
August 2012

Action Language for Foundational UML (Alf)
Concrete Syntax for a UML Action Language

FTF – Beta 2

__

OMG Document Number: ptc/2012-08-43
Standard document URL: http://www.omg.org/spec/ALF/1.0
Associated File(s): ptc/2012-08-44

ptc/2012-08-45
ptc/2012-08-46

__

http://www.omg.org/spec/ALF/1.0

Copyright © 2010-2012 88solutions Corporation
Copyright © 2012 Commissariat a l Energie Atomique-CEA
Copyright © 2010-2012 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2010-2012 International Business Machines
Copyright © 2010-2012 Mentor Graphics Corporation
Copyright © 2010-2012 No Magic, Inc.
Copyright © 2010-2012 Visumpoint
Copyright © 2010-2012 Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES
The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES
The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS
The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS
Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND
Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of
the Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 140 Kendrick Street, Needham, MA
02494, U.S.A.

TRADEMARKS
MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ , MOF™ , OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE
The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.)

Contents
 Preface ... xi
PART I - INTRODUCTION ... 1
1 Scope ... 1
2 Conformance ... 2

2.1 Syntactic Conformance .. 2
2.2 Semantic Conformance .. 2
2.3 Additional Conformance Points ... 3

3 Normative References ... 4
4 Terms and Definitions .. 5
5 Symbols .. 6
6 Overview .. 7

6.1 Integration with UML Models ... 7
6.2 Templates ... 8
6.3 Lexical Structure .. 10
6.4 Concrete Syntax ... 11
6.5 Abstract Syntax .. 13
6.6 Mapping to Foundational UML ... 14
6.7 Organization of the Specification .. 14
6.8 Acknowledgments .. 15

PART II - LANGUAGE DESCRIPTION ... 16
7 Lexical Structure ... 16

7.1 Line Terminators .. 16
7.2 Input Elements and Tokens .. 16
7.3 White Space ... 17
7.4 Comments .. 17

7.4.1 Lexical Comments .. 17
7.4.2 Documentation Comments .. 18

7.5 Names .. 18
7.6 Reserved Words ... 20
7.7 Primitive Literals ... 21

7.7.1 Boolean Literals .. 21
7.7.2 Natural Literals ... 21
7.7.3 Unbounded Value Literals .. 23
7.7.4 String Literals .. 23

7.8 Punctuation .. 23
7.9 Operators .. 24

8 Expressions .. 25
8.1 Overview .. 25
8.2 Qualified Names .. 27
8.3 Primary Expressions .. 32

8.3.1 Overview ... 32

Action Language for Foundational UML (ALF) 1.0, Beta 2 i

8.3.2 Literal Expressions .. 33
8.3.3 Name Expressions ... 34
8.3.4 this Expressions .. 36
8.3.5 Parenthesized Expressions .. 37
8.3.6 Property Access Expressions .. 37
8.3.7 Invocation Expressions ... 39
8.3.8 Tuples .. 40
8.3.9 Behavior Invocation Expressions ... 43
8.3.10 Feature Invocation Expressions .. 46
8.3.11 Super Invocation Expressions ... 49
8.3.12 Instance Creation Expressions .. 50
8.3.13 Link Operation Expressions .. 53
8.3.14 Class Extent Expressions .. 56
8.3.15 Sequence Construction Expressions ... 57
8.3.16 Sequence Access Expressions ... 60
8.3.17 Sequence Operation Expressions .. 61
8.3.18 Sequence Reduction Expressions ... 64
8.3.19 Sequence Expansion Expressions ... 65
8.3.20 select and reject Expressions .. 68
8.3.21 collect and iterate Expressions .. 69
8.3.22 forAll, exists and one Expressions .. 70
8.3.23 isUnique Expression ... 71

8.4 Increment and Decrement Expressions .. 72
8.5 Unary Expressions ... 73

8.5.1 Overview ... 73
8.5.2 Boolean Unary Expressions .. 74
8.5.3 BitString Unary Expressions ... 75
8.5.4 Numeric Unary Expressions ... 76
8.5.5 Cast Expressions ... 77
8.5.6 Isolation Expressions .. 78

8.6 Binary Expressions .. 79
8.6.1 Overview ... 79
8.6.2 Arithmetic Expressions ... 79
8.6.3 Shift Expressions .. 81
8.6.4 Relational Expressions .. 82
8.6.5 Classification Expressions .. 83
8.6.6 Equality Expressions ... 85
8.6.7 Logical Expressions .. 86
8.6.8 Conditional Logical Expressions .. 87

8.7 Conditional-Test Expressions .. 89
8.8 Assignment Expressions .. 90

9 Statements .. 96
9.1 Overview .. 96
9.2 Annotated Statements .. 99
9.3 In-line Statements .. 101
9.4 Block Statements ... 102
9.5 Empty Statements .. 105

ii Action Language for Foundational UML (ALF) 1.0, Beta 2

9.6 Local Name Declaration Statements .. 106
9.7 Expression Statements ... 109
9.8 if Statements ... 110
9.9 switch Statements ... 113
9.10 while Statements .. 115
9.11 do Statements ... 116
9.12 for Statements .. 117
9.13 break Statements .. 121
9.14 return Statements ... 122
9.15 accept Statements ... 123
9.16 classify Statements ... 125

10 Units ... 128
10.1 Overview .. 128
10.2 Namespaces .. 135
10.3 Packages ... 136
10.4 Classifiers ... 138

10.4.1 Overview ... 138
10.4.2 Classes ... 141
10.4.3 Active Classes ... 144
10.4.4 Data Types .. 147
10.4.5 Associations .. 149
10.4.6 Enumerations .. 151
10.4.7 Signals ... 152
10.4.8 Activities ... 153

10.5 Features .. 157
10.5.1 Overview ... 157
10.5.2 Properties .. 157
10.5.3 Operations ... 161
10.5.4 Receptions ... 169

11 Standard Model Library .. 172
11.1 ActionLanguage Profile ... 172
11.2 Primitive Types .. 173

11.2.1 Natural Type ... 173
11.2.2 Bit String Type .. 174

11.3 Primitive Behaviors ... 174
11.3.1 Boolean Functions .. 175
11.3.2 Integer Functions .. 175
11.3.3 String Functions .. 176
11.3.4 UnlimitedNatural Functions .. 177
11.3.5 Bit String Functions .. 178
11.3.6 Sequence Functions .. 180

11.4 Basic Input and Output .. 185
11.5 Collection Functions .. 185
11.6 Collection Classes .. 188

11.6.1 Bag<T> ... 191
11.6.2 Collection<T> ... 191

Action Language for Foundational UML (ALF) 1.0, Beta 2 iii

11.6.3 Deque<T> ... 195
11.6.4 Entry .. 196
11.6.5 List<T> ... 196
11.6.6 Map<Key, Value> .. 199
11.6.7 OrderedSet<T> ... 202
11.6.8 Queue<T> ... 205
11.6.9 Set<T> .. 208

PART III - ABSTRACT SYNTAX .. 210
12 Common Abstract Syntax .. 210

12.1 Overview .. 210
12.2 Class Descriptions .. 212

12.2.1 AssignedSource ... 212
12.2.2 DocumentedElement ... 213
12.2.3 ElementReference ... 213
12.2.4 ExternalElementReference ... 213
12.2.5 InternalElementReference ... 214
12.2.6 SyntaxElement .. 214

13 Expressions Abstract Syntax ... 216
13.1 Overview .. 216
13.2 Class Descriptions .. 223

13.2.1 ArithmeticExpression ... 223
13.2.2 AssignmentExpression .. 224
13.2.3 BehaviorInvocationExpression ... 228
13.2.4 BinaryExpression .. 229
13.2.5 BitStringUnaryExpression .. 230
13.2.6 BooleanLiteralExpression ... 230
13.2.7 BooleanUnaryExpression ... 231
13.2.8 CastExpression .. 231
13.2.9 ClassExtentExpression .. 232
13.2.10 ClassificationExpression ... 233
13.2.11 CollectOrIterateExpression ... 234
13.2.12 ConditionalLogicalExpression .. 234
13.2.13 ConditionalTestExpression ... 235
13.2.14 EqualityExpression ... 237
13.2.15 Expression ... 237
13.2.16 ExtentOrExpression .. 238
13.2.17 FeatureInvocationExpression .. 239
13.2.18 FeatureLeftHandSide .. 240
13.2.19 FeatureReference .. 241
13.2.20 ForAllOrExistsOrOneExpression ... 242
13.2.21 IncrementOrDecrementExpression ... 242
13.2.22 InstanceCreationExpression .. 244
13.2.23 InvocationExpression .. 245
13.2.24 IsolationExpression ... 248
13.2.25 IsUniqueExpression .. 248
13.2.26 LeftHandSide .. 249

iv Action Language for Foundational UML (ALF) 1.0, Beta 2

13.2.27 LinkOperationExpression ... 250
13.2.28 LiteralExpression .. 251
13.2.29 LogicalExpression ... 251
13.2.30 NameBinding .. 252
13.2.31 NamedExpression ... 253
13.2.32 NamedTemplateBinding ... 254
13.2.33 NamedTuple .. 254
13.2.34 NameExpression ... 255
13.2.35 NameLeftHandSide ... 256
13.2.36 NaturalLiteralExpression .. 257
13.2.37 NumericUnaryExpression ... 258
13.2.38 OutputNamedExpression .. 259
13.2.39 PositionalTemplateBinding ... 259
13.2.40 PositionalTuple ... 260
13.2.41 PropertyAccessExpression .. 260
13.2.42 QualifiedName .. 261
13.2.43 RelationalExpression .. 263
13.2.44 SelectOrRejectExpression ... 264
13.2.45 SequenceAccessExpression .. 265
13.2.46 SequenceConstructionExpression ... 266
13.2.47 SequenceElements .. 267
13.2.48 SequenceExpansionExpression ... 268
13.2.49 SequenceExpressionList ... 269
13.2.50 SequenceOperationExpression ... 269
13.2.51 SequenceRange ... 271
13.2.52 SequenceReductionExpression ... 272
13.2.53 ShiftExpression ... 273
13.2.54 StringLiteralExpression .. 274
13.2.55 SuperInvocationExpression .. 274
13.2.56 TemplateBinding ... 275
13.2.57 TemplateParameterSubstitution .. 276
13.2.58 ThisExpression .. 276
13.2.59 Tuple ... 277
13.2.60 UnaryExpression ... 278
13.2.61 UnboundedLiteralExpression ... 279

14 Statements Abstract Syntax ... 280
14.1 Overview .. 280
14.2 Class Descriptions .. 284

14.2.1 AcceptBlock .. 284
14.2.2 AcceptStatement ... 285
14.2.3 Annotation ... 286
14.2.4 Block ... 287
14.2.5 BlockStatement ... 288
14.2.6 BreakStatement ... 288
14.2.7 ClassifyStatement ... 289
14.2.8 ConcurrentClauses .. 290
14.2.9 DoStatement .. 291

Action Language for Foundational UML (ALF) 1.0, Beta 2 v

14.2.10 EmptyStatement .. 292
14.2.11 ExpressionStatement ... 292
14.2.12 ForStatement ... 293
14.2.13 IfStatement .. 294
14.2.14 InLineStatement .. 295
14.2.15 LocalNameDeclarationStatement ... 296
14.2.16 LoopVariableDefinition .. 297
14.2.17 NonFinalClause ... 299
14.2.18 QualifiedNameList .. 300
14.2.19 ReturnStatement .. 300
14.2.20 Statement ... 301
14.2.21 SwitchClause ... 302
14.2.22 SwitchStatement ... 303
14.2.23 WhileStatement ... 304

15 Units Abstract Syntax ... 306
15.1 Overview .. 306
15.2 Class Descriptions .. 308

15.2.1 ActiveClassDefinition ... 308
15.2.2 ActivityDefinition ... 309
15.2.3 AssociationDefinition ... 309
15.2.4 ClassDefinition ... 310
15.2.5 ClassifierDefinition ... 311
15.2.6 ClassifierTemplateParameter .. 312
15.2.7 DataTypeDefinition .. 312
15.2.8 ElementImportReference .. 313
15.2.9 EnumerationDefinition ... 314
15.2.10 EnumerationLiteralName .. 314
15.2.11 FormalParameter ... 315
15.2.12 ImportedMember .. 315
15.2.13 ImportReference ... 316
15.2.14 Member ... 317
15.2.15 NamespaceDefinition .. 319
15.2.16 OperationDefinition .. 319
15.2.17 PackageDefinition ... 321
15.2.18 PackageImportReference .. 322
15.2.19 PropertyDefinition .. 322
15.2.20 ReceptionDefinition .. 323
15.2.21 SignalDefinition .. 324
15.2.22 SignalReceptionDefinition .. 325
15.2.23 StereotypeAnnotation ... 325
15.2.24 TaggedValue ... 327
15.2.25 TaggedValueList ... 327
15.2.26 TypedElementDefinition ... 328
15.2.27 UnitDefinition ... 329

vi Action Language for Foundational UML (ALF) 1.0, Beta 2

PART IV - MAPPING TO FOUNDATIONAL UML .. 331
16 Common Mapping .. 331

16.1 Syntax Elements ... 331
16.2 Documented Elements ... 331
16.3 Element References ... 331
16.4 Assigned Sources ... 331

17 Expressions Mapping .. 333
17.1 General ... 333
17.2 Qualified Names .. 333
17.3 Literal Expressions ... 333
17.4 Name Expressions .. 333
17.5 this Expressions ... 334
17.6 Property Access Expressions ... 334
17.7 Invocation Expressions .. 334
17.8 Tuples ... 334
17.9 Behavior Invocation Expressions .. 335
17.10 Feature Invocation Expressions ... 336
17.11 Super Invocation Expressions .. 336
17.12 Instance Creation Expressions ... 337
17.13 Link Operation Expressions ... 338
17.14 Class Extent Expressions ... 338
17.15 Sequence Construction Expression .. 338
17.16 Sequence Access Expressions .. 339
17.17 Sequence Operation Expressions ... 339
17.18 Sequence Reduction Expression .. 339
17.19 Sequence Expansion Expressions .. 339
17.20 Increment and Decrement Expressions .. 341
17.21 Unary Expressions ... 341
17.22 Binary Expression .. 342
17.23 Conditional-Test Expressions .. 344
17.24 Assignment Expressions .. 345

18 Statements Mapping ... 348
18.1 General ... 348
18.2 In-Line Statements ... 348
18.3 Block Statements ... 348
18.4 Empty Statements .. 349
18.5 Local Name Definition Statements .. 349
18.6 Expression Statements ... 349
18.7 if Statements ... 349
18.8 switch Statements ... 350
18.9 while Statements .. 350
18.10 do Statements ... 351
18.11 for Statements .. 352
18.12 break Statements .. 352
18.13 return Statements ... 353
18.14 accept Statements ... 353

Action Language for Foundational UML (ALF) 1.0, Beta 2 vii

18.15 classify Statements ... 354

19 Units Mapping ... 355
19.1 General ... 355
19.2 Namespace Definitions .. 355
19.3 Package Definitions ... 355
19.4 Classifier Definitions ... 356
19.5 Class Definitions .. 356
19.6 Active Class Definitions .. 357
19.7 Data Type Definitions .. 357
19.8 Association Definitions .. 357
19.9 Enumeration Definitions .. 357
19.10 Signal (and Signal Reception) Definitions .. 357
19.11 Activity Definitions ... 358
19.12 Typed Element Definitions .. 359
19.13 Formal Parameters ... 359
19.14 Property Definitions ... 359
19.15 Operation Definitions ... 359
19.16 Reception Definitions .. 360

PART V - ANNEXES .. 361
Annex A Semantic Integration with State Machines and Composite Structure (informative) 361

A.1 State Machines .. 361
A.2 Composite Structure .. 365

Annex B Extended Examples (informative) .. 368
B.1 Quicksort Activity ... 368

B.1.1 Quicksort Functional Implementation .. 368
B.1.2 Quicksort “In Place” Implementation .. 371

B.2 Online Bookstore ... 372
B.2.1 Graphical Model for Ordering .. 372
B.2.2 Alf Representation of Entry Behaviors .. 374
B.2.3 Alf Representation of the Ordering Model .. 377
B.2.4 Class Order ... 379

B.3 Property Management Service .. 382
B.3.1 The Property Management Model .. 382
B.3.2 Message Model .. 384
B.3.3 Service Model .. 386
B.3.4 Property Management Service Methods .. 388

B.4 Alf Standard Library Collection Classes Implementation .. 396
B.4.1 CollectionClasses::Impl ... 396
B.4.2 CollectionClasses::Impl::CollectionImpl ... 397
B.4.3 CollectionClasses::Impl::OrderedCollectionImpl .. 399
B.4.4 CollectionClasses::Impl::Set .. 400
B.4.5 CollectionClasses::Impl::OrderedSet ... 402
B.4.6 CollectionClasses::Impl::Bag ... 404
B.4.7 CollectionClasses::Impl::List ... 406
B.4.8 CollectionClasses::Impl::Queue ... 409

viii Action Language for Foundational UML (ALF) 1.0, Beta 2

B.4.9 CollectionClasses::Impl::Deque ... 411
B.4.10 CollectionClasses::Impl::Map .. 413

Annex C Consolidated LL Grammar (informative) ... 416
C.1 Lexical Analyzer ... 416
C.2 Parser ... 420

Action Language for Foundational UML (ALF) 1.0, Beta 2 ix

x Action Language for Foundational UML (ALF) 1.0, Beta 2

Preface

OMG
Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications
for interoperable, portable, and reusable enterprise applications in distributed, heterogeneous
environments. Membership includes Information Technology vendors, end users, government agencies,
and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through
a full-lifecycle approach to enterprise integration that covers multiple operating systems, programming
languages, middleware and networking infrastructures, and software development environments.
OMG’s specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object
Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific
standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A
Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm
Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Action Language for Foundational UML (ALF) 1.0, Beta 2 xi

http://www.omg.org/

Platform Specific Model and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or
by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from
ordinary English. However, these conventions are not used in tables or section headings where no
distinction is necessary.
Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a
document, specification, or other publication.

xii Action Language for Foundational UML (ALF) 1.0, Beta 2

http://www.iso.org/

PART I - INTRODUCTION

1 Scope
The Action Language for Foundational UML (or “Alf”) is a textual surface representation for UML
modeling elements. The execution semantics for Alf are given by mapping the Alf concrete syntax to the
abstract syntax of the standard Foundational Subset for Executable UML Models (known as
“Foundational UML” or “fUML”). The result of executing an Alf input text is thus given by the
semantics of the fUML model to which it is mapped, as defined in the fUML specification.

A primary goal of an action language is to act as the surface notation for specifying executable
behaviors within a wider model that is primarily represented using the usual graphical notations of
UML. For example, this might include methods on the operations of classes or transition effect
behaviors on state machines.

However, Alf also provides an extended notation that may be used to represent structural modeling
elements. Therefore, it is possible to represent a UML model entirely using Alf, though Alf syntax only
directly covers the limited subset of UML structural modeling available in the fUML subset.

Key guiding principles in the design of Alf include the following.

• Alf has a largely C-legacy (“Java like”) syntax, since that is most familiar to the community that
programs detailed behaviors. Nevertheless, Alf allows UML textual syntax when it exists (e.g., colon
syntax for typing, double colon syntax for name qualification, etc.).

• Alf does not require graphical models to change in order to accommodate use of the action language
(e.g., special characters are allowed in names, arbitrary names are allowed for constructors, etc.).
Further, while Alf maps to the fUML subset in order to provide its execution semantics, it is usable
in context of models not limited to the fUML subset.

• Alf provides a naming system that is based on UML namespaces for referencing elements outside of
an activity but also provides for the consistent use of local names to reference flows of values within
an activity.

• Alf uses an implicit type system that allows but does not require the explicit declaration of typing
within an activity, always providing for static type checking, based at least on typing declared in the
structural model elements.

• Alf has the expressivity of OCL in the use and manipulation of sequences of values. These sequence
expressions are fully executable in terms of fUML expansion regions, allowing the simple and
natural specification of highly concurrent computations.

• While the primary goal of Alf is to be an action language, Alf also provides concrete syntax for
structural modeling, largely within the bounds of the fUML subset.

Action Language for Foundational UML (ALF) 1.0, Beta 2 1

2 Conformance
There are two main aspects of conformance to the Alf standard.

• Syntactic Conformance. Alf input text must conform syntactically to one of the levels defined below
in Subclause 2.1.

• Semantic Conformance. A conforming modeling tool must process syntactically conforming Alf text
in one of the ways defined below in Subclause 2.2.

In addition, Subclause 2.3 defines two further mandatory conformance points.

2.1 Syntactic Conformance
Clause 6 discusses the overall requirements for processing of Alf input text. For the purposes of the
present discussion of syntactic conformance, “syntactic processing” includes lexical analysis, as
specified in Clause 7, the parsing of the various Alf features specified in Clauses 8 through 10 and the
static semantic analysis of Alf abstract syntax trees specified in Clauses 12 through 14.2.

There are three levels of syntactic conformance, depending on whether syntactic processing must be
supported for all features specified in Clauses 8 through 10, or only some subset of them.

• Minimum Conformance. Conformance at this level requires the ability to process a subset of the
syntax defined in Clauses 8 and 9, but none of the syntax defined in Clause 10. The exact subset that
must be supported is identified in each of the syntactic grammar specifications in Clauses 8 and 9.
The intent of Minimum Conformance is to provide a subset of Alf that is usable for writing textual
action language snippets within a larger graphical UML model and that includes only the capabilities
available in a traditional, procedural programming language.

• Full Conformance. Conformance at this level requires the ability to process all the syntax defined in
Clauses 8 and 9, but none of the syntax defined in Clause 10. At Full Conformance, Alf provides a
complete action language for representing behavior within a structural model represented in a typical
UML modeling environment outside of Alf (see Subclause 6.1).

• Extended Conformance. Conformance level requires the ability to process all the syntax defined in
Clauses 8, 9 and 10. This includes not only the action language capabilities of Full Conformance, but
also the structural modeling capabilities defined in Clause 10.

2.2 Semantic Conformance
The execution semantics for Alf are described informally in Clauses 8 through 10 and specified by a
formal mapping to fUML in Clauses 16 through 19. A conforming execution tool must implement the
specified semantics for the syntactic subset of Alf to which the tool conforms.

The execution semantics for all Alf constructs are formally specified via their mapping to fUML (see
Subclause 6.6) and the execution of the resulting fUML model per the semantics of the fUML
Specification. However, a conforming modeling tool does not need to actually perform this mapping in
order to execute Alf input text. Indeed, there are three ways in which the tool may implement the
specified Alf execution semantics.

• Interpretive Execution. The modeling tool directly interprets and executes the Alf input text.

2 Action Language for Foundational UML (ALF) 1.0, Beta 2

• Compilative Execution. The modeling tool compiles the Alf text to a UML model conforming to the
fUML subset (at level L3) and executes that per the semantics specified in the fUML Specification,
perhaps in the context of the execution of a larger model that may not conform to the fUML subset.

NOTE. The compiled model resulting from the Alf text does not have to be the same as that
resulting from the standard mapping to fUML defined in the Alf specification (though it must have
an equivalent effect—see below), but it must be conformant to the fUML subset and thus executable
by a fUML-conforming execution tool.

• Translational Execution. The modeling tool translates the Alf text, as well as any surrounding larger
UML model as appropriate, into some executable form on a non-UML target platform, and executes
the translation on that platform.

In all cases, the portion of the execution corresponding to an Alf input text must have the equivalent
effect to mapping that text to fUML per the Alf specification and executing the resulting model per the
semantics specified in the fUML Specification. For the purposes of semantic conformance as defined
here, this means that:

• The effect of executing the Alf text within any larger containing model is per the equivalent fUML
semantics.

• Any visible effect produced by executing the Alf text within the target execution environment is per
the equivalent fUML semantics (where, for the purposes of fUML semantics, the execution
environment is as defined in Clause 2 of the fUML Specification).

2.3 Additional Conformance Points
There are two additional mandatory conformance points for this standard.

• Template Semantics. Every conformant modeling tool must conform to the template semantics
specified in Subclause 6.2.

• Library Implementation. Every conformant modeling tool must provide an implementation of the
Alf Standard Modeling Library, conforming to the specification given in Clause 11.

Action Language for Foundational UML (ALF) 1.0, Beta 2 3

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute
provisions of this specification.

• OMG UML Superstructure, Version 2.4 (ptc/2010-08-03) – Referenced in the following as “UML
Superstructure”

• Semantics of a Foundational Subset for Executable UML Models, Version 1.0 Beta 3 (ptc/2010-03-
14) – Referenced in the following as “fUML Specification”

• Object Constraint Language, Version 2.2 (formal/2010-02-01) – Referenced in the following as
“OCL Specification”

NOTE. Alf is based on UML 2.4 because this version of the UML specification includes some
corrections to abstract syntax constraints that are important for the static semantic analysis of Alf.
However, fUML v1.0 is still based on UML 2.3. Fortunately, the subset of the UML 2.3 abstract syntax
included in fUML did not change structurally in UML 2.4 and, therefore, the fUML semantics can be
applied directly to the similar subset of UML 2.4. Nevertheless, it is expected that fUML v1.1 will be
based on UML 2.4 and remove any discrepancy.

4 Action Language for Foundational UML (ALF) 1.0, Beta 2

4 Terms and Definitions
Execution Semantics
For the purposes of this specification, the behavioral semantics of UML constructs that specify
operational action over time, describing or constraining allowable behavior in the domain being
modeled. (From the fUML Specification.)

Execution Tool
Any tool that is capable of executing any valid UML model that is based on the foundational subset and
expressed as an instantiation of the UML 2.0 abstract syntax metamodel. This may involve direct
interpretation of UML models and/or generation of equivalent computer programs from the models
through some kind of automated transformations. Such a tool may also itself be concurrent and
distributed. (From the fUML Specification.)

Foundational Subset
The subset of UML to which execution semantics are given in order to provide a foundation for
ultimately defining the execution semantics of the rest of UML. (From the fUML Specification.)

Modeling Environment
A user environment provided by a modeling tool that allows for the creation and modification of a UML
model. In a modeling tool that is an execution tool, the modeling environment may also allow for direct
execution of the model.

Modeling Tool
Any tool that allows for the creation and management of UML models. A modeling tool that allows
those models to be executed is also an execution tool.

Action Language for Foundational UML (ALF) 1.0, Beta 2 5

5 Symbols
There are no symbols or abbreviated terms necessary for the understanding of this specification.

6 Action Language for Foundational UML (ALF) 1.0, Beta 2

6 Overview
An Alf input text is a concrete representation for UML model elements in the Foundational UML
(fUML) abstract syntax subset (see fUML Specification, Clause 7). Such an input text may be part of a
wider UML model only parts of which are represented in Alf, or it may be the representation of an entire
model in its own right. In either case, this specification defines how concrete Alf input text is processed
into an abstract syntax representation of UML model elements.

6.1 Integration with UML Models
The UML Superstructure specification defines the standard graphical and textual notations used to
express a UML model. In this context, Alf can be used as an alternative textual notation to represent
portions of the overall model. There are four ways in which Alf may be so used.

• As described in Subclause 8.1, an Alf expression may be used any place a UML value specification
is allowed. This may be done either by including the Alf text as the body of a UML opaque
expression or the Alf text may be compiled into an equivalent UML activity to act as the
specification of such an expression. In addition, there are special syntactic forms for instance
creation and sequence construction expressions that do not require the explicit annotation of
redundant type information in Alf expressions that are used to specify the default values for
properties or parameters.

• As described in Subclause 9.1, a sequence of Alf statements may be used in two ways:

o To define the behavior of a UML action within an activity or interaction model. The Alf text
may be included as the body of a UML opaque action or it may be compiled into an equivalent
UML structured activity node (which is a kind of action).

o To define the behavior of a complete UML behavior. The Alf text may be included as the body
of a UML opaque behavior or it may be compiled into an equivalent UML activity (which is a
kind of behavior).

• As described in Subclause 10.1, an Alf model unit may be used to represent the model of a classifier
or package that is intended to be individually referenced as a named element. Such a model unit may
represent an entire UML model (at least within the limits of the fUML subset) or it may represent a
model element (such as a class or standalone activity) intended to be used within some larger model.

Since an Alf text can be processed into a UML abstract syntax representation, a portion of a model
represented in Alf can always be integrated into a larger model on that basis (as noted above), regardless
of the surface representation of any portion of the model. Nevertheless, even when such compilation is
done, it will generally still be desirable to also store the original Alf text in the model, since it would not
otherwise be possible to exactly reproduce that text (with user formatting, etc.) from the model
representation. This is done by attaching a comment to the top-level element resulting from the
processing of an Alf model unit with the Alf text for the unit as the body of the comment and the applied
stereotype «TextualRepresentation» with tagged value {language = "Alf"}. This stereotype is
from the standard ActionLanguage profile defined in Subclause 11.1.

Action Language for Foundational UML (ALF) 1.0, Beta 2 7

6.2 Templates
Templates, defined in Subclause 17.5 of the UML Superstructure, are not included in the fUML subset.
Nevertheless, Alf text may be used as snippets within the context of a wider model that is a template.
Since template parameters are tied to parameterable elements that are used as regular model elements
within the context of the template model (see UML Superstructure, Subclause 17.5.1), Alf text may refer
to these elements in the usual way.

However, templates are particularly useful for modeling parameterized types, and they are, in fact, used
in this way in the CollectionClasses model in the Alf Standard Model Library (see Subclause 11.6).
But Alf text that uses types that are instantiations of such templates still needs to be mapped to fUML in
order to provide its formal semantics. This requires a way to define the semantics of template binding in
terms of constructs available in the fUML subset.

According to the UML Superstructure specification (Subclause 17.5.2 TemplateableElement, under
Semantics), “The semantics of a [template] binding relationship is equivalent to the model elements that
would result from copying the contents of the template into the bound element, replacing any elements
exposed as a template parameter with the corresponding element(s) specified as actual parameters in this
binding.” This section also states that “In a canonical model a bound element does not explicitly contain
the model elements implied by expanding the templates it binds to, since those expansions are regarded
as derived.” However, by actually carrying out the expansion, one can obtain an equivalent model that
does not explicitly refer to the original template or the binding of its parameters. (This is analogous to
the way other forms of derivation in the UML abstract syntax model are handled in fUML—see fUML
Specification, Subclause 8.1.)

In order to make the explicit copy semantics of template binding more precise, an equivalent bound
element may be constructed for any element with a template binding by the following steps.

1. Copy the template associated with the template signature that is the target of the template binding.
For the present purposes, a copy of a model element is an instance of the same metaclass as the
original model element that has the same values as the original element for all non-composite
properties (owned attributes and association ends) and copies (in the same sense) of the values from
the original element for all composite properties.

2. If the copy specializes any elements that are templates, then redirect the generalization relationships
to equivalent bound elements for the general elements, using the same template binding. If the copy
is an operation that has an associated method that is also a template, then replace that method with
an equivalent bound element using the same template binding.

NOTE. The UML Superstructure does not address the issue of methods of template operations.
However, it is necessary for the method of a template operation to also be a template, presumably
with the same template parameters as the operation. In particular, operation template parameters are
typically used to parameterize the types of operation parameters, but the method of an operation does
not directly reference the parameters of the operation that specifies it. Rather, the method has its own
parameter list, which must match that of the operation (see UML Superstructure, Subclause 13.3.2).
The types of the method parameters would thus need to be separately templated to match the
template parameterization of the operation.

3. For each element owned directly or indirectly by the copy, replace any reference to the parametered
element of a template parameter of the copy with a reference to the actual element associated with

8 Action Language for Foundational UML (ALF) 1.0, Beta 2

the parameter in the template binding (if any). If an actual element has a template binding itself, then
reference the equivalent bound element.

4. Remove all template parameters that are referenced in the template binding from the template
signature of the copy. If this would remove all template parameters from the template signature, then
remove the template signature entirely.

The syntax for template binding in Alf is defined in Subclause 8.2. Only a limited set of template
bindings may be so notated in Alf. Specifically:

• The binding must specify an actual element for every template parameter of the template.

• The element being bound must not have template parameters of its own.

Thus, the equivalent bound element (as defined above) for a template binding notated in Alf will always
be a directly usable non-template element. However, in this context, it is important that two identical
template bindings be considered to result in the same element. Otherwise, every template binding would
lead to a separate instantiation of the template, even if the bindings were equivalent, which would have
undesirable consequences.

For example, a set of integers may be notated in Alf as Set<Integer>, using the standard template
collection class Set and the standard primitive type Integer. If each occurrence in a model of the Alf
text “Set<Integer>” resulted in a different equivalent bound element, then an object created using one
such occurrence would not be type compatible with, say, a formal parameter of an operation whose type
is given by another such occurrence. Clearly this is not desirable.

Therefore, the template bindings within a model must be replaced as a whole using the following steps.

1. Partition the set of all elements with template bindings in the model into disjoint subsets of elements
with identical bindings. Two template bindings are considered identical if they have the same set of
parameter substitutions. Two parameter substitutions are considered to be the same if they reference
the same formal parameter and actual element.

NOTE. The sameness of parameter substitutions is determined by the elements referenced,
regardless of the names that may be used to reference those elements in the Alf text for a template
binding. That is, the use of unqualified names, qualified names or aliases is irrelevant to the
determination of whether two template bindings are identical, so long as corresponding names
resolve to the same element.

2. For each subset, create a single equivalent bound element (as defined above), starting with any one
member of the subset.

3. Replace any reference to any element in the model with a template binding with a reference to the
equivalent bound element for its subset.

In order to simplify the identification of equivalent bound elements after the above substitutions are
carried out, Alf defines a standard naming convention for such elements, constructed as follows.

1. Take the fully qualified name of each actual element in the template binding and replace all “::”
separators with “$” characters. If the actual element is itself a template binding, then use the name of
the equivalent bound element. If the actual element is empty (null), then use “any” as the name of
the actual element. (While the Alf syntax for template bindings given in Subclause 8.2 does not
actually allow any to be used as a template argument, such an argument can result from the rules for
the implicit binding for a template behavior as given in Subclause 8.3.9)

Action Language for Foundational UML (ALF) 1.0, Beta 2 9

2. Concatenate the modified names, separated by “_” (one underscore), and prepended and postpended
with “__” (two underscores).

3. Concatenate “$$”, the name of the target template of the template binding and the argument name
list from 2 to produce the standard name of the equivalent bound element.

For example, the standard name for the equivalent bound element for Set<Integer> is
$$Set__UML$AuxiliaryConstructs$PrimitiveTypes$Integer__
Note that the qualified name for an element is determined by its owning namespace. Therefore, even
though the name “Integer” resolves in Alf to “Alf::Library::PrimitiveTypes:: Integer”, this
element is just an import of “UML::AuxiliaryTypes::PrimitiveTypes:: Integer” (see Subclause
11.2), and it is the latter qualified name that is used.

Since the initial copy of the template model element also copies the reference to the namespace of the
original template, the equivalent bound element is considered to be added to that namespace. A
modeling environment must disallow any user-created element in a namespace with template elements
with a name that would conflict with a standard equivalent bound element name created as defined
above.

NOTE. The concept of equivalent bound elements defined above is intended to provide a specification
of the semantics of template instantiation compatible with execution semantics that are defined only on
the fUML subset. It is not required that a conforming implementation actually physically generate
equivalent bound elements in order to execute Alf text, particularly if that implementation semantically
conforms through interpretive or translational execution (see Subclause 2.2). However, an
implementation that conforms through compilative execution must produce a UML model conforming
to the fUML subset, in which case the implementation would, in fact, need to replace templates and
bindings with equivalent elements as described here (or similar elements with an equivalent effect, as
discussed in Subclause 2.2).

6.3 Lexical Structure
The lexical structure of Alf defines how the string of characters in an Alf input text is divided into a set
of input elements. Such input elements can be categorized as whitespace, comments or tokens.

Lexical analysis is the process of converting an Alf input text into a corresponding stream of input
elements. After lexical analysis, whitespace and comments are discarded and only tokens are retained
for the subsequent step of parsing. Lexical analysis for Alf is thus essentially the same as is done for the
processing of any typical textual programming language.

The Alf lexical structure is specified by a lexical grammar in which characters are terminal elements and
the input elements resulting from lexical analysis are non-terminal elements. The lexical grammar is
defined using an Extended Backus-Naur Form (EBNF) notation, whose conventions are given in Table
6-1.

Table 6-1 EBNF Notation Conventions

Terminal element* "terminal"

Non-terminal element NonterminalElement

Sequential elements Element1 Element2

10 Action Language for Foundational UML (ALF) 1.0, Beta 2

Alternative elements Element1 | Element2

Optional element (zero or one) [Element]

Repeated element (zero or more) { Element }

Production definition NonterminalElement = …
* The escape sequences given in Table 7-3 are also used to represent the corresponding special

characters within terminal elements in the EBNF notation.

6.4 Concrete Syntax
The concrete syntax of Alf defines how lexical tokens are grouped into an abstract syntax tree. Parsing
is the process of constructing an abstract syntax tree from the tokens produced by the lexical analysis of
an Alf text. The parsing of an Alf input text is thus essentially the same as is done for the processing of
any typical textual programming language.

The Alf concrete syntax is specified by a syntactic grammar whose definition is also based on the EBNF
notation given in Table 6-1. However, elements of the productions in the syntactic grammar are further
annotated to indicate how an abstract syntax tree is to be constructed during parsing. The EBNF
specification of Alf syntax provides the basis for the context-free parsing of an Alf input text. Context-
dependent constraints are then enforced on the abstract syntax representation.

As described further below in Subclause 6.5, the abstract syntax for Alf is specified as a UML class
model. A production in the syntactic grammar results in the synthesis of an instance of a class in the
abstract syntax. The production definition defines a name for the instance being synthesized, which is
used in the body of the production, and declares the class of the instance.

For example, the production
LocalNameDeclarationStatement(s: LocalNameDeclarationStatement)

= NameDeclaration(s) "=" InitializationExpression(s.expression) ";"
declares that it synthesizes an object called s of class LocalNameDeclarationStatement. Note the
name of the class of the synthesized object is often the same as the non-terminal defined by the
production, as in this example, but this is not always the case.

Annotations are parenthesized in the body of a production. There are several forms of annotation, as
shown in Table 6-2. For example, the body of the production given above may be read as follows: a
LocalNameDeclarationStatement consists of a NameDeclaration (which is parsed into the object s),
followed by “=”, followed by an InitializationExpression (the abstract syntax representation of
which is assigned to the expression attribute of object s), followed by a “;”

Table 6-2 Abstract Syntax Synthesis Notation

Non-terminal
object constraint

NonterminalElement(x) The object x is constrained to be the same
as the object synthesized for the
immediately preceding non-terminal
element.

Non-terminal
property constraint

NonterminalElement(x.p) The object synthesized for the immediately
preceding non-terminal element is added to
the list of values of property p of object x.
If the non-terminal element is a lexical

Action Language for Foundational UML (ALF) 1.0, Beta 2 11

token, then the string image of the token is
added to the property.

Terminal string
constraint

"terminal"(x) The synthesized “object” x, which must
have the primitive type String, is
constrained to have the string image of the
immediately preceding terminal element as
it’s value.

Terminal property
constraint

"terminal"(x.p) The string image of the immediately
preceding terminal element is added to the
list of values of property p of object x.

General constraint (expr) The OCL constraint expression expr must
be true.

If an annotation appears in an alternative or optional element group, then it only applies if the content of
that group actually applies during parsing. If an annotation appears in a repeating group, then it applies
during each repeated application of the content of that group.

For example, the following is the production for the non-terminal NameDeclaration used in the body of
the production for LocalNameDeclarationStatement above.
NameDeclaration(s: LocalNameDeclarationStatement)

= "let" Name(s.name) ":" TypeName(s.typeName)
 [MultiplicityIndicator (s.hasMultiplicity=true)]
| TypeName(s.typeName)
 [MultiplicityIndicator (s.hasMultiplicity=true)] Name(s.name)

According to this production, a NameDeclaration may have one of two alternative forms:

• The terminal element “let”, followed by a Name (a lexical token whose string image is assigned to
the name property of object s), followed by a “:”, followed by a TypeName (whose value is assigned
to s.typeName), optionally followed by a MultiplicityIndicator (if there is a
MultiplicityIndicator, then s.hasMultiplicity must be true).

• A TypeName (whose value is assigned to s.typeName) optionally followed by a
MultiplicityIndicator (if there is a MultiplicityIndicator, then s.hasMultiplicity must
be true), followed by a Name (whose string image is assigned to s.name).

Finally, consider the production
ColonQualifiedName(q: QualifiedName)

= Name(q.name) "::" { Name(q.name) "::" } Name(q.name)
In this case, the first name is assigned to the property q.name, and then subsequent names, if any, are
appended as additional values of that same property. Clearly, for this to be valid, the property
QualifiedName::name must have a multiplicity upper bound of *.

Technically, the Alf concrete syntax is specified (as described above) using a simplified form of an
attributive grammar. Each production has a single synthesized attribute. In an attributive grammar, the
values for synthesized attributes are passed upwards in the parse tree. The Alf concrete grammar does
not include any inherited attributes, however. Inherited attributes are passed downwards in the parse tree

12 Action Language for Foundational UML (ALF) 1.0, Beta 2

in order to enforce context-sensitive constraints. For Alf, such constraints are instead specified on the
abstract syntax representation after parsing.

6.5 Abstract Syntax
The abstract syntax for Alf is a UML class model of the tree of objects synthesized from parsing an Alf
text (as described above in Subclause 6.4). The Alf concrete syntax is context free and parsing based on
this syntax results in a strictly hierarchical parse tree. The synthesized abstract syntax tree is an
abstraction of the complete parse tree—for example, punctuation symbols are not included in the
abstract syntax tree—but it is still a hierarchical tree structure.

Figure 6-1 Top-Level Syntax Element Classes

The nodes of an abstract syntax tree are objects known as syntax elements. Every syntax element class
descends from the root abstract class SyntaxElement. Figure 6-1 shows this root class and its top-level
descendents. Note that certain of the classes shown in Figure 6-1 are subclasses of the intermediate
DocumentedElement class. These classes represent elements that may be annotated with documentation
comments (see Subclause 7.4.2) that are preserved in the ultimate fUML model, as opposed to lexical
comments (see Subclause 7.4.1), which are not so preserved.

While the abstract syntax tree synthesized from parsing an Alf text is strictly hierarchical, there are
important non-hierarchical relationships and constraints between Alf elements that may be determined
solely from static analysis of the abstract syntax tree. Such static semantic analysis is also common in
the processing of a typical programming language, particularly for resolving names and type checking.
However, the analysis for Alf is somewhat different than for the typical case, since it is used to gather
additional information required for mapping to fUML, rather than generating machine code as in the
case of a programming language.

Action Language for Foundational UML (ALF) 1.0, Beta 2 13

6.6 Mapping to Foundational UML
The final step in the processing of an Alf input text is the mapping of the abstract syntax tree for the text,
completed with derived property values from static semantic analysis, to a representation in terms of the
fUML abstract syntax; that is, as interrelated instances of the abstract syntax metaclasses specified in
Clause 7 of the fUML Specification. The fUML abstract syntax representation can be built via a
generally depth-first traversal of the Alf abstract syntax tree, with the static semantic information
providing non-hierarchical relationships across the tree structure.

Concurrency
Most mainstream programming languages are based on an inherently sequential model of computation.
Statements are executed sequentially, argument expressions are evaluated in lexical order, etc. In many
cases, however, such specifically fined-grained sequential execution (especially in expressions) is
entirely inessential to the computation being carried out and unnecessarily restricts the options for how
the computation can be implemented. This has become a problem, for example, in implementing such
languages in a way that takes advantage of the increasing amount of parallelism available in mainstream
hardware platforms.

On the other hand, the execution semantics for activities in fUML are inherently concurrent. In general,
the semantics of UML activities place no restriction on the concurrent execution of nodes within the
activity, other than that imposed by the explicit object and control flows between those nodes, and the
Alf mapping to fUML takes advantage of this concurrency in many places, particularly in the mapping
of expressions. For example, the argument expressions in an operation invocation or an arithmetic
expression are evaluated concurrently, rather than sequentially.

However, as noted in fUML Specification, Subclause 8.5.2.1 (under the Threading Model heading), the
concurrency in the fUML semantics “does not require the implementation of actual parallelism in a
conforming execution tool. It simply means that such parallelism is allowed and that the execution
semantics provide no further restriction on the serialization of execution across concurrent
[computations].”

Correspondingly, any place in the description of the Alf semantics that computations are specified to be
concurrent, this should be understood to simply mean that there is no requirement that they be carried
out in any particular sequential order. If desired, though, a conformant tool may still carry out the
computations completely sequentially, in any desired order. Or it may actually carry out some or all of
the computations in parallel, either virtually (e.g., in separate threads) or physically (on separate
processors).

6.7 Organization of the Specification
This Alf specification document is organized into five parts.

The first part comprises the initial clauses, through Clause 6. These clauses contain introductory material
and an overview of how the Alf language is defined.

The second part contains a complete description of the Alf language. Clause 7 defines the lexical
structure for Alf, which specifies how lexical analysis is to be carried out for an Alf input text. Clauses 8
through 10 provide the core description of Alf constructs in the syntactic areas of expressions,
statements and units. Within these clauses, the subclause for each construct formally defines its concrete
syntax and the synthesis of the abstract syntax from that. Each subclause also includes examples of the
use of the construct and an informal description of the semantics of the construct. Clause 11 defines a

14 Action Language for Foundational UML (ALF) 1.0, Beta 2

standard model library that must be provided with any Alf implementation. This library includes the
fUML Foundational Model Library (see Clause 9 of the fUML Specification) plus additional primitive
types and primitive behaviors. It also includes a set of collection classes and the profile used in attaching
Alf text to the models to which that text was mapped.

The third part provides the complete definition of the abstract syntax of Alf, including the formal
specification of the static semantics for Alf in terms of additional derived properties and constraints.
Each of the four clauses in this part correspond to a package in the top-level decomposition of the Alf
abstract syntax model.

The fourth part gives the formal mapping of the abstract syntax, as annotated during static semantic
analysis, to the fUML subset of the UML abstract syntax. The four clauses in this part also correspond to
the abstract syntax packages.

The fifth part comprises the annexes, all of which are informative, not normative. Annex A discusses the
integration of Alf execution semantics with the non-fUML execution semantics of state machine and
composite structure models. Annex B provides a number of extended examples of the use of Alf. Annex
C provides a grammar for all of Alf, in a form better suited to automated processing than the productions
used in the main body of the specification, which are intended for clarity of presentation rather than
processing.

6.8 Acknowledgments
The following people from the various submitting organizations contributed to this specification:

• Ed Seidewitz, Model Driven Solutions

• Kim Letkeman, IBM

• Stephen Mellor, Mentor Graphics

• Manfred Koethe, 88 Solutions

• Nerijus Jankevicius, No Magic

We would also like to acknowledge Doug Tolbert, CSC, for his thorough review of the specification as
the head of the Evaluation Working Group.

Action Language for Foundational UML (ALF) 1.0, Beta 2 15

PART II - LANGUAGE DESCRIPTION

7 Lexical Structure
Lexically, an Alf input text can be considered to be a sequence of input elements. This clause describes
the structure of these input elements. After lexical analysis, the text can then be interpreted as a
sequence of tokens that are then parsed according to the Alf syntax, as defined in Clauses 8 through 10.

7.1 Line Terminators
The input text can be divided up into lines separated by line terminators. A line terminator may be a
single character (such as a line feed) or a sequence of characters (such as a carriage return/line feed
combination). This specification does not require any specific encoding for a line terminator, but any
encoding used must be consistent throughout any specific input text. Any characters in the input text that
are not a part of line terminators are referred to as input characters.
Grammar
LineTerminator

= "\n"
InputCharacter

= any character other than LineTerminator

7.2 Input Elements and Tokens
An input element can be white space, a lexical comment or a token. Tokens include documentation
comments, names, reserved words, literals, punctuation and operators. After white space and lexical
comments are removed, the sequence of tokens is interpreted according to the Alf syntax.

Grammar
InputText

= InputElement { InputElement }
InputElement

= WhiteSpace
| LexicalComment
| Token

Token = DocumentationComment
| Name
| ReservedWord
| Literal
| Punctuation
| Operator

Cross References
1. WhiteSpace see Subclause 7.3

2. LexicalComment see Subclause 7.4.1

3. DocumentationComment see Subclause 7.4.2

4. Name see Subclause 7.5

5. ReservedWord see Subclause 7.6

16 Action Language for Foundational UML (ALF) 1.0, Beta 2

6. Literal see Subclause 7.7

7. Punctuation see Subclause 7.8

8. Operator see Subclause 7.9

7.3 White Space
A white space character is a space, tab, form feed or line terminator. Any contiguous sequence of white
space characters can be used to separate tokens that would otherwise be considered to be part of a single
token. It is otherwise ignored.

There are two cases in which the line terminator is not syntactically considered to be white space. A list
of annotations for a statement begins with the token “//@” and must end in a line terminator (see
Subclause 9.2). And the heading for an in-line statement begins with the token “/*@” and must end in a
line terminator (see Subclause 9.3).

Grammar
WhiteSpace

= " " | "\t" | "\f"
| LineTerminator

Cross References
1. LineTerminator see Subclause 7.1

7.4 Comments
Comments are used to annotate other elements of the input text. They have no computable semantics, but
simply provide information useful to a human reader of the text. There are three kinds of comments.

• An end-of-line comment includes all the text from the initial characters “//” to the end of the
line, except that “//@” begins a statement annotation rather than a comment (see Subclause 9.2).

• An in-line comment includes all the text from the initial characters “/*” to the final characters
“*/”, except that “/**” begins a documentation comment rather than a lexical comment (see
below) and “/*@” begins an inline code block (see Subclause 9.2).

• A documentation comment includes all the text from the initial characters “/**” to the final
characters “*/”. The comment text is the text between the initial characters “/**” and the final
characters “*/”.

The first two kinds of comments are together known as lexical comments.

7.4.1 Lexical Comments
Lexical comments are not considered tokens. Therefore they are stripped from the input text and not
parsed as part of the Alf syntax. The comment symbols and all comment text are ignored. However, a
comment cannot occur within a name (see Subclause 7.5) or a string literal (see Subclause 7.7.4).

Examples
// This is an end-of-line comment and will be ignored.
/* This is an in-line comment and will be ignored. */

Action Language for Foundational UML (ALF) 1.0, Beta 2 17

Grammar
LexicalComment

= EndOfLineComment
| InLineComment

EndOfLineComment
= "//" [NotAt { InputCharacter }] LineTerminator

NotAt = InputCharacter but not "@"
InLineComment

= "/*" [NotStarNotAt CommentText] "*/"
CommentText

= { NotStar } [StarCommentText]
StarCommentText= "*" [NotStarNotSlash CommentText]
NotStar

= InputCharacter but not "*"
| LineTerminator

NotStarNotAt
= InputCharacter but not "*" or "@"
| LineTerminator

NotStarNotSlash
= InputCharacter but not "*" or "/"
| LineTerminator

Cross References
1. InputCharacter see Subclause 7.1

2. LineTerminator see Subclause 7.1

7.4.2 Documentation Comments
Unlike lexical comments, documentation comments are lexically processed as tokens and can therefore
be included as syntactic elements. The intent is for documentation comments to be mapped to UML
comment elements, containing the comment text, that are actually included as part of the target model.
Note that line terminators are allowed within documentation comments.

Examples
/** This is documentation text to be included in the model. */
Grammar
DocumentationComment

= "/**" CommentText "*/"
Cross References
1. CommentText see Subclause 7.4.1

7.5 Names
The name of a named element denotes the element without reference to the namespace of which it is a
member (if any). A name may contain any character. However, names that have the form of identifiers
may be represented more simply.

The initial character of an identifier must be one of a lowercase letter, an uppercase letter or an
underscore. The remaining characters of an identifier are allowed to be any character allowed as an
initial character plus any digit. However, a reserved word may not be used as a name, even though it has

18 Action Language for Foundational UML (ALF) 1.0, Beta 2

the form of an identifier (see Subclause 7.6). The Boolean literals true and false also have the form of
identifiers, but they are considered lexically to be primitive literals rather than names (see Subclause
7.7.1).

An unrestricted name, on the other hand, is represented as a non-empty sequence of characters
surrounded by single quotes. The characters within the single quotes may not include non-printable
characters (including backspace, tab and newline). However, these characters may be included as part of
the name itself through use of an escape sequence. In addition, the single quote character or the
backslash character may only be included by using an escape sequence.

An escape sequence is a sequence of two text characters starting with the backslash as an escape
character, which actually denotes only a single character (except for the newline escape sequence,
which represents however many characters is necessary to represent an end of line in a specific
implementation—see Subclause 7.1). Table 7-3 shows the meaning of the allowed escape sequences.

Table 7-3 Escape Sequences

Escape Sequence Meaning
\' Single Quote
\" Double Quote
\b Backspace
\f Form Feed
\t Tab
\n Line Terminator
\\ Backslash

It is an error to follow a backslash in an unrestricted name with any other character than allowed in one
of the escape sequences above.

Two names are the same if and only if they are composed of the same characters in the same sequence.
In particular the case of alphabetic characters is significant (both in identifiers and unrestricted names).

However, an implementation is permitted to consider two names to be conflicting even if they are not
the same, but every implementation must observe at least the following rules.

• Two different identifiers are never conflicting.

• The corresponding identifier for an unrestricted name is the identifier that results from prepending
the name with an underscore and then removing all non-alphanumeric characters from the name
other than underscore (_) and dollar sign ($). If the corresponding identifiers for two unrestricted
names are different, then the original names do not conflict.

NOTE. The above implementation freedom for name conflicts is intended to make the handling of
names simpler for implementations that map Alf text to a target language in which all names must
follow the grammar of identifiers. The prepended underscore in a corresponding identifier assures that
the result is a legal identifier even if the result would otherwise begin with a number or be empty. Dollar
signs are included in corresponding identifiers because they are used in the standard names for
equivalent bound elements—see Subclause 6.2.

Action Language for Foundational UML (ALF) 1.0, Beta 2 19

Examples
customer
nextOrder
'+'
'orders in cart'
'On/Off Switch'
Grammar
Name = Identifier

| UnrestrictedName
Identifier

= IdentifierChars but not a ReservedWord or BooleanLiteral
IdentifierChars

= IdentifierLetter { IdentifierLetterOrDigit }
IdentifierLetterOrDigit

= IdentifierLetter
| Digit

IdentifierLetter
= "a" … "z" | "A" … "Z" | "_"

Digit = "0"
| NonzeroDigit

NonzeroDigit = 1 … "9"
UnrestrictedName

= "'" NameCharacter { NameCharacter } "'"
NameCharacter

= InputCharacter but not "'" or "\\"
| EscapeSequence

EscapeSequence
= "\\" EscapedCharacter

EscapedCharacter
= "'" | "\"" | "b" | "f" | "t" | "n" | "\\"

Cross References
1. InputCharacter see Subclause 7.1

7.6 Reserved Words
A reserved word is a token that has the lexical structure of an identifier but is not allowed to actually be
used as an identifier (see Subclause 7.5).

Grammar
ReservedWord

= "abstract" | "accept" | "active" | "activity" | "allInstances" | "any"
| "as" | "assoc" | "break" | "case" | "class" | "classify" | "clearAssoc"
| "compose" | "createLink" | "datatype" | "default" | "destroyLink" | "do"
| "else" | "enum" | "for" | "from" | "hastype" | "if" | "import" | "in"
| "inout" | "instanceof" | "let" | "namespace" | "new" | "nonunique" | "null"
| "or" | "ordered" | "out" | "package" | "private" | "protected" | "public"
| "receive" | "redefines" | "reduce" | "return" | "sequence" | "specializes"
| "super" | "signal" | "switch" | "this" | "to" | "while"

20 Action Language for Foundational UML (ALF) 1.0, Beta 2

7.7 Primitive Literals
A primitive literal is used to represent the value of a primitive type. Note that an enumeration literal is
not actually denoted as a literal in a lexical sense, but rather by its name as a named element (see also
Subclause 8.3.3 on name expressions).

Grammar
PrimitiveLiteral

= BooleanLiteral
| NaturalLiteral
| UnboundedValueLiteral
| StringLiteral

Cross References
1. BooleanLiteral See Subclause 7.7.1

2. NaturalLiteral See Subclause 7.7.2

3. UnboundedValueLiteral See Subclause 7.7.3

4. StringLiteral See Subclause 7.7.4

7.7.1 Boolean Literals
A Boolean literal represents a literal Boolean model element, with the primitive type Boolean. The
literal “true” represents an element with the value true, while the literal “false” represents an element
with the value false.

Grammar
BooleanLiteral

= "true" | "false"

7.7.2 Natural Literals
A natural literal represents a natural number—that is, a non-negative integer. The sets of values of the
primitive types Integer and UnlimitedNatural both have the natural numbers as a subset. A natural
literal may thus be used to represent values of either of these types.

NOTE. An effective literal for negative values of type Integer can be obtained by applying the unary
numeric negation operator (see Subclause 8.5.4) to a natural literal. The unbounded value of type
UnlimitedNatural has its own literal (see Subclause 7.7.3).

The Alf standard model library PrimitiveTypes package includes the type Natural that is a
specialization of both Integer and UnlimitedNatural (see Subclause 11.2.1), and natural literals are
considered to inherently have this type. However, since UML does not provide any literal specification
metamodel representation for Natural, any time a natural literal is used, it must be possible to
determine from context whether it is an integer or an unlimited natural value that is actually required, so
the proper metamodel representation can be chosen when the literal is mapped to fUML. If this cannot
be determined implicitly, then an explicit cast (see Subclause 8.5.5) to type Integer or type
UnlimitedNatural must be used.

A natural literal may be expressed in decimal (base 10), binary (base 2), octal (base 8) or hexadecimal
(base 16). A decimal literal consists of either the single character “0”, representing the integer 0, or a

Action Language for Foundational UML (ALF) 1.0, Beta 2 21

digit from “1” to “9” optionally followed by one or more digits from “0” to “9”, representing a positive
integer. A binary literal consists of the prefix “0b” or “0B” followed by one or more of the binary digits
“0” or “1”. A hexadecimal literal consists of the prefix “0x” or “0X” followed by one or more
hexadecimal digits. Hexadecimal digits with values 10 through 15 are represented by the letters “a”
through “f” or “A” through “F”, respectively (case is not significant). An octal literal consists of the digit
“0” followed by one or more digits from “0” to “7”. Underscores may be inserted between digits but are
ignored in determining the value of the literal.

Subclause 9.1 of the fUML Specification allows a conforming implementation to limit the supported
values for Integer and UnlimitedNatural types to a finite set. An Alf implementation may also adopt
such a limitation, in which case it may reject any natural literal representing a value outside the
supported set.

Examples
1234
0
0b1010111000010000
0B0100_1010_0101_1011
0xAE10
0X4a_5b
057410
0_045_133
Grammar
NaturalLiteral

= DecimalLiteral
| BinaryLiteral
| HexLiteral
| OctalLiteral

DecimalLiteral
= "0"
| NonzeroDigit { ["_"] Digit }

BinaryLiteral
= BinaryPrefix BinaryDigit { ["_"] BinaryDigit }

BinaryPrefix
= "0" "b"
| "0" "B"

BinaryDigit
= "0" | "1"

HexLiteral
= HexPrefix HexDigit { ["_"] HexDigit }

HexPrefix
= "0" "x"
| "0" "X"

HexDigit
= Digit
| "a" … "f"
| "A" … "F"

OctalLiteral
= "0" ["_"] OctalDigit { ["_"] OctalDigit }

22 Action Language for Foundational UML (ALF) 1.0, Beta 2

OctalDigit
= "0" … "7"

Cross References
1. NonzeroDigit see Subclause 7.5

2. Digit see Subclause 7.5

7.7.3 Unbounded Value Literals
An unbounded value literal represents a literal unlimited natural model element for the value unbounded
of the primitive type UnlimitedNatural. Other unlimited natural values are represented as natural
literals (see Subclause 7.7.2).

Grammar
UnboundedValueLiteral

= "*"

7.7.4 String Literals
A string literal represents a literal string model element, with the primitive type String. The string
value of the element is given as a sequence of characters, with escape characters resolving to their
meaning as given in Subclause 7.5, surrounded by double quote characters (which are not included as
part of the string value). The empty string is represented by a pair of double quote characters with no
other characters intervening between them.

Example
"This is a string."
"This is a string with a quote character (\") in it."
"This is a string with a new line (\n) in it."
Grammar
StringLiteral = "\"" { StringCharacter } "\""
StringCharacter = InputCharacter but not "\"" or "\\"

| EscapeSequence
Cross References
1. InputCharacter see Subclause 7.2

2. EscapeSequence see Subclause 7.5

7.8 Punctuation
The tokens below are considered to be punctuation.
NOTE. Some tokens below are made up of two symbols that may themselves individually be tokens.
Nevertheless, the two-symbol token is not considered a combination of the individual symbol tokens.
For example, “::” is considered a single token, not a combination of two “:” tokens. Input characters
are grouped from left to right to form the longest possible sequence of characters to be grouped into a
single token. Thus “a:::b” would analyzed into four tokens: “a”, “::”, “:” and “b”.

Action Language for Foundational UML (ALF) 1.0, Beta 2 23

Grammar
Punctuation

= "(" | ")" | "{" | "}" | "[" | "]" | ";" | "," | "." | ":"
| ".." | "::" | "=>" | "->"

7.9 Operators
The tokens below are considered to be operators.
Grammar
Operator

= "=" | ">" | "<" | "!" | "~" | "?" | "@" | "$"
| "==" | "<=" | ">=" | "!=" | "&&" | "||" | "++" | "--"
| "+" | "-" | "*" | "/" | "&" | "|" | "^" | "%"
| "+=" | "-=" | "*=" | "/=" | "&=" | "|=" | "^=" | "%="
| "<<" | ">>" | ">>>" | "<<=" | ">>=" | ">>>="

24 Action Language for Foundational UML (ALF) 1.0, Beta 2

8 Expressions
An expression is a behavioral unit that evaluates to a (possibly empty) collection of values. Expressions
may also have side effects, such as changing the value of an attribute of an object.

The full conformance level includes all kinds of expressions specified in this clause. However, the
minimum conformance level only requires a subset of the full expression syntax. Therefore, in each of
the concrete syntax grammar productions given in the subclauses of this clause, some portion of the
production may be italicized. Only the italicized portions apply at the minimum conformance level.
Unitalicized portions may be ignored for minimum conformance. (See also Subclause 2.1 on the
definition of syntactic conformance.)

8.1 Overview
This subclause describes the top-level syntax and semantics for expressions. The next level
categorization of expressions syntactically is into conditional-test expressions (see Subclause 8.7) and
assignment expressions (see Subclause 8.8). However, in the subclauses following this subclause,
expressions are described in a traditional “bottom up” fashion, starting with the simplest forms of
expressions and working back up to conditional-test and assignment expressions.

Syntax
Expression(e: Expression)

= ConditionalExpression(e)
| AssignmentExpression(e)

Figure 8-2 Base Abstract Syntax for Expressions

Cross References
1. Syntax Element see Subclause 6.5

2. ConditionalExpression see Subclause 8.7

3. AssignmentExpression see Subclause 8.8

Semantics
Integration with UML
An Alf expression can be inserted into a UML model using an opaque expression (UML Specification,
Subclause 7.3.35) in which the unprocessed text of the Alf expression is used as the body of the opaque
expression and the corresponding language string is "Alf". Opaque expressions are kinds of value
specifications (UML Specification, Subclause 7.3.54). Thus, an Alf expression may be used in a UML
model any place that a value specification is allowed.

Action Language for Foundational UML (ALF) 1.0, Beta 2 25

In addition, a special form of initialization expression may be for instance creation and sequence
construction expressions acting as the specification of default values of properties or parameters. In such
initialization expressions, an explicit description of the type of the expression does not need to be
included, as is the case for normal instance creation and sequence construction expressions, since this
can be inferred from the declared type of the property or parameter. (Instance creation expressions are
described in Subclause 8.3.12 and sequence construction expressions are described in Subclause 8.3.15.
The use of their special forms in initialization descriptions within Alf is discussed for local name
declaration statements in Subclause 9.6 and for property initialization in Subclause 10.5.2.)

The execution semantics of an Alf expression are given formally by the mapping to UML activity
graphs given in the following subclauses. An Alf expression can therefore always be compiled to a part
or all of a UML activity model (which does not necessarily need to be the same as the formal mapping,
but must have an equivalent effect to it—see Subclause 2.2). If the expression appears as part of a
statement, then the compilation of the expression will be part of the compilation of the statement (see
Clause 9). Otherwise, the compilation of the expression may be inserted as an activity that is the
associated behavior of a corresponding opaque expression (see UML Superstructure 13.3.21) that is
constructed as follows:

• A single return parameter of the type of the Alf expression.

• The activity nodes and edges resulting from the compilation of the Alf expression (semantically
equivalent to the formal mapping as specified in the following subclauses).

• A single activity parameter node associated with the return parameter, which becomes the target of
an outgoing object flow from the result source element from the mapping of the Alf expression (see
the definition of “result source element” given under Mapping below).

Indeed, the semantics of an opaque expression that only includes unprocessed Alf text in its body may
be considered equivalent to an opaque expression with an associated behavior constructed strictly
according to the formal fUML mapping for the Alf expression.

NOTE. Opaque expressions are not included at all in fUML, so the execution of such an expression,
even one with a behavior conformant to the Alf subset, is still not fully defined within by the fUML
standard.

An expression either has a statically determined type or can be statically determined to be untyped.
All values resulting from evaluation of the expression will be of the type of the expression, if it has
one. If the expression is untyped, then the result values may have any type. For simplicity of
terminology in this clause, an untyped expression will be referred to as having “type any”.

An expression also has a statically determined multiplicity. The number of values resulting from the
evaluation of the expression will be no smaller than the multiplicity lower bound and no higher than
the multiplicity upper bound (or unbounded if the upper bound is the unbounded value “*”).

Local Names and Assigned Sources
The evaluation of an expression may depend on the values assigned to local names used in the
expression. Local names are used in Alf to denote intermediate values in computations within a
statement sequence (see Subclause 9.1). Alf is designed so, on the surface, local names can be assigned
and reassigned in a similar way to variables in more traditional programming languages. However, the
underlying fUML metamodel for actions and activities is fundamentally based on data flow, not on an
implicit underlying store of variables. Therefore, the assignments of and references to local names in an

26 Action Language for Foundational UML (ALF) 1.0, Beta 2

Alf input text need to be mapped to appropriate object flow edges from the mapping of the appropriate
assignment to the mapping of the reference that requires that assigned value.

Carrying out this mapping requires an analysis of the set of local names that are statically known to have
assigned values during the execution of any Alf statement. The assigned source for a local name is the
syntax element that, when executed, will provide the actual assigned value for that local name. If the
assigned source for a local name is known, then a reference to the assigned value of that local name can
be mapped to an object flow from the mapping of the assigned source. (See also the discussion of local
names relative to statements in Clause 9.)

Since a local name may also be defined or reassigned within an expression, one can refer to the
assignments (i.e., the statically determined assigned sources) for local names both before and after the
evaluation of an expression. Most kinds of expressions do not actually themselves change the assigned
source of a name. An assignment expression (see Subclause 8.8) is, of course, the main kind of
expression that changes the assigned source for a name. However, invocation expressions (see
Subclause 8.3.7) may assign names via out and inout parameters. Increment and decrement
expressions also act as assignments (see Subclause 8.4).

Other than the kinds of expressions listed above, the only way that an assigned source may change in an
expression is if it contains one of the above kinds of expression, directly or indirectly, as a
subexpression. Unless otherwise stated, it can be assumed that the assigned source of a name before any
subexpression of an expression is the same as the assigned source before the expression.

Further, in general, it is only legal to assign a name in at most one subexpression of any expression.
Therefore, unless otherwise stated, the assigned source for a name after an expression is the same as
after any subexpression. Specific assignment rules for various kinds of expressions are described in their
respective subclauses.

NOTE. The above rule allows most subexpressions to be evaluated concurrently.

8.2 Qualified Names
A name is used to identify a UML named element (see UML Superstructure, Subclause 7.3.34), which
may or may not be a member of one or more namespaces (see UML Superstructure, Subclause 7.3.35).
A named element that is not a member of any namespace is referred to as a local name, and the scope
within which it can be referenced is limited. In contrast, a named element that is a member of a
namespace may be referenced from outside the namespace in which it is defined (depending on its
visibility – see UML Superstructure, Subclause 7.3.56) and, if defined in a package (see UML
Superstructure, Subclause 7.3.38), may be imported into another namespace (see UML Superstructure,
Subclauses 7.3.15 and 7.3.40).

A namespace is itself a named element. A qualified name is one that includes both the unqualified name
of a named element as well as the name of a namespace of which the named element is a member. The
name of the namespace may or may not itself be qualified. A local name is never qualified.

A qualifed name has the form of a list of the names of namespaces followed by the unqualified name of
the named element. Syntactically, the names in the list are separated by the either the symbol “::” or the
symbol “.”

NOTE. The UML Superstructure specifies the symbol “::” as the separator used in qualified names.
However, it is also common in other languages to use “.” in qualified names, so Alf allows either. Only
one or the other must be used throughout a single qualified name, though.

Action Language for Foundational UML (ALF) 1.0, Beta 2 27

If any individual name listed in a qualified name is for a template (see Subclause 6.2 on templates), then
a template binding may be optionally provided with that name. A template binding lists the qualified
names of argument elements to be substituted for each of the formal template parameters in the
template, surrounded by the angle brackets “<” and “>”.

The fully qualified name of a named element is either its unqualified name, if it is not owned by a
namespace, or else its name qualified with the fully qualified name of its owning namespace.

Examples
customer
Ordering::Order::customer
Ordering.Order.customer
FoundationalModelLibrary::BasicInputOutput
FoundationalModelLibrary.BasicInputOutput
Set<Integer>
Map<K=>String, V=>Entry>
Map<String,Entry>.KeySet
List< List<String> >
CollectionClasses::Set<Integer>::add
Syntax
TypeName(q: QualifiedName)

= QualifiedName(q)
| "any"

QualifiedName(q: QualifedName)
= ColonQualifiedName(q)
| DotQualifiedName(q)
| UnqualifiedName(q)

PotentiallyAmbiguousQualifiedName(q: QualifedName)
= ColonQualifiedName(q)
| DotQualifiedName(q) (q.isAmbiguous=true)
| UnqualifiedName(q)

ColonQualifiedName(q: QualifiedName)
= NameBinding(q.nameBinding) "::" { NameBinding(q.nameBinding) "::" }
 NameBinding(q.nameBinding)

DotQualifiedName(q: QualifiedName)
= NameBinding(q.nameBinding)) "." { NameBinding(q.nameBinding) "." }
 NameBinding(q.nameBinding)

UnqualifiedName(q: QualifiedName)
= NameBinding(q.nameBinding)

NameBinding(n: NameBinding)
= Name(n.name) [TemplateBinding(n.binding)]

TemplateBinding(b: TemplateBinding)
= PositionalTemplateBinding(b)
| NamedTemplateBinding(b)

PositionalTemplateBinding(b: PositionalTemplateBinding)
= "<" QualifiedName(b.argumentName)
 { "," QualifiedName(b.argumentName) } ">"

NamedTemplateBinding(b: NamedTemplateBinding)
= "<" TemplateParameterSubstitution(b.substitution)
 { "," TemplateParameterSubstitution(b.substitution) } ">"

28 Action Language for Foundational UML (ALF) 1.0, Beta 2

TemplateParameterSubstitution(s: TemplateParameterSubstitution)
= Name(s.parameterName) "=>" QualifiedName(s.argumentName)

NOTE. Named template binding notation is not available at the minimum conformance level (see
Subclause 2.1).

Figure 8-3 Abstract Syntax of Qualified Names

Cross References
1. Syntax Element see Subclause 6.5

2. Name see Subclause 7.5

Disambiguation
It is ambiguous whether a syntactic element of the form n1.n2. … .nm, where the ni are name bindings
and m ≥ 2, should be parsed as a qualified name or a feature reference (see Subclause 8.3.6) when the
element is used in the following contexts.

• As an Expression (NameExpression, Subclause 8.3.3, versus PropertyAccessExpression,
Subclause 8.3.6)

• As an InvocationTarget (BehaviorInvocationTarget, Subclause 8.3.9, versus
FeatureInvocationTarget, Subclause 8.3.10)

• As a LeftHandSide (QualifiedName versus FeatureReference, see Subclause 8.8)

In these cases, the element is initially parsed as a qualified name with isAmbiguous=true. It is then
disambiguated as follows:

Action Language for Foundational UML (ALF) 1.0, Beta 2 29

• If n1.n2. … .nm-1 resolves to a namespace, then the original element should be considered a qualified
name.

• Else, the original element should be considered a feature reference, with name nm and target
expression determined by the disambiguation (if necessary) of n1.n2. … .nm-1.

Semantics
Element naming and namespaces do not have executable semantics and are therefore not addressed in
the fUML Specification. Nevertheless, the use of named elements is particularly important in Alf, since,
in a textual notation, model elements are primarily referenced by name. Such named references must be
resolved into actual abstract syntax element references when the Alf text is mapped into a fUML model.

The semantics of names, namespaces and visibility are defined in detail in the UML Superstructure,
particularly in Subclauses 7.3.35 Namespace, 7.3.56 VisibilityKind, 7.3.15 ElementImport and 7.3.40
PackageImport. Depending on the context in which it is used (as defined in subsequent subclauses), a
name may either be part of the definition of a named element or it may denote a reference to a named
element defined elsewhere.

Current Scope
The current scope for the resolution of a reference to a name is the specific innermost namespace in
which that named reference lexically appears.

A name is said to be visible in the current scope if a named element with the given name is a member of
the current scope namespace or is visible in the namespace immediately enclosing the current scope (if
any). Such an element may be referenced using an unqualified name.

Otherwise the first name listed in a qualified name must be visible as an unqualified name in the current
scope in which the qualified name occurs. Each succeeding name must be the name of a visible member
of the preceeding namespace.

Type Names
A type constrains the values represented by a typed element (see UML Superstructure, Subclause
7.3.52). Any value in UML is an instance of some classifier, so a type is always given by naming a
classifier, which constrains the typed element to instances of that classifier. If the named classifier is a
template (see Subclause 6.2 on templates), then an argument type must be given for each parameter of
the template. The association of a classifier template with its arguments is known as a type binding.
A type name may be either a qualified name or the keyword any. If a type name is a qualified name,
then this name must resolve to a classifier, which constrains a typed element to represent the values that
are instances of that classifier. The keyword any is used to indicate that a typed element is actually
untyped, that is, that there are no constraints on the values it may represent.

Type Conformance
One classifier conforms to another if the two classifiers are equivalent or if any direct generalization of
the first classifier conforms to the second classifier. For the purpose of conformance, two classifiers are
considered equivalent if they are the same or if they both have template bindings for equivalent
templates with equivalent arguments for all template parameters (for non-classifier template parameters,
the arguments must be identical).

NOTE. Type conformance as defined in UML Supstructure, Subclause 7.3.8, does not include the above
rule for equivalence of classifiers with template bindings. This additional rule follows from the

30 Action Language for Foundational UML (ALF) 1.0, Beta 2

substitution semantics used in Alf for template bindings, such that classifiers with equivalent bindings
are considered to have the same equivalent bound element after substitution of actual parameters (see
Subclause 6.2).

Template Bindings
If a qualified name resolves to a template—that is, an element with template parameters—then a
template binding may be appended to the qualified name. Such a binding names an argument element to
be substituted for each template parameter. Such a qualified name with a template binding may itself be
used as the qualification part of a larger qualified name.

The argument elements in a template binding may not themselves be templates. Each argument must be
compatible with the corresponding template parameter. In general, a template parameter may represent
any kind of packagable element, any kind of connectable element or an operation, and a compatible
argument for a templete parameter must be an element of the same kind. In addition, the following
special compatibility rules must hold for specific kinds of elements.

• Classifier. A classifier template parameter may have constraining classifiers. A classifier template
parameter with no constraining classifiers may be substituted with any classifier. A template
parameter with constraining classifiers must be substituted with an argument that conforms to all of
the constraining classifiers (see the definition of type compatibility above).

• Value Specification. An argument is compatible with a value specification template parameter if it is
a value specification whose type conforms to the type of the value specification represented by the
template parameter.

• Operation. An argument is compatible with an operation template parameter if it is an operation with
the same number of parameters, in the same order, with the same types as the operation represented
by the template parameter.

• Connectable Element. An argument is compatible with a connectable element template parameter if
it is the same kind of connectable element with the same type as the connectable element represented
by the template parameter.

NOTE. Templates are specified in Subclause 17.5 of the UML Superstructure. Specifically:

• Classifiers as parameterable elements are described in UML Superstructure, Subclause 17.5.7, and
classifier template parameters are described in Subclause 17.5.8. The above rule for compatibility
presumes that allowSubstitutable=false for all classifier template parameters with constraining
classifiers.

• Value specifications as parameterable elments are described in UML Superstructure, Subclause
17.5.20, including the compatibility rule given above.

• Operations as parameterable elements are described in UML Superstructure, Subclause 17.5.15, and
operation template parameters are described in Subclause 17.5.16. However, even though Subclause
17.5.16 mentions “additional semantics related to the compatibility of actual and formal operation
parameters”, no such additional semantics are actually provided in Subclause 17.5.15. Nevertheless,
the compatibility rule given above for operations given above is necessary to ensure that the
substitution of an argument for an operation template parameter leaves the model well formed.

• Connectable elements as parameterable elements are described UML Superstructure, Subclause
17.5.17, but this subclause does not specify any special compatibility rule for connectable elements.

Action Language for Foundational UML (ALF) 1.0, Beta 2 31

However, the compatibility rule given above for connectable elements is necessary in general to
ensure that the substitution of an argument for a connectable elment template parameter leaves the
model well formed. UML Superstructure, Subclause 17.5.19, also describes specifically properties as
parameterable elements, giving a compatibility rule of type conformance that is looser than the rule
for connectable elements given above. However, since a property could be used within the body of a
template as both a value and the target of an assignment, simple type conformance is not enough to
ensure well-formedness on substitution. Instead, the arguments for template parameters representing
properties (which are, in the end, kinds of connectable elements) are required in Alf to follow the
general connectable element compatibility rule given above.

Either positional or named notation may be used for template arguments. If positional notation is used,
then the template arguments are matched to corresponding template parameters in order, and arguments
must be provided for all template parameters. If named notation is used, then each template parameter
must be named in exactly one template parameter substitution, but the order of the substitutions is
irrelevant.

For example, the standard library class Set has a single template parameter T. The following are all legal
bindings for this template, assuming that Task names a classifier.
Set<Integer>
Set<Task>
Set<Set<Integer> >
NOTE. The space between the right angle brackets at the end of the last example above are necessary in
order for it to parse correctly. If there was no space, then the symbol “>>” would be recognized as a
right shift operator, not two angle brackets (see Subclause 7.8 on the lexical analysis of multi-character
symbols).

The standard library class Map has two template parameters, Key and Value. The following are all
equivalent bindings for this template.
Map<String, Definition>
Map<Key=>String, Value=>Definition>
Map<Value=>Definition, Key=>String>

8.3 Primary Expressions

8.3.1 Overview
Primary expressions include the simplest kinds of expressions, from which more complicated kinds are
constructed. Parenthesized expressions are also considered primary expressions. The categorization into
primary expressions is purely a concept of the concrete syntax, with no additional abstract syntax or
mapping specification beyond that given for the various kinds of expressions so categorized.

Syntax
PrimaryExpression(e: Expression)

= NameExpression(e)
| NonNamePrimaryExpression(e)

32 Action Language for Foundational UML (ALF) 1.0, Beta 2

NonNamePrimaryExpression(e: Expression)
= LiteralExpression(e)
| ThisExpression(e)
| ParenthesizedExpression(e)
| PropertyAccessExpression(e)
| InvocationExpression(e)
| InstanceCreationExpression(e)
| LinkOperationExpression(e)
| ClassExtentExpression(e)
| SequenceConstructionExpression(e)
| SequenceAccessExpression(e)
| SequenceOperationExpression(e)
| SequenceReductionExpression(e)
| SequenceExpansionExpression(e)

Cross References
1. Literal Expression see Subclause 8.3.2

2. NameExprssion see Subclause 8.3.3

3. ThisExpression see Subclause 8.3.4

4. ParenthesizedExpression see Subclause 8.3.5

5. PropertyAccessExpression see Subclause 8.3.6

6. InvocationExpression see Subclause 8.3.7

7. InstanceCreationExpression see Subclause 8.3.12

8. LinkOperationExpression see Subclause 8.3.13

9. ClassExtentExpression see Subclause 8.3.14

10. SequenceConstructionExpression see Subclause 8.3.15

11. SequenceAccessExpression see Subclause 8.3.16

12. SequenceOperationExpression see Subclause 8.3.17

13. SequenceReductionExpression see Subclause 8.3.18

14. SequenceExpansionExpression see Subclause 8.3.19

Semantics
See the discussion of semantics for each kind of expression in subsequent subclauses.

8.3.2 Literal Expressions
A literal expression comprises a single primitive literal (see Subclause 7.7). (Note that enumeration
literals are not denoted using literal expression but, rather, using name expressions—see Subclause
8.3.3.)

Syntax
LiteralExpression(e: LiteralExpression)

= BooleanLiteralExpression(e)
| NaturalLiteralExpression(e)
| UnboundedLiteralExpression(e)
| StringLiteralExpression(e)

Action Language for Foundational UML (ALF) 1.0, Beta 2 33

BooleanLiteralExpression(e: BooleanLiteralExpression)
= BooleanLiteral(e.image)

NaturalLiteralExpression(e: NaturalLiteralExpression)
= NaturalLiteral(e.image)

UnboundedLiteralExpression(e: UnboundedLiteralExpression)
= UnboundedValueLiteral

StringLiteralExpression(e: StringLiteralExpression)
= StringLiteral(e.image)

Figure 8-4 Abstract Syntax of Literal Expressions

Cross References
1. BooleanLiteral see Subclause 7.7.1

2. NaturalLiteral see Subclause 7.7.2

3. UnboundedValueLiteral see Subclause 7.7.3

4. StringLiteral see Subclause 7.7.4

5. Expression see Subclause 8.1

Semantics
A literal expression evaluates to the single primitive value denoted by its primitive literal.

The type of a literal expression is the primitive type corresponding to the kind of primitive literal it
comprises. Its multiplicity is always [1..1].

8.3.3 Name Expressions
A name expression evaluates to the values denoted by a name.

Syntax
NameExpression(e: NameExpression)

= PotentiallyAmbiguousQualifiedName(e.name)

34 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-5 Abstract Syntax for Name Expressions

Cross References
1. Expression see Subclause 8.1

2. QualifiedName see Subclause 8.2

3. PotentiallyAmbiguousQualifiedName see Subclause 8.2

NOTE. See Subclause 8.2 for rules on the disambiguation of a qualified name with the dot notation used
as a name expression versus a property access expression.

Semantics
The given name for a name expression must either resolve to an enumeration literal name or to a
parameter or local name with an assigned source before the name expression. However, a name with a
@parallel annotation as its assigned source may not be used as a name expression (as discussed in
Subclause 9.12).

A local name is never qualified.

A parameter name may only be used if the name expression appears within the body of a behavior with
parameters (see UML Superstructure, Subclause 13.3.2). The parameter name may be qualified by the
name of the behavior or, if the behavior is the method of an operation, by the name of the operation. But
this is never required since the names of the parameters of a behavior are always in the current scope of
the definition of the behavior.

A name expression is evaluated as follows.

• Local Name. The values of a local name are those given by its assigned source.

• Parameter Name. The values of a parameter name are those given by its assigned source. For an in
or inout parameter, this will initially be the value assigned to the parameter when the enclosing
behavior began execution. However, an inout parameter may be reassigned, in which case its
assigned source will change (see Subclause 8.8). An out parameter is always given a value only by
explicit assignment (see Subclause 8.8).

• Enumeration Literal Name. The value of an enumeration literal name is the named enumeration
literal.

The type and multiplicity of a name expression are the same as its name, determined as given below.

• Local Name. Determined by its first assignment (see Subclause 8.8).

Action Language for Foundational UML (ALF) 1.0, Beta 2 35

• Parameter Name. As declared for the named parameter.

• Enumeration Literal. The type is the corresponding enumeration and the multiplicity is [1..1].

8.3.4 this Expressions
A this expression consists of the keyword this. It evaluates to a reference to the context value for the
context in which the this expression occurs.

Syntax
ThisExpression(e: ThisExpression)

= "this"

Figure 8-6 Abstract Syntax of this Expressions

Cross References
1. Expression see Subclause 8.1

Semantics
The static type of a this expression is the statically determined context classifier for the context in
which the this expression occurs. The context classifier is determined as follows.

• If the expression appears in a method, classifier behavior or property default value, the context
classifier is the classifier that owns the method, classifier behavior or property.

• If the expression appears in a behavior (other than a classifier behavior) that is owned by another
behavior, then the context classifier is the context of the owning behavior. (For example, if a state
machine is acting as a classifier behavior, then its context classifier is the classifier that owns it, and
this is also the context classifier for all effect, entry, exit and do behaviors within it.)

