1.24 Mapping for Attributes (Client-Side Specific)
	1.25 Mapping for Operations (Client-Side Specific)
	1.26 Argument Passing Considerations
	1.27 Tasking Considerations
	1.28 Mapping of Pseudo-Objects to Ada
	1.28.1 Mapping Rules
	1.28.2 Object Semantics

	1.29 NamedValue
	1.30 NVList
	1.31 Request
	1.32 Context
	1.33 TypeCode
	1.34 ORB
	1.35 Object
	1.36 Current
	1.37 Policy
	1.38 DomainManager
	1.39 ConstructionPolicy
	1.40 Server-Side Mapping - General
	1.41 Implementing Interfaces
	1.42 Implementing Operations and Attributes
	1.43 Server-Side Mapping Examples
	1.44 PortableServer
	1.45 PortableServer.AdapterActivator
	1.46 PortableServer.Current
	1.47 PortableServer.IdAssignmentPolicy
	1.48 PortableServer.IdUniquenessPolicy
	1.49 PortableServer.ImplicitActivationPolicy
	1.50 PortableServer.LifeSpanPolicy
	1.51 PortableServer.POA
	1.52 PortableServer.POAManager
	1.53 PortableServer.RequestProcessingPolicy
	1.54 PortableServer.ServantActivator
	1.55 PortableServer.ServantLocator
	1.56 PortableServer.ServantManager
	1.57 PortableServer.ServantRetentionPolicy
	1.58 PortableServer.ThreadPolicy

	Index