• Otherwise the context classifier is the behavior containing the this expression.

NOTE. The derivation of the context property of a behavior is defined in Subclause 13.3.2 of the UML
Superstructure.

The context value to which a this expression evaluates is determined as follows.

• For the method of a behavioral feature (see UML Superstructure, Subclause 13.3.3) other than a
constuctor, the context value is the value on which the behavioral feature was invoked.

• For a constructor (see UML Superstructure, Subclause 9.3.1) or propery default value (see UML
Superstructure, Subclause 7.3.44), the context object is the newly constructed value.

• For a classifier behavior (see UML Superstructure, Subclause 13.3.4), the context value is the
instance of the active class for which the behavior is executing.

36 Action Language for Foundational UML (ALF) 1.0, Beta 2

• For a behavior owned by another behavior (such as an entry action on a state machine), the context
value is the context value of the inviking instance owning behavior.

• Otherwise, the context value is the behavior instance being executed.

Note that the dynamic type of the context value returned by a this expression may actually be a
subclass of the static type of the this expression.

The multiplicity of a this expression is [1..1].

8.3.5 Parenthesized Expressions
A parenthesized expression is a contained expression surrounded by parentheses.

Syntax
ParenthesizedExpression(e: Expression)

= "(" Expression(e) ")"

NOTE. A parenthesized expression has the abstract syntax of its contained expression.

Semantics
A parenthesized expression is evaluated by evaluating the contained expression and results in the values
of the contained expression. The use of parenthesizes only effects order of evaluation, not how the
contained expression is evaluated.

The type and multiplicity of a parenthesized expression are the same as the contained expression.

8.3.6 Property Access Expressions
A property access expression is used to access the value of a property of instances of a classifier. It is
denoted by feature reference, which consists of a target primary expression (see Subclause 8.3.1) and
the name of a property of the type of the target expression.

Examples
poleValue.im
this.node
members.name
jack.house
Concrete Syntax
PropertyAccessExpression(e: PropertyAccessExpression)

= FeatureReference(e.featureReference)
FeatureReference(f: FeatureReference)

= FeatureTargetExpression(f.expression) "." NameBinding(f.nameBinding)
FeatureTargetExpression(e: Expression)

= NameTargetExpression(e)
| NonNamePrimaryExpression(e)

NameTargetExpression(e: NameExpression)
= ColonQualifiedName(e.name)

NOTE. See Subclause 8.2 for rules on the disambiguation of a qualified name using the dot notation to a
property access expression. Such a potentially ambiguous expression is always initially parsed as a
qualified name. This is why a NameTargetExpression is not allowed to be a DotQualifiedName or an

Action Language for Foundational UML (ALF) 1.0, Beta 2 37

UnqualifiedName, since, along with the dot notation for the feature reference, this should initially be
parsed as a potentially ambiguous qualified name rather than a feature reference.

Figure 8-7 Abstract Syntax of Property Access Expressions

Cross References
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. ColonQualifiedName see Subclause 8.2

4. NameBinding see Subclause 8.2

5. NonNamePrimaryExpression see Subclause 8.3.1

Semantics

The target expression in a property access expression may not be untyped nor may its type be a primitive
type or enumeration. The identified property name must denote either:

• A structural feature (owned or inherited) of the type of the target expression.

• The name of an association end of a binary association, the opposite end of which is typed by the
type of the target expression.

If the identified property is a template, then a template binding must be provided with arguments for all
its template parameters.

For it to be legal to use the name of an association end in a property access expression, there must be
exactly one binary association visible in the current scope that meets the above criterion and the given
name must not also be the name of a structural feature of the type of the target expression.

If the target expression has multiplicity [1..1], then result of the collection expression will always be a
single instance. This is known as a single instance property access. If the target expression has
multiplicity other than [1..1], then the property access expression is known as a sequence property
access. Such an expression is equivalent to a collect expression (see Subclause 8.3.21) as described
below under Sequence Property Access.

38 Action Language for Foundational UML (ALF) 1.0, Beta 2

The type of a property access expression is the same as the type of the named property. The multiplicity
upper and lower bounds of the property access expression are equal to the product of the upper and
lower bounds, respectively, of the named property and the target expression.

A property access expression is evaluated by first evaluating the target expression, which results in a
sequence of instances. The result of the property access expression is then a sequence containing the
union of the values of the named property for each of the target instances.

Single Instance Property Access
In the case of a single instance property access expression, the target expression will always evaluate to
exactly one instance. If the property name is for a structural feature, then the resulting values of the
property access expression are the values of that structural feature for the given instance.

A property access expression may also be used to access the values of an opposite association end of a
binary association in which the instance participates. In this case, the resulting values are the values of
named end of all links of the association for which the value of the opposite end is the given instance.

As an example of an association end access, consider the following association (represented in Alf
notation—see Subclause 10.4.5).
assoc Owns {
 owner: Person;
 house: House[*];
}
If the association Owns is in the current scope (that is, visible without qualification), and jack is a
Person, then the expression
jack.house
is equivalent to the association read expression (see Subclause 8.3.9)
Owns::house(owner => jack)
Sequence Property Access
A sequence property access expression of the form primary.name is equivalent to a collect expression
(see Subclause 8.3.21) of the form
primary -> collect x (x.name)
NOTE. It is not an error for the result of the target expression in a property access expression to be
empty. In this case, the property access expression evaluates to an empty sequence.

8.3.7 Invocation Expressions
An invocation expression is used to invoke a behavior, either directly by name or indirectly by calling an
operation or sending a signal. An invocation expression consists of a target, which may be a behavior
name, a behavioral feature reference or a super reference, and a tuple, which provides actual arguments
for any parameters of the invoked behavior or behavioral feature.

Syntax
InvocationExpression(e: InvocationExpression)

= InvocationTarget(e) Tuple(e.tuple)

Action Language for Foundational UML (ALF) 1.0, Beta 2 39

InvocationTarget(e: InvocationExpression)
= BehaviorInvocationTarget(e)
| FeatureInvocationTarget(e)
| SuperInvocationTarget(e)

Figure 8-8 Abstract Syntax of Invocation Expressions

Cross References
1. Expression see Subclause 8.1

2. Tuple see Subclause 8.3.8

3. BehaviorInvocationTarget see Subclause 8.3.9

4. FeatureInvocationTarget see Subclause 8.3.10

5. SuperInvocationTarget see Subclause 8.3.11

Semantics
For each type of invocation expression, the target potentially specifies a set of parameters for which
actual arguments need to be provided in the invocation. For in parameters, the argument is a value that
is assigned to the corresponding parameter. For inout and out parameters, the argument must be an
expression of the form that is legal on the left hand side of an assignment (see Subclause 8.8 on
assignments).

An invocation expression may assign to names that are used as arguments for out or inout parameters.
This is discussed as part of the semantics for tuples (see Subclause 8.3.8). The assigned source for a
name after the invocation expression is the same as the assigned source after the tuple.

For a synchronous behavior or operation call, if the invoked behavior has a return parameter, then the
values on that parameter at the completion of the invocation provide the result of the invocation
expression. Otherwise the invocation expression produces no result values.

Specific semantics for each kind of invocation expression are further discussed in Subclauses 8.3.9 to
8.3.11.

8.3.8 Tuples
A tuple is a list of expressions used to provide the arguments for an invocation. There are two kinds of
tuples, positional tuples and named tuples. In a positional tuple, the arguments are matched to the
parameters in order, by position. A named tuple, on the other hand, includes an explicit identification of
the name of the parameter corresponding to each argument.

NOTE. The sequence operation expression notation is not available at the minimum conformance level
(see Subclause 2.1).

40 Action Language for Foundational UML (ALF) 1.0, Beta 2

Syntax
Tuple(t: Tuple)

= PositionalTuple(t)
| NamedTuple(t)

PositionalTuple(t: PositionalTuple)
= "(" [TupleExpressionList(t)] ")"

TupleExpressionList(t: PositionalTuple)
= Expression(t.expression) { "," Expression(t.expression) }

NamedTuple(t: NamedTuple)
= "(" NamedExpression(t.namedExpression)
 { "," NamedExpression(t.namedExpression) } ")"

NamedExpression(n: NamedExpression)
= Name(n.name) "=>" Expression(n.expression)

Figure 8-9 Abstract Syntax of Tuples

Cross References
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. InvocationExpression see Subclause 8.3.7

Semantics
A tuple is evaluated by evaluating each of its constituent expressions concurrently. For arguments of in
and inout parameters, the argument expression is fully evaluated to a value. For arguments of out
parameters, the constituent parts of the argument expression are evaluated as if for the left hand side of
an assignment (see Subclause 8.8).

NOTE. Since the argument expressions in a tuple are evaluated concurrently, they should not have side
effects that influence each other’s evaluation.

Action Language for Foundational UML (ALF) 1.0, Beta 2 41

Arguments
In a positional tuple, each argument expression corresponds, in order, to a parameter for the invocation
in which the tuple is used.

In a named tuple, the argument names must be parameter names for the invocation in which the tuple is
used. The arguments may appear in any order, but a parameter name may appear at most once in the
tuple, and every non-optional parameter (i.e., having multiplicity lower bound greater than zero) of a
target must be named in the invocation of that target.

A tuple may have fewer argument expressions than parameters. For a positional tuple, the unmatched
parameters are those sequentially after the ones matched by the given argument expressions. For a
named tuple, the unmatched parameters are those that are not named. An unmatched parameter must
have mode out or have a multiplicity lower bound of 0.

For example, consider an activity with the following signature:
activity A(in x: Integer, in y: Boolean[0..1])
The following is then an invocation of this activity with a positional tuple:
A(1, true)
In this case, the argument 1 corresponds to the parameter x and the argument true corresponds to the
parameter y. This is equivalent to the invocation with the named tuple:
A(x=>1, y=>true)
However, with a named tuple, the order of the arguments may be changed:
A(y=>true, x=>1)
Further, since the parameter y is optional (multiplicity lower bound of 0), no argument needs to be
provided for it at all in the named tuple notation. For example, the following invocation using a named
tuple:
A(x=>1)
is equivalent to the following invocation using a position tuple:
A(1)
which is in turn equivalent to:
A(1, null)
Assignment
Tuples with arguments corresponding to inout or out parameters act as assignments. The expressions
corresponding to such parameters must have the form of the left hand side of an assignment (see
Subclause 8.8), that is, either a local name or an attribute reference, possibly indexed. The assigned
source for a name after the argument expression is determined as for the left hand side of an assignment,
with the parameter as its assigned expression.

An argument expression for an inout parameter must also meet the static semantics of a name
expression (see Subclause 8.3.3) or property access expression (see Subclause 8.3.6), if it is not index, or
a sequence access expression (see Subclause 8.3.16), if it is indexed, but the argument expression for an
out parameter does not. Thus, a local name used as the argument for an out parameter does not have to

42 Action Language for Foundational UML (ALF) 1.0, Beta 2

have an assigned source before the tuple, and a local name without a previous assigned source is
considered to be newly defined with the same type and multiplicity as the out parameter.

A name may be assigned in at most one argument expression of a tuple. If there is one such argument
expression, then the assigned source for the name after the tuple is the assigned source for the name after
that argument expression. Otherwise the assigned source after the tuple is the same as before the tuple.

The result of an assignment to a name in one argument expression will not be used in other argument
expressions. New local names defined in one argument expression cannot be used in another.

NOTE. This rule allows the argument expressions in a tuple to be evaluated concurrently.

8.3.9 Behavior Invocation Expressions
The simplest kind of invocation expression is the direct invocation of a behavior. In a behavior
invocation expression, the target is given as the (qualified) name of the behavior to be invoked.

The same syntax may also be used with the qualified behavior of an association end as the target. In this
case, the argument expressions in the tuple give the values for each of the other ends of the association.
The result of the expression is a sequence of values of the target end for all links of the association that
have the given values for the other ends.

Examples
Behavior Invocation
ComputeInterest(amount)
Start(monitor => systemMonitor)
including<Integer>(Integer[]{1,2,3}, 4)
Association Read
Roster::player(team=>t, season=>y)
Roster.player(t,y)
Owns::house(jack)
Syntax
BehaviorInvocationTarget(e: BehaviorInvocationExpression)

= PotentiallyAmbiguousQualifiedName(e.target)

Figure 8-10 Abstract Syntax for Behavior Invocation Expressions

Action Language for Foundational UML (ALF) 1.0, Beta 2 43

Cross References
1. QualifiedName see Subclause 8.2

2. PotentiallyAmbiguousQualifiedName see Subclause 8.2

3. InvocationExpression see Subclause 8.3.7

NOTE. See Subclause 8.2 for rules on the disambiguation of a qualified name with the dot notation
initially parsed as a behavior invocation target to a feature invocation target.

Semantics
A behavior invocation expression is evaluated by first evaluating the argument tuple (see Subclause
8.3.8). The completion of the evaluation then depends on whether the target name resolves to a behavior
or an association end. The given target name must identify either a visible behavior or an association end
within the current scope of the behavior invocation expression. The target cannot be a template, though
it may be a binding of a template behavior or association end (see Subclause 8.2).

Behavior Invocation
If the target is a behavior, then arguments are matched with parameters of the behavior as described in
Subclause 8.3.8. Normally, each argument expression of the invocation must be statically compatible
with the corresponding parameter. That is:

• For an in parameter, the argument expression must be assignable to the parameter (see Subclause
8.8 for the definition of assignability).

• For an out parameter, the parameter must be assignable to the argument expression.

• For an inout parameter, the argument expression and the parameter must be assignable to each
other.

If the target behavior is not a template or it is the binding of template with arguments for all template
parameters, then the above compatibility conditions can be checked directly based on the behavior
signature. However, the target behavior is also allowed to be a template, as long as all unbound template
parameters are classifier template parameters. In this case, the types to be used as arguments for the
template parameters are inferred from the types of the argument expressions as follows.

• For each classifier template parameter, the argument type is the effective common ancestor of the
types of all the argument expressons corresponding to the in and inout parameters of the template
behavior that have the classifier template parameter as their type, if such an effective common
ancestor exists (see Subclause 8.7 for the definition of effective common anscestor). If a relevant
parameter has a multiplicity upper bound greater than 1 and the type of an argument expression is a
collection class (see Subclause 11.6), then the type of the result of the toSequence operation of that
collection class should be used, rather than the type of the argument expression itself.

• If there are no in or inout parameters that have a classifier template parameter as their type, or there
is no effective common ancestor of the relevant argument expression types, then the argument type
for that classifier template parameter is any.

The target of the behavior invocation is then considered to be an implicit binding of the behavior
template, using the inferred argument types for each template parameter. If a classifier template
parameter has constraining classifiers, the corresponding inferred argument must meet these constraints
(see Subclause 8.2 on template binding with classifier constraints), or the invocation is illegal. If the

44 Action Language for Foundational UML (ALF) 1.0, Beta 2

implicit binding is legal, the static compatibility of the argument expressions for the invocation can then
be checked in the normal way against the signature of this implicit binding. The invocation is illegal if
the compatibility checks fail.

For example, the including function from the standard library CollectionFunctions package (see
Subclause 11.5) has the signature
including<T>(in seq: T[] sequence, in element: T):
 T[] sequence
The invocation
including(Integer[]{1,2,3}, 4)
is then equivalent to
including<Integer>(Integer[]{1,2,3}, 4)
Since the literal 4 has type Natural (see Subclause 7.7.2) and the effective common ancestor of
Integer and Natural is Integer (since Integer generalizes Natural—see Subclause 11.2.1). The
result is a sequence of Integer values.

NOTE. The above rule for argument type inference does not attempt to account for behavior parameters
that may have types that are template bindings using the behavior template parameters as arguments (for
example, bindings of collection class with a behavior template parameter as an argument). This greatly
simplifies the inference rule and is adequate in most cases. In particular, the fact that the standard
collection functions in Alf can use the UML notion of multiplicity rather than collection classes in the
typing of parameters reduces the need for a more complicated inference rule in cases involving
sequences and collections.

When a behavior invocation expression is evaluated, the values resulting from the evaluation of each
input argument expression are assigned to the appropiate in and inout parameter and the behavior is
invoked. Once the behavior completes execution, the result values for each inout and out parameter are
assigned to their corresponding output arguments. (Note that these assignments may involve implicit
conversions, as discussed in Subclause 8.8.)

If the named behavior has a return parameter, then the behavior invocation expression evaluates to the
value of that parameter. The type and multiplicity of the behavior invocation expression are the same as
for the return parameter.

If the named behavior does not have a return parameter, then it evaluates to the null (empty) collection.
It is untyped with multiplicity [0..0].

Association Read
When an association end name is used in a behavior invocation expression, the association end may be
thought of as a function from the values of the other association ends to the values on the target
association. Arguments are matched to the ends of the association other than the target end. For the
purposes of this matching, the non-target association ends are treated as if they were in parameters.
Each argument expression must be statically compatible with the type of the corresponding association
end, as described above.

The expression evaluates to all values of the target end of the links of the association whose other ends
have the values given as arguments. The type and multiplicity of the invocation expression are the same
as the type and multiplicity of the target association end.

Action Language for Foundational UML (ALF) 1.0, Beta 2 45

For example, given the association
assoc Roster {
 public team: Team[*];
 public season: Year[*];
 public player: Player[*];
}
the expression
Roster::player(team=>t, season=>y)
or, equivalently,
Roster.player(t,y)
evaluates to the collection of players who played on team t in year y.

The behavior invocation expression notation for reading an association can be used for associations with
any number of ends. This is in contrast to the property access expression notation (see Subclause 8.3.6),
which can only be used to read binary associations. Of course, the behavior invocation form may also be
used to read binary associations. So, for example, the expression
Owns::house(jack)
is equivalent to
jack.house

8.3.10 Feature Invocation Expressions
A feature invocation expression has a feature reference as its target. The referenced feature consists of a
primary expression (see Subclause 8.3.1) and the name of either an operation or a reception owned by
the type of the primary expression. If the named feature is an operation, then the feature invocation
expression denotes a call to that operation. If the feature is a reception, then the feature invocation
expression denotes sending an instance of the signal corresponding to the reception.

Examples
group.activate(nodes, edges)
actuator.Initialize(monitorRef => systemMonitor)
Syntax
FeatureInvocationTarget(e: FeatureInvocationExpression)

= FeatureReference(e.target)
| "this"

46 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-11 Abstract Syntax of Feature Invocation Expressions

Cross References
1. FeatureReference see Subclause 8.3.6

2. InvocationExpression see Subclause 8.3.7

NOTE. See Subclause 8.2 for rules on the disambiguation of a qualified name with the dot notation
initially parsed as a behavior invocation target to a feature invocation target.

Semantics
If a feature invocation expression has a target feature reference, the primary expression in the feature
reference must not be untyped. The named feature must denote either a visible operation or a visible
reception of type of the primary expression, known as the target type. An operation call is distinguished
from a signal send by whether the named feature is an operation or a reception. If the named feature is a
template operation, then a template binding must be provided with arguments for all its template
parameters. The primary expression in the feature reference is evaluated before the invocation argument
expressions and names assigned in the primary expression are available in the argument expressions.

If the feature invocation target is the single keyword “this”, the invocation expression must appear in
the definition of the method of a constructor operation; that is, an operation with the standard stereotype
«Create» (see UML Superstructure, Subclause 9.3.1). The name of the invoked operation is then
implicitly taken to be the name of the owning classifier of the operation and the target type is taken to be
that classifier.

Operation Call
If the named feature is an operation, then determining which operation to actually call is complicated by
the possibility of operation overloading. The determination is made in the following steps.

1. Identify all concrete operations of the target type with the given name. If there is not at least one
such operation, then the feature invocation expression is illegal.

2. From the set determined in Step 1, select the operations for which the tuple is statically compatible
with the operation parameters, as defined for a behavior invocation (see Subclause 8.3.9). Due to the
assignability rules, there may be more than one. If there is not at least one, then the feature
invocation expression is illegal.

3. From the set determined in Step 2, select the most specific operations. One operation is more
specific than another if it has fewer parameters or if it has the same number of parameters and

Action Language for Foundational UML (ALF) 1.0, Beta 2 47

o Each of its in parameters is assignable to the corresponding parameter of the other operation, in
order (see Subclause 8.8 for the definition of assignability)

o Each of the out or return parameters of the other operation is assignable to its corresponding
parameter, in order

NOTE. Any corresponding inout parameters of operations remaining after Step 2 that have
matching arguments will necessarily be assignable to each other.

An operation in a set is most specific if there is no other operation in the set that is more specific than
it.

If there is a single operation remaining after the above steps, this is the operation to be called.

If the operation is a constructor, then the invocation expression is an alternative constructor invocation.
Such an invocation is illegal unless it occurs in an expression statement (see Subclause 9.7) as the first
statement in the definition for the method of a constructor operation. If the feature invocation target is
the single keyword “this”, then the identified operation with the same name as the target type must be a
constructor, or the expression is illegal.

If there are no operations left after the above steps, the feature invocation expression is illegal, with one
exception. If the operation name is “destroy” and the tuple is empty, then the feature invocation
expression is legal and considered to be an implicit object destruction expression.
NOTE. The identifier “destroy” is not reserved and it is possible for a class to have an explicit
parameterless operation called “destroy”. By convention, any such operation should be a destructor, in
which case it can be considered to be an explicit override of the implicit object destruction behavior.

If the feature invocation expression is for an operation with a return parameter, then the type of the
feature invocation expression is the same as for the return parameter. For a single instance feature
invocation, the multiplicity is also the same. For a collection feature invocation, the multiplicity is
determined as for the corresponding collect expression (see Subclause 8.3.21), as described under
Sequence Feature Invocation below.

If a feature invocation expression is for an operation without a return parameter, then it is untyped with
multiplicity [0..0].

Signal Send
If the named feature is a reception, then arguments are matched with attributes of the associated signal
as described in Subclause 8.3.8, with the attributes being considered as parameters. Each argument
expression must be assignable to the corresponding attributes (see Subclause 8.8 for the definition of
assignability), the attributes being effectively considered as in parameters.

A feature invocation expression for a signal send is untyped with multiplicity [0..0].

Single Instance Feature Invocation
A feature invocation expression is evaluated by first evaluating the primary expression, which results in
a sequence of instances. The denoted invocation is then carried out on each element of the sequence.

If the primary expression of the feature reference for a feature invocation expression has multiplicity
[1..1], then the invocation expression is a single instance feature invocation. Otherwise it is a
sequence feature invocation. An alternative constructor invocation must always be a single instance
feature invocation.

48 Action Language for Foundational UML (ALF) 1.0, Beta 2

For a single instance feature invocation, the result of the primary expression will always be a single
instance. In this case, if the named feature is an operation, the invocation is a call to the named operation
on the given instance. The tuple is evaluated to provide arguments for the operation parameters. The call
is polymorphic, so, if the dynamic type of the instance has an operation that redefines the named
operation (directly or indirectly), it is the redefined operation that is called.

If the operation is a destructor (i.e., it has the standard stereotype «Destroy»), then it is called just as a
normal operation. However, after the completion of the call to the destructor, the target instance is
destroyed, except if the target instance is the same as the current context object, in which case the
destructor is called, but the instance is not destroyed.

If the expression is an implicit object destruction expression, then evaluation of the expression simply
results in the target instance being destroyed, except, as above, if the target instance is the same as the
current context object, in which case the object destruction expression has no effect.

If the named feature is a reception, the invocation is a sending of an instance of the signal associated
with the reception. The tuple is evaluated to provide values for the attributes of the signal. Each signal
attribute is treated as effectively an in parameter for the purposes of the invocation.

Sequence Feature Invocation
A sequence feature invocation expression of the form primary.name tuple is equivalent to a sequence
expansion expression (see Subclause 8.3.21) of the form
primary -> collect x (x.name tuple)
NOTE. This means that the argument expressions in the tuple for the feature invocation are re-
evaluated for the invocation on each instance in the sequence. It is not an error for the result of the
primary expression in a feature invocation expression to be empty. In this case, no invocations occur and
the tuple is never evaluated.

8.3.11 Super Invocation Expressions
A super invocation expression is used to invoke an operation of a superclass of the current context class.
It is syntactically similar to a feature invocation expression (see Subclause 8.3.10), but with the keyword
super used as the target. Unlike a feature invocation expression, however, a super invocation expression
may name a superclass operation by a qualified name, if this is necessary in order to disambiguate
operations with the same name from different superclasses.

Examples
super.run()
super.initialize(startValue)
super.Person::setName(name)
Syntax
SuperInvocationTarget(e: SuperInvocationExpression)

= "super" ["." QualifiedName(e.target)]

Action Language for Foundational UML (ALF) 1.0, Beta 2 49

Figure 8-12 Abstract Syntax for Super Invocation Expressions

Cross References
1. QualifiedName see Subclause 8.2

2. InvocationExpression see Subclause 8.3.7

Semantics
If the super invocation target includes a qualified name with a qualification, then this qualification must
resolve to one of the superclasses of the current context class, and the invoked operation must come
from this superclass. If the given name is not qualified, then the invoked operation may come from any
of the superclasses of the context class.

If the super invocation target is the single keyword “super” (with no qualified name), the invocation
expression must appear in the definition of the method of a constructor operation; that is, an operation
with the standard stereotype «Create» (see UML Superstructure, Subclause 9.3.1). The name of the
invoked operation is then implicitly taken to be the name of the owning classifier of the operation, which
must have a single superclass, from which the invoked operation is to come.

The operation to be called is determined using the following steps.

1. Identify all the concrete operations with the given name that are members of the relevant superclass
or superclasses (as discussed above). If there is not at least one such operation, then the super
invocation expression is illegal.

2. From the set determined in Step 1, select the operations for which the tuple is statically compatible
with the operation parameters, as defined for a behavior invocation (see Subclause 8.3.9). Due to the
assignability rules, there may be more than one. If there is not at least one, then the super invocation
expression is illegal.

3. From the set determined in Step 2, select the most specific operations, as defined in Step 3 of the
determination of the operation for a feature invocation expression (see Subclause 8.3.10). If there is
a single operation remaining, this is the operation to be called. Otherwise, the super invocation
expression is illegal.

If the identified operation is a constructor, then the invocation expression is a super constructor
invocation. Such an invocation is illegal unless it occurs in an expression statement (see Subclause 9.7)
at the start of the definition for the method of a constructor operation such that any statements preceding
it are also super constructor invocations. If the super invocation target is the single keyword “super”,
then the identified operation must be a constructor, or the expression is illegal.

50 Action Language for Foundational UML (ALF) 1.0, Beta 2

If the identified operation is a destructor (i.e., it has the standard stereotype «Destroy»), then the super
invocation expression must itself appear within the method of a destructor operation.

When a super invocation expression is evaluated, its tuple is first evaluated to provide arguments for the
operation parameters. The method of the named superclass operation is then called on the current
context object. Note that the call is not polymorphic—the statically determined superclass method
behavior is always directly invoked.

If the super invocation expression has a return parameter, then the type and multiplicity of the super
invocation expression is the same as for the return parameter. If the operation does not have a return
parameter, then the super invocation expression is untyped with multiplicity [0..0].

8.3.12 Instance Creation Expressions
An instance creation expression is used to create a new instance of a class or data type. In either case, an
instance creation expression consists of the keyword new followed by a (possibly qualified) name and a
tuple.

Examples
Object Creation
new Employee(id, name)
new Employee::transferred(employeeInfo)
new Set<Integer>(Integer[]{1,2,3})
Data Value Creation
new Position(1,2)
new Position(x=>1, y=>2)
Syntax
InstanceCreationExpression(e: InstanceCreationExpression)

= "new" QualifiedName(e.constructor) Tuple(e.tuple)

Figure 8-13 Abstract Syntax of Instance Creation Expressions

Cross References
1. QualifiedName see Subclause 8.2

2. InvocationExpression see Subclause 8.3.7

Action Language for Foundational UML (ALF) 1.0, Beta 2 51

3. Tuple see Subclause 8.3.8

Semantics
Since an instance creation expression involves the invocation of a constructor operation, it is possible for
it to assign to names used as arguments for out or inout parameters, as for a regular invocation
expression (see Subclause 8.3.7). The name given in an instance creation expression must resolve to a
class, data type or a constructor operation. If the name given in an instance creation expression denotes
both a class and a data type, then the expression is illegal. If the qualified name denotes a data type, but
not a class, then the instance creation expression is a data value creation expression. Otherwise it is an
object creation expression.

The element named in an instance creation expression may not be a template, though it may be a binding
of a template with arguments given for all template parameters.

Object Creation Expression
If the name in an instance creation expression denotes a constructor operation or a class, then the
expression creates an object. If the name is for a constructor, then the newly created object is an instance
of the class that owns the constructor. Otherwise, the object is an instance of the explicitly named class.

If the name denotes neither a class nor a data type, then it must denote a constructor (see UML
Superstructure, Subclause 9.3.1), which is determined using the following steps.

1. Identify all the constructors with the given name. Due to overloading there may be more than one. If
there is not at least one, then the object creation expression is illegal.

2. From the set determined in Step 1, select the constructors for which the tuple is statically compatible
with the constructor parameters, as defined for a behavior invocation (see Subclause 8.3.9). Due to
the assignability rules, there may be more than one. If there is not at least one, then the object
creation expression is illegal.

3. From the set determined in Step 2, select the most specific constructors, as defined in Step 3 of the
determination of the operation for a feature invocation expression (see Subclause 8.3.10). If there is
a single constructor remaining, this is the constructor to be called. Otherwise, the object creation
expression is illegal.

NOTE. A constructor is always required to have a single return type that is the same as the class being
constructed (see UML Superstructure, Subclauses 9.3.1).

If the name denotes a class, then the constructor to be used is determined as above, except that, in the
first step, constructors are identified that are owned members of the named class with the same name as
the class. Further, if no constructor is found, then the object creation expression is considered to be
constructorless. However, a constructorless instance create expression may not have any arguments and
is only legal if the named class has no constructor operations (see Subclause 10.5.3.1).

The class of the object being created must not be abstract, unless all of the following conditions hold.

• The object creation expression is not constructorless.

• The namespace that owns the class of the constructor also owns a package with the name Impl.

• The Impl package contains a class with the same name as the class of the constructor.

• The Impl class has a constructor that redefines the constructor (which implies that the Impl class
must be a direct or indirect subclass of the class of the constructor).

52 Action Language for Foundational UML (ALF) 1.0, Beta 2

If these conditions hold, then the identified Impl class constructor is used instead of the original abstract
class constructor, and the object that is created is actually an instance of the Impl class.

NOTE. The above mechanism is intended to allow for the definition of abstract classes in model
libraries that may be directly referenced by user models and constructed as if they were concrete.
Different execution tools may provide different actual concrete implementations of the library classes in
the nested Impl package of the model library without changing the library classes actually referenced in
user models. In particular, the Alf standard model library CollectionClass package uses this
mechanism (see Subclause 11.6).

If an object creation expression is not constructorless, then, in addition to creating an object, evaluation
of the expression calls the identified constructor on the newly created object. If a constructor is
explicitly named in the expression, then that is the constructor that is called. For example, the expression
new Employee::transferred(employeeInfo)
creates an object of the class Employee and calls the constructor transferred on that object with the
argument employeeInfo.

If the object creation expression names a class, then the constructor called is one with the same name as
the class. Thus, the expression
new Employee(id, name)
is equivalent to
new Employee::Employee(id, name)
If an object creation expression is constructorless, then evaluation of the expression still results in the
creation of a new object of the named class, but no constructor operation is called. However, if any
attributes of the class have default value expressions (see UML Superstructure, Subclause 7.3.44), then
these are evaluated to give the initial values of the corresponding attributes. Such initialization has the
semantics of an assignment of the expression to the attribute (see Subclause 8.8). Attributes are
initialized in the order in which they are defined in the class.

Finally, if the class of the object being created is active, then the classifier behavior for that class is
automatically started once the object is created and after any constructor call completes.

The type of an object creation expression is the class that owns the constructor (which is the named
class, if it is named explicitly) and the multiplicity is [1..1].

Data Value Creation Expression
If the name in an instance creation expression denotes a data type, then the expression creates a data
value. In this case, the tuple is used to specify values for the attributes of the data value. If a named tuple
is used, then the names must correspond to the names of the attributes of the data type. The identified
data type must not be abstract.

Arguments are matched with attributes of the named data type as described in Subclause 8.3.8, with the
attributes being considered as in parameters. Each argument expression must be assignable to the
corresponding attribute (see Subclause 8.8 for the definition of assignability).

For example, consider the data type
datatype Position {
 public x: Integer;

Action Language for Foundational UML (ALF) 1.0, Beta 2 53

 public y: Integer;
}
All the following data value expressions create equivalent data values of this type:
new Position(1,2)
new Position(x=>1, y=>2)
new Position(y=>2, x=>1)
The type of a data value creation expression is the named data value and the multiplicity is [1..1].

8.3.13 Link Operation Expressions
A link operation expression is used to create or destroy instances of a named association, known as
links. A link operation expression has a similar syntax to an invocation expression, consisting of a target
association name, a link operation name and a tuple of actual arguments for the link operation.

Examples
Owns.createLink(jack, newHouse)
Owns.createLink(owner=>jack, house=>newHouse)
Owns.createLink(owner=>jack, house[1]=>newHouse)
Owns.destroyLink(owner=>jack, house=>newHouse)
Owns.clearAssoc(jack)
Syntax
LinkOperationExpression(e: LinkOperationExpression)

= QualifiedName(e.associationName) "." LinkOperation(e.operation)
 LinkOperationTuple(e.tuple)

LinkOperation(op: String)
= "createLink"(op)
| "destroyLink"(op)
| "clearAssoc"(op)

LinkOperationTuple(t: Tuple)
= PositionalTuple(t)
| IndexedNamedTuple(t)

IndexedNamedTuple(t: NamedTuple)
= "(" IndexedNamedExpression(t.expressions)
 { "," IndexedNamedExpression(t.expressions) } ")"

IndexedNamedExpression(n: NamedExpression)
= Name(n.name) [Index(n.index)] "=>" Expression(n.expression)

Index(e: Expression)
= "[" Expression(e) "]"

54 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-14 Abstract Syntax of Link Operation Expressions

Cross References
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. QualifiedName see Subclause 8.2

4. InvocationExpression see Subclause 8.3.7

5. PositionalTuple see Subclause 8.3.8

6. NamedTuple see Subclause 8.3.8

7. NamedExpression see Subclause 8.3.8

Semantics
The target of a link operation expression is a qualified name that must resolve to an association. The
expression must name one of the link operations in Table 8-4 (note that link operation names are
reserved words). These operations are used to create or destroy links of the named association.

Table 8-4 Link Operations

Operation Description
A.createLink(e1,e2…) Create a link of association A with end values e1, e2, …

Association A must not be abstract.
A.destroyLink(e1,e2,…) Destroy a link of association A with end values e1, e2, …
A.clearAssoc(e) Destroy all links of association A with at least one end value e.

Argument expressions in the tuples for a link operation other than clearAssoc are matched to the
association ends of the named association, where the ends are treated as if they were in parameters (see
Subclause 8.3.8). Indexes are only allowed on the names for ordered association ends. The expression in
an index must have the type UnlimitedNatural and a multiplicity upper bound of 1.

The link operation clearAssoc must have a positional tuple with a single argument.

A link operation expression is untyped with multiplicity [0..0].

For example, given the association

Action Language for Foundational UML (ALF) 1.0, Beta 2 55

assoc Owns {
 owner: Person;
 house: House[*];
}
the expression
Owns.createLink(jack, newHouse)
creates a link with the given end values (note that the order of the arguments corresponds to the order of
the association ends in the association definition). This link can then be destroyed using the expression
Owns.destroyLink(jack, newHouse)
Named tuple notation may also be used:
Owns.createLink(owner=>jack, house=>newHouse)
and
Owns.destroyLink(owner=>jack, house=>newHouse)
in which case the order of the arguments is immaterial.

If an association end is ordered, then the position of a link for the end can be indicated using an index.
For example, if the association above was modified so that the house end is ordered, then the expression
Owns.createLink(owner=>jack, house[1]=>newHouse)
inserts the newHouse at the beginning of the list of houses for jack. If an index is not given for an
ordered end, then the default is *, which indicates adding at the end.

Finally, there is an additional link operation, clearAssoc, which may only be used with associations. It
destroyes all links of the named association that have at least one end with a given value. Thus, the
expression
Owns.clearAssoc(jack)
destroys all links between jack and any house.

NOTE. For a binary association (such as the example Owns used above), links may also be effectively
created and destroyed using property access notation, as if association ends were properties of their
opposite types. Thus the expression add(jack.house,newHouse) (or jack.house->add(newHouse))
can be used to create an Owns link, remove(jack.house, newHouse) (or jack.house-
>remove(newHouse)) to destroy it and jack.house = null to clear the association. (See Subclause
8.3.6 on property access expressions and Subclause 8.3.6 on sequence operation expressions.)

8.3.14 Class Extent Expressions
A class extent expression returns a sequence of the objects in the extent of a named class.

Examples
Customers.allInstances()
Syntax
ClassExtentExpression(e: ClassExtentExpression)

= QualifiedName(e.type) "." "allInstances" "(" ")"

56 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-15 Abstract Syntax for Class Extent Expressions

Cross References
1. Expression see Subclause 8.1

2. QualifiedName see Subclause 8.2

Semantics
The name given in a class extent expression must denote a class. A class extent expression evaluates to a
sequence (in an arbitrary order) of the objects in the extent of the named class. The extent of a class is
the set of objects that currently exist at the specific execution locus at which the class extent expression
is evaluated.

NOTE. The concept of an execution locus is defined in the fUML Specification, Subclause 8.2. The
correspondence of the actual execution environment to one or more fUML loci is specific to the
execution tool.

The type of a class extent expression is the named class, and its multiplicity is [0..*].

8.3.15 Sequence Construction Expressions
A sequence construction expression is used to group values into a sequence of a specific type. The most
direct form of a sequence construction expression is a list of expressions enclosed in braces and
preceded by a specification of the desired type with the multiplicity indicator “[]”. There is also a
special notation for the case of a sequence of consecutive integers.

A sequence construction expression may also be used to create an instance of a collection class (see
Subclause 11.6) initialized from the given sequence of values. This form has the same syntax as above,
except that the specified type must be a collection class and no multiplicity indicator is included.

A sequence construction expression may optionally start with the keyword new, analogously to the
syntax of an instance creation expression (see Subclause 8.3.12).

Examples
Integer[]{1, 3, 45, 2, 3}
Set<Integer>{1, 3, 45, 2, 3}
new String[]{"apple","orange","strawberry",}
new List< List<String> >{{"apple","orange"},{"strawberry","raspberry"}}
Integer[]{1..6+4}

Action Language for Foundational UML (ALF) 1.0, Beta 2 57

null
Syntax
SequenceConstructionExpression(e: SequenceConstructionExpression)

= NullExpression (e.hasMultiplicity=true)
| SequenceElementsExpression(e)

NullExpression
= "null"

SequenceElementsExpression(e: SequenceConstructionExpression)
= ["new"] SequenceElementsTypePart(e)
 "{" SequenceElements(e.elements) "}"

SequenceElementsTypePart(e: SequenceConstructionExpression)
= TypeName(e.typeName)
 [MultiplicityIndicator (e.hasMultiplicity=true)]

MultiplicityIndicator
= "[" "]"

SequenceElements(se: SequenceElements)
= SequenceElementList(se)
| SequenceRange(se)

SequenceElementList(sel: SequenceExpressionList)
= [SequenceElement(sel.element) { "," SequenceElement(sel.element) }
 [","]]

SequenceElement(e: Expression)
= Expression(e)
| SequenceInitializationExpression(e)

SequenceInitializationExpression(e: SequenceConstructionExpression)
= ["new"] "{" SequenceElements(e.elements) "}"

SequenceRange(sr: SequenceRange)
= Expression(sr.rangeLower) ".." Expression(sr.rangeUpper)

Figure 8-16 Abstract Syntax of Sequence Construction Expressions

58 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. Expression see Subclause 8.1

2. TypeName see Subclause 8.2

3. ExpressionList see Subclause 8.3.8

Semantics
Type Part
A sequence construction expression begins with a type part that that consists of a type name (see
Subclause 8.2) and an optional multiplicity indicator “[]”.

If a multiplicity indicator is included, the type name may be either a qualified name or the keyword any.
If it is a qualified name, then this name must resolve to a classifier, which is the type of the sequence
construction expression. The qualified name must not resolve to a template, though it may be the
binding of a template classifier.

If a multiplicity indicator is not included, then the type name must be the qualified name of a collection
class. A collection class is any concrete subclass, directly or indirectly, of the class Collection from
the CollectionClasses standard library package with a binding giving an appropriate argument type
for the collection element type template parameter (see Subclause 11.6). In this case, the sequence
construction expression has the collection class as its type.

Sequence Elements
The type part of a sequence construction expression is followed by a specification of the elements of a
sequence. This may be given either as a sequence element list or a sequence range.

A sequence element list is an explicit list of expressions. Each expression in the list must have a
multiplicity upper bound of no more than 1. The multiplicity lower and upper bounds of the sequence
element list are given by the sum of the multiplicity lower and upper bounds of each of the expressions
in the list. A sequence element list is evaluated by evaluating each expression in the list, in order, each
of which will return at most one value. The result of the sequence element list is the sequence of values
returned, in order.

A sequence range has the form Expr1..Expr2, where both expressions are of type Integer and have a
multiplicity upper bound of 1. A sequence range denotes all integers from the value of the first
expression up to and including the value of the second expression. Note that the two expressions in a
sequence range are evaluated concurrently. For example, the sequence range {1..6+4} is equivalent to
the sequence element list {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The multiplicity of the sequence range
is [0..*].

If the type part of the sequence construction expression has a multiplicity indicator, then the result of the
expression is the result of evaluating the sequence element specification for the expression. If the
expression has a sequence element list, and the type name in the type part is not any, then the type of
each expression in the list must either conform to the given type or be convertible to it by bit string
conversion (see Subclause 8.8 on type conformance and bit string conversion).

Collection Object Creation
If the type part of the sequence construction expression does not have a multiplicity indicator, then the
expression is equivalent to an instance creation expression (see Subclause 8.3.12) with a constructor for

Action Language for Foundational UML (ALF) 1.0, Beta 2 59

the given (bound) collection class and the sequence elements used as the constructor argument. The
result of the expression is a single collection object, so its multiplicity is [1..1].

For example, the sequence construction expression
Set<Integer>{1, 2, 3, 4}
is equivalent to the instance creation expression
new Set<Integer>(Integer[]{1, 2, 3, 4})
When used to construct a collection object, it is possible that the elements of a sequence element list are
themselves collections. In this case, the type parts of the nested sequence construction expressions may
be omitted, since their types may be inferred from the element type of the collection class being
constructed.

For example, the sequence construction expression
List< Set<Integer> >{{1}, {2,3}, {4,5,6}}
is equivalent to
List< Set<Integer> >{Set<Integer>{1}, Set<Integer>{2,3}, Set<Integer>{4,5,6}}
which is in turn equivalent to the following nested instance creation expression:
new List< Set<Integer> >(Set<Integer>[]{
 new Set<Integer>(1),
 new Set<Integer>(Integer[]{2,3}),
 new Set<Integer>(Integer[]{4,5,6})
})
Note that this nesting of sequence construction expressions only applies to the case of the construction
of a collection object. Sequences of values are themselves flat in Alf. Thus, the following expression is
not legal:
Integer[]{{1}, {2,3}, {4,5,6}} // Illegal!
Empty Sequences
The list of element expressions in a sequence construction expression may be empty. However, the static
type of an empty sequence is still as specified in the expression. Thus, Integer[]{} is an empty
sequence of integers while String[]{} is an empty sequence of strings. An empty sequence has
multiplicity [0..0].

The keyword null is equivalent to any[]{}, that is, an untyped empty sequence.

8.3.16 Sequence Access Expressions
A sequence access expression is used to obtain a specific element of an expression. It contains two
subexpressions, a primary expression and an index expression (within brackets).

Examples
this.getTypes()[1]
Syntax
SequenceAccessExpression(e: SequenceAccessExpression)

= PrimaryExpression(e.primary) Index(e.index)

60 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-17 Abstract Syntax of Sequence Access Expressions

Cross References
1. Expression see Subclause 8.1

2. PrimaryExpression see Subclause 8.3.1

3. Index see Subclause 8.3.13

Semantics
The two subexpressions of a sequence access expression are evaluated concurrently. The index
expression must evaluate to a single integer value that indicates the element of the collection to which
the collection access expression evaluates.

For example, given the sequence
a = Integer[]{10, 20, 30, 40}
the sequence access expression a[3] evaluates to 30. Note that indexing is from 1.

If the index value is less than 1 or greater than the size of the collection, then the expression returns no
value.

The type of a sequence access expression is the same as the type of its primary expression. Its
multiplicity is [0..1].

8.3.17 Sequence Operation Expressions
A sequence operation expression is an alternative notation for applying a behavior as an operation on a
sequence of values. When the target of a normal operation invocation expression evaluates to a sequence
of values, the operation is invoked on each object in the sequence (see Subclause 8.3.10). A sequence
operation expression, on the other hand, can be used to invoke in an operation-like way a behavior that
is intended to operate on a sequence as a whole.
Similarly to an operation invocation expression, a sequence operation expression consists of a primary
expression, an operation name and a tuple. However, the primary expression and the operation name are
separated by the symbol “->” rather than the “.” used for a normal operation invocation. (The symbol
“->” can be thought of as indicating the “flow” of a sequence of values into the sequence operation.)

NOTE. The sequence operation expression notation is not available at the minimum conformance level
(see Subclause 2.1).

Examples
selectedCustomers->notEmpty()
memberList->includes(possibleMember)

Action Language for Foundational UML (ALF) 1.0, Beta 2 61

memberList->including(newMember)
products->removeAll(rejects)
Syntax
SequenceOperationExpression(e: SequenceOperationExpression)

= ExtentOrExpression(e.primary) "->" QualifiedName(e.operation)
 Tuple(e.tuple)

ExtentOrExpression(e: ExtentOrExpression)
= QualifiedName(e.name)
| NonNamePrimaryExpression(e.nonNameExpression)

Figure 8-18 Abstract Syntax for Sequence Operation Expressions

Cross References
1. Expression see Subclause 8.1

2. QualifiedName see Subclause 8.2

3. NonNamePrimaryExpression see Subclause 8.3.1

4. InvocationExpression see Subclause 8.3.7

5. Tuple see Subclause 8.3.8

Semantics
Sequence Operation Invocation
The “operation” name in a sequence operation expression does not actually name an operation. Instead,
it must resolve to the name of a behavior with at least one parameter. The first parameter of this
behavior must have direction in or inout and a multiplicity of [0..*]. The primary expression of the
link operation expression must be assignable to this parameter (see Subclause 8.8 for the definition of
assignability).

The tuple of a sequence operation expression contains arguments for any parameters of the named
behavior other than the first. Argument matching and compatibility is as required for a behavior
invocation (see Subclause 8.3.9).

While a sequence operation expression is intended to look notationally similar to an operation
invocation, it is actually executed equivalently to a behavior invocation expression (see Subclause
8.3.9). Specifically, the target primary expression and any argument expressions in the tuple are all

62 Action Language for Foundational UML (ALF) 1.0, Beta 2

evaluated concurrently. The named behavior is then invoked on the resulting arguments as for a
behavior invocation.

For example, suppose a is a sequence. Then the sequence operation expression
a->including(x)
is equivalent to the following behavior invocation expression for the library behavior including:
including(a,x)
Both of these expression evaluate to a sequence with all the elements of a and the additional element x
at the end.

By contrast, suppose that a is a sequence of objects of the same class, which has an operation called
including. Then, the operation call
a.including(x)
results in including(x) being called on each member of the sequence a.

 “In-Place” Sequence Operations
If the first parameter of the behavior has direction inout, then the primary expression for the sequence
operation expression is restricted to the syntax and static semantic constraints of the left-hand side of an
assignment (see Subclause 8.8). If the primary expression is a local name or parameter name, then the
assigned source for that name after the sequence operation expression is the sequence operation
expression itself. If the primary expression is an attribute reference with a local name or parameter name
and has a type that is a structured data type, then the assigned source for that name after the sequence
operation expression is the sequence operation expression itself.

The Alf standard CollectionFunctions package (see Subclause 11.5) contains a number of behaviors
that operate on sequences. The majority of these have an in direction for their target sequence parameter
and produce a result via a return parameter. However, certain of them have an inout direction for their
sequence parameter, with the effect of updating a sequence “in place”.

For example,
a->add(2)
is equivalent to
add(a,2)
which results in the same effective behavior as
a = a->including(2)
Clearly, in this case, the target primary expression must have the form of the left hand side of an
assignment (see Subclause 8.8). Note that if the target primary expression is a local name (such as “a” in
the example above), then, by the usual semantics of inout parameters, such an “in place” sequence
operation expression is considered to be a re-assignment of that local name (see Subclause 8.3.8 on
assignments and inout parameters).

Sequence Operations on Collections
The assignability rule for collection conversion (see Subclause 8.8) leads to special behavior in the case
in which the type of the initial primary expression is a collection class (see Subclause 11.6) and its
multiplicity upper bound is no greater than 1 (and as long as the initial parameter is an in parameter). In

Action Language for Foundational UML (ALF) 1.0, Beta 2 63

this case, the operation toSequence is first called on the collection object resulting from evaluating the
primary expression, and the sequence operation is then performed on the resulting sequence.

For example, suppose customerList has the type List<Customer>. Then the expression
customerList->size()
is equivalent to
size(customerList)
Since the argument type for the CollectionFunctions::size has multiplicity [*], this is equivalent to
size(customerList.toSequence())
which gives the number of elements in the collection. Note that this gives the same result as a regular
call on the size operation provided by a collection object:
customerList.size()
Sequence Operations on Extents
There is also a special notation option for sequence operation expressions in which the initial primary
expression may be replaced with the name of a class to implicitly denote the collection that is the current
extent of that class. If the primary expression of a sequence operation expression is a class name, then it
is considered to be equivalent to a class extent expression for the named class (see Subclause 8.3.14).
However, if there is a local name or parameter name in the current extent with the same name as the
class name, then the primary expression is considered a name expression for the given name (see
Subclause 8.3.3) rather than a class extent expression.

For example, the expression
Customer->size()
is equivalent to
Customer.allInstances()->size()
or
size(Customer.allInstances())
which all evaluate to the number of objects currently in the extent of the Customer class (where
Customer.allInstances() is a class extent expression—see Subclause 8.3.14).

8.3.18 Sequence Reduction Expressions
A sequence reduction expression is used to reduce a sequence of values to a single value by combining
the elements of the sequence using a binary operator. A sequence reduction expression has a similar
syntax to a sequence operation expression (see Subclause 8.3.17) in that it starts with a primary
expression followed by the “flow” symbol “->”. This is then followed by the keyword “reduce” and the
qualified name of a behavior that acts as the binary operator over elements of the sequence.

As for sequence operation expressions (see Subclause 8.3.17), sequence reduction expressions also
allow the special notation in which a class name is used as a shorthand for a class extent expression.

NOTE. The sequence reduction expression notation is not available at the minimum conformance level
(see Subclause 2.1).

64 Action Language for Foundational UML (ALF) 1.0, Beta 2

Examples
subtotals->reduce '+'
rotationMatrices->reduce ordered MatMult
Syntax
ReductionExpression(e: ReductionExpression)

= ExtentOrExpression(e.primary) "->" "reduce"
 ["ordered" (e.isOrdered=true)] QualifiedName(e.behavior)

Figure 8-19 Abstract Syntax for Sequence Reduction Expressions

Cross References
1. Expression see Subclause 8.1

2. QualifiedName see Subclause 8.2

3. ExtentOrExpression see Subclause 8.3.17

Semantics
The qualified name in a sequence reduction expression must denote a behavior with two in parameters
and a return parameter and no other parameters. The parameters must all have the same type as the
primary expression and multiplicity [1..1]. The identified behavior must not be a template, though it
may be a binding of a template behavior (see Subclause 8.2)

The named behavior is invoked repeatedly on pairs of values resulting from the evaluation of a target
primary expression. Each time it is invoked, it produces one output that replaces the two input elements
in an intermediate version of the sequence. This repeats until the sequence is reduced to a single value.

For example, the expression
Integer[]{1, 2, 3} -> reduce '+'
evaluates to 6—the same as 1+2+3 (see also Subclause 8.3.15 on the sequence construction expression
notation used in the primary expression above).

Normally, the order in which the behavior of a sequence reduction expression is applied to pairs of
values is indeterminate. This will not affect the result of the expression if the behavior is commutative
and associative. For example, in the above example using addition may be evaluated as 1+2+3 or 1+3+2
or 2+3+1, or in any other order, and the result is always 6.

Action Language for Foundational UML (ALF) 1.0, Beta 2 65

However, if the reducing behavior is not commutative and associative, or has side effects, then the order
in which elements are selected from the sequence will affect the result of the expression. In this case, an
ordered reduction may be used by adding the keyword “ordered”, so the reducing behavior will be
applied to adjacent pairs according to the collection order. The result of each invocation of the behavior
replaces the two values taken as input at the same position in the order as the original two values.

For example, matrix multiplication is not commutative. The expression
Matrix[]{A, B, C} -> reduce ordered MatMult
will be deterministically be evaluated as MatMult(MatMult(A,B),C), not in any other order.

A sequence reduction expression has the same type as its argument expression and multiplicity [1..1].

Even though a sequence reduction expression is not equivalent to a behavior invocation, a collection
object may be directly acted on in such an expression analogously to how it may be acted on in a
sequence operation expression (see Subclause 8.3.17). The operation toSequence is called on the
collection object, and the reduction is applied to the result of that operation.

For example, if vector has the type List<Integer>, then the sequence reduction expression
vector -> reduce '+'
is equivalent to
vector.toSequence() -> reduce '+'
Also as for sequence operation expressions (see Subclause 8.3.17), sequence reduction expressions
allow the special notation in which a class name is used as a shorthand for a class extent expression.

8.3.19 Sequence Expansion Expressions
A sequence expansion expression is used to specify a computation that operates on all the elements of a
sequence. Such an operation is said to expand the collection. In all cases except the iterate operation,
this expansion is parallel, in the sense that the computations on each sequence element are carried out
concurrently.

A sequence expansion expression has a similar syntax to a sequence operation expression (see Subclause
8.3.17), except that, in addition to giving the name of the expansion operation, the expression also gives
a name for an expansion variable. This expansion variable is used to hold the value of each element in
the sequence during the expansion computation.

NOTE. The sequence expansion expression notation is not available at the minimum conformance level
(see Subclause 2.1).

Syntax
SequenceExpansionExpression(e: SequenceExpansionExpression)

= ExtentOrExpression(e.primary) "->" ExpansionOperation(e)
 Name(e.variable) "(" Expression(e.argument) ")"

ExpansionOperation(e: SequenceExpansionExpression)
= SelectOrRejectOperation(e)
| CollectOrIterateOperation(e)
| ForAllOrExistsOrOneOperation(e)
| IsUniqueOperation(e)

66 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-20 Abstract Syntax of Sequence Expansion Expressions

Cross References
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. QualifiedName see Subclause 8.2

4. ExtentOrExpression see Subclause 8.3.17

5. SelectionOrRejectOperation see Subclause 8.3.20

6. CollectOrIterateOperation see Subclause 8.3.21

7. ForAllOrExistsOrOneOperation see Subclause 8.3.22

8. IsUniqueOperation see Subclause 8.3.23

Semantics
The operation name in a sequence expansion expression must be one of the reserved keywords listed in
Table 8-5.

Table 8-5 Sequence Expansion Operations

Operation Description
select Select a sub-sequence of elements for which a condition is true.
reject Select a sub-sequence of elements for which a condition is false.
collect Concurrently apply a computation on each element of a sequence.
iterate Sequentially apply a computation to each element of a sequence.
forAll Test if a condition is true for all elements of a sequence.
exists Test if a condition is true for at least one element of a sequence.
one Test if a condition is true for exactly one element of a sequence
isUnique Test if a computation has a different value for every element of a sequence.

Assignments made in the primary expression of a sequence expansion expression are available within its
argument expression. In addition, the expansion variable is available as a local name within the
argument expression, with the same type as the primary expression and multiplicity [1..1]. Its name
must not conflict with any already assigned local name. Its assigned source is the sequence expansion
expression itself.

Action Language for Foundational UML (ALF) 1.0, Beta 2 67

For example, in the expression
c->select x (x>1)
“select” is the expansion operation name and “x” is the expansion variable name.

An expansion variable may not be reassigned within the argument expression of a sequence expansion
expression, and it is considered unassigned after the sequence expansion expression. Further, while the
argument expression may reference local names defined outside that expression, it may not reassign
such local names. New local names may be defined and referenced within the argument expression, but
all such names are considered unassigned after the sequence expansion expression.

NOTE. The above rule is necessary, since, if the sequence being expanded is empty, the argument
expression will never be evaluated and names assigned within it would have no value on their assigned
source. The rule also allows sequence expansion expressions to be mapped to expansion regions, which
are not allowed to have outgoing flows or output pins in fUML (see fUML Specification, Subclause
7.4.4.2.2).

Even though a sequence expansion expression is not equivalent to a behavior invocation, a collection
object may be directly acted on in such an expression analogously to how it may be acted on in a
sequence operation expression (see Subclause 8.3.17). The operation toSequence is called on the
collection object, and the expansion is applied to the result of that operation.

For example, if customerList has the type List<Customer>, then the sequence expansion expression
customerList->select c (c.name == customerName)
is equivalent to
Customer.toSequence()->select c (c.name == customerName)
Also as in a sequence operation expression (see Subclause 8.3.17), a sequence expansion expression
allows the special notation in which the initial primary expression may be replaced with the name of a
class to implicitly denote the the current extent of that class. Thus, the expression
Customer->select c (c.name == customerName)
is equivalent to
Customer.allInstances()->select c (c.name == customerName)
(where Customer.allInstances() is a class extent expression—see Subclause 8.3.14).

Specific semantics for each kind of sequence expansion operation are further discussed in subsequent
subclauses.

8.3.20 select and reject Expressions
The select and reject operations are used in a sequence expansion expression (see Subclause 8.3.19)
to specify a selection of elements from a sequence. The select operation is used to select elements that
meet a given condition, while the reject operation is used to select those that do not meet a condition.

NOTE. The sequence expansion expression notation is not available at the minimum conformance level
(see Subclause 2.1).

Examples
employees->select e (e.age>50)

68 Action Language for Foundational UML (ALF) 1.0, Beta 2

employees->reject e (e.isMarried)
Syntax
SelectOrRejectOperation(e: SelectOrRejectExpression)

= "select"(e.operation)
| "reject"(e.operation)

Figure 8-21 Abstract Syntax for select and reject Expressions

Cross References
1. SequenceExpansionExpression see Subclause 8.3.19

Semantics
A sequence expansion expression with a select or reject expression must have an argument
expression with type Boolean and a multiplicity upper bound of 1. The sequence expansion expression
has the same type and multiplicity upper bound as its primary expression and a multiplicity lower bound
of 0.

The select operation specifies a subset of a sequence. Each element for which the argument expression
evaluates to true is included in the result sequence.

For example, the following expression selects all employees greater than 50 years old:
employees->select e (e.age>50)
The reject operation is similar to select, except that elements for which the argument expression
evaluates to false are included in the result sequence. The reject operation is thus equivalent to a
select operation with the argument expression negated.

For example, the following expression selects all employees who are not married:
employees->reject e (e.isMarried)

8.3.21 collect and iterate Expressions
The collect and iterate operations are used in a sequence expansion expression (see Subclause
8.3.19) to specify a sequence that is derived from some other sequence, but which may contain different
elements than the original sequence. This computation is carried out concurrently in the case of the
collect operation, but sequentially in the case of the iterate operation.

Examples
employees->collect e (e.birthDate)
processSteps->iterate step (step.execute())

Action Language for Foundational UML (ALF) 1.0, Beta 2 69

Syntax
CollectOrIterateOperation(e: CollectOrIterateExpression)

= "collect"(e.operation)
| "iterate"(e.operation)

Figure 8-22 Abstract Syntax of collect and iterate expressions

Cross References
1. SequenceExpansionExpression see Subclause 8.3.19

Semantics
A sequence expansion expression with a collect or iterate operation may have an argument
expression of any type. The sequence expansion expression has the same type as its argument expression
and a multiplicity determined by multiplying the corresponding lower and upper bounds of the
collection and argument expressions (where the product of the unbounded value * with anything is
considered to be *).

The result of a collect or iterate operation is the sequence of the results of evaluating the argument
expression for each element of the input sequence.

For example, the following expression results in the sequence of birth dates of all employees:
employees->collect e (e.birthDate)
Note that, when the argument expression is a property access expression, the collect operation is the
same as a property access expression directly on the input sequence (see Subclause 8.3.6). Thus, the
above example is equivalent to the simpler expression
employees.birthDate
An iterate operation has the same behavior as a collect operation, except that the argument
expression is evaluated sequentially for all elements of the input sequence, in order, rather than
concurrently, as is the case for collect. This can be useful when the argument expression potentially
has side effects.

For example, in the evaluation of the expression
processSteps->iterate step (step.execute())
the execution of the process steps will occur sequentially, and the execution of each step will take place
in the context resulting from the completion of the previous step. As for collect, any results returned
from the execute operation invocations will be collected into a result sequence.

70 Action Language for Foundational UML (ALF) 1.0, Beta 2

8.3.22 forAll, exists and one Expressions
The forAll, exists and one operations are used in a sequence expansion expression (see Subclause
8.3.19) to test a Boolean argument expression on the elements of a sequence. The forAll operation
tests that the condition holds for all elements, the exists operation that it holds for at least one element
and the one operation that it holds for exactly one element.

Examples
employees->forAll e (e.age<=65)
employees->exists e (e.firstName=="Jack")
employees->one e (e.title=="President")
Syntax
ForAllOrExistsOrOneOperation(e: ForAllOrExistsOrOneExpression)

= "forAll"(e.operation)
| "exists"(e.operation)
| "one"(e.operation)

Figure 8-23 Abstract Syntax for forAll, exists and one Expressions

Cross References
1. SequenceExpansionExpression see Subclause 8.3.19

Semantics
A sequence expansion expression with a forAll, exists or one operation must have an argument
expression with type Boolean and a multiplicity upper bound of 1. The sequence expansion expression
has type Boolean and multiplicity [1..1].

The result of a forAll operation is true of the argument expression evaluates to true for all elements of
the input sequence and false otherwise.

For example, the following expression evaluates to true if every employee is no older than 65:
employees->forAll e (e.age<=65)
The result of an exists operation is true if the argument expression evaluates to true for at least one
element of the input sequence.

For example, the following expression evaluates to true if at least one employee has the first name
"Jack":
employees->exists e (e.firstName=="Jack")
The result of a one operation is true if the argument expression evaluates to true for exactly one element
of the input sequence.

Action Language for Foundational UML (ALF) 1.0, Beta 2 71

For example, the following expression evaluates to true if there is exactly one employee with the title
"President":
employees->one e (e.title=="President")

8.3.23 isUnique Expression
The isUnique operation is used in a sequence expansion expression (see Subclause 8.3.19) to test
whether an expression evaluates to a different value for every element of a collection.

Examples
employees->isUnique e (e.employeeIdentificationNumber)
Syntax
IsUniqueOperation(e: IsUniqueExpression)

= "isUnique"(e.operation)

Figure 8-24 Abstract Syntax for isUnique Expressions

Cross References
1. SequenceExpansionExpression see Subclause 8.3.19

Semantics
A sequence expansion expression with an isUnique operation must have a single argument expression
with a multiplicity upper bound of 1. The sequence expansion expression has type Boolean and
multiplicity [1..1].

The result of an isUnique operation is true if the argument expression evaluates to a different value for
every element of the input collection.

For example, the following expression evaluates to true if every employee has a unique employee
identification number:
employees->isUnique e (e.employeeIdentificationNumber)

8.4 Increment and Decrement Expressions
An increment expression is one that uses the increment operator ++. A decrement expression is one that
uses the decrement operator --. Either of these operators may be used in either a prefix form, in which
the operator appears before the the operand expression, or a postfix form, in which the operator appears
after the operand expression.

72 Action Language for Foundational UML (ALF) 1.0, Beta 2

Examples
Postfix Form
count++
size--
total[i]++
Prefix Form
++count
--numberWaiting[queueIndex]
Syntax
IncrementOrDecrementExpression(e: IncrementOrDecrementExpression)

= PostfixExpression(e)
| PrefixExpression(e) (e.isPrefix=true)

PostfixExpression(e: IncrementOrDecrementExpression)
= LeftHandSide(e.operand) AffixOperator(e.operator)

PrefixExpression(e: IncrementOrDecrementExpression)
= AffixOperator(e.operator) LeftHandSide(e.operand)

AffixOperator(op: String)
= "++"(op) | "--"(op)

Figure 8-25 Increment and Decrement Expressions

Cross References
1. Expression see Subclause 8.1

2. LeftHandSide see Subclause 8.8

Semantics
The operand expression for an increment or decrement expression must conform to the syntax and static
semantics for the left hand side of an assignment (see Subclause 8.8). It must have type Integer and
multiplicity upper bound of 1. The increment or decrement expression has type Integer, the same
multiplicity lower bound as its operand expression and a multiplicity upper bound of 1.

The effect of an increment or decrement expression is to increment (++) or decrement (--) the value of
its operand and then reassigns the result to the operand. If the operator is used as a postfix, then the
value of the expression is the value of its operand before it is reassigned. If the operator is used as a
prefix, the value of the expression is the values of its operand after it is reassigned.

Action Language for Foundational UML (ALF) 1.0, Beta 2 73

For example, if the local name a has the value 5, then both a++ and ++a assign the value 6 to a.
However the value of the expression a++ itself is 5, while the value of ++a is 6.

8.5 Unary Expressions

8.5.1 Overview
A unary expression is an expression with a single operand expression and an operator that performs
some action on the values produced by the operand. Unary operators include numeric unary operators,
Boolean negation and isolation. Cast expressions, which filter a sequence of values based on type, are
also considered unary expressions in terms of concrete syntax, even though their “operator” is given by
a type name, not a fixed symbol.

The static and execution semantics of each kind of unary expression are discussed further in subsequent
subclauses.

Syntax
UnaryExpression(e: Expression)

= PrimaryExpression(e)
| IncrementOrDecrementExpression(e)
| BooleanUnaryExpression(e)
| BitStringUnaryExpression(e)
| NumericUnaryExpression(e)
| CastExpression(e)
| IsolationExpression(e)

Figure 8-26 Base Abstract Syntax for Unary Expressions

Cross References
1. Expression see Subclause 8.1

2. PrimaryExpression see Subclause 8.3.1

3. IncrementOrDecrementExpression see Subclause 8.4

4. BooleanUnaryExpression see Subclause 8.5.2

5. NumericUnaryExpression see Subclause 8.5.4

6. CastExpression see Subclause 8.5.5

7. IsolationExpression see Subclause 8.5.6

74 Action Language for Foundational UML (ALF) 1.0, Beta 2

8.5.2 Boolean Unary Expressions
A Boolean unary expression is a unary expression whose operator acts on and produces Boolean
values. The only Boolean unary operator is the negation operator !.

Examples
!isActive
!this.running
Syntax
BooleanUnaryExpression(e: BooleanUnaryExpression)

= "!"(e.operator) UnaryExpression(e.operand)

Figure 8-27 Abstract Syntax of Boolean Unary Expressions

Cross References
1. UnaryExpression see Subclause 8.5.1

Semantics
A Boolean unary expression must have an operand expression with type Boolean and a multiplicity
upper bound of 1. The Boolean unary expression has type Boolean, the same multiplicity lower bound
as its operand expression and a multiplicity upper bound of 1.

The functionality of the Boolean negation operator is the same as an application of the Alf library
BooleanFunctions::'!' function (see Subclause 11.3.1) with the operand expression as its argument.
If the operand is true, the result is false. If the operand is false, the result is true.

8.5.3 BitString Unary Expressions
A BitString unary expression is a unary expression whose operator acts on a bit string (or an integer
convertible to a bit string) and produces a bit string. The only BitString unary operator is the bit-wise
complement operator ~.

Examples
~registerContext
~memory.getByte(address)
Syntax
BitStringUnaryExpression(e: BitStringUnaryExpression)

= "~"(e.operator) UnaryExpression(e.operand)

Action Language for Foundational UML (ALF) 1.0, Beta 2 75

Figure 8-28 Abstract Syntax of BitString Unary Expressions

Semantics
A BitString unary expression must have an operand expression with type BitString or Integer and
a multiplicity upper bound of 1. The BitString unary expression has type BitString, the same
multiplicity lower bound as its operand expression and a multiplicity upper bound of 1. If the operand is
an integer, then it is first converted to a bit string by applying the library
BitStringFunctions::ToBitString function (see Subclause 11.3.5).

The functionality of the BitString bit-wise complement operator is the same as an application of the
Alf library BitStringFunctions::'~' function (see Subclause 11.3.5) with the operand expression as
its argument. The result is a bit string that has a bit set (value 1) in each bit position in which the
operand bit string had its bit unset (value 0) and a bit unset (value 0) in each bit position in which the
operand bit string had its bit set (value 1).

8.5.4 Numeric Unary Expressions
A numeric unary expression is a unary expression that acts on and produces numeric values. The
numeric unary operators are + and -.

Examples
+1234
-42
+(a*b)
-absoluteValue
Syntax
NumericUnaryExpression(e: NumericUnaryExpression)

= NumericUnaryOperator(e.operator) UnaryExpression(e.operand)
NumericUnaryOperator(op: String)

= "+"(op) | "-"(op)

Figure 8-29 Abstract Syntax of Numeric Unary Expressions

76 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. UnaryExpression see Subclause 8.5.1

Semantics
A numeric unary expression must have an operand expression with type Integer and a multiplicity
upper bound of 1. A numeric unary expression has type Integer, the same multiplicity lower bound as
its operand expression and a multiplicity upper bound of 1.

The unary plus operator does not change its operand value, while the unary minus operator negates it.
The unary minus operator has the same functionality as application of the Alf library
IntegerFunctions::Neg function (see Subclause 11.3.2), with the operand expression as the argument.

NOTE. While the unary plus operator does not have any mathematical effect on its operand, it can be
used as a way to effectively denote an Integer literal value. For example the literal “1234” has the type
Natural (see Subclause 7.7.2) and could be either an Integer or an UnlimitedNatural value.
However the expression “+1234” is unambiguously an Integer.

8.5.5 Cast Expressions
A cast expression is used to filter the values of its operand expression to those of a given type. The type
is named within parenthesizes and prefixes the operand expression as an effective unary operator.

Examples
(fUML::Syntax::Activity)this.getTypes()
(Person)invoice.payingParty
(any)this
Syntax
CastExpression(e: CastExpression)

= "(" TypeName(e.typeName) ")" NonNumericUnaryExpression(e.operand)
NonNumericUnaryExpression(e: Expression)

= PrimaryExpression(e)
| PostfixExpression(e)
| BooleanUnaryExpression(e)
| BitStringUnaryExpression(e)
| CastExpression(e)
| IsolationExpression(e)

Figure 8-30 Abstract Syntax of Cast Expressions

Action Language for Foundational UML (ALF) 1.0, Beta 2 77

Cross References
1. Expression see Subclause 8.1

2. TypeName see Subclause 8.2

3. QualifiedName see Subclause 8.2

4. PrimaryExpression see Subclause 8.3.1

5. TypeName see Subclause 8.3.15

6. PostfixExpression see Subclause 8.4

7. BooleanUnaryExpression see Subclause 8.5.2

8. IsolationExpression see Subclause 8.5.6

Semantics
Unless the type name in a cast expression is the keyword any, the cast expression has the given type (see
also Subclause 8.2 on type names). If the type name is any, then the cast expression is untyped. If the
type name is a qualified name, then it must resolve to a classifier, which must not be a template, though
it may be a binding of a template classifier.

A cast expression is evaluated by first evaluating its operand expression, producing a sequence of
values. Any values of the operand expression whose dynamic type does not conform to the type of the
cast expression are filtered out, so that all result values of the cast expression are of the given type. If the
cast expression is untyped, then no values are filtered out.

For example, the cast expression
(Integer)any[]{1,"banana",2}
evaluates to
Integer[]{1,2}
NOTE. The library type Natural is a subtype of Integer and UnlimitedNatural. This means that
natural literals of type Natural (see Subclause 7.7.2) can be cast to Integer or UnlimitedNatural.
Thus, (Integer)2 is the Integer value 2, while (UnlimitedNatural)2 is the UnlimitedNatural
value 2.

The multiplicity lower bound of a cast expression is 0 and the upper bound is the same as that of the
operand expression.

8.5.6 Isolation Expressions
An isolation expression is a unary expression with the isolation operator $.

NOTE. The isolation expression notation is not available at the minimum conformance level (see
Subclause 2.1).

Examples
$this.monitor.getActiveSensor().getReading()
Syntax
IsolationExpression(e: IsolationExpression)

= "$"(e.operator) UnaryExpression(e.operand)

78 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-31 Abstract Syntax of Isolation Expressoins

Cross References
1. UnaryExpression see Subclause 8.5.1

Semantics
The isolation operator indicates that its operand expression should be evaluated in isolation, similarly to
the use of the @isolated annotation for a statement (see Subclause 9.2). That is, during the evaluation
of the operand expression, no object accessed as part of the evaluation of the expression or as the result
of a synchronous invocation from the expression may be modified by any action that is not executed as
part of the operand expression or as the result of a synchronous invocation from that expression.

NOTE. See Subclause 8.5.3.1 of the fUML Specification for a complete discussion of the semantics of
isolation.

An isolation expression has the type and multiplicity of its operand expression.

8.6 Binary Expressions

8.6.1 Overview
A binary expression is an expression with two operand expressions and an operator that performs some
action on the values produced by the operands. Binary operators include arithmetic, relational, equality,
logical and conditional logical operators. Classification expressions, which test if a value has a certain
type, are also syntactically similar to binary expressions, except that one of the “operands” of a
classification expression is actually a type name.

Syntax
See the concrete syntax for each kind of binary expression in subsequent subclauses.

Figure 8-32 Base Abstract Syntax for Binary Expressions

Action Language for Foundational UML (ALF) 1.0, Beta 2 79

Semantics
Except in the case of conditional logical expressions (see Subclause 8.6.8), the operand expressions of a
binary expression are evaluated concurrently and then the operator is applied to their results. Because of
the concurrent evaluation of the operands, it is not legal to assign the same local name in both operand
expressions.

The semantics of each kind of binary expression are discussed further in subsequent subclauses.

8.6.2 Arithmetic Expressions
An arithmetic expression is a binary expression with an arithmetic operator. Arithmetic operators
include the multiplicative operators are *, / and % and the additive operators + and -. The
multiplicative operators all have a higher precedence than the additive operators. All arithmetic
operators are syntactically left-associative (they group from left to right).

Examples
amount * interestRate
duration / timeStep
length % unit
initialPosition + positionChange
basePrice - discount
Syntax
UnaryOrMultiplicativeExpression(e: Expression)

= UnaryExpression(e)
| MultiplicativeExpression(e)

MultiplicativeExpression(e: ArithmeticExpression)
= UnaryOrMultiplicativeExpression(e.operand1)
 MultiplicativeOperator(e.operator) UnaryExpression(e.operand2)

MultiplicativeOperator(op: String)
= "*"(op) | "/"(op) | "%"(op)

UnaryOrArithmeticExpression(e: Expression)
= UnaryOrMultiplicativeExpression(e)
| AdditiveExpression(e)

AdditiveExpression(e: ArithmeticExpression)
= UnaryOrArithmeticExpression(e.operand1)
 AdditiveOperator(e.operator)
 UnaryOrMultiplicativeExpression(e.operand2)

AdditiveOperator(op: String)
= "+"(op) | "-"(op)

Figure 8-33 Abstract Syntax of Arithmetic Expressions

80 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. UnaryExpression see Subclause 8.5.1

2. BinaryExpression see Subclause 8.6.1

Semantics
The operand expressions for an arithmetic operator other than + must be of type Integer. The operand
expressions for the + operator must either both be of type Integer or both be of type String. In all
cases, the operand expressions must have a multiplicity upper bound of 1.

The functionality of the arithmetic operators is equivalent to the application of the similarly named
primitive functions from the library IntegerFunctions package (see Subclause 11.3.2) or
StringFunctions package (see Subclause 11.3.3), depending on the type of the operand expressions,
with the two operand expressions as arguments.

The * operator denotes multiplication, the / operator denotes division and the % operator denotes
remainder. The + operator denotes either addition or string concatenation. The – operator denotes
subtraction.

An arithmetic expression has the same type as its operands and a multiplicity upper bound of 1. Its
multiplicity lower bound is 0 if the lower bound if either operand expression is 0 and 1 otherwise.

8.6.3 Shift Expressions
A shift expression is a binary expression with a shift operator. The shift operators are left shift <<,
signed right shift >> and unsigned right shift >>>. They have a lower precedence than any of the
arithmetic operators. They are syntactically left-associative (they group left to right). The first operand
of a shift operator must be a bit string (or an integer convertible to a bit string) and the second operand
then specifies the number of bit positions that bit string is to be shifted.

Examples
bitmask << wordLength
wordContent >> offset
(value&0xF0) >>> 8
Syntax
ArithmaticOrShiftExpression(e: Expression)

= UnaryOrArithmeticExpression(e)
| ShiftExpression(e)

ShiftExpression(e: ShiftExpression)
= ArithmeticOrShiftExpression(e.operand1) ShiftOperator(e.operator)
 UnaryOrArithmeticExpression(e.operand2)

ShiftOperator(op: String)
= "<<"(op) | ">>"(op) | ">>>"(op)

Action Language for Foundational UML (ALF) 1.0, Beta 2 81

Figure 8-34 Abstract Syntax of Shift Expressions

Cross References
1. BinaryExpression see Subclause 8.6.1

2. UnaryOrArithmeticExpression see Subclause 8.6.2

Semantics
The first operand expression of a shift expression must have the type BitString or Integer. The
second operand expression must have the type Integer. The operand expressions must each have a
multiplicity upper bound of 1.

The shift operators are used to perform bit shifts on bit strings. If the first operand is an integer, then it is
first converted to a bit string by applying the library BitStringFunctions:: ToBitString function
(see Subclause 11.3.5). High-order bits in a bit string are considered to be on the left, while low-order
bits are on the right.

The functionality of the shift operators is equivalent to the application of the similarly named primitive
functions from the library BitStringFunctions package (see Subclause 11.3.5) with the two operand
expressions as arguments.

The value of b<<n is b left-shifted n positions. Since the bit string length is fixed, the left n bits of b are
lost. The right n bits of the resulting value are zero.

The value of b>>n is b right-shifted n positions. Since the bit string length is fixed, the right n bits of b
are lost. The left n bits of the resulting value are set the same as the rightmost (highest bit position) bit of
b. If b is the twos-complement representation of an integer (e.g., if it was converted from an integer
value), then this corresponds to sign-extension of the original value.

The value of b>>>n is the same as for b>>n, except that the left n bits of the resulting value are zero
(zero-extension instead of sign-extension).

A shift expression has type BitString and a multiplicity upper bound of 1. Its multiplicity lower bound
is 0 if the lower bound of either operand expression is 0 and 1 otherwise.

8.6.4 Relational Expressions
A relational expression is a binary expression with a relational operator. The relational operators are <,
>, <= and >=. They have a lower precedence than any of the arithmetic or shift operators. The relational
operators are not associative, and it is not legal to use more than one in an expression without
parentheses. For example, a<b<c is not syntactically legal, though (a<b)<c and a<(b<c) are. (But, even
with parentheses, these expressions are not actually useful, since the parenthesized expression has type
Boolean, which is not legal as an argument to the outer < operator.)

82 Action Language for Foundational UML (ALF) 1.0, Beta 2

NOTE. The restriction on associative relational expressions avoids a syntactic ambiguity with the
syntax for the invocation of a template behavior with an explicit binding. For example, the expression
A(C) can be unambiguously parsed as an invocation of the behavior A, since the “>” cannot
legally be parsed as a relational greater than operator.

Examples
sensorReading > threshold
size < maxSize
size >= minSize
count <= limit
Syntax
ShiftOrRelationalExpression(e: Expression)

= ArithmeticOrShiftExpression(e)
| RelationalExpression(e)

RelationalExpression(e: RelationalExpression)
= ArithmeticOrShiftExpression(e.operand1)
 RelationalOperator(e.operator)
 ArithmeticOrShiftExpression(e.operand2)

RelationalOperator(op: String)
= "<"(op) | ">"(op) | "<="(op) | ">="(op)

Figure 8-35 Abstract Syntax of Relational Expressions

Cross References
1. BinaryExpression see Subclause 8.6.1

2. ArithmeticOrShiftExpression see Subclause 8.6.3

Semantics
The operand expressions for a comparison operator must have the type Integer, UnlimitedNatural or
Natural. However, it is not allowed to have one operand expression be Integer and the other be
UnlimitedNatural. The operand expressions must each have a multiplicity upper bound of 1.

The relational operators are used to compare the values of two numbers. The number being compared
may be either integers or unlimited naturals, but it is not legal to directly compare an integer to an
unlimited natural number.

Thus, the expression
3 < *
is legal (and evaluates to true), since the natural literal 3 is automatically cast to UnlimitedNatural in
this context. However, the expression

Action Language for Foundational UML (ALF) 1.0, Beta 2 83

+3 < *
is not legal, because the literal +3 has type Integer. A cast expression (see Subclause 8.5.5) must be
used in order to directly compare an integer value to an unlimited natural value; for example,
(UnlimitedNatural)(+3) < *
evaluates to true.

The functionality of the relational operators is equivalent to the application of the similarly named
primitive functions from the library IntegerFunctions package (see Subclause 11.3.2) or
UnlimitedFunctions package (see Subclause 11.3.4), depending on the type of the operand
expressions, with the two operand expressions as arguments.

NOTE. The Alf Standard Model Library comparison functions are based on the comparison functions
available in the fUML Foundation Model Library. The Foundation Model Library does not provide
comparison operators for the primitive type String.

A comparison expression has type Boolean and a multiplicity upper bound of 1. Its multiplicity lower
bound is 0 if the lower bound if either operand expression is 0 and 1 otherwise.

8.6.5 Classification Expressions
A classification expression is an expression with a single operand expression followed by one of the
classification operators instanceof or hastype. A classification expression is used to determine
whether the result of its operand expression has a certain type, which is given as a qualified name after
the classification operator.

Examples
action instanceof ActionActivation
'signal' hastype SignalArrival
Syntax
RelationalOrClassificationExpression(e: Expression)

= ArithmeticOrRelationalExpression (e)
| ClassificationExpression(e)

ClassificationExpression(e: ClassificationExpression)
= ArithmeticOrRelationalExpression(e.operand)
 ClassificationOperator(e.operator)
 QualifiedName(e.typeName)

ClassificationOperator(op: String)
= "instanceof"(op) | "hastype"(op)

84 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 8-36 Abstract Syntax of Classification Expressions

NOTE. The concrete syntax for classification expressions, in terms of form and precedence, is similar to
that of a normal binary expression, except that one of the “operands” is a type rather than a second
expression. However, since only one operand is actually an expression, in the abstract syntax a
classification expression is treated as a kind of unary expression.

Cross References
1. QualifiedName see Subclause 8.2

2. UnaryExpression see Subclause 8.5.1

3. ArithmeticOrRelationalExpression see Subclause 8.6.4

Semantics
The qualified name in a classification expression must resolve to a classifier. The classifier must not be a
template, though it may be the binding of a template classifier (see Subclause 8.2).

The operand expression must have a multiplicity upper bound of 1. A classification expression has type
Boolean, the same multiplicity lower bound as its operand expression and a multiplicity upper bound of
1.

The instanceof operator checks if the dynamic type of its operand conforms to the given type—that is,
whether the argument type is the same as or a direct or indirect subclass of the given type. The hastype
operator, on the other hand, checks if the dynamic type of its argument is the same as the given type.

8.6.6 Equality Expressions
An equality expression is a binary expression with one of the equality operators == (equal to) or != (not
equal to). The equality operators are analogous to the relational operators, except for their lower
precedence. They are syntactically left-associative (they group left to right), so a==b==c parses as
(a==b)==c. However, the result type of a==b is Boolean, so if c is not Boolean, the expression will
always be false. Thus, a==b==c does not test whether a, b and c are all equal.

Examples
errorCount==0
nextRecord!=endRecord
list.next==null

Action Language for Foundational UML (ALF) 1.0, Beta 2 85

Syntax
ClassificationOrEqualityExpression(e: Expression)

= RelationalOrClassificationExpression(e)
| EqualityExpression(e)

EqualityExpression(e: BinaryExpression)
= ClassificationOrEqualityExpression(e.operand1)
 EqualityOperator(e.operator)
 RelationalOrClassificationExpression(e.operand2)

EqualityOperator(op: String)
= "=="(op) | "!="(op)

EqualityOrAndExpression(e: Expression)
= ClassificationOrEqualityExpression(e)
| AndExpression(e)

Figure 8-37 Abstract Syntax of Equality Expressions

Cross References
1. BinaryExpression see Subclause 8.6.1

2. RelationalOrClassificationExpression see Subclause 8.6.5

Semantics
For primitive types, the equality operators test whether two values of the same type are the same value.
A value of a primitive type is never equal to a value of any other type.

NOTE. Since String is a primitive type in UML, not a class, strings may be tested for equality of value
using the regular equality operators.

For structured data types, the equality operators test whether two values of the same type have equal
values for each corresponding attribute. A value of one structured data type is never equal to a value of
any other type. Note also that the participation of a value in association links does not affect its equality
to other values.

For classes, the equality operators test whether the argument values are references to the same object,
that is, they test object identity.

Further, if one of the arguments to an equality operator is empty (that is, it is the empty sequence), then
it is considered to be equal to another empty value, but unequal to any non-empty value. Thus, a==null
is true if and only if isEmpty(a).

An operand expression for an equality operator must have a multiplicity upper bound of 1. An equality
expression has type Boolean and multiplicity [1..1].

86 Action Language for Foundational UML (ALF) 1.0, Beta 2

8.6.7 Logical Expressions
A logical expression is a binary expression with one of the logical operators, including the and operator
&, the exclusive or operator ^ and the inclusive or operator |. These operators may also be used to
perform bit-wise logical operations on bit strings (or integers convertible to bit strings). The logical
operators have different precedence, with & having the highest precedence and | having the lowest
precedence. They all have lower precedence than the equality operators.They are syntactically left-
associative (group left-to-right) and commutative (if their argument expressions have no side effects).

Examples
sensorOff | sensorError
i > min & i < max | unlimited
bitString ^ mask
registerContent & 0x00FF
Syntax
EqualityOrAndExpression(e: Expression)

= ClassificationOrEqualityExpression(e)
| AndExpression(e)

AndExpression(e: LogicalExpression)
= EqualityOrAndExpression(e.operand1) "&"(e.operator)
 ClassificationOrEqualityExpression(e.operand2)

AndOrExclusiveOrExpression(e: Expression)
= EqualityOrAndExpression(e)
| ExclusiveOrExpression(e)

ExclusiveOrExpression(e: LogicalExpression)
= AndOrExclusiveOrExpression(e.operand1) "^"(e.operator)
 EqualityOrAndExpression(e.operand2)

ExclusiveOrOrInclusiveOrExpression(e: Expression)
= AndOrExclusiveOrExpression(e)
| InclusiveOrExpression(e)

InclusiveOrExpression(e: LogicalExpression)
= ExclusiveOrOrInclusiveOrExpression(e.operand1) "|"(e.operator)
 AndOrExclusiveOrExpression(e.operand2)

Figure 8-38 Abstract Syntax of Logical Expressions

Cross References
1. BinaryExpression see Subclause 8.6.1

2. ClassificationOrEqualityExpression see Subclause 8.6.6

Action Language for Foundational UML (ALF) 1.0, Beta 2 87

Semantics
The operand expressions for a logical operator must type Boolean, BitString or Integer. However, if
one of the operands is Boolean, then the other must also be Boolean. The operand expressions must
each have a multiplicity upper bound of 1. Any operand that is an integer is converted to a bit string by
applying the library BitStringFunctions::ToBitString function (see Subclause 11.3.5).

The functionality of the logical operators is equivalent to the application of the similarly named
primitive functions from the library BooleanFunctions package (see Subclause 11.3.1), if the operands
have type Boolean, or BitStringFunctions package (see Subclause 11.3.5), with the two operand
expressions as arguments.

For Boolean operands, the logical operators perform the indicated logical operation and produce a
Boolean result:

• For &, the result value is true if both argument values are true; otherwise, the result is false.

• For ^, the result value is true if the argument values are different; otherwise, the result is false.

• For |, the result value is false if both argument values are false; otherwise, the result is true.

For BitString or Integer operands, the logical operators perform the indicated logical operation, as
above, bit-wise on corresponding bits of the operands and produce a BitString result. For the purpose
of carrying out bit-wise logical operations, a bit that is set (value of 1) is considered to be “true” while a
bit that is unset (value of 0) is considered to be “false”.

A logical expression has the same type as its operand expressions and a multiplicity upper bound of 1.
Its multiplicity lower bound is 0 if the lower bound if either operand expression is 0 and 1 otherwise.

8.6.8 Conditional Logical Expressions
A conditional logical expression is a binary expression using one of the conditional logical operators &&
(conditional-and) and || (conditional-or). The operators are similar to the logical operators & and |,
except that the evaluation of their second operand expression is conditioned on the result of evaluating
the first expression. In the case of the && operator, the second operand is evaluated only if the value of
the first operand is true. In the case of the || operator, the second operatnd is evaluated only if the value
of the first operand is false.

Examples
index > 0 && value[index] < limit
index == 0 || value[index] >= limit
Syntax
InclusiveOrOrConditionalAndExpression(e: Expression)

= ExclusiveOrOrInclusiveOrExpression(e)
| ConditionalAndExpression(e)

ConditionalAndExpression(e: ConditionalLogicalExpression)
= InclusiveOrOrConditionalAndExpression(e.operand1) "&&"(e.operator)
 ExclusiveOrOrInclusiveOrExpression(e.operand2)

ConditionalAndOrConditionalOrExpression(e: Expression)
= InclusiveOrOrConditionalAndExpression(e)
| ConditionalOrExpression(e)

88 Action Language for Foundational UML (ALF) 1.0, Beta 2

ConditionalOrExpression(e: ConditionalLogicalExpression)
= ConditionalAndOrConditionalOrExpression(e.operand1) "||"(e.operator)
 InclusiveOrOrConditionalAndExpression(e.operand2)

Figure 8-39 Abstract Syntax of Conditional Logical Expressions

Cross References
1. BinaryExpression see Subclause 8.6.1

2. ExclusiveOrOrInclusiveOrExpression see Subclause 8.6.7

Semantics
An expression with a conditional-and operator is evaluated by first evaluating its first operand
expression. If the the first operand expression evaluates to true, then the second operand expression is
evaluated, and its value is the value for the conditional-and expression. If the first operand expression
evaluates to false, however, the conditional-and expression evaluates to false without ever evaluating its
second operand expression.

An expression with a conditional-or operator is evaluated by first evaluating its first operand expression.
If the first operand expression evaluates to false, then the second operand expression is evaluated, and its
value is the value for the conditional-or expression. If the first operand expression evaluates to true,
however, the conditional-or expression evaluates to true without ever evaluating its second operand
expression.

Since, if the second operand expression is evaluated at all, it is always evaluated after the first, a
conditional logical operator expression is fully associative, even in the presence of side effects. That is,
not only does an expression of the form (expr1 && expr2) && expr3 produce the same result as
expr1 && (expr2 && expr3), the subexpression expr1, including any side effects, will always be
evaluated before expr2, and expr2 before expr3. Similarly, an expression of the form (expr1 ||
expr2) || expr3 produces the same result as expr1 || (expr2 || expr3), with the subexpression
expr1 always evaluated before expr2, and expr2 before expr3. Note that this is not guaranteed for the
logical operators & and |, for which the operand expressions are evaluated concurrently.

The operand expressions to a conditional logical expression must be of type Boolean and have a
multiplicity upper bound of 1. A conditional logical expression has type Boolean and a multiplicity
upper bound of 1. Its multiplicity lower bound is 0 if the lower bound of either operand expression is 0
and 1 otherwise.

A conditional logical operator has special rules for assignment, since it evaluates its arguments
sequentially. Assignments made in the first operand expression are available in the second operand
expression, if it is evaluated. Further, local names defined outside the second operand expression may be
(conditionally) reassigned within that expression. However, local names defined in the second operand
expression are not visible outside that expression, since they would have no assigned value if the second
operand expression is not actually evaluated.

Action Language for Foundational UML (ALF) 1.0, Beta 2 89

8.7 Conditional-Test Expressions
A conditional-test expression uses the Boolean value of one expression to determine which of two other
expressions should be evaluated. The conditional-test operator thus has three operands. The ? symbol
appears between the first and second operand expressions and : appears between the second and third
expressions. The conditional-test operator is syntactically right-associative (it groups right-to-left), so
that an expression of the form a?b:c?d:e is equivalent to a?b:(c?d:e).

Examples
isNormalOps? readPrimarySensor(): readBackupSensor()
Syntax
ConditionalExpression(e: Expression)

= ConditionalAndOrConditionalOrExpression(e)
| ConditionalTestExpression(e)

ConditionalTestExpression(e: ConditionalTestExpression)
= ConditionalAndOrConditionalOrExpression(e.operand1) "?"
 Expression(e.operand2) ":" ConditionalExpression(e.operand3)

Figure 8-40 Abstract Syntax of Conditional-Test Expressions

Cross References
1. Expression see Subclause 8.1

2. ConditionalAndOrConditionalOrExpression see Subclause 17.22

Semantics
A conditional test is evaluated by first evaluating the first operand expression. If this expression
evaluates to true, then the second operand expression is evaluated, providing the values for the
conditional-test expression. If the first operand expression evaluates to false, then the third operand
expression is evaluated, providing the values for the conditional-test expression.

The first operand expression for a conditional-test operator must be of type Boolean and have a
multiplicity upper bound of 1.

The type of a conditional-test operator expression is the effective common ancestor (see below) of the
types of its second and third operand expressions, if one exists. If none exists, then the conditional-test
operator expression is untyped.

90 Action Language for Foundational UML (ALF) 1.0, Beta 2

The multiplicity lower bound of a conditional-test operator expression is zero if the multiplicity lower
bound of its first operand expression is zero and the minimum of the multiplicity lower bounds of its
second and third operand expressions otherwise. Its multiplicity upper bound is the maximum of the
multiplicity upper bounds of its second and third operand expressions.

A conditional-test operator has special rules for assignment, since it evaluates its arguments
sequentially. Local names assigned in the first operand expression may be used in the second and third
operand expressions. Further, any newly defined local names in the second and third argument
expressions must be defined in both those expressions.

Effective common ancestor
A common ancestor for a set of classifiers is a classifier that is either equal to or a generalization
(directly or indirectly) of all the classifiers in the given set.

A most specialized common ancestor is a common ancestor for which there is no other common
ancestor, for the same given set of classifiers, that is a specialization (directly or indirectly) of the most
specialized common ancestor. Due to multiple generalization, it is possible for a set of classifiers to have
more than one most specialized common ancestor.

If a set of classifiers has a single most specialized common ancestor, then this is the effective common
ancestor for the set. Otherwise, the effective common ancestor of the set of most specialized common
ancestors (if any) is also the effective common ancestor of the original set of classifiers. Note that some
sets of classifiers have no effective common ancestor.

8.8 Assignment Expressions
An assignment expression is used to assign a value to a local name, output parameter or attribute. There
are nine assignment operators. A simple assignment is one made using the simple assignment operator
=. A compound assignment uses one of the eight other operators, which compound a binary operator
with an assignment.

An assignment operator has two operand expressions. The first is known as the left-hand side and has a
form restricted to representing a local name, an output parameter or a (possibly indexed) attribute. The
left-hand side denotes the target to be assigned by the assignment expression. The second operand
expression is known as the right-hand side. The right-hand side expression evaluates to the value or
values that are assigned to the target designated by the left-hand side.

All assignment operators are syntactically right-associative (they group right-to-left). Thus, an
expression of the form a=b=c is equivalent to a=(b=c), which assigns the value of c to b and then
assigns the value of b to a.

Examples
customer = new Customer() // Local name assignment
customer[i] = new Customer() // Indexed local name assignment
reply = this.createReply(request,result) // Output parameter assignment
customer.email = checkout.customerEmail // Attribute assignment
customer.address[i] = newAddress // Indexed attribute assignment
x += 4 // Compound assignment
filename += ".doc" // Compound assignment

Action Language for Foundational UML (ALF) 1.0, Beta 2 91

Syntax
AssignmentExpression(e: AssignmentExpression)

= LeftHandSide(e.leftHandSide) AssignmentOperator(e.operator)
 Expression(e.rightHandSide)

LeftHandSide(lhs: LeftHandSide)
= NameLeftHandSide(lhs) [Index(lhs.index)]
| FeatureLeftHandSide(lhs) [Index(lhs.index)]
| "(" LeftHandSide(lhs) ")"

NameLeftHandSide(lhs: NameLeftHandSide)
= PotentiallyAmbiguousQualifiedName(lhs.target)

FeatureLeftHandSide(lhs: FeatureLeftHandSide)
= FeatureReference(lhs.feature)

AssignmentOperator(op: String)
= "="(op) | "+="(op) | "-="(op) | "*="(op) | "%="(op) | "/="(op) |
 "&="(op) | "|="(op) | "^="(op) | "<<="(op) | ">>="(op) | ">>>="(op)

Figure 8-41 Abstract Syntax for Assignment Expressions

Cross References
1. Expression see Subclause 8.1

2. QualifiedName see Subclause 8.2

3. FeatureReference see Subclause 8.3.6

4. Index see Subclause 8.3.13

NOTE. See Subclause 8.2 for rules on the disambiguation of a qualified name with the dot notation
versus a feature reference used as a left-hand side.

92 Action Language for Foundational UML (ALF) 1.0, Beta 2

Semantics
Left-Hand Side
The left-hand side of an assignment expression may be one of the following.

• Local name. The assigned source of the local name before the assignment expression must not be a
loop variable definition (see Subclause 9.12), a @parallel annotation (see Subclause 9.12) or a
sequence expansion expression (see Subclause 8.3.19).

• Output parameter name. The named parameter must have mode out or inout. A parameter name
may be qualified with the name of the behavior or operation that owns it, though this is not required.
The identified parameter must not be a template. The assignment expression must appear within the
definition of the behavior that owns the parameter or the method of the operation that owns the
parameter.

• Property reference. A property reference is a feature reference that names a property of the type of
its primary expression. As for a property access expression (see Subclause 8.3.6), the identified
property may be either a structural feature or an association end, but must not be a template. The
primary expression of the property reference must have a multiplicity upper bound of 1.

A left-hand side may also include an index. An index expression must have type Integer and a
multiplicity upper bound no greater than 1. An index is only allowed on a local or parameter name if the
name has been previously assigned and on a property reference if the named property is ordered.

The type of the left-hand side is determined as given below.

• Local Name. Determined by its first assignment. If this is the first assignment of the local name, then
the type of the left-hand side is the type of the right-hand side expression.

• Parameter Name. As declared for the named parameter.

• Property Reference. As given for the named property.

If the left-hand side has an index, then the multiplicity of the left-hand side is [1..1]. Otherwise, the
multiplicity of the left-hand side is determined as given for its type above. If this is the first assignment
of the local name, then the multiplicity lower bound for the new local name is 0; if the multiplicity upper
bound of the right-hand side of the assignment is 1, then the multiplicity upper bound of the new local
name is 1, otherwise, it is *.

Assignability
The right-hand side of an assignment must be assignable to the left-hand side. In general, this means
that the right-hand side is statically compatible in type and multiplicity with the left-hand side, either
directly or after the application of a conversion.
A right-hand side is assignable to a left-hand side if any of the following conditions hold.

1. Conformance. The left-hand is untyped or the right-hand side has a type that conforms to the type of
the left-hand side (see Subclause 8.2 for the definition of type conformance). If the multiplicity
upper bound of the left-hand side is less than or equal to 1, then the multiplicity upper bound of the
right-hand side cannot be greater than that of the left-hand side.

2. Null Conversion. The right-hand side is untyped with a multiplicity of [0..0] (i.e., guaranteed to be
null) and the left-hand side has a multiplicity lower bound of 0 (regardless of type).

Action Language for Foundational UML (ALF) 1.0, Beta 2 93

3. Collection Conversion. The type of the right-hand side is a collection class (see Subclause 11.6), the
right-hand side has a multiplicity upper bound of 1 and the type and multiplicity of the result of
applying the toSequence operation to the right-hand side would be assignable to the left-hand side.
The assigned value is the result of implicitly calling the toSequence operation on the result of
evaluating the right-hand side expression.

4. Bit String Conversion. The type of the right-hand side conforms to Integer, and the type of the left-
hand side is BitString. If the multiplicity upper bound of the left-hand side is less than or equal to
1, then the multiplicity upper bound of the right-hand side cannot be greater than that of the left-hand
side. The assigned value is the result of implicitly invoking the standard library
BitStringFunctions::ToBitString function (see Subclause 11.3.5) on each of the values in the
result of evaluating the right-hand side expression. Note that both collection conversion and bit
string conversion may apply. In this case, bit string conversion is applied after collection conversion.

The concept of assignability is defined here for assignments, but it can actually be applied between any
two typed elements with multiplicity. It is used in this way to define the required compatibility between
formal parameters and arguments in the tuples of an invocation expression (see Subclause 8.3.9). When
assignability is used in this general way, the term “left-hand side” used here in its definition should be
read as “the target element” and the term “right-hand side” should be read as “the source element”.

Simple Assignment
A simple assignment has the form lhs = expr. The right-hand side expression of a simple assignment
must be assignable to the left-hand side, as defined above.

When a simple assignment expression is evaluated, the right-hand side expression is evaluated first. If
the left-hand side contains an index expression, this is evaluated after the right-hand side expression.
The result of the right-hand side expression is then assigned to the left-hand side, as described below
(possibly after conversion as discussed above).

If the left-hand side does not have an index expression, then the assignment proceeds as follows.

• Local name. If the local name already exists, then it is assigned a new value. Otherwise, the
assignment expression acts as the definition of a new local name with the type of the right-hand side
expression.

NOTE. It is not required to declare a local name before its first assignment. A first assignment can
be used to implicitly define a new local name. However, if a local name is defined using a local
name declaration statement (see Subclause 9.6), that is considered to be its first assignment.

• Output parameter name. A new value is assigned to the named parameter. Note that any previously
assigned value is effectively overwritten. That is, at the completion of the execution of a behavior,
output parameters are given their last assigned value.

• Property reference. A new value is assigned to the named property of the referenced object or
structured data value.

If the property reference has a primary expression that is a local name or parameter name and has a
type that is a structured data type, then the assignment to the property reference effectively assigns a
new data value to that local or parameter name, with the given property updated.

94 Action Language for Foundational UML (ALF) 1.0, Beta 2

If the left-hand side includes an index, then only the value at the index position is overwritten by the
right-hand side value. However, if the right-hand side value is an empty collection, then the former
value at the index position is removed without being replaced by a new value.

NOTE. Since null represents the empty collection, not a value itself, an expression of the form x.a[2]
= null will remove the second value of the collection x.a, not assign some “null” value to it.

A simple assignment expression has the type and multiplicity of its right-hand side expression.

As noted earlier for a property reference left-hand side, an assignment expression may also be used to
update a binary association in which an instance participates via reference to the opposite association
end. In this case, the effect of the assignment is equivalent to an appropriate link operation (see
Subclause 8.3.13).

As an example of an association end update, consider the following association (represented in Alf
notation—see Subclause 10.4.5).
assoc Owns {
 owner: Person;
 house: House[*];
}
If the association Owns is in the current scope (that is, visible without qualification), and newHouse is a
House, then the expression
newHouse.owner = jack;
is equivalent to the link operation
Owns.createLink(owner => jack, house => newHouse)
The result value of an assignment expression is the value of the right-hand side. Thus, the expression
WriteLine(a = 3)
assigns 3 to a and then writes the value “3”. Note that this should not be confused with the named tuple
notation, such as
WriteLine(value => 3)
which uses the “=>” symbol, rather than “=”.

Compound Assignment
A compound assignment has the form lhs op= expr, where op is any arithmetic (see Subclauses 8.6.1)
or logical (see Subclause 8.6.7) operator. It is equivalent to lhs = lhs op expr (except that, if lhs
contains an index expression, it is only evaluated once).

In a compound assignment expression, if the left-hand side is a name (qualified or unqualified), it must
also satisfy the semantics of a name expression (see Subclause 8.3.3). If the left-hand side is a feature
reference, then it must also satisfy the static semantics of a property access expression (see Subclause
8.3.6). If the left-hand side has an index, then, in addition to the requirements for its name or feature
reference, the left-hand side overall must also satisfy the semantics of a sequence access expression (see
Subclause 8.3.16).

Both the left-hand side and the right-hand side must have multiplicity upper bounds of 1 and must have
the same type, consistent with the arithmetic or logical operator used in the compound assignment
operator (see Subclauses 8.6.1 or 8.6.7, respectively).

Action Language for Foundational UML (ALF) 1.0, Beta 2 95

9 Statements
Statements are segments of behavior that are executed for their effect and do not have values. They are
the primary units of sequencing and control in the Alf representation of behavior. This clause defines the
kinds of statement allowed in Alf.

The full conformance level includes all kinds of statements specified in this clause. However, the
minimum conformance level only requires a subset of the full statement syntax. Therefore, in each of the
concrete syntax grammar productions given in the subclauses of this clause, some portion of the
production may be italicized. Only the italicized portions apply at the minimum conformance level.
Unitalicized portions may be ignored for minimum conformance. (See also Subclause 2.1 on the
definition of syntactic conformance.)

9.1 Overview
A statement sequence is an Alf text consisting of a list of statements juxtaposed in a linear order. Such
statement sequences may be attached to UML models in order to specify behaviors. A block is a
delineation of a statement sequence for use as a component of a larger syntactic construct.

Examples
{
 'activity' = (Activity)(this.types[1]);
 group = new ActivityNodeActivationGroup();
 group.activityExecution = this;
 this.activationGroup = group;
 group.activation('activity'.node, 'activity'.edge);
}
Syntax
Block(b: Block)

= "{" StatementSequence(b) "}"
StatementSequence(b: Block)

= { DocumentedStatement(b.statement) }
DocumentedStatement(s: Statement)

= [DocumentationComment(s.documentation)] Statement(s)
Statement(s: Statement)

= AnnotatedStatement(s)
| InLineStatement(s)
| BlockStatement(s)
| EmptyStatement(s)
| LocalNameDeclarationStatement(s)
| ExpressionStatement(s)
| IfStatement(s)
| SwitchStatement(s)
| WhileStatement(s)
| DoStatement(s)
| ForStatement(s)
| BreakStatement(s)
| ReturnStatement(s)
| AcceptStatement(s)
| ClassifyStatement(s)

96 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 9-42 Base Abstract Syntax for Statements and Blocks

Cross References
1. SyntaxElement see Subclause 6.5

2. DocumentedElement see Subclause 6.5

3. DocumentationComment see Subclause 7.4.2

4. AnnotatedStatement see Subclause 9.2

5. InLineStatement see Subclause 9.3

6. BlockStatement see Subclause 9.4

7. EmptyStatement see Subclause 9.5

8. LocalNameDeclarationStatement see Subclause 9.6

9. ExpressionStatement see Subclause 9.7

10. IfStatement see Subclause 9.8

11. SwitchStatement see Subclause 9.9

12. WhileStatement see Subclause 9.10

13. DoStatement see Subclause 9.11

14. ForStatement see Subclause 9.12

15. BreakStatement see Subclause 9.13

16. ReturnStatement see Subclause 9.14

17. AcceptStatement see Subclause 9.15

18. ClassifyStatement see Subclause 9.16

Semantics
Unless otherwise annotated (see Subclause 9.3), all the statements in a statement sequence are executed
sequentially in order. See also the discussion for each kind of statement in the following subclauses.

Integration with UML
An Alf statement sequence can be inserted into a UML model using an opaque behavior (UML
Specification, Subclause 13.3.20) in which the unprocessed text of the Alf statement sequence is used as
the body of the opaque behavior and the corresponding language string is "Alf". Opaque behaviors may
be used in a UML model any place that a behavior is allowed.

Action Language for Foundational UML (ALF) 1.0, Beta 2 97

An Alf statement sequence can also be inserted into a UML activity using an opaque action (UML
Specification, Subclause 11.3.26) in which the unprocessed text of the Alf statement sequence is used as
the body of the opaque action and the corresponding language string is "Alf". The input and output pins
of such an action must all be named. The input pins are considered to be the assigned sources (see
Subclause 8.1) for their names within the statement sequence. The names of the output pins may be
assigned within the statement sequence, and their assigned sources at the end of the statement sequence
provide the values for the corresponding output pins. The names of other visible model elements
(qualified as necessary) may also be used as usual within the statement sequence (see Subclause 8.3.3 on
name expressions).

The execution semantics of Alf statements are given formally by the mapping to UML activity graphs
given in the following subclauses. An Alf statement sequence can therefore always be compiled to a part
or all of a UML activity model (which does not necessarily need to be the same as the formal mapping,
but must have an equivalent effect to it—see Subclause 2.2).

Indeed, the semantics of an opaque behavior that only includes unprocessed Alf text in its body may be
considered equivalent to an activity with the same parameters as the opaque behavior, containing the
activity nodes and edges mapped from the body of the opaque behavior. The semantics of an opaque
action that only includes unprocessed Alf text in its body may be considered equivalent to a structured
activity node with the same input and output pins as the opaque action, containing the activity nodes and
edges mapped from the body of the opaque behavior.

Local Names
Local names (see Subclause 8.1) are used in Alf to denote intermediate values in computations within a
statement sequence. The scope of such local names is generally from the point at which they are defined
lexically to the end of the statement sequence, though there are special rules for conditional statements
(see Subclauses 9.8 and 9.9) and loop statements (see Subclauses 9.10, 9.11 and 9.12). Alf does not
provide hierarchical scoping of local names defined in nested blocks.

The assignments of and references to local names in an Alf input text need to be mapped to appropriate
object flow edges from the mapping of the appropriate assignment to the mapping of the reference that
requires that assigned value. The assigned source for a local name is the Alf element that, when
executed, will provide the actual assigned value for that local name. If the assigned source for a local
name is known, then a reference to the assigned value of that local name can be mapped to an object
flow from the mapping of the assigned source.

Since local names can be reassigned in Alf (see Subclause 8.8 on assignment expressions), the assigned
source for any given local name can be different at different points in a statement sequence. In order to
carry out the above mapping, it must always be possible to determine at most one assigned source for
any local name at any point in the text. The general rule is that the latest assignment “lexically previous”
to a reference to a local name is used as the assigned source for that reference. However, some care must
be given to carefully defining this term when assignments are allowed within control structures such as
conditional and looping statements.

The static semantic rules for local names provide the necessary formalization for determining assigned
sources. As with other static semantic rules, these rules are applied by traversing the abstract syntax tree
of a statement sequence. At each point in this traversal, the rules determine the set of local names with
assigned sources. A name that has no assigned source is known as an unassigned name.

98 Action Language for Foundational UML (ALF) 1.0, Beta 2

When the analysis reaches a specific node in the abstract syntax tree representing a certain kind of Alf
construct, a local name with an assigned source is said to have that source before the construct in
question. If the name is unassigned, then it said to be unassigned before the construct. The assignment
rules then determine what the assigned source for the name is after that construct, continuing the
traversal to the next node in the parse tree. The rules may also place restrictions on what assignments are
allowed, in order that the analysis may be carried out.

NOTE. The assignment rules for statements often refer to the rules for assigned values before and after
the evaluation of expressions within the statement. These rules are given for each kind of expression in
the subclauses of Clause 8.

The assigned source for a name before the first statement of a statement sequence is the same as the
assigned source before the statement sequence. The assigned source for a name before each statement
other than the first is the assigned source after the previous statement (as determined by the rules of the
following subclauses for each kind of statement). The assigned source for a name after a statement
sequence is the same as the assigned source after the last statement of the sequence.

Note that a block in Alf is basically just a syntactic delineation of a sequence of statements and does not
introduce new semantics as such. In particular, a block does not introduce a lexically nested scope for
local names. That is, local names with assigned sources lexically previous to and visible from the
statement sequence of a block cannot be redefined in the block (as with a local name declaration
statement—see Subclause 9.6), though they can generally be reassigned unless there is some specific
rule otherwise (such as the special rules for reassignment of local names in a parallel for statement—see
Subclause 9.12).

9.2 Annotated Statements
Certain statements may have annotations that effect the execution of the statement. An annotation has
the form of an identifier preceded by a “@” character. Note that the identifiers for annotations are not
reserved words, but only a limited set of predefined annotation identifiers can be used (see Table 9-6).

A set of annotations for a statement are listed on one or more lines preceding the statement. Each of
these lines has a similar form to an end-of-line lexical comment (see Subclause 7.4). This syntax reflects
the fact that an annotation is essentially a directive used in the mapping of the annotated statement, not
an executable construct in its own right. An annotation may place restrictions on the allowed form of the
statement being annotated, but that statement is still always legal even if the annotation is removed.

Examples
//@isolated
{
 temperature = temperatureSensor.read();
 pressure = pressureSensor.read();
 ActuateControl(temperature, pressure);
}
Syntax
AnnotatedStatement(s: Statement)

= "//@" Annotation(s.annotation) { "@" Annotation(s.annotation) }
 ["//" { InputCharacter }] LineTerminator
 Statement(s)

Action Language for Foundational UML (ALF) 1.0, Beta 2 99

Annotation(a: Annotation)
= Identifier(a.identifier)
 ["(" Name(a.argument) { "," Name(a.argument) ")"]

Figure 9-43 Abstract Syntax of Annotations

Cross References
1. LineTerminator see Subclause 7.1

2. InputCharacter see Subclause 7.1

3. Identifier see Subclause 7.5

4. Statement see Subclause 9.1

NOTE. The lexical element LineTerminator is used as a syntactic non-terminal element in the
production for AnnotatedStatement above and must not be ignored as white space in this case (see also
Subclause 7.3). Even though the initial “//@” token has a form similar to the start of an end-of-line
comment (see Subclause 7.4), annotations must specifically follow the syntax shown above. However, a
list of annotations may be followed by a “//”, the characters after which are ignored, giving the same
effect as having an end-of-line comment at the end of the annotation line.

Semantics
Annotations
Even though syntactically any statement may be annotated, specific annotations may only be used with
the specific statements to which they apply. Table 9-6 lists all allowable annotations and the statements
to which they apply. The effect of an annotation is described in the subclause for the statement to which
the annotation applies, except for the @islolated annotation, which applies to all statements and is
described below.

100 Action Language for Foundational UML (ALF) 1.0, Beta 2

Table 9-6 Allowable Annotations

Annotation Applicable Statement Allows Arguments?

isolated Any statement other than an
empty statement or break. No

determined if (see Subclause 9.8)
switch (see Subclause 9.9) No

assured if (see Subclause 9.8)
switch (see Subclause 9.9) No

parallel
block (see Subclause 9.3) No

for (see Subclause 9.12) Yes

Since the syntax allows an annotated statement to itself be annotated, annotations may be spread across
multiple lines preceding a single “base” statement. For the purposes of determining applicability, per
Table 9-6, of a further annotation of an annotated statement, the annotated statement is to be considered
to be of the same kind as its base statement. However, no annotation may be applied more than once to
the same base statement.

Arguments
The syntax for annotations allows for an optional list of names to be given as arguments of the
annotation. Currently, only the @parallel annotation on a for statement allows such argument (see
Subclause 9.12 for rules related to names used as such arguments).

Isolation
The annotation @isolated may be used with any statement other than the empty or break statements,
indicating that the statement is executed in isolation. That is, during the execution of the statement, no
object accessed as part of the execution of the statement or as the result of a synchronous invocation
from the statement may be modified by any action that is not executed as part of the statement or as the
result of a synchronous invocation from the statement.

The semantics of isolation is discussed in Subclause 8.6.4.1 of the fUML specification.

NOTE. The unary operator $ can also be used to denote isolation at the expression level (see Subclause
8.5.6).

Other annotations are discussed with the description of the statements to which they apply.

9.3 In-line Statements
An in-line statement allows code in a language other than Alf to be inserted in-line as an Alf statement.
The actual interpretation and execution of such inline code is implementation dependent. Typically, such
code would be passed directly to a target implementation platform, but the details are not defined in the
Alf standard. While syntactically a statement, an in-line statement has a form similar to an in-line lexical
comment, to indicate that the in-line code is not included in normal Alf language processing.

Action Language for Foundational UML (ALF) 1.0, Beta 2 101

The language used for the in-line code is identified by a name. There is no standard list of language
names, but the following names are recommended to promote potential interoperability for commonly
embedded language fragments.

• Java
• C
• 'C++'
• 'C#'
Example
/*@inline('C++') // Native code
 *data = this;
 controller->initiate();
*/
Syntax
InLineStatement(s: InLineStatement)

= InLineHeader(s) CommentText(s.code) "*/"
InLineHeader(s: InLineStatement)

= "/*@" "inline" "(" Name(s.language) ")"
 ["//" { InputCharacter }] LineTerminator

Figure 9-44 Abstract Syntax of In-Line Statements

Cross References
1. LineTerminator see Subclause 7.1

2. InputCharacter see Subclause 7.1

3. CommentText see Subclause 7.4.1

4. Name see Subclause 7.5

NOTE. The lexical element LineTerminator is used as a syntactic non-terminal element in the
production for InLineHeader above and must not be ignored as white space in this case (see also
Subclause 7.3). Even though the initial “/*@” token has a form similar to the start of an in-line comment
(see Subclause 7.4), an in-line statement header must specifically follow the syntax shown above.
However, the inline annotation may be followed by a “//”, the characters after which are ignored to
the end of line, giving the same effect as having an end-of-line comment on the header line. Comments
may also be used in the body code of an in-line statement, as allowed by the specific language in which
that code is written. However, since the comment delimiter “*/” is used to end an in-line statement,
comment syntax using this delimeter cannot be used within the in-line statement.

102 Action Language for Foundational UML (ALF) 1.0, Beta 2

Semantics
The execution semantics for an in-line statement are implementation specific.

Any relationship of code within an in-line statement to named elements outside of the in-line statement
is also implementation specific.

9.4 Block Statements
A block (see Subclause 9.1) may itself be executed as a statement.

Examples
{ index = this.getIndex(); this.list[index] = this.update(index); }
The example below represents the activity graph shown in Figure 9-45.
//@parallel
{
 'activity' = (Activity)(this.types[1]); // Segment 1

 { // Segment 2
 group = new ActivityNodeActivationGroup();
 group.activityExecution = this;
 }

 { // Segment 3
 this.activationGroup = group;
 group.activation('activity'.node, 'activity'.edge);
 }
}

Action Language for Foundational UML (ALF) 1.0, Beta 2 103

Figure 9-45 Sample Activity Diagram

Syntax
BlockStatement(s: Statement)

= Block(s.block)

104 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 9-46 Abstract Syntax for Block Statements

Cross References
1. Statement see Subclause 9.1

2. Block see Subclause 9.1

Semantics
Sequential Execution
The execution of a block statement consists simply in the execution of the block (see Subclause 9.1).
Unless the block statement has a @parallel annotation (see below), this means that the statements in
the block are executed sequentially in order.

Local names assigned before a block statement may be reassigned within the constinuent block of the
statement. Further, new local names may be defined within the block. Such new local names are
available outside the block after completion of execution of the block statement, with the values they
held at the completion of execution of the block. Thus, blocks do not introduce lexically nested scopes
for defining local names in Alf.

Parallel Execution
A block statement may have a @parallel annotation. In this case, the statements in the block are all
executed concurrently. All the statements of a parallel block are enabled to start executing when the
block is executed and the block does not complete execution until all statements complete their
execution (that is, there is an implicit join of the concurrent executions of the statements).

If a block statement has a @parallel annotation, any name assigned in one statement of the block may
not be further assigned in any subsequent statement in the same block.

NOTE. The above rule allows a name assigned in one statement in a parallel block to be used in a
subsequent statement, but not reassigned. This allows data dependencies between otherwise parallel
executions of these statements. However, such dependencies are somewhat restricted, since a newly
defined name is still only visible in lexically following statements, as for a sequential block. This
restriction prevents the possibility of a block statement being invalidated simply by removing a
@parallel annotation from it.

For example, in the block
//@parallel
{
 a = F(1);

Action Language for Foundational UML (ALF) 1.0, Beta 2 105

 b = G(2);
}
the invocations of the behaviors F and G will execute concurrently with no dependencies between them.
The block as a whole completes execution only after both invocations are complete.

However, there may be data dependencies between the statements in a parallel block. For example, the
statements in the block
//@parallel
{
 a = F(1);
 b = G(a);
}
will execute sequentially, despite the @parallel annotation, because the invocation of G cannot proceed
until a value is available for a.

In order to prevent data conflicts, it is illegal to assign the same name in more than one statement in a
parallel block. Thus, the block
//@parallel
{
 a = 1;
 a = F(a); // Illegal!
 b = G(2);
}
is illegal, since the name a is reassigned in the second statement. However, the following block is legal:
//@parallel
{
 {
 a = 1;
 a = F(a); // Legal
 }
 b = G(2);
}
This is because the block now consists of just two statements, the first of which happens to be a
(sequential) block statement. Only the first of these actually assigns a value to the name a. The value of
a after the first statement in the parallel block, and hence after the parallel block as a whole, is the value
given to it (sequentially) by the second assignment.

9.5 Empty Statements
An empty statement does nothing.

Syntax
EmptyStatement(s: EmptyStatement)

= ";"

106 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 9-47 Abstract Syntax of Empty Statements

Cross References
1. Statement see Subclause 9.1

Semantics
Any empty statement has no effect when it is executed.

9.6 Local Name Declaration Statements
A local name declaration is used to define a local name, declare its type and provide an initial value for
it. The local name declaration statement has two forms. In the first form, the local name being defined
precedes the type name:
let interest : CurrencyAmount = this.principal * this.rate * period;
In the second form, the type name precedes the local name:
CurrencyAmount interest = this.principal * this.rate * period;
The two forms are completely equivalent. In both cases, the local name is assigned the result of
evaluating the expression.

NOTE. The first form of local name declaration is consistent with the usual UML notation for declaring
the type of a name. The second form is consistent with the form of declarations in many common
programming languages and also emphasizes the essential semantics of the statement as an assignment
with an added type constraint.

Examples
let currentOffer : Offer = this.offers[1];
let origin : Point = new(0,0);
CurrencyAmount interest = this.principal * this.rate * period;
let inactiveMembers : Member[] = members -> select member (!member.active);
RealProperty[] realProperties = (RealProperty)assets;
IntegerList list = {1, 2, 3};
Set<RealProperty> fixedAssets = new { land, home, condominium };
Syntax
LocalNameDeclarationStatement(s: LocalNameDeclarationStatement)

= NameDeclaration(s) "=" InitializationExpression(s.expression) ";"
InitializationExpression(e: Expression)

= Expression(e)
| SequenceInitializationExpression(e)
| InstanceInitializationExpression(e)

Action Language for Foundational UML (ALF) 1.0, Beta 2 107

InstanceInitializationExpression(e: InstanceCreationExpression)
= "new" Tuple(e.tuple)

NameDeclaration(s: LocalNameDeclarationStatement)
= "let" Name(s.name) ":" TypeName(s.typeName)
 [MultiplicityIndicator (s.hasMultiplicity=true)]
| TypeName(s.typeName)
 [MultiplicityIndicator (s.hasMultiplicity=true)] Name(s.name)

Figure 9-48 Abstract Syntax of Local Name Declaration Statements

Cross References
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. QualifiedName see Subclause 8.2

4. TypeName see Subclause 8.2

5. InstanceCreationExpression see Subclause 8.3.12

6. SequenceInitializationExpression see Subclause 8.3.15

7. MultiplicityIndicator see Subclause 8.3.15

8. Statement see Subclause 9.1

Semantics
The local name in a local name declaration statement must be unassigned before the statement and
before the expression in the statement. It must remain unassigned after the expression. The assigned
source for the name after the local name declaration statement is the statement itself.

Typing
The new local name has the type given by the type name in the statement (see Subclause 8.2 on type
names). If the type name is a qualified name, it must resolve to a classifier that is not a template, though
it may be the binding of a template. If the multiplicity indicator “[]” is specified with the type, then the
multiplicity of the local name is [0..*]. Otherwise it is [0..1] and the multiplicity upper bound of the
assigned expression must not be greater than 1.

108 Action Language for Foundational UML (ALF) 1.0, Beta 2

Alf does not require that a local name be explicitly declared before its first use. If not explicitly declared,
the type of the local name is determined by its first assignment (see Subclause 8.8). However, if the type
is explicitly declared, it may be more general than the type of the initially assigned expression, allowing
a wider range of values in later assignments.

For example, the following is legal:
let v: Vehicle = new Car();
v = new Truck();
presuming that Car and Truck are both subclasses of Vehicle. However, the following would not be
legal:
v = new Car();
v = new Truck(); // Type error!
because the initial assignment would determine the type of v as being Car, which is not compatible with
Truck.

A similar effect to the legal assignment above can be achieved using a type cast (see Subclause 8.5.5):
v = (Vehicle)new Car();
v = new Truck(); // Legal
Even though the initial value assigned to v here is a Car, the type of the expression “(Vehicle)new
Car()” is Vehicle, due to the cast. Therefore, the initial assignment determines the type of v as being
Vehicle, so the second assignment is legal.

However, there is an important semantic difference. Type casts in Alf filter values that cannot be cast, so
that
v = (Vehicle)new House();
is legal and will assign null to v. On the other hand, the following is not legal:
let v: Vehicle = new House(); // Type error!
since the class House does not statically conform to the declared type Vehicle.

Initialization Expressions
Since a local name declaration statement already includes an explicit declaration of the type of a new
name, it is possible to use simplified forms for sequence construction expressions (see Subclause 8.3.15)
and instance creation expressions (see Subclause 8.3.12) used as initialization expressions in local name
declaration statements. In these simplified forms, the explicit type part usually included in the
expressions may be omitted, with the type declared as part of the statement being used instead.

For example, in the statement
let fixedAssets: RealProperty[] = { land, home, condominium };
the type part normally required for a sequence construction expression has been omitted. The statement
is equivalent to one in which the type part for the sequence construction expression is the same as the
type declared for the new local name:
let fixedAssets: RealProperty[] = RealProperty[]{ land, home, condominium };
This simplified form may also be used when initializing collection objects. Thus, the statement
let fixedAssets: Set<RealProperty> = { land, home, condominium };

Action Language for Foundational UML (ALF) 1.0, Beta 2 109

is equivalent to
let fixedAssets: Set<RealProperty> =
 Set<RealProperty>{ land, home, condominium };
Similarly, in the statement
let origin : Point = new(0,0);
the explicit constructor description has been omitted from the instance creation expression, leaving only
the keyword new and the tuple. The statement is equivalent to one in which the instance creation
expression is explicitly for the type declared for the new local name:
let origin : Point = new Point(0,0);
NOTE. The initialization expression short hands can also be used in Alf expressions representing
default values, either as integrated with a non-Alf representation of a property or parameter (see
Subclause 8.1) or as the initializer for the definition of an attribute in Alf (see Subclause 10.5.2).

9.7 Expression Statements
An expression statement simply consists of an expression (see Clause 8) followed by a semicolon.

Examples
currentOffer = this.offers[1];
monitor.SignalAlarm(sensorId);
this.interest = this.principal * this.rate * period;
Syntax
ExpressionStatement(s: ExpressionStatement)

= Expression(s.expression) ";"

Figure 9-49 Abstract Syntax of Expression Statements

Cross References
1. Expression see Subclause 8.1

2. Statement see Subclause 9.1

Semantics
An expression statement is executed by evaluating the expression (see Clause 8). If the expression
produces one or more values, these are discarded.

110 Action Language for Foundational UML (ALF) 1.0, Beta 2

The values assigned to any local names within an expression statement (e.g., via an assignment
expression—see Subclause 8.8) may be accessed after the execution of the statement by using the local
names in name expressions (see Subclause 8.3.3).

9.8 if Statements
An if statement allows for the conditional execution of one of a set of blocks of statements. The
conditional blocks are organized into sequential sets of concurrent clauses. Each clause in a concurrent
set includes a conditional expression (which must be of type Boolean) and a block to execute if that
condition is true. An if statement may also optionally have a final clause with a block to execute if no
other conditions are true.

NOTE. The notation for concurrent clauses is not available at the minimum conformance level (see
Subclause 2.1).

Examples
if (reading > threshold) {
 monitor.raiseAlarm(sensorId);
}
//@determinate @assured
if (reading <= safeLimit) {
 condition = normal; }
or if (reading > safeLimit && reading <= criticalLimit) {
 condition = alert; }
or if (reading > criticalLimit) {
 condition = critical; }
Syntax
IfStatement(s: IfStatement

= "if" SequentialClauses(s) [FinalClause(s.finalClause)]
SequentialClauses(s: IfStatement)

= ConcurrentClauses(s.nonFinalClauses)
 { "else" "if" ConcurrentClauses(s.nonFinalClauses) }

ConcurrentClauses(c: ConcurrentClauses)
= NonFinalClause(c.clause) { "or" "if" NonFinalClause(c.clause) }

NonFinalClause(c: NonFinalClause)
= "(" Expression(c.expression) ")" Block(c.block)

FinalClause(b: Block)
= "else" Block(b)

Action Language for Foundational UML (ALF) 1.0, Beta 2 111

Figure 9-50 Abstract Syntax of if Statements

Cross References
1. Expression see Subclause 8.1

2. Statement see Subclause 9.1

3. Block see Subclause 9.1

Semantics
Each set of concurrent clauses is executed in sequence until a condition evaluates to true. Within each
set, all the conditional expressions are evaluated in parallel. If any condition evaluates to true, then the
associated block may be executed. If more than one condition evaluates to true, then one associated
block is chosen non-deterministically to execute. If no conditions evaluate to true, execution proceeds
with the next set of concurrent clauses.

Sequential Clauses
In its simplest form, an if statement has a single condition which determines whether or not a single
block is executed. For example, in
if (reading > threshold) {
 monitor.raiseAlarm(sensorId);
}
the invocation is executed only if the condition reading > threshold is true. A final clause may be
added, as in
if (reading > threshold) {
 monitor.raiseAlarm(sensorId);
}
else {

112 Action Language for Foundational UML (ALF) 1.0, Beta 2

 monitor.logReading(sensorId, reading);
}
In this case, the logReading operation is called if reading > threshold is false.

An if statement may also have a list of conditional clauses that are tested sequentially. For example,
if (reading <= safeLimit) {
 condition = normal;
}
else if (reading <= criticalLimit) {
 condition = alert;
}
else {
 condition = critical;
}
Concurrent Clauses
Clauses beginning with or instead of else are tested concurrently rather than sequentially. For example,
if (reading <= safeLimit) {
 condition = normal;
}
or if (reading > safeLimit && reading <= criticalLimit) {
 condition = alert;
}
or if (reading > criticalLimit) {
 condition = critical;
}
Note that the second condition has the added test reading > safeLimit, since the first condition will
no longer be evaluated sequentially before the second. If this addition had not been made, then, if, in
fact, reading <= safeLimit was true, both of the first two conditions could be true, and either of the
associated blocks might actually execute (but only one would).

Sequential and conditional clauses can also be mixed, but sets of contiguous concurrent clauses are
always sequenced together. Thus, in
if (reading <= safeLimit) {
 condition = normal; }
else if (reading > safeLimit && reading <= criticalLimit} {
 condition = alert; }
or if (reading > criticalLimit && reading < errorLimit) {
 condition = critical; }
else {
 condition = error; }
if the first condition is false, then both the next two conditions are evaluated concurrently. If both these
conditions are also false, then the final clause is executed.

Annotations
The annotations @assured and @determinate may be used with an if statement (see also Subclause
9.2 on annotations). The annotation @assured indicates that at least one condition in the if statement
will always evaluate to true. The annotation @determinate indicates that at most one condition will
evaluate to true. The annotations may be used together, which indicates that exactly one condition will
always evaluate to true.

Action Language for Foundational UML (ALF) 1.0, Beta 2 113

Names
New local names may not be defined in conditional expressions, since these may not always be
evaluated, but existing local names may be reassigned. However, the same name may not be assigned in
more than one conditional expression within the same concurrent set of clauses, because these
expressions are evaluated concurrently, so assignments of the same name in more than one of them
could potentially conflict. Assignments made in the conditional expression of a non-final clause are
available in the block of that clause.

New local names may only be defined in the clause blocks of an if statement that has a final else
clause and then only if the same names are defined in every clause. The type of such names after the if
statement is the effective common ancestor (see the definition in Subclause 8.7) of the types of the name
in each clause with a multiplicity lower bound that is the minimum of the lower bound for the name in
each clause and a multiplicity upper bound that is the maximum for the name in each clause.

9.9 switch Statements
A switch statement executes one of several blocks depending on the value of an expression. The body
of the switch statement consists of a list of clauses, each of which consists of a set of case labels and a
block. Each of the case labels contains an expression that must evaluate to a single value of a type that
conforms to the type of the switch expression (see Section 8.2 for the definition of type conformance).
In addition, a switch statement may have a final clause with the label default.

Examples
switch (month) {
 case 1: case 3: case 5: case 7: case 8: case 10: case 12:
 numDays = 31;
 case 4: case 6: case 9: case 11:
 numDays = 30;
 case 2:
 if (((year % 4 == 0) && !(year % 100 == 0))
 || (year % 400 == 0)) {
 numDays = 29;
 }
 else {
 numDays = 28;
 }
 default:
 WriteLine("Invalid month.");
 numDays = 0;
}
Syntax
SwitchStatement(s: SwitchStatement)

= "switch" "(" Expression(s.expression) ")"
 "{" { SwitchClause(s.nonDefaultClause) }
 [SwitchDefaultClause(s.defaultClause)] "}"

SwitchClause(s: SwitchClause)
= SwitchCase(s.case) { SwitchCase(s.case) }
 NonEmptyStatementSequence(s.block)

SwitchCase(e: Expression)
 = "case" Expression(e) ":"

SwitchDefaultClause(b: Block)
= "default" ":" NonEmptyStatementSequence(b)

114 Action Language for Foundational UML (ALF) 1.0, Beta 2

NonEmptyStatementSequence(b: Block)
= DocumentedStatement(b.statement) { DocumentedStatement(b.statement) }

Figure 9-51 Abstract Syntax of switch Statements

Cross References
1. Expression see Subclause 8.1

2. DocumentedStatement see Subclause 9.1

Semantics
Switch Execution
When a switch statement is executed, first the switch expression is evaluated and then all the case
expressions are evaluated concurrently. The switch expressions and all case expressions must have a
multiplicity upper bound no greater than 1. If the result of any case expression equals the result of the
switch expression, then the associated statement sequence is enabled for execution. If more than one
statement sequence is enabled, then one of them is non-deterministically selected for execution.

If no case expressions have a result equal to the result of the switch expression, and there is a default
clause, then the statement sequence associated with the default clause is executed. Since all the case
expressions must be checked before a default clause can execute, the execution of the default clause
always happens sequentially after the completion (and failure) of all case tests.

If no case expressions have a result equal to the result of the switch expression, and there is not a default
clause, then the switch statement has no further effect.

“Equality” of values is evaluated as for an equality operator (see Subclause 8.6.6).

NOTE. Case expressions are evaluated concurrently, not sequentially, and execution does not “fall
through” from one switch clause to the next, as it does in traditional C switch statements. This means
that it is not necessary to place a break statement at the end of a switch clause to avoid execution
continuing with the next clause. However, placing a break at the end of the clause anyway will not harm
the overall execution of the switch statement. (See also Subclause 9.13 on break statements.)

Annotations
The annotations @assured and @determinate may be used with a switch statement (see also Subclause
9.2 on annotations). The annotation @assured indicates that the result of at least one clause in the switch
statement will always be executed. The annotation @determinate indicates that at most one clause will

Action Language for Foundational UML (ALF) 1.0, Beta 2 115

execute. The annotations may be used together, which indicates that exactly one clause will always
execute.

Names
New local names may not be defined in case expression, but existing local names may be reassigned.
However, the same name may not be assigned in more than one case expression because these
expressions are evaluated concurrently, so assignments of the same name in more than one of them
could potentially conflict. Assignments made in the case expressions of a switch clause are available in
the statement sequence of that clause.

New local names may only be defined in the statement sequences of a switch statement that has a final
default clause and then only if the same names are defined in every clause. The type of such names
after the switch statement is the effective common ancestor (see the definition in Subclause 8.7) of the
types of the name in each clause, with a multiplicity lower bound that is the minimum of the lower
bound for the name in each clause and a multiplicity upper bound that is the maximum for the name in
each clause.

9.10 while Statements
A while statement executes an expression and a block until the value of the expression is false. The
expression must have type Boolean and a multiplicity upper bound of 1.

Examples
while ((last = this.list->size()) > 0) {
 this.list[last].cleanUp();
 this.list->remove(last);
}
while (file.hasMore()) {
 nextRecord = file.readNext();
 if (nextRecord!=null) {
 checksum = ComputeChecksum(checksum, nextRecord);
 }
}
Syntax
WhileStatement(s: WhileStatement)

= "while" "(" Expression(s.condition) ")" Block(s.body)

Figure 9-52 Abstract Syntax of while Statements

116 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. Expression see Subclause 8.1

2. Statement see Subclause 9.1

3. Block see Subclause 9.1

Semantics
When a while statement is executed, its expression is evaluated. If the expression evaluates to false, the
execution of the while statement is complete. Otherwise, its block is executed, and then the entire
while statement is executed again, beginning with re-evaluating the expression.

Names
Local names defined within the condition expression of a while statement are available within the body
block of the while statement, with the value as computed on each iteration of the loop. They are also
available after completion of execution of the while statement, with the values assigned as of the last
evaluation of the while condition expression.

Local names within the body block of a while statement may be used within that block, but they are
prohibited from being used outside the block. This is because they could be uninitialized if the while
statement does not execute its body.

Local names defined before a while statement may be reassigned within the while statement. After
completion of execution of the while statement, they have the values assigned as of the last evaluation
of the while statement.

9.11 do Statements
The do statement executes a block and an expression repeatedly until the value of the expression is false.
The expression must have type Boolean and a multiplicity upper bound of 1.

Examples
do {
 line = file.readNext();
 WriteLine(line);
} while (line != endMarker);
do {
 reading = sensor.getNextReading();
 Record(reading);
} while (!reading.isFinal());
Syntax
DoStatement(s: DoStatement)

= "do" Block(s.body) "while" "(" Expression(s.condition) ")" ";"

Action Language for Foundational UML (ALF) 1.0, Beta 2 117

Figure 9-53 Abstract Syntax of do Statements

Cross References
1. Expression see Subclause 8.1

2. Statement see Subclause 9.1

3. Block see Subclause 9.1

Semantics
When a do statement is executed, its block is executed first. Then its expression is evaluated. If the
result of the expression is true, then the entire do statement is executed again. If the result of the
expression is false, the execution of the do statement is complete.

Names
Local names defined before a do statement may be reassigned within the do statement and new local
names may be defined within the do statement, in either the condition expression or the block. Local
names defined within the condition expression are not available within the body block, but they are
available after completion of the do statement, with values assigned as of the last evaluation of the do
condition expression.

Local names defined within the body block of a do statement are available within the condition
expression of the do statement, with the value as computed on each iteration of the loop. They are also
available after completion of execution of the do statement, with the values assigned as of the last
evaluation of the do condition expression.

Local names defined before a do statement may be reassigned within the do statement. After completion
of execution of the do statement, they have the values assigned as of the last evaluation of the do
statement.

9.12 for Statements
The for statement executes a block repeatedly while assigning a loop variable to successive values of a
sequence.

Examples
for (member in memberList) {
 names->add(member.name);
 addresses->add(member.address);
}

118 Action Language for Foundational UML (ALF) 1.0, Beta 2

for (sensor in sensors) {
 if ((reading = sensor.reading())->isEmpty()) {
 break;
 }
 if (reading > noiseLimit) {
 readings->add(reading);
 }
}
for (i in 1..recordCount) {
 processRecord(i);
}

//@parallel
for (ActivityEdgeInstance outgoingEdge: this.outgoingEdges) {
 outgoingEdge.sendOffer(tokens);
}
// Fast Fourier Transformation computation
//@parallel(Sn_Even,Sn_Odd)
for (lower in S_Lower, upper in S_Upper, root in V) {
 //@parallel
 {
 Sn_Even -> add(lower+upper);
 Sn_Odd -> add((lower-upper)*root);
 }
}
Syntax
ForStatement(s: ForStatement)

 = "for" "(" ForControl(s) ")" Block(s.body)
ForControl(s: ForStatement)

= LoopVariableDefinition(s.variableDefinition)
 { "," LoopVariableDefinition(s.variableDefinition) }

LoopVariableDefinition(v: LoopVariableDefinition)
= Name(v.variable) "in" Expression(v.expression1)
 [".." Expression(v.expression2)]
| TypeName(v.typeName) Name(v.variable) ":"
 Expression(v.expression1) (typeIsInferred=false)

Figure 9-54 Abstract Syntax of for Statements

Action Language for Foundational UML (ALF) 1.0, Beta 2 119

Cross Reference
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. QualifiedName see Subclause 8.2

4. Statement see Subclause 9.1

5. Block see Subclause 9.1

Semantics
Loop Variables
A for statement defines one or more loop variables that are given successive values from sequences
during the execution of the loop. A loop variable definition in a for statment is thus the assigned source
for the loop variable name so defined within the for statement. The name of a loop variable must be
unassigned before the for statement, may not be otherwise assigned within the for statement and is
considered unassigned after the for statement.

There are two forms for a loop variable definition.

In the first form, the type of the loop variable is given implicitly by the expression from whose result the
loop variable takes values. For example, suppose that the name memberList has the type Member and a
multiplicity of [0..*] in the statement
for (member in memberList) {
 names->add(member.name);
 addresses->add(member.address);
}
The loop variable member is then implicitly given the type Member, the same type as that of the name
expression memberList.

However, collection conversion may be performed on the expression in a loop variable definition. That
is, if the type of the expression is a collection class (see Subclause 11.6) and the multiplicity upper
bound of the expression is no greater than 1, then the operation toSequence is implicity called on the
expression to produce the sequence of values for the loop variable. The loop variable is then the type of
the result of the toSequence call (i.e., the element type of the collection). Thus, the example above
would still be legal if the type of memberList was, e.g., List<Member>.

In the second form, the type of the loop variable is declared explicitly. For example, the following
statement is semantically equivalent to the example given above:
for (Member member: memberList) {
 names->add(member.name);
 addresses->add(member.address);
}
In this form, the declared type of the loop variable normally must conform to the type of the expression
(see Section 8.2 for the definition of type conformance). However, if collection conversion applies to the
expression, then the declared type must conform to the element type of the collection.

NOTE. The second form of loop variable definition has a similar syntax to that used in a “for each”
statement in Java.

120 Action Language for Foundational UML (ALF) 1.0, Beta 2

A loop variable definition of the form var in expr1..expr2 is a shorthand for var in Integer[]
{expr1..expr2} (see Subclause 8.3.15 on ranges in sequence construction expressions). In this case,
both expressions must have type Integer and a multiplicity upper bound of 1. A loop variable so
defined takes on sequential integer values in each loop iteration, beginning with the value given by
expr1 and ending with the value given by expr2. If the second value is less than the first, then the for
loop execution completes with no iterations.

Iterative Execution
When a for statement is executed, the expressions in its loop variable definitions are evaluated
sequentially. If the result for the first variable is a sequence of at least one value, and the for statement
has no while condition expression, then the block of the for statement is executed once for each value
in the sequence. On each such execution, the local names of the loop variables within the block have
corresponding values from the sequences resulting from the evaluation of the expressions in their
definitions.

Note that the sequences for all the loop variables in a specific execution of a for statement should have
the same size. However, if this is not true, it is the sequence for the first variable that controls the
execution. If another variable has a sequence of a larger size than the first variable, then the additional
values will be ignored. If it has a sequence of a smaller size, then the variable will be empty on iterations
after all values in its sequence have been used. For this reason, the first loop variable has the multiplicity
[1..1], while any other loop variables are given the multiplicity [0..1].

NOTE. At the minimum conformance level (see Subclause 2.1), a for statement is allowed to have only
one loop variable.

By default, the executions of the body block of a for statement occur in sequential iterations. Values are
taken from the sequence for each loop variable in order.

Since a loop variable expression is only evaluated once, any local names defined in it have the values
assigned during that evaluation for all executions of the body block of the for statement, unless
reassigned within that block.

Local names defined within the body block of a for statement are prohibited from being accessed
outside the for statement, since they could be uninitialized if the for statement does not execute its
body. Local names defined within an expression in a loop variable definition are available after
completion of execution of the for statement.

Parallel Execution
If a for statement is preceded by a @parallel annotation (see Subclause 9.2), then the executions of the
body block of the for statement occur concurrently rather than sequentially.

A @parallel annotation may include a list of names. Each such name must be already assigned before
the body of the for statement, with a multiplicity of [0..*]. They may then be used within the body
block of the for statement to collect values across the concurrent executions of that block (any prior
assigned values are lost). As such, these names may only appear within the for statement as the target
argument (i.e., argument to the first parameter) for the add function from the Alf
CollectionsFunctions library package (see Subclause 11.5).

For example, consider the following piece of a Fast Fourier Transform (FFT) computation, using an
iterative for statement.

Action Language for Foundational UML (ALF) 1.0, Beta 2 121

Sn_Even = Integer[]{};
Sn_Odd = Integer[]{};

for (lower in S_Lower, upper in S_Upper, root in V) {
 Sn_Even -> add(lower+upper);
 Sn_Odd -> add((lower-upper)*root);
}
This is computationally correct, but it forces sequential execution of what is essentially a parallel
algorithm. This can be corrected by inserting appropriate @parallel annotations:
Sn_Even = Integer[]{};
Sn_Odd = Integer[]{};

//@parallel(Sn_Even,Sn_Odd)
for (lower in S_Lower, upper in S_Upper, root in V) {
 //@parallel
 {
 Sn_Even -> add(lower+upper);
 Sn_Odd -> add((lower-upper)*root);
 }
}
The listing of the names Sn_Even and Sn_Odd in the @parallel annotation is required so that the add
operation invocations continue to be permitted within the for statement.

NOTE. The normal behavior invocation notation (see Subclause 8.3.9) may also be used for the add
function instead of the sequence operation notation (see Subclause 8.3.17). For example “Sn_Even-
>add(lower+upper);” may instead be written “add(Sn_Even, lower+upper);”. The behavior
invocation notation is available at the minimum conformance level, while the sequence operation
notation is not available until the full conformance level (see also Subclause 2.1 on syntactic
conformance levels).

If, after the loop variable definitions of a parallel for statement, a name has an assigned source, then it
must have the same assigned source after the block of the for statement. Other than for names defined in
the @parallel annotation of the for statement, the assigned source for such names is the same after the
for statement as before it. Any names defined in the @parallel annotation have the for statement itself
as their assigned source after the for statement.

Unlike the case of an iterative for statement, names defined before a parallel for statement may not be
reassigned within the statement, unless they are listed in the @parallel annotation for the statement. As
in the iterative case, any names defined within the body of a parallel for statement are not available
outside of the for statement.

9.13 break Statements
A break statement completes execution of an enclosing switch, while, do or for statement.

Syntax
BreakStatement(s: BreakStatement)

= "break" ";"

122 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 9-55 Abstract Syntax of break Statements

Cross References
1. Statement see Subclause 9.1

Semantics
A break statement may only be used directly or indirectly within the body of a switch, while, do or
for statement (see Subclauses 9.9, 9.10, 9.11 and 9.12, respectively), except that the innermost
enclosing such statement must not be a for statement with a @parallel annotation. When a break
statement is executed, it transfers control to the innermost enclosing switch, while, do or for
statement, which then immediately completes normally.

9.14 return Statements
If an activity has a return parameter, then a return statement may be used to provide a value for that
parameter and terminate execution of the activity.

Examples
return item;
return list[index];
return x * factorial(x-1);
Syntax
ReturnStatement(s: ReturnStatement)

= "return" [Expression(s.expression)] ";"

Figure 9-56 Abstract Syntax of return Statements

Cross References
1. Expression see Subclause 8.1

Action Language for Foundational UML (ALF) 1.0, Beta 2 123

2. Statement see Subclause 9.1

Semantics
A return statement is used to terminate the execution of the enclosing behavior. If the enclosing behavior
has a return parameter, then the return statement must have an expression that is assignable to the return
parameter (see Subclause 8.8 for the definition of assignability). Otherwise, it must not have an
expression.

When a return statement is executed, , if it has an expression, that expression is evaluated, and the
resulting values (if any) are assigned to the return parameter. The execution of the enclosing behavior
then immediately terminates.

9.15 accept Statements
An accept statement is used to accept the receipt of one or more types of signals.

NOTE. accept statements are not available at the minium conformance level (see Subclause 2.1).

Examples
accept (sig: SignalNewArrival, SignalTermination);
accept (arrival: SignalNewArrival) {
 WriteLine(arrival.name);
 terminate = false;
} or accept (SignalTermination) {
 terminate = true;
}
Syntax
AcceptStatement(s: AcceptStatement)

= SimpleAcceptStatement(s)
| CompoundAcceptStatement(s)

SimpleAcceptStatement(s: AcceptStatement)
= AcceptClause(s.acceptBlock) ";"

CompoundAcceptStatement(s: AcceptStatement)
= AcceptBlock(s.acceptBlock) { "or" AcceptBlock(s.acceptBlock) }

AcceptBlock(a: AcceptBlock)
= AcceptClause(a) Block(a.block)

AcceptClause(a: AcceptBlock)
= "accept" "(" [Name(a.name) ":"] QualifiedNameList(a.signalNames)
 ")"

QualifiedNameList(qList: QualifiedNameList)
= QualifiedName(qList.name) { "," QualifiedName(qList.name) }

124 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 9-57 Abstract Syntax of accept Statements

Cross References
1. Name see Subclause 7.5

2. Expression see Subclause 8.1

3. QualifiedNameList see Subclause 8.2

4. Statement see Subclause 9.1

5. Block see Subclause 9.1

Semantics
An accept statement can only be used within the definition of an active behavior or the classifier
behavior of an active class. All listed qualified names in an accept clause of an accept statement must
resolve to signals for which the enclosing behavior has a reception. These signals must not be templates,
though they can be the bindings of template signals (see Subclause 8.2). No signal may be named in
more than one accept clause of an accept statement.

Simple accept Statements

In its simplest form, an accept statement simply identifies a signal by name:
accept (SignalNewArrival);
When this statement is executed, the thread of execution it is on is suspended, waiting for the receipt of
an instance of the signal SignalNewArrival. When such a receipt later triggers the accept statement, it
completes its execution, and further execution on its thread can continue.

An accept statement can also optionally include the definition of a local name that is used to hold an
accepted signal instance:

Action Language for Foundational UML (ALF) 1.0, Beta 2 125

accept (arrival: SignalNewArrival);
WriteLine(arrival.name);
A local name so defined has the signal as its type. It must be unassigned before the accept statement.

A single accept statement can list multiple signals, any one of which may trigger it. If the accept
statement includes a local name, then this local name will hold whichever signal instance is actually
received. The type of such a local name is the effective common ancestor of the listed signals (as
defined in Subclause 8.7), if one exists, and is untyped otherwise.

For example:
accept (sig: SignalNewArrival, SignalTermination);
if (sig instanceof SignalNewArrival) {
 WriteLine(((SignalNewArrival)sig).name);
 terminate = false;
} else {
 terminate = true;
}
Compound accept Statements

In the example above, which of multiple signals was actually received is determined by testing the type
of the instance received. This is such a typical pattern that Alf provides a compound version of the
accept statement that allows the explicit specification of separate clauses for the receipt of different
signals. Each clause is triggered on a specific set of signals and, if any one of them is received, an
associated block is executed, after which execution of the accept statement is complete.

For example, the above example can be rewritten as follows using a compound accept statement:
accept (arrival: SignalNewArrival) {
 WriteLine(arrival.name);
 terminate = false;
} or accept (SignalTermination) {
 terminate = true;
}
For a compound accept statement, a local named defined in an accept clause (such as arrival in the
example above) is available only in the body of that clause and is considered unassigned after the
accept statement. New local names may be defined within the accept statement (such as terminate in
the example above), but only if the same names are defined in every block of the accept statement.
After the accept statement, such new local names have a type that is the effective common ancestor (as
defined in Subclause 8.7) of its type in each of the blocks of the accept statement, if one exists, and is
untyped otherwise.

9.16 classify Statements
A classify statement is used to dynamically reclassify an already existing object. The statement
identifies an already existing object and the classes from which and/or to which the identified object is
to be reclassified.

NOTE. classify statements are not available at the minium conformance level (see Subclause 2.1).

Examples
classify principal from * to Administrator;

126 Action Language for Foundational UML (ALF) 1.0, Beta 2

classify principal from Administrator;
classify monitor from InActiveMonitor to ActiveMonitor;
classify this
 from Pending, Overdue
 to Resolved, InProcess;
Syntax
ClassifyStatement(s: ClassifyStatement)

= "classify" Expression(s.expression) ClassificationClause(s) ";"
ClassificationClause(s: ClassifyStatement)

= ClassificationFromClause(s.fromList)
 [ClassificationToClause(s.toList)]
| [ReclassifyAllClause (s.isReclassifyAll=true)]
 ClassificationToClause(s.toList)

ClassificationFromClause(qList: QualifiedNameList)
= "from" QualifiedNameList(qList)

ClassificationToClause(qList: QualifiedNameList)
= "to" QualifiedNameList(qList)

ReclassifyAllClause(qList: QualifiedNameList)
= "from" "*"

Figure 9-58 Abstract Syntax of classify Statements

Cross Reference
1. Expression see Subclause 8.1

2. Statement see Subclause 9.1

3. QualifiedNameList see Subclause 9.15

Semantics
The target expression in a classify statement must have a class as its static type. All qualified names
listed in the from or to lists must resolve to classes. All the classes in the from and to lists must be
subclasses of the static type of the target expression and none of them may have a common superclass
that is a subclass of the static type of the target expression (that is, they must be disjoint subclasses).

NOTE. The restriction on reclassification to be only between disjoint subclasses allows type safety to be
maintained if all potentially reclassifiable objects are only referenced via their superclass interface.

Action Language for Foundational UML (ALF) 1.0, Beta 2 127

However, it is still possible to downcast such an object to a subclass, and type safety may be violated if
that subclass is later removed from the object via some other reference.

The target expression of a classify statement must evaluate to a single object. When the classify
statement completes execution, the object is no longer classified by the classes in the from list (unless
they are also in the to list) and is classified by all the classes in the to list.

If the from list is given as “*”, then all the current classes of the identified object are removed and
replaced with the classes in the to list. In this case, the to list must not be empty.

Neither destructor nor constructor operations are called during reclassification, and any initializers on
attributes of classes in the to list are not evaluated. All new attributes are initialized as empty, even if
this violates their declared multiplicity.

128 Action Language for Foundational UML (ALF) 1.0, Beta 2

10 Units
Alf adds the concept of a unit to the basic UML concepts of namespaces and packages. A unit is a
namespace defined using Alf notation that is not itself textually contained in any other Alf namespace
definition.

This clause describes how structural models (largely within the fUML subset) can be respresented
textually as Alf units. This includes the notation for defining the kinds of classifiers included in the
fUML subset (see Subclause 10.4) and for defining packages to group the definition of other elements
(see Subclause 10.3). Subclause 10.5 discusses the representation of various kinds of features of
classifiers.

The structural modeling constructs defined in this clause are only included at the extended compliance
level of Alf (see Subclause 2.1 on the definition of syntactic conformance).

10.1 Overview
Units are lexically independent (though semantically related) segments of Alf text that provide a level of
granularity similar to typical programming language text files. A unit may also have subunits that define
namespaces that are owned (directly or indirectly) by the unit but whose Alf definition is given by a unit
that is textually separate from the base unit. Inclusion in the base unit is indicated using a stub
declaration in the base unit and a namespace declaration in the definition of the subunit.

Since an Alf unit can be processed into a UML abstract syntax representation, a portion of a model
represented in Alf can always be integrated into a larger model on that basis, regardless of the surface
representation of any portion of the model.

Examples
private import ProductSpecification::Product; // Element import
private import EE_OnlineCustomer as OL_Customer; // Element import with alias
private import DomainDataTypes::*; // Package import
package Ordering // Unit definition
{
 class Order; // Stub declaration
}
namespace Ordering; // Namespace declaration
public import Customer; // Public element import
/** Order class of the Ordering subsystem. */ // Documentation comment
class Order { // Subunit definition
 ...
}
@apply(DataProfile) // Profile application
@Entity(tableName=>"CustomerTable") // Stereotype annotation
class Customer {
 ...
}

Action Language for Foundational UML (ALF) 1.0, Beta 2 129

Syntax
UnitDefinition(u: UnitDefinition)

= [NamespaceDeclaration(u.namespaceName)]
 { ImportDeclaration(u.import) }
 [DocumentationComment(u.documentation)]
 { StereotypeAnnotation(u.definition.annotation) }
 NamespaceDefinition(u.definition)

NamespaceDeclaration(q: QualifiedName)
= "namespace" QualifiedName(q) ";"

ImportDeclaration(i: ImportReference)
= ImportVisibilityIndicator(i.visibility) "import"
 ImportReference(i) ";"

ImportVisibilityIndicator(v: String)
= "public"(v) | "private"(v)

ImportReference(i: ImportReference)
= ElementImportReference(i)
| PackageImportReference(i)

ElementImportReference(i: ElementImportReference)
= QualifiedName(i.referentName) [AliasDefinition(i.alias)]

AliasDefinition(n: String)
= "as" Name(n)

PackageImportReference(i: PackageImportReference)
 = ColonQualifiedName(i.referentName) "::" "*"
| DotQualifiedName(i.referentName) "." "*"
| UnqualifiedName(i.referentName) "::" "*"
| UnqualifiedName(i.referentName) "." "*"

StereotypeAnnotation(s: StereotypeAnnotation)
= "@" QualifiedName(s.stereotypeName) ["(" TaggedValues(s) ")"]

TaggedValues(s: StereotypeAnnotation)
= QualifiedNameList(s.names)
| TaggedValueList(s.taggedValues)

TaggedValueList(t: TaggedValueList)
= TaggedValue(t.taggedValue) { "," TaggedValue(t.taggedValue) }

TaggedValue(t: TaggedValue)
= Name(t.name) "=>" LiteralValue(t)

LiteralValue(t: TaggedValue)
= BooleanLiteral(t.value)
| [NumericUnaryOperator(t.operator)] NaturalLiteral(t.value)
| UnboundedValueLiteral(t.value)
| StringLiteral(t.value)

130 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 10-59 Abstract Syntax of Unit Definitions

Cross References
1. DocumentedElement see Subclause 6.5

2. DocumentationComment see Subclause 7.4.2

3. Name see Subclause 7.5

4. BooleanLiteral see Subclause 7.7.1

5. NaturalLiteral see Subclause 7.7.2

6. UnboundedValueLiteral see Subclause 7.7.3

7. StringLiteral see Subclause 7.7.4

8. QualifiedName see Subclause 8.2

9. ColonQualifiedName see Subclause 8.2

10. DotQualifiedName see Subclause 8.2

11. UnqualifiedName see Subclause 8.2

12. NumericUnaryOperator see Subclause 8.5.4

13. QualifiedNameList see Subclause 9.15

14. NamespaceDefinition see Subclause 10.2

Action Language for Foundational UML (ALF) 1.0, Beta 2 131

15. Member see Subclause 10.2

Semantics
Subunits
Each kind of namespace definition (as given in subsequent subclauses) includes the specification of a
name for the namespace, which, for a unit definition, becomes the name of the unit. If the unit definition
has a namespace declaration, then the unit is an owned member of that namespace. If the declared
namespace is contained itself in an Alf unit, then the unit definition is for a subunit and the declared
namespace must have a stub declaration for the subunit. A namespace is always denoted in a namespace
declaration by its fully qualified name (as defined in Subclause 8.2).

For example, the following definition for the package Ordering has a stub declaration for the class
Order.
package Ordering {
 class Order; // Stub declaration
}
The subunit defining class Order must then have a corresponding namespace declaration indicating that
it is completing a stub in the namespace Ordering.
namespace Ordering; // Namespace declaration
class Order { // Subunit definition
 …
}
(See the subclause for each kind of namespace definition for further discussion of stub declarations.)

Model Units
An Alf model unit is an Alf unit that is not a subunit of any other Alf unit. It may be used to represent
the model of a classifier or package that is intended to be individually referenced as a named element.

A model unit is not required to have a namespace declaration. But, if it does have such a declaration,
then, by definition, the referenced namespace will not be represented using Alf. If it does not have a
namespace declaration, then which namespace it is placed in, if any, is tool specific.

A model unit may represent an entire UML model (at least within the limits of the fUML subset) or it
may represent a model element (such as a class or standalone activity) intended to be used within some
larger model. The Alf specification does not define how such an Alf unit is created within a specific
modeling environment or how it is attached to some larger model within the environment. It does,
however, place requirements on the modeling environment to allow references from within Alf units to
named elements defined in namespaces outside of those units (see Subclause 10.2).

Import Declarations
An import declaration specifies a UML import dependency (see UML Superstructure, Subclauses 7.3.15
and 7.3.39). Such a declaration may specify an element import or a package import, and it may be
public or private. Alf notation only provides for import declarations on namespaces defined as units.
The import declarations for a unit are placed after the namespace declaration (if any) and before any
stereotype annotations and the body of the definition for the unit. The qualified name given in an import
declaration must be a fully qualified name (as defined in Subclause 8.2).

For an element import reference:

132 Action Language for Foundational UML (ALF) 1.0, Beta 2

• The name must resolve to a packageable element with either an empty or public visibility.

• The visibility of the named element within the scope of the unit definition is as specified in the UML
Superstructure, Subclause 7.3.15, ElementImport.

For a package import reference:

• The name must resolve to a package with either an empty or public visibility.

• The visibility of the named element within the scope of the unit definition is as specified in the UML
Superstructure, Subclause 7.3.39, PackageImport.

For example, the following is a private element import declaration.
private import ProductSpecification::Product; // Element import
package Ordering { // Namespace definition
 …
}
This declaration specifies that the element with the qualified name ProductSpecification::Product
be included as a member of the namespace Ordering. Since this is a private import, the element is
imported as a private member and is not visible outside Ordering. On the other hand, a public import
such as
public import ProductSpecification::Product; // Public element import
package Ordering { // Namespace definition
 …
}
specifies that the element be imported as a public member of Ordering. In this case, the qualified name
Ordering::Product refers to the same element as ProductSpecification::Product.

An element may also be imported with an alias. For example:
public import ProductSpecification::Product as Prod; // Import with alias
package Ordering { // Namespace definition
 …
}
In this case, within the Ordering namespace, the unqualified name for
ProductSpecification::Product is Prod, not Product. Further, since the import is public, outside
Ordering the qualified name Ordering::Prod can be used to refer to the same element as
ProductSpecification::Product.

A package import declaration may be used to import all the elements of a package. For example, the
following declaration:
private import ProductSpecification::*; // Package import
package Ordering { // Namespace definition
 …
}
specifies that all the elements of the package ProductSpecification should be imported into the
namespace Ordering as private members. This is equivalent to giving a private element import
declaration for each of the elements in ProductSpecification. As with an element import declaration,
a package import may also be public. However, aliases cannot be defined with a package import.

Action Language for Foundational UML (ALF) 1.0, Beta 2 133

NOTE. The UML semantics of importing an element is simply that it becomes a member of the
importing namespace. A namespace is not required to have an import dependency in order to reference
an external element from within the namespace. In Alf, importing an element means the name of the
imported element is in the current scope within the importing namespace and can, therefore, be used
without qualification (see Subclause 8.2). However, it is always possible to refer to an element using its
fully qualified name (if such exists) without having to import the element.

Unless it is stereotyped as a «ModelLibrary», an Alf model unit has an implicit, private package import
for each of the sub-packages of the Alf::Library package (see Subclause 11). These packages must
therefore be available in the modeling environment for any Alf unit. (Note that it is unnecessary for
subunits to have such implicit imports, since they will have visibility to the imports on the enclosing
model unit.)

The standard «ModelLibrary» stereotype can be applied to a package to indicate that it “contains model
elements that are intended to be reused by other packages” (see UML Superstructure, Annex C). This
stereotype can be applied to a package represented in Alf using a @ModelLibrary annotation (see
below). A model-unit package so annotated does not have the implicit imports for the
StandardModelLibrary packages and must import these explicitly if they are needed.

NOTE. This rule is to allow for the minimization of dependencies of model library packages
represented in Alf on other packages that they may not need. It also allows for the possibility of
representing the StandardModelLibrary as a model libary package in Alf without requiring it to
implicitly, circularly import subpackages of itself.

Stereotype Annotations
A stereotype annotation specifies the application of a stereotype to a unit. Such annotations are listed
immediately before the namespace definition for the unit. In general, the qualified name in a stereotype
application must resolve to a stereotype in a profile applied to some (directly or indirectly) enclosing
package. The unit must be of a syntactic type that corresponds to the metaclass extended by the
identified stereotype. Any stereotype may be applied at most once to a unit.

NOTE. Profiles and stereotypes are not included in the fUML subset. However, allowing stereotype
application in Alf provides an extensible annotation mechanism based on profiles. Modeling tools may
use such annotations to implement profile-specific mappings of Alf text to the strict fUML subset for
execution. Note, however, that Alf does not provide a textual notation for the definition of profiles, only
their application.

The stereotype name does not need to be qualified if there is only one applied profile with a stereotype
of the given name (except for the special cases given in Table 10-7 and discussed further below).
Otherwise the stereotype must be fully qualified with the name of the profile. However, the UML
superstructure standard profiles (see UML Superstructure, Annex C) are considered to be implicitly
applied, and stereotypes from these profiles can be always be used without explicit qualification of their
names. Thus, any stereotype with a name that conflicts with the name of a standard stereotype must
always be fully qualified.

A stereotype annotation may optionally be followed by a list of tagged values. There are two forms for
such a list.

The first form has a syntax similar to that of a named tuple (see Subclause 8.3.8), with a value associated
with each attribute of the stereotype. Optional attributes (multiplicity lower bound of 0) may be
omitted.This Alf syntax only allows for tagged values of a primitive type and only one value per

134 Action Language for Foundational UML (ALF) 1.0, Beta 2

attribute. Therefore, this form of annotation can only be used for stereotypes with attributes that have
one of the standard primitive types (Boolean, String, Integer or UnlimitedNatural) and a
multiplicity lower bound of at most 1.

The second form of tagged value list is a list of qualified names. In this case, the stereotype must have a
single attribute whose type is a metaclass from the UML abstract syntax. The listed names must be fully
qualified and resolve in model scope for the unit to model elements consistent with the required
metaclass for the stereotype (see Subclause 10.2 for the definition of model scope).

Alf also uses the annotation syntax for a limited number of cases other than strict stereotype application,
as shown in Table 10-7. In the case that there are visible stereotypes with the same name as these special
case annotations, then the unqualified names always denote the special cases, not the stereotypes. To
apply the stereotypes, they must be qualified with the name of the profile in which they are defined,
whether or not that would otherwise be necessary.

Table 10-7 Non-Stereotype Annotations

Annotation Applies To Description

@apply(p1,…,pn) Package Definition Apply the profiles denoted by the qualified names p1,
…, pn. The names must resolve to profiles.

@primitive Data Type Definition
or Activity Definition

If applied to a data type, indicates that the data type is
to be registered as a primitive data type. The data
type may not have any attributes.

If applied to an activity, indicates that the activity is
instead to be mapped as a primitive behavior. How
the implementation of this primitive behavior is
actually defined is implementation specific.

Definitions marked as primitive may not be templates
or stubs.

@external
(file=>"…")

NamespaceDefinition Must be applied to a stub declaration. Indicates that
the stub is to be completed by a subunit
implementation external to the normal UML/Alf
modeling environment. How this implementation is
attached to the UML model and what specific kinds
of namespaces can be annotated as external are tool-
specific. However, the file tag can optionally be
used to give a file reference for the subunit
implementation.

The first special case shown in Table 10-7 is for denoting the application of a profile. For cases other
than the standard UML profiles, such a profile application annotation for the profile must appear before
the stereotypes for the profile are used in stereotype annotations. Once a profile is applied to a unit,
however, it is also available without further application to all subunits of that unit.

Action Language for Foundational UML (ALF) 1.0, Beta 2 135

10.2 Namespaces
A namespace is a UML element used to provide the definition context for a set of named elements
known as the owned members of the namespace. A package is a UML construct whose primary function
is simply as a namespace for defining other elements (see Subclause 10.3). However, a classifier (class,
structured data type, enumeration, association, signal or activity) also acts as a namespace for various
sub-elements defined within it (see Subclause 10.4). Generally, each kind of namespace has specific
restrictions on the kinds of named elements that can be owned members, as reflected in the Alf notation
for them described in subsequent subclauses.

In UML, an operation is also considered to be a namespace for its parameters, and it can be used as such
in the qualified name for those parameters (see Subclause 8.2). However, an operation can only be
defined textually within the context of a class (see Subclauses 10.4.2 and 10.5.3). Therefore, the
definition of an operation in Alf is not considered to syntactically be a namespace definition, in the same
sense that package and classifier definitions are. In particular, an operation definition cannot be used as
a unit (though an activity acting as the method for an operation can be used as a subunit completing an
operation stub declaration—see Subclause 10.4.8).

Since a namespace is a named element, it may itself be an owned member of an enclosing namespace. In
addition to its owned members, the members of a namespace include the members of any enclosing
namespace (unless hidden by an owned member with the same name). A namespace may also have
members that are imported from other packages.

Syntax
NamespaceDefinition(d: NamespaceDefinition)

= PackageDefinition(d)
| ClassifierDefinition(d)

VisibilityIndicator(v: String)
= ImportVisibilityIndicator(v)
| "protected"(v)

NOTE. The actual definition of specific kinds of named elements allowed in various kinds of
namespaces is given in the following subclauses. However, the syntax and semantics of visibility are
discussed here, because they are largely common across the different kinds of named element
definitions.

Figure 10-60 Abstract Syntax of Namespace Definitions

136 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. DocumentedElement see Subclause 6.5

2. ImportVisibilityIndicator see Subclause 10.1

3. StereotypeAnnotation see Subclause 10.1

4. PackageDefinition see Subclause 10.3

5. ClassifierDefinition see Subclause 10.4

Semantics
Members
Each kind of namespace definition contains constituent definitions for owned members of the
namespace. The members of a namespace must be distinguishable as specified in the UML
Superstructure, Subclause 7.3.34, Namespace. However, in any case that the UML Superstructure
considers two names to be distinguishable if they are different, an Alf implementation may instead
impose the stronger requirement that the names not be conflicting, in the sense defined in Subclause 7.5
(of the Alf specification).

Model Scope
All owned members of an Alf namespace must be represented in Alf. However, Alf text may occur in
the context of a larger UML model, not all of which is represented in Alf. In such a case, it is possible
from within the Alf text to refer by name to named elements defined in the wider model context. For any
Alf namespace, the model scope is the innermost namespace enclosing the Alf namespace that is not
itself represented in Alf, if any. If there is no such namespace, then the Alf unit has an empty model
scope.

Whether a name is visible in the model scope is expected to be determined using the usual UML
Superstructure rules. At the very least, the names of all members of the model scope namespace should
be visible. However, the management of namespaces at the model scope and any enclosing namespaces
above that is the responsibility of the modeling environment and not otherwise defined in the Alf
specification.

UML does not in general require that a named element be a member of a namespace or that there be
only one hierarchy of namespaces. However, in order to be referenced in an Alf text, any model element
external to that text must be nameable by a qualified name beginning with a name visible in the model
scope.

Visibility
The visibility of a name outside the scope of the namespace owning the named element can be
controlled by placing a visibility indicator on the definition of the named element: one of “public”,
“private” or “protected”. A named element definition with no visibility indicator is considered to
have package visibility.

The visibility of a named element outside its defining scope is as defined in the UML Superstructure,
Subclause 7.3.55, VisibilityKind.

Action Language for Foundational UML (ALF) 1.0, Beta 2 137

10.3 Packages
A package is a namespace whose sole function is to group its member elements, which must be
packageable elements. In Alf, the supported kinds of packageable element definitions are just the
namespace definitions for packages and the various kinds of classifiers (see Subclause 10.4). Note also
that only packageable elements may be imported into other namespaces (see Subclause 10.1).

A packageable element may be fully defined within the textual body of a package definition.
Alternatively, a stub declaration may be given for the element, which includes only the element name
and visibility (and, for an activity, its signature). The full definition of the element is then given in a
subunit definition (see Subclause 10.1).

Examples
package Ordering // Base unit
{
 public assoc Selects // Nested namespace
 {
 public cart: ShoppingCart[0..*];
 public selectedProducts: Product[1..*];
 public selectionInfo: ProductSelection;
 }

 public active class ShoppingCart; // Stub declaration
 public abstract active class Order;
 public class ProductSelection;
}
Syntax
PackageDeclaration(d: PackageDefinition)

= "package" Name(d.name)
PackageDefinition(d: PackageDefinition)

= PackageDeclaration(d) "{" { PackagedElement(d.ownedMember) } "}"
PackagedElement(m: Member)

= [DocumentationComment(m.documentation)]
 { StereotypeAnnotation(m.annotation) }
 ImportVisibilityIndicator(m.visibility) PackagedElementDefinition(m)

PackagedElementDefinition(m: Member)
= NamespaceDefinition(m)
| NamespaceStubDeclaration(m)

NamespaceStubDeclaration(m: Member)
= PackageStubDeclaration(m)
| ClassifierStubDeclaration(m)

PackageStubDeclaration(m: Member)
= PackageDeclaration(m) ";" (m.isStub=true)

Figure 10-61 Abstract Syntax of Package Definitions

138 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. DocumentationComment see Subclause 7.4.2

2. Name see Subclause 7.5

3. StereotypeAnnotation see Subclause 10.1

4. NamespaceDefinition see Subclause 10.2

5. ImportVisibilityIndicator see Subclause 10.2

6. ClassifierStubDeclaration see Subclause 10.4

Semantics
The package being defined is the current scope for all packaged element definitions within it.

Stereotype annotations apply to the element defined by the following packaged element definition. Such
annotations have the same semantics as annotations made on a unit definition (see Subclause 10.1),
except that the qualified names do not need to be fully qualified and are resolved in the current scope of
the enclosing package, rather than in model scope. If the package element definition is a stub
declaration, then the annotation for a stereotype may be applied either to the stub declaration or the
subunit definition, but not both.

See also the discussion of the semantics for namespaces in general in Subclause 10.2.

10.4 Classifiers

10.4.1 Overview
A classifier specifies a classification of instances according to their features. Classifiers may participate
in generalization relationships, which can result in its feature elements being inherited. Alf supports the
following kinds of classifier: classes (including active classes), structured data types, enumerations,
associations, signals and activities. This subclause specifies how each kind of classifier may be defined
in Alf.

Syntax
ClassifierDefinition(d: ClassifierDefinition)

= ClassDefinition(d)
| ActiveClassDefinition(d)
| DataTypeDefinition(d)
| EnumerationDefinition(d)
| AssociationDefinition(d)
| SignalDefinition(d)
| ActivityDefinition(d)

ClassifierDeclaration(d: ClassifierDefinition)
= ClassDeclaration(d)
| ActiveClassDeclaration(d)
| DataTypeDeclaration(d)
| EnumerationDeclaration(d)
| AssociationDeclaration(d)
| SignalDeclaration(d)
| ActivityDeclaration(d)

ClassifierStubDeclaration(d: ClassifierDefinition)
= ClassifierDeclaration(d) ";" (d.isStub=true)

Action Language for Foundational UML (ALF) 1.0, Beta 2 139

ClassifierSignature(d: ClassifierDefinition)
= Name(d.name) [TemplateParameters(d)]
 [SpecializationClause(d.specialization)]

TemplateParameters(d: ClassifierDefinition)
= "<" ClassifierTemplateParameter(d.ownedMember)
 { "," ClassifierTemplateParameter(d.ownedMember) } ">"

ClassifierTemplateParameter(p: ClassifierTemplateParameter)
= [DocumentationComment(p.documentation)] Name(p.name)
 [TemplateParameterConstraint(p.specialization)]
 (p.visibility="private" and p.isAbstract=true)

TemplateParameterConstraint(qList: QualifiedNameList)
= "specializes" QualifiedName(qList.name)

SpecializationClause(qList: QualifiedNameList)
= "specializes" QualifiedNameList(qList)

Figure 10-62 Abstract Syntax of Classifier Definitions

Cross References
1. DocumentationComment see Subclause 7.4.2

2. Name see Subclause 7.5

3. QualifiedNameList see Subclause 9.15

4. NamespaceDefinition see Subclause 10.2

5. ClassDefinition see Subclause 10.4.2

6. ClassDeclaration see Subclause 10.4.2

7. ActiveClassDefinition see Subclause 10.4.3

8. ActiveClassDeclaration see Subclause 10.4.3

9. DataTypeDefinition see Subclause 10.4.4

10. DataTypeDeclaration see Subclause 10.4.4

11. AssociationDefinition see Subclause 10.4.5

12. AssociationDeclaration see Subclause 10.4.5

13. EnumerationDefinition see Subclause 10.4.6

14. EnumerationDeclaration see Subclause 10.4.6

140 Action Language for Foundational UML (ALF) 1.0, Beta 2

15. SignalDefinition see Subclause 10.4.7

16. SignalDeclaration see Subclause 10.4.7

17. ActivityDefinition see Subclause 10.4.8

18. ActivityDeclaration see Subclause 10.4.8

Semantics
As a namespace, a classifier includes definitions of features as elements. The detailed semantics for each
kind of classifier are described in following sections of this subclause.

The semantics of classifiers are primarily static. However, a classifier provides the specification for
creating instances that have execution semantics, as noted in the following sections of this subclause.

Specialization
In general, a classifier may specialize other classifiers of the same kind. That is, classes may specialize
classes, data types may specialize data types, etc. If a classifier specializes one or more other classifiers,
then the names of the classes it specializes are listed in a specialization clause following the keyword
“specializes”.

If a classifier listed in a specialization clause is a template (see below), then it must have a template
binding giving arguments for all template parameters (see Subclause 8.2). Alf does not provide a
notation for specializing an uninstantiated template classifier.

A classifier inherits non-private members from the classifiers it specializes. The visibility of inherited
members from the classifiers named in the specialization part is as specified in the UML Superstructure,
Subclause 7.3.8, Classifier. Further, when used as a type, a classifier conforms to any classifier that it
specializes (see Subclause 8.2 for the full definition of type conformance).

Any additional rules related to specialization of specific kinds of classifiers are discussed in the
following subclauses on each kind of classifier.

Template Parameters
Alf provides general notation for the binding of the parameters of the various kinds of templates allowed
by UML (see Subclause 8.2). Also also provides a notation for defining templates, but only for template
classifiers whose template parameters are for classifiers. The primary motivation for including this
capability in Alf is to allow for the definition of parameterized types, such as those defined in the Alf
standard library package CollectionClasses (see Subclause 11.6), and parameterized behaviors
(which are kinds of classes in UML), such as those defined in the Alf standard libarary package
CollectionFunctions (see Subclause 11.5).

A classifier template parameter may optionally be constrained, such that any valid argument for the
parameter must conform to a given classifier. If a parameter is so constrained, then the constraining
classifier ia named in a specialization clause for that parameter.

For example, a template class with the signature Sorter<T>, then T could be bound to any classifier for
T. However, if the signature was Sorter<T specializes Comparable>, then T could only be legally
bound to a class that was a subclass (directly or indirectly) of the class Comparable.

NOTE. Classifier templates are specified in the UML Superstructure, Subclause 17.5.7, with classifier
template parameters described in Subclause 17.5.8. For classifier template parameters mapped from Alf,
the allowSubstituable property is always false.

Action Language for Foundational UML (ALF) 1.0, Beta 2 141

Within the body of the definition of a classifier with template parameters, the parameters may be used as
types. If a parameter is not constrained, then it is treated as if it was a data type with no attributes or
operations. If the parameter is constrained, then it is considered to be the same kind of classifier as its
constraining classifiers and to specialize the constraining classifier. Template parameters are always
considered to be abstract classifiers that may not be directly instantiated, since any parameter could be
substituted with an actual argument that is abstract. Template parameters are not visible outside of the
classifier definition.

NOTE. The allowance for substituting a classifier template parameter without a constraining classifier
with a classifier of any kind, regardless of the kind of parameterable element the template has, is a
semantic variation point given in UML Superstructure Subclause 17.5.7. This allowance is necessary in
order to provide for parameterized types that may be instantiated with any kind of argument type. The
notational default for an unconstrained classifier template parameter is specified in UML Superstructure
Subclause 17.5.8 to be that it is considered to have a parameterable element that is a class. However,
presuming, instead, that it is an abstract data type, as given above, prevents it from being used in places
that require a class, which would result in an ill-formed model if the parameter was substituted with a
type other than a class. There are no instances in the Alf notation in which an abstract data type (with no
attributes or operations) may be used, but some other kind of classifier could not be used in the same
place.

When the template classifier is instantiated and its parameters are bound, the result is effectively an
equivalent bound element in which all of the template parameters have been replaced with the
arguments to which they are bound (see Subclause 6.2 on the copy semantics of templates). A template
parameter without a constraining classifier may actually be bound to an argument that is any kind of
classifier, not just a class, as long as this would not make the equivalent bound element ill formed. A
template parameter with a constraining classifier must be bound to an argument classifier that conforms
to the constraining classifier.

10.4.2 Classes
A class is a classifier whose instances are objects. The features of a class may include properties (see
Subclause 10.5.2) and operations (see Subclause 10.5.3). (An active class may also have receptions as
features—see Subclause 10.4.3.)

Examples
abstract class Selection { // Abstract class
 public abstract getSelectionValue(): Money;
 // Abstract operation definition
}

class ProductSelection // Concrete subclass
 specializes Selection {

 private quantity: Count; // Attribute definition
 private unitPriceOfSelection: Money;

 public select // Operation stub declaration
 (in cart: Cart, in product: Product, in quantity: Count);

 public getQuantity(): Count { // Concrete operation definition
 return self.quantity;
 }

142 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public getUnitPriceOfSelection(): Money {
 return self.unitPriceOfSelection;
 }

 /** The total value is given by the // Documentation comment
 quantity times the unit price. */
 public getSelectionValue(): Money { // Redefined operation
 return self.getQuantity * self.getUnitPriceOfSelection;
 }

}

abstract class Collection<T>{ … }

class MapToString<T> specializes Map<Entry=>T, Value=>String> { }

class Sorter<T specializes Comparable> {

 private list: List<T>;
 @Create public Sorter() { }
 @Create public Sorter(list: List<T>);

 public append(elements: List<T>);
 public sort();
 public getList(): List<T>;
 public clear();
}
Syntax
ClassDeclaration(d: ClassDefinition)

= ["abstract" (d.isAbstract=true)] "class" ClassifierSignature(d)
ClassDefinition(d: ClassDefinition)

= ClassDeclaration(d) "{" { ClassMember(d.ownedMember) } "}"
ClassMember(m: Member)

= [DocumentationComment(m.documentation)]
 { StereotypeAnnotation(m.annotation) }
 [VisibilityIndicator(m.visibility)] ClassMemberDefinition(m)

ClassMemberDefinition(m: Member)
= ClassifierDefinition(m)
| ClassifierStubDeclaration(m)
| FeatureDefinition(m)
| FeatureStubDeclaration(m)

Figure 10-63 Abstract Syntax of Class Definitions

Action Language for Foundational UML (ALF) 1.0, Beta 2 143

Cross References
1. DocumentationComment see Subclause 7.4.2

2. StereotypeAnnotation see Subclause 10.1

3. VisibilityIndicator see Subclause 10.2

4. ClassifierDefinition see Subclause 10.4.1

5. ClassifierStubDeclaration see Subclause 10.4.1

6. ClassifierSignature see Subclause 10.4.1

7. FeatureDefinition see Subclause 10.5.1

8. FeatureStubDeclaration see Subclause 10.5.1

Semantics
If the class definition is a subunit definition, then the definition of the namespace owning the class must
include a class stub declaration for the class.

Class Members
The class being defined is the current scope for all class member definitions within it.

The properties of a class define attributes that may take on values of the appropriate type in objects of
the class.

The operations of a class may be invoked on objects of the class using invocation expressions (see
Subclause 8.3.10). The method for an operation (as representable in Alf) is an activity that provides the
behavior for the operation. The method definition for an operation may either be included in the class
definition, or the class definition may include a stub declaration for the operation, which is then
completed in a subunit (see Subclause 10.1). Note that a subunit that completes an operation stub
declaration must be an activity (see Subclause 10.4.8).

A class is a namespace (see Subclause 10.2), and all its features are namespace members. A class may
also define nested classifiers as namespace members. For purposes of naming, such classifier definitions
are identical to definitions made within a package (see Subclause 10.3). However, as members of the
classifier namespace, they have visibility of private members of the classifier that would not be visible
outside the classifier.

For example, activities are kinds of classifiers (see Subclause 10.4.8) and can, therefore, have definitions
nested inside a class.
class Singleton {
 @Create private Singleton() {}

 public activity getSingleton(): Singleton {
 instance = Singleton.allInstances();
 if (instance -> isEmpty()) {
 instance = new Singleton();
 }
 return instance[1];
 }

}

144 Action Language for Foundational UML (ALF) 1.0, Beta 2

In the above example, the activity getSingleton is nested in the class Singleton. Because of this, it
has visibility to the private constructor for Singleton, which is not visible outside of the class.

Any member definition of a class may be preceded by a documentation comment (see Subclause 7.4.2)
that is attached to the element being defined.

A member definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see Subclause 10.1), except that the
qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
class, rather than in model scope. If the class member definition is a stub declaration, then the annotation
for a stereotype may be applied either to the stub declaration or the subunit definition, but not both.

Class Specialization
A class may specialize one or more other classes, in which case it inherits members from the classes it
specializes (its superclasses). Each of the names in the specialization part of a class definition must
resolve to a class. The visibility of inherited members from the classes named in the specialization part
is as specified in the UML Superstructure, Subclause 7.3.8, Classifier.

All non-private members of superclasses are inheritable, except for operations redefined in the subclass
(see Subclause 10.5.3). However, all members of a namespace must be distinguishable. It is therefore
not legal to define a class to inherit members that are not distinguishable.

By default, two named elements are distinguishable if they are either different kinds of elements (e.g., a
property as opposed to an operation) or they have different names. However, operations with the same
name may be distinguished if they have different signatures (see Subclause 10.5.3). Such operations are
said to be overloaded.
NOTE. Alf does not allow the redefinition of any kinds of class members other than operations, because
this is the only kind of redefinition allowed in the fUML subset (see fUML Specification, Subclause
7.2.2). The constraint on distinguishability of namespace members is given in Subclause 7.3.34 of the
UML Superstructure. The default definition for distinguishability of named elements is given in
Subclause 7.3.33 of the UML Superstructure. The rule for the distinguishability for operations is that
defined for all behavioral features in Subclause 7.3.5 of the UML Superstructure. Note that there is no
special rule for activities, so all activities in a given namespace must have different names, regardless of
their signature (that is, activities cannot be overloaded).

A subclass inherits non-private nested classes from its superclasses as well as features. Thus, a subclass
of the Singleton class given in the example above will inherit the public activity getSingleton, but
not the private constructor.

NOTE. The general rules for inheritance of members are defined for all classifiers in Subclause 7.3.8 of
the UML Superstructure. The exclusion of redefined members is given for classes in Subclause 7.3.7 of
the UML Superstructure.

A class may be defined to be abstract. An abstract class cannot be instantiated, but it can be used as a
superclass of other classes. Only abstract classes may have abstract operations (see Subclause 10.5.3),
whether these operations are directly owned by the class or inherited. A class that is not abstract is
known as a concrete class.
Class Instantiation
An object is created as an instance of a class using an instance creation expression (see Subclause
8.3.12). An object has referential value semantics (see fUML Specification, Subclause 8.3.2). That is,

Action Language for Foundational UML (ALF) 1.0, Beta 2 145

the equality of objects is based on their identity, not on the values of their properties (see also Subclause
8.6.6 on the semantics of equality).

10.4.3 Active Classes
An active class is one whose instances (active objects) have independent threads of control. The
independent behavior of an active class is specified by its classifier behavior. When a contrast is
necessary, a class that is non-active may be referred to as a passive class.
An active class may have attributes, operations and nested classifiers, just like a passive class (see
Subclause 10.4.2). However, only an active class may have receptions (see Subclause 10.5.4) as features
and only active objects may receive signals.

NOTE. An activity is a kind of class in UML, but activities are never explicitly declared as active in
Alf. Instead, activities used as operation methods are always mapped as not active, while standalone
activities are always mapped as active (see Subclauses 10.4.8 and 19.10).

Examples
active class Order { // An active class

 public dateOrderPlaced: Date; // Attribute definitions
 public totalValue: Money;
 public deliveryAddress: MailingAddress;
 public contactPhone: TelephoneNumber;

 public receive CheckOut; // Reception definitions
 public receive SubmitCharge;
 public receive PaymentDeclined;
 public receive PaymentApproved;
 public receive OrderDelivered;

} do Order_Behavior // Classifier behavior stub
abstract active class ProcessQueue { // Abstract active class

 private busy: Boolean = false;

 public receive signal Wait { // Signal reception definitions
 public process: Process;
 }
 public receive signal Release {}

 protected abstract enqueue(in process: Process); // Abstract operations
 protected abstract dequeue(): Process;
 protected abstract processesWaiting(): Boolean;

} do { // In-line classifier behavior
 while (true) {
 accept (sig: Wait) { // Accept statement for signals
 if (this.busy) {
 this.enqueue(sig.process);
 } else {
 sig.process.resume();
 }
 } or accept (Release) {
 if (this.processesWaiting()) {

146 Action Language for Foundational UML (ALF) 1.0, Beta 2

 this.dequeue().resume();
 } else {
 this.busy = false;
 }
 }
 }
}
active class ProcessQueueImpl // Concrete active subclass
 specializes ProcessQueue {

 private waitingProcesses: Process[*] ordered;

 private enqueue(in process: Process); // Concrete operation redefinitions
 private dequeue(): Process;
 private processesWaiting(): Boolean;

} // No additional behavior
Syntax
ActiveClassDeclaration(d: ActiveClassDefinition)

= ["abstract" (d.isAbstract=true)] "active" "class"
 ClassifierSignature(d)

ActiveClassDefinition(d: ActiveClassDefinition)
= ActiveClassDeclaration(d) "{" { ActiveClassMember(d.ownedMember) }
 "}" ["do" BehaviorClause(d.classifierBehavior)
 (d.classifierBehavior.visibility="private")
 (d.ownedMember->includes(d.classifierBehavior))]

BehaviorClause(a: ActivityDefinition)
= Block(a.body)
| Name(a.name) (a.isStub=true)

ActiveClassMember(m: Member)
= [DocumentationComment(m.documentation)]
 { StereotypeAnnotation(m.annotation) }
 [VisibilityIndicator(m.visibility)] ActiveClassMemberDefinition(m)

ActiveClassMemberDefinition(m: Member)
= ClassMemberDefinition(m)
| ActiveFeatureDefinition(m)
| ActiveFeatureStubDeclaration(m)

Figure 10-64 Abstract Syntax for Active Class Definitions

Cross References
1. DocumentationComment see Subclause 7.4.2

Action Language for Foundational UML (ALF) 1.0, Beta 2 147

2. Name see Subclause 7.5

3. Block see Subclause 9.1

4. StereotypeAnnotation see Subclause 10.1

5. VisibilityIndicator see Subclause 10.2

6. ClassifierSignature see Subclause 10.4.1

7. ClassDefinition see Subclause 10.4.2

8. ClassMemberDefinition see Subclause 10.4.2

9. ActivityDefinition see Subclause 10.4.8

10. ActiveFeatureDefinition see Subclause 10.5.1

11. ActiveStubDeclaration see Subclause 10.5.1

Semantics
See also the discussion of the general semantics of classes in Subclause 10.4.2.

The classifier behavior of an active class is specified as an activity that is a private owned behavior of
the class. This activity may be named in the definition of the active class, in which case the activity must
be separately defined as a subunit of the active class with the given activity name. Alternatively, the
activity may be specified with a block (see Subclause 9.1) directly attached to the active class definition.
(Note that in neither case may the activity have parameters.)

An active class may specialize other classes, including passive classes, with the normal inheritance rules
(see Subclause 10.4.2). However, a passive class may not specialize an active class.

Since the classifier behavior is always private, it is not inherited by subclasses. However, an instance of
an active class with active superclasses will have the behavior specified for all its superclasses, as well
as any behavior specified for the subclass. The classifier behavior for an active class may only accept
signals for which the class has a reception, either directly or inherited from a superclass (see also
Subclause 10.5.4 on receptions).

An active class may be abstract (see also Subclause 10.4.2), in which case it cannot be instantiated, but
it can be used as the superclass of other active classes.

Active Class Instantiation
An active object is created like any other object using an instance creation expression. However, when
an active object is created, its classifier behavior is automatically started (see Subclause 8.3.12).

10.4.4 Data Types
In Alf, the unqualified term data type is always used to refer to a structured data type, not an
enumeration or primitive type. The instances of such a data type are known as data values. The features
of a data type must be properties (see Subclause 10.5.2).

Examples
datatype Complex {
 public re: Real;
 public im: Real;
}

148 Action Language for Foundational UML (ALF) 1.0, Beta 2

Syntax
DataTypeDeclaration(d: DataTypeDefinition)

= ["abstract" (d.isAbstract=true)] "datatype" ClassifierSignature(d)
DataTypeDefinition(d: DataTypeDefinition)

= DataTypeDeclaration(d) "{" { StructuredMember(d.ownedMember) } "}"
StructuredMember(m: Member)

= [DocumentationComment(m.documentations]
 { StereotypeAnnotation(m.annotations) } ["public"(m.visibility)]
 PropertyDefinition(m)

Figure 10-65 Abstract Syntax of Data Type Definitions

Cross References
1. DocumentationComment see Subclause 7.4.2

2. Name see Subclause 7.5

3. StereotypeAnnotation see Subclause 10.1

4. ClassifierDefinition see Subclause 10.4.1

5. ClassifierSignature see Subclause 10.4.1

6. PropertyDefinition see Subclause 10.5.2

Semantics
If the data type definition is a subunit definition, then the definition of the namespace owning the data
type must include a data type stub declaration for the data type.

Data Type Members
The data type being defined is the current scope for all property definitions within it. As for a class (see
Subclause 10.4.2), the properties of a data type define attributes that may take on values of the
appropriate type in instances of the data type.

NOTE. Alf does not allow private or protected visibility to be specified for data type attributes. Since
operations and nested classifiers are not allowed on data types, there would be no way to access data
type attributes that are private or protected. Both public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see Subclause 10.1), except that the
qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
data type, rather than in model scope.

Data Type Specialization
A data type may specialize one or more other data types, in which case it inherits attributes from the
data types it specializes (its supertypes). Each of the names in the specialization part of a data type must

Action Language for Foundational UML (ALF) 1.0, Beta 2 149

resolve to a data type. The visibility of inherited members from the data types named in the
specialization part is as specified in the UML Superstructure, Subclause 7.3.8, Classifier.

All non-private attributes of the supertypes are inheritable. However, all attributes of a data type,
whether owned or inherited, must have unique names. It is therefore not legal to define a data type to
inherit attributes with the same name as each other or any defined in the subtype.

NOTE. The constraint on distinguishability of namespace members is given in Subclause 7.3.34 of the
UML Superstructure. The default definition for distinguishability of named elements is given in
Subclause 7.3.33 of the UML Superstructure.

A data type may be defined to be abstract. An abstract data type cannot be instantiated, but it can be
used as a supertype of other data types.

Data Type Instantiation
Like an object, a data value is created as an instance of a data type using an instance creation expression
(see Subclause 8.3.12). However, unlike objects, the data values do not have independent identity and
two data values of the same type are considered equal if the values of their corresponding attributes are
equal (see also Subclause 8.6.6 on the semantics of equality).

10.4.5 Associations
An association is a classifier that specifies a semantic relationship that may exist between two or more
instances. The instances of an association are known as links. The features of an association must all be
properties (see Subclause 10.5.2).

Examples
assoc Selection {
 public cart: ShoppingCart[0..*]; // Association end definitions
 public selectedProduct: Product[1..*];
 public selectionInfo: ProductSelection;
}
Syntax
AssociationDeclaration(d: AssociationDefinition)

= ["abstract" (d.isAbstract=true)] "assoc" ClassifierSignature(d)
AssociationDefinition(d: AssociationDefinition)

= AssociationDeclaration(d) "{" StructuredMember(d.ownedMember)
 StructuredMember(d.ownedMember) { StructuredMember(d.ownedMember) }
 "}"

NOTE. An association must have at least two association ends.

Figure 10-66 Abstract Syntax of Association Definitions

150 Action Language for Foundational UML (ALF) 1.0, Beta 2

Cross References
1. ClassifierDefinition see Subclause 10.4.1

2. ClassifierSignature see Subclause 10.4.1

3. StructuredMember see Subclause 10.4.4

Semantics
If the association definition is a subunit definition, then the definition of the namespace owning the
association must include an association stub declaration for the association.

Association Ends
The association being defined is the current scope for all property definitions within it. The properties of
an association are the association ends whose values are the instances being related by a specific
instance of the association.

NOTE. Per the fUML subset, association ends, as structural features, are always owned by their
association (see fUML Specification, Subclause 7.2.2). Alf does not allow private or protected visibility
to be specified for association ends, because there would be no way to access them. Public and package
visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see Subclause 10.1), except that the
qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
association, rather than in model scope.

If an association definition contains an association end that is a composed property, then it must have
exactly two association ends.

NOTE. The UML Superstructure, Subclause 7.3.3, requires that a composition association be binary.

Association Specialization
An association may specialize one or more other associations, in which case it inherits association ends
from the associations it specializes (its superassociations). Each of the names in the specialization part
of an association must resolve to an association. The visibility of inherited association ends from the
associations named in the specialization part is as specified in the UML Superstructure, Subclause 7.3.8,
Classifier.

All non-private association ends of superassociations are inheritable. However, all association ends of an
association, whether owned or inherited, must have unique names. It is therefore not legal to define an
association to inherit association ends with the same name as each other or any defined in the
subassociation.

NOTE. The constraint on distinguishablity of namespace members is given in Subclause 7.3.34 of the
UML Superstructure. The default definition for distinguishibility of named elements is given in
Subclause 7.3.33 of the UML Superstructure.

An association may be defined to be abstract. An abstract association cannot be instantiated, but it can
be used as a superassociation of other associations.

Action Language for Foundational UML (ALF) 1.0, Beta 2 151

Association Instantiation
Links are created and destroyed as instances of an association using the createLink and destroyLink
link operations (see Subclause 8.3.13). Links are not themselves values. However, the properties of the
links of an association may be queried using an association read expression (which has the form of a
behavior invocation—see Subclause 8.3.9) or a property access expression (for a binary association—
see Subcaluse 8.3.6).

10.4.6 Enumerations
An enumeration is a classifier whose allowed instances are a specified set of enumeration literals.
Examples
enum TrafficLightColor { RED, YELLOW, GREEN }
Syntax
EnumerationDeclaration(d: EnumerationDefinition)

= "enum" Name(d.name) [SpecializationClause(d.specialization)]
EnumerationDefinition(d: EnumerationDefinition)

= EnumerationDeclaration(d) "{" EnumerationLiteralName(d.ownedElement)
 { "," EnumerationLiteralName(d.ownedElement) } "}"

EnumerationLiteralName(m: EnumerationLiteralName)
= [DocumentationComment(m.documentation)]
 Name(m.name) (m.visibility="public")

NOTE. Enumerations cannot have template parameters, since there would not be any way to use them
within the enumeration definition.

Figure 10-67 Abstract Syntax of Enumeration Definitions and Enumeration Literal Names

Cross References
1. DocumentationComment see Subclause 7.4.2

2. Name see Subclause 7.5

3. Member see Subclause 10.2

4. ClassifierDefinition see Subclause 10.4.1

5. SpecializationClause see Subclause 10.4.2

Semantics
If the enumeration definition is a subunit definition, then the definition of the namespace owning the
enumeration must include an enumeration stub declaration for the enumeration.

152 Action Language for Foundational UML (ALF) 1.0, Beta 2

Enumeration Literals
The enumeration being defined is the current scope for all enumeration literal names defined within it.
Enumeration literals are the only members allowed for an enumeration.

NOTE. Alf assumes public visibility for all enumeration literals.

Enumerations are not actually instantiated, but, rather, their enumeration literals are simply referenced
by name (see Subclause 8.3.3).

Enumeration Specialization
An enumeration may specialize one or more other enumerations, in which case it inherits enumeration
literals from the enumerations it specializes (its supertypes). Each of the names in the specialization part
of an enumeration must resolve to an enumeration. The visibility of inherited members from the
enumerations named in the specialization part is as specified in the UML Superstructure, Subclause
7.3.8, Classifier.

All enumeration literals of the supertypes are inheritable. However, all enumeration literals of an
enumeration, whether owned or inherited, must have unique names. It is therefore not legal to define an
enumeration to inherit members with the same name as each other or any defined in the subtype.

NOTE. The constraint on distinguishability of namespace members is given in Subclause 7.3.34 of the
UML Superstructure. The default definition for distinguishability of named elements is given in
Subclause 7.3.33 of the UML Superstructure. Since an enumeration is not actively instantiated, there is
no reason to be able to define one as abstract.

10.4.7 Signals
A signal is a classifier whose instances may be sent asynchronously (see Subclause 8.3.10) to an active
object (see also Subclause 10.4.3). The ability for an object to receive a certain signal is specified using
a reception declaration in the class of the object (see Subclause 10.5.4). The features of a signal must all
be properties (see Subclause 10.5.2).

Examples
signal SubmitCharge {
 public accountNumber: BankCardAccountNumber;
 public billingAddress: MailingAddress;
 public cardExpirationDate: MonthYear;
 public cardholderName: PersonalName;
}
Syntax
SignalDeclaration(d: SignalDefinition)

= ["abstract" (d.isAbstract=true)] "signal" ClassifierSignature(d)
SignalDefinition(d: SignalDefinition)

= SignalDeclaration(d) "{" { StructuredMember(d.ownedMember) } "}"

Action Language for Foundational UML (ALF) 1.0, Beta 2 153

Figure 10-68 Abstract Syntax of Signal Definitions

Cross References
1. ClassifierDefinition see Subclause 10.4.1

2. ClassifierSignature see Subclause 10.4.1

3. StructuredMember see Subclause 10.4.4

Semantics
If the signal definition is a subunit definition, then the definition of the namespace owning the signal
must include a signal stub declaration (or signal reception stub declaration—see Subclause 10.5.4) for
the signal.

Signal Attributes
The signal being defined is the current scope for all property definitions within it. The properties of a
signal are the attributes of the signal whose values in an instance of the signal are data that is transmitted
by sending the signal.

NOTE. Alf does not allow private or protected visibility to be specified for attributes of a signal,
because there would be no way to access them. Public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see Subclause 10.1), except that the
qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
signal, rather than in model scope.

Signal Specialization
A signal may specialize one or more other signals, in which case it inherits attributes from the signals it
specializes (its supersignals). Each of the names in the specialization part of a signal must resolve to a
signal. The visibility of inherited members from the signals named in the specialization part is as
specified in the UML Superstructure, Subclause 7.3.8, Classifier.

All non-private attributes of the supersignals are inheritable. However, all attributes of a signal, whether
owned or inherited, must have unique names. It is therefore not legal to define a signal to inherit
attributes with the same name as each other or any defined in the subsignal.

NOTE. The constraint on distinguishability of namespace members is given in Subclause 7.3.34 of the
UML Superstructure. The default definition for distinguishability of named elements is given in
Subclause 7.3.33 of the UML Superstructure.

A signal may be defined to be abstract. An abstract signal cannot itself be sent (see Subclause 8.3.10),
but it can be used as a supersignal of other signals.

154 Action Language for Foundational UML (ALF) 1.0, Beta 2

Signal Instantiation
Signals are implicitly instantiated as part of the asynchronous feature invocation of a reception (see
Subclause 8.3.10). Such instances may be received using an accept statement (see Subclause 9.15). Once
received, the attributes of a signal instance (if any) may be accessed just like the properties of any other
kind of instance (see Subclause 8.3.6).

10.4.8 Activities
An activity is “the specification of parameterized behavior as the coordinated sequencing of subordinate
units whose individual elements are actions” (UML Superstructure, Subclause 12.3.4). It is the
fundamental mechanism for behavioral modeling in Alf.

Activities are namespaces (see Subclause 10.2) that may be defined as Alf units (see Subclause 10.1).
Activities may also be implicitly defined by the in-line specification of behavior for active classes (see
Subclause 10.4.3) or operations (see Subclause 10.5.3).

In UML, activities are also classes (see UML Superstructure, Subclause 12.3.4) and so may have
attributes, operations and specialization. However, for simplicitly, Alf does not provide a textual
notation for features and specializations on activities. Instead, an active class may be used to model
structural features along with a related behavior (see Subclause 10.4.3).

Examples
activity getNodeActivations
 (in node: ActivityNode): ActivityNodeActivation[*] {
 return this.activations -> select a (a.node == node);
}
activity execute()
{
 //@parallel
 {
 'activity' = (Activity)(this.types[1]);
 {
 group = new ActivityNodeActivationGroup();
 group.activityExecution = this;
 }
 {
 this.activationGroup = group;
 group.activate('activity'.node, 'activity'.edge);
 }
 }
}
activity Order_Behavior() {
 accept (checkout: Checkout);
 this.establishCustomer(checkout);

 do {

 accept (chargeSubmission: SubmitCharge);
 this.processCharge(chargeSubmission);

 accept (PaymentDeclined) {
 declined = true;
 this.declineCharge();

Action Language for Foundational UML (ALF) 1.0, Beta 2 155

 } or accept (PaymentApproved) {
 declined = false;
 }

 } while (declined);

 this.packAndShip();
 accept (OrderDelivery);
 this.notifyOfDelivery();
}
Syntax
ActivityDeclaration(d: ActivityDefinition)

= "activity" Name(d.name) [TemplateParameters(d)] FormalParameters(d)
 [ReturnParameter(d.ownedMember)]

ActivityDefinition(d: ActivityDefinition)
= ActivityDeclaration(d) Block(d.body)

FormalParameters(d: NamespaceDefinition)
= "(" [FormalParameterList(d)] ")"

FormalParameterList(d: NamespaceDefinition)
= FormalParameter(d.ownedMember) { "," FormalParameter(d.ownedMember) }

FormalParameter(p: FormalParameter)
= [DocumentationComment(p.documentations)]
 { StereotypeAnnotation(p.annotations) }
 ParameterDirection(p.direction) Name(p.name) ":"
 TypePart(p)

ParameterDirection(dir: String)
= "in"(dir) | "out"(dir) | "inout"(dir)

ReturnParameter(p: FormalParameter)
= ":" TypePart(p) (p.direction="return")

Figure 10-69 Abstract Syntax of Activity Definitions and Formal Parameters

Cross References
1. Block see Subclause 9.1

2. ClassifierDefinition see Subclause 10.4.1

3. TypePart see Subclause 10.5.2

4. TypedElementDefinition see Subclause 10.5.2

156 Action Language for Foundational UML (ALF) 1.0, Beta 2

Semantics
Formal Parameters
The definition of an activity includes the names and types of any in, out and inout parameters, as well
as, optionally, the type of a single return parameter. The activity acts as the namespace for its parameters
(but parameters are not packageable elements and, therefore, cannot be imported; see Subclause 10.3).
Return parameters cannot be named in Alf. The type part of a formal parameter definition statically
specifies the type and multiplicity of the formal parameter in the same way as for a property (see
Subclause 10.5.2).

A formal parameter may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see Subclause 10.1), except that the
qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
activity, rather than in model scope.

Activities as Units
An activity definition can either be a model unit in itself or a subunit of another Alf unit. As a subunit,
an activity definition may complete a stub declaration for an activity as a nested classifier (see Subclause
10.4.2), as the classifier behavior of an active class (see Subclause 10.4.3) or as the method of an
operation (see Subclause 10.5.3).

An activity definition that completes a classifier behavior declaration may not be a template and may not
have any parameters. An activity definition that completes an operation also may not be a template but
must have formal and return parameters (if any) that match exactly, in order, the parameters of the
operation in direction, name, type and multiplicity. An activity definition that completes a nested
activity stub must also match the parameters of the stub, as for an operation. (The type name of a
parameter of an activity does not need to lexically match exactly that of the corresponding operation
parameter, but the activity parameter type name must resolve to the same classifier as the corresponding
parameter of the operation, or the activity and operation parameters must both be untyped.)

Note also that any stereotype annotations made on an activity definition subunit (see Subclause 10.1)
that completes an operation maps to a stereotype on the method for that operation, not the operation
itself. Stereotype annotations for the operation itself (such as @Create for a constructor or @Destroy for
a destructor) must be made on the operation stub declaration (see Subclause 10.4.2).

Local and Parameter Names
An activity can introduce local names for elements within it. Such named elements are not namespace
elements of the activity. Local names are used in Alf to denote intermediate values in computations
within an activity. The scope of such local names is generally from the point at which they are defined
lexically to the end of the containing activity. However, the local names defined in an activity are never
visible outside that activity. (See also the discussion of local names in Subclauses 8.1 and 9.1.)

The names of the parameters of an activity are not technically local names, since they are owned
namespace members of the activity. However, they are used within the body of an activity in much the
same way as local names. Further, while parameter names may be qualified with the name of the
activity, this is not required, meaning that they are generally written as unqualified names, again much
like local names.

Action Language for Foundational UML (ALF) 1.0, Beta 2 157

An in parameter may be referenced by name within the body of an activity (see Subclause 8.3.3), but it
cannot be reassigned. It is treated similarly to a local name whose assigned source is always given by its
input value at the start of the execution of an activity.

Both out and inout parameters, on the other hand, may be referenced and assigned (see Subclause 8.8)
within the body of an activity. An out parameter is initially unassigned, while an inout parameter is
initially assigned its input value at the start of the execution of an activity. The values returned for these
parameters by the activity are from their final assigned sources.

Activity Execution
An activity may be executed as the classifier behavior of an active class (see Subclause 10.4.3), as an
operation method (see Subclause 10.5.3) or as a stand-alone behavior in its own right. A classifier
behavior is automatically started asynchronously when an instance of the class that owns it is created
(see Subclause 8.3.12). A stand-alone activity can also be started asynchronously by instantiating it as a
class, as long as it does not have parameters (see Subclause 8.3.12), or it can be called synchronously
using a behavior invocation (see Subclause 8.3.9). An operation method can only be called
synchronously (see Subclause 8.3.10).

However it is invoked, an activity is then executed by executing the block given in its definition (see
Subclause 9.1). That is, each of the statements in the block are executed sequentially in order, and the
activity terminates once the last statement in the block completes execution.

10.5 Features

10.5.1 Overview
A feature declares a behavioral or structural characteristic of the instances of a classifier. A structural
characteristic is declared using a property (see Subclause 10.5.2). A behavioral characteristic is declared
using an operation (see Subclause 10.5.3) or (for an active class) a reception (see Subclause 10.5.4).

Syntax
FeatureDefinition(m: Member)

= AttributeDefinition(m)
| OperationDefinition(m)

FeatureStubDeclaration(m: Member)
= OperationStubDeclaration(m)

ActiveFeatureDefinition(m: Member)
= ReceptionDefinition(m)
| SignalReceptionDefinition(m)

ActiveFeatureStubDeclaration(m: Member)
= SignalReceptionStubDeclaration(m)

Cross References
1. Member see Subclause 10.2

2. AttributeDefinition see Subclause 10.5.2

3. OperationDefinition see Subclause 10.5.3

4. OperationStubDeclaration see Subclause 10.5.3

5. ConstructorDefinition see Subclause 10.5.3.1

6. ConstructorStubDeclaration see Subclause 10.5.3.1

158 Action Language for Foundational UML (ALF) 1.0, Beta 2

7. DestructorDefinition see Subclause 10.5.3.2

8. DestructorStubDeclaration see Subclause 10.5.3.2

9. ReceptionDefinition see Subclause 10.5.4

10. SignalReceptionDefinition see Subclause 10.5.4

11. SignalReceptionStubDeclaration see Subclause 10.5.4

Semantics
See the discussion of the semantics of each kind of feature in subsequent subclauses.

10.5.2 Properties
A property is a structural feature of a classifier. The attributes of classes, data types and signals are
properties, as are the association ends of an association.

Example
amount: Money = 0;
products: Product [1..*] ordered;
wheels: compose Wheel [2..4];
position: Point = new(0,0);
colors: Set<Color> = { Color::red, Color::blue, Color::green };
Syntax
PropertyDefinition(d: PropertyDefinition)

= PropertyDeclaration(d) ";"
AttributeDefinition(d: PropertyDefinition)

= PropertyDeclaration(d) [AttributeInitializer(d.initializer)] ";"
AttributeInitializer(e: Expression)

= "=" InitializationExpression(e)
PropertyDeclaration(d: PropertyDefinition)

= Name(d.name) ":" ["compose" (d.isComposite=true)] TypePart(d)
TypePart(d: TypedElementDefinition)

= TypeName(d.typeName) [Multiplicity(d)]
Multiplicity(d: TypedElementDefinition)

= MultiplicityRange(d) [OrderingAndUniqueness(d)]
OrderingAndUniqueness(d: TypedElementDefinition)

= "ordered" (d.isOrdered=true) ["nonunique" (d.isNonunique=true)]
| "nonunique" (d.isNonunique=true) ["ordered" (d.isOrdered=true)]
| "sequence" (d.isOrdered=true and d.isNonunique=true)

MultiplicityRange(d: TypedElementDefinition)
= MultiplicityIndicator (d.upperBound="*")
| "[" [DecimalLiteral(d.lowerBound) ".."]
 UnlimitedNaturalLiteral(d.upperBound) "]"

UnlimitedNaturalLiteral(v: String)
= DecimalLiteral(v)
| UnboundedValueLiteral(v)

Action Language for Foundational UML (ALF) 1.0, Beta 2 159

Figure 10-70 Abstract Syntax of Property Definitions

Cross References
1. Name see Subclause 7.5

2. NaturalLiteral see Subclause 7.7.2

3. UnboundedValueLiteral see Subclause 7.7.3

4. Expression see Subclause 8.1

5. QualifiedName see Subclause 8.2

6. TypeName see Subclause 8.2

7. InitializationExpression see Subclause 9.6

8. Member see Subclause 10.2

Semantics
Property Definition
The classifier that owns a property provides the current scope for naming in the property definition.

The property definition statically specifies the type and multiplicity associated with the property name.
If the property type is given by a qualified name, then this name must resolve to a classifier. This
classifier may not be a template, though it may be the binding of a template classifier with arguments
provided for all template parameters.

Alternatively, a property may by untyped. An untyped property is indicated by using the keyword any in
place of a classifier name.

The type of a property restricts the values that may be held by the property to instances of the given
type. If the property is untyped, there are no restrictions on the value the property may hold.

160 Action Language for Foundational UML (ALF) 1.0, Beta 2

The multiplicity of a property specifies the upper and lower bounds of the cardinality of values a
property may have in any one instance of its owning classifier. If no multiplicity is specified for a
property, the default multiplicity is [1..1]. If only a single bound is specified, then this is considered to
be both the upper and lower bound, except in the case of a multiplicity specified as [*], which is
equivalent to [0..*]. A multiplicity specification of [] (that is, brackets with no explicit bounds) is also
considered equivalent to [0..*].

By default, a property with a multiplicity upper bound greater than 1 is considered to be unordered and
non-unique. However, this default may be overridden by using the keywords ordered and/or
nonunique in the property definition.

The Alf notation for properties is thus similar to the usual notation used in UML diagrams. For example,
the property definition
items: Item [0..*] ordered nonunique;
declares a property that can hold zero or more objects of type Item in an ordered sequence. If the
multiplicity is [0..*], then a shorter form can also be used in which the range 0..* is implicit:
items: Item[] ordered nonunique;
In addition, the single keyword “sequence” may be used in place of the combination of the two
keywords “ordered” and “nonunique”. Thus, the following is also equivalent to the declarations above:
items: Item[] sequence;
Composition
If a property definition includes the keyword “compose”, then it is considered to be a composition of the
values it holds. This has semantic implications when an instance of the owning classifier of the property
is destroyed (see Subclause 10.5.3.2).

For example, consider the class
class C {
 public a: A = new A();
 public b: compose B = new B();
}
When an instance of class C is destroyed, the object it holds for attribute b will also be automatically
destroyed, but the object it holds for attribute a will not.

Composition properties can also be included in association definitions. For example:
assoc R {
 public c: C;
 public d: compose D;
}
Note that (per UML Superstructure, Subclause 7.3.3) the composition annotation is on the part end of
the composite association. That is, in the above association, c is the composite while d is the part. Thus,
when an instance of class C is destroyed, if there is a link of association R with that object at one end,
then that link and the instance of D at the other end will also be destroyed.

NOTE. Alf provides no notation for shared aggregation, since this has no semantic effect. However,
properties specified outside of Alf notation with aggregation=shared are treated the same way as
properties with aggregation=none.

Action Language for Foundational UML (ALF) 1.0, Beta 2 161

Attribute Initialization
The attributes of a class are properties (see Subclause 10.4.2). However, unlike the case of other
property definitions, Alf provides a notation for the initializer of an attribute, which is an expression that
is evaluated every time the class containing the attribute is instantiated, with the result being assigned to
the attribute. The enclosing class is the current scope for names in the expression. The evaluation of
initializers is carried out as part of the execution of the creation of a newly instantiated object (see
Subclause 8.3.12 on the creation of objects and Subclause 10.5.3.1 on constructors).

NOTE. The fUML subset does not include default values for properties (see fUML Specification,
Subclause 7.2.2). However, the evaluation of attribute initializer expressions in Alf are mapped as part
of the constructor for the enclosing class that owns the attribute, which can be executed within the
fUML subset. The attribute initializers themselves do not need to be referenced during model execution.

Instance creation (see Subclause 8.3.12) and sequence construction (see Subclause 8.3.15) expressions
use as initializers may be written in the shorthand initialization expression form, as for a local name
declaration statement (see Subclause 9.6). For example, the attribute definition
position: Point = new(0,0);
is equivalent to
position: Point = new Point(0,0);
and the attribute definition
colors: Set<Color> = { Color::red, Color::blue, Color::green };
is equivalent to
colors: Set<Color> = Set<Color>{ Color::red, Color::blue, Color::green };

10.5.3 Operations
An operation is a behavioral feature of a class that provides the specification for invoking an associated
method behavior. Only classes may have operations as features. An operation is called on an instance of
a class that has it as a feature using an invocation expression (see Subclause 8.3.10).

Examples
// Abstract operation
abstract select(in cart: Cart, in product: Product, in quantity: Count);
// In-line definition
select(in cart: Cart, in product: Product, in quantity: Count) {
 Selects.createLink(cart, product, this);
 this.quantity = quantity;
 this.unitPriceOfSelection = product.getUnitPrice();
}
// Stub declaration
unitPrice(): Money redefines Selection::getUnitPriceOfSelection;
Syntax
OperationDeclaration(d: OperationDefinition)

= ["abstract" (d.isAbstract=true)] Name(d.name)
 FormalParameters(d.ownedMember) [ReturnParameter(d.ownedMember)]
 [RedefinitionClause(d.redefinition)]

162 Action Language for Foundational UML (ALF) 1.0, Beta 2

OperationDefinition(d: OperationDefinition)
= OperationDeclaration(d) Block(d.body)

OperationStubDeclaration(d: OperationDefinition)
= OperationDeclaration(d) ";" (d.isStub=true)

RedefinitionClause(qList: QualifiedNameList)
= "redefines" QualifiedNameList(qList)

Figure 10-71 Abstract Syntax of Operation Definitions

Cross References
1. Name see Subclause 7.5

2. Block see Subclause 9.1

3. QualifiedNameList see Subclause 9.15

4. NamespaceDefinition see Subclause 10.2

5. FormalParameters see Subclause 10.4.8

6. ReturnParameter see Subclause 10.4.8

7. TypePart see Subclause 10.5.2

Semantics
Operation Signature
The definition of an operation includes the names and types of any in, out and inout parameters, as
well as, optionally, the type of a single return parameter. The operation acts as the namespace for its
parameters (but parameters are not packageable elements and, therefore, cannot be imported; see
Subclause 10.3). Return parameters cannot be named in Alf. The type part of a formal parameter
definition statically specifies the type and multiplicity of the formal parameter in the same way as for a
property (see Subclause 10.5.2).

The signature is the list of types of the parameters of an operation, in the order of the parameters. If an
operation has a return parameter, it is always listed after any other parameters. The directions (in, out,
inout, return) of the parameters are not considered part of the operation signature.

A formal parameter may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see Subclause 10.1), except that the

Action Language for Foundational UML (ALF) 1.0, Beta 2 163

qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
activity, rather than in model scope.

Operation Distinguishability
Two operations are considered distinguishable within the same namespace if they have different names
or different signatures. It is illegal to define two indistinguishable operations within the same class.

For example:
class C {
 f (in x: Integer): Integer;
 f (in x: Boolean): Integer; // Legal, different parameter type.
 f (in x: Integer): Boolean; // Legal, different return type.
 f (out x: Integer): Integer; // Illegal! Parameter types are the same.
}
The first three operations above are distinguishable, even though they have the same name. They are
said to be overloaded. The last operation, however, has the same signature as the first one, and is
therefore illegal in the same class.

NOTE. The rule for distinguishability of operations is defined in general for behavioral features in
Subclause 7.3.5 of the UML Superstructure. The requirement for distinguishability of namespace
members is given in Subclause 7.3.34 of the UML Superstructure.

Operation Redefinition
It is also illegal to inherit an operation that is not distinguishable from all other owned and inherited
operations of a class (see also Subclause 10.4.2). However, an operation from a superclass that is
redefined in a subclass is not considered to be inherited into the subclass. It is therefore legal for the
redefining operation to have the same name and signature as the operation it redefines.

In Alf, if an operation is defined in a subclass that is indistinguishable from an operation that would
otherwise be inherited from a superclass, then the subclass operation is instead considered to redefine
the superclass operation. If there are multiple indistinguishable operations inheritable from different
superclasses, then the redefining operation is considered to redefine them all.

It is also possible to explicitly specify an operation redefinition. In this case, the name of the redefining
operation may be different than the name of the redefined operation. Each qualified name in the
redefinition clause in the declaration of the redefining operation must resolve to a visible operation of a
superclass that is consistent with the redefining operation being declared, as specified in UML
Superstructure, Subclause 7.3.36, Operation.

For example, in the following class definitions:
class A { p(in x: Integer); }
class B (p(in x: Integer); }
class C specializes A,B { p(in x: Integer); }
the final class definition is equivalent to
class C specializes A,B {
 p(in x: Integer) redefines A::p, B::p;
}

164 Action Language for Foundational UML (ALF) 1.0, Beta 2

Note that, in this case, it would be illegal to redefine only one of A::p and B::p with an
indistinguishable operation, since then the other superclass operation would still be inherited and would
conflict with the redefining operation in C.

In the case of the explicit definition, it would also be possible to give the operation in C a different name:
class C specializes A,B {
 renamed(in x: Integer) redefines A::p, B::p;
}
Note that, in this case, the operations A::p and B::p are still not inherited by C—C has no operation
called p. On the other hand, in
class C specializes A,B {
 renamed(in x: Integer) redefines A::p;
}
only A::p is redefined in C, as renamed, and B::p is, therefore, still inherited. But there is no name
conflict, and C will have both an operation called renamed and an inherited operation called p.

NOTE. The rule for consistency between redefined and redefining operations is given in Subclause
7.3.36 of the UML Superstructure. The general UML rule is that the types of the redefining operation
must conform to the types of the redefined operation. Unfortunately, this does not take into account the
directions of the parameters. Alf requires that the redefining operation have parameters with the same
types and directions as the redefined operation.

Operation Method
An operation is called using an invocation expression (see Subclause 8.3.10). The behavior of an
operation is given by its method.
The method for an operation is specified as an activity that is a private owned behavior of the class (note
that the method visibility is separate from the operation visibility). The operation may have a stub
declaration, in which case its method must be separately defined as an activity subunit of the class
owning the operation. Alternatively, the method may be specified using a block (see Subclause 9.1) in-
line with the operation definition. The names of parameters defined in the operation declaration are
visible (as local names) within all constituent parts of the block in this case.

The method of a redefining operation in a subclass overrides the methods of the operations it redefines.
That is, when any of the redefined superclass operations are invoked on an instance of the subclass, it is
the overriding method in the subclass that is executed, not the superclass method (see Subclause 8.3.10).

An abstract operation does not have a method. However, such an operation may be redefined in a
subclass by a concrete operation with a method. Only abstract classes may have abstract operations (see
Subclause 10.4.2). A concrete class that has superclasses with abstract operations must redefine all those
operations to be concrete.

10.5.3.1 Constructors
A constructor is an operation, specially identified using the @Create stereotype annotation (see
Subclause 10.1), and used to initialize a newly created object. The constructor to be used for this
purpose is given in the instance creation expression that creates the object (see Subclause 8.3.12).

NOTE. Constructor operations are discussed in the UML Superstructure specification primarly in the
context of composite structure (see UML Superstructure, Subclause 9.3.1). However, the «Create»

Action Language for Foundational UML (ALF) 1.0, Beta 2 165

stereotype is generally available to annotate a constructor operation (see UML Superstructure, Subclause
C.1). An Alf constructor maps to an operation with this stereotype. Strictly, the use of this stereotype is
outside the fUML subset. However, the stereotype is only used to signal that the annotated operation
may be used in an instance creation expression. The actual mapping for an instance creation expression
results in a create object action with a regular operation call on the constructor, which may be executed
within the fUML subset (see Subclause 8.3.12).

Examples
@Create public Table(in rows: Integer, in columns: Integer);
@Create
public ProductSelection
 (in cart: Cart, in product: Product, in quantity: Count);
@Create
private registered() {
 Repository::get().register(this);
}
Semantics
Default Constructors
Every class represented in Alf notation (see Subclause 10.4.2) is always mapped as having at least one
constructor. If no constructor is explicitly defined for the class, then the class is assumed to have a
default constructor. The name of the default constructor is the same as the name of the class.

NOTE. This means that the instantiation of a class defined using Alf textual notation is never
“constructorless” as defined in Subclause 8.3.12.

The behavior of the default constructor is to initialize any attributes owned by the class of a newly
created object that have initializers in their definition (see Subclause 10.5.2). Such initialization has the
semantics of an assignment of the expression to the attribute (see Subclause 8.8). Attributes are
initialized in the order in which they are defined in the class.

Note that an attribute initializer expression may refer to attributes within the same class, including the
attribute being initialized. This means that the attribute being initialized and attributes defined later than
the attribute being initialized may be used before they are themselves initialized. Such uninitialized
attributes will be empty, which may violate the multiplicity lower bounds given in their definitions.

For example, consider the following class definition.
class Initialization {
 public a: Integer = this.b -> size();
 public b: Integer = 1;
}
An object created with the expression new Initialization() has a with value 0 (since b has not been
initialized yet) and b with value 1.

Explicit Constructors
An explicit constructor definition has the same syntax as a regular operation definition, with the
stereotype annotation @Create. An explicit constructor may have the name of its class, like a default
constructor. However, it may also have a different name than that of its class, in which case the
constructor is explicitly identified by name when used in an instance creation expression (see Subclause
8.3.12).

166 Action Language for Foundational UML (ALF) 1.0, Beta 2

If a class has an explicit constructor definition, then the default constructor is no longer available, even
if the defined constructor has a different name than the default constructor.

A constructor may also have parameters, but no return type is explicitly given. Implicitly, every
constructor has the class it is constructing as its return type. This implicit return type is included in the
signature for the constructor.

A class may have more than one constructor, any of which may be used in an instance creation
expression for objects of the class.

As operations, non-private constructors are inheritable and the usual distinguishability rules apply (see
Subclause 10.5.3). Note that constructors from different classes are always distinguishable, though,
because at least their return types will be different.

Unlike a normal operation, a constructor may not be redefined in a subclass. Only a constructor directly
owned by a class may be used in an instance creation expression for an instance of the class (see
Subclause 8.3.12).

When an object is initialized using an explicit constructor, the default constructor attribute initialization
behavior (as described above) is always performed before the explicit constructor behavior. For
example, suppose the above example were modified as shown below.
class Initialization {
 public a: Integer;
 public b: Integer = 1;

 @Create public Initialization() {
 this.a = this.b -> size();
 }
}
The creation expression new Initialization() now results in an object having a with value 1, since
attribute b is initialized before the body of the constructor is executed.

The body of a constructor may contain an alternative constructor invocation for another constructor in
the same class or super constructor invocations for constructors in immediate superclasses. The syntax
for such invocations is the same as a normal operation invocation (see Subclauses 8.3.10 and 8.3.11). In
addition, only within a constructor body, the symbol “this” may be used as an alternative constructor
invocation target, with the same meaning as invoking a constructor with the same name as the class. If
the class has exactly one superclass, then the symbol “super” may also be used as a super constructor
invocation target, with the same meaning as invoking a constructor on the superclass with the same
name as the superclass.

For example, the following class definition contains an explicit invocation of one of its own constructors
and one from its superclass.
class B specializes A {
 @Create public B(in x: Integer) {
 super.A(x);
 }

 @Create public B() {
 this.B(x);
 }
}

Action Language for Foundational UML (ALF) 1.0, Beta 2 167

Using the special invocation syntax allowed in constructors, this could also be written as follows.
class B specializes A {
 @Create public B(in x: Integer) {
 super(x);
 }

 @Create public B() {
 this(x);
 }
}
An alternative constructor invocation may only occur as the first statement of the body of a constructor
(as specified in the static semantics for feature invocation expressions in Subclause 8.3.10). Super
constructor invocations must all occur at the beginning of the body of a constructor, with no other
statements preceding them, and no more than one invocation for each superclass (as specified in the
static semantics for super invocation expressions in Subclause 8.3.11).

In the absence of explicit constructor invocations at the start of a constructor body (and also in the case
of the default constructor behavior), a super constructor invocation is made implicitly for each
immediate superclass, in the order the superclasses appear in the specializes list of the class
containing the constructor, before executing any statements in the constructor body. If the constructor
body begins with explicit superclass constructor invocations for some but not all superclasses of the
class containing the constructor, then super constructor invocations are made implicitly for all
remaining superclass, before executing any statements in the constructor body.

If a class has multiple superclasses, then it is possible that these superclasses may themselves have one
or more common ancestor classes (this is sometimes referred to as “diamond inheritance”). In this case,
the above rules may result in the same constructor of a common ancestor class being called more than
once or more than one constructor from the same common ancestor class being called. However, once a
constructor from a class is called on an object, that object is considered to be initialized for that class. If
another call is made, either explicitly or implicitly, on an object using any constructor from a class for
which the object is already initialized, then that constructor has no further effect: no default initialization
is carried out, no implicit super constructor calls are made and the body of the constructor is not
executed.

10.5.3.2 Destructors
A destructor is an operation, specially identified using the @Destroy stereotype annotation (see
Subclause 10.1), used to clean up an object that is to be destroyed. A call to a destructor not only
invokes the destructor’s behavior, but also results in the actual destruction of the object (see the
semantics of destructor invocation under Subclauses 8.3.10 and 8.3.11).

NOTE. The UML Superstructure specification defines the «Destroy» stereotype to annotate a
destructor operation (see Subclause C.1). An Alf destructor maps to an operation with this stereotype.
Strictly, the use of this stereotype is outside the fUML subset. However, the stereotype is only used to
signal that the annotated operation may be used in an instance destruction expression. The actual
mapping for an instance destruction expression results in a regular operation call on the destructor,
which may be executed within the fUML subset, followed by a destroy object action (see Subclauses
8.3.10 and 8.3.11).

168 Action Language for Foundational UML (ALF) 1.0, Beta 2

Examples
@Destroy public ProductSelection();
@Destroy
private unregister() {
 Repository::get().unregister(this);
 super.destroy();
}
Semantics
Default Destructors
Every class represented in Alf notation (see Subclause 10.4.2) is always mapped as having at least one
destructor. If no destructor is explicitly defined for the class, then the class is assumed to have a default
constructor. The name of the default destructor is “destroy”.

NOTE. This means that a call to the default destructor destroy is always an explicit destructor call, not
an implicit destructor invocation as defined in Subclause 8.3.10.

The behavior of the default destructor is to first call the destructor destroy() (i.e., with no arguments)
on any immediate superclasses (if such exists), in the order in which those superclasses are given in the
specializes list for the class of the object being destroyed. The destroy() destructor (if it exists) is
then called on any object that is the value of a composite attribute or on the opposite end of a composite
association. Destructors are called on attributes in the order in which they are defined in the class of the
object being destroyed. The order in which destructors are called on objects related by composite
association is not specified.

Explicit Destructors
An explicit destructor definition has the same syntax as a regular operation definition, with the
stereotype @Destroy. The name of the destructor may then be used in an invocation expression to
destroy an object of the class (see Subclause 8.3.10).

If a class has an explicit destructor definition, then the default destructor is no longer available, even if
the defined destructor has a different name than destroy.

A destructor may also have parameters, but may not have a return parameter.

A class may have more than one destructor, any of which may be used in an instance destruction
expression for objects of the class.

As operations, non-private destructors are inheritable and the usual distinguishability rules apply (see
Subclause 10.5.3). If a class has a destructor named destroy, with no arguments (either implicitly as the
default destructor or explicitly), then a similar destructor named destroy with no arguments in a
subclass implicitly redefines the superclass destructor. Otherwise, a destructor may not be explicitly
redefined in a subclass. Only a destructor directly owned by a class may be used in an invocation
expression used to destroy an instance of the class (see Subclause 8.3.10).

When an object is destroyed using an explicit destructor, the default destructor behavior is not
performed, so any desired calls to superclass or composite part destructors must be made explicitly.

The body of a destructor may contain explicit invocations of other destructors in the same class (targeted
to “this”) or a superclass (targeted to “super”). However, such invocations act just like normal

Action Language for Foundational UML (ALF) 1.0, Beta 2 169

operation calls and do not cause the destruction of the object. An object is not actually destroyed until
the completion of the original destructor invocation (see Subclauses 8.3.10 and 8.3.11).

For example, the following class definition contains an explicit invocation of one of its own destructors
and of a destructor from its superclass.
class D specializes C {
 @Destroy public destroy() {
 super.destroy();
 }

 @Destroy public cancel (in reason: String) {
 WriteLine(reason);
 this.destroy();
 }
}
If d is an instance of D, then the expression d.cancel("Example") will result in the destruction of d
only after the completion of the invocation of cancel("Example"), not by any of the intermediate
destructor calls.

10.5.4 Receptions
A reception is a behavioral feature of an active class that declares that instances of the class are prepared
to react to the receipt of a specific signal. Only active classes may have receptions as features. Normally,
the signal is defined separately and referenced by name in the reception declaration. As a convenience,
Alf also allows the definition of the signal and a declaration of a reception of it to be combined into a
signal reception definition.
Examples
receive Checkout;
receive signal SubmitCharge {
 public accountNumber: BankCardAccountNumber;
 public billingAddress: MailingAddress;
 public cardExpirationDate: MonthYear;
 public cardholderName: PersonalName;
}
Syntax
ReceptionDefinition(d: ReceptionDefinition)

= "receive" QualifiedName(d.signalName) ";"
 (d.name=d.signal.nameBinding->last().name))

SignalReceptionDeclaration(d: SignalReceptionDefinition)
= "receive" "signal" Name(d.name)
 [SpecializationClause(d.specialization)]

SignalReceptionDefinition(d: SignalReceptionDefinition)
= SignalReceptionDeclaration(d) "{"
 { StructuredMember(d.ownedMember) } "}"

SignalReceptionStubDeclaration(d: SignalReceptionDefinition)
= SignalReceptionDeclaration(d) ";" (d.isStub=true)

170 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 10-72 Abstract Syntax of Reception Definitions and Signal Reception Definitions

Cross References
1. Name see Subclause 7.5

2. QualifiedName see Subclause 8.2

3. Member see Subclause 10.2

4. SpecializationClause see Subclause 10.4.2

5. StructuredMember see Subclause 10.4.4

6. SignalDefinition see Subclause 10.4.7

Semantics
The owning classifier definition of a reception definition or a signal reception definition must be for an
active class. An invocation of a reception on an instance of the owning active class results in a sending
of the specified signal to that instance (see Subclause 8.3.10).

Reception Definitions
The name in a reception definition must be the visible name of a signal.

The reception is given the same name as the base name of the signal without any qualification. Since
receptions must be distinguished by name, this means that no active class may have more than one
reception (inherited or owned) for a signal with a given name.

NOTE. The general requirement for distinguishability of namespace members is given in Subclause
7.3.34 of the UML Superstructure. This is not overridden in Subclause 13.2.23 of the UML
Superstructure on receptions.

Signal Reception Definitions
A signal reception definition defines both a reception as an owned feature of the active class and a signal
as a nested classifier of the owning class of the reception. The static semantics for a signal definition
(see Subclause 10.4.7) thus also apply to a signal reception definition. However, a signal reception
definition may not have template parameters.

For example, the following active class definition:
active class Order {

 receive signal SubmitCharge {

Action Language for Foundational UML (ALF) 1.0, Beta 2 171

 public accountNumber: BankCardAccountNumber;
 public billingAddress: MailingAddress;
 public cardExpirationDate: MonthYear;
 public cardholderName: PersonalName;
 }

}
is equivalent to:
active class Order {

 receive SubmitCharge;

 signal SubmitCharge {
 public accountNumber: BankCardAccountNumber;
 public billingAddress: MailingAddress;
 public cardExpirationDate: MonthYear;
 public cardholderName: PersonalName;
 }

}
Note that, even though the reception and the signal have the same name, there is no distinguishability
conflict, because receptions and signals are separate syntactic types. The name Order::SubmitCharge
in this example can thus refer to either the reception or the signal, depending on context.

172 Action Language for Foundational UML (ALF) 1.0, Beta 2

11 Standard Model Library
Every modeling environment using Alf must also make available a set of models known as the Alf
Standard Model Library. This library consists of the profile ActionLanguage and the model library
package Alf::Library. The Alf::Library package contains the subpackages shown in Figure 11-73.

NOTE. The ActionLanguage profile is not nested within Alf::Library because it may also be useful
outside the context of Alf.

Figure 11-73 Alf Standard Model Library Subpackages

The ActionLanguage profile is described in Subclause 11.1. The subpackages of Alf::Library are
then described in subsequent subclauses.

11.1 ActionLanguage Profile
The ActionLanguage profile contains the single stereotype shown in Figure 11-74. When applied to a
comment, this stereotype indicates that the body of the comment is the textual representation of the
element to which the comment is attached, potentially including the representation of other modeling
elements contained in the element to which the comment is attached (see Subclause 6.1). The language
attribute gives the name of the language in which the comment body text is written, using the same
naming conventions as for the language attribute of an opaque behavior.

Action Language for Foundational UML (ALF) 1.0, Beta 2 173

Figure 11-74 Stereotype TextualRepresentation

11.2 Primitive Types
Alf is based on UML 2.4. However, the fUML Foundational Model Library imports the UML 2.3
AuxiliaryTypes::PrimitiveTypes package (see fUML Specification, Subclause 9.2) and the
primitive behaviors defined in the Foundational Model Library are based on the UML 2.3 primitive
types. Since the Alf Standard Model Library builds on the fUML libarary behaviors (see Subclause 11.3
below), the Alf::Library::PrimitiveTypes package imports the
AuxiliaryTypes::PrimitiveTypes package from the UML 2.3 superstructure (see Subclause 17.4 of
the OMG UML Superstructure, Version 2.3, formal/2010-05-05), as shown in Figure 11-73. (It is
expected that, in the future, the fUML Foundational Model Library will be updated to use UML 2.4
primitive types, in which case the Alf Standard Model Library may be similarly updated.)

Importing, the UML 2.3 AuxiliaryTypes::PrimitiveTypes package makes the UML primitive types
Integer, Boolean, String and UnlimitedNatural available in the Alf::Library::PrimitiveTypes
namespace. In addition to the imported types, the Alf PrimitiveTypes package also includes natural
and bit string types described in the remainder of this subclause.

To be recognized as primitive types in an fUML execution environment, the types defined in the
Alf::Library::PrimitiveTypes package (including imported types) must be registered with any
execution locus at which they are to be used (see fUML Specification, Subclause 8.2.1).

11.2.1 Natural Type
As shown in Figure 11-75, the primitive type Natural specializes both Integer and
UnlimitedNatural. Natural literals have the type Natural unless they can be determined statically to
be of type Integer or UnlimitedNatural from their context of use (see Subclause 7.7.2).

Figure 11-75 Primitive Type Natural

174 Action Language for Foundational UML (ALF) 1.0, Beta 2

11.2.2 Bit String Type
The primitive type BitString represents values that are uninterpreted sequences of bits, each of which
has either be set (bit value of 1) or unset (bit value of 0). Alf does not provide direct literals for bit
strings, but the standard BitStringFunctions package provides functions for converting integers to bit
strings and vice versa.

The length of a bit string is the number of bits in the string. For any conforming implementation, all bit
strings must have the same length, but this length may differ between implementations. However, if an
implementation limits supported integer values to a finite set (as permitted in Subclause 9.1 of the fUML
Specification), the implemented bit string length must be at least long enough to represent the
conversion from every supported integer value (positive or negative). If an implementation does not
limit supported integer values, then the implemented bit string length must not be smaller than 32.

11.3 Primitive Behaviors
As shown in Figure 11-76, the Alf::Library::PrimitiveBehaviors package has subpackages
corresponding to each of the subpackages in the fUML standard FoundationalModelLibrary::
PrimitiveBehaviors package (see fUML Specification, Subclause 9.2) except for the ListFunctions
package. Each of these primitive behavior packages imports the primitive functions from the
corresponding fUML package, renaming certain functions with aliases so that they have names
consistent with the corresponding operators used in the Alf expression syntax. In addition, the Alf
PrimitiveBehaviors package also includes the BitString Functions and SequenceFunctions
packages.

Figure 11-76 Primitive Behavior Packages

Action Language for Foundational UML (ALF) 1.0, Beta 2 175

To be usable in an fUML execution environment, implementations of all of the function behaviors in
each of the subpackages of the Alf::Library::PrimitiveBehaviors package (including imported
behaviors) must be registered with any execution locus at which they are to be used (see fUML
Specification, Subclause 8.2.1). These implementations must conform to the specifications for the
behaviors they implement, as given in fUML Specification, Subclause 9.2, or in this subclause, as
appropriate.

11.3.1 Boolean Functions
The Alf::Library::PrimitiveBehaviors::BooleanFunctions package imports all the behaviors
contained in the fUML FoundationalModelLibrary::PrimitiveBehaviors:: BooleanFunctions
package. Table 11-8 lists these functions with their Alf aliases, along with their corresponding fUML
name. The formal specification for these functions is given in Clause 9.2.1 of the fUML Specification.

Table 11-8 Boolean Functions

Function Signature fUML Name Description
'|'(in x: Boolean, in y: Boolean):
 Boolean

Or True if either x or y is true.

'^'(in x: Boolean, in y: Boolean):
 Boolean

Xor True if either x or y is true, but not both.

'&'(in x: Boolean, in y: Boolean):
 Boolean

And True if both x and y are true.

'!'(in x: Boolean): Boolean Not True if x is false.
Implies
 (in x: Boolean, in y: Boolean):
 Boolean

Implies True if x is false, or if x is true and y is
true.

ToString(in x: Boolean): String ToString Converts x to a String value.
ToBoolean(in x: String):
 Boolean[0..1]

ToBoolean Converts x to a Boolean value.

11.3.2 Integer Functions
The Alf::Library::PrimitiveBehaviors::IntegerFunctions package imports all the behaviors
contained in the fUML FoundationalModelLibrary::PrimitiveBehaviors:: IntegerFunctions
package. Table 11-9 lists these functions with their Alf aliases, along with their corresponding fUML
name. The formal specification for these functions is given in Clause 9.2.2 of the fUML Specification.

The package also includes the additional ToNatural function, in addition to the functions imported from
the fUML IntegerFunctions package. This function converts a string representation of a natural
(unsigned) number in any of the forms given in Subclause 7.7.2, as opposed to the ToInteger function
which only converts from a decimal string representation (and also allows a sign).

Table 11-9 Integer Functions

Function Signature fUML Name Description
Neg(in x: Integer): Integer Neg The negative value of x.
Abs(in x: Integer): Integer Abs The absolute value of x.
'+'(in x: Integer, in y: Integer):
 Integer

+ The value of the addition of x and y.

176 Action Language for Foundational UML (ALF) 1.0, Beta 2

Table 11-9 Integer Functions

Function Signature fUML Name Description
'-'(in x: Integer, in y: Integer):
 Integer

- The value of the subtraction of x and y.

'*'(in x: Integer, in y: Integer):
 Integer

* The value of the multiplication of x and
y.

'/'(in x: Integer, in y: Integer):
 Integer[0..1]

Div The number of times that y fits
completely within x.

'%'(in x: Integer, in y: Integer):
 Integer

Mod The result is x modulo y.

Max(in x: Integer, in y: Integer):
 Integer

Max The maximum of x and y.

Min(in x: Integer, in y: Integer):
 Integer

Min The minimum of x and y.

'<'(in x: Integer, in y: Integer):
 Boolean

< True if x is less than y.

'>'(in x: Integer, in y: Integer):
 Boolean

> True if x is greater than y.

'<='(in x: Integer, in y:
Integer):
 Boolean

<= True if x is less than or equal to y.

'>='(in x: Integer, in y:
Integer):
 Boolean

>= True if x is greater than or equal to y.

ToString(in x: Integer): String ToString Converts x to a String value.
ToUnlimitedNatural
 (in x: Integer):
 UnlimitedNatural[0..1]

ToUnlimited
Natural Converts x to an UnlimitedNatural

value.
ToInteger(in x: String):
 Integer[0..1]

ToInteger Converts x to an Integer value.

ToNatural(in x: String):
 Integer[0..1] Converts x to an Integer value, where x

is any legal representation of a natural
literal.

11.3.3 String Functions
The Alf::Library::PrimitiveBehaviors::StringFunctions package imports all the behaviors
contained in the fUML FoundationalModelLibrary::PrimitiveBehaviors:: StringFunctions
package. Table 11-10 lists these functions with their Alf aliases, along with their corresponding fUML
name. The formal specification for these functions is given in Clause 9.2.3 of the fUML Specification.

Table 11-10 String Functions

Function Signature fUML Name Description
'+'(in x: String, in y: String):
 String

Concat The concatenation of x and y.

Size(in x: String): Integer Size The number of characters in x.

Action Language for Foundational UML (ALF) 1.0, Beta 2 177

Table 11-10 String Functions

Function Signature fUML Name Description
Substring
 (in x: String,
 in lower: Integer,
 in upper: Integer):
 String[0..1]

Substring The substring of x starting at character
number lower, up to and including
character number upper. Character
numbers run from 1 to Size(x).

11.3.4 UnlimitedNatural Functions
The Alf::Library::PrimitiveBehaviors::UnlimitedNaturalFunctions package imports all the
behaviors contained in the fUML FoundationalModelLibrary::
PrimitiveBehaviors::UnlimitedNaturalFunctions package. Table 11-9 lists these functions with
their Alf aliases, along with their corresponding fUML name. The formal specification for these
functions is given in Clause 9.2.4 of the fUML Specification.

Table 11-11 UnlimitedNatural Functions

Function Signature fUML Name Description
Max
 (in x: UnlimitedNatural,
 in y: UnlimitedNatural):
 UnlimitedNatural

Max The maximum of x and y.

Min
 (in x: UnlimitedNatural,
 in y: UnlimitedNatural):
 UnlimitedNatural

Min The minimum of x and y.

'<'
 (in x: UnlimitedNatural,
 in y: UnlimitedNatural):
 Boolean

< True if x is less than y.

'>'
 (in x: UnlimitedNatural,
 in y: UnlimitedNatural):
 Boolean

> True if x is greater than y.

'<='
 (in x: UnlimitedNatural,
 in y: UnlimitedNatural):
 Boolean

<= True if x is less than or equal to y.

'>='
 (in x: UnlimitedNatural,
 in y: UnlimitedNatural):
 Boolean

>= True if x is greater than or equal to y.

ToString(in x: UnlimitedNatural):
 String

ToString Converts x to a String value.

ToInteger
 (in x: UnlimitedNatural):
 Integer[0..1]

ToInteger Converts x to an Integer value.

ToUnlimitedNatural(in x: String):
 UnlimitedNatural[0..1]

ToUnlimited
Natural Converts x to an UnlimitedNatural

value.

178 Action Language for Foundational UML (ALF) 1.0, Beta 2

11.3.5 Bit String Functions
The Alf::Library::PrimitiveBehaviors::BitStringFunctions package contains a set of
functions used to manipulate bit strings. Table 11-12 lists a basic set of functions included in the
package for constructing and accessing bit strings. Table 11-13 lists functions corresponding to bit-wise
operations for which there is a binary operator syntax.

Table 11-12 Basic BitString Functions

Function Signature Description
IsSet(in b: BitString, n: Integer):
 Boolean True if the n-th bit of b is set. Bits are numbered

from zero starting with the rightmost bit position.
If n is greater than or equal to the length of the bit
string, then the result for the leftmost bit is
returned.

BitLength(): Integer The implemented bit string length.
ToBitString(in n: Integer): BitString The bit string representation of n.
ToInteger(in b: BitString): Integer The integer represented by the bit string b.
ToHexString(in b: BitString): String The string representation of b as a hexadecimal

numeral.
ToOctalString(in b: BitString): String The string representation of b as an octal numeral.

There are no literals for bit strings, so the only way to construct a bit string is by using the function
toBitString. This function takes an integer value and returns a bit string consisting of the twos-
complement binary representation of that value, with the low-order bit being the rightmost bit (bit
position 0). If an implementation supports arbitrary integer values, and the twos-complement
representation of an integer value is longer than the bit string length for that implementation, then the
result of toBitString consists of the low-order bits of the representation, truncated at the implemented
bit string length.

Note that, in most cases, it is not necessary to call toBitString explicitly, because such a call is
automatically inserted as a result of implicit bit string conversion of an integer value (see Subclause 8.8).
The function toInteger performs the inverse conversion from a bit string to an integer value.

Alf provides special operator syntax for unary and binary bit-wise and shift functions on bit strings (see
Subclauses 8.x, 8.y and 8.z). This operator syntax is a shorthand for the invocation of the
correspondingly named function behaviors given in Table 11-13. The required behavior of each of these
functions is specified as a post-condition on its result, written in the Object Constraint Language (OCL),
Version 2.0 (see the OCL Specification). The standard OCL notation is extended to allow calls to the
functions isSet and length defined in Table 11-12.

Action Language for Foundational UML (ALF) 1.0, Beta 2 179

Table 11-13 Bit-wise Operator Functions

Function Signature Description
'~'(in b: BitString): BitString The bit-wise complement of b.

Post:
 Sequence{0..BitLength()-1}->
 forAll(i |
 IsSet(result,i)= not IsSet(b,i)
)

'&'(in b1: BitString, in b2:
BitString):
 BitString

The bit-wise “and” of b1 and b2.

Post:
 Sequence{0..BitLength()-1}->
 forAll(i |
 isSet(result,i) =
 isSet(b1,i) and isSet(b2,i)
)

'^'(in b1: BitString, in b2:
BitString):
 BitString

The bit-wise “exclusive or” of b1 and b2.

Post:
 Sequence{0..BitLength()-1}->
 forAll(i |
 IsSet(result,i) =
 IsSet(b1,i) xor IsSet(b2,i)
)

'|'(in b1: BitString, in b2:
BitString):
 BitString

The bit-wise “inclusive or” of b1 and b2.

Post:
 Sequence{0..BitLength()-1}->
 forAll(i |
 IsSet(result,i) =
 IsSet(b1,i) or IsSet(b2,i)
)

'<<'(in b: BitString, in n: Integer):
 BitString The bit string b shifted n places to the left.

Post:
 if n <= 0 then result = b
 else
 Sequence{0..BitLength()-1}->
 forAll(i |
 if i < n then
 not IsSet(result,i)
 else
 IsSet(result,i) =
 IsSet(b,i-n)
 endif
)
 endif

180 Action Language for Foundational UML (ALF) 1.0, Beta 2

Table 11-13 Bit-wise Operator Functions

Function Signature Description
'>>'(in b: BitString, in n: Integer):
 BitString The bit string b shifted n places to the right with

“sign extension” of the leftmost bit.

Post:
 if n <= 0 then result = b
 else
 Sequence{0..BitLength()-1}->
 forAll(i |
 if i < BitLength()-n then
 IsSet(result,i) =
 IsSet(b,i+n)
 else
 IsSet(result,i) =
 IsSet(b,BitLength()-1)
 endif
)
 endif

'>>>'(in b: BitString, in n: Integer):
 BitString The bit string b shifted n places to the right.

Post:
 if n <= 0 then result = b
 else
 Sequence{0..BitLength()-1}->
 forAll(i |
 if i < BitLength()-n then
 IsSet(result,i) =
 IsSet(b,i+n)
 else
 not IsSet(result,i)
 endif
)
 endif

11.3.6 Sequence Functions
The Alf::Library::PrimitiveBehaviors::SequenceFunctions package contains a set of functions
used to manipulate sequences of values. Table 11-14 lists function behaviors that are included in the
SequenceFunctions package. The required behavior of each function is specified as a post-condition on
its result, written in the Object Constraint Language (OCL), Version 2.0 (see the OCL Specification). In
some cases, a pre-condition is also specified for a function. In this case, if the pre-condition is violated,
then the function completes execution, but produces no output value. The result parameters for such
functions are specified to have multiplicity 0..1 to allow for this.

Note that all the functions in Table 11-14 take a sequence as an in parameter and return some result
based on that sequence. Since these functions are intended to apply to sequences of any type of value,
the function parameters for such sequences and their elements are untyped. This, however, means that,
using the normal typing rules, any type information on an input sequence to one of these functions is lost
when the function is used, which can be inconvenient.

For example, suppose integerList is a sequence of type Integer and consider the application of the
including function to it to define an extended list. Unfortunately, the following is illegal:

Action Language for Foundational UML (ALF) 1.0, Beta 2 181

let extendedList: Integer[] = _including(integerList, 1); // Type error!
Since the result of the call to including is untyped, it is not assignable to extendedList, which has type
Integer. Instead, an explicit cast must be used:
let extendedList: Integer[] = (Integer)_including(integerList, 1); // Legal
To avoid having to do this, the template function behaviors in the CollectionFunctions package (see
Subclause 11.5) should generally be used in preference to the primitive behaviors defined in the
SequenceFunctions package. Note, however, that these template functions are actually defined in
terms of the primitive sequence functions, since only non-template primitive behavior implementations
can be registered with the fUML execution locus.

Table 11-14 Sequence Functions

Function Signature Description
Size
 (in seq: any[*] sequence):
 Integer

The number of elements in seq.

Post: result = seq->size()
Includes
 (in seq: any[*] sequence,
 in element: any):
 Boolean

True if element is an element of seq, false
otherwise.

Post: result = seq->includes(element)
Excludes
 (in seq: any[*] sequence,
 in element: any):
 Boolean

True if element is not an element of seq, false
otherwise.

Post: result = seq->excludes(element)
Count
 (in seq: any[*] sequence,
 in element: any):
 Integer

The number of times that element occurs in seq.

Post: result = seq->count(element)
IsEmpty
 (in seq: any[*] sequence):
 Boolean

True if seq is empty.

Post: result = seq->isEmpty()
NotEmpty
 (in seq: any[*] sequence):
 Boolean

True if seq is not empty.

Post: result = seq->notEmpty()
IncludesAll
 (in seq1: any[*] sequence,
 in seq2: any[*] sequence):
 Boolean

True if seq1 contains all the elements of seq2, false
otherwise.

Post: result = seq1->includesAll(seq2)
ExcludesAll
 (in seq1: any[*] sequence,
 in seq2: any[*] sequence):
 Boolean

True if c1 contains none of the elements of seq2,
false otherwise.

Post: result = seq1->excludesAll(seq2)
Equals
 (in seq1: any[*] sequence,
 in seq2: any[*] sequence):
 Boolean

True if seq1 contains the same elements as seq2 in
the same order.

Post: result = (seq1=seq2)
At
 (in seq: any[*] sequence,
 in index: Integer):
 any[0..1]

The index-th element of seq.

Pre: index>=1 and index<=seq->size()
Post: result = seq->at(index)

182 Action Language for Foundational UML (ALF) 1.0, Beta 2

Table 11-14 Sequence Functions

Function Signature Description
IndexOf
 (in seq: any[*],
 in element: any):
 Integer[0..1]

The index of element in seq.

Pre: seq->includes(element)
Post: seq->indexOf(element)

First
 (in seq: any[*] sequence):
 any[0..1]

The first element of seq.

Pre: c->notEmpty()
Post: result = seq->first()

Last
 (in seq: any[*] sequence):
 any[0..1]

The last element of seq.

Pre: seq->notEmpty()
Post: result = seq->last()

Union
 (in seq1: any[*] sequence,
 in seq2: any[*] sequence):
 any[*] sequence

The sequence consisting of all elements of seq1
followed by all elements of seq2.

Post: result = seq1->union(seq2)
Intersection
 (in seq1: any[*] sequence,
 in seq2: any[*] sequence):
 any[*] sequence

The sequence consisting of all elements of seq1 that
are also in seq2.

Post: result = seq1->iterate(
 e; s = Sequence{} |
 if seq2->excludes(e) then s
 else s->append(e) endif)

Difference
 (in seq1: any[*] sequence,
 in seq2: any[*] sequence):
 any[*] sequence

The sequence consisting of all the elements of seq1
not in seq2.

Post: result = seq1->iterate(
 e; s = Sequence{} |
 if seq2->includes(e) then s
 else s->append(e) endif)

Including
 (in seq: any[*] sequence,
 in element: any):
 any[*]sequence

The sequence consisting of all elements of seq
followed by element.

Post: result = seq->including(element)
IncludeAt
 (in seq: any[*] sequence,
 in index: Integer,
 in element: any):
 any[*] sequence

The sequence consisting of seq with element
inserted at position index.

Post: result =
 if index>=1 and index<=seq->size()+1
 then
 seq->insertAt(index,element)
 else
 seq
 endif

Action Language for Foundational UML (ALF) 1.0, Beta 2 183

Table 11-14 Sequence Functions

Function Signature Description
InsertAt
 (in seq: any[*] sequence,
 in index: Integer,
 in element: any):
 any[*]sequence

The sequence consisting of seq with element
inserted at position index. (This is the same as
_includeAt. _insertAt is included for consistency
with the similar OCL operation on sequences.)

Post: result =
 if index>=1 and index<=seq->size()+1
 then
 seq->insertAt(index,element)
 else
 seq
 endif

IncludeAllAt
 (in seq1: any[*] sequence,
 in index: Integer,
 in seq2: any[*] sequence:
 any[*] sequence

The sequence consisting of seq1 with all elements
of seq2 inserted at position index.

Post: result =
 if index>=1 and index<=seq->size()+1
 then
 seq1->subSequence(1,index-1)->
 union(seq2)->
 union(seq1->subsequence(index,
 seq1->size()))
 else
 seq
 endif

Excluding
 (in seq: any[*] sequence,
 in element: any):
 any[*] sequence

The sequence consisting of all elements of seq apart
from all occurrences of element.

Post: result = seq->iterate(
 e; s = Sequence{} |
 if e=element then s
 else s->append(e) endif)

ExcludingOne
 (in seq: any[*] sequence,
 in element: any):
 any[*] sequence

The sequence consisting of seq with the first
occurrence of element (if any) removed.

Post: result =
 if seq->includes(element) then
 let index = seq->indexOf(element)
 in
 seq->subSequence(1,index-1)->
 union(seq->
 subSequence(index+1,seq->size()))
 else
 seq
 endif

184 Action Language for Foundational UML (ALF) 1.0, Beta 2

Table 11-14 Sequence Functions

Function Signature Description
ExcludeAt
 (in seq: any[*] sequence,
 in index: Integer):
 any[*] sequence

The sequence consisting of seq with the index-th
element removed.

Post: result =
 if index>=1 and index<=c->size then
 seq->subSequence(1,index-1)->
 union(seq->
 subSequence(index+1,seq->size()))
 else
 seq
 endif

Replacing
 (in seq: any[*] sequence,
 in element: any,
 in newElement: any):
 any[*] sequence

The sequence consisting of seq with all occurrences
of element replaced with newElement.

Post: result->size() = seq->size() and
 Sequence{1..seq->size()}->forAll(i |
 result->at(i) =
 if seq->at(i) = element then
 newElement
 else
 seq->at(i)
 endif

ReplacingOne
 (in seq: any[*] sequence,
 in element: any,
 in newElement: any):
 any[*] sequence

The sequence consisting of seq with the first
occurrence of element (if any) replaced with
newElement.

Post: result =
 if seq->excludes(element) then seq
 else
 let index=seq->indexOf(element) in
 seq->subSequence(1,index-1)->
 union(seq->
 subSequence(index,seq->size()))
 endif

ReplacingAt
 (in seq: any[*] sequence,
 in index: Integer,
 in element: any):
 any[*] sequence

The sequence consisting of seq with the element at
position index replaced with the given element.

Pre: index>=1 and index<=seq->size()
Post: result =
 seq->subSequence(1,index-1)->
 union(seq->
 subSequence(index,seq->size()))

Action Language for Foundational UML (ALF) 1.0, Beta 2 185

Table 11-14 Sequence Functions

Function Signature Description
Subsequence
 (in seq: any[*] sequence,
 in lower: Integer,
 in upper: Integer):
 any[*] sequence

The sub-sequence of seq consisting of the elements
at position lower up to and including position
upper. If upper is larger than the size of seq, then it
is treated as if it was equal to the size.

Pre: lower<=upper
Post: result =
 seq->subSequence(lower.max(1),
 upper.min(seq->size()))

ToOrderedSet
 (in seq: any[*] sequence):
 any[*] ordered

The sequence seq with all duplicates removed.

Post:
 result = seq->asOrderedSet()

11.4 Basic Input and Output
As shown in Figure 11-73, the Alf::Library::BasicInputOutput package imports the fUML
standard FoundationalModelLibrary::BasicInputOutput package (see fUML Specification,
Subclause 9.4). This makes the fUML input-output classes available via the
Alf::Library::BasicInputOutput namespace. In addition, the
FoundationalModelLibrary::BasicInputOutput package imports the
FoundationalModelLibrary::Common package, so the common classes from that package are also
available via the Alf::Library::BasicInputOutput namespace.

11.5 Collection Functions
The Alf::Library::CollectionFunctions package contains template versions of the sequence
functions defined in the Alf::Library::PrimitiveBehaviors::SequenceFunctions package. Each
collection function has a single template parameter, the type of values in the sequence be operated on.
The type inference rule for the invocation of template behaviors (see Subclause 8.3.9) then allows these
behaviors to be invoked without having to explicitly notate the binding of their template parameter.

For example, if integerList is a sequence of type Integer, then the statement
let extendedList: Integer[] = including(integerList, 1);
is equivalent to
let extendedList: Integer[] = including<Integer>(integerList, 1);
Since the result type of including<Integer> is Integer, the right-hand side of this statement is
assignable to the left-hand side without the need for an explicit cast.

Each of the functions defined in the SequenceFunctions package has a template version defined as an
activity in the CollectionFunctions package. The body of this activity simply calls the corresponding
primitive function and returns the result of that call, cast to the appropriate result type. For example, the
including function may be defined as follows as an Alf unit (see Subclause 10.4.8 on activity
definitions):
namespace Alf::Library::CollectionFunctions;
activity including<T>(in seq: T[*] sequence, in element: T):

186 Action Language for Foundational UML (ALF) 1.0, Beta 2

 T[*] sequence
{
 return (T)PrimitiveBehaviors::SequenceFunctions::Including(seq, element);
}
Other functions are defined similarly.

NOTE. According to the copy semantics for templates (see Subclause 6.2), a call to a bound template
activity, such as including<Integer>, has the semantics of a call to an effective bound element
constructed from a copy of the template activity with each occurrence of the template parameter T
replaced by the actual argument type. However, once static analysis is complete, a call to such a bound
activity will have a semantically equivalent effect (in the sense defined in Subclause 2.2) to a direct call
to the corresponding sequence function, without even a need for any cast (since the definitions of the
sequence functions guarantee that their results have the expected dynamic type, even if the statically
declared type is any). Therefore, a compliant compilative implementation may, if desired, produce a
target fUML model that replaces calls to bound collection functions with direct calls to the
corresponding sequence functions.

All the primitive sequence functions take a sequence as an in parameter and return some result based on
that sequence (see Subclause 11.3.6) and, therefore, so do the corresponding collection functions. The
collection functions may also take collection objects (see Subclause 11.6) as inputs because of the
collection conversion rule for assignability (see Subclause 8.8). This is particularly useful when using a
collection as the source in the sequence operation notation (see Subclause 8.3.17). The returned result,
however, is always a sequence, though this may be used to construct a new collection object.

The CollectionFunctions package also includes a number of additional activities that take a sequence
as an inout parameter and make changes to that sequence “in place”. Table 11-15 lists these behaviors.
The bodies of these in-place behaviors are defined to be an Alf assignment expression, generally
involving one of the base set of collection functions. For example, the full definition of the add function,
as an Alf unit, is
namespace Alf::Library::CollectionFunctions;
activity add<T>(inout seq: T[*] sequence, in element: T):
 T[*] sequence
{
 return seq = including(seq,element);
}
The in-place functions cannot be used with collection objects, since the inout parameter cannot be
assigned back to the collection object. However, all collection classes have regular operations that
correspond to the functionality of the “in place” functions (see Subclause 11.6). The in-place collection
functions are intended to provide similar functionality for sequences to that provided by the similarly
named operations on collection objects.

Table 11-15 Collection “In-Place” Behaviors

Activity Signature Description
add<T>
 (inout seq: T[*] ordered,
 in element: T):
 T[*] sequence

Append element to the end of seq.

seq = including(seq,element)

Action Language for Foundational UML (ALF) 1.0, Beta 2 187

Table 11-15 Collection “In-Place” Behaviors

Activity Signature Description
addAll<T>
 (inout seq1: T[*] sequence,
 in seq2: T[*] sequence):
 T[*] sequence

Append all elements of seq2 to seq1.

seq1 = union(seq1,seq2)
addAt<T>
 (inout seq: T[*] sequence,
 in index: Integer,
 in element: T):
 T[*] sequence

Insert element at position index of seq.

seq = includeAt(seq,index,element)

addAllAt<T>
 (inout seq1: T[*] sequence,
 in index: Integer,
 in seq2: T[*] sequence):
 T[*] sequence

Insert all elements of seq2 into seq1 at position
index.

seq = includeAllAt(seq,index,element)
remove<T>
 (inout seq: T[*] sequence,
 in element: T): T[*] sequence

Remove all occurences of element from seq.

seq = excluding(seq,element)
removeAll<T>
 (inout seq: T[*] sequence,
 in in seq2 : T[*] sequence):
 T[*] sequence

Remove all elements of seq2 from seq1.

seq1 = difference(seq1,seq2)
removeOne<T>
 (inout seq: T[*] sequence,
 in element: T): T[*] sequence

Remove the first occurrence of element (if any)
from seq.

seq = excludingOne(seq,element)
removeAt<T>
 (inout seq: T[*] sequence,
 in index: Integer):
 T[*] sequence

Remove the element at position index from seq.

seq = excludeAt(seq,index)
replace<T>
 (inout seq: T[*] sequence,
 in element: T,
 in newElement: T):
 T[*] sequence

Replace all occurrences of element in seq with
newElement.

seq = replacing(seq,element,newElement)
replaceOne<T>
 (inout seq: T[*] sequence,
 in element: T,
 in newElement: T):
 T[*] sequence

Replace the first occurrence of element in seq (if
any) with newElement.

seq =
replacingOne(seq,element,newElement)

replaceAt<T>
 (inout seq: T[*] sequence,
 in index: Integer,
 in element: T):
 T[*] sequence

Replace the element at position index in seq with
the given element.

seq = replacingAt(seq,index,element)
clear<T>
 (inout seq: T[*]) Clear all elements of seq.

seq = null

188 Action Language for Foundational UML (ALF) 1.0, Beta 2

11.6 Collection Classes
The Alf::Library::CollectionClasses package contains a set of template classes (see Subclause 6.2
on the semantics of templates) related to collections. These provide the ability to create and manipulate
collections in a manner familiar from object-oriented programming languages. They may be used
instead of or in conjunction with the the basic use of UML sequences and functions to handle
collections. Figure 11-77 is a class diagram of the contents of the CollectionClasses package.

In many places in Alf, collection objects may be used in the same way as a basic UML sequence of
values. For example, the Alf assignability rules provide for collection conversion in which a collection
object is automatically converted to a sequence via an implicit call to its toSequence() operation (see
Subclause 8.8). In the main body of the specification, a collection object is any object whose type is a
collection class. A collection class is defined to be a template binding of any of the public template
classes contained in the CollectionClasses package or any direct or indirect subclass of such a
template binding.

Note that all the classes shown in Figure 11-77 are abstract, but that they all also define constructor
operations. Using the mechanism described in Subclause 8.3.12, the concrete implementations for these
classes are defined in a packaged named Impl nested in the CollectionClasses package, as shown in
Figure 11-78. With this mechanism, user models can reference and use the standard abstract classes as if
they were concrete, and specific execution tools can define different implementations for these classes
without affecting the classes actually referenced by user models.

A conformant implementation of the CollectionClasses package is not allowed to alter the definition
of the classes shown in Figure 11-77. Rather, such an implementation must implement each of the Impl
classes shown in Figure 11-78. This may be done either by providing external library implementations
for the classes, through a mechanism specific to the execution tool, or by extending the model shown in
Figure 11-78 by providing a fUML-conformant method for each of the public operations of the classes.
In doing the latter, a conformant implementation is also allowed to:

• Replace public owned operations with inherited operations of the same signature.

• Add additional features and other members to the classes, as long as their visibility is private or
protected, as well as additional private members to the Impl package

Annex B.4 gives a sample non-normative implementation of the CollectionClasses::Impl package
as an Alf unit. The following subclauses describe each of the abstract template classes shown in Figure
11-77.

Action Language for Foundational UML (ALF) 1.0, Beta 2 189

Figure 11-77 Collection Classes

190 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 11-78 Collection Class Implementations

Action Language for Foundational UML (ALF) 1.0, Beta 2 191

11.6.1 Bag<T>

Concrete unordered, non-unique collection. Supports duplicate entries.

Generalizations
• Collection<T>

Operations
[1] add (in element : T) : Boolean
Insert the given element into this bag. Always returns true.

post: self.toSequence()->asBag() = self@pre.toSequence()->asBag()->including(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this bag. Return true if the given sequence is not empty.

post: self.toSequence()->asBag() = self@pre.toSequence()->asBag()->union(seq->asBag())

[3] Bag (in seq : T [0..*] sequence) : Bag<T>
Construct a bag and add all elements in the given sequence.

post: result.toSequence()->asBag() = seq->asBag()

[4] destroy ()
Destroy this bag.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this bag is equal to the given sequence considered as a bag.

post: result = (self@pre.toSequence()->asBag() = seq->asBag())

11.6.2 Collection<T>

An abstract collection of elements of a specified type <T>. Various concrete subclasses support ordered
and unordered collections, with and without duplicates allowed.

Generalizations
None

Operations
[1] add (in element : T) : Boolean
Insert the given element into this collection. Return true if a new element is actually inserted.

post: result = self.size() > self@pre.size() and

192 Action Language for Foundational UML (ALF) 1.0, Beta 2

 result implies self.count(element) = self@pre.count(element)+1

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this collection. Returns true if this collection increased in
size.

post: result = self.size() > self@pre.size() and
 self.includesAll(seq)

[3] clear ()
Remove all elements from this collection.

post: result = self.isEmpty()

[4] count (in element : T) : Integer {query}
Return the number of elements in this collection that match a specified element.

post: result = self.toSequence()->count(element)

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this collection is equal to the given sequence.

post: result implies self.includesAll(seq)

[6] excludes (in element : T) : Boolean {query}
Return true if this collection does not contain the given element.

post: result = self.toSequence()->excludes(element)

[7] excludesAll (in seq : T [0..*] sequence) : Boolean {query}
Return true if all elements in the given sequence are not in this collection.

post: result = self.toSequence()->excludesAll(seq)

[8] includes (in element : T) : Boolean {query}
Return true if this collection contains the given element.

post: result = self.toSequence()->includes(element)

[9] includesAll (in seq : T [0..*] sequence) : Boolean {query}
Return true if all elements in the given sequence are also in this collection.

post: result = self.toSequence()->includesAll(seq)

Action Language for Foundational UML (ALF) 1.0, Beta 2 193

[10] isEmpty () : Boolean {query}
Return true if this collection contains no elements.

post: result = self.toSequence()->isEmpty()

[11] notEmpty () : Boolean {query}
Return true if this collection contains at least one element.

post: result = self.toSequence()->notEmpty()

[12] remove (in element : T) : Integer
Remove all occurrences of the given element from this collection and return the count of elements
removed removed.

post: result = self@pre.count(element) and
 self.size() = self@pre.size() - result and
 self@pre.toSequence()->forAll(e | self.count(e) =
 if e = element then 0
 else self@pre.count(e) endif)

[13] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all occurrences of all elements in the given sequence from this collection. Return true if the size
of this collection changes.

post: result = self.size() < self@pre.size() and
 self.toSequence()->asSet() = self@pre.toSequence()->asSet() - seq->asSet() and
 self.toSequence()->forAll(e | self.count(e) = self@pre.count(e))

[14] removeOne (in element : T) : Boolean
Remove one occurrence of the given element from this collection and return true if an occurrence of
element was removed. If the collection is ordered, the first element will be removed.

post: result = self@pre.includes(element) and
 self.size() = self@pre.size() - (if result then 1 else 0) endif and
 self@pre.toSequence()->forAll(e | self.count(e) =
 if result and e = element then self@pre.count(e)-1
 else self@pre.count(e) endif)

[15] replace (in element : T, in newElement : T) : Integer
Replace all occurrences of the given element with a new element and return the count of replaced
elements.

post: result = if element<>newElement then self@pre.count(element) else 0 endif and
 self.size() = self@pre.size() and
 self.toSequence()->forAll(e | self.count(e) =
 if e = newElement then self@pre.count(e)+result

194 Action Language for Foundational UML (ALF) 1.0, Beta 2

 else self@pre.count(e) endif)

[16] replaceOne (in element : T, in newElement : T) : Boolean
Replace one occurrence of the given element with newElement and return true
if an element was replaced. If the collection is ordered, this will be the first occurrence.

post: result = (self@pre.includes(element) and element<>newElement) and
 self.size() = self@pre.size() and
 self.toSequence()->forAll(e | self.count(e) =
 if result and e = element then self@pre.count(e)-1
 else if result and e = newElement then self@pre.count(e)+1
 else self@pre.count(e) endif endif)

[17] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this collection that are NOT in the given sequence. Return true if
the size of this collection changes.

post: result = self.size() < self@pre.size() and
 self.toSequence()->asBag() = self@pre.toSequence()->asBag()->intersection(seq->asSet())

[18] size () : Integer {query}
Return the number of elements contained in this collection.

post: result = self@pre.toSequence()->size()

[19] toSequence () : T [0..*] sequence {query}
Return a sequence (UML ordered, non-unique collection) containing the elements of this collection. If
the specific kind of collection orders its elements, then the returned sequence will have this order.
Otherwise the order of the elements in the returned sequence is arbitrary. (The requirements on the
returned sequence from this operation are specified implicitly by the required behavior of the mutating
operations on the various Collection subclasses.)

11.6.3 Deque<T>

Double-Ended Queue (pronounced "deck"). Concrete ordered, nonunique collection. Supports duplicate
entries. Ordered by position. Insertion and removal can occur at the front or the back of a deque. Can
operate as FIFO (in at back, out at front). Can operate as Stack (in at front/back, out at front/back).

Generalizations
• Queue<T>

Operations
[1] addFirst (in element : T) : Boolean
Add element into this deque at the front. Always returns true.

Action Language for Foundational UML (ALF) 1.0, Beta 2 195

post: result = true and
 self.toSequence() = self@pre.toSequence()->prepend(element)

[2] Deque (in seq : T [0..*] sequence) : Deque<T>
Construct a deque and add the elements in the given sequence.

post: self.toSequence() = seq

[3] destroy ()
Destroy this deque.

[4] last () : T [0..1] {query}
Return, but do not remove, the element at the back of the queue, if one exists.

pre: self.notEmpty()
post: result = self.toSequence()->last()

[5] removeLast () : T [0..1]
Remove and return the element at the back of the deque if one exists.

pre: self.notEmpty()
post: result = self@pre.toSequence()->last() and
 self.toSequence() = self@pre.toSequence->subSequence(1,self@pre.size()-1)

[6] removeLastOne (in element : T) : T [0..1]
Remove and return the last occurrence of the given element in this deque. If this deque is empty or the
element is not found in this queue, return nothing.

pre: self.includes(element)
post: result = element and
 let revSeq = self@pre.toSequence()->reverse() in
 let index = revSeq.indexOf(element) in
 self.toSequence() = revSeq->subSequence(1,index-1)->union(revSeq-
>subSequence(index+1,revSeq->size()))->reverse()

11.6.4 Entry

An association of value to key. Note that entries are data values that are always passed by copy.
Changing an entry returned outside of a map will NOT effect the association within the map.

Generalizations
None

Attributes
• key : Key

196 Action Language for Foundational UML (ALF) 1.0, Beta 2

The key for this association, used for lookup
• value : Value
An optional value for this association

11.6.5 List<T>

Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by position in list.

Generalizations
• Bag<T>

Operations
[1] add (in element : T) : Boolean
Append the given element into this list at the end. Always returns true.

post: self.toSequence() = self@pre.toSequence()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Append all elements in the given sequence onto the end of this list. Return true if the given collection is
not empty.

post: self.toSequence() = self@pre.toSequence()->union(seq)

[3] addAllAt (in index : Integer, in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this list at the given position index. Return true if the given
collection is not empty.

pre: index >= 1 and index <= self.size()+1
post: result = self.size() > self@pre.size() and
 self.toSequence() = Sequence{1..seq->size()}->iterate(i; s = self@pre.toSequence() | s-
>insertAt(index+i-1, sequence->at(i))

[4] addAt (in index : Integer, in element : T) : Boolean
Insert an element into this list at the given position index. Always return true.

pre: index > 1 and index <= self.size()+1
post: result = true and
 self.toSequence() = self@pre.toSequence()->insertAt(index,element)

[5] at (in index : Integer) : T [0..1] {query}
Return the element at the given position index or nothing if there is no element at the given position.

pre: index > 0 and index <= self.size()
post: result = self@pre.toSequence()->at(index)

Action Language for Foundational UML (ALF) 1.0, Beta 2 197

[6] destroy ()
Destroy this list

[7] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this list is equal to the given sequence.

post: result = (self@pre.toSequence() = seq)

[8] first () : T [0..1] {query}
Returns the first element in this list, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[9] indexOf (in element : T) : Integer [0..1] {query}
Return the position of the first occurrence of the given element in this list or nothing if the element is not
included in this collection.

pre: self.includes(element)
post: result = self@pre.toSequence() -> indexOf(element)

[10] last () : T [0..1] {query}
Returns the last element in this list, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[11] List (in seq : T [0..*] sequence) : List<T>
Construct a list and add all elements in the given sequence

post: result.toSequence() = seq

[12] remove (in element : T) : Integer
Remove all occurrences of the given element from this list and return the count of elements removed.

post: self.toSequence() = self@pre.toSequence()->excluding(element)

[13] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given sequence from this list. Return true if the size of this list changes.

post: self.toSequence()
 = seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

198 Action Language for Foundational UML (ALF) 1.0, Beta 2

[14] removeAt (in index : Integer) : T [0..1]
Remove the element at the given position index and shift all trailing elements left by one position.
Return the removed element, or nothing if the index is out of bounds.

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
 let preSeq = self@pre.toSequence() in
 self.toSequence() = preSeq->subSequence(1, index-1)->union(preSeq->subSequence(index+1,
self@pre.size()))

[15] removeOne (in element : T) : Boolean
Remove first occurrence of the given element from this list and return true if an occurrence of element
was removed.

post: self.toSequence() =
 let preSeq = self@pre.toSequence() in
 if result then
 let index = self@pre.indexOf(element) in
 self.toSequence() = preSeq->subSequence(1, index-1)->
union(preSeq->subSequence(index+1, self@pre.size()))
 else preSeq endif

[16] replace (in element : T, in newElement : T) : Integer
Replace all occurrences of the given element with a new element and return the count of replaced
elements.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
 if self@pre.at(i) = element then newElement
 else self@pre.at(i) endif)

[17] replaceAt (in index : Integer, in element : T) : T [0..1]
Replace the element at the given position index with the given new element. Return the replaced
element, or nothing if the index is out of bounds

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
 let preSeq = self@pre.toSequence() in
 self.toSequence() = preSeq->subSequence(1, index-1)->append(newElement)->union(preSeq-
>subSequence(index+1, self@pre.size()))

[18] replaceOne (in element : T, in newElement : T) : Boolean
Replace one occurrence of the given element with
newElement and return true if an element was replaced.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
 if result and i = self@pre.indexOf(element) then newElement

Action Language for Foundational UML (ALF) 1.0, Beta 2 199

 else self@pre.at(i) endif)

[19] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this list that are NOT in the given collection. Return true if the
size of this collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; a =
self@pre.toSequence() | seq->excluding(element))

[20] subList (in fromIndex : Integer, in toIndex : Integer) : List<T> {query}
Return a new list containing all elements of this list from the lower position index up to and including
the upper position index.

post: if lower < 1 or upper > self.size() then
 result.toSequence()->empty()
 else
 result.toSequence() = self.toSequence()->subSequence(lower,upper)
 endif

11.6.6 Map<Key, Value>

Dictionary of key and value pairs called "entries". Concrete unordered, unique (by key) collection.

Generalizations
None

Operations
[1] clear ()
Remove all entries in this map.

post: self.isEmpty()

[2] destroy ()
Destroy this map.

[3] entries () : Set<Entry> {query}
Return a set of copies of the entries in this map.

post: result.equals(self.toSequence())

[4] excludesAll (in entries : Entry [0..*]) : Boolean {query}
Returns true if this map contains none of the given entries.

200 Action Language for Foundational UML (ALF) 1.0, Beta 2

post: result = self.toSequence()->excludesAll(entries)

[5] get (in key : Key) : Value [0..1] {query}
Returns the value associated with the given key, or nothing if there is no entry in this map with its key
equal to key.

pre: self.keys().toSequence()->includes(key)
post: result = self.toSequence()->select(e | e.key = key).value

[6] includesAll (in entries : Entry [0..*]) : Boolean {query}
Returns true if this map contains all of the given entries.

post: result = self.entries().includesAll(entries)

[7] includesKey (in key : Key) : Boolean {query}
Return true if this map contains an entry with its key equal to the given key

post: result = self.keys().includes(key)

[8] includesValue (in value : Value [0..1]) : Boolean {query}
Return true if an entry in this map has its value equal to value.

post: result = self.toSequence()->exists(e | e.value = value)

[9] isEmpty () : Boolean {query}
Return true if this map contains no entries.

post: result = self.toSequence()->isEmpty()

[10] keys () : Set<Key> {query}
Return a set of copies of the keys in this map.

post: result.equals(self.toSequence().key)

[11] Map (in entries : Entry [0..*]) : Map<Key,Value>
Construct a map and add the given entries. No two entries may have the same key.

pre: entries->isUnique(key)
post: result.toSequence()->asSet() = sequence->asSet()

[12] notEmpty () : Boolean {query}
Return true if this map contains at least one entry.

post: result = self.toSequence()->notEmpty()

Action Language for Foundational UML (ALF) 1.0, Beta 2 201

[13] put (in key : Key, in value : Value [0..1]) : Value [0..1]
Associate a value with a key, creating a new entry if necessary. Return the previously associated value,
or nothing if this is a new entry.

post: result = self@pre.get(key) and
 self.toSequence().key->asSet() = self@pre.toSequence().key->asSet()->including(key) and
 self.toSequence()->isUnique(key) and
 self.keys().toSequence()->forAll(k | self.get(k) =
 if e.key = key then value else self@pre.get(k))

[14] putAll (in entries : Entry [0..*])
Add all the given entries to this map. Any entry with a key already present in this map replaces the
previous entry in this map. No two of the given entries may have the same key.

pre: entries->isUnique(key)
post: self.toSequence().key->asSet() = self@pre.toSequence().key->asSet()->union(entries->asSet())
and
 self.toSequence()->isUnique(key) and
 self.keys().toSequence()->forAll(k | self.get(k) =
 if entries.key->includes(k) then entries->select(key=k)
 else self@pre.get(k))

[15] remove (in key : Key) : Value [0..1]
Remove any association of a value to the given key. Return the value previously associated with the key,
or nothing if there was no previous entry for the key

pre: self.includesKey(key)
post: result = self@pre.get(key) and
 self.toSequence()->isUnique(key) and
 self.toSequence()->asSet() = self@pre.toSequence()->reject(e | e.key = key)->asSet()

[16] removeAll (in keys : Key [0..*])
Remove all associations of a value to any of the given keys.

post: self.toSequence()->isUnique(key) and
 self.toSequence()->asSet() = self@pre.toSequence()->reject(e | keys->includes(e.key))->asSet()

[17] size () : Integer {query}
Returns the number of entries in this map.

post: result = self.toSequence()->size()

[18] toSequence () : Entry [0..*] sequence {query}
Return a sequence (UML ordered, non-unique collection) containing copies all entries in this map. The
order is arbitrary. (The requirements on the returned sequence from this operation are specified

202 Action Language for Foundational UML (ALF) 1.0, Beta 2

implicitly by the required behavior of the mutating operations of the Map class.)

[19] values () : Bag<Value> {query}
Return a bag of copies of the values in this map. (A bag is returned, since a single value may be
associated with more than one entry in the map.)

post: result.equals(self.toSequence().value)

11.6.7 OrderedSet<T>

Concrete ordered, unique collection. Does not support duplicate entries. Ordered by position.

Generalizations
• Set<T>

Operations
[1] add (in element : T) : Boolean
Append the given element into this ordered set at the end. Return true if a new element is actually
inserted.

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Append all elements in the given sequence onto the end of this ordered set. Returns true if this collection
increased in size.

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->union(seq->asOrderedSet())

[3] addAllAt (in index : Integer, in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this ordered set at the given position index. Returns true if
the size of the ordered set increases (that is, if at least some of the inserted elements were not duplicates
of elements already in the set).

pre: index >= 1 and index <= self.size()+1
post: result = self.size() > self@pre.size() and
 self.toSequence()->asOrderedSet() = Sequence{1..seq->size()}->iterate(i; set =
self@pre.toSequence()->asOrderedSet() | set->insertAt(index+i-1, seq->at(i))

[4] addAt (in index : Integer, in element : T) : Boolean
Insert an element into this ordered set at the given position index. Return true if the element was actually
added to the set.

pre: index > 1 and index <= self.size()+1
post: result = (self.size() = self@pre.size() + 1) and
 self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()-

Action Language for Foundational UML (ALF) 1.0, Beta 2 203

>insertAt(index,element)

[5] at (in index : Integer) : T [0..1] {query}
Return the element at the given position index or nothing if there is no element at the given position.

pre: index > 0 and index <= self.size()
post: result = self@pre.toSequence()->at(index)

[6] destroy ()
Destroy this ordered set.

[7] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this ordered set is equal to the given sequence considered as an ordered set.

post: result = (self@pre.toSequence()->asOrderedSet() = seq->asOrderedSet())

[8] first () : T [0..1] {query}
Returns the first element in this ordered set, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[9] indexOf (in element : T) : Integer [0..1] {query}
Return the position of the first occurrence of the given element in this ordered set or nothing if the
element is not included in this collection.

pre: self.includes(element)
post: result = self@pre.toSequence() -> indexOf(element)

[10] last () : T [0..1] {query}
Returns the last element in this ordered set, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->last()

[11] OrderedSet (in seq : T [0..*] sequence) : OrderedSet<T>
Constructs an ordered set and adds all elements in the given sequence, in order.

post: result.toSequence()->asOrderedSet() = seq->asOrderedSet()

[12] remove (in element : T) : Integer
Remove all occurrences of the given element from this ordered set and return the count of elements
removed. (For an ordered set, this has the same effect as removeOne, since duplicates are not allowed.)

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->excluding(element)

204 Action Language for Foundational UML (ALF) 1.0, Beta 2

[13] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given sequence from this ordered set. Return true if the size of this ordered
set changes.

post: self.toSequence() = seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[14] removeAt (in index : Integer) : T [0..1]
Remove the element at the given position index and shift all trailing elements left by one position.
Return the removed element, or nothing if the index is out of bounds.

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
 self.toSequence() = self@pre.toSequence()->excluding(result)

[15] removeOne (in element : T) : Boolean
Remove one occurrence of the given element from this ordered set and return true if an occurrence of
element was removed. (For an ordered set, this has the same effect as remove, since duplicates are not
allowed.)

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->excluding(element)

[16] replace (in element : T, in newElement : T) : Integer
Replace all occurrences of the given element with newElement and return the count of replaced
elements. (For an ordered set, this has the same effect as replaceOne, since duplicates are not allowed.)

post: self.toSequence() = if result then
 self@pre.toSequence()->excluding(element)->insertAt(newElement,
self@pre.indexOf(element))
 else
 self@pre.toSequence()
 endif

[17] replaceAt (in index : Integer, in newElement : T) : T [0..1]
Replace the element at the given position index with the given new element. Return the replaced
element, or nothing is the index is out of bounds

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
 self.toSequence() = self@pre.toSequence()->excluding(result)->insertAt(index,newElement)

[18] replaceOne (in element : T, in newElement : T) : Boolean
Replace one occurrence of the given element with newElement and return true
 if an element was replaced. (For an ordered set, this has the same effect as replace, since duplicates are

Action Language for Foundational UML (ALF) 1.0, Beta 2 205

not allowed.)

post: self.toSequence() = if result then
 self@pre.toSequence()->excluding(element)->insertAt(newElement,
self@pre.indexOf(element))
 else
 self@pre.toSequence()
 endif

[19] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this ordered set that are NOT in the given sequence. Return true
if the size of this collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; s =
self@pre.toSequence() | s->excluding(element))

[20] subOrderedSet (in lower : Integer, in upper : Integer) : OrderedSet<T> {query}
Return a new ordered set containing all elements of this ordered set from the lower position index up to
and including the upper position index.

post: if lower < 1 or upper > self.size() then
 result.toSequence()->empty()
 else
 result.toSequence() = self.toSequence()->subSequence(lower,upper)
 endif

11.6.8 Queue<T>

First In First Out Queue. Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by
position. Considering the queue as a sequence, insertion occurs at the back of the queue, removal at the
front.

Generalizations
• Collection<T>

Operations
[1] add (in element : T) : Boolean
Add the given element into this queue at the back. Always returns true.

post: self.toSequence() = self@pre.toSequence()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Add all elements in the given sequence to this queue at the back. Return true if the given collection is
not empty.

206 Action Language for Foundational UML (ALF) 1.0, Beta 2

post: self.toSequence() = self@pre.toSequence()->union(seq)

[3] addLast (in element : T) : Boolean
Add the given element into this queue at the back. Always returns true. (This is the same functionality as
the add operation.)

post: result = true and
 self.toSequence() = self@pre.toSequence()->append(element)

[4] destroy ()
Destroys this queue.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this queue is equal to the given sequence.

post: result = self@pre.toSequence() = seq

[6] first () : T [0..1] {query}
Return, but do not remove, the element at the front of the queue, if one exists.

pre: self.notEmpty()
post: result = self.toSequence()->first()

[7] Queue (in seq : T [0..*] sequence) : Queue<T>
Construct a queue and add all elements in the given sequence.

post: result.toSequence() = seq

[8] remove (in element : T) : Integer
Remove all occurrences of the given element from this queue and return the count of elements removed.

post: self.toSequence() = self@pre.toSequence()->excluding(element)

[9] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given collection from this queue. Return true if the size of this queue
changes.

post: self.toSequence()
 = seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[10] removeFirst () : T [0..1]
Remove and return the element at the front of the queue if one exists.

pre: self.notEmpty()
post: result = self@pre.toSequence()->first() and

Action Language for Foundational UML (ALF) 1.0, Beta 2 207

 self.toSequence()->self@pre.toSequence()->subSequence(2,self@pre.size())

[11] removeFirstOne (in element : T [1]) : T [0..1]
Remove and return the first occurrence of the given element in this queue. If this queue is empty or the
element is not found in this queue, return nothing.

pre: self.includes(element)
post: result = element and
 let preSeq = self@pre.toSequence() in
 let index = preSeq.indexOf(element) in
 self.toSequence() = preSeq->subSequence(1,index-1)->union(preSeq-
>subSequence(index+1,preSeq->size()))

[12] removeOne (in element : T) : Boolean
Remove the first occurrence of the given element from this queue and return true if an occurrence of
element was removed.

post: self.toSequence() =
 let preSeq = self@pre.toSequence() in
 if result then
 let index = self@pre.indexOf(element) in
 self.toSequence() = preSeq->subSequence(1, index-1)->
union(preSeq->subSequence(index+1, self@pre.size()))
 else preSeq endif

[13] replace (in element : T, in newElement : T) : Integer
Replace all occurrences of the given element with a new element and return the count of replaced
elements.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
 if self@pre.at(i) = element then newElement
 else self@pre.at(i) endif)

[14] replaceOne (in element : T, in newElement : T) : Boolean
Replace one occurrence of the given element with
newElement and return true if an element was replaced.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
 if result and i = self@pre.indexOf(element) then newElement
 else self@pre.at(i) endif)

[15] retainAll (in seq : T) : Boolean
Remove all instances of all elements in this queue that are NOT in the given collection. Return true if
the size of this collection changes.

208 Action Language for Foundational UML (ALF) 1.0, Beta 2

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; s =
self@pre.toSequence() | s->excluding(element))

11.6.9 Set<T>

A concrete unordered, unique collection. Does not support duplicate entries.

Generalizations
• Collection<T>

Operations
[1] add (in element : T) : Boolean
Insert the given element into this set. Return true if a new element is actually inserted.

post: self.toSequence()->asSet() = self@pre.toSequence()->asSet()->including(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this set. Returns true if this collection increased in size.

post: self.toSequence()->asSet() = self@pre.toSequence()->asSet()->union(seq->asSet())

[3] count (in element : T) : Integer {query}
The number of elements in this set that match a specified element.

post: result = if self@pre.includes(element) then 1 else 0 endif

[4] destroy ()
Destroy this set.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this set is equal to the given sequence considered as a set.

post: result = (self@pre.toSequence()->asSet() = seq->asSet())

[6] Set (in seq : T [0..*] sequence) : Set<T>
Construct a set and add all elements in the given sequence.

post: result.toSequence()->asSet() = seq->asSet()

Action Language for Foundational UML (ALF) 1.0, Beta 2 209

PART III - ABSTRACT SYNTAX

12 Common Abstract Syntax
Parsing an Alf text synthesizes an abstract syntax tree (see Subclause 6.4). Static semantic analysis then
adds associated with the syntax elements in the abstract syntax tree (see Subclause 6.5). Such
information is formally specified using derived attributes and associations in the UML abstract syntax
model. Thus, a syntax element class will generally have two kinds of properties: synthesized properties,
whose values are determined during parsing, and derived properties, whose values are determined
during static semantic analysis. The specification for each derived property includes a constraint that
defines its derivation.

In addition, the specification of a syntax class includes various constraints that must be checked during
the course of static semantics analysis. If any of these constraints are violated, then the input text is not
legal and must be rejected. The specification of the class may also include helper operations that can be
used in both the class constraints and property derivations.

Clauses 8, 9 and 10 described the synthesized abstract syntax for Alf expressions, statements and units.
This clause extends that abstract syntax model to include the derived properties and constraints that
specify the static semantics of Alf. Clauses 16 through 19 then specify the mapping from the Alf abstract
syntax, after static semantic analysis, to the fUML subset of the UML abstract syntax.

The UML model of the Alf abstract syntax is contained within the package Alf::Syntax. It comprises
four subpackages: Common, Expressions, Statements and Units. The content of each of these
packages is described in this and the following three clauses.

12.1 Overview
The Alf::Syntax::Common package contains the root abstract classes SyntaxElement and
DocumentedElement. It also contains common ElementReference and AssignedSource classes that
are used throughout the rest of the abstract syntax model. Element reference and assigned source objects
are not themselves syntax elements but, rather, represent certain relevant information determined during
the static semantic analysis of an abstract syntax tree and associated with elements of that tree.

The mapping of common elements to UML is given in Clause 16.

Element References
As discussed in Subclauses 8.2 and 10.2, a name resolves to the model element that it names. If this
model element is defined outside the context of the Alf text in which the reference to its name appears,
then the resolution is straightforward. However, the situation is more complicated if the element being
referenced is defined within the same Alf text as the reference itself. This is because the name must be
resolved during static semantic analysis, but, at that point, the Alf representation of the element being
referenced has not yet been mapped to UML.

In order to handle this in a general way, the Alf abstract syntax uses a generic concept of element
reference. Such a reference may be an external element reference, meaning that it is a reference to a
model element defined in the UML model external to the Alf text. Or it may be an internal element
reference, meaning that it is a reference to the syntax element in the Alf text which will ultimately be

210 Action Language for Foundational UML (ALF) 1.0, Beta 2

mapped to the desired model element. The necessary properties of a referenced element required for
static semantic analysis may be obtained from either an external or internal element reference.

Assigned Sources
As discussed in Subclauses 8.1 and 9.1, the assigned source for a local name is the statically determined
syntax element that, when executed, will provide the actual assigned value for that local name. If the
assigned source for a local name is known, then a reference to the assigned value of that local name can
be mapped to an object flow from the mapping of the assigned source.

During static semantic analysis, it is necessary to know what names have assigned sources before and
after each expression node and each statement node within the abstract syntax tree. Information on the
assigned source includes not only the source element itself, but also the statically determined type and
multiplicity of the value produced by that source.

Figure 12-79 Syntax Elements

Figure 12-80 Element References

Action Language for Foundational UML (ALF) 1.0, Beta 2 211

Figure 12-81 Assigned Sources

12.2 Class Descriptions

12.2.1 AssignedSource
An assignment of a source element that gives the value of a local name, along with a record of the
defined type (if any) and multiplicity of the local name.

Generalizations
None

Synthesized Properties
• lower : Integer

The multiplicity lower bound for the name.

• name : String
The local name for which this is the assigned source.

• source : SyntaxElement
The syntax element that is to be the source for the assigned value of the given local name.

• type : ElementReference [0..1]
A reference to the element that gives the type for the local name (if any).

• upper : UnlimitedNatural
The multiplicity upper bound for the local name.

Derived Properties
None

Constraints
None

Helper Operations
None

212 Action Language for Foundational UML (ALF) 1.0, Beta 2

12.2.2 DocumentedElement
A syntax element that has documentation comments associated with it.

Generalizations
• SyntaxElement

Synthesized Properties
• documentation : String [*]

The documentation text to be associated with a syntax element. Each string is intended to be
mapped to the body of a comment element in the target UML model.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.3 ElementReference
A reference to a model element, either directly or via its Alf abstract syntax representation. (NOTE: The
definitions of all the helper operations of ElementReference are specific to its subclasses.)

Generalizations
None

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.4 ExternalElementReference
A direct reference to a UML model element.

Generalizations
• ElementReference

Synthesized Properties

Action Language for Foundational UML (ALF) 1.0, Beta 2 213

• element : Element
The referenced model element.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.5 InternalElementReference
A direct reference to a UML model element.

Generalizations
• ElementReference

Synthesized Properties
• element : SyntaxElement

The Alf syntax element that represents the referenced model element.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.6 SyntaxElement
A syntax element synthesized in an abstract syntax tree, along with any additional information
determined during static semantic analysis.

Generalizations
None

Synthesized Properties
None

Derived Properties
None

Constraints
None

214 Action Language for Foundational UML (ALF) 1.0, Beta 2

Helper Operations
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 215

13 Expressions Abstract Syntax
13.1 Overview
The Alf::Syntax::Expressions package contains the abstract syntax model for expressions. The
syntax and semantics of expressions are discussed in Clause 8. Their mapping to UML is given in
Clause 17.

Figure 13-82 Expressions and Qualified Names

216 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 13-83 Literal Expressions

Figure 13-84 Basic Primary Expressions

Action Language for Foundational UML (ALF) 1.0, Beta 2 217

Figure 13-85 Invocation Expressions

218 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 13-86 Tuples

Action Language for Foundational UML (ALF) 1.0, Beta 2 219

Figure 13-87 Sequence Expressions

Figure 13-88 Sequence Expansion Expressions

220 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 13-89 Increment and Decrement Expressions

Figure 13-90 Unary Expressions

Action Language for Foundational UML (ALF) 1.0, Beta 2 221

Figure 13-91 Binary Expressions

Figure 13-92 Cast and Conditional-Test Expressions

222 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 13-93 Assignment Expressions

13.2 Class Descriptions

13.2.1 ArithmeticExpression
A binary expression with an arithmetic operator.

Generalizations
• BinaryExpression

Synthesized Properties
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 223

Derived Properties
• isConcatenation : Boolean

Whether this is a string concatenation expression.

Constraints
[1] arithmeticExpressionIsConcatenationDerivation
An arithmetic expression is a string concatenation expression if its type is String.

[2] arithmeticExpressionLowerDerivation
An arithmetic expression has a multiplicity lower bound of 0 if the lower bound if either operand
expression is 0 and 1 otherwise.

[3] arithmeticExpressionOperandTypes
The operands of an arithmetic expression must both have type Integer, unless the operator is +, in which
case they may also both have type String.

[4] arithmeticExpressionTypeDerivation
The type of an arithmetic expression is the same as the type of its operands.

[5] arithmeticExpressionUpperDerivation
An arithmetic expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.2 AssignmentExpression
An expression used to assign a value to a local name, parameter or property.

Generalizations
• Expression

Synthesized Properties
• leftHandSide : LeftHandSide

The left-hand side of the assignment, to which a value is to be assigned.

• operator : String
The image of the assignment operator used in the expression.

• rightHandSide : Expression
The right-hand side expression of the assignment, which produces the value being assigned.

Derived Properties
• assignment : AssignedSource [0..1]

224 Action Language for Foundational UML (ALF) 1.0, Beta 2

If the left-hand side is a name, then the new assigned source for that name.

• expression : Expression [0..1]
If this is a compound assignment, then the effective expression used to obtain the original value
of the left-hand side to be updated.

• feature : ElementReference [0..1]
If the left-hand side is a feature, then the referent for that feature.

• isArithmetic : Boolean
If this is a compound assignment, whether the compound assignment operator is arithmetic or
not.

• isBitStringConversion : Boolean
Whether BitString conversion is required for this assignment.

• isCollectionConversion : Boolean
Whether collection conversion is required for this assignment.

• isDataValueUpdate : Boolean
Whether this assignment updates an attribute of a data value held in a local name or parameter.

• isDefinition : Boolean
Whether this assignment is the definition of a new local name or not.

• isFeature : Boolean
Whether the left-hand side is a feature or not.

• isIndexed : Boolean
If the left-hand side is a feature, whether it has an index or not.

• isSimple : Boolean
Whether this is a simple assignment or not.

Constraints
[1] assignmentExpressionAssignmentDerivation
The new assigned source for an assignment to a local name is the assignment expression. If the
assignment is a definition, then the type is given by the right hand side, the multiplicity upper bound is 1
if the upper bound of the right hand side is 1 and otherwise * and the multiplicity lower bound is 0.
Otherwise, the type is the same as the left-hand side and the multiplicity is also the same as the left-hand
side, if the left-hand side is not indexed, and is * if it is indexed.

[2] assignmentExpressionAssignmentsBefore

Action Language for Foundational UML (ALF) 1.0, Beta 2 225

The assigned source of a name before the right-hand side expression of an assignment expression is the
same as the assigned source before the assignment expression. The assigned source of a name before the
left-hand side is the assigned source after the right-hand side expression.

[3] assignmentExpressionCompoundAssignmentMultiplicityConformance
For a compound assignment, both the left-hand and right-hand sides must have a multiplicity upper
bound of 1.

[4] assignmentExpressionCompoundAssignmentTypeConformance
For a compound assignment, if the operator is an arithmetic operator, then either the left-hand side and
the right-hand side both have type Integer or they both have type String and the operator is +. If the
operator is a logical operator, then either the left-hand side and the right-hand side both have type
Boolean or Bit String or the left-hand side has type Bit String and the right-hand side has type Integer. If
the operator is a shift operator, then the left-hand side must have type Bit String and the right-hand side
must have type Integer.

[5] assignmentExpressionDataValueUpdateLegality
If an assignment expression has a feature with a primary expression whose type is a data type, then the
assignment expression must be a data value update.

[6] assignmentExpressionExpressionDerivation
For a compound assignment, the effective expression is the left-hand side treated as a name expression,
property access expression or sequence access expression, as appropriate for evaluation to obtain the
original value to be updated.

[7] assignmentExpressionFeatureDerivation
If the left-hand side of an assignment expression is a feature, then the feature of the assignment is the
referent of the left-hand side.

[8] assignmentExpressionIsArithmeticDerivation
An assignment expression is an arithmetic assignment if its operator is a compound assignment operator
for an arithmetic operation.

[9] assignmentExpressionIsBitStringConversionDerivation
An assignment requires BitString conversion if the type of the left-hand side is BitString and either the
type of the right-hand side is Integer or collection conversion is required and the type of the right-hand
side is a collection class whose argument type is Integer.

[10] assignmentExpressionIsCollectionConversionDerivation
An assignment requires collection conversion if the type of the right-hand side is a collection class and
its multiplicity upper bound is 1, and the type of the left-hand side is not a collection class.

[11] assignmentExpressionIsDataValueUpdateDerivation

226 Action Language for Foundational UML (ALF) 1.0, Beta 2

An assignment expression is a data value update if its left hand side is an attribute of a data value held in
a local name or parameter.

[12] assignmentExpressionIsDefinitionDerivation
An assignment expression is a definition if it is a simple assignment and its left hand side is a local name
for which there is no assignment before the expression.

[13] assignmentExpressionIsFeatureDerivation
The left hand side of an assignment expression is a feature if it is a kind of FeatureLeftHandSide.

[14] assignmentExpressionIsIndexedDerivation
The left hand side of an assignment expression is indexed if it has an index.

[15] assignmentExpressionIsSimpleDerivation
An assignment expression is a simple assignment if the assignment operator is "=".

[16] assignmentExpressionLowerDerivation
A simple assignment expression has the same multiplicity lower bound as its right-hand side expression.
A compound assignment expression has the same multiplicity as its left-hand side.

[17] assignmentExpressionSimpleAssignmentMultiplicityConformance
If the left-hand side of a simple assignment is not a new local name and the multiplicity upper bound of
the left-hand side is less than or equal to 1, then the multiplicity upper bound of the right-hand side
cannot be greater than that of the left-hand side.

[18] assignmentExpressionSimpleAssignmentTypeConformance
If the left-hand side of a simple assignment is not a new local name, and the right-hand side is not null,
then the left-hand side must either be untyped or have a type that conforms to the type of the right-hand
side expression.

[19] assignmentExpressionTypeDerivation
A simple assignment expression has the same type as its right-hand side expression. A compound
assignment expression has the same type as its left-hand side.

[20] assignmentExpressionUpperDerivation
An assignment expression has the same multiplicity upper bound as its right-hand side expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
The assignments after an assignment expression are the assignments after the left-hand side, updated by
the assignment from the assignment statement, if any.

Action Language for Foundational UML (ALF) 1.0, Beta 2 227

13.2.3 BehaviorInvocationExpression
An invocation of a behavior referenced by name.

Generalizations
• InvocationExpression

Synthesized Properties
• target : QualifiedName

The qualified name of the behavior to be invoked.

Derived Properties
None

Constraints
[1] behaviorInvocationExpressionAlternativeConstructor
The referent may only be a constructor (as a result of the target disambiguating to a feature reference) if
this behavior invocation expression is the expression of an expression statement that is the first
statement in the definition for the method of a constructor operation.

[2] behaviorInvocationExpressionArgumentCompatibility
If the target qualified name does not disambiguate to a feature reference, then each input argument
expression must be assignable to its corresponding parameter and each output argument expression must
be assignable from its corresponding parameter. (Note that this implies that the type of an argument
expression for an inout parameter must be the same as the type of that parameter.)

[3] behaviorInvocationExpressionFeatureDerivation
If the target qualified name disambiguates to a feature reference, then the feature of a behavior
invocation expression is that feature reference.

[4] behaviorInvocationExpressionReferentConstraint
If the target qualified name does not disambiguate to a feature reference, then it must resolve to a
behavior or an association end. Otherwise it must resolve to a single feature referent according to the
overloading resolution rules, unless it is an implicit destructor call (in which case it has no referent).

[5] behaviorInvocationExpressionReferentDerivation
If the target of a behavior invocation expression resolves to a behavior, then the referent of the
expression is that behavior. If the target disambiguates to a feature reference, then the reference is the
operation or signal being invoked. Otherwise, if the target resolves to a property that is an association
end, then the referent is that property.

Helper Operations
None

228 Action Language for Foundational UML (ALF) 1.0, Beta 2

13.2.4 BinaryExpression
An expression consisting of an operator acting on two operand expressions.

Generalizations
• Expression

Synthesized Properties
• operand1 : Expression

The expression giving the first operand.

• operand2 : Expression
The expression giving the second operand.

• operator : String
The symbol representing the operator.

Derived Properties
None

Constraints
[1] binaryExpressionOperandAssignments
The assignments in the operand expressions of a binary expression must be valid (as determined by the
validateAssignments helper operation).

[2] binaryExpressionOperandMultiplicity
The operands of a binary expression must both have a multiplicity upper bound no greater than 1. If null
arguments are not allowed (as given by the noNullArguments helper operation), then the upper bounds
must be exactly 1.

Helper Operations
[1] noNullArguments () : Boolean
By default, null arguments are not allowed for binary expressions. (This is overridden for equality
expressions.)
[2] updateAssignments () : AssignedSource [*]
The assignments after a binary expression include all the assignments before the expression that are not
reassigned in either operand expression, plus the new assignments from each of the operand expressions.

[3] validateAssignments () : Boolean
In general the assignments before the operand expressions of a binary expression are the same as those
before the binary expression and, if an assignment for a name is changed in one operand expression,
then the assignment for that name may not change in the other operand expression. (This is overridden
for conditional logical expressions.)

Action Language for Foundational UML (ALF) 1.0, Beta 2 229

13.2.5 BitStringUnaryExpression

Generalizations
• UnaryExpression

Synthesized Properties
None

Derived Properties
• isBitStringConversion : Boolean

Whether BitString conversion is required on the operand expression.

Constraints
[1] bitStringUnaryExpressionIsBitStringConversionDerivation
BitString conversion is required if the operand expression of a BitString unary expression has type
Integer.

[2] bitStringUnaryExpressionLowerDerivation
A BitString unary expression has the same multiplicity lower bound as its operand expression.

[3] bitStringUnaryExpressionOperand
The operand expression of a BitString unary expression must have type BitString or Integer and a
multiplicity upper bound of 1.

[4] bitStringUnaryExpressionTypeDerivation
A BitString unary expression has type BitString.

[5] bitStringUnaryExpressionUpperDerivation
A BitString unary expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.6 BooleanLiteralExpression
An expression that comprises a Boolean literal.

Generalizations
• LiteralExpression

Synthesized Properties
• image : String

The textual image of the literal token for this expression.

Derived Properties
None

230 Action Language for Foundational UML (ALF) 1.0, Beta 2

Constraints
[1] booleanLiteralExpressionTypeDerivation
The type of a boolean literal expression is Boolean.

Helper Operations
None

13.2.7 BooleanUnaryExpression
A unary expression with a Boolean operator.

Generalizations
• UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] booleanUnaryExpressionLowerDerivation
A Boolean unary expression has the same multiplicity lower bound as its operand expression.

[2] booleanUnaryExpressionOperand
The operand expression of a Boolean unary expression must have type Boolean and a multiplicity upper
bound of 1.

[3] booleanUnaryExpressionTypeDerivation
A Boolean unary expression has type Boolean.

[4] booleanUnaryExpressionUpperDerivation
A Boolean unary expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.8 CastExpression
An expression used to filter values by type.

Generalizations
• Expression

Synthesized Properties
• operand : Expression

Action Language for Foundational UML (ALF) 1.0, Beta 2 231

The operand expression of the cast expression.

• typeName : QualifiedName [0..1]
The named type of the cast expression (if any)

Derived Properties
None

Constraints
[1] castExpressionAssignmentsBefore
The assignments before the operand of a cast expression are the same as those before the cast
expression.

[2] castExpressionLowerDerivation
A cast expression has a multiplicity lower bound of 0.

[3] castExpressionTypeDerivation
The type of a cast expression is the referent of the given type name (if there is one).

[4] castExpressionTypeResolution
If the cast expression has a type name, then it must resolve to a non-template classifier.

[5] castExpressionUpperDerivation
A cast expression has a multiplicity upper bound that is the same as the upper bound of its operand
expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
The assignments after a cast expression are the same as those after its operand expression.

13.2.9 ClassExtentExpression
An expression used to obtain the objects in the extent of a class.

Generalizations
• Expression

Synthesized Properties
• className : QualifiedName

The name of the class whose extent is to be obtained.
Derived Properties
None

Constraints
[1] classExtentExpressionExtentType

232 Action Language for Foundational UML (ALF) 1.0, Beta 2

The given type name must resolve to a non-template class.

[2] classExtentExpressionLowerDerivation
The multiplicity lower bound of a class extent expression is 0.

[3] classExtentExpressionTypeDerivation
The type of a class extent expression is the given class.

[4] classExtentExpressionUpperDerivation
The multiplicity upper bound of a class expression is *.

Helper Operations
None

13.2.10 ClassificationExpression
An expression used to test the dynamic type of its operand.

Generalizations
• UnaryExpression

Synthesized Properties
• typeName : QualifiedName

The name of the type that the operand is to be tested against.

Derived Properties
• isDirect : Boolean

Whether the test is for the operand to have the given type directly or to only conform to the given
type.

• referent : ElementReference
Whether the test is for the operand to have the given type directly or to only conform to the given
type.

Constraints
[1] classificationExpressionIsDirectDerivation
A classification expression is direct if its operator is "hastype".

[2] classificationExpressionLowerDerivation
A classification expression has a multiplicity lower bound that is the same as the lower bound of its
operand expression.

[3] classificationExpressionOperand
The operand expression of a classification expression must have a multiplicity upper bound of 1.

[4] classificationExpressionReferentDerivation

Action Language for Foundational UML (ALF) 1.0, Beta 2 233

The referent of a classification expression is the classifier to which the type name resolves.

[5] classificationExpressionTypeDerivation
A classification expression has type Boolean.

[6] classificationExpressionTypeName
The type name in a classification expression must resolve to a non-template classifier.

[7] classificationExpressionUpperDerivation
A classification expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.11 CollectOrIterateExpression
A sequence expansion expression with a collect or iterate operation.

Generalizations
• SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] collectOrIterateExpressionLowerDerivation
A collect or iterate expression has a multiplicity lower bound that is the product of the bounds of its
primary and argument expressions.

[2] collectOrIterateExpressionTypeDerivation
A collect or iterate expression has the same type as its argument expression.

[3] collectOrIterateExpressionUpperDerivation
A collect or iterate expression has a multiplicity upper bound that is the product of the bounds of its
primary and argument expressions.

Helper Operations
None

13.2.12 ConditionalLogicalExpression
A binary expression with a conditional logical expression, for which the evaluation of the second
operand expression is conditioned on the result of evaluating the first operand expression.

234 Action Language for Foundational UML (ALF) 1.0, Beta 2

Generalizations
• BinaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] conditionalLogicalExpressionLower
A conditional logical expression has a multiplicity lower bound of 0 if the lower bound if either operand
expression is 0 and 1 otherwise.

[2] conditionalLogicalExpressionOperands
The operands of a conditional logical expression must have type Boolean.

[3] conditionalLogicalExpressionTypeDerivation
A conditional logical expression has type Boolean.

[4] conditionalLogicalExpressionUpper
A conditional logical expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
If a name has the same assigned source after the second operand expression as before it, then that is its
assigned source after the conditional logical expression. If a name is unassigned before the second
operand expression, then it is considered unassigned after the conditional logical expression, even if it
has an assigned source after the second operand expression. Otherwise its assigned source after the
conditional logical expression is the conditional logical expression itself.

[2] validateAssignments () : Boolean
The assignments before the first operand expression of a conditional logical expression are the same as
those before the conditional logical expression. The assignments before the second operand expression
are the same as those after the first operand expression.

13.2.13 ConditionalTestExpression
An expression that uses the value of one operand expression to condition the evaluation of one of two
other operand expressions.

Generalizations
• Expression

Synthesized Properties

Action Language for Foundational UML (ALF) 1.0, Beta 2 235

• operand1 : Expression
The first operand expression, which provides the condition to be tested.

• operand2 : Expression
The second operand expression, to be evaluated if the condition is true.

• operand3 : Expression
The third operand expression, to be evaluated if the condition is false.

Derived Properties
None

Constraints
[1] conditionalTestExpressionAssignmentsAfter
If a name is unassigned after the first operand expression and has an assigned source after one of the
other operand expression, then it must have an assigned source after both of those expressions.

[2] conditionalTestExpressionAssignmentsBefore
The assignments before the first operand expression of a conditional-test expression are the same as
those before the conditional-test expression. The assignments before the second and third operand
expressions are the same as those after the first operand expression.

[3] conditionalTestExpressionCondition
The first operand expression of a conditional-test expression must be of type Boolean and have a
multiplicity upper bound of 1.

[4] conditionalTestExpressionLowerDerivation
The multiplicity lower bound of a conditional-test operator expression is the minimum of the
multiplicity lower bounds of its second and third operand expressions.

[5] conditionalTestExpressionTypeDerivation
The type of a conditional-test operator expression is the effective common ancestor (if one exists) of the
types of its second and third operand expressions.

[6] conditionalTestExpressionUpperDerivation
The multiplicity upper bound of a conditional-test operator expression is the maximum of the
multiplicity upper bounds of its second and third operand expressions.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
Returns the assignments after the first operand expression, plus assignments for any newly defined local
names in the second and third operand expressions. Local names that exist after the first operand
expression but are reassigned in the second or third operand expressions are adjusted to have the
conditional-test expression as their assigned source. Local names that are newly defined in the second
and third operand expressions have the conditional-text expression as their source and a type that is the

236 Action Language for Foundational UML (ALF) 1.0, Beta 2

effective common ancestor (if one exists) of the types from the assignments after each of the second and
third operands.

13.2.14 EqualityExpression
A binary expression that tests the equality of its operands.

Generalizations
• BinaryExpression

Synthesized Properties
None

Derived Properties
• isNegated : Boolean

Whether the test is for being not equal.

Constraints
[1] equalityExpressionIsNegatedDerivation
An equality expression is negated if its operator is "!=".

[2] equalityExpressionLowerDerivation
An equality expression has a multiplicity lower bound of 1.

[3] equalityExpressionTypeDerivation
An equality expression has type Boolean.

[4] equalityExpressionUpperDerivation
An equality expression has a multiplicity upper bound of 1.

Helper Operations
[1] noNullArguments () : Boolean
Returns false for an equality expression.

13.2.15 Expression
A model of the common properties derived for any Alf expression.

NOTE: The derivations for all properties of Expression except AssignmentsAfter are specific to its
various subclasses.

Generalizations
• SyntaxElement

Action Language for Foundational UML (ALF) 1.0, Beta 2 237

Synthesized Properties
None

Derived Properties
• assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this expression. This includes not
only any assignments made within the expression, but also any assignments that are unchanged
from before the expression.

• assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this expression.

• lower : Integer
The statically determined lower bound of the multiplicity of this expression.

• type : ElementReference [0..1]
A reference to the element that specifies the statically determined type for this expression (if
any).

• upper : UnlimitedNatural
The statically determined upper bound of the multiplicity of this expression.

Constraints
[1] expressionAssignmentAfterDerivation
The assignments after an expression are given by the result of the updateAssignments helper operation.

[2] expressionUniqueAssignments
No name may be assigned more than once before or after an expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
Returns the assignments from before this expression updated for any assignments made in the
expression. By default, this is the same set as the assignments before the expression. This operation is
redefined only in subclasses of Expression for kinds of expressions that make assignments.

13.2.16 ExtentOrExpression
The target of a sequence operation, reduction or expansion expression, which may be either a primary
expression or a class name denoting the class extent.

Generalizations
None

Synthesized Properties
• name : QualifiedName [0..1]

238 Action Language for Foundational UML (ALF) 1.0, Beta 2

If the target is a qualified name, then that name, before it is disambiguated into either a name
expression or a class name.

• nonNameExpression : Expression [0..1]
The target primary expression, if it is not a qualified name.

Derived Properties
• expression : Expression

The effective expression for the target.

Constraints
[1] extentOrExpressionExpressionDerivation
The effective expression for the target is the parsed primary expression, if the target is not a qualified
name, a name expression, if the target is a qualified name other than a class name, or a class extent
expression, if the target is the qualified name of a class.

Helper Operations
None

13.2.17 FeatureInvocationExpression
An invocation of a feature referenced on a sequence of instances.

Generalizations
• InvocationExpression

Synthesized Properties
• target : FeatureReference [0..1]

A feature reference to the target feature to be invoked.

Derived Properties
None

Constraints
[1] featureInvocationExpressionAlternativeConstructor
An alternative constructor invocation may only occur in an expression statement as the first statement in
the definition for the method of a constructor operation.

[2] featureInvocationExpressionFeatureDerivation
If a feature invocation expression has an explicit target, then that is its feature. Otherwise, it is an
alternative constructor call with its feature determined implicitly.

[3] featureInvocationExpressionImplicitAlternativeConstructor
If there is no target feature expression, then the implicit feature with the same name as the target type
must be a constructor.

Action Language for Foundational UML (ALF) 1.0, Beta 2 239

[4] featureInvocationExpressionReferentDerivation
If a feature invocation expression is an implicit object destruction, it has no referent. Otherwise, its
referent is the operation or signal being invoked.

[5] featureInvocationExpressionReferentExists
If a feature invocation expression is not an implicit destructor call, then it must be possible to determine
a single valid referent for it according to the overloading resolution rules.

Helper Operations
None

13.2.18 FeatureLeftHandSide
A left-hand side that is a property reference.

Generalizations
• LeftHandSide

Synthesized Properties
• feature : FeatureReference

The structural feature being assigned.

Derived Properties
None

Constraints
[1] featureLeftHandSideAssignmentAfterDerivation
The assignments after a feature left-hand side are the assignments after the expression of the feature
reference or, if there is an index, those after the index expression.

[2] featureLeftHandSideAssignmentBeforeDerivation
The assignments before the expression of the feature reference of a feature left-hand side are the
assignments before the feature left-hand side.

[3] featureLeftHandSideAssignmentsBefore
If a feature left-hand side has an index, then the assignments before the index expression are the
assignments after the expression of the feature reference.

[4] featureLeftHandSideFeatureExpression
The expression of the feature reference of a feature left-hand side must have a multiplicity upper bound
of 1.

[5] featureLeftHandSideIndexedFeature
If a feature left-hand side has an index, then the referent of the feature must be ordered and non-unique.

[6] featureLeftHandSideLowerDerivation

240 Action Language for Foundational UML (ALF) 1.0, Beta 2

If a feature left-hand side is indexed, then its lower bound is 1. Otherwise, its lower bound is that of its
referent.

[7] featureLeftHandSideReferentConstraint
The feature of a feature-left hand side must have a single referent that is a structural feature.

[8] featureLeftHandSideReferentDerivation
The referent of a feature left-hand side is the structural feature to which the feature reference of the left-
hand side resolves.

[9] featureLeftHandSideTypeDerivation
The type of a feature left-hand side is the type of its referent.

[10] featureLeftHandSideUpperDerivation
If a feature left-hand side is indexed, then its upper bound is 1. Otherwise, its upper bound is that of its
referent.

Helper Operations
None

13.2.19 FeatureReference
A reference to a structural or behavioral feature of the type of its target expression or a binary
association end the opposite end of which is typed by the type of its target expression.

Generalizations
• SyntaxElement

Synthesized Properties
• expression : Expression

The target expression.

• nameBinding : NameBinding
The name of the feature.

Derived Properties
• referent : ElementReference [*]

The features referenced by this feature reference.

Constraints
[1] featureReferenceReferentDerivation
The features referenced by a feature reference include the features of the type of the target expression
and the association ends of any binary associations whose opposite ends are typed by the type of the
target expression.

[2] featureReferenceTargetType

Action Language for Foundational UML (ALF) 1.0, Beta 2 241

The target expression of the feature reference may not be untyped, nor may it have a primitive or
enumeration type.

Helper Operations
None

13.2.20 ForAllOrExistsOrOneExpression
A sequence expansion expression with a forAll, exists or one operation.

Generalizations
• SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] forAllOrExistsOrOneExpressionArgument
The argument of a forAll, exists or one expression must have type Boolean and a multiplicity upper
bound of 1.

[2] forAllOrExistsOrOneExpressionLowerDerivation
A forAll, exists or one expression has a multiplicity lower bound of 1.

[3] forAllOrExistsOrOneExpressionTypeDerivation
A forAll, exists or one expression has the type Boolean.

[4] forAllOrExistsOrOneExpressionUpperDerivation
A forAll, exists or one expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.21 IncrementOrDecrementExpression
A unary expression with either an increment or decrement operator.

Generalizations
• Expression

Synthesized Properties
• isPrefix : Boolean = false

Whether the operator is being used as a prefix or a postfix.

242 Action Language for Foundational UML (ALF) 1.0, Beta 2

• operand : LeftHandSide
The operand, which must have the form of an assignment left-hand side.

Derived Properties
• assignment : AssignedSource [0..1]

If the operand is a name, then the new assigned source for that name.

• expression : Expression
The effective expression used to obtain the original value of the operand to be updated.

• feature : ElementReference [0..1]
If the operand is a feature, then the referent for that feature.

• isDataValueUpdate : Boolean
Whether this expression updates an attribute of a data value held in a local name or parameter.

• isFeature : Boolean
Whether the operand is a feature or not.

• isIndexed : Boolean
If the operand is a feature, whether it has an index or not.

Constraints
[1] incrementOrDecrementExpressionAssignmentDerivation
If the operand of an increment or decrement expression is a name, then the assignment for the
expression is a new assigned source for the name with the expression as the source.

[2] incrementOrDecrementExpressionAssignmentsBefore
The assignments before the operand of an increment or decrement expression are the same as those
before the increment or decrement expression.

[3] incrementOrDecrementExpressionExpressionDerivation
The effective expression for the operand of an increment or decrement expression is the operand treated
as a name expression, property access expression or sequence access expression, as appropriate for
evaluation to obtain the original value to be updated.

[4] incrementOrDecrementExpressionFeatureDerivation
If the operand of an increment or decrement expression is a feature, then the referent for the operand.

[5] incrementOrDecrementExpressionIsDataValueUpdateDerivation
An increment or decrement expression is a data value update if its operand is an attribute of a data value
held in a local name or parameter.

[6] incrementOrDecrementExpressionIsFeatureDerivation

Action Language for Foundational UML (ALF) 1.0, Beta 2 243

An increment or decrement expression has a feature as its operand if the operand is a kind of
FeatureLeftHandSide.

[7] incrementOrDecrementExpressionIsIndexedDerivation
An increment or decrement expression is indexed if its operand is indexed.

[8] incrementOrDecrementExpressionLowerDerivation
An increment or decrement expression has the same multiplicity lower bound as its operand expression.

[9] incrementOrDecrementExpressionOperand
The operand expression must have type Integer and a multiplicity upper bound of 1.

[10] incrementOrDecrementExpressionTypeDerivation
An increment or decrement expression has type Integer.

[11] incrementOrDecrementExpressionUpperDerivation
An increment or decrement expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
The assignments after an increment and decrement expression include all those after its operand
expression. Further, if the operand expression, considered as a left hand side, is a local name, then this is
reassigned.

13.2.22 InstanceCreationExpression
An expression used to create a new instance of a class or data type.

Generalizations
• InvocationExpression

Synthesized Properties
• constructor : QualifiedName

The name of the class constructor operation to be invoked or the name of a class or data type.

Derived Properties
• isConstructorless : Boolean

Whether this is a constructorless object creation expression.

• isObjectCreation : Boolean
Whether this is an object creation expression or a data value creation expression.

Constraints
[1] instanceCreationExpressionConstructor

244 Action Language for Foundational UML (ALF) 1.0, Beta 2

The constructor name must resolve to a constructor operation (that is compatible with the tuple
argument expressions), a class or a data type, but not both a class and a data type.

[2] instanceCreationExpressionConstructorlessLegality
If the expression is constructorless, then its tuple must be empty and the referent class must not have any
owned operations that are constructors.

[3] instanceCreationExpressionDataTypeCompatibility
If an instance creation expression is a data value creation (not an object creation), then the tuple
argument expressions are matched with the attributes of the named type.

[4] instanceCreationExpressionFeatureDerivation
There is no feature for an instance creation expression.

[5] instanceCreationExpressionIsConstructorlessDerivation
An instance creation expression is constructorless if its referent is a class.

[6] instanceCreationExpressionIsObjectCreationDerivation
An instance creation expression is an object creation if its referent is not a data type.

[7] instanceCreationExpressionReferent
If the referent of an instance creation expression is an operation, then the class of that operation must not
be abstract. Otherwise, the referent is a class or data type, which must not be abstract.

[8] instanceCreationExpressionReferentDerivation
The referent of an instance creation expression is normally the constructor operation, class or data type
to which the constructor name resolves. However, if the referent is an operation whose class is abstract
or is a class that is itself abstract, and there is an associated Impl class constructor, then the referent is
the Impl class constructor.

Helper Operations
[1] parameterElements () : ElementReference [*]
Returns the parameters of a constructor operation or the attributes of a data type, or an empty set for a
constructorless instance creation.

13.2.23 InvocationExpression
An expression denoting the invocation of a behavior or operation, or the sending of a signal.

Generalizations
• Expression

Synthesized Properties
• tuple : Tuple

Action Language for Foundational UML (ALF) 1.0, Beta 2 245

The tuple for the invocation expression.

Derived Properties
• feature : FeatureReference [0..1]

For an invocation of a feature, the reference to that feature. This property is set for a feature
invocation expression or for an expression initially parsed as a behavior invocation expression
that disambiguates to a feature invocation expression.

• isAssociationEnd : Boolean
Whether this is an association read or not.

• isBehavior : Boolean
Whether this is a behavior invocation or not.

• isDestructor : Boolean
If this is an operation call, whether the operation is a destructor.

• isImplicit : Boolean
Whether this is an implicit object destruction.

• isOperation : Boolean
Whether this is an operation call or not.

• isSignal : Boolean
Whether this is a signal send or not.

• parameter : ElementReference [*]
Element references to the parameters of the referent, in order.

• referent : ElementReference [0..1]
The behavior, operation or signal being invoked. The derivation of this property is specific to
each kind of invocation expression.

Constraints
[1] invocationExpressionAssignmentsBefore
The assignments before the target expression of the feature reference of an invocation expression (if
any) are the same as the assignments before the invocation expression.

[2] invocationExpressionIsAssociationEndDerivation
An invocation expression is an association end read if its referent is an association end.

[3] invocationExpressionIsBehaviorDerivation
An invocation expression is a behavior invocation if its referent is a behavior.

246 Action Language for Foundational UML (ALF) 1.0, Beta 2

[4] invocationExpressionIsDestructorDerivation
An invocation expression is a destructor call either implicitly or if it is an explicit operation call to a
destructor operation.

[5] invocationExpressionIsImplicitDerivation
An invocation expression is an implicit object destruction if it has a feature with the name "destroy" and
no explicit referents.

[6] invocationExpressionIsOperationDerivation
An invocation expression is an operation call if its referent is an operation.

[7] invocationExpressionIsSignalDerivation
An invocation expression is a signal send if its referent is a signal.

[8] invocationExpressionLowerDerivation
If the referent of an invocationExpression is an operation or behavior with a return parameter, then the
lower bound of the expression is that of the return parameter. If the referent is a classifier, then the lower
bound is 1. If the referent is a property, then the lower bound is that of the property. Otherwise the lower
bound is 0.

[9] invocationExpressionParameterDerivation
The parameters of an invocation expression are given by the result of the parameterElements helper
operation.

[10] invocationExpressionTypeDerivation
If the referent of an invocationExpression is an operation or behavior with a return parameter, then the
type of the expression is that of the return parameter (if any). If the referent is a classifier, then the type
is the referent. If the referent is a property, then the type is that of the property. Otherwise the expression
has no type.

[11] invocationExpressionUpperDerivation
If the referent of an invocationExpression is an operation or behavior with a return parameter, then the
upper bound of the expression is that of the return parameter. If the referent is a classifier, then the upper
bound is 1. If the referent is a property, then the upper bound is that of the property. Otherwise the upper
bound is 0.

Helper Operations
[1] parameterElements () : ElementReference [*] {ordered}
Returns references to the elements that act as the parameters of the referent. If the referent is a behavior
or operation, these are the owned parameters, in order. If the referent is an association end, then the
parameters are the other association ends of the association of the referent end, which are treated as if
they were in parameters. Otherwise (by default), they are any properties of the referent (e.g., signal
attributes), which are treated as if they were in parameters. (This is defined as a helper operation, so that

Action Language for Foundational UML (ALF) 1.0, Beta 2 247

it can be overridden by subclasses of InvocationExpression, if necessary.)

[2] updateAssignments () : AssignedSource [*]
The assignments after an invocation expression are the same as those after the tuple of the expression.

13.2.24 IsolationExpression
An expression used to evaluate its operand expression in isolation.

Generalizations
• UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] isolationExpressionLowerDerivation
An isolation expression has the multiplicity lower bound of its operand expression.

[2] isolationExpressionTypeDerivation
An isolation expression has the type of its operand expression.

[3] isolationExpressionUpperDerivation
An isolation expression has the multiplicity upper bound of its operand expression.

Helper Operations
None

13.2.25 IsUniqueExpression
A sequence expansion expression with a isUnique.

Generalizations
• SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] isUniqueExpressionExpressionArgument

248 Action Language for Foundational UML (ALF) 1.0, Beta 2

The argument of an isUnique expression must have a multiplicity upper bound of 1.

[2] isUniqueExpressionLowerDerivation
An isUnique expression has a multiplicity lower bound of 1.

[3] isUniqueExpressionTypeDerivation
An isUnique expression has the type Boolean.

[4] isUniqueExpressionUpperDerivation
An isUnique expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.26 LeftHandSide
The left-hand side of an assignment expression.

NOTE: The derivations for the derived properties of LeftHandSide are specific to its various subclasses.

Generalizations
• SyntaxElement

Synthesized Properties
• index : Expression [0..1]

An optional expression that evaluates to an index into the values of an ordered sequence.

Derived Properties
• assignmentAfter : AssignedSource [*]

The assignments after the left-hand side.

• assignmentBefore : AssignedSource [*]

• lower : Integer
The statically determined lower bound of the multiplicity of this left-hand side.

• referent : ElementReference [0..1]
A reference to the assignable element denoted by this left-hand side, if one exists (i.e., the left-
hand side is not for the first assignment of a local name).

• type : ElementReference [0..1]
A reference to the element that specifies the statically determined type of this left-hand side (if
any).

• upper : UnlimitedNatural

Action Language for Foundational UML (ALF) 1.0, Beta 2 249

The statically determined upper bound of the multiplicity of this left-hand side.

Constraints
[1] leftHandSideIndexExpression
If a left-hand side has an index, then the index expression must have a multiplicity upper bound no
greater than 1.

Helper Operations
None

13.2.27 LinkOperationExpression
An expression used to create or destroy the links of an association.

Generalizations
• InvocationExpression

Synthesized Properties
• associationName : QualifiedName

The qualified name of the association whose links are being acted on.

• operation : String
The name of the link operation.

Derived Properties
• isClear : Boolean

Whether the operation is clearing the association.

• isCreation : Boolean
Whether the operation is for link creation.

Constraints
[1] linkOperationExpressionArgumentCompatibility
Each argument expression must be assignable to its corresponding expression.

[2] linkOperationExpressionAssociationReference
The qualified name of a link operation expression must resolve to a single association.

[3] linkOperationExpressionFeatureDerivation
There is no feature for a link operation expression.

[4] linkOperationExpressionIsClearDerivation
A link operation expression is for clearing an association if the operation is "clearAssoc".

[5] linkOperationExpressionIsCreationDerivation

250 Action Language for Foundational UML (ALF) 1.0, Beta 2

A link operation expression is for link creation if its operation is "createLink".

[6] linkOperationExpressionReferentDerivation
The referent for a link operation expression is the named association.

Helper Operations
[1] parameterElements () : ElementReference [*]
For a clear association operation, returns a single, typeless parameter. Otherwise, returns the ends of the
named association.

13.2.28 LiteralExpression
An expression that comprises a primitive literal.

Generalizations
• Expression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] literalExpressionLowerDerivation
The multiplicity lower bound of a literal expression is always 1.

[2] literalExpressionUpperDerivation
The multiplicity upper bound of a literal expression is always 1.

Helper Operations
None

13.2.29 LogicalExpression
A binary expression with a logical operator.

Generalizations
• BinaryExpression

Synthesized Properties
None

Derived Properties
• isBitStringConversion1 : Boolean

Whether the first operand expression requires BitString conversion.

Action Language for Foundational UML (ALF) 1.0, Beta 2 251

• isBitStringConversion2 : Boolean
Whether the second operand expression requires BitString conversion.

• isBitWise : Boolean
Whether this is a bit-wise logical operation on bit strings.

Constraints
[1] logicalExpressionIsBitStringConversion1Derivation
BitString conversion is required if the first operand expression of a logical expression has type Integer.

[2] logicalExpressionIsBitStringConversion2Derivation
BitString conversion is required if the second operand expression of a logical expression has type
Integer.

[3] logicalExpressionIsBitWiseDerivation
A logical expression is bit-wise if the type of its first operand is not Boolean.

[4] logicalExpressionLowerDerivation
A logical expression has a multiplicity lower bound of 0 if the lower bound if either operand expression
is 0 and 1 otherwise.

[5] logicalExpressionOperands
The operands of a logical expression must have type Boolean, Integer or BitString. However, if one of
the operands is Boolean, then the other must also be Boolean.

[6] logicalExpressionTypeDerivation
A logical expression has type Boolean if it is not bit-wise and type BitString if it is bit-wise.

[7] logicalExpressionUpperDerivation
A logical expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.30 NameBinding
An unqualified name, optionally with a template binding.

Generalizations
• SyntaxElement

Synthesized Properties
• binding : TemplateBinding [0..1]

The template binding to be used, if the name denotes a template.

252 Action Language for Foundational UML (ALF) 1.0, Beta 2

• name : String
An unqualified name. For names that appeared as unrestricted names in the input text, the string
value here excludes the surrounding single quote characters and has any escape sequences
resolved to the denoted special characters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.31 NamedExpression
A pairing of a parameter name and an argument expression in a tuple.

Generalizations
• SyntaxElement

Synthesized Properties
• expression : Expression

The argument expression.

• index : Expression [0..1]
An expression whose value gives an index into an ordered parameter. (This is only used in link
operation expressions.)

• name : String
The parameter name.

Derived Properties
• isBitStringConversion : Boolean

Whether the argument expression requires bit string conversion.

• isCollectionConversion : Boolean
Whether the argument expression requires collection conversion.

Constraints
[1] namedExpressionIsBitStringConversionDerivation
Bit string conversion is required if the type of the type of the corresponding parameter is BitString, or a
collection class instantiated with a BitString type, and the type of the argument expression is not
BitString.

Action Language for Foundational UML (ALF) 1.0, Beta 2 253

[2] namedExpressionIsCollectionConversionDerivation
Collection conversion is required if the type of the corresponding parameter is a collection class and the
type of the argument expression is not.

Helper Operations
None

13.2.32 NamedTemplateBinding
A template binding in which the arguments are matched to formal template parameters by name.

Generalizations

• TemplateBinding

Synthesized Properties
• substitution : TemplateParameterSubstitution [1..*]

The substitutions of arguments for template parameters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.33 NamedTuple
A tuple in which the arguments are matched to parameters by name.

Generalizations
• Tuple

Synthesized Properties
• namedExpression : NamedExpression [*]

The argument expressions for this tuple paired with the corresponding parameter names.

Derived Properties
None

Constraints
[1] namedTupleArgumentNames
The name of a named expression of a named tuple must be the name of a parameter of the invocation the
tuple is for. No two named expressions may have the same name.

Helper Operations
None

254 Action Language for Foundational UML (ALF) 1.0, Beta 2

13.2.34 NameExpression
An expression that comprises a name reference.

Generalizations
• Expression

Synthesized Properties
• name : QualifiedName

The qualified name referenced in this expression. (For a local name, this will actually have no
qualification.)

Derived Properties
• assignment : AssignedSource [0..1]

The assigned source for the referenced name, if the name is a local or parameter name.

• enumerationLiteral : ElementReference [0..1]
The identified enumeration literal, if the referenced name is for an enumeration literal.

• propertyAccess : PropertyAccessExpression [0..1]
The equivalent property access expression, if the referenced name disambiguates to a feature
reference.

Constraints
[1] nameExpressionAssignmentDerivation
If the name in a name expression is a local or parameter name, then its assignment is its assigned source
before the expression.

[2] nameExpressionEnumerationLiteralDerivation
If the name in a name expression resolves to an enumeration literal name, then that is the enumeration
literal for the expression.

[3] nameExpressionLowerDerivation
The multiplicity lower bound of a name expression is determined by its name.

[4] nameExpressionPropertyAccessDerivation
If the name in a name expression disambiguates to a feature reference, then the equivalent property
access expression has the disambiguation of the name as its feature. The assignments before the property
access expression are the same as those before the name expression.

[5] nameExpressionResolution
If the name referenced by this expression is not a disambiguated feature reference or a local or
parameter name, then it must resolve to exactly one enumeration literal.

[6] nameExpressionTypeDerivation

Action Language for Foundational UML (ALF) 1.0, Beta 2 255

The type of a name expression is determined by its name. If the name is a local name or parameter with
an assignment, then the type of the name expression is the type of that assignment. If the name is an
enumeration literal, then the type of the name expression is the corresponding enumeration. If the name
disambiguates to a feature reference, then the type of the name expression is the type of the equivalent
property access expression.

[7] nameExpressionUpperDerivation
The multiplicity upper bound of a name expression is determined by its name.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
If propertyAccess is not empty (i.e., if the referenced name disambiguates to a feature reference), then
return the assignments after the propertyAccess expression. Otherwise, return the result of the superclass
updateAssignments operation.

13.2.35 NameLeftHandSide
A left-hand side that is a name.

Generalizations
• LeftHandSide

Synthesized Properties
• target : QualifiedName

The name that is the target of the assignment.

Derived Properties
None

Constraints
[1] nameLeftHandSideAssignmentAfterDerivation
If a name left-hand side has an index, then the assignments after the left-hand side are the same as the
assignments after the index. If the left-hand side has no index, but its target disambiguates to a feature
reference, then the assignments after the left-hand side are the assignments after the feature expression.
Otherwise the assignments after the left-hand side are the same as the assignments before the left-hand
side.

[2] nameLeftHandSideAssignmentsBefore
If the target of a name left-hand side disambiguates to a feature reference, then the assignments before
the expression of the feature reference are the assignments before the left-hand side. If a name left-hand
side has an index, then the target must either disambiguate to a feature reference or already have an
assigned source, and the assignments before the index expression are the assignments before the left-
hand side or, if the target disambiguates to a feature reference, the assignments after the expression of
the feature reference.

256 Action Language for Foundational UML (ALF) 1.0, Beta 2

[3] nameLeftHandSideIndexedFeature
If the target of a name left-hand side disambiguates to a feature reference, and the left-hand side has an
index, then the referent of the feature reference must be ordered and non-unique.

[4] nameLeftHandSideLowerDerivation
If a name left-hand side is indexed, then its lower bound is 1. Otherwise, if the left-hand side is for a
local name with an assignment, than its lower bound is that of the assignment, else, if it has a referent,
then its lower bound is that of the referent.

[5] nameLeftHandSideNontemplateTarget
The target of a name left-hand side must not have a template binding.

[6] nameLeftHandSideReferentDerivation
If the target of a name left-hand side disambiguates to a structural feature, then the referent of the left-
hand side is that feature. If the target resolves to a parameter, then the referent is that parameter. If the
target resolves to a local name, then the referent is the assigned source for that local name, if it has one.

[7] nameLeftHandSideTargetAssignment
The target of a name left hand side may not already have an assigned source that is a loop variable
definition, an annotation, a sequence expansion expression or a parameter that is an in parameter.

[8] nameLeftHandSideTargetResolution
If the target of a name left-hand side is qualified, then, if it does not disambiguate to a feature, it must
have a referent that is a parameter of an operation or behavior that is the current scope the left-hand is in,
and, if it does disambiguate to a feature, it must have a single referent that is a structural feature.

[9] nameLeftHandSideTypeDerivation
If a name left-hand side is for a local name with an assignment, then its type is that of that assignment.
Otherwise, if the left-hand side has a referent, then its type is the type of that referent.

[10] nameLeftHandSideUpperDerivation
If a name left-hand side is indexed, then its upper bound is 1. Otherwise, if the left-hand side is for a
local name with an assignment, than its upper bound is that of the assignment, else, if it has a referent,
then its upper bound is that of the referent.

Helper Operations
None

13.2.36 NaturalLiteralExpression
An expression that comprises a natural literal.

Generalizations
• LiteralExpression

Synthesized Properties

Action Language for Foundational UML (ALF) 1.0, Beta 2 257

• image : String
The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] naturalLiteralExpressionTypeDerivation
The type of a natural literal is the Alf library type Natural.

NOTE: If the context of a natural literal expression unambiguously requires either an Integer or an
UnlimitedNatural value, then the result of the literal expression is implicitly downcast to the required
type. If the context is ambiguous, however, than an explicit cast to Integer or UnlimitedNatural must be
used.

Helper Operations
None

13.2.37 NumericUnaryExpression
A unary expression with a numeric operator.

Generalizations
• UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] numericUnaryExpressionLowerDerivation
A numeric unary expression has the same multiplicity lower bound as its operand expression.

[2] numericUnaryExpressionOperand
The operand expression must have type Integer and a multiplicity upper bound of 1.

[3] numericUnaryExpressionTypeDerivation
A numeric unary expression must have type Integer.

[4] numericUnaryExpressionUpperDerivation
A numeric unary expression has a multiplicity upper bound of 1.

Helper Operations
None

258 Action Language for Foundational UML (ALF) 1.0, Beta 2

13.2.38 OutputNamedExpression
A named argument expression for an output parameter.

Generalizations
• NamedExpression

Synthesized Properties
None

Derived Properties
• leftHandSide : LeftHandSide

The argument expression considered as an assignment left-hand side.

Constraints
[1] outputNamedExpressionForm
The argument for an output parameter must be either be null, a name expression, a property access
expression, or a sequence access expression whose primary expression is a name expression or a
property access expression.

[2] outputNamedExpressionLeftHandSideDerivation
The equivalent left-hand side for an output named expression depends on the kind of expression. If the
expression is a name expression with no disambiguation, then the left-hand side is a name left-hand side
with the name from the name expression. If the expression is a name expression that disambiguates to a
feature reference, then the left-hand side is a feature left-hand side for that feature reference. If the
expression is a property access expression, then the left-hand side is a feature left-hand side for the
feature reference of the property access expression. If the expression is a sequence access expression,
then the left-hand side is a name left-hand side or feature left-hand side, as above, depending on whether
the primary expression of the sequence access expression is a name expression or property access
expression, and an index given by the index expression of the sequence access expression. Otherwise the
left-hand side is empty.

Helper Operations
None

13.2.39 PositionalTemplateBinding
A template binding in which the arguments are matched to formal template parameters in order by
position.

Generalizations
• TemplateBinding

Synthesized Properties
• argumentName : QualifiedName [1..*]

The arguments for this template binding, to be matched by position to the template parameters.

Derived Properties

Action Language for Foundational UML (ALF) 1.0, Beta 2 259

None

Constraints
None

Helper Operations
None

13.2.40 PositionalTuple
A tuple in which the arguments are matched to parameters in order by position.

Generalizations
• Tuple

Synthesized Properties
• expression : Expression [*]

The argument expressions for this tuple, to be matched by position to the invocation parameters.

Derived Properties
None

Constraints
[1] positionalTupleArguments
A positional tuple must not have more arguments than the invocation it is for has parameters.

Helper Operations
None

13.2.41 PropertyAccessExpression
An expression comprising a reference to a structural feature.

Generalizations
• Expression

Synthesized Properties
• featureReference : FeatureReference

A reference to a structural feature.

Derived Properties
• feature : ElementReference

The referenced structural feature.

Constraints
[1] propertyAccessExpressionAssignmentsBefore

260 Action Language for Foundational UML (ALF) 1.0, Beta 2

The assignments before the expression of the feature reference of a property access expression are the
same as before the property access expression.

[2] propertyAccessExpressionFeatureDerivation
The feature of a property access expression is the structural feature to which its feature reference
resolves.

[3] propertyAccessExpressionFeatureResolution
The feature reference for a property access expression must resolve to a single structural feature.

[4] propertyAccessExpressionLowerDerivation
The multiplicity lower bound of a property access expression is given by the product of the multiplicity
lower bounds of the referenced feature and the target expression.

[5] propertyAccessExpressionTypeDerivation
The type of a property access expression is the type of the referenced feature.

[6] propertyAccessExpressionUpperDerivation
The multiplicity upper bound of a property access expression is given by the product of the multiplicity
upper bounds of the referenced feature and the target expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
The assignments after a property access expression are the same as those after the target expression of
its feature reference.

13.2.42 QualifiedName
The representation of a qualified name as a sequence of individual simple names.

Generalizations
• SyntaxElement

Synthesized Properties
• isAmbiguous : Boolean = false

Whether this qualified name is ambiguous.

• nameBinding : NameBinding [*]
The sequence of individual name bindings in this qualified name.

Derived Properties
• disambiguation : FeatureReference [0..1]

The disambiguation into a feature reference of a syntactic element initially parsed as a qualified
name.

Action Language for Foundational UML (ALF) 1.0, Beta 2 261

• isFeatureReference : Boolean
Indicates whether this qualified name has been disambiguated to a feature reference.

• pathName : String
The complete path name for the qualified name, with individual name bindings separated by "::"
punctuation.

• qualification : QualifiedName [0..1]
The qualified name corresponding to the qualification part of this qualified name, if any.

• referent : ElementReference [*]
The possible referents to which this qualified name may resolve. (Note that the UML rules for
namespaces in general allow a namespace to contain elements of different kinds with the same
name.) If the qualified name is for a template instantiation, then the referent is the equivalent
bound element.

• templateName : QualifiedName [0..1]
If this qualified name is for a template binding, then the name of the template for which this
qualified name is a binding.

• unqualifiedName : NameBinding
The rightmost individual name binding in the qualified name, without the qualification.

Constraints
[1] qualifiedNameDisambiguationDerivation
If a qualified name is not ambiguous or it has a qualification that resolves to a namespace, then it is has
no disambiguation. Otherwise, its disambiguation is a feature reference with a name given by the
unqualified name of the qualified name and a target expression determined by the disambiguation of the
qualification of the qualified name.

[2] qualifiedNameIsFeatureReferenceDerivation
A qualified name is a feature reference is its disambiguation is not empty.

[3] qualifiedNameLocalName
If a qualified name is a local name, then the reference must be within the same local scope as the
definition of the named element.

[4] qualifiedNameNonLocalUnqualifiedName
If a qualified name is an unqualified, non-local name, then it must be visible in the current scope of the
use of the name.

[5] qualifiedNamePathNameDerivation
The path name for a qualified name consists of the string representation of each of the name bindings,
separated by "::" punctuation. The string representation of a name binding is its name followed by the

262 Action Language for Foundational UML (ALF) 1.0, Beta 2

representation of its template binding, if it has one. The string representation of a positional template
binding consists of an ordered list of the path names of its argument qualified names separated by
commas, all surrounded by the angle brackets "<" and ">". The string representation of a named
template binding consists of an ordered list of its template parameter substitutions, each consisting of the
formal parameter name followed by "=>" followed by the path name of the argument qualified name,
separated by commas, all surrounded by the angle brackets "<" and ">".

[6] qualifiedNameQualificationDerivation
The qualification of a qualified name is a empty if the qualified name has only one name binding.
Otherwise it is the qualified name consisting of all the name bindings of the original qualified name
except for the last one. The qualification of a qualified name is considered ambiguous if the qualified
name is ambiguous and has more than two name bindings.

[7] qualifiedNameQualifiedResolution
If a qualified name has a qualification, then its unqualified name must name an element of the
namespace named by the qualification, where the first name in the qualification must name an element
of the current scope.

[8] qualifiedNameReferentDerivation
The referents of a qualified name are the elements to which the name may resolve in the current scope,
according to the UML rules for namespaces and named elements.

[9] qualifiedNameTemplateBinding
If the unqualified name of a qualified name has a template binding, then the template name must resolve
to a template. The template binding must have an argument name for each of the template parameters
and each argument name must resolve to a classifier. If the template parameter has constraining
classifiers, then the referent of the corresponding argument name must conform to all those constraining
classifiers.

[10] qualifiedNameTemplateNameDerivation
If the last name binding in a qualified name has a template binding, then the template name is a qualified
name with the same template bindings as the original qualified name, but with the template binding
removed on the last name binding.

[11] qualifiedNameUnqualifiedNameDerivation
The unqualified name of a qualified name is the last name binding.

Helper Operations
None

13.2.43 RelationalExpression
A binary expression with a relational operator.

Generalizations
• BinaryExpression

Action Language for Foundational UML (ALF) 1.0, Beta 2 263

Synthesized Properties
None

Derived Properties
• isUnlimitedNatural : Boolean

Whether this is an UnlimitedNatural comparison.

Constraints
[1] relationalExpressionIsUnlimitedNaturalDerivation
A relational expression is an UnlimitedNatural comparison if either one of its operands has type
UnlimitedNatural.

[2] relationalExpressionLowerDerivation
A relational expression has a multiplicity lower bound of 0 if the lower bound if either operand
expression is 0 and 1 otherwise.

[3] relationalExpressionOperandTypes
The operand expressions for a comparison operator must have type Integer, UnlimitedNatural or
Natural. However, it is not allowed to have one operand expression be Integer and the other be
UnlimitedNatural.

[4] relationalExpressionTypeDerivation
The type of a relational expression is Boolean.

[5] relationalExpressionUpperDerivation
A relational expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.44 SelectOrRejectExpression
A sequence expansion expression with a select or reject operation.

Generalizations
• SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] selectOrRejectExpressionArgument

264 Action Language for Foundational UML (ALF) 1.0, Beta 2

The argument of a select or reject expression must have type Boolean and a multiplicity upper bound of
1.

[2] selectOrRejectExpressionLowerDerivation
A select or reject expression has a multiplicity lower bound of 0.

[3] selectOrRejectExpressionTypeDerivation
A select or reject expression has the same type as its primary expression.

[4] selectOrRejectExpressionUpperDerivation
A select or reject expression has a multiplicity upper bound of *.

Helper Operations
None

13.2.45 SequenceAccessExpression
An expression used to access a specific element of a sequence.

Generalizations
• Expression

Synthesized Properties
• index : Expression

The expression whose value is the index of the element being accessed in the sequence.

• primary : Expression
The expression whose value is the sequence being accessed.

Derived Properties
None

Constraints
[1] sequenceAccessExpressionIndexMultiplicity
The multiplicity upper bound of the index of a sequence access expression must be 1.

[2] sequenceAccessExpressionIndexType
The type of the index of a sequence access expression must be Integer.

[3] sequenceAccessExpressionLowerDerivation
The multiplicity lower bound of a sequence access expression is 0.

[4] sequenceAccessExpressionTypeDerivation
The type of a sequence access expression is the same as the type of its primary expression.

[5] sequenceAccessExpressionUpperDerivation

Action Language for Foundational UML (ALF) 1.0, Beta 2 265

The multiplicity upper bound of a sequence access expression is 1.

Helper Operations
None

13.2.46 SequenceConstructionExpression
An expression used to construct a sequence of values.

Generalizations
• Expression

Synthesized Properties
• elements : SequenceElements [0..1]

The specification of the elements in the sequence.

• hasMultiplicity : Boolean = false
Whether the sequence construction expression has a multiplicity indicator.

• typeName : QualifiedName [0..1]
The name of the type of the elements in the sequence.

Derived Properties
None

Constraints
[1] sequenceConstructionExpressionAssignmentsBefore
If the elements of a sequence construction expression are given by a sequence expression list, then the
assignments before the first expression in the list are the same as the assignments before the sequence
construction expression, and the assignments before each subsequent expression are the assignments
after the previous expression. If the elements are given by a sequence range, the assignments before both
expressions in the range are the same as the assignments before the sequence construction expression.

[2] sequenceConstructionExpressionElementType
If the elements of a sequence construction expression are given by a sequence range, then the expression
must have type Integer. If the elements are given by a sequence element list, and the sequence
construction expression has a non-empty type, then each expression in the list must have a type that
either conforms to the type of the sequence construction expression or is convertible to it by bit string
conversion.

[3] sequenceConstructionExpressionLowerDerivation
If a sequence construction expression has multiplicity, then its multiplicity lower bound is given by its
elements, if this is not empty, and zero otherwise. If a sequence construction expression does not have
multiplicity, then its multiplicity lower bound is one.

[4] sequenceConstructionExpressionType

266 Action Language for Foundational UML (ALF) 1.0, Beta 2

If the type name of a sequence construction expression is not empty, then it must resolve to a non-
template classifier. If the expression does not have multiplicity, then the type name must not be empty
and the classifier to which it resolves must be the instantiation of a collection class.

[5] sequenceConstructionExpressionTypeDerivation
If the type name of a sequence construction expression is not empty, then the type of the expression is
the classifier to which the type name resolves.

[6] sequenceConstructionExpressionUpperDerivation
If a sequence construction expression has multiplicity, then its multiplicity upper bound is given by its
elements, if this is not empty, and zero otherwise. If a sequence construction expression does not have
multiplicity, then its multiplicity upper bound is one.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
If the elements of the sequence construction expression are given by a sequence expression list, then
return the assignments after the last expression in the list (if the list is empty, then return the assignments
before the sequence construction expression). If the elements are given by a sequence range, then return
the union of the assignments after each of the expressions in the range.

13.2.47 SequenceElements
A specification of the elements of a sequence.

Generalizations
• SyntaxElement

Synthesized Properties
None

Derived Properties
• lower : Integer

The multiplicity lower bound of the elements of the sequence. The derivation for this property is
given in the subclasses of SequenceElements.

• upper : UnlimitedNatural
The multiplicity upper bound of the elements of the sequence. The derivation for this property is
given in the subclasses of SequenceElements.

Constraints
None

Helper Operations
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 267

13.2.48 SequenceExpansionExpression
An expression used to carry out one of a predefined set of operations over each of the elements in a
sequence.

Generalizations
• Expression

Synthesized Properties
• argument : Expression

The argument expression. The exact form required for this expression depends on which
expansion operation is being carried out.

• operation : String
The name of the operation to be carried out.

• primary : ExtentOrExpression
The class name or primary expression that evaluates to the sequence to be acted on.

• variable : String
The name of the expansion variable available as a local name within the argument expression.

Derived Properties
• variableSource : AssignedSource

The assigned source for the expansion variable within the argument expression. The source is
actually the sequence expansion expression itself.

Constraints
[1] sequenceExpansionExpressionAssignmentsAfterArgument
The assignments after the argument expression of a sequence expansion expression must be the same as
the assignments before the argument expression.

[2] sequenceExpansionExpressionAssignmentsBeforeArgument
The assignments before the argument expression of a sequence expansion expression include those after
the primary expression plus one for the expansion variable.

[3] sequenceExpansionExpressionAssignmentsBeforePrimary
The assignments before the primary expression of a sequence expansion expression are the same as the
assignments before the sequence expansion expression.

[4] sequenceExpansionExpressionVariableName
The expansion variable name may not conflict with any name already assigned after the primary
expression.

[5] sequenceExpansionExpressionVariableSourceDerivation

268 Action Language for Foundational UML (ALF) 1.0, Beta 2

The assigned source for the expansion variable of a sequence expansion expression is the expression
itself. The type for the assignment is the type of the primary expression of the sequence expansion
expression and the multiplicity lower and upper bounds are 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
The assignments after a sequence expansion expression are the same as after its primary expression.

13.2.49 SequenceExpressionList
A specification of the elements of a sequence using a list of expressions.

Generalizations
• SequenceElements

Synthesized Properties
• element : Expression [*]

The list of expressions whose values determine the elements of the sequence.

Derived Properties
None

Constraints
[1] sequenceExpressionListLowerDerivation
The multiplicity lower bound of the elements of a sequence expression list is given by the sum of the
lower bounds of each of the expressions in the list.

[2] sequenceExpressionListUpperDerivation
The multiplicity upper bound of the elements of a sequence expression list is given by the sum of the
upper bounds of each of the expressions in the list. If any of the expressions in the list have an
unbounded upper bound, then the sequence expression list also has an unbounded upper bound.

Helper Operations
None

13.2.50 SequenceOperationExpression
An expression used to invoke a behavior as if it was an operation on a target sequence as a whole.

Generalizations
• InvocationExpression

Synthesized Properties
• operation : QualifiedName [0..1]

The qualified name of the behavior being invoked.

Action Language for Foundational UML (ALF) 1.0, Beta 2 269

• primary : ExtentOrExpression
The expression or class name whose value is gives the sequence to be operated on.

Derived Properties
• isBitStringConversion : Boolean

Whether type primary expression requires BitString conversion.

• isCollectionConversion : Boolean
Whether the primary expression requires collection conversion.

• leftHandSide : LeftHandSide [0..1]
The effective left-hand side corresponding to the primary expression, if the sequence operation is
“in place” (that is, has a first parameter with direction inout).

Constraints
[1] sequenceOperationExpressionArgumentCompatibility
The type of an input argument expression of a sequence operation parameter must be assignable to its
corresponding parameter. The type of an output parameter must be assignable to its corresponding
argument expression. (Note that this implies that the type of an argument expression for an inout
parameter must be the same as the type of that parameter.)

[2] sequenceOperationExpressionAssignmentsAfter
A local name that is assigned in the primary expression of a sequence operation expression may not be
assigned in any expression in the tuple of the sequence operation expression.

[3] sequenceOperationExpressionAssignmentsBefore
The assignments before the primary expression of a sequence operation expression are the same as the
assignments before the sequence operation expression.

[4] sequenceOperationExpressionFeatureDerivation
There is no feature for a sequence operation expression.

[5] sequenceOperationExpressionIsBitStringConversionDerivation
BitString conversion is required if type of the first parameter of the referent of a sequence operation
expression is BitString and either the type of its primary expression is Integer or collection conversion is
required and the type of its primary expression is a collection class whose argument type is Integer.

[6] sequenceOperationExpressionIsCollectionConversionDerivation
Collection conversion is required if the type of the primary expression of a sequence operation
expression is a collection class and the multiplicity upper bound of the primary expression is 1.

[7] sequenceOperationExpressionLeftHandSideDerivation
If the operation of a sequence operation expression has a first parameter whose direction is inout, then
the effective left-hand side for the expression is constructed as follows: If the primary is a name

270 Action Language for Foundational UML (ALF) 1.0, Beta 2

expression, then the left-hand side is a name left-hand side with the name from the name expression as
its target. If the primary is a property access expression, then the left-hand side is a feature left hand side
with the feature reference from the property access expression as its feature. If the primary is a sequence
access expression whose primary is a name expression or a property access expression, then the left-
hand side is constructed from the primary of the sequence access expression as given previously and the
index of the sequence access expression becomes the index of the left-hand side.

[8] sequenceOperationExpressionOperationReferent
There must be a single behavior that is a resolution of the operation qualified name of a sequence
operation expression with a least one parameter, whose first parameter has direction in or inout, has
multiplicity [0..*] and to which the target primary expression is assignable.

[9] sequenceOperationExpressionReferentDerivation
The referent for a sequence operation expression is the behavior named by the operation for the
expression.

[10] sequenceOperationExpressionTargetCompatibility
If the first parameter of the referent has direction inout, then the parameter type must have the same type
as the primary expression, the primary expression must have the form of a left-hand side and, if the
equivalent left-hand side is for a local name, that name must already exist.

Helper Operations
[1] parameterElements () : ElementReference [*]
Returns the list of parameter elements from the superclass operation, with the first parameter removed
(since the argument for the first parameter is given by the primary expression of a sequence operation
expression, not in its tuple).

[2] updateAssignments () : AssignedSource [*]
The assignments after a sequence operation expression include those made in the primary expression
and those made in the tuple and, for an "in place" operation (one whose first parameter is inout), that
made by the sequence operation expression itself.

13.2.51 SequenceRange
A specification of the elements of a sequence as a range of integers.

Generalizations
• SequenceElements

Synthesized Properties
• rangeLower : Expression

The expression whose value gives the lower bound for the range.

• rangeUpper : Expression

Action Language for Foundational UML (ALF) 1.0, Beta 2 271

The expression whose value gives the upper bound for the range.

Derived Properties
None

Constraints
[1] sequenceRangeAssignments
A local name may be defined or reassigned in at most one of the expressions of a sequence range.

[2] sequenceRangeExpressionMultiplicity
Both expression in a sequence range must have a multiplicity upper bound of 1.

[3] sequenceRangeLowerDerivation
The multiplicity lower bound of a sequence range is 0.

[4] sequenceRangeUpperDerivation
The multiplicity uper bound of a sequence range is * (since it is not possible, in general, to statically
determine a more constrained upper bound).

Helper Operations
None

13.2.52 SequenceReductionExpression
An expression used to reduce a sequence of values effectively by inserting a binary operation between
the values.

Generalizations
• Expression

Synthesized Properties
• behaviorName : QualifiedName

The name of the behavior to be used as the reducer.

• isOrdered : Boolean = false
Whether this is an ordered reduction or not.

• primary : ExtentOrExpression
The target class name or primary expression for the reduction.

Derived Properties
• referent : ElementReference

A reference to the behavior to be used as the reducer.

Constraints
[1] sequenceReductionExpressionAssignmentsBefore

272 Action Language for Foundational UML (ALF) 1.0, Beta 2

The assignments before the target expression of a sequence reduction expression are the same as the
assignments before the sequence reduction expression.

[2] sequenceReductionExpressionBehavior
The behavior name in a sequence reduction expression must denote a behavior.

[3] sequenceReductionExpressionBehaviorParameters
The referent behavior must have two in parameters, a return parameter and no other parameters. The
parameters must all have the same type as the argument expression and multiplicity [1..1].

[4] sequenceReductionExpressionLowerDerivation
A sequence reduction expression has a multiplicity lower bound of 1.

[5] sequenceReductionExpressionReferentDerivation
The referent for a sequence reduction expression is the behavior denoted by the behavior name of the
expression.

[6] sequenceReductionExpressionTypeDerivation
A sequence reduction expression has the same type as its primary expression.

[7] sequenceReductionExpressionUpperDerivation
A sequence reduction expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]
The assignments after a sequence reduction expression are the same as after its primary expression.

13.2.53 ShiftExpression

Generalizations
• BinaryExpression

Synthesized Properties
None

Derived Properties
• isBitStringConversion : Boolean

Whether the first operand expression requires BitString conversion.

Constraints
[1] shiftExpressionIsBitStringConversionDerivation
BitString conversion is required if the first operand expression of a shift expression has type Integer.

[2] shiftExpressionLowerDerivation

Action Language for Foundational UML (ALF) 1.0, Beta 2 273

A shift expression has a multiplicity lower bound of 0 if the lower bound if either operand expression is
0 and 1 otherwise.

[3] shiftExpressionOperands
The first operand expression of a shift expression must have the type BitString or Integer. The second
operand expression must have the type Integer.

[4] shiftExpressionTypeDerivation
A shift expression has type BitString.

[5] shiftExpressionUpperDerivation
A shift expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.54 StringLiteralExpression
An expression that comprises a String literal.

Generalizations
• LiteralExpression

Synthesized Properties
• image : String

The textual image of the literal token for this expression, with quote characters removed and
escaped sequences resolved to the denoted special character.

Derived Properties
None

Constraints
[1] stringLiteralExpressionTypeDerivation
The type of a string literal expression is String.

Helper Operations
None

13.2.55 SuperInvocationExpression
An invocation expression used to invoke an operation of a superclass.

Generalizations
• InvocationExpression

Synthesized Properties
• target : QualifiedName [0..1]

274 Action Language for Foundational UML (ALF) 1.0, Beta 2

The name of the operation to be invoked, optionally qualified with the name of the appropriate
superclass.

Derived Properties
None

Constraints
[1] superInvocationExpressionConstructorCall
If the referent is the method of a constructor operation, the super invocation expression must occur in an
expression statement at the start of the definition for the method of a constructor operation, such that any
statements preceding it are also super constructor invocations.

[2] superInvocationExpressionDestructorCall
If the referent is the method of a destructor operation, the super invocation expression must occur in an
within the method of a destructor operation.

[3] superInvocationExpressionFeatureDerivation
There is no feature for a super invocation.

[4] superInvocationExpressionImplicitTarget
If the target is empty, the super invocation expression must occur within the method of an operation of a
class with a single superclass and the referent must be the method of a constructor operation of that
superclass.

[5] superInvocationExpressionOperation
It must be possible to identify a single valid operation denoted by the target of a super invocation
expression that satisfies the overloading resolution rules.

[6] superInvocationExpressionQualification
If the target has a qualification, then this must resolve to one of the superclasses of the current context
class.

[7] superInvocationExpressionReferentDerivation
The referent of a super invocation expression is the method behavior of the operation identified using
the overloading resolution rules.

Helper Operations
None

13.2.56 TemplateBinding
A list of type names used to provide arguments for the parameters of a template.

Generalizations
• SyntaxElement

Action Language for Foundational UML (ALF) 1.0, Beta 2 275

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.57 TemplateParameterSubstitution
A specification of the substitution of an argument type name for a template parameter.

Generalizations
• SyntaxElement

Synthesized Properties
• argumentName : QualifiedName

The name of the argument type.

• parameterName : String
The name of the template parameter.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.58 ThisExpression
An expression comprising the keyword “this”.

Generalizations
• Expression

Synthesized Properties
None

Derived Properties
None

276 Action Language for Foundational UML (ALF) 1.0, Beta 2

Constraints
[1] thisExpressionLowerDerivation
The multiplicity lower bound of a this expression is always 1.

[2] thisExpressionTypeDerivation
The static type of a this expression is the statically determined context classifier for the context in which
the this expression occurs.

[3] thisExpressionUpperDerivation
The multiplicity upper bound of a this expression is always 1.

Helper Operations
None

13.2.59 Tuple
A list of expressions used to provide the arguments for an invocation.

Generalizations
• SyntaxElement

Synthesized Properties
• invocation : InvocationExpression

The invocation expression of which this tuple is a part.

Derived Properties
• input : NamedExpression [*]

The argument expressions from this tuple, matched to the input parameters (direction in and
inout) of the invocation. An empty sequence construction expression is included for any input
parameter that is not explicitly matched in the tuple.

• output : OutputNamedExpression [*]
The argument expressions from this tuple, matched to the output parameters (direction inout and
out) of the invocation. An empty sequence construction expression is included for any output
parameter that is not explicitly matched in the tuple.

Constraints
[1] tupleAssignmentsAfter
A name may be assigned in at most one argument expression of a tuple.

[2] tupleAssignmentsBefore
The assignments before each expression in a tuple are the same as the assignments before the tuple,
except in the case of a name expression that defines a new local name, in which case the assigned source
for the new name is included in the assignments before the name expression. (Note that the assigned
source for a new name is included before the name expression so that the nameExpressionResolution
constraint is not violated.) The assignments before the tuple are the same as the assignments after the

Action Language for Foundational UML (ALF) 1.0, Beta 2 277

feature reference of the invocation of the tuple, if the invocation has one, or otherwise the assignments
before the invocation.

[3] tupleInputDerivation
A tuple has the same number of inputs as its invocation has input parameters. For each input parameter,
the tuple has a corresponding input with the same name as the parameter and an expression that is the
matching argument from the tuple, or an empty sequence construction expression if there is no matching
argument.

[4] tupleNullInputs
An input parameter may only have a null argument if it has a multiplicity lower bound of 0.

[5] tupleOutputDerivation
A tuple has the same number of outputs as its invocation has output parameters. For each output
parameter, the tuple has a corresponding output with the same name as the parameter and an expression
that is the matching argument from the tuple, or an empty sequence construction expression if there is no
matching argument.

[6] tupleOutputs
An output parameter may only have a null argument if it is an out parameter.

Helper Operations
None

13.2.60 UnaryExpression
An expression consisting of an operator acting on a single operand expression.

Generalizations
• Expression

Synthesized Properties
• operand : Expression

The expression giving the operand.

• operator : String
The symbol representing the operator.

Derived Properties
None

Constraints
[1] unaryExpressionAssignmentsBefore
The assignments before the operand of a unary expression are the same as those before the unary
expression.

278 Action Language for Foundational UML (ALF) 1.0, Beta 2

Helper Operations
[1] updateAssignments () : AssignedSource [*]
By default, the assignments after a unary expression are the same as those after its operand expression.

13.2.61 UnboundedLiteralExpression
An expression that comprises an unbounded value literal.

Generalizations
• LiteralExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] unboundedLiteralExpressionTypeDerivation
The type of an unbounded literal expression is UnlimitedNatural.

Helper Operations
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 279

14 Statements Abstract Syntax
14.1 Overview
The Alf::Syntax::Statement package contains the abstract syntax model for statements. The syntax
and semantics of statements are discussed in Clause 9. Their mapping to UML is given in Clause 18.

Figure 14-94 Statements and Blocks

280 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 14-95 Simple Statements

Action Language for Foundational UML (ALF) 1.0, Beta 2 281

Figure 14-96 Conditional Statements

282 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 14-97 Loop Statements

Action Language for Foundational UML (ALF) 1.0, Beta 2 283

Figure 14-98 accept and classify Statements

14.2 Class Descriptions

14.2.1 AcceptBlock
A block of an accept statement that accepts one or more signals.

Generalizations
• SyntaxElement

Synthesized Properties
• block : Block [0..1]

The body of the accept block, executed if one of the named signals is received.

• name : String [0..1]
The local name to which an accepted signal instance will be assigned.

• signalNames : QualifiedNameList
A list of names of the signals accepted by this accept block.

Derived Properties
• signal : ElementReference [1..*]

284 Action Language for Foundational UML (ALF) 1.0, Beta 2

The signals denoted by the signal names of the accept block.

Constraints
[1] acceptBlockSignalDerivation
The signals of an accept block are the referents of the signal names of the accept block.

[2] acceptBlockSignalNames
All signal names in an accept block must resolve to signals.

Helper Operations
None

14.2.2 AcceptStatement
A statement used to accept the receipt of instances of one or more signals.

Generalizations
• Statement

Synthesized Properties
• acceptBlock : AcceptBlock [1..*]

One or more blocks for accepting alternate groups of signals.

Derived Properties
• behavior : ElementReference

The behavior containing the accept statement.

• isSimple : Boolean
Whether the accept statement is simple or not.

Constraints
[1] acceptStatementAssignmentsAfter
If a name is assigned in any block of an accept statement, then the assigned source of the name after the
accept statement is the accept statement itself.

[2] acceptStatementAssignmentsBefore
The assignments before any block of an accept statement are the assignments before the accept
statement.

[3] acceptStatementCompoundAcceptLocalName
For a compound accept statement, a local name defined in an accept block has the accept block as its
assigned source before the block associated with the accept block. The type of the local name is the
effective common ancestor of the specified signals for that accept clause, if one exists, and it is untyped
otherwise. However, the local name is considered unassigned after the accept statement.

[4] acceptStatementContext

Action Language for Foundational UML (ALF) 1.0, Beta 2 285

An accept statement can only be used within the definition of an active behavior or the classifier
behavior of an active class.

[5] acceptStatementEnclosedStatements
The enclosing statement for all statements in the blocks of all accept blocks of an accept statement is the
accept statement.

[6] acceptStatementIsSimpleDerivation
An accept statement is simple if it has exactly one accept block and that accept block does not have a
block.

[7] acceptStatementNames
Any name defined in an accept block of an accept statement must be unassigned before the accept
statement.

[8] acceptStatementNewAssignments
If a name is unassigned before an accept statement and assigned in any block of an accept statement,
then it must be assigned in every block.

[9] acceptStatementSignals
The containing behavior of an accept statement must have receptions for all signals from all accept
blocks of the accept statement. No signal may be referenced in more than one accept block of an accept
statement.

[10] acceptStatementSimpleAcceptLocalName
A local name specified in the accept block of a simple accept statement has the accept statement as its
assigned source after the accept statement. The type of the local name is the effective common ancestor
of the specified signals, if one exists, and it is untyped otherwise.

Helper Operations
None

14.2.3 Annotation
An identified modification to the behavior of an annotated statement.

Generalizations
• SyntaxElement

Synthesized Properties
• argument : String [*]

If permitted by the annotation, an optional list of local names relevant to the annotation.

• identifier : String
The name of the annotation.

286 Action Language for Foundational UML (ALF) 1.0, Beta 2

Derived Properties
None

Constraints
None

Helper Operations
None

14.2.4 Block
A grouped sequence of statements.

Generalizations
• SyntaxElement

Synthesized Properties
• statement : Statement [*]

The ordered sequence of statements in the block.

Derived Properties
• assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this block. This includes not only
any assignments made within the block, but also any assignments that are unchanged from before
the block.

• assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this block.

Constraints
[1] blockAssignmentAfterDerivation
If a block is not empty, then the assignments after the block are the same as the assignments after the
last statement of the block. Otherwise they are the same as the assignments before the block.

[2] blockAssignmentsBefore
The assignments before the first statement of a block are the same as the assignments before the block.

[3] blockAssignmentsBeforeStatements
The assignments before each statement in a block other than the first are the same as the assignments
after the previous statement.

Helper Operations
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 287

14.2.5 BlockStatement
A statement that executes a block.

Generalizations
• Statement

Synthesized Properties
• block : Block

The block to be executed.

Derived Properties
• isParallel : Boolean

Whether the statements in the block of this block statement should be executed concurrently.

Constraints
[1] blockStatementAssignmentsAfter
The assignments after a block statement are the same as the assignments after the block of the block
statement.

[2] blockStatementAssignmentsBefore
The assignments before the block of a block statement are the same as the assignments before the block
statement.

[3] blockStatementEnclosedStatements
The enclosing statement for all the statements in the block of a block statement is the block statement.

[4] blockStatementIsParallelDerivation
A block statement is parallel if it has a @parallel annotation.

[5] blockStatementParallelAssignments
In a parallel block statement, any name assigned in one statement of the block may not be further
assigned in any subsequent statement in the same block.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
In addition to an @isolated annotation, a block statement may have a @parallel annotation. It may not
have any arguments.

14.2.6 BreakStatement
A statement that causes the termination of execution of an immediately enclosing block.

Generalizations
• Statement

288 Action Language for Foundational UML (ALF) 1.0, Beta 2

Synthesized Properties
None

Derived Properties
• target : Statement

The enclosing statement that is terminated by this break statement.

Constraints
[1] breakStatementNonparallelTarget
The target of a break statement may not have a @parallel annotation.

[2] breakStatementTargetDerivation
The target of a break statement is the innermost switch, while, do or for statement enclosing the break
statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
A break statement may not have any annotations.

14.2.7 ClassifyStatement
A statement that changes the classification of an object.

Generalizations
• Statement

Synthesized Properties
• expression : Expression

The expression to be evaluated to obtain the object to be reclassified.

• fromList : QualifiedNameList [0..1]
A list of names of classes to be removed as types of the object.

• isReclassifyAll : Boolean = false
Whether this classify statement reclassifies all types of the target object.

• toList : QualifiedNameList [0..1]
A list of names of classes to be added as types of the object.

Derived Properties
• fromClass : ElementReference [*]

The classes denoted by the names in the from list.

• toClass : ElementReference [*]

Action Language for Foundational UML (ALF) 1.0, Beta 2 289

The classes denoted by the names in the to list.

Constraints
[1] classifyStatementAssignmentsAfter
The assignments after a classify statement are the same as the assignments after its expression.

[2] classifyStatementAssignmentsBefore
The assignments before the expression of a classify statement are the same as the assignments before the
statement.

[3] classifyStatementClasses
All the from and to classes of a classify statement must be subclasses of the type of the target expression
and none of them may have a common superclass that is a subclass of the type of the target expression
(that is, they must be disjoint subclasses).

[4] classifyStatementClassNames
All qualified names listed in the from or to lists of a classify statement must resolve to classes.

[5] classifyStatementExpression
The expression in a classify statement must have a class as its type and multiplicity upper bound of 1.

[6] classifyStatementFromClassDerivation
The from classes of a classify statement are the class referents of the qualified names in the from list for
the statement.

[7] classifyStatementToClassDerivation
The to classes of a classify statement are the class referents of the qualified names in the to list for the
statement.

Helper Operations
None

14.2.8 ConcurrentClauses
A grouping of non-final conditional clauses to be tested concurrently.

Generalizations
• SyntaxElement

Synthesized Properties
• clause : NonFinalClause [1..*]

The conditional clauses in the group.

Derived Properties
None

290 Action Language for Foundational UML (ALF) 1.0, Beta 2

Constraints
[1] concurrentClausesAssignmentsBefore
The assignments before each of the clauses in a set of concurrent clauses are the same as the
assignments before the concurrent clauses.

[2] concurrentClausesConditionAssignments
The same name may not be assigned in more than one conditional expression within the same
concurrent set of clauses.

Helper Operations
None

14.2.9 DoStatement
A looping statement for which the continuation condition is first tested after the first iteration.

Generalizations
• Statement

Synthesized Properties
• body : Block

The sequence of statements to be iteratively executed.

• condition : Expression
The expression to be evaluated to determine whether to continue looping.

Derived Properties
None

Constraints
[1] doStatementAssignmentsAfter
If the assigned source for a name after the condition expression is different than before the do statement,
then the assigned source of the name after the do statement is the do statement. Otherwise it is the same
as before the do statement.

[2] doStatementAssignmentsBefore
The assignments before the block of a do statement are the same as the assignments before the do
statement. The assignments before the condition expression of a do statement are the same assignments
after the block.

[3] doStatementCondition
The condition expression of a do statement must have type Boolean and a multiplicity upper bound of 1.

[4] doStatementEnclosedStatements
The enclosing statement for all statements in the body of a do statement are the do statement.

Action Language for Foundational UML (ALF) 1.0, Beta 2 291

Helper Operations
None

14.2.10 EmptyStatement
A statement that has no affect when executed.

Generalizations
• Statement

Synthesized Properties
None

Derived Properties
None

Constraints
[1] emptyStatementAssignmentsAfter
The assignments after and empty statement are the same as the assignments before the statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
An empty statement may not have any annotations.

14.2.11 ExpressionStatement
A statement that evaluates an expression when executed.

Generalizations
• Statement

Synthesized Properties
• expression : Expression

The expression to be evaluated.

Derived Properties
None

Constraints
[1] expressionStatementAssignmentsAfter
The assignments after an expression statement are the same as the assignments after its expression.

[2] expressionStatementAssignmentsBefore
The assignments before the expression of an expression statement are the same as the assignments
before the statement.

Helper Operations

292 Action Language for Foundational UML (ALF) 1.0, Beta 2

None

14.2.12 ForStatement
A looping statement that gives successive values to one or more loop variables on each iteration.

Generalizations
• Statement

Synthesized Properties
• body : Block

The sequence of statements to be iteratively executed.

• variableDefinition : LoopVariableDefinition [1..*]
A list of definitions of one or more loop variables.

Derived Properties
• isParallel : Boolean

Whether the for statement is parallel.

Constraints
[1] forStatementAssignmentsAfter
The loop variables are unassigned after a for statement. Other than the loop variables, if the assigned
source for a name after the body of a for statement is the same as after the for variable definitions, then
the assigned source for the name after the for statement is the same as after the for variable definitions.
If a name is unassigned after the for variable definitions, then it is unassigned after the for statement
(even if it is assigned in the body of the for statement). If, after the loop variable definitions, a name has
an assigned source, and it has a different assigned source after the body of the for statement, then the
assigned source after the for statement is the for statement itself.

[2] forStatementAssignmentsBefore
The assignments before a loop variable definition in a for statement are the same as before the for
statement. The assignments before the body of the statement include all the assignments before the
statement plus any new assignments from the loop variable definitions, except that, if the statement is
parallel, the assigned sources of any names given in @parallel annotations are changed to be the for
statement itself.

[3] forStatementEnclosedStatements
The enclosing statement for all statements in the body of a for statement are the for statement.

[4] forStatementIsParallelDerivation
A for statement is parallel if it has a @parallel annotation.

[5] forStatementLoopVariables

Action Language for Foundational UML (ALF) 1.0, Beta 2 293

The assigned sources for loop variables after the body of a for statement must be the for statement (the
same as before the body).

[6] forStatementParallelAnnotationNames
A @parallel annotation of a for statement may include a list of names. Each such name must be already
assigned after the loop variable definitions of the for statement, with a multiplicity of [0..*]. These
names may only be used within the body of the for statement as the first argument to for the
CollectionFunctions::add behavior.

[7] forStatementParallelAssignmentsAfter
If, after the loop variable definitions of a parallel for statement, a name has an assigned source, then it
must have the same assigned source after the block of the for statement. Other than for names defined in
the @parallel annotation of the for statement, the assigned source for such names is the same after the
for statement as before it. Any names defined in the @parallel annotation have the for statement itself as
their assigned source after the for statement. Other than names given in the @parallel annotation, if a
name is unassigned after the loop variable definitions, then it is considered unassigned after the for
statement, even if it is assigned in the block of the for statement.

[8] forStatementVariableDefinitions
The isFirst attribute of the first loop variable definition for a for statement is true while the isFirst
attribute if false for any other definitions.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
In addition to an @isolated annotation, a for statement may have a @parallel annotation.

14.2.13 IfStatement
A conditional statement that executes (at most) one of a set of clauses based on boolean conditions.

Generalizations
• Statement

Synthesized Properties
• finalClause : Block [0..1]

A sequence of statements to be executed if no other clause has a successful condition.

• nonFinalClauses : ConcurrentClauses [1..*]
A list of groupings of concurrent clauses that are to be checked sequentially for a successful
condition.

Derived Properties
• isAssured : Boolean

Whether at least one condition in the if statement is assured to evaluate to true.

294 Action Language for Foundational UML (ALF) 1.0, Beta 2

• isDeterminate : Boolean
Whether at most one condition in the if statement will ever to evaluate to true.

Constraints
[1] ifStatementAssignmentsAfter
If an if statement does not have a final else clause, then any name that is not an out parameter and is
unassigned before the if statement is unassigned after the if statement. If an if statement does have a
final else clause, then any name that is unassigned before the if statement and is assigned after any one
clause of the if statement must also be assigned after every other clause. The type of such names after
the if statement is the effective common ancestor of the types of the name in each clause with a
multiplicity lower bound that is the minimum of the lower bound for the name in each clause and a
multiplicity upper bound that is the maximum for the name in each clause. For a name that has an
assigned source after any clause of an if statement that is different than before that clause, then the
assigned source after the if statement is the if statement. Otherwise, the assigned source of a name after
the if statement is the same as before the if statement.

[2] ifStatementAssignmentsBefore
The assignments before all the non-final clauses of an if statement are the same as the assignments
before the if statement. If the statement has a final clause, then the assignments before that clause are
also the same as the assignments before the if statement.

[3] ifStatementEnclosedStatements
The enclosing statement of all the statements in the bodies of all non-final clauses and in the final clause
(if any) of an if statement is the if statement.

[4] ifStatementIsAssuredDerivation
An if statement is assured if it has an @assured annotation.

[5] ifStatementIsDeterminateDerivation
An if statement is determinate if it has an @determinate annotation.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
In addition to an @isolated annotation, an if statement may have @assured and @determinate
annotations. They may not have arguments.

14.2.14 InLineStatement
A statement that executes code in a language other than Alf.

Generalizations
• Statement

Synthesized Properties
• code : String

Action Language for Foundational UML (ALF) 1.0, Beta 2 295

The in-line code to be executed.

• language : String
The name of the language in which the code is written.

Derived Properties
None

Constraints
[1] inLineStatementAssignmentsAfter
The assignments after an in-line statement are the same as the assignments before the statement.

Helper Operations
None

14.2.15 LocalNameDeclarationStatement
A statement that declares the type of a local name and assigns it an initial value.

Generalizations
• Statement

Synthesized Properties
• expression : Expression

The expression to be evaluated to provide the initial value to be assigned to the local name.

• hasMultiplicity : Boolean = false
Whether the local name is to have a multiplicity upper bound of * rather than 1.

• name : String
The local name being declared.

• typeName : QualifiedName [0..1]
The declared type of the local name.

Derived Properties
• type : ElementReference [0..1]

The type declared for the given local name.

Constraints
[1] localNameDeclarationStatementAssignmentsAfter
The assignments after a local name declaration statement are the assignments after the expression of the
statement plus a new assignment for the local name defined by the statement. The assigned source for
the local name is the local name declaration statement. The local name has the type denoted by the type
name if this is not empty and is untyped otherwise. If the statement has multiplicity, then the

296 Action Language for Foundational UML (ALF) 1.0, Beta 2

multiplicity of the local name is [0..*], otherwise it is [0..1].

[2] localNameDeclarationStatementAssignmentsBefore
The assignments before the expression of a local name declaration statement are the same as the
assignments before the statement.

[3] localNameDeclarationStatementExpressionMultiplicity
If a local name declaration statement does not have multiplicity, then the multiplicity of upper bound of
the assigned expression must not be greater than 1.

[4] localNameDeclarationStatementLocalName
The local name in a local name declaration statement must be unassigned before the statement and
before the expression in the statement. It must remain unassigned after the expression.

[5] localNameDeclarationStatementType
If the type name in a local name declaration statement is not empty, then it must resolve to a non-
template classifier and the expression must be assignable to that classifier.

[6] localNameDeclarationStatementTypeDerivation
The type of a local name declaration statement with a type name is the single classifier referent of the
type name. Otherwise the type is empty.

Helper Operations
None

14.2.16 LoopVariableDefinition
The definition of a loop variable in a for statement.

Generalizations
• SyntaxElement

Synthesized Properties
• expression1 : Expression

If there is only one expression, then this expression is evaluated to produce a sequence of values
to be assigned to the loop variable on successive iterations. Otherwise it is evaluated to provide
the first value of a range of values to be assigned to the loop variable.

• expression2 : Expression [0..1]
The expression to be evaluated to give the second value in a range of values to be assigned to the
loop variable.

• typeIsInferred : Boolean = true
Whether the type of the variable is inferred or declared explicitly.

NOTE: This flag is necessary to because a variable that is explicitly declared to have type "any"

Action Language for Foundational UML (ALF) 1.0, Beta 2 297

will have an empty typeName, just like a variable whose type is to be inferred, but, in the former
case, the type is actually intended to be empty, not inferred.

• typeName : QualifiedName [0..1]
The declared type of the loop variable.

• variable : String
The name of the loop variable.

Derived Properties
• assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this loop variable definition. This
includes not only any assignments made within the statement, but also any assignments that are
unchanged from before the statement.

• assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this loop variable definition.

• isCollectionConversion : Boolean
Whether collection conversion is required.

• isFirst : Boolean
Whether this definition is the first in the list of definitions in the enclosing for statement.

• type : ElementReference [0..1]
The declared or inferred type of the loop variable.

Constraints
[1] loopVariableDefinitionAssignmentAfterDerivation
The assignments after a loop variable definition include the assignments after the expression (or
expressions) of the definition plus a new assigned source for the loop variable itself. The assigned
source for the loop variable is the loop variable definition. The multiplicity upper bound for the variable
is 1. The multiplicity lower bound is 1 if the loop variable definition is the first in a for statement and 0
otherwise. If collection conversion is not required, then the variable has the inferred or declared type
from the definition. If collection conversion is required, then the variable has the argument type of the
collection class.

[2] loopVariableDefinitionAssignmentsBefore
The assignments before the expressions of a loop variable definition are the assignments before the loop
variable definition.

[3] loopVariableDefinitionDeclaredType

298 Action Language for Foundational UML (ALF) 1.0, Beta 2

If the type of a loop variable definition is not inferred, then the first expression of the definition must
have a type that conforms to the declared type.

[4] loopVariableDefinitionIsCollectionConversionDerivation
Collection conversion is required for a loop variable definition if the type for the definition is the
instantiation of a collection class and the multiplicity upper bound of the first expression is no greater
than 1.

[5] loopVariableDefinitionRangeExpressions
If a loop variable definition has two expressions, then both expressions must have type Integer and a
multiplicity upper bound of 1, and no name may be newly assigned or reassigned in more than one of
the expressions.

[6] loopVariableDefinitionTypeDerivation
If the type of a loop variable is not inferred, then the variable has the type denoted by the type name, if it
is not empty, and is untyped otherwise. If the type is inferred, them the variable has the same as the type
of the expression in its definition.

[7] loopVariableDefinitionTypeName
If a loop variable definition has a type name, then this name must resolve to a non-template classifier.

[8] loopVariableDefinitionVariable
The variable name given in a loop variable definition must be unassigned after the expression or
expressions in the definition.

Helper Operations
None

14.2.17 NonFinalClause
A clause of an if statement with a conditional expression and a sequence of statements that may be
executed if the condition is true.

Generalizations
• SyntaxElement

Synthesized Properties
• body : Block

The sequence of statements that may be executed if the condition evaluates to true.

• condition : Expression
The expression that is evaluated to determine whether the clause body may be executed.

Derived Properties
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 299

Constraints
[1] nonFinalClauseAssignmentsBeforeBody
The assignments before the body of a non-final clause are the assignments after the condition.

[2] nonFinalClauseConditionLocalNames
If a name is unassigned before the condition expression of a non-final clause, then it must be unassigned
after that expression (i.e., new local names may not be defined in the condition).

[3] nonFinalClauseConditionType
The condition of a non-final clause must have type Boolean and a multiplicity upper bound no greater
than 1.

Helper Operations
[1] assignmentsAfter () : AssignedSource [*]
The assignments after a non-final clause are the assignments after the block of the clause.

[2] assignmentsBefore () : AssignedSource [*]
The assignments before a non-final clause are the assignments before the condition of the clause.

14.2.18 QualifiedNameList
A group of qualified names.

Generalizations
• SyntaxElement

Synthesized Properties
• name : QualifiedName [1..*]

The names in the group.

Derived Properties
None

Constraints
None

Helper Operations
None

14.2.19 ReturnStatement
A statement that provides a value for the return parameter of an activity.

Generalizations
• Statement

300 Action Language for Foundational UML (ALF) 1.0, Beta 2

Synthesized Properties
• expression : Expression [0..1]

The expression to be evaluated to provide the returned value.

Derived Properties
• behavior : ElementReference

A reference to the enclosing behavior for this return statement.

Constraints
[1] returnStatementAssignmentsAfter
The assignments after a return statement are the same as the assignments after the expression of the
return statement.

[2] returnStatementAssignmentsBefore
The assignments before the expression of a return statement are the same as the assignments before the
statement.

[3] returnStatementContext
If the behavior containing the return statement has a return parameter, then the return statement must
have an expression, and the expression must be assignable to that return parameter.

Helper Operations
None

14.2.20 Statement
A model of an Alf statement.

Generalizations
• DocumentedElement

Synthesized Properties
• annotation : Annotation [*]

The annotations applied to this statement.

Derived Properties
• assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this statement. This includes not
only any assignments made within the statement, but also any assignments that are unchanged
from before the statement.

• assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this statement.

• enclosingStatement : Statement [0..1]

Action Language for Foundational UML (ALF) 1.0, Beta 2 301

The statement immediately enclosing this statement, if any.

• isIsolated : Boolean
Whether this statement should be executed in isolation.

Constraints
[1] statementAnnotationsAllowed
All the annotations of a statement must be allowed, as given by the annotationAllowed operation for the
statement.

[2] statementIsIsolatedDerivation
A statement is isolated if it has an @isolated annotation.

[3] statementUniqueAssignments
No name may be assigned more than once before or after a statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
Returns true if the given annotation is allowed for this kind of statement. By default, only an @isolated
annotation is allowed, with no arguments. This operation is redefined only in subclasses of Statement for
kinds of statements that allow different annotations than this default.

14.2.21 SwitchClause
A clause in a switch statement with a set of cases and a sequence of statements that may be executed if
one of the cases matches the switch value.

Generalizations
• SyntaxElement

Synthesized Properties
• block : Block

The sequence of statements that may be executed if one of the cases matches the switch value.

• case : Expression [1..*]
The expressions to be evaluated to provide values to test against the switch value.

Derived Properties
None

Constraints
[1] switchClauseAssignmentsBefore
The assignments before any case expression of a switch clause are the same as the assignments before
the clause. The assignments before the block of a switch clause are the assignments after all case

302 Action Language for Foundational UML (ALF) 1.0, Beta 2

expressions.

[2] switchClauseCaseLocalNames
If a name is unassigned before a switch clause, then it must be unassigned after all case expressions of
the clause (i.e., new local names may not be defined in case expressions).

[3] switchClauseCases
All the case expressions of a switch clause must have a multiplicity no greater than 1.

Helper Operations
[1] assignmentsAfter () : AssignedSource [*]
The assignments after a switch clause are the assignments after the block of the switch clause.

[2] assignmentsBefore () : AssignedSource [*]
The assignments before a switch clause are the assignments before any case expression of the clause.

14.2.22 SwitchStatement
A statement that executes (at most) one of a set of statement sequences based on matching a switch
value to a set of test cases.

Generalizations
• Statement

Synthesized Properties
• defaultClause : Block [0..1]

A sequence of statements to be executed if no switch clause case matches the switch value.

• expression : Expression
The expression to be evaluated to provide the switch value.

• nonDefaultClause : SwitchClause [*]
The set of switch clauses whose cases are to be tested against the switch value.

Derived Properties
• isAssured : Boolean

Whether at least one case in the switch statement is assured to match.

• isDeterminate : Boolean
Whether at most one case in the if statement will ever to match.

Constraints
[1] switchStatementAssignments

Action Language for Foundational UML (ALF) 1.0, Beta 2 303

If a switch statement does not have a final default clause, then any name that is not an out parameter and
is unassigned before the switch statement is unassigned after the switch statement. If a switch statement
does have a final default clause, then any name that is unassigned before the switch statement and is
assigned after any one clause of the switch statement must also be assigned after every other clause. The
type of such names after the switch statement is the effective common ancestor of the types of the name
in each clause with a multiplicity lower bound that is the minimum of the lower bound for the name in
each clause and a multiplicity upper bound that is the maximum for the name in each clause.

[2] switchStatementAssignmentsAfter
If a name has an assigned source after any clause of a switch statement that is different than before that
clause (including newly defined names), the assigned source after the switch statement is the switch
statement. Otherwise, the assigned source of a name after the switch statement is the same as before the
switch statement.

[3] switchStatementAssignmentsBefore
The assignments before all clauses of a switch statement are the same as the assignments after the
expression of the switch statement.

[4] switchStatementCaseAssignments
The same local name may not be assigned in more than one case expression in a switch statement.

[5] switchStatementEnclosedStatements
A switch statement is the enclosing statement for the statements in all of its switch clauses.

[6] switchStatementExpression
A switch statement expression must have a multiplicity no greater than 1.

[7] switchStatementIsAssuredDerivation
A switch statement is assured if it has an @assured annotation.

[8] switchStatementIsDeterminateDerivation
A switch statement is determinate if it has a @determinate annotation.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean
In addition to an @isolated annotation, a switch statement may have @assured and @determinate
annotations. They may not have arguments.

14.2.23 WhileStatement
A looping statement for which the continuation condition is first tested before the first iteration.

Generalizations
• Statement

304 Action Language for Foundational UML (ALF) 1.0, Beta 2

Synthesized Properties
• body : Block

The sequence of statements to be iteratively executed.

• condition : Expression
The expression to be evaluated to determine whether to continue looping.

Derived Properties
None

Constraints
[1] whileStatementAssignmentsAfter
If a name is assigned before the block, but the assigned source for the name after the block is different
than before the block, then the assigned source of the name after the while statement is the while
statement. Otherwise it is the same as before the block. If a name is unassigned before the block of a
while statement, then it is unassigned after the while statement, even if it is assigned after the block.

[2] whileStatementAssignmentsBefore
The assignments before the condition expression of a while statement are the same as the assignments
before the while statement. The assignments before the block of the while statement are the same as the
assignments after the condition expression.

[3] whileStatementCondition
The condition expression of a while statement must have type Boolean and a multiplicity upper bound of
1.

[4] whileStatementEnclosedStatements
The enclosing statement for all statements in the body of a while statement are the while statement.

Helper Operations
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 305

15 Units Abstract Syntax
15.1 Overview
The Alf::Syntax::Units package contains the abstract syntax model for units. The syntax and
semantics of statements are discussed in Clause 10. Their mapping to UML is given in Subclause 19.

Figure 15-99 Unit and Namespace Definitions

306 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure 15-100 Package and Classifier Definitions

Action Language for Foundational UML (ALF) 1.0, Beta 2 307

Figure 15-101 Parameter, Feature and Enumeration Literal Definitions

15.2 Class Descriptions

15.2.1 ActiveClassDefinition
The definition of an active class.

Generalizations
• ClassDefinition

Synthesized Properties
• classifierBehavior : ActivityDefinition [0..1]

The definition of an activity (which may be a stub) to act as the classifier behavior of the active
class.

Derived Properties
None

Constraints
[1] activeClassDefinitionClassifierBehavior

308 Action Language for Foundational UML (ALF) 1.0, Beta 2

If an active class definition is not abstract, then it must have a classifier behavior.

Helper Operations
[1] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this active class definition considered as a class
definition and the subunit is for an active class definition.

15.2.2 ActivityDefinition
The definition of an activity, with any formal parameters defined as owned members.

Generalizations
• ClassifierDefinition

Synthesized Properties
• body : Block [0..1]

The sequence of statements that defines the behavior of the activity (empty for a stub).

Derived Properties
None

Constraints
[1] activityDefinitionPrimitive
If an activity definition is primitive, then it must have a body that is empty.

[2] activityDefinitionSpecialization
An activity definition may not have a specialization list.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed for classifiers in general, an activity definition allows @primitive
annotations and any stereotype whose metaclass is consistent with Activity.

[2] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this activity definition considered as a classifier
definition and the subunit is for an activity definition. In addition, the subunit definition must have
formal parameters that match each of the formal parameters of the stub definition, in order. Two formal
parameters match if they have the same direction, name, multiplicity bounds, ordering, uniqueness and
type reference.

15.2.3 AssociationDefinition
The definition of an association, whose members must all be properties.

Generalizations

Action Language for Foundational UML (ALF) 1.0, Beta 2 309

• ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] associationDefinitionSpecializationReferent
The specialization referents of an association definition must all be associations.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed for classifiers in general, an association definition allows an
annotation for any stereotype whose metaclass is consistent with Association.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either an AssociationDefinition or an imported member whose
referent is an AssociationDefinition or an Association.

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this association definition considered as a classifier
definition and the subunit is for an association definition.

15.2.4 ClassDefinition
The definition of a class, whose members may be properties, operations, signals or signal receptions.

Generalizations
• ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] classDefinitionAbstractMember
If a class definition is not abstract, then no member operations (owned or inherited) of the class
definition may be abstract.

[2] classDefinitionSpecializationReferent

310 Action Language for Foundational UML (ALF) 1.0, Beta 2

The specialization referents of a class definition must all be classes. A class definition may not have any
referents that are active classes unless this is an active class definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed for classifiers in general, a class definition allows an annotation
for any stereotype whose metaclass is consistent with Class.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either a ClassDefinition or an imported member whose referent is a
ClassDefinition or a Class.

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this class definition considered as a classifier definition
and the subunit is for a class definition.

15.2.5 ClassifierDefinition
The definition of a classifier.

Generalizations
• NamespaceDefinition

Synthesized Properties
• isAbstract : Boolean = false

Whether the classifier is abstract or not.

• specialization : QualifiedNameList [0..1]
The names of classifiers specialized by the classifier being defined.

Derived Properties
• specializationReferent : ElementReference [*]

References to the classifiers to which the names in the specialization list resolve.

Constraints
[1] classifierDefinitionInheritedMembers
The members of a classifier definition include non-private members inherited from the classifiers it
specializes. The visibility of inherited members is as specified in the UML Superstructure, Subclause
7.3.8.

[2] classifierDefinitionSpecialization
Each name listed in the specialization list for a classifier definition must have a single classifier referent.
None of these referents may be templates.

[3] classifierDefinitionSpecializationReferentDerivation

Action Language for Foundational UML (ALF) 1.0, Beta 2 311

The specialization referents of a classifier definition are the classifiers denoted by the names in the
specialization list for the classifier definition.

Helper Operations
[1] matchForStub (in unit : UnitDefinition) : Boolean
The namespace definition associated with the given unit definition must be a classifier definition. The
subunit classifier definition may be abstract if and only if the subunit classifier definition is abstract. The
subunit classifier definition must have the same specialization referents as the stub classifier definition.
(Note that it is the referents that must match, not the exact names or the ordering of those names in the
specialization list.) The subunit classifier definition must also have a matching classifier template
parameter for each classifier template parameter of the stub classifier definition. Two template
parameters match if they have same names and the same specialization referents.

15.2.6 ClassifierTemplateParameter
The definition of a classifier template parameter, which acts as a classifier within the definition of the
template.

Generalizations
• ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Annotations are not allowed on classifier template parameters.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is a classifier template parameter.

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns false. (Classifier template parameters cannot be stubs.)

15.2.7 DataTypeDefinition
The definition of a data type, whose members must all be properties.

Generalizations
• ClassifierDefinition

312 Action Language for Foundational UML (ALF) 1.0, Beta 2

Synthesized Properties
None

Derived Properties
None

Constraints
[1] dataTypeDefinitionPrimitive
If a data type is primitive, then it may not have any owned members.

[2] dataTypeDefinitionSpecializationReferent
The specialization referents of a data type definition must all be data types.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed for classifiers in general, a data type definition allows @primitive
annotations plus any stereotype whose metaclass is consistent with DataType.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either a DataTypeDefinition or an imported member whose referent
is a DataTypeDefinition or a DataType.

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this data type definition considered as a classifier
definition and the subunit is for a data type definition.

15.2.8 ElementImportReference
An import reference to a single element to be imported into a unit.

Generalizations
• ImportReference

Synthesized Properties
• alias : String [0..1]

The alias to be used as the name for the imported element in the importing unit’s namespace.

Derived Properties
None

Constraints
[1] elementImportReferenceReferent
The referent of an element import reference must be a packageable element.

Action Language for Foundational UML (ALF) 1.0, Beta 2 313

Helper Operations
None

15.2.9 EnumerationDefinition
The definition of an enumeration, whose members must all be enumeration literal names.

Generalizations
• ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] enumerationDefinitionSpecializationReferent
The specialization referents of a class definition must all be classes. A class definition may not have any
referents that are active classes unless this is an active class definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed for classifiers in general, an enumeration definition allows an
annotation for any stereotype whose metaclass is consistent with Enumeration.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either an EnumerationDefinition or an imported member whose
referent is an EnumerationDefinition or an Enumeration.

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this enumeration definition considered as a classifier
definition and the subunit is for an enumeration definition.

15.2.10 EnumerationLiteralName
The definition of an enumeration literal, as a member of an enumeration definition.

Generalizations
• Member

Synthesized Properties
None

Derived Properties
None

314 Action Language for Foundational UML (ALF) 1.0, Beta 2

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns false. (Enumeration literal name cannot have annotations.)

15.2.11 FormalParameter
A typed element definition for the formal parameter of an activity or operation.

Generalizations
• TypedElementDefinition

Synthesized Properties
• direction : String

An indication of the direction of the parameter being defined.

Derived Properties
None

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns true if the annotation is for a stereotype that has a metaclass consistent with Parameter.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is a FormalParameter.

15.2.12 ImportedMember

Generalizations
• Member

Synthesized Properties
• referent : ElementReference

Derived Properties
None

Constraints

Action Language for Foundational UML (ALF) 1.0, Beta 2 315

[1] importedMemberIsFeatureDerivation
An imported element is a feature if its referent is a feature.

[2] importedMemberNotStub
An imported element is not a stub.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns false. (Imported members do not have annotations.)

[2] isSameKindAs (in member : Member) : Boolean
If the given member is not an imported member, then return the result of checking whether the given
member is the same kind as this member. Else, if the element of the referent for this member is an Alf
member, then return the result of checking whether that element is the same kind as the given member.
Else, if the element of the referent for the given member is an Alf member, then return the result of
checking whether that element is the same kind as this member. Else, the referents for both this and the
given member are UML elements, so return the result of checking their distinguishability according to
the rules of the UML superstructure.

15.2.13 ImportReference
A reference to an element or package to be imported into a unit.

Generalizations
• SyntaxElement

Synthesized Properties
• referentName : QualifiedName

The name of the element or package to be imported.

• unit : UnitDefinition
The unit that is making this import reference.

• visibility : String
An indication of the visibility of the import.

Derived Properties
• referent : ElementReference [0..1]

A reference to the imported element denoted by the given qualified name.

Constraints
[1] importReferenceReferent
The referent name of an import reference must resolve to a single element with public or empty
visibility.

316 Action Language for Foundational UML (ALF) 1.0, Beta 2

[2] importReferenceReferentDerivation
The referent of an import reference is the element denoted by the referent name.

Helper Operations
None

15.2.14 Member
A model of the common properties of the definition of a member of a namespace in Alf.

Generalizations
• DocumentedElement

Synthesized Properties
• annotation : StereotypeAnnotation [*]

The stereotype annotations on this member definition.

• isStub : Boolean = false
Whether this member definition is a stub for a subunit.

• name : String
The name of the member.

• namespace : NamespaceDefinition [0..1]
The namespace definition within which this member definition is nested, if any. (The namespace
definitions for units are not physically nested within another Alf namespace definition.)

• visibility : String [0..1]
An indication of the visibility of the member outside of its namespace.

Derived Properties
• isExternal : Boolean

Whether this member is external or not.

• isFeature : Boolean = false
Whether this member is a feature of a classifier.

• isPrimitive : Boolean
Whether this member is a primitive or not.

• subunit : UnitDefinition [0..1]
The subunit corresponding to the member, if the member is a stub.

Constraints
[1] memberAnnotations

Action Language for Foundational UML (ALF) 1.0, Beta 2 317

All stereotype annotations for a member must be allowed, as determined using the stereotypeAllowed
operation.

[2] memberExternal
If a member is external then it must be a stub.

[3] memberIsExternalDerivation
A member is external if it has an @external derivation.

[4] memberIsPrimitiveDerivation
A member is primitive if it has a @primitive annotation.

[5] memberPrimitive
If a member is primitive, then it may not be a stub and it may not have any owned members that are
template parameters.

[6] memberStub
If a member is a stub and is not external, then there must be a single subunit with the same qualified
name as the stub that matches the stub, as determined by the matchForStub operation.

[7] memberStubStereotypes
If a member is a stub, then the it must not have any stereotype annotations that are the same as its
subunit. Two stereotype annotations are the same if they are for the same stereotype.

[8] memberSubunitDerivation
If the member is a stub and is not external, then its corresponding subunit is a unit definition with the
same fully qualified name as the stub.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns true of the given stereotype annotation is allowed for this kind of element.

[2] isDistinguishableFrom (in member : Member) : Boolean
Returns true if this member is distinguishable from the given member. Two members are distinguishable
if their names are different or the they are of different kinds (as determined by the isSameKindAs
operation). However, in any case that the UML Superstructure considers two names to be
distinguishable if they are different, an Alf implementation may instead impose the stronger requirement
that the names not be conflicting.

[3] isSameKindAs (in member : Member) : Boolean
Returns true if this member is of the same kind as the given member.

[4] matchForStub (in unit : UnitDefinition) : Boolean

318 Action Language for Foundational UML (ALF) 1.0, Beta 2

Returns true of the given unit definition is a legal match for this member as a stub. By default, always
returns false.

15.2.15 NamespaceDefinition
A model of the common properties of the definition of a namespace in Alf.

Generalizations
• Member

Synthesized Properties
• ownedMember : Member [*] {ordered}

The definitions of owned members of the namespace.

• unit : UnitDefinition [0..1]
The unit for which this namespace is a definition, if any.

Derived Properties
• member : Member [*]

The owned and imported members of a namespace definition.

Constraints
[1] namespaceDefinitionMemberDerivation
The members of a namespace definition include references to all owned members. Also, if the
namespace definition has a unit with imports, then the members include imported members with
referents to all imported elements. The imported elements and their visibility are determined as given in
the UML Superstructure. The name of an imported member is the name of the imported element or its
alias, if one has been given for it. Elements that would be indistinguishable from each other or from an
owned member (as determined by the Member::isDistinguishableFrom operation) are not imported.

[2] namespaceDefinitionMemberDistinguishability
The members of a namespace must be distinguishable as determined by the
Member::isDistinguishableFrom operation.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns true if the annotation is @external.

15.2.16 OperationDefinition
The definition of an operation, with any formal parameters defined as owned members.

Generalizations
• NamespaceDefinition

Action Language for Foundational UML (ALF) 1.0, Beta 2 319

Synthesized Properties
• body : Block [0..1]

The sequence of statements that defines the behavior of the operation (empty for a stub).

• isAbstract : Boolean = false
Whether the operation being defined is abstract.

• redefinition : QualifiedNameList [0..1]
The names of other operations that are redefined by the operation being defined.

Derived Properties
• isConstructor : Boolean

Whether this operation definition is for a constructor.

• isDestructor : Boolean
Whether this operation definition is for a destructor.

• redefinedOperation : ElementReference [*]

Constraints
[1] operationDefinitionConstructor
If an operation definition is a constructor, any redefined operation for it must also be a constructor. The
body of a constructor may contain an alternative constructor invocation for another constructor in the
same class or super constructor invocations for constructors in immediate superclasses.

[2] operationDefinitionConstructorDestructor
An operation definition cannot be both a constructor and a destructor.

[3] operationDefinitionDestructor
If an operation definition is a destructor, any redefined operation for it must also be a destructor.

[4] operationDefinitionIsConstructorDerivation
An operation definition is a constructor if it has a @Create annotation.

[5] operationDefinitionIsDestructorDerivation
An operation definition is a destructor if it has a @Destroy annotation.

[6] operationDefinitionIsFeatureDerivation
An operation definition is a feature.

[7] operationDefinitionNamespace
The namespace for an operation definition must be a class definition.

[8] operationDefinitionRedefinedOperationDerivation

320 Action Language for Foundational UML (ALF) 1.0, Beta 2

If an operation definition has a redefinition list, its redefined operations are the referent operations of the
names in the redefinition list for the operation definition. Otherwise, the redefined operations are any
operations that would otherwise be indistinguishable from the operation being defined in this operation
definition.

[9] operationDefinitionRedefinedOperations
The redefined operations of an operation definition must have formal parameters that match each of the
formal parameters of this operation definition, in order. Two formal parameters match if they have the
same direction, name, multiplicity bounds, ordering, uniqueness and type reference.

[10] operationDefinitionRedefinition
Each name in the redefinition list of an operation definition must have a single referent that is an
operation. This operation must be a non-private operation that is a member of a specialization referent of
the class definition of the operation definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns true if the annotation is for a stereotype that has a metaclass consistent with Operation.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either an OperationDefinition or an imported member whose referent
is an OperationDefinition or an Operation, and the formal parameters of this operation definition match,
in order, the parameters of the other operation definition or operation. In this context, matching means
the same name and type (per UML Superstructure, Subclause 7.3.5). A constructor operation without an
explicit return parameter is considered to implicitly have a return parameter, following any other formal
parameters, of the same type as the owner of the constructor operation.

[3] matchForStub (in unit : UnitDefinition) : Boolean
The namespace definition associated with the given unit definition must be an activity definition with no
template parameters. In addition, the subunit definition must have formal parameters that match each of
the formal parameters of the stub definition, in order. Two formal parameters match if they have the
same direction, name, multiplicity bounds, ordering, uniqueness and type reference If this operation
definition is a constructor, then it is considered to have an implicit return parameter, following any other
formal parameters, with the same type as the class of the operation definition and a multiplicity of 1..1.

15.2.17 PackageDefinition
The definition of a package, all of whose members must be packageable elements.

Generalizations
• NamespaceDefinition

Synthesized Properties
None

Derived Properties

Action Language for Foundational UML (ALF) 1.0, Beta 2 321

• appliedProfile : Profile [*]
The profiles applied (directly) to this package.

Constraints
[1] packageDefinitionAppliedProfileDerivation
The applied profiles of a package definition are the profiles listed in any @apply annotations on the
package.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed on any namespace definition, a package definition allows @apply
annotations plus any stereotype whose metaclass is consistent with Package.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either a PackageDefinition or an imported member whose referent is
a PackageDefinition or a Package.

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns true of the namespace definition associated with the given unit definition is a package
definition.

15.2.18 PackageImportReference
An import reference to a package all of whose public members are to be imported.

Generalizations
• ImportReference

Synthesized Properties
None

Derived Properties
None

Constraints
[1] packageImportReferenceReferent
The referent of a package import must be a package.

Helper Operations
None

15.2.19 PropertyDefinition
A typed element definition for a property (attribute or association end).

Generalizations

322 Action Language for Foundational UML (ALF) 1.0, Beta 2

• TypedElementDefinition

Synthesized Properties
• initializer : Expression [0..1]

The expression to be evaluated to initialize the property.

• isComposite : Boolean = false
Whether the property being defined has composite aggregation.

Derived Properties
• isBitStringConversion : Boolean

Whether BitString conversion is required for the initialization of this property.

• isCollectionConversion : Boolean
Whether collection conversion is required for the initialization of this property.

Constraints
[1] propertyDefinitionInitializer
If a property definition has an initializer, then the initializer expression must be assignable to the
property definition. There are no assignments before an initializer expression.

[2] propertyDefinitionIsBitStringConversionDerivation
A property definition requires BitString conversion if its type is BitString and the type of its initializer is
Integer or a collection class whose argument type is Integer.

[3] propertyDefinitionIsCollectionConversionDerivation
A property definition requires collection conversion if its initializer has a collection class as its type and
the property definition does not.

[4] propertyDefinitionIsFeatureDerivation
A property definition is a feature.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns true if the annotation is for a stereotype that has a metaclass consistent with Property.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either a PropertyDefinition or an imported member whose referent is
a PropertyDefinition or a Property.

15.2.20 ReceptionDefinition
The declaration of the ability of an active class to receive a signal.

Action Language for Foundational UML (ALF) 1.0, Beta 2 323

Generalizations
• Member

Synthesized Properties
• signalName : QualifiedName

The name of the signal to be received.

Derived Properties
• signal : ElementReference

Constraints
[1] receptionDefinitionIsFeatureDerivation
A reception definition is a feature.

[2] receptionDefinitionSignalDerivation
The signal for a reception definition is the signal referent of the signal name for the reception definition.

[3] receptionDefinitionSignalName
The signal name for a reception definition must have a single referent that is a signal. This referent must
not be a template.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
Returns true if the annotation is for a stereotype that has a metaclass consistent with Reception.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either a ReceptionDefinition, a SignalReceptionDefinition or an
imported member whose referent is a ReceptionDefinition, a SignalReceptionDefinition or a Reception.

15.2.21 SignalDefinition
The definition of a signal, whose members must all be properties.

Generalizations
• ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] signalDefinitionSpecializationReferent
The specialization referents of a signal definition must all be signals.

324 Action Language for Foundational UML (ALF) 1.0, Beta 2

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean
In addition to the annotations allowed for classifiers in general, a signal definition allows an annotation
for any stereotype whose metaclass is consistent with Signal.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is either a SignalDefinition or an imported member whose referent is a
SignalDefinition or a Signal (where signal reception definitions are considered to be kinds of signal
definitions).

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns true if the given unit definition matches this signal definition considered as a classifier
definition and the subunit is for a signal definition.

15.2.22 SignalReceptionDefinition
The definition of both a signal and a reception of that signal as a feature of the containing active class.

Generalizations
• SignalDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] signalReceptionDefinitionIsFeatureDerivation
A signal reception definition is a feature.

Helper Operations
None

15.2.23 StereotypeAnnotation
An annotation of a member definition indicating the application of a stereotype (or one of a small
number of special-case annotations).

Generalizations
• SyntaxElement

Synthesized Properties
• names : QualifiedNameList [0..1]

A set of references to model elements required for the stereotype being applied.

Action Language for Foundational UML (ALF) 1.0, Beta 2 325

• stereotypeName : QualifiedName
The name of the stereotype being applied.

• taggedValues : TaggedValueList [0..1]
A set of tagged values for the applied stereotype.

Derived Properties
• stereotype : Stereotype [0..1]

The stereotype denoted by the stereotype name.

Constraints
[1] stereotypeAnnotationApply
If the stereotype name of a stereotype annotation is "apply", then it must have a name list and all of the
names in the list must resolve to profiles.

[2] stereotypeAnnotationExternal
If the stereotype name of a stereotype annotation is "external", then it may optionally have a single
tagged value with the name "file" and no operator.

[3] stereotypeAnnotationNames
If a stereotype annotation has a stereotype and a list of names, then all the names in the list must resolve
to visible model elements and the stereotype must have a single attribute with a (metaclass) type and
multiplicity that are consistent with the types and number of the elements denoted by the given names.

[4] stereotypeAnnotationPrimitive
If the stereotype name of a stereotype annotation is "primitive", then it may not have tagged values or
names.

[5] stereotypeAnnotationStereotypeDerivation
Unless the stereotype name is "apply", "primitive" or "external" then the stereotype for a stereotype
annotation is the stereotype denoted by the stereotype name.

[6] stereotypeAnnotationStereotypeName
The stereotype name of a stereotype annotation must either be one of "apply", "primitive" or "external",
or it must denote a single stereotype from a profile applied to an enclosing package. The stereotype
name does not need to be qualified if there is only one applied profile with a stereotype of that name or
if the there is a standard UML profile with the name.

[7] stereotypeAnnotationTaggedValues
If a stereotype annotation has a stereotype and tagged values, then the each tagged value must have the
name of an attribute of the stereotype and a value that is legally interpretable for the type of that
attribute.

Helper Operations
None

326 Action Language for Foundational UML (ALF) 1.0, Beta 2

15.2.24 TaggedValue
An assignment of a value to an attribute of an applied stereotype.

Generalizations
• SyntaxElement

Synthesized Properties
• name : String

The name of the stereotype attribute to be assigned a value.

• operator : String [0..1]
For a numeric value, an optional unary plus or minus operator.

• value : String
The string image of a literal value to be assigned to the stereotype attribute.

Derived Properties
None

Constraints
None

Helper Operations
None

15.2.25 TaggedValueList
A set of tagged values for a stereotype application.

Generalizations
• SyntaxElement

Synthesized Properties
• taggedValue : TaggedValue [*]

The tagged values in the set.

Derived Properties
None

Constraints
None

Helper Operations
None

Action Language for Foundational UML (ALF) 1.0, Beta 2 327

15.2.26 TypedElementDefinition
The common properties of the definitions of typed elements.

Generalizations
• Member

Synthesized Properties
• isNonunique : Boolean = false

Whether the element being defined is non-unique.

• isOrdered : Boolean = false
Whether the element being defined is ordered.

• lowerBound : String [0..1]
The string image of the literal given to specify the lower bound of the multiplicity of the element
being defined.

• typeName : QualifiedName [0..1]
The name of the type of the element being defined.

• upperBound : String = "1"
The string image of the literal given to specify the upper bound of the multiplicity of the element
being defined.

Derived Properties
• lower : Integer

The multiplicity lower bound of the element being defined.

• type : ElementReference [0..1]

• upper : UnlimitedNatural
The multiplicity upper bound of the element being defined.

Constraints
[1] typedElementDefinitionLowerDerivation
If the lower bound string image of a typed element definition is not empty, then the integer lower bound
is the integer value of the lower bound string. Otherwise the lower bound is equal to the upper bound,
unless the upper bound is unbounded, in which case the lower bound is 0.

[2] typedElementDefinitionTypeDerivation
The type of a typed element definition is the single classifier referent of the type name.

[3] typedElementDefinitionTypeName

328 Action Language for Foundational UML (ALF) 1.0, Beta 2

The type name of a typed element definition must have a single classifier referent. This referent may not
be a template.

[4] typedElementDefinitionUpperDerivation
The unlimited natural upper bound value is the unlimited natural value of the uper bound string (with
"*" representing the unbounded value).

Helper Operations
None

15.2.27 UnitDefinition
The definition of a namespace as an Alf unit.

Generalizations
• DocumentedElement

Synthesized Properties
• definition : NamespaceDefinition

The definition of the unit as a namespace.

• import : ImportReference [*]
The set of references to imported elements or packages.

• namespaceName : QualifiedName [0..1]
A declaration of the name of the namespace that contains this unit as a subunit.

Derived Properties
• appliedProfile : Profile [*]

The profiles applied to this unit.

• isModelLibrary : Boolean
Whether this unit definition is for a model library or not.

• namespace : ElementReference [0..1]
A reference to the namespace denoted by the declared namespace name for the unit, if any.

Constraints
[1] unitDefinitionAppliedProfileDerivation
The profiles applied to a unit definition include any profiles applied to the containing namespace of the
unit definition. If the unit definition is for a package, then the applied profiles for the unit definition also
include the applied profiles for its associated package definition.

[2] unitDefinitionImplicitImports

Action Language for Foundational UML (ALF) 1.0, Beta 2 329

Unless the unit definition is a model library, it has private package import references for all the sub-
packages of the Alf::Library package.

[3] unitDefinitionIsModelLibraryDerivation
A unit definition is for a model library if its associated namespace definition has a stereotype annotation
for the UML standard stereotype ModelLibrary.

[4] unitDefinitionNamespace
The declared namespace name for a unit definition, if any, must resolve to a UML namespace of an Alf
unit definition. If it is an Alf unit definition, then it must have a stub for this unit definition.

[5] unitDefinitionNamespaceDerivation
If a unit definition has a declared namespace name, then the containing namespace for the unit is the
referent for that name.

Helper Operations
None

330 Action Language for Foundational UML (ALF) 1.0, Beta 2

PART IV - MAPPING TO FOUNDATIONAL UML

16 Common Mapping
The mapping specification for each syntactic area defines how a specific Alf abstract syntax tree
substructure is mapped into a corresponding part of the fUML abstract syntax representation, in terms of
the further subtrees of that structure. This may be considered as a metamodel to metamodel
transformation.

1. The transformation is from the Alf abstract syntax metamodel to the fUML abstract metamodel.

2. The transformation maps the root objects from the Alf abstract syntax representation to UML
elements. A well-formed Alf abstract syntax tree is always rooted in either an expression (see
Subclause 12.2), a statement sequence (see Subclause 13.2) or a unit (see Subclause 14.2).

The remainder of this clause defines the mapping of the common elements contained in the
Alf::Syntax::Common package (see Clause 12). The following three clauses give mappings for
elements in the Expressions, Statements and Units packages.

16.1 Syntax Elements
1. The root mapping takes an Alf syntax element to a UML element. By default, this mapping is empty,

but the mapping is overridden as appropriate for subclasses of SyntaxElement. In particular, such a
mapping definition is provided for Expression, Block, UnitDefinition and any kind of syntax
element that may be the target of an internal element reference.

16.2 Documented Elements
1. If an element includes documentation, then each documentation string maps to a comment element

attached to mapping of the documented element, with the comment body given by the
documentation text.

16.3 Element References
During mapping, an element reference is eventually mapped to a direct link to the referenced model
element, either as directly identified by an external element reference or as the model element mapped
from the syntax element identified by an internal element reference.

1. An element reference maps to a UML model element.

2. An external element reference maps to the identified model element.

3. An internal element reference maps to model element mapped from its identified syntax element.

16.4 Assigned Sources
An assigned source must ultimately map to an activity node that provides the source for an object flow
used to obtain the assigned value, as determined by the mapping of the source syntax element.

1. The mapping of the local name to an activity node depends on the assigned source syntax element
for that local name.

Action Language for Foundational UML (ALF) 1.0, Beta 2 331

2. An assigned source object is mapped to the appropriate activity node as determined by querying the
source syntax element.

332 Action Language for Foundational UML (ALF) 1.0, Beta 2

17 Expressions Mapping
The clause defines the mapping of Alf expressions to UML. The abstract syntax for Alf expressions is
described in Clause 12.2.

17.1 General
1. An Alf expression that is not contained in any other Alf text is mapped to UML as an activity with

one parameter: a return parameter that gives the result of the expression.

2. Any Alf expression maps to some or all of the nodes and edges in an activity (sometimes called a
subgraph of the activity).

3. The mapping of each kind of expression identifies the result source element in the mapping. This is
the activity node to which an outgoing object flow may be attached in order to obtain the result of
the expression. The result values of the expression correspond to the values of the sequence of object
tokens produced on the flow. In some cases (such as when an expression is used in an expression
statement; see Subclause 9.6) the result source element may remain unconnected. In this case the
result values of the expression are lost.

17.2 Qualified Names
The formal mapping of a qualified name is given in various contexts of its use in subsequent subclauses.
In general:

• When defining a named element, an unqualified name maps to the name of the named element, with
the fully qualified name mapping to the qualified name of the named element.

• When referencing a named element, its (qualified) name maps to a reference to that named element.

17.3 Literal Expressions
1. A literal expression maps to a value specification action with the literal mapping to an appropriate

literal primitive element. The result pin of the value specification action is the result source element
for the expression.

17.4 Name Expressions
1. A name expression maps to an activity graph depending on the kind of name referenced.

2. A name expression for a local name or parameter name is mapped to an object flow. The source of
the object flow is given by the assigned source for the name before the name expression. The target
of the object flow is determined by the context of the use of the name expression.

The assigned source of the name effectively also acts as the result source element for the expression.
Note that, if this source is never connected (for example, if the name expression is used by itself as
an expression statement), there can be no object flow and the name expression will actually not map
to anything (since it will have no effect).

If there is a structured activity node that owns (directly or indirectly) both the source and target of
the object flow, then the most deeply nested such node owns the object flow. Otherwise it is owned
by the enclosing activity.

Action Language for Foundational UML (ALF) 1.0, Beta 2 333

3. A name expression for an enumeration literal name is mapped to a value specification action whose
value is given by an instance literal specifying the given enumeration literal. The result pin of the
value specification action is the result source element for the expression.

4. A name expression for a name that disambiguates to a feature reference is mapped as a property
access expression consisting of that feature reference (see Subclause 8.3.6).

17.5 this Expressions
1. A this expression maps to a read self action. The result pin of the read self action is the result

source element for the expression.

17.6 Property Access Expressions
NOTE. The Alf property access expression notation may be used to represent the access to a property
(structural feature or opposite association end) of any kind of classifier other than a primitive type.
However, the only kinds of non-primitive classifiers in the fUML subset with properties are classes, data
types and signals. Therefore, a property access expression can only be mapped to fUML if the type of its
collection expression is a data type, class or signal, and the semantics of the expression are formally
defined only in this case.

1. A property access expression is mapped as either a single instance property access or a sequence
property access.

2. A single instance property access expression for an attribute is mapped to a read structural feature
action for the named structural feature. The result source element of the mapping of the target
expression is connected by an object flow to the object input pin of the read structural feature action.
The result pin of the action is the result source element for the property access expression.

3. A sequence property access expression is mapped as an expansion region similarly to a collect
expression (see Subclause 17.19).

17.7 Invocation Expressions
1. An invocation expression is mapped as a behavior invocation or a feature invocation. Subclause 17.8

describes the mapping for tuples in general. Subclause 17.9 describes the mapping for behavior
invocations (which also include a functional notation for reading associations). Subclause 17.10
describes the mapping for all other kinds of invocations. Note that, after static semantic analysis, a
super invocation is mapped as a behavior invocation (see Subclause 17.11).

2. If the invocation expression is the assigned source for a local name, then it must map to a call action
with result output pins. The actual source for the value of the local name is the fork node connected
to the result output pin with that name.

17.8 Tuples
1. An empty tuple (i.e., a positional tuple with no argument expressions) is mapped to nothing. A non-

empty tuple is mapped to a structured activity node containing the mapping of each of its argument
expressions. There is a control flow from the structured activity node to the invocation action taking
input from the tuple mapping.

334 Action Language for Foundational UML (ALF) 1.0, Beta 2

2. For an argument for an in parameter, the argument expression is mapped as usual for an expression.
The result source element of such an expression provides the source for setting the value of the
associated parameter, unless conversion is required. If collection conversion is required, then the
result source element of the argument expression is connect by an object flow to an invocation of the
Collection::toSequence operation (see Subclause 11.6.2), and the result of that invocation
provides the source for setting the value of the associated parameter, unless bit string conversion is
also require. If bit string conversion is required, then either the result source element of the argument
expression or the result of the toSequence invocation, if collection conversion was required, is
connected by an object flow to an invocation of the BitStringFunctions::toBitString function
(see Subclause 11.3.5), and the result of that invocation provides the source for setting the value of
the associated parameter.

3. For an argument for an out parameter, the argument expression is mapped as a left hand side of an
assignment (see Subclause 17.24): an argument that is a local name is mapped as a fork node while
an argument that is a feature reference is mapped as write structural feature value action. The output
from the invocation action for the corresponding parameter provides the assigned value.

4. For an argument for an inout parameter, the argument expression is mapped twice (as given above):
once as for an in parameter, to provide the input value for the parameter, and once as for an out
parameter, to provide the target for the output value.

17.9 Behavior Invocation Expressions
1. A behavior invocation expression whose qualified name disambiguates to a feature reference is

mapped as if it were a feature invocation expression (see Subclause 17.10). Otherwise, a behavior
invocation expression is mapped as either a behavior call or an association read.

2. A behavior invocation expression whose qualified name resolves to a behavior maps to a call
behavior action for the named behavior.

If the behavior invocation expression has a non-empty tuple, then the call behavior action is the
target of a control flow whose source is the structured activity node mapped from the tuple.

Each input pin of the call behavior action corresponds to an in or inout parameter of the called
behavior. If there is an argument expression for that parameter in the tuple, then the input pin is the
target of an object flow whose source is the result source element of the argument expression.

Similarly, each output pin of the call behavior action (other than the output pin for a return
parameter) corresponds to an out or inout parameter. If there is an argument expression for that
parameter in the type, then the output pin is the source of an object flow whose target is assigned
value input for the argument expression.

NOTE. Call behavior action pins corresponding to unmatched parameters remain unconnected.

If the behavior has a return parameter, then the output pin of the call behavior action corresponding
to that parameter is the result source element for the behavior invocation action. Otherwise it has no
result source element.

3. A behavior invocation expression whose qualified name resolves to an association end maps to a
read link action with end data for the ends of the named association. Except for the end data for the
target end, the value input pins for each end are the target of an object flow from the result source

Action Language for Foundational UML (ALF) 1.0, Beta 2 335

element of the mapping of the corresponding argument expression. The result output pin of the read
link action is the result source element for the association selection.

17.10 Feature Invocation Expressions
1. A feature invocation expression is mapped as either a single instance feature invocation or a

sequence feature invocation. For each kind of invocation, the result source element of the mapping
of the feature expression is connected by an object flow to the appropriate target activity node.

2. A single instance feature invocation is mapped as either a non-destructor operation call, an explicit
destructor call, an implicit destructor call or a signal send.

3. A sequence feature invocation is mapped as an expansion region similarly to a collect expression.

Operation Call
4. An operation call (that is not a destructor call) maps to a call operation action for the named

operation. The result source element mapped from the primary expression of the feature invocation
expression is connected by an object flow to the target input pin of the call operation action.

5. The call operation action has argument and result input and output pins corresponding to the
parameters of the operation. These pins are connected to the appropriate mapping of argument and
result expressions from the tuple (see Subclause 17.8). If the operation has a return parameter, then
the output pin of the call operation action corresponding to that parameter is the result source
element for the feature invocation action. Otherwise it has no result source element.

Destructor Call
6. If an operation call is a destructor call, and the feature invocation expression is not itself within the

method of a destructor, then the call operation action is followed by a destroy object action for the
target object with isDestroyOwnedObjects=true and isDestroyLinks=true. If the feature invocation is
within the method of a destructor, the destroy object action is conditioned on a test that the target
object is not the context object.

NOTE. Object destruction is always done with isDestroyOwnedObjects=true and
isDestroyLinks=true, because this is the expected high-level behavior for object destruction.

7. If operationcall is an implicit object destruction expression, then it is mapped to just a destroy object
action, as above, without any operation call.

Signal Send
8. A signal send maps to a send signal action for the named signal. The result source element mapped

from the target expression of the feature invocation expression is connected by an object flow to the
target input pin of the send signal action.

The send signal action has argument input pins corresponding to the attributes of the signal. Each
argument input pin of the send signal action is the target of an object flow whose source is the result
source element of the argument expression (if there is one) mapped from the tuple (see Subclause
17.8) for the corresponding signal attribute.

A signal send has no result source element.

336 Action Language for Foundational UML (ALF) 1.0, Beta 2

17.11 Super Invocation Expressions
Once the target operation a super invocation expression is determined, the expression is mapped as a
behavior invocation to the method of that operation (see Subclause 17.9).

17.12 Instance Creation Expressions
1. An instance creation expression maps as an object creation expression or a data value creation

expression.

Object Creation Expression
2. An object creation expression maps as either a constructed object creation or a constructorless object

creation. If the class of the object being created is an active class, then the mapping also includes the
starting of the behavior of that object.

3. If the object creation expression is not constructorless, then the expression maps to a create object
action for the class of the constructor operation. The result of the create object action is used as the
target instance for an invocation of the constructor, mapped as for a feature invocation expression
(see Subclause 17.10). The result source element of the object creation expression is the result output
pin of the call operation action for the constructor operation.

4. If the object creation expression is constructorless, then the expression maps to a create object action
for the identified class. If none of the attributes owned or inherited by the class have default values,
then the result source element of the expression is the result output pin of the create object action.
Otherwise, the result output pin of the create object action is connected by an object flow to a
control-flow sequenced set of structured activity nodes containing write structural feature actions for
setting the default values of any attributes of the newly create object that have them.

NOTE. It is possible to notate in Alf a constructorless instance creation for any class. However,
default values for attributes are value specifications (see UML Superstructure, Subclause 7.3.44),
and the only kind of value specifications supported in fUML are literal specifications and instance
values, not general expressions (see fUML Specification, Subclause 7.2.2.1). The mapping given
here will support any kind of value specification as a default value, but the result will not conform to
the fUML subset if the value specifications are outside that subset.

5. If the class of the object being created is an active class, then a fork node is added to the mapping
with an object flow from the original result source element, and that fork node becomes the new
result source element. The fork node is connected by an object node to the object input pin of a start
object behavior action. In this case, the entire mapping is always placed within a structured activity
node.

NOTE. Classifier behaviors with parameters are not supported by Alf, nor is the asynchronous
starting of an instance of an activity with parameters. However, it is possible to notate the
instantiation of an activity as a class as long as the class has no parameters, in which case the activity
will, in fact, begin asynchronous execution.

Data Value Creation Expression
6. A data value creation expression maps to a value specification action with an instance value for the

named data type. If the tuple for the expression is non-empty, then the value specification action is
the target of a control flow whose source is the structured activity node mapped from the tuple (see
Subclause 17.8). Further, the result of the value specification action is fed through a sequence of

Action Language for Foundational UML (ALF) 1.0, Beta 2 337

write structural feature actions with values coming from the result source elements for the argument
expressions.

If the data value creation expression has an empty tuple, then the result source element is the result
pin of the value specification action. Otherwise, the result source element is the result of the
sequence of write structural feature actions.

17.13 Link Operation Expressions
1. A link operation expression for the operation createLink maps to a create link action for the named

association with isReplaceAll=false for all ends. The value input pin of the end creation data for
each end of the association is the target of an object flow from the result source element of the
mapping of the corresponding argument expression. If an association end is ordered, then the
insertAt input pin for that end is the target of an object flow from the result source element of the
mapping of the corresponding index expression (which defaults to * if not given explicitly).

2. A link operation expression for the operation destroyLink maps to a destroy link action for the
named association. The value input pin of the end creation data for each end of the association is the
target of an object flow from the result source element of the mapping of the corresponding
argument expression. If an association end is unordered, the isDestroyDuplicates=true. If an
association end is ordered, then isDestroyDuplicates=false and the insertAt input pin for that end is
the target of an object flow from the result source element of the mapping of the corresponding
index expression (which defaults to * if not given explicitly).

3. A link operation expression for the link operation clearAssoc maps to a clear association action for
the named association. The object input pin of clear association action is the target of an object flow
from the result source element of the the mapping of the argument expression.

17.14 Class Extent Expressions
1. A class extent expression maps to a read extent action for the named class. The result output pin of

the read extent action is the result source element for the class extent expression.

17.15 Sequence Construction Expression
Collection Object Creation Expression
1. A sequence construction expression that does not have multiplicity is mapped as an instance creation

expression (see Subclause 17.12) with a constructor for the collection class given by the type name
(see Subclause 11.6). The argument expression for the constructor is mapped as below for a
sequence construction expression with multiplicity for the argument type of the collection class and
the sequence elements from the original expression.

Sequence Element List
1. A sequence construction expression that has multiplicity and a sequence list expression with a non-

empty expression list is mapped to a structured activity node with a single output pin whose type and
multiplicity, are as specified for the expression. The output pin is the result source element for the
expression.

2. Each element expression is mapped inside the structured activity node, with an object flow from its
result source element to the structured activity node output pin. If there is more than one element

338 Action Language for Foundational UML (ALF) 1.0, Beta 2

expression, then the mapping for each element expression is wrapped in its own structured activity
node and they are connected sequentially by control flows.

Sequence Range
3. A sequence construction expression that has multiplicity and a sequence range expression is mapped

to a structured activity node with the range upper and lower expressions mapped inside it. The result
source elements of the upper and lower expressions are connected by object flows to input pins of a
loop node in the structured activity node. The loop node also has a third input pin that has a
multiplicity lower bound of 0. The output pin corresponding to this third input pin is the result
source element for the sequence range expression

4. The loop node is iterative, continually incrementing the value in its first loop variable until it reaches
the value of its second loop variable. On each iteration, it appends the value of its first loop variable
to the list in its third loop variable, which, at the end of the iteration, thus contains the desired
sequence.

Empty Collections
5. A sequence construction expression that has multiplicity and an empty expression list maps to a

value specification action for a literal null. The result output pin of the value specification has the
type given for the sequence list expression and the multiplicity [1..1]. It is the result source
element for the expression.

6. The keyword null is mapped as any[]{}.

17.16 Sequence Access Expressions
1. A sequence access expression is mapped to a call to the primitive behavior

Alf::Library::PrimitiveBehaviors::SequenceFunctions::At (see Subclause 11.3.6). The
result source element of the primary expression of the sequence access expression is connected by an
object flow to the first argument input pin of the call behavior action. The result source element of
the index expression is connected by an object flow to the second argument input pin. The result
output pin of the call behavior action is the result source element for the sequence access expression.

17.17 Sequence Operation Expressions
1. A sequence operation expression is mapped as a behavior invocation expression (see Subclause

17.9) for the referent behavior, with the target primary expression as the first behavior argument.
The result source element for the sequence operation expression is that of the behavior invocation
expression.

17.18 Sequence Reduction Expression
1. A sequence reduction expression is mapped to a reduce action with the named behavior as the

reducer. The collection input pin is the target of an object flow from the result source element of the
mapping of the input expression. The result output pin of the reduce action is the result source
element for the reduction expression.

Action Language for Foundational UML (ALF) 1.0, Beta 2 339

17.19 Sequence Expansion Expressions
1. A sequence expansion expression maps to an expansion region with a single input expansion node.

Except for the iterate operation, the expansion region has mode=parallel. For the iterate
operation, the expansion region has mode=iterative.

2. The input expansion node has the same type as the primary expression. It is the target of an object
flow from the result source element of the mapping of the primary expression.

3. The argument expression is mapped inside the expansion region. The input expansion node is
connected by an object flow to a fork node within the expansion region that acts as the assigned
source for references to the expansion variable within the mapping of the argument expression.

4. The specific mapping for each kind of sequence expansion operation is further discussed in
subsequent subclauses.

select and reject Expressions

1. A select or reject expression is mapped as a sequence expansion expression (see Subclause
17.19). The expansion region from this mapping has an output expansion node of the same type as
the primary expression of the sequence expansion expression. This node is the result source element
for the overall sequence expansion expression.

2. The result source element of the mapping of the argument expression is the source of the decision
input flow for a decision node inside the expansion region. The decision node also has an incoming
object flow from the expansion variable fork node and an outgoing object flow to the output
expansion node. For a select operation, the guard on the outgoing object flow is true. For a reject
operation, it is false.

collect and iterate Expressions

1. A collect or iterate expression is mapped as a sequence expansion expression (see Subclause
17.19). The expansion region has an output expansion node of the same type as the argument
expression. The result source element of the mapping of the argument expression is connected by an
object flow inside the expansion region to the output expansion node.

2. For an iterate operation, the expansion region has mode=iterative. Otherwise it has the normal
mode=parallel.

forAll, exists and one Expressions

1. A forall expression is mapped the same as a reject expression, except that the output expansion
node of the expansion region is connected by an object flow to a call behavior action for the library
isEmpty function. The result output pin of the call behavior action is the result source element for
the forAll expression.

2. An exists expression is mapped the same as a select expression, with the addition that, inside the
expansion region, the decision node is not directly connected to the output expansion node but,
rather, is connected to a fork node that is connected both to the output expansion node and to an
activity final node. Further, the output expansion node of the expansion region is connected by an
object flow to a call behavior action for the library notEmpty function. The result output pin of the
call behavior action is the result source element for the exists expression.

340 Action Language for Foundational UML (ALF) 1.0, Beta 2

NOTE. The inclusion of an activity final node within the expansion region is intended to terminate
the region as soon as an element is found for which the Boolean expression is true. (Despite its
name, an activity final node within a structured node such as an expansion region only terminates
that structured node.)

3. A one expression is mapped the same as a select expression, except that the output expansion node
of the expansion region is connected by an object flow to a call behavior action for the library size
function. The result output pin of the call behavior action is then connected by an object flow to the
input pin of a test identity action whose other input pin is connected to a value specification action
for the value 1. The result output pin of the test identity action is the result source element of the one
expression.

isUnique Expressions

1. An isUnique expression is mapped as a collect expression. The expansion output node of the
expansion region mapped from the collect expression is connected by an object flow to a fork not
which is then connect by object flows to an input expansion node and an input pin of another
expansion region. The second expansion region is mapped similarly to a forAll expression, with the
condition that the count of each value its sequence is 1. The result source element for the isUnique
expression is the result output pin of the isEmpty call on the output of the second expansion region.

17.20 Increment and Decrement Expressions
1. An increment or decrement expression is mapped to a call behavior action for the + function (for

increment) or the - function (for decrement) from the library package
Alf::Library::PrimitiveBehaviors::IntegerFunctions (see Subclause 11.3.2).. The second
argument input pin of the call behavior action is connected by an object flow to the result output pin
of a value specification action for the value 1. The result output pin of the call behavior action is
connected by an object flow to a fork node, which acts as the the source element when the
expression is an assigned source.

2. The operand is mapped first considered as an effective argument expression. If the increment or
decrement expression is a prefix expression, then the result source element of this mapping is
connected by an object flow to the first argument input pin of the call behavior action and the
assigned source element is also the result element for the expression. If it is a postfix expression,
then the result source element of the operand expression mapping is first connected to a fork node
and then that is connected to the argument input pin, and the fork node is the result source element
for the expression.

3. The operand is also mapped as a left-hand side to which is assigned the result of the call behavior
action (see Subclause 17.24).

4. If the operand has an index, then the index expression is only mapped once. The result source
element of the index expression is connected by an object flow to a fork node, which is used as the
source for the index value in the mapping of the operand expression both as an argument and as the
left hand side of the assignment.

Action Language for Foundational UML (ALF) 1.0, Beta 2 341

17.21 Unary Expressions
Boolean Unary Expressions
1. A Boolean unary expression with a Boolean negation operator is mapped as the equivalent behavior

invocation (see Subclause 17.9)for the function Alf::Library::
PrimitiveBehaviors::BooleanFunctions::'!' (see Subclause 11.3.1) on the operand
expression.

BitString Unary Expressions
2. A BitString unary expression with a BitString negation operator is mapped as the equivalent

behavior invocation (see Subclause 17.9) for the function Alf::Library::
PrimitiveBehaviors::BitStringFunctions ::'~' (see Subclause 11.3.5) on the operand
expression. Note that this includes the possibility of bit string conversion on the operand expression.

Numeric Unary Expressions
1. A numeric unary expression with a plus operator is mapped as its operand expression. A numeric

unary expression with a minus operator is mapped as the equivalent behavior invocation (see
Subclause 17.9) for the function Alf::Library::
PrimitiveBehaviors::IntegerFunctions::Neg (see Subclause 11.3.2) on the operand
expression.

Cast Expressions
1. If the named type is any or is a supertype of the type of the operand expression, then a cast

expression is mapped as its operand expression, except that, if the result source element is a typed
element, it is typed with the type of the cast expression, rather than the type of the argument
expression.

2. If the named type is a classifeier, then a cast expression is mapped like a select expression (see
Subclause 17.19) whose condition is a read is classified object action for the type of the cast
expression (“instanceof” operator).

Isolation Expressions
1. An isolation expression is mapped as a structured activity node with isIsolated=true and the operand

expression mapped inside it. The structured activity node has a single output pin with the type and
multiplicity of the operand expression. The result source element from the mapping of the operand
expression is connected inside the structured activity node by an object flow to the output pin. The
result source element for the isolation expression is the output pin of the structure activity node.

17.22 Binary Expression
Arithmetic Expressions
1. An arithmetic expression is mapped as a behavior invocation (see Subclause 17.9) for the

corresponding primitive behavior from the Alf::Library::PrimitiveBehaviors package (see
Subclause 11.3), as given in Table 17-16.

342 Action Language for Foundational UML (ALF) 1.0, Beta 2

Table 17-16 Primitive Behavior Equivalents for Arithmetic Operators

Operator Behavior
* IntegerFunctions::'*'
/ IntegerFunctions::'/'
% IntegerFunctions::'%'
+

(isConcatentation=false) IntegerFunctions::'+'

+ (isConcatenation=true) StringFunctions::'+'
- IntegerFunctions::'-'

Shift Expressions
1. A shift expression is mapped as a behavior invocation (see Subclause 17.9) for the corresponding

primitive behavior from the Alf::Library::PrimitiveBehaviors package (see Subclause 11.3),
as given in Table 17-17. Note that this includes the possibility of performing bit string conversion on
the first operand.

Table 17-17 Primitive Behavior Equivalents for Arithmetic Operators

Operator Behavior
<< BitStringFunctions::'<<'
>> BitStringFunctions::'>>'
>>> BitStringFunctions::'>>>'

Relational Expressions
1. A relational expression is mapped as a behavior invocation (see Subclause 17.9) for the

corresponding primitive behavior from the Alf::Library::PrimitiveBehaviors package (see
Subclause 11.3), as given in Table 17-18.

Table 17-18 Primitive Behavior Equivalents for Relational Operators

Operator Integer Behavior
(isUnlimitedNatural=false)

UnlimitedNatural Behavior
(isUnlimitedNatural=true)

< IntegerFunctions::'<' UnlimitedNaturalFunctions::'<'
> IntegerFunctions::'>' UnlimitedNaturalFunctions::'>'
<= IntegerFunctions::'<=' UnlimitedNaturalFunctions::'<='
>= IntegerFunctions::'>=' UnlimitedNaturalFunctions::'>='

Logical Expressions
1. A logical expression is mapped as a behavior invocation (see Subclause 17.9) for the corresponding

primitive behavior from the Alf::Library::PrimitiveBehaviors package (see Subclause 11.3),
as given in Table 17-19. Note that this includes the possibility of applying bit string conversion to
one or both operands, if the operator is bit-wise.

Action Language for Foundational UML (ALF) 1.0, Beta 2 343

Table 17-19 Primitive Behavior Equivalents for Logical Operators

Operator Boolean Behavior
(isBitWise=false)

BitString Behavior
(isBitWise=true)

& BooleanFunctions::'&' BooleanFunctions::'&'
^ BooleanFunctions::'^' BooleanFunctions::'^'
| BooleanFunctions::'|' BooleanFunctions::'|'

Classification Expressions
1. A classification expression maps to a read is classified object action for the named classifier with. If

the classification operator is instanceof, then isDirect=false. If the operator is hasType, then
isDirect=true. The object input pin of the action is the target of an object flow from the result source
element for the mapping of the operand expression. The result output pin of the action is the result
source element for the classification expression.

Equality Expressions
1. An equality expression is mapped to a test identity action. If the expression uses the operator ==, and

both operand expressions have a multiplicity lower bound of 1, then the input pins of the action are
the targets of object flows from the result source elements for the mappings of the argument
expressions. The output pin of the action is the result source pin for the equality expression.

2. If either operand expression has a multiplicity lower bound of 0, then the result of that expression is
first tested for being not empty using the library function Alf::Library::
PrimitiveBehaviors::SequenceFunctions::NotEmpty (see Subclause 11.3.6). The test identity
action is executed only if both argument expressions are non-empty. Otherwise, the equality
expression is true only if both argument expressions are empty.

NOTE. Despite the extra checks described above, the mapping for an equality expression still
always evaluates the operand expressions exactly once.

3. An equality expression that uses the operator != is mapped as above, but the result output pin of the
test identity action is connected by an object flow to the argument input pin of a call behavior action
for the library function Alf::Library::PrimitiveBehaviors:: BooleanFunctions::'!' (see
Subclause 11.3.1). The result source element is the result output pin of the call behavior action.

Conditional Logical Expressions
1. A conditional-and expression is mapped like a conditional-test expression (see Subclause 17.23)

whose first two operand expressions are the same as those of the conditional-and expression and
whose third operand expression is false.

2. A conditional-or operator expression is mapped like a conditional-test expression (see Subclause
17.23) whose first and third operand expressions are the same as the two operand expressions of the
conditional-or expression and whose second operand expression is true.

17.23 Conditional-Test Expressions
1. A conditional-test expression maps to a decision node with an incoming control flow from an initial

node. The decision input flow for the decision node has as its source the result source element from
the mapping of the first operand expression.

344 Action Language for Foundational UML (ALF) 1.0, Beta 2

The decision node has two outgoing control flows with the guards true and false. The true flow
has as its target a structured activity node that contains the mapping of the second operand
expression. The false flow has as its target a structured activity node that contains the mapping of
the third operand expression.

The result source elements from the mapping of the second and third operand expressions are
connected by object flows to a merge node (outside either structured activity node). This merge node
is the result source element for the conditional-test expression.

2. For any name assigned in either (or both) of the second and third operand expressions, an output pin
is added to the structured activity nodes for both the second and third operand expressions. Within
each structured activity node, if the name is assigned in the corresponding operand expression, then
the assigned source for the name after the operand expression is connected to the output pin. If the
name is not assigned in the corresponding operand expression, then an additional structured activity
node is added to the mapping of the operand expression as follows.

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the assigned source for the name before the operand
expression to the input pin of the structured activity node.

The output pin of the added structured activity node is then connected by an object flow to the output
pin corresponding to the name on the enclosing structured activity node for the argument expression.

Each pair of output pins on the structured activity nodes for the operand expressions corresponding
to the same name are connected by object flows to a merge node. This merge node is the source for
the assigned value of the name after the conditional-test expression.

17.24 Assignment Expressions
1. The mapping of an assignment expression depends on whether it is a simple or compound

assignment and, if it is a simple assignment whether it has a name or feature left-hand side and
whether or not it has an index.

2. As an assigned source, an assignment expression maps to the result source of the expression.

3. If no conversion is required then the result source element of the right-hand side of an assignment
expression, as referenced below, should be considered to the the result source element of the
mapping of the right-hand side expression. If collection conversion is required, then the result source
element of the argument expression is connect by an object flow to an invocation of the
Collection::toSequence operation (see Subclause 11.6.2), and the result of that invocation acts as
the result source element for the right-hand side, unless bit string conversion is also require. If bit
string conversion is required, then either the result source element of the argument expression or the
result of the toSequence invocation, if collection conversion was required, is connected by an object
flow to an invocation of the BitStringFunctions::toBitString function (see Subclause 11.3.5),
and the result of that invocation acts as the result source element for the right-hand side.

Simple Assignment: Name Left-Hand Side, without Index
4. If the left-hand side is a name without an index, then a simple assignment maps to a fork node. The

result source element from the mapping of the right-hand side is connected to the fork node by an

Action Language for Foundational UML (ALF) 1.0, Beta 2 345

object flow. The fork node is the result source element for the assignment expression and also the
source for the assigned value for the name.

Simple Assignment: Name Left-Hand Side, with Index
5. If the left-hand side is a name with an index, then a simple assignment maps to a call behavior action

for the library behavior Alf::Library::SequenceFunctions::ReplaceAt (see Subclaue 11.3.6).
The assigned source for the name from the left-hand side is connected b an object flow to the seq
argument input pin of the call behavior action. The result source element from the mapping of the
right-hand side is connected to the element argument input pin and the result source element from
the mapping of the index expression is connected to the index argument input pin. The seq output
pin of the call behavior action is connected by an object flow to a fork node, which is the result
source element for the assignment expression and also the source for the assigned value for the name
after the expression.

Simple Assignment: Feature Left-Hand Side, without Index
6. If the left-hand side is a property reference but has no index, then the mapping of a simple

assignment depends on the multiplicity upper bound of the right-hand side expression.

7. If the right-hand side expression has a multiplicity upper bound of 0, then the simple assignment
maps to a clear structural feature action for the identified property. If the right-hand side expression
is a sequence construction expression for an empty set, then it is not mapped at all. Otherwise, the
right-hand side expression is mapped inside a structured activity node, with a control flow from the
structured activity node to the clear structural feature action. There is no result source element for
the assignment.

8. If the right-hand side expression has a multiplicity upper bound of 1, then the simple assignment
maps to an add structural feature value action for the identified property with isReplaceAll=true. The
result source element from the mapping of the right-hand side expression is connect by an object
flow to a fork node that has a further object flow to the value input pin of the add structural feature
value action. The fork node is the result source element for the assignment.

9. Otherwise, the simple assignment maps to a clear structural feature value action for the identified
property followed by an expansion region. The result source element from the mapping of the right-
hand side expression is connected by an object flow to a fork node that has a further object flow to
an input expansion node of the expansion region. The expansion region contains an add structural
feature value action for the property with isReplaceAll=false and an incoming object flow from the
input expansion node to its value input pin. If the property is ordered, then the insertAt input pin has
an incoming object flow from a value specification action for the unbounded value *. The fork node
is the result source element for the assignment.

Simple Assignment: Feature Left-Hand Side, with Index
10. If the left-hand side has an index, then the mapping of a simple assignment includes a structured

activity node containing the mapping of the index expression. The further mapping of the
assignment expression then depends on the multiplicity upper bound of the right-hand side
expression.

11. If the right-hand side expression has a multiplicity upper bound of 0, then the simple assignment
maps to a remove structural feature value action for the identified property with
isRemoveDuplicates=false and an incoming object flow into its removeAt input pin from the result

346 Action Language for Foundational UML (ALF) 1.0, Beta 2

source element from the mapping of the index expression. If the right-hand side expression is a
sequence construction expression for an empty collection, then it is not mapped at all. Otherwise, the
right-hand side expression is mapped inside a structured activity node, with a control flow from that
structured activity node to the structured activity node containing the mapping of the index
expression. There is no result source element for the assignment.

12. If the right-hand side expression has a multiplicity upper bound of 1, then the simple assignment
maps to a remove structural feature value action for the identified property with
isRemoveDuplicates=false followed by an add structural feature value action with
isReplaceAll=false. The result source element of the mapping of the index expression is connected
by an object flow to a fork node, which then has object flows to the removeAt input pin of the
remove structural feature value action and the insertAt input pin of the add structural feature value
action. The right-hand side expression is mapped inside a structured activity node, which is
connected by a control flow to the structured activity node for the index expression. The result
source element of the mapping of the right-hand side expression is connected by an object flow to
the value input pin of the add structural feature value action. The fork node is the result source
element for the assignment.

13. If the left-hand side is a data value attribute update, then a fork node is added to the mapping for the
assignment expression to be used as the source element for the assigned value of the name. The fork
node is the target of an object flow whose source is determined as follows.

• If the mapping includes a remove structural feature action, but no add structural feature
action, then the result output pin of the remove structural feature action is used.

• If the mapping includes an add structural feature action not in an expansion region, then
the result output pin of the add structural feature action is used.

• If the mapping has an add structural feature action in an expansion region, then an output
expansion node is added to the expansion region and the result output pin of the add structural
feature action is connected to the output expansion node by an object flow. The output expansion
node is then connected by an object flow to a mapping of the expression
ListGet(x,ListSize(x)), where x represents the object flow from the expansion node.

Compound Assignment
14. A compound assignment is mapped like a simple assignment expression for which the assigned

value is the result of a call behavior action for the primitive behavior corresponding to the compound
assignment operator. The arguments to the call behavior action come from the result source elements
of the mapping of the effective expression for the left-hand side and the right-hand side expression.
However, if the left-hand side is a property reference, then the primary expression for the reference
and any index expression are only mapped once with their values used both in the mapping of the
effective expression for the left-hand side and the updating of the left-hand side as a structural
feature.

Action Language for Foundational UML (ALF) 1.0, Beta 2 347

18 Statements Mapping
This clause defines the mapping of Alf statements to UML. The abstract syntax for Alf statements is
described in Clause 13.2.

18.1 General
1. Every statement is mapped to a single activity node (which may be a structured activity node with

nested structure). The specific mapping for each kind of statement is described in the following
subclauses.

2. If the static analysis of assignment indicates that a name with an assigned source has a different
assigned source after a statement than before the statement, and the statement maps to a structured
activity node (but not a conditional node or a loop node), then an input pin corresponding to that
name is added to the structured activity node. This input pin is the target of an incoming object flow
from the assigned source of the name before the statement. The input pin is also connected by an
outgoing object flow to a fork node contained in the structured activity node. This fork node acts as
the assigned source for the name within the mapping of the statement.

3. A block maps to the union of the nodes mapped from the statements in it. In addition, unless the
block is in a block statement annotated as being parallel (see Subclause 18.3), the node mapped from
each statement other than the last has a control flow targeted to the node mapped from the next
statement.

4. A statement for which @isolated is allowed is always mapped to structured activity node, and
annotating it @isolated results in the isIsolated property on this node being true. (Other
annotations are discussed with the description of the statements to which they apply.)

18.2 In-Line Statements
1. An in-line statement maps to an opaque action with a body given by the code text within the

statement with a corresponding language string given by the language name in the statement. (The
language string is given by the actual name and so does not include the single quotes that appear in
the representation of an unrestricted name.)

2. Depending on the mechanism used by a specific implementation, the opaque action may also have
input and/or output pins with connected object flows for providing data to and from the code
executed by the opaque action. However, the details of such mapping are not defined by the Alf
standard.

NOTE. The fUML subset does not include opaque actions, so an activity mapped from Alf
including an in-line statement will not be executable as fUML. The execution behavior of such an
activity is implementation specific.

18.3 Block Statements
1. A block statement maps to a structured activity node containing all the activity nodes and edges

mapped from its block. If the block statement is not parallel, then the nodes mapped from the
statements of the block have control flows between them enforcing their sequential execution. If the
block statement is parallel, then there are no such control flows.

348 Action Language for Foundational UML (ALF) 1.0, Beta 2

18.4 Empty Statements
1. An empty statement maps to an empty structured activity node.

NOTE. Mapping an empty statement to something preserves the rule that every statement maps to a
single activity node and allows for the general rule for the mapping of control flow within a
statement sequence.

18.5 Local Name Definition Statements
1. A local name declaration statement is mapped as if it was an expression statement (see Subclause

18.6) with an assignment expression (see Subclause 17.24) having the local name as its left-hand
side and the expression as its right-hand side.

18.6 Expression Statements
1. An expression statement maps to a structured activity node containing the activity nodes and edges

mapped from its expression (see Subclause 8).

18.7 if Statements
Clauses
1. An if statement maps to a conditional node. Each if clause maps to a clause of the conditional

node. For a final if clause, the test part of the clause is a single value specification action for a
Boolean literal with value “true”.

2. Each clause specified in a concurrent clause set has as predecessors all clauses specified by the
immediately preceding concurrent clause set (if any) in the sequential clause set for the conditional
node. A final clause has as its predecessor all clauses specified by the immediately preceding
concurrent clause set.

3. The isAssured and/or isDetermined properties of the conditional node are set according to whether
the if statement is assured or determined.

Output Pins
4. The conditional node has a result output pin corresponding to each local name that is assigned in any

of the if clauses. Therefore, each clause of the conditional node also must have a body output pin
from within the clause identified for each result pin of the conditional node. If a name is assigned
within a clause and the assigned source for that name within the clause is a pin on an action within
the body of the clause, then that pin is used as the clause body output pin corresponding to that local
name. Otherwise, a structured activity node is added to the mapping of the clause as follows.

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the assigned source for the name after the clause (which
may be from inside or outside the clause) to the input pin of the structured activity node.

The output pin of the structured activity node is then used as the clause body output pin
corresponding to the name.

Action Language for Foundational UML (ALF) 1.0, Beta 2 349

18.8 switch Statements
Clauses
1. A switch statement maps to a structured activity node that contains a conditional node and the

mapping for the switch expression. The switch clauses map to concurrent clauses of the conditional
node. Each clause tests whether the result of the switch expression equals the result of one of the
case expressions.

2. A switch default clause is mapped to a conditional node clause with a condition of true and with all
other clauses as predecessor clauses.

3. The isAssured and/or isDetermined properties of the conditional node are set according to whether
the switch statement is assured or determined..

Output Pins
4. The result and clause body output pins of the conditional node are mapped as for an if statement

(see Subclause 18.7).

18.9 while Statements
Loop Node
1. A while statement maps to a loop node with isTestedFirst=true (see fUML Specification, Subclause

7.4.3). The loop node contains the activity nodes and edges mapped from both the condition
expression (see Subclause 12.2) and the block of the while statement. All the actions from the
mapping of the condition expression constitute the test part of the loop node. All the actions from the
mapping of the block form the body part.

2. If the result source element from the mapping of the condition expression is an output pin, then this
is the decider pin for the loop node. Otherwise, a structured activity node is added inside the loop
node as follows.

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the result source element from the mapping of the
expression to the input pin of the structured activity node.

The output pin of the structured activity node is then used as the decider pin.

Loop Variables
3. Any name that is assigned in the condition expression or block of the while statement is mapped to

a loop variable of the loop node. The loop variable corresponding to a name is used as the assigned
source before the condition expression when mapping the while statement. If the name is assigned
before the while statement, then the corresponding loop variable input pin is the target of an
incoming object flow from the assigned source for the name before the while statement. Otherwise
the loop variable input pin is unconnected.

4. If the assigned source for the name after the block of the while statement is an output pin, then this
output pin is identified as the body output pin corresponding to the loop variable for the name.
Otherwise, a structured activity node is added to the mapping of the body of the loop as follows.

350 Action Language for Foundational UML (ALF) 1.0, Beta 2

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the assigned source for the name after the block to the input
pin of the structured activity node.

The output pin of the structured activity node is then used as the body output pin corresponding to
the name.

5. If the assigned source of a name after a while statement is the statement, then the source for its
assigned value is the result output pin of the loop node corresponding to the loop variable for the
name.

18.10 do Statements
Loop Node
1. A do statement maps to a loop node with isTestedFirst=false (see fUML Specification, Subclause

7.4.3). The loop node contains the activity nodes and edges mapped from both the block and the
condition expression (see Subclause 12.2) of the do statement. All the actions from the mapping of
the condition expression constitute the test part of the loop node. All the actions from the mapping of
the block form the body part.

2. If the result source element from the mapping of the condition expression is an output pin, then this
is the decider pin for the loop node. Otherwise, a structured activity node is added inside the loop
node as follows.

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the result source element from the mapping of the
expression to the input pin of the structured activity node.

The output pin of the structured activity node is then used as the decider pin.

Loop Variables
3. Any name that is assigned in the condition expression or block of the do statement is mapped to a

loop variable of the loop node. The loop variable corresponding to a name is used as the assigned
source before the block when mapping the do statement. If the name is assigned before the do
statement, then the corresponding loop variable input pin is the target of an incoming object flow
from the assigned source for the name before the do statement. Otherwise the loop variable input pin
is unconnected.

4. If the assigned source for the name after the condition expression of the do statement is an output
pin, then this output pin is identified as the body output pin corresponding to the loop variable for
the name. Otherwise, a structured activity node is added to the mapping of the body of the loop as
follows.

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the assigned source for the name after the block to the input
pin of the structured activity node.

Action Language for Foundational UML (ALF) 1.0, Beta 2 351

The output pin of the structured activity node is then used as the body output pin corresponding to
the name.

5. If the assigned source of a name after a do statement is the statement, then the source for its assigned
value is the result output pin of the loop node corresponding to the loop variable for the name.

18.11 for Statements
Iterative for Statements

1. An iterative for statement is generally mapped to a structured activity node containing the maopping
of the loop variable expressions and either a loop node or an expansion reagion.

2. An iterative for statement that does not make within it any re-assignments to names defined outside
of it is mapped to an expansion region with mode=iterative (see fUML Specification, Subclause
7.4.4). The result source element from the mapping of the loop variable expressions are connected
by object flows to input expansion nodes on the expansion region.

3. Otherewise, an iterative for statement is mapped to a loop node (see fUML Specification, Subclause
7.4.3). A for statement of the form
for (v1 in expr1, v2 in expr2,…) { stmts }
is mapped equivalently to
{
 list1 = (T[]) expr1;
 list2 = (T[]) expr2;
 …
 size = list1->size();
 i = 1;
 while (i <= size) {
 v1 = list1[i];
 v2 = list2[i];
 …
 stmts
 i++;
 }
}
where list, size and i are arbitrary local names not otherwise used in the enclosing activity and T is
the type of expr1.

Parallel for Statements

4. A parallel for statement is always mapped to an expansion region, but with mode=parallel. Any
name listed in the @parallel annotation for the statement is mapped to an output expansion node
with that name and its assigned type. This expansion node provides the source element for the
assigned value for the name after the for statement.

18.12 break Statements
1. A break statement maps to an empty structured activity node with a control flow to an activity final

node. The activity final node is placed in the outermost structured activity node mapped from the
target statement of the break statement.

352 Action Language for Foundational UML (ALF) 1.0, Beta 2

18.13 return Statements
1. A return statement is mapped to a structured activity node. The structured activity node is connected

by a control flow to an activity final node placed directly at the top level within the activity
enclosing the return statement.

2. If the return statement has an expression, then the mapping for that expression is contained in the
structured activity node for the return statement. The result source element of the mapping of the
expression is connected by an object flow to an output pin of the structured activity node. This
output pin is, in turn, connected by an object flow to the output activity parameter node for the return
parameter of the enclosing activity.

18.14 accept Statements
Simple accept Statements

1. A simple accept statement maps to an accept event action (see fUML Specification, Subclause
7.5.4.2.1) with triggers for each of the named signals. If the accept statement defines a local name,
then the result output pin of the accept event action is connected by an object flow to a fork node,
which acts as the assigned source for the local name. Otherwise the accept event action has no result
output pin.

Compound accept Statements

2. A compound accept statement maps to a structured activity node containing an accept action with
triggers for each of the signals mentioned in any of the clauses of the accept statement. The result
output pin of the accept event action is connected by an object flow to a fork node, which is further
connected to conditional logic that tests the type of the received signal.

3. Each block in a compound accept statement is mapped as a block statement (see Subclause 18.3),
with a control flow from the conditional logic mentioned above, corresponding to the appropriate
type(s) of signals for that block. The fork node mentioned above acts as the source for the assigned
value of the local name defined in the accept clause for the block, if any.

4. For any name assigned within one or more blocks of the accept statement, a corresponding output
pin is added to the structured activity node mapped from the accept statement. This output pin
becomes the source for the assigned value for the name after the accept statement. The assigned
source from each block assigning the name is connected by an object flow to the corresponding
output pin. For each block that does not assign the name, a structured activity node is added to the
mapping of the block as follows.

• The structured activity node has one input pin and one output pin, with an object flow
from the input pin to the output pin contained within the structured activity node.

• There is an object flow from the assigned source of the name to the input pin of the
structured activity node.

• There is an object flow from the output pin of the structured activity node to the
corresponding output pin for the name of the enclosing structured activity node for the accept
statement.

Action Language for Foundational UML (ALF) 1.0, Beta 2 353

18.15 classify Statements
1. A classify statement maps to a structured activity node containing a reclassify object action (see

UML Superstructure. Subclause 11.3.9 and fUML Specification, Subclause 7.5.4.2.4) and the
mapping of the target object expression, the result source element of which is connected by an object
flow to the object input pin of the reclassify object action. The from classes for the classify
statement are the old classifiers for the reclassify object action and the to classes are the new
classifiers. If the classify statement is reclassify all, then the reclassify object action has
isReplaceAll=true.

354 Action Language for Foundational UML (ALF) 1.0, Beta 2

19 Units Mapping
This clause defines the mapping of Alf units to UML. The abstract syntax for Alf statements is described
in Clause 14.2.

19.1 General
Unit Definition
1. A unit definition maps to a specific kind of namespace according to the namespace definition for the

unit definition, as given in the appropriate subsequent subclause. If a namespace declaration is given,
the namespace mapped from the unit is an owned member of the declared namespace. If no
namespace declaration is given, then the unit must be a model unit and what namespace owns it, if
any, is not defined by the Alf specification.

2. If the unit is a model unit, then it has empty visibility. Otherwise, the unit visibility is given by the
stub declaration for it in the definition of its owning namespace.

Import Reference
3. An element import reference maps to an element import from the namespace to the named imported

element. The element import visibility is as given by the import visibility indicator. If there is an
alias part, then the given unqualified name becomes the element import alias.

4. A package import reference maps to a package import from the namespace to the named package.
The package import visibility is as given by the import visibility indicator.

Stereotype Annotation
5. A stereotype annotation, other than for the special cases given in Table 10-7, maps formally to the

application of the identified stereotype to the element mapped from the annotated member..
However, an implementation may also use such stereotypes to specify special implementation-
specific semantics for the annotated element, except for the standard stereotypes «Create» and
«Destroy», which are used in the standard Alf mapping for constructors and destructors and
«ModelLibrary», which is used to suppress the inclusion of implicit imports.

19.2 Namespace Definitions
1. A namespace definition maps to a namespace and its owned members, as specified for each kind of

namespace definition in the appropriate subsequent subclause.

2. A visibility indicator maps to the visibility of the named element mapped from the definition
containing the visibility indicator, with an empty visibility indicator mapping to a visibility kind of
“package”.

19.3 Package Definitions
1. A package definition maps to a package. If the package definition is a stub, then it is mapped

according to the associated subunit definition.

2. The applied profiles of a package definition map to profile application relationships from the
package to each of the applied profiles.

Action Language for Foundational UML (ALF) 1.0, Beta 2 355

3. Each package member is mapped according to its kind. The resulting elements are a packaged
elements of the package.

See also the mapping for visibility in Subclause 19.2.

19.4 Classifier Definitions
1. A classifier definition (other than a classifier template parameter) maps to a classifier and its

features, as specified for each kind of classifier in the appropriate subsequent subclause. If the
classifier definition is a stub, then it is mapped according to its associated subunit definition.

Specialization
2. If the classifier definition has specialization referents, then the classifier being defined has

generalization relationships with each of the referents. If the classifier definition is abstract, then the
classifer has isAbstract=true. Otherwise isAbstract=false.

Template Parameters
3. If a classifier definition has owned members that are classifier template parameters, then these map

classifier template parameters of the classifier. If a classifier template parameter has a specialization
referent, this maps to a constraining classifier for the parameter.

4. Each template parameter has a corresponding parametered element which is a private member
owned by the classifier being defined with the same name as the template parameter. If the template
parameter has a constraining classifier, then the parametered element is a classifier of the same kind
as the constraining classifier and it has a generalization relationship to the constraining classifier.
Otherwise it is a data type. In all cases, the parametered element is abstract.

19.5 Class Definitions
1. A class definition maps to a class with isActive=false. (For active classes, see Subclause 19.6).

Class Members
2. A nested classifier definition maps to a classifier as specified in the subclause for the appropriate

kind of classifier. If the nested classifier definition is a stub declaration, then the stub declaration is
mapped according to the associated subunit definition. The resulting classifier is a nested classifier
of the class.

3. A property definition maps to an owned attribute of the class as specified in Subclause 19.14.

4. An operation definition maps to an owned operation of the class as specified in Subclause 19.15.

See also the mapping for visibility in Subclause 19.2.

Default Constructors and Destructors
1. If a class definition has no operation definitions that are constructors, a public, concrete owned

operation is added to the class with the same name as the class and no parameters and the standard
«Create» stereotype applied. It has a corresponding method activity that is a private owned behavior
of the class with the default behavior described in Subclause 10.5.3.1. Within this behavior,
initializers for attributes of the class are mapped as sequenced structured activity nodes containing
the mappings of the initializer expressions (see Subclause 17.24).

356 Action Language for Foundational UML (ALF) 1.0, Beta 2

2. If a class definition has no operation definitions that are destructors, a public, concrete owned
operation with the name “destroy”, no parameters and the standard «Destroy» stereotype applied is
added to the class. It has a corresponding method activity that is a private owned behavior of the
class with the default behavior described in Subclause 10.5.3.2.

19.6 Active Class Definitions
1. An active class is mapped like a passive class (see Subclause 19.4), except an active class has

isActive=true and the following additional rules for mapping the classifier behavior and receptions.

2. If the behavior clause for an active class is a name, then the classifier behavior for the class is the
named activity. If the behavior clause is a block, then the classifier behavior is an activity with the
activity nodes and edges mapped from the block (see Subclause 18.1).

3. An active feature definition maps to an owned reception of the class as specified in Subclause 19.16.
An active feature stub declaration is mapped according to the associated subunit definition.

19.7 Data Type Definitions
1. A data type definition that is not primitive maps to a data type (that is not an enumeration or a

primitive type).

2. A data type definition that is primitive maps to a primitive type. This primitive type is registered as a
built-in type with the execution factory at the execution locus for the unit (see Subclause 8.2 of the
fUML Specification).

Data Type Members
3. A property definition maps to an owned attribute of the data type as specified in Subclause 19.14.

See also the mapping for visibility in Subclause 19.2.

19.8 Association Definitions
1. An association definition maps to an association.

Association Members
2. A property definition maps to an owned end of the association as specified in Subclause 19.14. All

ends are navigable owned ends of the association.

See also the mapping for visibility in Subclause 19.2.

19.9 Enumeration Definitions
1. An enumeration definition maps to an enumeration.

2. An enumeration literal name maps to an enumeration literal that is an owned literal of the
enumeration and has the given unqualified name.

19.10 Signal (and Signal Reception) Definitions
1. A signal definition maps to a signal.

Action Language for Foundational UML (ALF) 1.0, Beta 2 357

Signal Members
2. A property definition maps to an owned attribute of the signal as specified in Subclause 19.14.

See also the mapping for visibility in Subclause 19.2.

Signal Reception Definition
3. A signal reception definition maps to a signal and a reception for the signal. The signal is mapped as

if the signal reception definition was a signal definition and the signal becomes a nested classifier of
the class mapped from the class definition that is the namespace of the signal reception definition.
The reception becomes an owned reception of the same class.

19.11 Activity Definitions
1. An activity definition that is not primitive maps to an activity. If the activity is a classifier behavior,

it is mapped as active (isActive=true). Otherwise, it is mapped as passive (isActive=false). The body
of an activity maps as a block (see Subclause 18.1).

2. An activity definition that is primitive maps to an opaque behavior. An execution prototype for the
opaque behavior is registered as a primitive behavior with the execution factory at the execution
locus for the unit (see Subclause 8.2 of the fUML Specification). However, how this execution
prototype is created is tool specific and not defined in the Alf standard.

Activity Members (Formal Parameters)
3. A formal parameter maps to an owned parameter of the activity (see Subclause 19.13). The type and

multiplicity of a formal parameter are mapped as specified in Subclause 19.13.

4. Each in and inout parameter of the activity maps to an input activity parameter node for the
parameter. Each such node is connected by an outgoing object flow to a fork node. This fork node
acts as the (initial) assigned source for the values of the parameter within the activity (see also
Subclause 17.4 on the reference to parameters by name).

5. Each inout, out and return parameter of the activity maps to an output activity parameter node for
the parameter. For each inout and out parameter, the activity includes an object flow from the
assigned source, if any, for the parameter name after the activity block. For the further mapping for
return parameters, see the mapping for return statements (in Subclause 18.13).

NOTE.
Even though activities are classes in UML, Alf does not provide any notation for defining attributes,
operations or receptions for activities. However, in order to allow for the use of Alf representation for
activities in larger enclosing models not represented in Alf, Alf allows activity model units to be active
and to have attributes, operations and receptions as features. But, since, these features cannot be
represented in Alf, it is tool specific how these features are attached to the activity.

Alf also does not provide any notation for specifying superclasses for an activity. However, Alf allows a
tool to provide means for specifying the superclasses for an activity (which may be regular classes or
activities) otherwise represented as an Alf model unit. Members are inherited from activity superclasses
in the same way as for regular classes (see Subclauses 10.4.2 and 10.4.3). But the semantics for
inheritance of behavior from activity superclasses is not specified.

358 Action Language for Foundational UML (ALF) 1.0, Beta 2

19.12 Typed Element Definitions
1. A typed element definition maps to an element that is both a typed element and a multiplicity

element, as given for the specific kind of typed element definition in the appropriate subsequent
subclause.

Typed Element
2. The type of the typed element definition maps to the type of the typed element.

Multiplicity Element
3. The lower attribute of the multiplicity element is a literal integer for the value given by the lower

attribute of the typed element definition.

4. The upper attribute of the multiplicity element is a literal unlmited natural for the value given by the
upper attribute of the typed element definition.

5. The isUnique and isOrdered attributes of the multiplicity element are set according to the
isNonUnique (with opposite sense) and isOrdered attributes of the typed element definition

19.13 Formal Parameters
1. A formal parameter maps to a parameter of an activity or an operation with the given name and

direction. Its type and multiplicity are mapped as given in Subclause 19.12.

19.14 Property Definitions
1. A property definition maps to a property with the given name that is a structural feature of the

classifier mapped from the classifier definition that is the namespace of the property definition. Its
type and multiplicity are mapped as given in Subclause 19.12.

2. If the property definition is composite, then the property has aggregation=composite. Otherwise it
has aggregation = none.

3. An initializer expression is not mapped as part of the property definition, but, rather, as part of the
mapping of the constructor(s) for the owning class (see Subclause 19.5Error: Reference source not
found).

19.15 Operation Definitions
1. An operation definition maps to an operation with the given name and isAbstract value that is an

owned operation of the class mapped from the class definition that is the namespace of the operation
definition.

2. A formal parameter that is a member of an operation definition maps to an owned parameter of the
operation (see Subclause 19.13).

3. If an operation declaration has redefined operations, then the operation has the these redefined
operations.

4. If an operation definition has a body, then the operation has an associated activity (owned by the
class of the operation) as its method, with the body mapped as if it was the body of an activity
definition for this activity (see Subclause 18.1). The activity has an owned parameter corresponding,

Action Language for Foundational UML (ALF) 1.0, Beta 2 359

in order, to each owned parameter of the operation (see the mapping of formal parameters, below),
with the same name, type, multiplicity and direction as the operation parameter.

5. If an operation definition is a stub, then its associated subunit maps to an activity. This activity
becomes the method of the operation mapped from the operation definition.

Constructors
6. If the operation definition is a constructor, then it has an implicit return parameter with the owning

class as its type. Further, the default constructor behavior (as described in Subclause 19.5) is
included in the mapping of the operation body, sequentially before the explicit behavior defined for
the constructor.

NOTE. If the method of a constructor operation is represented as an Alf statement sequence, but the
operation is not itself represented using Alf textual notation, then the Alf standard does not specify the
mapping of any behavior for the operation than that given in the explicit statement sequence. However, a
modeling tool may insert additional behavior at the start of the constructor method, such as the default
constructor behavior described above as part of the mapping of an Alf-represented constructor.

19.16 Reception Definitions
1. A reception definition maps to an reception with the given name and signal that is an owned

reception of the active class mapped from the active class definition that is the namespace of the
reception definition.

360 Action Language for Foundational UML (ALF) 1.0, Beta 2

PART V - ANNEXES

Annex A Semantic Integration with State Machines and
Composite Structure (informative)
Subclause 6.1 describes the normative requirements for integrating the use of Alf text into the context of
a larger UML model. In all such cases, the execution semantics of Alf are defined by the mapping of Alf
to fUML. However, the UML models in which Alf may be used will likely often include constructs that
are outside the fUML subset, with execution semantics as given in the UML Superstructure standard,
but not covered by the fUML Specification. Some care must therefore be taken in understanding the
semantic integration of Alf-specified behaviors with the constructs in which those behaviors are
embedded.

This annex suggests how such an integration can be understood for the important cases of state machines
(see UML Superstructure, Clause 15) and composite structure (see UML Superstructure, Clause 9).
However, the approaches suggested here are not normative, both because the issues of this integration
go beyond the basic requirements for the standard UML action language and because the UML
Superstructure specification allows some variation in how this integration may be done. It is expected
that normative semantic integration of state machines and composite structure with Alf (and fUML) will
be addressed as a part of future standards that further formalize the execution semantics of those
constructs.

A.1 State Machines
State machines are a commonly used mechanism for modeling state-dependent behavior in UML.
Clause 15 of the UML Superstructure defines execution semantics for state machines. However, to be
fully executable, it is necessary to also provide executable specifications for transition guard expressions
and effect behaviors and state entry, exit and do-activity behaviors. One of the principal uses for UML
action languages has been to specify such behaviors.

In this regard, it is to be expected that a common use of Alf will be to write the executable specifications
of behaviors owned by state machines. Therefore, even though state machines are not themselves part of
the fUML subset, it is important to understand how the formal execution semantics of Alf can be
integrated with the semantics of state machines as given in Clause 15 of the UML Superstructure. An
approach to such integration is described below for behaviors attached to state machine transitions and
states.

Annex B.2 provides an example of the use of Alf within a state machine model.

Transitions
Subclause 15.3.14 of the UML Superstucture defines the default notation for labeling a transition in a
state machine. In the EBNF format used for Alf (see Table 6-1 in Subclause 6.3 below), this notation is:
Transition =

[Trigger { "," Trigger } ["[" GuardConstraint "]"]
["/" BehaviorExpression]]

Action Language for Foundational UML (ALF) 1.0, Beta 2 361

Subclause 13.3 of the UML Superstructure defines the textual notation for triggers of the various kinds
of events. For the purposes of integration with Alf, guard constraints and behavior expressions may be
defined as follows:
GuardConstraint = Expression
BehaviorExpression = Name | StatementSequence
with Expression as given in Subclause 8.1, Name as given in Subclause 7.5 and StatementSequence as
given in Subclause 9.1.

The guard constraint and behavior expression in a transition are semantically mapped to fUML as
follows, with the given constraints.

• A guard constraint expression must have type Boolean. The Alf expression for a guard constraint is
mapped to an activity with a return parameter of type Boolean and no other parameters (as discussed
in Subclause 8.1).

• If a behavior expression is given by a name, then this must be the name of the effect behavior owned
by the transition. The named behavior may be specified by any means supported by the execution
tool, in Alf or otherwise.

• If a behavior expression is given as an Alf statement sequence, then it maps to an activity (see
Subclause 9.1).

Consistent with UML Superstructure, Subclause 15.3.14, the execution of a transition proceeds as
follows:

1. If all the source states of the transition are in the active state configuration (or the source of the
transition is a choice point that has been reached), one of the triggers of the transition is satisfied by
the event occurrence being dispatched, and the transition has a guard constraint, then the guard
constraint behavior is invoked synchronously. The execution object for the call is destroyed once the
invocation is completed (see fUML Specification, Subclause 8.4.2.1, for an overview of execution
objects in fUML). If the transition has a guard constraint that returns false, then the execution of the
transition completes without further effect. Otherwise the transition is enabled to fire.

2. If the transition is enabled, then it may be selected to fire (per the rules of UML Superstructure,
Subclause 15.3.14). If it is not selected, then its execution completes without further effect.
Otherwise, execution proceeds as described below. (The description below only involves the
execution of the transition behavior itself. For the specification of the effect of the transition on the
state machine state configuration, see UML Superstructure, Subclause 15.3.14.)

3. If the transition has an effect behavior, then this behavior is invoked synchronously. The execution
object for the invocation is destroyed once the invocation is completed (see fUML Specification,
Subclause 8.4.2.1, for an overview of execution objects in fUML).

States
A state may optionally have an entry behavior, an exit behavior and/or a do-activity behavior. If a state
has one or more of these behaviors, then this is notated in the internal activities compartment of the
graphical symbol for the state as follows (see UML Superstructure, Subclause 15.3.11).
InternalActivity = ActivityLabel "/" BehaviorExpression
ActivityLabel = "entry" | "exit" | "do"
where BehaviorExpression is as given above.

362 Action Language for Foundational UML (ALF) 1.0, Beta 2

The behavior expression in an internal activity specification is semantically mapped to fUML as
follows, with the given constraints.

• If a behavior expression is given by a name, then this must be the name of the corresponding internal
activity behavior owned by the state. The named behavior may have no parameters, and it may be
specified by any means supported by the execution tool, in Alf or otherwise.

• If a behavior expression is given as an Alf statement sequence, then it maps to an activity with no
parameters (see Subclause 9.1).

Consistent with UML Superstructure, Subclause 15.3.11, the execution of the internal activities of a
state proceeds as follows.

1. If a state has an entry behavior, then this behavior is executed whenever the state is entered, before
any other action is taken. The behavior is invoked synchronously and the execution object for the
invocation is destroyed once the invocation is complete (see fUML Specification, Subclause 8.4.2.1,
for an overview of execution objects in fUML).

2. If a state has a do-activity behavior, then this behavior begins executing whenever the state is
entered, after the completion of the execution of the entry behavior (if any). The behavior is invoked
asynchronously and it continues to execute while the state machine is in the state that owns it. When
the owning state is exited for any reason, the do-activity execution object is destroyed (see fUML
Specification, Subclause 8.4.2.1, for an overview of execution objects in fUML), which terminates
the execution, if it is still on-going. If the do-activity behavior execution for a state terminates while
the state machine is still in the owning state, and that state has an outgoing completion transition,
then the state is exited, causing the do-activity execution object to be destroyed.

3. If a state has an exit behavior, then this behavior is executed whenever the state is exited, after the
destruction of the do-activity execution object (if any). The behavior is invoked synchronously and
the execution object for the invocation is destroyed once the invocation is complete (see fUML
Specification, Subclause 8.4.2.1, for an overview of execution objects in fUML).

Current Event Data
An event occurence that is dispatched for processing is known as the current event (see UML
Specification, Subclause 13.3.31). If this is a signal or call event, then there may be data associated with
the event occurrence: signal attribute values for a signal event or operation input parameter values for a
call event. It is often necessary that transition and state behaviors to access such current event data for
the event occurences that trigger them.

There is currently no universally accepted, standard approach in UML for accessing current event data.
This means that usually some tool-specific convention is adopted.

One popular approach is to make some sort of “current event variable” available within action language
text, through which the current event data can be accessed. This works particularly well for signal
events, for which such a variable can hold the signal instance for the current event. It is less well suited
for call events, for which there is no specific single value associated with the call, and some convention
is required for individually accessing operation parameters.

Unfortunately, there is no direct support in the UML action metamodel (let alone the fUML subset) for
referring to any sort of current event variable. One related alternative approach is to provide access to
current event data through calls to library functions, which can be invoked using normal call behavior
actions. However, since such library functions cannot depend on specific signals and operations, the data

Action Language for Foundational UML (ALF) 1.0, Beta 2 363

they return had to be untyped, requiring the caller to do careful type testing and casting on the returned
data.

Now, the UML Superstructure specification does actually include a textual notation for specifying the
names to be associated with signal or call events (see the Notation sections of Subclauses 13.3.6,
13.3.25 and 15.3.14). This notation is known as an assignment specification:
CallEvent = Name ["(" AssignmentSpecification ")"]
SignalEvent = Name ["(" AssignmentSpecification ")"]
AssignmentSpecification = AttrSpec ["," AttrSpec]
AttrSpec = Name [":" TypeName]
An assignment specification may be included (but is not required) for a call event for an operation with
parameters (other than a return parameter) or a signal event for a signal with attributes. The stated
semantics of an assignment specification require that the given names be names of attributes of the
context classifier for the state machine owning the transition and that the corresponding current event
data are assigned to attributes so named.

However, the abstract syntax for events does not provide any way to capture such assignment
specifications. Since UML semantics is formally defined on the abstract syntax, not any particular
concrete syntax, there is no clear way to formalize the semantics given for the assignment specification
notation.

One possible alternative is to use the assignment specification notation, but to treat the notation as
specifying parameters with the given names on the effect behavior for the transition. Then, when that
behavior is invoked, the current event data can be assigned to the behavior input parameters. For call
events, the behavior would have parameters corresponding to both the input and output parameters of
the called operation, with output parameters assigned after the behavior completes execution.

For this alternative, the effect behaviors on transitions would have to meet the following contraints.

• If a transition has more than one trigger or it has a single trigger that is not for a call event or a signal
event, then its effect behavior (if any) may not have any parameters. If a transition has a single
trigger for a call event or a signal event, then it may, but is not required, to have parameters, as given
below.

• The effect behavior for a transition with a single trigger for a call event may have parameters that
correspond, in order, to each of the parameters of the called operation. The direction, type and
multiplicity of the behavior parameters must be the same as those of the corresponding operation
parameters, but the names may be different.

• The effect behavior for a transition with a single trigger for a signal event may have in parameters
that correspond, in order, to each of the attributes of the received signal. The type and multiplicity of
the behavior parameters must be the same as those of the corresponding signal attributes, but the
names may be different.

The assignment specification notation could then be used to show the names (and optionally the types)
of the parameters of the effect behavior of a transition (other than the return parameter for a call event).

The advantage of this approach for Alf semantic integration is that, if an effect behavior with parameters
as given above is specified using Alf, then the named parameters can be accessed as usual as local
names within the Alf text (see Subclauses 8.3.3 and 8.8), and a return value (as appropriate for a call
event) can be given using a return statement (see Subclause 9.14). A disadvantage is that these
parameters are only available in the single effect behavior corresponding to the call event or signal event

364 Action Language for Foundational UML (ALF) 1.0, Beta 2

trigger. Input parameter values could be explicitly copied to context classifier attributes in order to make
them to be available to, e.g., behaviors on downstream segments of a compound transition or on entry or
exit behaviors. And there would be no easy way at all to give values for output or return parameters
outside of the original effect behavior.

A.2 Composite Structure
Clause 9 of the UML Superstructure defines the ability for modeling the composite structure of certain
kinds of classifiers. This capability is widely used for modeling the hierarchical structure of large
systems and systems of systems. It is also provides the basis for the structuring and encapsulation
mechanisms commonly used with components (see UML Superstructure, Clause 8).

While neither composite structure nor components are part of the fUML subset, it is to be expected that,
in larger models, executable behaviors will often be nested in some way within a component or other
structured classifier. Fortunately, with certain restrictions, a composite structure model can be
understood as an instruction for constructing a specific set of run-time objects connected by links, which
may then be interpreted according to fUML semantics. This integration is described below.

Annex B.3 provides an example of the use of Alf to specify executable behavior within the context of a
composite structure model.

Parts and Connectors
A part of a structured classifier is simply a property that is an owned attribute of that classifier with
composite aggregation. When an instance of a structured classifier is created, instances are created to fill
the parts of the classifier, consistent with the multiplicity of those parts. Such instantiation may be
specified using an instance model or through an explicit constructor operation. (See UML
Superstructure, Subclause 9.3.13.)

The parts of a structured classifier may also act as the end points for connectors. A connector is a
“specification of a link that enables communication between two or more instances” (UML
Superstructure, Subclause 9.3.6). When an instance of a structured classifier is created, links are created
between instances of parts of the classifier corresponding to any connectors between the parts, consistent
with the multiplicity of the connector ends and of the parts (see UML Superstructure, Subclause 9.3.13).

A connector may optionally be typed by an association, in which case the links it specifies are instances
of that association. According to UML Superstructure, Subclause 9.3.6, if the type of a connector that is
omitted, the type is inferred based on the elements at the ends of the connector. The links specified by
the connector are then instances of this inferred association, which does not actually appear in the
model.

However, fUML semantics for links require that every link have an explicit association as its type unless
it has been destroyed (see fUML Specification, Subclause 8.3.2.2.11). Therefore, for the purposes of
integration with fUML execution, connectors must always have a modeled association as an explicit
type. Further, as required in the fUML subset, every such association must own all its association ends.

NOTE. A tool does not actually have to require that a user explicitly create such a type for every
connector. In fact, connector type does not even have to be an explicitly modeled association, as long as
the tool does not compile Alf text to activity models and it provides some convention for naming the
implicit connector type association (perhaps using the name of the connector or its ends). However, if
Alf text navigating across a connector is compiled to an fUML-conformant activity, then the type of the
connector must be physically in the model, so it can be referenced from appropriate actions in the

Action Language for Foundational UML (ALF) 1.0, Beta 2 365

activity, though it could be automatically created by the tool rather than having to be explicitly added by
the user.

With the above restriction, once an instance of a structured classifier is constructed, its composite
structure at run-time is simply the set of instances assigned to its parts, possibly interconnected by links
of explicitly defined associations. While the fUML semantics do not provide a formal definition of how
the construction of such an instance happens relative to the composite structure of its classifier, the
resulting run-time structure is fully within the subset covered by fUML semantics. Therefore, Alf may
be use to specify behavior related to the structured classifier based solely on modeling capabilities
within the fUML subset, such as classes, attributes and associations.

For example, if a class C has a part a whose type is class A and a part b whose type is class B, with a
connector between then whose type is association R, then the methods of operations of C can access
parts a and b as a regular attributes of C. Further, behavior associated with class A can navigate as usual
across association R in order to access the opposite instance of class B. And, for any instance that fills
the part C::a, the opposite end of R is guaranteed by the semantics of composite structures and
connectors to the instance that fills C::b—even though this is not formalized in fUML semantics,
presumably this will be the semantics provided by any execution tool that supports UML composite
structure.

Ports
A port represents an interaction point between an encapsulated classifier and its environment (see UML
Superstructure, Subclause 9.3.11). The allowed interactions are specified using interfaces—provided
interfaces specify requests the environment can make on instances of the classifier, while required
interfaces specify request that instances of the classifier can make on the environment.

Ports are connectable elements. A connector that connects compatible ports on two internal parts of a
structured classifier is known as an assembly connector. A connector that connects a port on a classifier
to a compatible port on an internal part of that classifer is known as a delegation connector. (See UML
Superstructure, Subclause 8.3.3, for the definition of assembly versus delegation connectors. Note that
the connector kind is a derived attribute, based on the usage of the connector, not a flag that has to be set
by the modeler.)

In addition, a delegation connector may be used to connect a port on a classifier directly to an internal
part of that classifier. Requests to the provided interfaces of the port are then delegated directly to the
internal part. Further, the internal part may send requests out through the required interfaces of the port.

Integration with fUML execution may be achieved by using fUML-subset capabilities to specify the
behavior of an internal part connected to a port by a delegation connector. For the purposes of this
integration, the part must realize all of the provided interfaces of the port, which must only have features
that conform to the fUML subset. This allows requests received on the port to be delegated as normal
invocations on the behavior of the internal part.

If a port does not have any required interfaces, then the delegation connector for it does not need to be
explicitly typed by an association, since internal parts then have no need to send requests through the
connector. However, if the port has one or more required interfaces, then the delegation connector must
be explicitly typed by an association, where the type of the association end corresponding to the
connector end connected to the port is a class that realizes all the required interfaces of the port. This
allows requests sent out through the port to be modeled in the behavior of the internal part as normal
invocations across the association.

366 Action Language for Foundational UML (ALF) 1.0, Beta 2

NOTE. The specific requirements above should be considered to supercede the informally specified
constraints in UML Superstrucure, Subclause 9.3.6, on the compatibility of connectable elements at the
ends of a connector with each other and with the types of the ends of the association typing the
connector.

Interfaces and interface realization are not actually part of the fUML subset. However, a class that
realizes an interface must itself own features that are compatible with all the features specified as part of
the interface. Therefore, once the constraints of the interface realization are enforced, the realizing class
implements within itself the features required by the interface and the interface realization relationship
can then be ignored for the purposes of execution.

At run-time, an instance filling the internal part will be connected by a link (that is an instance of the
association typing the delegation connector) to an instance of a class that realizes the required interfaces
of the ports. The internal part instance may make calls on the opposite object over the link, and vice
versa, per regular fUML semantics. Note that what instance is actually provided on the opposite end of a
delegation link is execution tool specific—for example, it may be the ultimate end object or it may be an
intermediate proxy object—but it must always have a type that realizes all the required interfaces of the
delegated port.

For example, suppose a class has a port with a provided interface P that has an operation x and a
required interface R that has an operation y and that this port is connected to an internal part whose type
is class A. Then class A must realize interface P and have an operation that conforms to P::x. Further,
the behavior of class A may navigate across the association typing the delegation connector in order to
call the operation R::y.

Action Language for Foundational UML (ALF) 1.0, Beta 2 367

Annex B Extended Examples (informative)
B.1 Quicksort Activity
This simple example presents the Quicksort algorithm in two forms: a “functional” form (see Annex
B.1.1) similar to how the algorithm might be naturally expressed in a functional programming language
and an “in place” form (see Annex B.1.2) that makes efficient use of memory. The intent is to show the
flexibility of the Alf notation in expressing different algorithmic styles while maintaining a consistent
underlying semantic mapping.

For completeness, both forms of the example are notated as complete Alf activity definitions. While
such unit definitions are only available at the extended conformance level, the statement sequences
bodies of these definitions could alternatively be attached to UML model as behavioral snippets, for
example by including the Alf text as the body of an opaque behavior (see Subclause 9.1). In this case,
the functional implementation would conform entirely to the full conformance level and the “in place”
implementation would conform entirely to the minimum conformance level.

B.1.1 Quicksort Functional Implementation
The Quicksort activity noted below highlights the flow-oriented capabilities and concise OCL-like
notation available in Alf at the full conformance level. Figure B-102 shows a graphical representation of
this same activity.
activity Quicksort(in list: Integer[0..*] sequence):
 Integer[0..*] sequence // See Note 1
{
 if (list->isEmpty()) { // See Notes 2 & 3
 return null; // See Notes 4 & 5
 }
 x = list[1]; // See Notes 6 & 7
 list->removeAt(1);
 return Quicksort(list->select a (a < x))-> // See Note 8
 including(x)->
 union(Quicksort(list->select b (b >= x)));
}
Notes
1. Alf allows the use of the usual UML multiplicity notation (see Subclause 10.5.2). The keyword

“sequence” indicates that the input list is an ordered sequence of integers that allows repetition of
values.

2. An Alf if statement has a C-like syntax and similar semantics (see Subclause 9.8).

3. An OCL-like notation can be used for sequence operations (see Subclause 8.3.17) such as isEmpty.

4. As would be expected, a return statement is used in Alf to provide the return value for an activity
(see Subclause 9.14).

5. In Alf, “null” denotes the empty set (see Subclause 8.3.15).

6. Alf uses the C-like notation of “=” for assignment (and “==” for equality). However, Alf does not
require that the types for local names be explicitly declared (see Subclause 9.6). The type for x is
determined implicitly here as Integer, the result type of the expression being assigned to the name.

368 Action Language for Foundational UML (ALF) 1.0, Beta 2

Alternatively, Alf also allows explicit type declaration, either in the form “let x: Integer =
list[1];” or the C-like form “Integer x = list[1];”.

7. Alf provides a familiar index notation for accessing the elements of a sequence (see Subclause
8.3.16). Note, however, that indexing is from 1, not 0.

8. Alf provides on OCL-like notation for flow expansion expressions (see Subclause 8.3.18). The
expression “list->select a (a < x)” is used to select all elements of list that are less than x.
Note that there is no required ordering of the tests on the elements of list, which may all be carried
out concurrently.

There are two major notational differences from OCL. First, the notation for an iterator variable is
different. Instead of the OCL form “select(a | …)”, Alf uses “select a (…)”. This avoids
ambiguity with the use of “|” for the Boolean “or” operator in Java/C syntax. Second, Alf requires
that an iterator variable always be given. Java-like expression syntax is not as rigorously object-
oriented as OCL syntax, and, therefore, not as amenable to an implicit form for the iterator context.
By requiring that the iterator variable be explicit, no special form is necessary for the expressions
used within the collection operation construct. For example, the OCL expression “devices->
select(oclIsKindOf(Sensor))” is written in the form “devices->select device (device
instanceof Sensor)” in Alf.

Action Language for Foundational UML (ALF) 1.0, Beta 2 369

Figure B-102 Activity Diagram for Quicksort

370 Action Language for Foundational UML (ALF) 1.0, Beta 2

B.1.2 Quicksort “In Place” Implementation
The QuicksortInPlace activity notated belowhighlights the flexibility of Alf to all both a functional or
procedural implementation of the algorithm equally naturally. The procedural notation used in this form
is entirely available at the minimum conformance level and is very similar syntactically to code in C or
Java. (The equivalent graphical representation of this activity is too complicated to easy show here.)
activity QuicksortInPlace
 (inout list: Integer[0..*] sequence, // See Note 1
 in low: Integer, in high: Integer)
{
 if (low < high) {
 l = low; // See Note 2
 h = high;
 p = list[high];

 do { // See Note 3
 while ((l < h) && (list[l] <= p)) { // See Note 4
 l = l+1;
 }
 while ((h > l) && (list[h] >= p)) {
 h = h-1;
 }
 if (l < h) {
 t = list[l];
 list[l] = list[h];
 list[h] = t;
 }
 } while (l < h);

 t = list[l];
 list[l] = list[high];
 list[high] = t;

 QuicksortInPlace(list, low, l-1);
 QuicksortInPlace(list, l+1, high);
 }
}
Notes
1. Alf allows activity parameters with any of the UML directions, including out and inout (see

Subclause 10.4.8).

2. Statements within the statement sequence of a block delimited by “{…}” are executed sequentially
(see Subclause 9.1).

3. An Alf do…while statement has the familiar C-like syntax and semantics (see Subclause 9.11).

4. Alf uses the usual infix notation for arithmetic and relational operations (see Subclauses 8.6.1 and
8.6.4). The conditional and operator “&&” has the C-like semantics of only evaluating its second
argument if the first argument is true (see Subclause 8.6.8).

Action Language for Foundational UML (ALF) 1.0, Beta 2 371

B.2 Online Bookstore
This example is adapted from (a portion of) the Online Bookstore Domain Case Study given in
Appendix B of the book Executable UML: A Foundation for Model Driven Architecture by Stephen J.
Mellor and Marc J. Balcer (Addison-Wesley, 2002).

B.2.1 Graphical Model for Ordering
This example will focus only on the Ordering package for the Online Bookstore. Figure B-103 shows a
class diagram for this package.

Figure B-103 Ordering Subsystem Class Diagram

372 Action Language for Foundational UML (ALF) 1.0, Beta 2

As indicated in Figure B-103, each of the classes shown is an active class. This means that each one has
a classifier behavior triggered by a number of signal events. Only the class Order from the Ordering
package will be further detailed in this example. Figure B-104 shows the state machine that is the
classifier behavior for class Order.

Figure B-104 State Machine Classifier Behavior for Class Order

The triggers on the transitions in this state machine are all for signal events. Of the five different signals
shown, only CheckOut and SubmitCharge carry data. For simplicity, each of these signals has a single
attribute whose type is a data type that contains the appropriate data for the signal.

As discussed in Annex A.1, the trigger notation “CheckOut(checkOutData)” is used here to indicate
that the effect behavior for the transition has a single in parameter corresponding to the single attribute
of the CheckOut signal. As shown in Figure B-104 the effect behavior for the transition assigns the
parameter to a correspondingly named attribute of class Order, which can then be accessed by the entry
behavior of the target state. A similar strategy is used for the transitions triggered by the SubmitCharge
signal. (Note that a tool could provide support for automatically generating effect behaviors with such
attribute assignments and then suppressing the behavior from the diagram, thus effectively providing the
“assignment specification” semantics intended in the UML Specification, Subclause 15.3.14.)

Action Language for Foundational UML (ALF) 1.0, Beta 2 373

Figure B-105 shows a complete model for class Order, including the (private) attributes checkOutData
and chargeSubmissionData. This model also includes receptions (indicated by the «signal» keyword)
that declare the ability of Order to receive each of the signals used in the triggers in the state machine
shown in Figure B-104. Note that these receptions have the same names as their respective signals.

Figure B-105 Active Class Order
Each of the states shown in Figure B-104 has an entry behavior that is executed whenever the state is
entered. The bodies of these entry behaviors are specified below using Alf notation. The names shown in
the entry notation are the names of the behaviors (see also Annex A.1 on this notation).

B.2.2 Alf Representation of Entry Behaviors
This section includes an Alf representation for each of the entry behaviors identified in Figure B-104.
Each behavior is defined as an Alf unit for an activity that is attached to the appropriate state as its entry
behavior.

NOTE. As discussed in Subclause 9.1, a modeling tool could also define each of the entry behaviors as
opaque behaviors, with the Alf text for the behavior as the body of the opaque behavior. In this case, the
Alf text would only include the statement sequences from the activity definitions given below, not the
full unit definition, which would not require the extended conformance level notation for units.

374 Action Language for Foundational UML (ALF) 1.0, Beta 2

B.2.2.1 Activity EstablishCustomer
private import TIM;
/** // See Note 1
Entry action for State 1. Establishing Customer and Verifying Payment
*/
activity EstablishCustomer()
{
 R2.createLink (// See Note 2
 'selections are purchased in' => this,
 'is a purchase of selections in' => this.checkOutData.cart
);

 // Create a Customer if one does not already exist
 // with the given email address
 matchingCustomers = Customer -> select c // See Note 3
 (c.email == this.checkOutData.customerEmail);

 if (matchingCustomers->isEmpty()) {
 customer = new Customer(); // See Note 4
 customer.email = this.checkOutData.customerEmail;
 } else {
 customer = matchingCustomers[1]; // See Note 5
 }

 // Use the name, address, etc. to update Customer
 // whether new or existing
 customer.name = this.checkOutData.customerName;
 customer.shippingAddress = this.checkOutData.shippingAddress;
 customer.phone = this.checkOutData.customerPhone;

 // Link the order to the customer
 R3.createLink (
 places => this,
 'is placed by' => customer
);

 // Set the date order placed to today
 this.dateOrderPlaced = TIM::GetCurrentDate();

 // Create a credit card charge and submit it
 // to the credit card company
 this.SubmitCharge(// See Note 6
 new ChargeSubmissionData (// See Note 7
 accountNumber => this.checkOutData.accountNumber,
 billingAddress => this.checkOutData.billingAddress,
 cardExpirationDate => this.checkOutData.cardExpirationDate,
 cardholderName => this.checkOutData.cardholderName
)
);
}

Action Language for Foundational UML (ALF) 1.0, Beta 2 375

Notes
1. Text (possibly across multiple lines) bracketed by “/**” and “*/” denotes a documentation

comment that is attached to the model element in which it appears. On the other hand, text that
begins with “//” is a lexical comment that is not mapped into any model element.

2. Links are instances of associations. The notation “R1.createLink” indicates the creation of a new
link of the association R1, with the following tuple giving the association end data. This maps to a
create link action.

3. The class name “Customer” here denotes the current extent of that class. In this context, it is a
shorthand for the notation “Customer.allInstances()”. The select expression then selects the
customers with e-mail addresses matching the one given in the received event.

4. There is no constructor operation defined for class Customer, so the notation “new Customer()” is
a “constructorless” instance creation expression the simply creates a new instance of Customer.
Further, since Customer is an active class, the active behavior of the new instance is also
automatically started.

5. Alf uses an array-like notation for indexing ordered collections. In this case, the notation
“matchingCustomers[1]” denotes getting the first element of the list of matching customers. Note
that lists are indexed starting at 1.

6. Alf uses the same invocation notation for sending a signal as for calling an operation. Sending a
signal is indicated by the selected feature (“SubmitCharge” in this case) being the name of a
reception of the given target object (“this”).

7. The SubmitCharge signal has a single attribute of type ChargeSubmissionData. Since
ChargeSubmissionData is a data type, an instance expression for it has as its arguments values for
each of the attributes of the newly created data value. Alf allows for a named-parameter notation,
used here, in which the names “accountNumber”, “billingAddress”, etc. are interpreted as the
names of arguments for constructing the ChargeSubmissionData value.

B.2.2.2 Activity ProcessCharge
private import Ordering::CreditCardCharge::ChargeData;
/**
Entry behavior for State 2. Submitting Charge
*/
activity ProcessCharge()
{
 // Create a Credit Card Charge and submit it
 // to the credit card company
 creditCardCharge = new CreditCardCharge();
 creditCardCharge.MakeCharge(
 new ChargeData (
 accountNumber => this.chargeSubmissionData.accountNumber,
 billingAddress => this.chargeSubmissionData.billingAddress,
 cardExpirationDate => this.chargeSubmissionData.cardExpirationDate,
 chargeAmount => this.totalValue,
 order => this
)
);
}

376 Action Language for Foundational UML (ALF) 1.0, Beta 2

B.2.2.3 Activity DeclineCharge
private import EE_OnlineCustomer;
/**
Entry behavior for State 3. Payment Not Approved
*/
activity DeclineCharge()
{
 // Notify the customer that the charge was rejected
 customer = this.'is placed by';
 EE_OnlineCustomer.ChargeDeclined(customerEmail => customer.email);
}

B.2.2.4 Activity PackAndShip
private import EE_OnlineCustomer;
private import Shipping::Shipment;
/**
Entry behavior for State 4. Being Packed and Shipped
*/
activity PackAndShip()
{
 // Notify the customer that the charge was approved
 // and the order will be shipped
 customer = this.'is placed by';
 EE_OnlineCustomer.ChargeApproved(customerEmail => customer.email);

 // Create a shipment to send the order to the customer
 shipment = new Shipment();
 shipment.RequestShipment(order => this);
}

B.2.2.5 Activity NotifyOfDelivery
private import EE_OnlineCustomer;
/**
Entry behavior for State 5. Delivered to Customer
*/
activity NotifyOfDelivery()
{
 // Notify the customer that the Order
 // has been delivered
 customer = this.'is placed by';
 EE_OnlineCustomer.OrderReportedDelivered(customerEmail => customer.email);
}

B.2.3 Alf Representation of the Ordering Model
The previous subsections describe a typical scenarion in which an overall UML model is represented
largely graphically, with various behavioral snippets represented textually in Alf. However, at the
extended conformance level, Alf also includes notation for structural models, such as packages, classes
and associations (see Clause 10). This subsection shows how the models for the package Ordering and
the class Order, represented graphically in Annex B.2.1, can alternatively be represented textually in
Alf.

Action Language for Foundational UML (ALF) 1.0, Beta 2 377

B.2.3.1 Package Ordering
private import EE_OnlineCustomer;
private import ProductSpecification::Product;
private import DomainDataTypes::*; // See Note 1

/**
Online Bookstore, Ordering Subsystem
*/
package Ordering
{
 public active class ShoppingCart; // See Note 2
 public active class Order;
 public active class CreditCardCharge;
 public active class Customer;
 public active class ProductSelection;

 public assoc R1
 {
 public 'selections are added to': ShoppingCart[0..*]; // See Note 3
 public 'includes selections of': Product[1..*];
 public 'product selection is': ProductSelection;
 }

 public assoc R2 {
 public 'selections are purchased in': Order[0..1];
 public 'is a purchase of selections in': ShoppingCart;
 }

 public assoc R3 {
 public places: Order[1..*];
 public 'is placed by': Customer[0..1];
 }

 public assoc R4 {
 public 'is an attempt to pay for': Order;
 public 'payment is attempted by': CreditCardCharge[0..*];
 }

 public assoc R5 {
 public 'pays for': Order[0..1];
 public 'is paid for by': CreditCardCharge[0..1];
 }
}
Notes
1. The clause “private import ProductSpecification::Product;” denotes an element import of

the Product class in the ProductSpecification package. Use of “private” indicates a private
import—“public import ProduceSpecification::Product;” would indicate a public import.
Similarly. “private import DomainDataTypes::*;” denotes the (private) package import of the
package DomainDataTypes. That is, it is not just the package DomainDataTypes that is being
imported, but all the elements of that package.

2. All the classes in this package have classifier behaviors and are thus active. Only stubs are included
in this package specification, with the full definition of the class written separately. The use of stubs

378 Action Language for Foundational UML (ALF) 1.0, Beta 2

is a general option to allow long namespace definitions to be split up into multiple files. In contrast
to the class definitions, the shorter association definitions are included in-line in this example.

3. Names do not have to conform to the usual identifier lexical structure. Such general names are
enclosed in single quotes, as in “'selections are added to'”. Note that every character within
the quotes is significant in the name (including spaces, but tabs and line breaks are not allowed).

B.2.4 Class Order
namespace Ordering;

/**
Active class for managing an order
*/
active class Order
{
 public orderID: arbitrary_id;
 public dateOrderPlaced: date;
 public totalValue: Money;
 public recipient: PersonalName;
 public deliveryAddress: MailingAddress;
 public contactPhone: TelephoneNumber;

 private checkOutData: CheckOutData;
 private chargeSubmissionData: ChargeSubmissionData;

 public datatype CheckOutData
 {
 public cart: ShoppingCart;
 public accountNumber: BankCardAccountNumber;
 public billingAddress: MailingAddress;
 public cardExpirationDate: MonthYear;
 public cardholderName: PersonalName;
 public customerEmail: InternetEmailAddress;
 public customerName: PersonalName;
 public customerPhone: TelephoneNumber;
 public shippingAddress: MailingAddress;
 }

 public datatype ChargeSubmissionData
 {
 public accountNumber: BankCardAccountNumber;
 public billingAddress: MailingAddress;
 public cardExpirationDate: MonthYear;
 public cardholderName: PersonalName;
 }

 public receive signal CheckOut // See Note 1
 {
 public data: CheckOutData;
 }

 public receive signal SubmitCharge
 {
 public data: ChargeSubmissionData;
 }

Action Language for Foundational UML (ALF) 1.0, Beta 2 379

 public receive signal PaymentDeclined{}
 public receive signal PaymentApproved{}
 public receive signal OrderDelivered{}

 private EstablishCustomer(); // See Note 2
 private ProcessCharge();
 private DeclineCharge();
 private PackAndShip();
 private NotifyOfDelivery();

}
do // See Note 3
{

 /** 0. Waiting for Check Out */ // See Note 4
 accept (checkOut: CheckOut); // See Note 5
 this.checkOutData = checkOut.data;

 /** 1. Establishing Customer and Verifying Payment */
 this.EstablishCustomer(); // See Note 6

 while (true) { // See Note 7

 accept (chargeSubmission: SubmitCharge);
 this.chargeSubmissionData = chargeSubmission.data;

 /** 2. Submitting Charge */
 this.ProcessCharge();

 accept (PaymentDeclined) {
 /** 3. Payment Not Approved */
 this.DeclineCharge();

 } or accept (PaymentApproved) { // See Note 8
 break; // See Note 9
 }

 }

 /** 4. Being Packed and Shipped */
 this.PackAndShip();
 accept (OrderDelivered);

 /** 5. Delivered to Customer */
 this.NotifyOfDelivery();

}
Notes
1. The notation “receive signal Checkout” indicates the definition of both a signal called Checkout

within the Order namespace and the definition of a reception of that signal as a feature of the Order
class. A signal definition alone would be denoted “signal Checkout{…}”and a definition of a
reception for that signal would be “receive Checkout”. Note that, unlike the graphical UML
notation, in Alf the attributes (“parameters”) of the signal would not be repeated in the reception
definition.

380 Action Language for Foundational UML (ALF) 1.0, Beta 2

2. Rather than standalone activities, the effective “entry behaviors” are now specified as privately
owned operations of class Order. However, other than the different containing namespace, the
definitions of the activities that provide the methods for these operations are exactly the same as
given in Annex B.2.2. (Note that fUML semantics ensures that the correct context object for “this”
references is propagated to operations called from the body of a classifier behavior.)

3. The “do” part of an active class definition gives its classifier behavior. Since Alf does not provide a
notation for state machines, the classifier behavior for Order is specified here as an equivalent
activity.

4. A documentation comment in this position attaches to the model element mapped from the following
statement.

5. The “accept” statement waits for reception of the indicated signal and then continues. The name
checkOut is given to the signal instance that is received.

6. Alf uses the usual object-oriented procedural notation for operation invocation.

7. The while statement provides structured iteration.

8. This is a compound accept statement. The additional “or accept” clause indicates waiting for
reception of either a PaymentDeclined or a PaymentApproved signal. If a PaymentDeclined signal
is received, then the statements associated with that accept clause (“this.DeclineCharge();”) are
executed. If a PaymentAccepted signal is received, then the statements associated with its accept
clause (“break;”) are executed.

9. The break statement terminates the enclosing while loop.

Action Language for Foundational UML (ALF) 1.0, Beta 2 381

B.3 Property Management Service
The following is an example of using Alf to specify the methods for operations within the context of a
larger model. This context is a simplified model for a service-oriented architecture for property
management (where the term “property” is used here in the sense of “tangible asset”—e.g., furniture,
cars, buildings, etc.). Two points in particular should be kept in mind while reading this example.

First, a guiding principle for Alf is that use of Alf should place little or no restriction on the larger model
in which Alf is used. For this example, it should be supposed that the graphical model was created
before it was decided to use Alf to specify activities for operation methods, so Alf had no influence on
the stylistic choices for the model. For example, the following modeling capabilities used in the example
model go beyond what is often used in software-oriented class models, but are not precluded by the use
of Alf:

• Names with spaces
• Data types
• Associations with owned ends

Second, Alf should be usable in the context of models not limited to the fUML subset. Indeed, this
example uses UML modeling constructs outside that context. Of course, any portion of the model
actually specified in Alf is effectively limited to the fUML subset, but this should not prevent integration
with the larger model. For example, the following UML capabilities used in the example model are not
in the fUML subset, but are compatible with the use of Alf for the specification of activities (though
they could not actually be represented using Alf’s textual notation for structural models).

• Default values
• Derived values
• Constructors
• Interfaces
• Components
• Ports, Parts and Connectors

(See also the discussion in Annex A.2 on the use of Alf in the context of composite structure models.)

B.3.1 The Property Management Model
This section describes the Property Management model that provides the context for the Alf
specification of activities given in the next section. This model has the overall package structure shown
below.

Figure B-106 Property Management Package Diagram

382 Action Language for Foundational UML (ALF) 1.0, Beta 2

Each of the three packages under Property Management is discussed in turn in the following
subsections.

B.3.1.1 Data Model
A data model defines the persistent entities in a domain and the data necessary to describe them. The
data maintained on an entity serves as a record of that entity for service being provided. Clearly,
Property is the fundamental entity for which records are being kept by the Property Management
Service.

Figure B-107 gives a simplified data model for property management. Note in general the use of spaces
in names. This is allowed in a UML model and is not uncommon in business-oriented data models not
primarily driven by an information technology style.

Figure B-107 Property Data Model

Notes
1. The Property class models the record of a specific property. A class is used because a property

record has the semantics of an object, with an identity and attributes that may change over time.
However, the property record is also given a unique domain identifier that is used to externally
identify the record.

2. Property Acquisition Data and Property Disposition Data are considered to be simply
composite attributive data of a property record, without independent identity. They are therefore
modeled as data types. The association ends acquisition data and disposition data are owned
by Property and are therefore attributes of Property.

3. Unlike Property Acquisition Data and Property Disposition Data, Location is a class. It is
supposed here that there is a problem domain concept of an identifiable location and that there may
be multiple properties at the same location (note the “*” multiplicity on the property association
end). The association Property Location owns both its association ends.

Action Language for Foundational UML (ALF) 1.0, Beta 2 383

4. The Property::status attribute is derived. The derivation constraint is given in OCL as:
context Property inv property_status_derivation:
 (acquisition_data -> isEmpty() implies status = pending) and
 (acquisition_data -> notEmpty() and disposition_data -> isEmpty()
 implies status = acquired) and
 (disposition_data -> notEmpty() implies status = disposed)
(Note that underscores are used here to fill in the spaces in the names. The OCL Specification does
not seem to disallow spaces in names, but it is not clear how they would parse in the OCL syntax.)

5. The Property class is abstract with two concrete subclasses for Personal Property (property that
is movable, like vehicles and furniture) and Real Property (property that is immovable, like land
and buildings). The attributes of these subclasses are optional, because their value is not necessarily
known until the property is actually acquired (a property record can be established pending
acquisition, in order to generate a property identifier with which to track the acquisition).

In addition to the data structure shown in Figure B-107, the Property class has two operations. As
shown in Figure B-108, one operation is a constructor and the other handles the computation of the
derived value for the status attribute.

Figure B-108 Property Operations

Notes
1. The stereotype «create» is the standard UML notation used to annotate a constructor operation.

Note that there is no particular naming convention required (e.g., the name of the constructor does
not have to be the same as the name of the class). The Property::identifier and name attributes
are required, so values for these are given as arguments to the constructor (the setting of the status
attribute, which is also required, is discussed below). However, the constructor operation does not
have any return type shown (per the conventions shown in Subclause 9.3.1 of the UML
Superstructure), though it has an implicit return type of Property.

2. The update status operation is used to update the derived status attribute consistent with its
derivation constraint (given earlier). This operation is called by the constructor, but it is also used by
the service operations given later.

B.3.2 Message Model
In a service oriented architecture (SOA), a request message is sent to initiate a transaction to carry out
the requested action. Once the transaction for a request has completed, a reply is sent back to the
requester indicating the success or failure of the transaction.

B.3.2.1 Request Messages
The Property Management Service being discussed here allow the following requests:

384 Action Language for Foundational UML (ALF) 1.0, Beta 2

• Property Record Establishment: Create a property record pending acquisition of the property.

• Property Acquisition Notification: Add or update the acquisition data for an existing property
record. The property status must not be disposed.

• Property Record Update: Update the attributes of an existing property record not related to
acquisition or disposal. The property status must not be disposed.

• Property Disposition Notification: Add or update the disposition data for an existing property
record. The property status must be acquired.

• Property Record Deletion: Delete a property record.

• Property Record Retrieval: Retrieve a property record given the identifier for the property.

Figure B-109 shows a model of the messages for these requests.

Figure B-109 Request Message Model

Notes
1. All messages are modeled as data types. Messages are always passed by value, not by reference.

2. Despite being data types, every message has a sender-assigned identifier. For a request message,
the identifier is used to correlate reply messages (see below).

3. For the purposes of this example, the different types of properties are identified in the messages
using enumerated values, rather than by specialization.

Action Language for Foundational UML (ALF) 1.0, Beta 2 385

B.3.2.2 Reply Messages
Replies are also delivered using messages, as modeled below.

Figure B-110 Reply Message Model

Notes
1. As with request messages, reply messages are modeled as data types with identifiers. Every reply

message also has a request identifier message that identifies the request message to which the
reply correlates.

2. For the purposes of this example, all requests, if successful, reply by returning a copy of the
identified property record. In the case of a record removal, this is a copy of the removed record. (A
more realistic model would likely have different reply messages corresponding to different requests.)

3. Messages cannot contain object references. Therefore, all relevant data from the location object is
composed into the reply message.

4. For the purposes of this example, all requests, if failed, reply by returning a generic Error Reply.

B.3.3 Service Model
The interface for the Property Management Service can now be defined as an interface with
operations to deliver each of the request messages defined above. This interface is provided by a
Property Management Service Provider component that uses a Property Management Service
Implementation class to implement the operations on the service interface.

386 Action Language for Foundational UML (ALF) 1.0, Beta 2

Figure B-111 shows the Property Management Service interface. For the purposes of this example,
each operation has a simple synchronous request/reply signature. Each operation takes a single in
parameter request of a specific request type and two out parameters. If the request is successful, a
success reply is returned in the reply parameter. Otherwise an error reply is returned in the error
parameter.

Figure B-111 Property Management Service Interface

Figure B-112 shows the composite structure of the Property Management Service Provider
component.

Figure B-112 Property Management Service Provider Component Composite Structure

Notes
1. The Property Management Service is used to type a port on the Property Management Service

Provider, becoming the single provided interface for the port.

2. The Property Management Service Provider has an internal part that directly implements the
service. All requests through the port are delegated to this implementation.

3. The Property Management Service Provider has another part that is used by the Property
Management Service Implementation as a “factory” for creating unique identifiers to give to
property records when they are established.

Figure B-113 shows a model of the Property Management Service Implementation class.

Action Language for Foundational UML (ALF) 1.0, Beta 2 387

Figure B-113 Property Management Service Implementation Class

Notes
1. The Property Management Service Implementation class realizes the Property Management

Service interface, implementing all its operations. In addition, it adds a private operation used to
create reply messages and an association to the generic Identifier Factory class (which is used to
connect it to the Identifier Factory part within the Property Management Service Provider
component, as shown earlier).

2. The Identifier Factory has the simple behavior of generating unique identifiers as sequential
integers starting from 0.

3. The Impl to Factory association acts as the type of the connector shown in Figure B-112.

B.3.4 Property Management Service Methods
This section provides Alf specifications of activities that serve as the methods of all the operations
shown on classes in the previous section.

B.3.4.1 Property
As discussed in Section B.3.1.1, the class Property has two operations, create property, which is a
constructor, and update status, which computes the derived value of the status attribute.

create property
namespace 'Property Management'::'Data Model'::Properties::Property;
 // See Note 1

/** Create a new property with a given identifier and name */

388 Action Language for Foundational UML (ALF) 1.0, Beta 2

activity 'create property'(in identifier: String, in name: String) {

 this.identifier = identifier;
 this.name = name;
 this.'update status'();

}
Notes
1. The namespace clause here includes the fully qualified name for the Property class, uniquely

identifying it within the model. Note also the use of single quotes to form names with spaces.

update status
namespace 'Property Management'::'Data Model'::Properties::Property;

/** Update the status of a property consistent with whether it has been
 acquired or disposed.
*/
activity 'update status'() {
 if (this.'acquisition data' -> isEmpty()) { // See Note 1
 this.status = 'Property Status'::pending; // See Note 2
 } else if (this.'disposition data' -> isEmpty()) {
 this.status = 'Property Status'::acquired;
 } else {
 this.status = 'Property Status'::disposed;
 }
}
Notes
1. The OCL-like notation “this.'acquisition data' -> isEmpty()” is used to test whether the

optional attribute acquisition data is empty.

2. The enumeration Property Status is visible in the scope of Property (it is in the same package),
so it can be used without import. However, the names of its enumeration literals still need to be
qualified.

B.3.4.2 Identifier Factory
The Identifier Factory class has a single operation used to get the next unique identifier.

get next identifier
namespace Identifiers::'Identifier Factory';

/** Generate a unique identifier from the next sequential integer. */
activity 'get next identifier'(): String {
 return IntegerFunctions::ToString(this.'next identifier'++); // See Note 1
}
Notes
1. Alf allows the use of the C-style “++” operator. In this case, the value of next identifier is

incremented, but the prior value is returned. That is, the return statement above is mapped as if it
were the following equivalent statement sequence:

Action Language for Foundational UML (ALF) 1.0, Beta 2 389

this.'next identifier' = (oldValue = this.'next identifier') + 1;
return IntegerFunctions::toString(oldValue);

B.3.4.3 Property Management Service Implementation
The operations in the class Property Management Service Implementation handle each of the
service requests modeled in Section B.3.2. In addition, the class has one private operation, create
reply, which is a utility operation used to construct a reply message.

Note in particular that fUML semantics requires that objects persist between activity invocations at a
specific execution locus, unless they are explicitly destroyed. The specification of the Property
Management Service takes advantage of this by effectively using the extent of the Property class as a
“database” of property records.

create reply
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
 // See Note 1
private import 'Property Management'::'Message Model'::*;

/** Create a reply message for a given message ID and property object */
activity 'create reply'(in requestId: String, in property: Property):
 'Property Management Success Reply' {

 propertyData = new 'Property Data' (// See Note 2
 'property identifier' => property.identifier,
 'property name' => property.name,
 'property status' => property.status,
 'property acquisition data' => property.'acquisition data',
 'property disposition data' => property.'disposition data'
 'property type' => property instanceof 'Personal Property'?
 'Property Type'::personal:
 'Property Type'::real);

 if (property.location -> notEmpty()) {
 propertyData.'property location'
 = new 'Location Data' (
 'location identifier' => property.location.identifier,
 'location address' => property.location.address);
 }

 if (property instanceof 'Personal Property') {
 propertyData.'property serial number'
 = (('Personal Property')property).'serial number';
 } else {
 propertyData.'property size' = (('Real Property')property).size;
 }

 return new 'Property Management Success Reply' (
 identifier => requestId + "/reply",
 'request identifier' => requestId,
 property => propertyData);
}

390 Action Language for Foundational UML (ALF) 1.0, Beta 2

Notes
1. The notation “private import 'Property Management'::'Data Model'::Properties::*”

indicates a package import. That is, all the elements of the package 'Property
Management'::'Data Model'::Properties are visible within the activity create reply.

2. Property Data is a data type, which may only be constructed using a default constructor. The
default constructor for a data type provides arguments for each of the attributes of the data type,
which are set here using a named-parameter notation.

establish
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Establish a new property record. */
activity establish (
 in request: 'Property Record Establishment',
 out reply: 'Property Management Success Reply' [0..1],
 out error: 'Error Reply' [0..1]) {

 identifier = this.'property identifier factory'.'get next identifier'();
 // See Note 1

 if (request.'property type' == 'Property Type'::personal) {
 property = new 'Personal Property'::'create property'
 (identifier, request.'property name');
 // See Note 2
 } else {
 property = new 'Real Property'::'create property'
 (identifier, request.'property name');
 }

 reply = this.'create reply'(request.identifier, property);
}
Notes
1. The notation “this.'property identifier factory'” maps to a read link action for the

association from the Property Management Service Implementation to the Identifier
Factory used to generate property identifiers.

NOTE. Components and parts are not in the fUML subset. However, by general UML semantics, it
is assumed that, when the Property Management Service Provider is instantiated, both its parts
are also instantiated. The connection between the parts then results in a link between the Property
Management Service Implementation instance and the Instance Factory instance. It is this link
that is read here. (See also the discussion in Annex A.2.)

2. The Property class has the named constructor create property, rather than a default constructor.
This is referenced in the constructor invocation by the qualified name “Property::'create
property'”. Note that if, instead, the constructor had had the same name as the class, then the

Action Language for Foundational UML (ALF) 1.0, Beta 2 391

constructor could have been referenced simply using the class name, i.e., “new
Property(identifier, request.name)”.

acquire
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Update the acquisition information for an existing property. */
activity acquire (
 in request: 'Property Acquisition Notification',
 out reply: 'Property Management Success Reply' [0..1],
 out error: 'Error Reply' [0..1]) {

 property =
 Property -> select p (p.identifier == request.'property identifier')[1];
 // See Note 1

 error = null;
 reply = null;
 if (property -> isEmpty()) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PAN-001",
 'error message' => "Property not found.");

 } else if (property.status == 'Property Status'::disposed) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PAN-002",
 'error message' => "Property already disposed.");

 } else {
 property.'acquisition data' = request.'property acquisition data';
 // See Note 2
 property.'update status'();

 reply = this.'create reply'(request.identifier, property);
 }
}
Notes
1. The select expression is used to select the elements from a collection that meet the given condition.

The type name “Property” here is used as a shorthand for “Property.allInstances()”—that is,
the extent of the Property class. Thus, this expression selects the instance of Property (if any)
whose identifier equals that given in the request.

2. This is an assignment to the acquisition data attribute for property.

NOTE. acquisition data is an opposite association end owned by the class Property. The fUML
subset does not actually include such associations (fUML requires that all ends of associations are

392 Action Language for Foundational UML (ALF) 1.0, Beta 2

owned by the association). However, since an association end owned by a class is a structural
feature, it can be written by an add structural feature value action. But, per fUML semantics, no link
is actually created—only the structural feature is set.

update
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Data Model'::Locations::Location;
private import 'Property Management'::'Message Model'::*';

/** Update the attribute data of a property (other than acquisition or
 disposition data). Only non-empty values in the update message cause
 corresponding attribute updates. Note that none of these updates can
 result in a property status change.
*/
activity update (
 in request: 'Property Record Update',
 out reply: 'Property Management Success Reply' [0..1],
 out error: 'Error Reply' [0..1]) {

 property = Property -> select p
 (p.identifier == request.'property identifier')[1];

 error = null;
 reply = null;
 if (property -> isEmpty()) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PRU-001",
 'error message' => "Property not found.");

 } else if (property.status == 'Property Status'::disposed) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PRU-002",
 'error message' => "Property already disposed.");

 } else if ((request.'property serial number' -> notEmpty() &&
 property instanceof 'Real Property') ||
 (request.'property size' -> notEmpty() &&
 property instanceof 'Personal Property')) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PRU-002",
 'error message' => "Wrong property type.");

 } else if (request.'property location identifier' -> notEmpty() &&
 !(Location -> exists loc
 (loc.identifier == request.'property location identifier'))) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",

Action Language for Foundational UML (ALF) 1.0, Beta 2 393

 'request identifier' => request.identifier,
 'error code' => "PRU-003",
 'error message' => "Location not found.");

 } else {
 if (request.'property location identifier' -> notEmpty()) {
 location = Location -> select loc
 (loc.identifier == request.'property location identifier');
 'Property Location'.createLink(property, location);
 }
 if (request.'property name' -> notEmpty()) {
 property.name = request.'property name';
 }
 if (request.'property value' -> notEmpty()) {
 property.value = request.'property value';
 }
 if (request.'property serial number' -> notEmpty()) {
 (('Personal Property')property).'serial number' =
 request.'property serial number';
 }
 if (request.'property size' -> notEmpty()) {
 (('Real Property')property).size = request.'property size';
 }

 reply = this.'create reply'(request.identifier, property);
 }
}

dispose
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Update the disposition data for an existing property. */
activity dispose (
 in request: 'Property Disposition Notification',
 out reply: 'Property Management Success Reply' [0..1],
 out error: 'Error Reply' [0..1]) {

 property = Property -> select p
 (p.identifier == request.'property identifier')[1];

 error = null;
 reply = null;
 if (property -> isEmpty()) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PDN-001",
 'error message' => "Property not found.");

 } else if (property.status == 'Property Status'::pending) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",

394 Action Language for Foundational UML (ALF) 1.0, Beta 2

 'request identifier' => request.identifier,
 'error code' => "PDN-002",
 'error message' => "Property not yet acquired.");

 } else {
 property.'disposition data' = request.'property disposition data';
 property.'update status'();

 reply = this.'create reply'(request.identifier, property);
 }
}

delete
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Delete an existing property, destroying the record of it. */
activity delete (
 in request: 'Property Record Deletion',
 out reply: 'Property Management Success Reply' [0..1],
 out error: 'Error Reply' [0..1]) {

 property = Property -> select p
 (p.identifier == request.'property identifier')[1];

 error = null;
 reply = null;
 if (property -> isEmpty()) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PRD-001",
 'error message' => "Property not found.");

 } else {
 reply = this.'create reply'(request.identifier, property);
 property.destroy(); // See Note 1

 }
}
Note
1. The expression “property.destroy()” destroys the object property.

retrieve
namespace 'Property Management'::'Service Model'::
 'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Retrieve data on an existing property record. */

Action Language for Foundational UML (ALF) 1.0, Beta 2 395

activity retrieve (
 in request: 'Property Record Retrieval',
 out reply: 'Property Management Success Reply' [0..1],
 out error: 'Error Reply' [0..1]) {

 property = Property -> select p
 (p.identifier == request.'property identifier')[1];

 error = null;
 reply = null;
 if (property -> isEmpty()) {
 error = new 'Error Reply' (
 identifier => request.identifier + "/error",
 'request identifier' => request.identifier,
 'error code' => "PRR-001",
 'error message' => "Property not found.");

 } else {
 reply = this.'create reply'(request.identifier, property);

 }
}

B.4 Alf Standard Library Collection Classes Implementation
This example provides a sample implementation for the Alf Standard Library CollectionClasses
package in Alf itself. As discussed in Subclause 11.6, implementations for these classes are supplied in
the nested CollectionClasses::Impl package. Annex B.4.1 presents the Alf representation of the
CollectionClasses::Impl ipackage, with the following subclauses giving Alf units for each of the
classes contained in this package.

Note that this is not intended to be an efficient, production implementation of the collection class
package. Rather, it is intended to provide a concrete example of the use of the Impl mechanism for the
collection classes and to demonstrate that all the behavior specified for the collection classes can be
implemented in Alf using other features.

B.4.1 CollectionClasses::Impl
The CollectionClasses::Impl package is required to contain the classes shown in Figure 11-78. The
Alf implementation given for the package below also includes two additional classes that are used to
factor out common behavior from the collection classes (other than Map). The package is also marked as
a model library, so that it does not automatically import the Alf standard library itself (see Subclause
10.1).
namespace Alf::Library::CollectionClasses;
package Impl {

 private abstract class CollectionImpl<T>;
 private abstract class OrderedCollectionImpl<T> specializes CollectionImpl<T>;

 public class Set<T>
 specializes CollectionImpl<T>, CollectionClasses::Set<T>;
 public class Bag<T>
 specializes CollectionImpl<T>, CollectionClasses::Bag<T>;

396 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public class OrderedSet<T>
 specializes OrderedCollectionImpl<T>, CollectionClasses::OrderedSet<T>;
 public class List<T>
 specializes OrderedCollectionImpl<T>, CollectionClasses::List<T>;

 public class Queue<T>
 specializes CollectionImpl<T>, CollectionClasses::Queue<T>;
 public class Deque<T>
 specializes Queue<T>, CollectionClasses::Deque<T>;

 public class Map<Key,Value> specializes CollectionClasses::Map<Key,Value>;

}

B.4.2 CollectionClasses::Impl::CollectionImpl
The abstract CollectionImpl class provides implementations for the operations (other than
toSequence) common to all collection classes other than Map. The actual collection content is expected
to be supplied by the concrete subclasses of CollectionImpl. The CollectionImpl operation method
use abstract methods setContent and toSequence, to be defined in the subclasses, to set and get this
content.

Note that, since the Impl package is stereotyped as a model library, the usual importation of standard
library packages is suppressed. Therefore, the CollectionFunctions package must be explicitly
imported in order to make the collection functions usable without qualification. The collection functions
are imported privately, as required by the rules of Subclause 11.6 for the implementation of collection
classes.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The base concrete implementation for all the standard library collection classes.
*/
abstract class CollectionImpl<T> {

 @Create protected CollectionImpl(in seq: T[0..*] sequence) {
 this.setContent(seq);
 }

 protected abstract setContent (in seq: T[0..*] sequence);

 public abstract toSequence (): T[0..*] sequence;

 public add (in element: T): Boolean {
 result = this.excludes(element);
 this.setContent(this.toSequence()->including(element));
 return result;
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 preSize = this.size();
 this.setContent(this.toSequence()->union(seq));
 return this.size() > preSize;
 }

 public clear () {

Action Language for Foundational UML (ALF) 1.0, Beta 2 397

 this.setContent(null);
 }

 public count (in element: T): Integer {
 return this.toSequence()->count(element);
 }

 public equals (in seq: T[0..*] sequence): Boolean {
 return this.toSequence()->equals(seq);
 }

 public excludes (in element: T): Boolean {
 return this.toSequence()->excludes(element);
 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return this.toSequence()->excludesAll(seq);
 }

 public includes (in element: T): Boolean {
 return this.toSequence()->includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return this.toSequence()->includesAll(seq);
 }

 public isEmpty (): Boolean {
 return this.toSequence()->isEmpty();
 }

 public notEmpty (): Boolean {
 return this.toSequence()->notEmpty();
 }

 public remove (in element: T): Integer {
 result = this.count(element);
 this.setContent(this.toSequence()->excluding(element));
 return result;
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 preSize = this.size();
 this.setContent(this.toSequence()->difference(seq));
 return this.size() < preSize;
 }

 public removeOne (in element: T): Boolean {
 result = this.includes(element);
 this.setContent(this.toSequence()->excludingOne(element));
 return result;
 }

 public replace (in element: T, in newElement: T): Integer {
 result = this.count(element);
 this.setContent(this.toSequence()->replacing(element, newElement));
 return result;

398 Action Language for Foundational UML (ALF) 1.0, Beta 2

 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 result = this.includes(element);
 this.setContent(this.toSequence()->replacingOne(element, newElement));
 return result;
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 preSize = this.size();
 this.setContent(this.toSequence()->intersection(seq));
 return this.size() < preSize;
 }

 public size (): Integer {
 return this.toSequence()->size();
 }

}

B.4.3 CollectionClasses::Impl::OrderedCollectionImpl
The class OrderedCollectionImpl extends CollectionImpl with implementation of additional
operations found in the ordered collection classes (i.e., OrderedSet and List).
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The base concrete implementation for the standard library ordered collection
classes
*/
abstract class OrderedCollectionImpl<T> specializes CollectionImpl<T> {

 @Create protected OrderedCollectionImpl(in seq: T[0..*] sequence) {
 super(seq);
 }

 public addAllAt (in index: Integer, in seq: T[0..*] sequence): Boolean {
 preSize = this.size();
 this.setContent(this.toSequence()->includeAllAt(index, seq));
 return this.size() > preSize;
 }

 public addAt (in index: Integer, in element: T): Boolean {
 return this.addAllAt(index, element);
 }

 public at (in index: Integer): T[0..1] {
 return this.toSequence()->at(index);
 }

 public first (): T[0..1] {
 return this.at(1);
 }

 public indexOf (in element: T) : Integer[0..1] {
 return this.toSequence()->indexOf(element);

Action Language for Foundational UML (ALF) 1.0, Beta 2 399

 }

 public last (): T[0..1] {
 return this.at(this.size());
 }

 public removeAt (in index: Integer): T[0..1] {
 result = this.at(index);
 this.setContent(this.toSequence()->excludeAt(index));
 return result;
 }

 public replaceAt (in index: Integer, in element: T): T[0..1] {
 result = this.at(index);
 this.setContent(this.toSequence()->replacingAt(index, element));
 return result;
 }
}

B.4.4 CollectionClasses::Impl::Set
The Set class given below implements the abstract CollectionClasses::Set class. It does this by
defining a content attribute of the appropriate type with unbounded multiplicity. By default, the
attribute is unique and unordered—that is, a set. Operation methods are provided by specializing the
CollectionImpl class.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template Set class.
*/
class Set<T> specializes CollectionImpl<T>, CollectionClasses::Set<T> {

 private content: T[0..*];

 @Create public Set (in seq: T[0..*] sequence) {
 super.CollectionImpl(seq);
 }

 @Destroy public destroy () { }

 private setContent (in seq: T[0..*] sequence) {
 this.content = seq;
 }

 public add (in element: T): Boolean {
 return super.CollectionImpl<T>::add(element);
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::addAll(seq->toOrderedSet());
 }

 public clear () {
 super.CollectionImpl<T>::clear();
 }

400 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public count (in element: T): Integer {
 return super.CollectionImpl<T>::count(element);
 }

 public equals (in seq: T[0..*] sequence): Boolean {
 set = seq->toOrderedSet();
 return this.size() == set->size() && this.includesAll(set);
 }

 public excludes (in element: T): Boolean {
 return super.CollectionImpl<T>::excludes (element);
 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::excludesAll(seq->toOrderedSet());
 }

 public includes (in element: T): Boolean {
 return super.CollectionImpl<T>::includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::includesAll(seq->toOrderedSet());
 }

 public isEmpty (): Boolean {
 return super.CollectionImpl<T>::isEmpty();
 }

 public notEmpty (): Boolean {
 return super.CollectionImpl<T>::notEmpty();
 }

 public remove (in element: T): Integer {
 return super.CollectionImpl<T>::remove(element);
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::removeAll(seq);
 }

 public removeOne (in element: T): Boolean {
 return super.CollectionImpl<T>::removeOne(element);
 }

 public replace (in element: T, in newElement: T): Integer {
 return super.CollectionImpl<T>::replace(element, newElement);
 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 return super.CollectionImpl<T>::replaceOne(element, newElement);
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::retainAll(seq);
 }

Action Language for Foundational UML (ALF) 1.0, Beta 2 401

 public size (): Integer {
 return super.CollectionImpl<T>::size();
 }

 public toSequence (): T[0..*] sequence {
 return this.content;
 }

}

B.4.5 CollectionClasses::Impl::OrderedSet
The OrderedSet class given below implements the abstract CollectionClasses::OrderedSet class. It
does this by defining a content attribute of the appropriate type with unbounded multiplicity. The
attribute is specifically defined to be ordered and is unique by default—that is, it is an ordered set.
Operation methods are provided by specializing the OrderedCollectionImpl class.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template OrderedSet class.
*/
class OrderedSet<T>
 specializes OrderedCollectionImpl<T>, CollectionClasses::OrderedSet<T> {

 private content: T[0..*] ordered;

 @Create public OrderedSet (in seq: T[0..*] sequence) {
 super.OrderedCollectionImpl(seq->toOrderedSet());
 }

 @Destroy public destroy () {
 }

 private setContent(in seq: T[0..*] sequence) {
 this.content = seq;
 }

 public add (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::add(element);
 }

 public addAt (in index: Integer, in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::addAt(index, element);
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::addAll(seq->toOrderedSet());
 }

 public addAllAt (in index: Integer, in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::addAllAt(index, seq->toOrderedSet());
 }

 public at (in index: Integer): T[0..1] {
 return super.OrderedCollectionImpl<T>::at(index);
 }

402 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public clear () {
 super.OrderedCollectionImpl<T>::clear();
 }

 public count (in element: T): Integer {
 return super.OrderedCollectionImpl<T>::count(element);
 }

 public equals (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::equals(seq->toOrderedSet());
 }

 public first (): T[0..1] {
 return super.OrderedCollectionImpl<T>::first();
 }

 public indexOf (in element: T) : Integer[0..1] {
 return super.OrderedCollectionImpl<T>::indexOf(element);
 }

 public last (): T[0..1] {
 return super.OrderedCollectionImpl<T>::last();
 }

 public excludes (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::excludes (element);
 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::excludesAll(seq->toOrderedSet());
 }

 public includes (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::includesAll(seq->toOrderedSet());
 }

 public isEmpty (): Boolean {
 return super.OrderedCollectionImpl<T>::isEmpty();
 }

 public notEmpty (): Boolean {
 return super.OrderedCollectionImpl<T>::notEmpty();
 }

 public remove (in element: T): Integer {
 return super.OrderedCollectionImpl<T>::remove(element);
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::removeAll(seq);
 }

Action Language for Foundational UML (ALF) 1.0, Beta 2 403

 public removeAt (in index: Integer): T[0..1] {
 return super.OrderedCollectionImpl<T>::removeAt(index);
 }

 public removeOne (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::removeOne(element);
 }

 public replace (in element: T, in newElement: T): Integer {
 return super.OrderedCollectionImpl<T>::replace(element, newElement);
 }

 public replaceAt (in index: Integer, in element: T): T[0..1] {
 result = this.at(index);
 if (result->notEmpty()) {
 this.remove(result);
 this.addAt(index, element);
 }
 return result;
 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 return super.OrderedCollectionImpl<T>::replaceOne(element, newElement);
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::retainAll(seq);
 }

 public size (): Integer {
 return super.OrderedCollectionImpl<T>::size();
 }

 public subOrderedSet (in lower: Integer, in upper: Integer):
CollectionClasses::OrderedSet<T> {
 return new OrderedSet<T>(this.toSequence()->subsequence(lower, upper));
 }

 public toSequence(): T[0..*] sequence {
 return this.content;
 }

}

B.4.6 CollectionClasses::Impl::Bag
The Bag class given below implements the abstract CollectionClasses::Set class. It does this by
defining a content attribute of the appropriate type with unbounded multiplicity. The attribute is
specifically defined to be nonunique and is ordered by default—that is, it is a bag. Operation methods
are provided by specializing the CollectionImpl class.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template Bag class.
*/
class Bag<T> specializes CollectionImpl<T>, CollectionClasses::Bag<T> {

404 Action Language for Foundational UML (ALF) 1.0, Beta 2

 private content: T[0..*] nonunique;

 @Create public Bag (in seq: T[0..*] sequence) {
 super.CollectionImpl(seq);
 }

 @Destroy public destroy () { }

 private setContent(in seq: T[0..*] sequence) {
 this.content = seq;
 }

 public add (in element: T): Boolean {
 return super.CollectionImpl<T>::add(element);
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::addAll(seq);
 }

 public clear () {
 super.CollectionImpl<T>::clear();
 }

 public count (in element: T): Integer {
 return super.CollectionImpl<T>::count(element);
 }

 public equals (in seq: T[0..*] sequence): Boolean {
 return this.size() == seq->size() && this.includesAll(seq);
 }

 public excludes (in element: T): Boolean {
 return super.CollectionImpl<T>::excludes (element);
 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::excludesAll(seq);
 }

 public includes (in element: T): Boolean {
 return super.CollectionImpl<T>::includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::includesAll(seq);
 }

 public isEmpty (): Boolean {
 return super.CollectionImpl<T>::isEmpty();
 }

 public notEmpty (): Boolean {
 return super.CollectionImpl<T>::notEmpty();
 }

Action Language for Foundational UML (ALF) 1.0, Beta 2 405

 public remove (in element: T): Integer {
 return super.CollectionImpl<T>::remove(element);
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::removeAll(seq);
 }

 public removeOne (in element: T): Boolean {
 return super.CollectionImpl<T>::removeOne(element);
 }

 public replace (in element: T, in newElement: T): Integer {
 return super.CollectionImpl<T>::replace(element, newElement);
 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 return super.CollectionImpl<T>::replaceOne(element, newElement);
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::retainAll(seq);
 }

 public size(): Integer {
 return super.CollectionImpl<T>::size();
 }

 public toSequence(): T[0..*] sequence {
 return this.content;
 }
}

B.4.7 CollectionClasses::Impl::List
The List class given below implements the abstract CollectionClasses::List class. It does this by
defining a content attribute of the appropriate type with unbounded multiplicity defined as a sequence
—that is, a nonunique, ordered list. Operation methods are provided by specializing the
OrderedCollectionImpl class.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template List class.
*/
class List<T>
 specializes OrderedCollectionImpl<T>, CollectionClasses::List<T> {

 private content: T[0..*] sequence;

 @Create public List (in seq: T[0..*] sequence) {
 super.OrderedCollectionImpl(seq);
 }

 @Destroy public destroy () {
 }

406 Action Language for Foundational UML (ALF) 1.0, Beta 2

 private setContent(in seq: T[0..*] sequence) {
 this.content = seq;
 }

 public add (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::add(element);
 }

 public addAt (in index: Integer, in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::addAt(index, element);
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::addAll(seq);
 }

 public addAllAt (in index: Integer, in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::addAllAt(index, seq);
 }

 public at (in index: Integer): T[0..1] {
 return super.OrderedCollectionImpl<T>::at(index);
 }

 public clear () {
 super.OrderedCollectionImpl<T>::clear();
 }

 public count (in element: T): Integer {
 return super.OrderedCollectionImpl<T>::count(element);
 }

 public equals (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::equals(seq);
 }

 public first (): T[0..1] {
 return super.OrderedCollectionImpl<T>::first();
 }

 public indexOf (in element: T) : Integer[0..1] {
 return super.OrderedCollectionImpl<T>::indexOf(element);
 }

 public last (): T[0..1] {
 return super.OrderedCollectionImpl<T>::last();
 }

 public excludes (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::excludes (element);

Action Language for Foundational UML (ALF) 1.0, Beta 2 407

 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::excludesAll(seq);
 }

 public includes (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::includesAll(seq);
 }

 public isEmpty (): Boolean {
 return super.OrderedCollectionImpl<T>::isEmpty();
 }

 public notEmpty (): Boolean {
 return super.OrderedCollectionImpl<T>::notEmpty();
 }

 public remove (in element: T): Integer {
 return super.OrderedCollectionImpl<T>::remove(element);
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::removeAll(seq);
 }

 public removeAt (in index: Integer): T[0..1] {
 return super.OrderedCollectionImpl<T>::removeAt(index);
 }

 public removeOne (in element: T): Boolean {
 return super.OrderedCollectionImpl<T>::removeOne(element);
 }

 public replace (in element: T, in newElement: T): Integer {
 return super.OrderedCollectionImpl<T>::replace(element, newElement);
 }

 public replaceAt (in index: Integer, in element: T): T[0..1] {
 return super.OrderedCollectionImpl<T>::replaceAt(index, element);
 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 return super.OrderedCollectionImpl<T>::replaceOne(element, newElement);
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 return super.OrderedCollectionImpl<T>::retainAll(seq);
 }

 public size (): Integer {
 return super.OrderedCollectionImpl<T>::size();
 }

408 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public subList (in lower: Integer, in upper: Integer): CollectionClasses::List<T>
{
 return new List<T>(this.toSequence()->subsequence(lower, upper));
 }

 public toSequence(): T[0..*] sequence {
 return this.content;
 }
}

B.4.8 CollectionClasses::Impl::Queue
The List class given below implements the abstract CollectionClasses::List class. It does this by
defining a content attribute of the appropriate type with unbounded multiplicity defined as a sequence
—that is, a nonunique, ordered list. Operation methods are provided by specializing the
CollectionImpl class. Even though a queue is effectively ordered, it does not provide all the operations
defined for other ordered classes and, therefore, does not specialize the OrderedCollectionImpl class.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template Queue class.
*/
class Queue<T> specializes CollectionImpl<T>, CollectionClasses::Queue<T> {

 private content: T[0..*] sequence;

 @Create public Queue (in seq: T[0..*] sequence) {
 super.CollectionImpl(seq);
 }

 @Destroy public destroy () {
 }

 protected setContent (in seq: T[0..*] sequence) {
 this.content = seq;
 }

 public add (in element: T): Boolean {
 return super.CollectionImpl<T>::add(element);
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::addAll(seq);
 }

 public addLast (in element : T): Boolean {
 return this.add(element);
 }

 public clear () {
 super.CollectionImpl<T>::clear();
 }

 public count (in element: T): Integer {
 return super.CollectionImpl<T>::count(element);

Action Language for Foundational UML (ALF) 1.0, Beta 2 409

 }

 public equals (in seq: T[0..*] sequence): Boolean {
 return this.size() == seq->size() && this.includesAll(seq);
 }

 public excludes (in element: T): Boolean {
 return super.CollectionImpl<T>::excludes (element);
 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::excludesAll(seq);
 }

 public first(): T[0..1] {
 return this.toSequence()->first();
 }

 public includes (in element: T): Boolean {
 return super.CollectionImpl<T>::includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::includesAll(seq);
 }

 public isEmpty (): Boolean {
 return super.CollectionImpl<T>::isEmpty();
 }

 public notEmpty (): Boolean {
 return super.CollectionImpl<T>::notEmpty();
 }

 public remove (in element: T): Integer {
 return super.CollectionImpl<T>::remove(element);
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::removeAll(seq);
 }

 public removeFirst (): T[0..1] {
 result = this.toSequence()->first();
 this.setContent(this.toSequence()->subsequence(2,this.size()));
 return result;
 }

 public removeFirstOne (in element: T): T[0..1] {
 return this.removeOne(element)? element: null;
 }

 public removeOne (in element: T): Boolean {
 return super.CollectionImpl<T>::removeOne(element);
 }

 public replace (in element: T, in newElement: T): Integer {

410 Action Language for Foundational UML (ALF) 1.0, Beta 2

 return super.CollectionImpl<T>::replace(element, newElement);
 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 return super.CollectionImpl<T>::replaceOne(element, newElement);
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 return super.CollectionImpl<T>::retainAll(seq);
 }

 public size(): Integer {
 return super.CollectionImpl<T>::size();
 }

 public toSequence (): T[0..*] sequence {
 return this.content;
 }

}

B.4.9 CollectionClasses::Impl::Deque
The Deque class given below implements the abstract CollectionClasses::Deque class. It does this by
extending the Queue implementation class with the additional operations defined for a Deque.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template Deque class.
*/
class Deque<T> specializes Queue<T>, CollectionClasses::Deque<T> {

 @Create public Deque (in seq: T[0..*] sequence) {
 super.Queue<T>::Queue(seq);
 }

 @Destroy public destroy () {
 super.Queue<T>::destroy();
 }

 @Create private Queue (in seq: T[0..*] sequence) {
 this.Deque(seq);
 }

 public add (in element: T): Boolean {
 return super.Queue<T>::add(element);
 }

 public addAll (in seq: T[0..*] sequence): Boolean {
 return super.Queue<T>::addAll(seq);
 }

 public addFirst (in element: T): Boolean {
 this.setContent(this.toSequence()->includeAt(1, element));
 return true;
 }

Action Language for Foundational UML (ALF) 1.0, Beta 2 411

 public addLast (in element : T): Boolean {
 return this.add(element);
 }

 public clear () {
 super.Queue<T>::clear();
 }

 public count (in element: T): Integer {
 return super.Queue<T>::count(element);
 }

 public equals (in seq: T[0..*] sequence): Boolean {
 return this.size() == seq->size() && this.includesAll(seq);
 }

 public excludes (in element: T): Boolean {
 return super.Queue<T>::excludes (element);
 }

 public excludesAll (in seq: T[0..*] sequence): Boolean {
 return super.Queue<T>::excludesAll(seq);
 }

 public first(): T[0..1] {
 return this.toSequence()->first();
 }

 public includes (in element: T): Boolean {
 return super.Queue<T>::includes(element);
 }

 public includesAll (in seq: T[0..*] sequence): Boolean {
 return super.Queue<T>::includesAll(seq);
 }

 public isEmpty (): Boolean {
 return super.Queue<T>::isEmpty();
 }

 public last (): T[0..1] {
 return this.toSequence()->last();
 }

 public notEmpty (): Boolean {
 return super.Queue<T>::notEmpty();
 }

 public remove (in element: T): Integer {
 return super.Queue<T>::remove(element);
 }

 public removeAll (in seq: T[0..*] sequence): Boolean {
 return super.Queue<T>::removeAll(seq);
 }

412 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public removeFirst (): T[0..1] {
 result = this.toSequence()->first();
 this.setContent(this.toSequence()->subsequence(2,this.size()));
 return result;
 }

 public removeFirstOne (in element: T): T[0..1] {
 return this.removeOne(element)? element: null;
 }

 public removeLast (): T[0..1] {
 result = this.last();
 this.setContent(this.toSequence()->subsequence(1,this.size()-1));
 return result;
 }

 public removeLastOne (in element: T): T[0..1] {
 n = this.size();
 for (i in 1..n) {
 e = this.toSequence()->at(n - i + 1);
 if (e == element) {
 this.setContent(this.toSequence()->excludeAt(i));
 return e;
 }
 }
 return null;
 }

 public removeOne (in element: T): Boolean {
 return super.Queue<T>::removeOne(element);
 }

 public replace (in element: T, in newElement: T): Integer {
 return super.Queue<T>::replace(element, newElement);
 }

 public replaceOne (in element: T, in newElement: T): Boolean {
 return super.Queue<T>::replaceOne(element, newElement);
 }

 public retainAll (in seq: T[0..*] sequence): Boolean {
 return super.Queue<T>::retainAll(seq);
 }

 public size(): Integer {
 return super.Queue<T>::size();
 }

 public toSequence (): T[0..*] sequence {
 return super.Queue<T>::toSequence();
 }

}

Action Language for Foundational UML (ALF) 1.0, Beta 2 413

B.4.10CollectionClasses::Impl::Map
The Map class given below implements the abstract CollectionClasses::List Map. It does this by
storing a set of entries in an attribute. Lookup of entries is implemented in the private indexOf
operation.
namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template Map class.
*/
class Map<Key, Value> specializes CollectionClasses::Map<Key,Value> {

 private entries: Entry[0..*];

 @Create public Map (in entries: Entry[0..*]) {
 this.putAll(entries);
 }

 @Destroy public destroy () {
 }

 private indexOf(in key: Key): Integer[0..1] {
 return this.entries.key->indexOf(key);
 }

 public entries (): CollectionClasses::Set<Entry> {
 return new Set<Entry>(this.entries);
 }

 public clear () {
 this.entries = null;
 }

 public excludesAll (in entries: Entry[0..*]): Boolean {
 return this.entries->excludesAll(entries);
 }

 public get (in key: Key): Value[0..1] {
 return this.entries->select e (e.key == key)[1].value;
 }

 public includesAll (in entries: Entry[0..*]): Boolean {
 return this.entries->includesAll(entries);
 }

 public includesKey (in key: Key): Boolean {
 return this.entries.key->includes(key);
 }

 public includesValue (in value: Value[0..1]): Boolean {
 return this.entries.value->includes(value);
 }

 public isEmpty (): Boolean {
 return this.entries->isEmpty();
 }

414 Action Language for Foundational UML (ALF) 1.0, Beta 2

 public keys (): CollectionClasses::Set<Key> {
 return new Set<Key>(this.entries.key);
 }

 public notEmpty (): Boolean {
 return this.entries->notEmpty();
 }

 public put (in key: Key, in value: Value[0..1]): Value[0..1] {
 result = this.remove(key);
 this.entries->add(new Entry(key,value));
 return result;
 }

 public putAll (in entries: Entry[0..*]) {
 entries->iterate e (this.put(e.key, e.value));
 }

 public remove (in key: Key): Value[0..1] {
 result = this.get(key);
 this.entries = this.entries->reject e (e.key == key);
 return result;
 }

 public removeAll (in keys: Key[0..*]) {
 keys->iterate k (this.remove(k));
 }

 public size (): Integer {
 this.entries->size();
 }

 public toSequence (): Entry[0..*] sequence {
 return this.entries;
 }

 public values (): CollectionClasses::Bag<Value> {
 return new Bag<Value>(this.entries.value);
 }
}

Action Language for Foundational UML (ALF) 1.0, Beta 2 415

Annex C Consolidated LL Grammar (informative)
The grammar productions presented for Alf in the main body of this document are intended to describe
the lexical structure and syntax of the language in a way that is as clear as possible to a reader of the
specification. However, the resulting grammar is not necessarily appropriate as the basis for automated
parsing of the language. The grammar presented in this annex is equivalent to the normative grammar
for Alf, but is specifically intended for use in automated parsing.

NOTE. This grammar has been implemented using JavaCC parser generator
(https://javacc.dev.java.net/). The format of the lexical and syntactic productions in this annex is
therefore as required for this tool.

C.1 Lexical Analyzer
The lexical analyzer is defined as a state machine that generates a sequence of tokens that are fed to the
parser. The operation of this state machine is given by the set of productions listed below. Each
production has the following form:

• A list of names of the states in which the production is active. The analyzer begins in the DEFAULT
state.

• The action of the production, which is one of the following:

o SKIP – Any text matched by the production is skipped and not passed to the parser.

o TOKEN – Text matched by the production forms the image of a token that is passed to the parser.

o MORE – Text matched by the production is buffered until the next match of a production with a
SKIP or TOKEN action, at which time all buffered text is either skipped or used in the construction
of a token respectively.

• A list of alternatives, each of which consists of an optional name, a regular expression and an
optional target state. If the regular expression in an alternative matches the input text at the current
position, then this text is consumed, the production action is carried out and the analyzer moves to
the target state. If no target state is given, then the analyzer remains in the same state. If a name is
given in a matching alternative and the production action is to produce a token, then the token is
given that name.

Productions are checked in order, so earlier productions have precedence over later productions.
/* WHITE SPACE */

<DEFAULT,IN_STATEMENT_ANNOTATION,IN_IN_LINE_ANNOTATION> SKIP : {
 " "
| "\t"
| "\f"
}

<DEFAULT> SKIP : {
 "\n"
| "\r"
}

/* STATEMENT ANNOTATIONS */

416 Action Language for Foundational UML (ALF) 1.0, Beta 2

https://javacc.dev.java.net/

<DEFAULT> TOKEN : {
 <SLASH_SLASH_AT: "//@"> : IN_STATEMENT_ANNOTATION
| <SLASH_STAR_AT: "/*@"> : IN_IN_LINE_ANNOTATION
}

<IN_STATEMENT_ANNOTATION> TOKEN : {
 <EOL: ("//" (~["\n","\r"])*)? ("\n" | "\r" ("\n")?)> : DEFAULT
}

<IN_IN_LINE_ANNOTATION> SKIP : {
 <("//" (~["\n","\r"])*)? ("\n" | "\r" ("\n")?)> : IN_DOCUMENTATION_COMMENT
}

/* COMMENTS */

<DEFAULT> SKIP : {
 <"/**" ~["/"]> : IN_DOCUMENTATION_COMMENT
}

<DEFAULT> MORE : {
 "//" : IN_END_OF_LINE_COMMENT
| "/*" : IN_IN_LINE_COMMENT
}

<IN_END_OF_LINE_COMMENT> SKIP : {
 <END_OF_LINE_COMMENT: "\n" | "\r" ("\n")?> : DEFAULT
}

<IN_END_OF_LINE_COMMENT> MORE : {
 <~[]>
}

<IN_IN_LINE_COMMENT> MORE : {
 <~["*"]>
| "*" : IN_IN_LINE_COMMENT_STAR
}

<IN_IN_LINE_COMMENT_STAR> MORE : {
 <~["/"]> : IN_IN_LINE_COMMENT
}

<IN_IN_LINE_COMMENT_STAR> SKIP : {
 <IN_LINE_COMMENT: "/"> : DEFAULT
}

<IN_DOCUMENTATION_COMMENT> MORE : {
 <~["*"]>
| "*" : IN_DOCUMENTATION_COMMENT_STAR
}

<IN_DOCUMENTATION_COMMENT_STAR> TOKEN : {
 <DOCUMENTATION_COMMENT: "/"> : DEFAULT
}

<IN_DOCUMENTATION_COMMENT_STAR> MORE : {
 <~["/"]> : IN_DOCUMENTATION_COMMENT

Action Language for Foundational UML (ALF) 1.0, Beta 2 417

}

/* RESERVED WORDS */

<DEFAULT,IN_STATEMENT_ANNOTATION,IN_IN_LINE_ANNOTATION> TOKEN : {
 <ABSTRACT: "abstract">
| <ACCEPT: "accept">
| <ACTIVE: "active">
| <ACTIVITY: "activity">
| <ALL_INSTANCES: "allInstances">
| <ANY: "any">
| <AS: "as">
| <ASSOC: "assoc">
| <BREAK: "break">
| <CASE: "case">
| <CLASS: "class">
| <CLASSIFY: "classify">
| <CLEAR_ASSOC: "clearAssoc">
| <COMPOSE: "compose">
| <CREATE_LINK: "createLink">
| <DATATYPE: "datatype">
| <DEFAULT_: "default">
| <DESTROY_LINK: "destroyLink">
| <DO: "do">
| <ELSE: "else">
| <ENUM: "enum">
| <FOR: "for">
| <FROM: "from">
| <HASTYPE: "hastype">
| <IF: "if">
| <IMPORT: "import">
| <IN: "in">
| <INOUT: "inout">
| <INSTANCEOF: "instanceof">
| <LET: "let">
| <NAMESPACE: "namespace">
| <NEW: "new">
| <NONUNIQUE: "nonunique">
| <NULL: "null">
| <OR: "or">
| <ORDERED: "ordered">
| <OUT: "out">
| <PACKAGE: "package">
| <PRIVATE: "private">
| <PROTECTED: "protected">
| <PUBLIC: "public">
| <RECEIVE: "receive">
| <REDEFINES: "redefines">
| <REDUCE: "reduce">
| <RETURN: "return">
| <SEQUENCE: "sequence">
| <SPECIALIZES: "specializes">
| <SUPER: "super">
| <SIGNAL: "signal">
| <SWITCH: "switch">
| <THIS: "this">
| <TO: "to">

418 Action Language for Foundational UML (ALF) 1.0, Beta 2

| <WHILE: "while">
}

/* NAMES */

<DEFAULT,IN_STATEMENT_ANNOTATION,IN_IN_LINE_ANNOTATION> TOKEN : {
 <IDENTIFIER: <IDENTIFIER_LETTER> (<IDENTIFIER_LETTER_OR_DIGIT>)*>
| <#IDENTIFIER_LETTER_OR_DIGIT: <IDENTIFIER_LETTER> | <DIGIT>>
| <#IDENTIFIER_LETTER: ["a"-"z","A"-"Z","_"]>
| <#DIGIT: "0" | <NONZERO_DIGIT>>
| <#NONZERO_DIGIT: ["1"-"9"]>
| <UNRESTRICTED_NAME: "\'" (<NAME_CHARACTER>)+ "\'">
| <#NAME_CHARACTER: ~["\'","\\"] | <ESCAPE_CHARACTER>>
| <#ESCAPE_CHARACTER: "\\" <ESCAPED_CHARACTER>>
| <#ESCAPED_CHARACTER: ["\'","\"","b","f","n","\\"]>
}

/* PRIMITIVE LITERALS */

<DEFAULT,IN_STATEMENT_ANNOTATION,IN_IN_LINE_ANNOTATION> TOKEN : {
 <BOOLEAN_LITERAL: "true" | "false">
| <BINARY_LITERAL: ("0b" | "0B") <BINARY_DIGIT> (("_")? <BINARY_DIGIT>)*>
| <#BINARY_DIGIT: ["0","1"]>
| <HEX_LITERAL: ("0x" | "0X") <HEX_DIGIT> (("_")? <HEX_DIGIT>)*>
| <#HEX_DIGIT: <DIGIT> | ["a"-"f","A"-"F"]>
| <OCTAL_LITERAL: "0" (("_")? <OCTAL_DIGIT>)+>
| <#OCTAL_DIGIT: ["0"-"7"]>
| <DECIMAL_LITERAL: "0" | <NONZERO_DIGIT> (("_")? <DIGIT>)*>
| <STRING_LITERAL: "\"" (<STRING_CHARACTER>)* "\"">
| <#STRING_CHARACTER: ~["\"","\\"]>
}

/* PUNCTUATION */

<DEFAULT,IN_STATEMENT_ANNOTATION,IN_IN_LINE_ANNOTATION> TOKEN : {
 <LPAREN: "(">
| <RPAREN: ")">
| <LBRACE: "{">
| <RBRACE: "}">
| <LBRACKET: "[">
| <RBRACKET: "]">
| <SEMICOLON: ";">
| <COMMA: ",">
| <DOT: ".">
| <DOUBLE_DOT: "..">
| <COLON: ":">
| <DOUBLE_COLON: "::">
| <ARROW: "->">
| <THICK_ARROW: "=>">
}

/* OPERATORS */

<DEFAULT,IN_STATEMENT_ANNOTATION,IN_IN_LINE_ANNOTATION> TOKEN : {
 <ASSIGN: "=">
| <GT: ">">
| <LT: "<">

Action Language for Foundational UML (ALF) 1.0, Beta 2 419

| <BANG: "!">
| <TILDE: "~">
| <HOOK: "?">
| <AT: "@">
| <DOLLAR: "$">
| <EQ: "==">
| <LE: "<=">
| <GE: ">=">
| <NE: "!=">
| <SC_OR: "||">
| <SC_AND: "&&">
| <INCR: "++">
| <DECR: "--">
| <PLUS: "+">
| <MINUS: "-">
| <STAR: "*">
| <SLASH: "/">
| <LOGICAL_AND: "&">
| <LOGICAL_OR: "|">
| <XOR: "^">
| <REM: "%">
| <LSHIFT: "<<">
| <RSHIFT: ">>">
| <URSHIFT: ">>>">
| <PLUSASSIGN: "+=">
| <MINUSASSIGN: "-=">
| <STARASSIGN: "*=">
| <SLASHASSIGN: "/=">
| <ANDASSIGN: "&=">
| <ORASSIGN: "|=">
| <XORASSIGN: "^=">
| <REMASSIGN: "%=">
| <LSHIFTASSIGN: "<<=">
| <RSHIFTASSIGN: ">>=">
| <URSHIFTASSIGN: ">>>=">
}

C.2 Parser
The syntax grammar given below is an LL grammar, that is, a grammar designed for “top down” parsing
(such as recursive descent). A lookahead of only one token is required for most of the grammar. In all
other cases except one, a maximum lookahead of three tokens is required. The parsing of qualified
names with template bindings, however, requires a potentially unbounded lookahead to distinguish the
use of a “<” as an opening bracket of a template binding from its use as a less-than sign.

As discussed in Subclause 8.2, the parsing of a syntactic element with the form of a qualified name
using the dot notation may be ambiguous. In such cases, the grammar below always parses the
potentially ambiguous element as a qualified name (using the non-terminal
“PotentiallyAmbiguousQualifiedName”. If such an element is later disambiguated as a feature
reference, this will also generally require reparsing of the expression containing the ambiguous qualified
name (e.g., a name expression becomes a property access expression and a behavior invocation becomes
a feature invocation).

Finally, the LL form of the grammar given here is considerably simplified by allowing any unary
expression as the left-hand side of an assignment and any primary expression as the operand of an

420 Action Language for Foundational UML (ALF) 1.0, Beta 2

increment or decrement expression, even though the required form for a left-hand side is actually more
restrictive (see Subclause 8.8). This requires that the left-hand side of an assignment and the operand of
an increment or decrement expression be checked after parsing to ensure that it has the form of a name
expression, a property access expression or a sequence access expression whose primary expression is a
name expression or a property access expression. Note that a similar static check needs to be performed
anyway on the argument expressions for inout parameters (see Subclause 8.3.8).

NOTE. The grammar as presented below uses a slightly different EBNF notation than in the main text,
with (…)? meaning optional, (…)* meaning zero or more and (..)+ meaning one or more. Terminal
symbols are written in the form <TOKEN_NAME>, were TOKEN_NAME is the name of a lexical token, as
given by a lexical analyzer production above.

Action Language for Foundational UML (ALF) 1.0, Beta 2 421

/***************
 * NAMES *
 ***************/
Name = <IDENTIFIER> | <UNRESTRICTED_NAME>
QualifiedName = UnqualifiedName

 (ColonQualifiedNameCompletion
 | DotQualifiedNameCompletion
)?

PotentiallyAmbiguousQualifiedName
= UnqualifiedName
 (ColonQualifiedNameCompletion
 | DotQualifiedNameCompletion /* AMBIGUOUS */
)?

ColonQualifiedName = UnqualifiedName ColonQualifiedNameCompletion
ColonQualifiedNameCompletion = (<DOUBLE_COLON> NameBinding)+
DotQualifiedName = UnqualifiedName DotQualifiedNameCompletion
DotQualifiedNameCompletion = (<DOT> NameBinding)+
UnqualifiedName = NameBinding
NameBinding = Name (TemplateBinding)?

 /* ^ Unbounded lookahead required here */
TemplateBinding = <LT> (NamedTemplateBinding

 | PositionalTemplateBinding) <GT>
PositionalTemplateBinding = QualifiedName (<COMMA> QualifiedName)*
NamedTemplateBinding = TemplateParameterSubstitution

 (<COMMA> TemplateParameterSubstitution)*
TemplateParameterSubstitution = Name <THICK_ARROW> QualifiedName

/***************
 * EXPRESSIONS *
 ***************/
Expression = UnaryExpression ExpressionCompletion
NonNameExpression = NonNameUnaryExpression ExpressionCompletion
NameToExpressionCompletion = (NameToPrimaryExpression)?

 PrimaryToExpressionCompletion
PrimaryToExpressionCompletion = PostfixExpressionCompletion

 ExpressionCompletion
ExpressionCompletion = AssignmentExpressionCompletion

| ConditionalExpressionCompletion

/* PRIMARY EXPRESSIONS */
PrimaryExpression = (NameOrPrimaryExpression

 | BaseExpression
 | ParenthesizedExpression)
 PrimaryExpressionCompletion

BaseExpression = LiteralExpression
| ThisExpression
| SuperInvocationExpression
| InstanceCreationOrSequenceConstructionExpression
| SequenceAnyExpression

NameToPrimaryExpression = <DOT> (LinkOperationCompletion
 | ClassExtentExpressionCompletion)
| SequenceConstructionExpressionCompletion
| BehaviorInvocation

PrimaryExpressionCompletion = (Feature (FeatureInvocation)?
 | SequenceOperationOrReductionOrExpansion
 | Index
)*

422 Action Language for Foundational UML (ALF) 1.0, Beta 2

/* LITERAL EXPRESSIONS */
LiteralExpression = <BOOLEAN_LITERAL>

| <DECIMAL_LITERAL>
| <BINARY_LITERAL>
| <OCTAL_LITERAL>
| <HEX_LITERAL>
| <STRING_LITERAL>
| <STAR>

/* NAME EXPRESSIONS */
NameOrPrimaryExpression = PotentiallyAmbiguousQualifiedName

 (NameToPrimaryExpression)?

/* THIS EXPRESSIONS */
ThisExpression = <THIS> (Tuple)?

/* PARENTHESIZED EXPRESSIONS */
ParenthesizedExpression = <LPAREN> Expression <RPAREN>

/* PROPERTY ACCESS EXPRESSIONS */
Feature = <DOT> NameBinding

/* INVOCATION EXPRESSIONS */
Tuple = <LPAREN>

 (NamedTupleExpressionList
 | (PositionalTupleExpressionList)?
) <RPAREN>

PositionalTupleExpressionList = Expression
 PositionalTupleExpressionListCompletion

PositionalTupleExpressionListCompletion
= (<COMMA> Expression)*

NamedTupleExpressionList = NamedExpression (<COMMA> NamedExpression)*
NamedExpression = Name <THICK_ARROW> Expression
BehaviorInvocation = Tuple
FeatureInvocation = Tuple
SuperInvocationExpression = <SUPER> (<DOT> QualifiedName)? Tuple

/* INSTANCE CREATION EXPRESSIONS */
InstanceCreationOrSequenceConstructionExpression

= <NEW> QualifiedName
 (SequenceConstructionExpressionCompletion
 | Tuple)

/* LINK OPERATION EXPRESSIONS */
LinkOperationCompletion = LinkOperation LinkOperationTuple
LinkOperation = <CREATE_LINK>

| <DESTROY_LINK>
| <CLEAR_ASSOC>

Action Language for Foundational UML (ALF) 1.0, Beta 2 423

LinkOperationTuple = <LPAREN>
 (Name
 (Index
 (<THICK_ARROW>
 IndexedNamedExpressionListCompletion
 | PrimaryToExpressionCompletion
 PositionalTupleExpressionListCompletion
)
 | <THICK_ARROW>
 IndexedNamedExpressionListCompletion
)
 | PositionalTupleExpressionList
)? <RPAREN>

IndexedNamedExpressionListCompletion
= Expression
 (<COMMA> IndexedNamedExpression)*

IndexedNamedExpression = Name (Index)? <THICK_ARROW> Expression

/* CLASS EXTENT EXPRESSIONS */
ClassExtentExpressionCompletion

= <ALL_INSTANCES> <LPAREN> <RPAREN>

/* SEQUENCE CONSTRUCTION EXPRESSIONS */
SequenceAnyExpression = <ANY>

 SequenceConstructionExpressionCompletion
| <NULL>

SequenceConstructionExpressionCompletion
= (MultiplicityIndicator)? <LBRACE>
 (SequenceElements)? <RBRACE>

MultiplicityIndicator = <LBRACKET> <RBRACKET>
SequenceElements = Expression (<DOUBLE_DOT> Expression

 | SequenceElementListCompletion)
| SequenceInitializationExpression
 SequenceElementListCompletion

SequenceElementListCompletion = (<COMMA> SequenceElement)* (<COMMA>)?
SequenceElement = Expression

| SequenceInitializationExpression
SequenceInitializationExpression

= (<NEW>)? <LBRACE> SequenceElements <RBRACE>

/* SEQUENCE ACCESS EXPRESSIONS */
Index = <LBRACKET> Expression <RBRACKET>

/* SEQUENCE OPERATION, REDUCTION AND EXPANSION EXPRESSIONS */
SequenceOperationOrReductionOrExpansion

= <ARROW>
 (QualifiedName Tuple
 | <REDUCE> (<ORDERED>)? QualifiedName
 | <IDENTIFIER> Name
 <LPAREN> Expression <RPAREN>
)

/* INCREMENT OR DECREMENT EXPRESSIONS */
PostfixExpressionCompletion = PrimaryExpressionCompletion

 (PostfixOperation)?
PostfixOperation = AffixOperator
PrefixExpression = AffixOperator PrimaryExpression

424 Action Language for Foundational UML (ALF) 1.0, Beta 2

AffixOperator = (<INCR> | <DECR>)

/* UNARY EXPRESSIONS */
UnaryExpression = PostfixOrCastExpression

| NonPostfixNonCastUnaryExpression
PostfixOrCastExpression = NonNamePostfixOrCastExpression

| NameOrPrimaryExpression
 PostfixExpressionCompletion

NonNameUnaryExpression = NonNamePostfixOrCastExpression
| NonPostfixNonCastUnaryExpression

NonNamePostfixOrCastExpression
= <LPAREN>
 (<ANY> <RPAREN> CastCompletion
 | PotentiallyAmbiguousQualifiedName
 (<RPAREN> CastCompletion
 | NameToExpressionCompletion <RPAREN>
 PostfixExpressionCompletion
)
 | NonNameExpression <RPAREN>
 PostfixExpressionCompletion
)
| BaseExpression PostfixExpressionCompletion

NonPostfixNonCastUnaryExpression
= PrefixExpression
| NumericUnaryExpression
| BooleanNegationExpression
| BitStringComplementExpression
| IsolationExpression

BooleanNegationExpression = <BANG> UnaryExpression
BitStringComplementExpression = <TILDE> UnaryExpression
NumericUnaryExpression = NumericUnaryOperator UnaryExpression
NumericUnaryOperator = <PLUS> | <MINUS>
IsolationExpression = <DOLLAR> UnaryExpression
CastExpression = <LPAREN> TypeName <RPAREN> CastCompletion
CastCompletion = PostfixOrCastExpression

| BooleanNegationExpression
| BitStringComplementExpression
| IsolationExpression

/* ARITHMETIC EXPRESSIONS */
MultiplicativeExpression = UnaryExpression

 MultiplicativeExpressionCompletion
MultiplicativeExpressionCompletion

= (MultiplicativeOperator UnaryExpression)*
MultiplicativeOperator = <STAR> | <SLASH> | <REM>
AdditiveExpression = UnaryExpression AdditiveExpressionCompletion
AdditiveExpressionCompletion = MultiplicativeExpressionCompletion

 (AdditiveOperator MultiplicativeExpression)*
AdditiveOperator = (<PLUS> | <MINUS>)

/* SHIFT EXPRESSIONS */
ShiftExpression = UnaryExpression ShiftExpressionCompletion
ShiftExpressionCompletion = AdditiveExpressionCompletion

 (ShiftOperator AdditiveExpression)*
ShiftOperator = <LSHIFT> | <RSHIFT> | <URSHIFT>

/* RELATIONAL EXPRESSIONS */

Action Language for Foundational UML (ALF) 1.0, Beta 2 425

RelationalExpression = UnaryExpression
 RelationalExpressionCompletion

RelationalExpressionCompletion
= ShiftExpressionCompletion
 (RelationalOperator ShiftExpression)?

RelationalOperator = <LT> | <GT> | <LE> | <GE>

/* CLASSIFICATION EXPRESSIONS */
ClassificationExpression = UnaryExpression

 ClassificationExpressionCompletion
ClassificationExpressionCompletion

= RelationalExpressionCompletion
(ClassificationOperator QualifiedName)?

ClassificationOperator = <INSTANCEOF> | <HASTYPE>

/* EQUALITY EXPRESSIONS */
EqualityExpression = UnaryExpression

 ClassificationExpressionCompletion
EqualityExpressionCompletion = ClassificationExpressionCompletion

 (EqualityOperator ClassificationExpression)*
EqualityOperator = <EQ> | <NE>

/* LOGICAL EXPRESSIONS */
AndExpression = UnaryExpression AndExpressionCompletion
AndExpressionCompletion = EqualityExpressionCompletion

 (<LOGICAL_AND> EqualityExpression)*
ExclusiveOrExpression = UnaryExpression

 ExclusiveOrExpressionCompletion
ExclusiveOrExpressionCompletion

= AndExpressionCompletion
 (<XOR> AndExpression)*

InclusiveOrExpression = UnaryExpression
 InclusiveOrExpressionCompletion

InclusiveOrExpressionCompletion
= ExclusiveOrExpressionCompletion
 (<LOGICAL_OR> ExclusiveOrExpression)*

/* CONDITIONAL LOGICAL EXPRESSIONS */
ConditionalAndExpression = UnaryExpression

 ConditionalAndExpressionCompletion
ConditionalAndExpressionCompletion

= InclusiveOrExpressionCompletion
 (<SC_AND> InclusiveOrExpression)*

ConditionalOrExpression = UnaryExpression
 ConditionalOrExpressionCompletion

ConditionalOrExpressionCompletion
= ConditionalAndExpressionCompletion
 (<SC_OR> ConditionalAndExpression)*

/* CONDITIONAL-TEST EXPRESSIONS */
ConditionalExpression = UnaryExpression

 ConditionalExpressionCompletion
ConditionalExpressionCompletion

= ConditionalOrExpressionCompletion
 (<HOOK> Expression <COLON>
 ConditionalExpression)?

426 Action Language for Foundational UML (ALF) 1.0, Beta 2

/* ASSIGNMENT EXPRESSIONS */
AssignmentExpressionCompletion

= AssignmentOperator Expression
AssignmentOperator = <ASSIGN>

| <PLUSASSIGN>
| <MINUSASSIGN>
| <STARASSIGN>
| <SLASHASSIGN>
| <REMASSIGN>
| <ANDASSIGN>
| <ORASSIGN>
| <XORASSIGN>
| <LSHIFTASSIGN>
| <RSHIFTASSIGN>
| <URSHIFTASSIGN>

/**************
 * STATEMENTS *
 **************/
StatementSequence = (DocumentedStatement)*
DocumentedStatement = (<DOCUMENTATION_COMMENT>)? Statement
Statement = AnnotatedStatement

| InLineStatement
| BlockStatement
| EmptyStatement
| LocalNameDeclarationOrExpressionStatement
| LocalNameDeclarationStatement
| IfStatement
| SwitchStatement
| WhileStatement
| ForStatement
| DoStatement
| BreakStatement
| ReturnStatement
| AcceptStatement
| ClassifyStatement

/* BLOCK */
Block = <LBRACE> StatementSequence <RBRACE>

/* ANNOTATED STATEMENTS */
AnnotatedStatement = <SLASH_SLASH_AT> Annotations <EOL> Statement
Annotations = Annotation (<AT> Annotation)*
Annotation = <IDENTIFIER> (<LPAREN> NameList <RPAREN>)?
NameList = Name (<COMMA> Name)*

/* IN-LINE STATEMENTS */
InLineStatement = <SLASH_STAR_AT> <IDENTIFIER> <LPAREN> Name

 <RPAREN> <DOCUMENTATION_COMMENT>

/* BLOCK STATEMENTS */
BlockStatement = Block

/* EMPTY STATEMENTS */
EmptyStatement = <SEMICOLON>

/* LOCAL NAME DECLARATION AND EXPRESSION STATEMENTS */

Action Language for Foundational UML (ALF) 1.0, Beta 2 427

LocalNameDeclarationOrExpressionStatement
= PotentiallyAmbiguousQualifiedName
 ((MultiplicityIndicator)? Name
 LocalNameDeclarationStatementCompletion
 | NameToExpressionCompletion <SEMICOLON>
)
| NonNameExpression <SEMICOLON>

LocalNameDeclarationStatement = <LET> Name <COLON> TypeName
 (MultiplicityIndicator)?
 LocalNameDeclarationStatementCompletion

LocalNameDeclarationStatementCompletion
= <ASSIGN> InitializationExpression <SEMICOLON>

InitializationExpression = Expression
| SequenceInitializationExpression
| InstanceInitializationExpression

InstanceInitializationExpression
= <NEW> Tuple

/* IF STATEMENTS */
IfStatement = <IF> SequentialClauses (FinalClause)?
SequentialClauses = ConcurrentClauses

 (<ELSE> <IF> ConcurrentClauses)*
ConcurrentClauses = NonFinalClause (<OR> <IF> NonFinalClause)*
NonFinalClause = <LPAREN> Expression <RPAREN> Block
FinalClause = <ELSE> Block

/* SWITCH STATEMENTS */
SwitchStatement = <SWITCH> <LPAREN> Expression <RPAREN>

 <LBRACE> (SwitchClause)*
 (SwitchDefaultClause)? <RBRACE>

SwitchClause = SwitchCase (SwitchCase)*
 NonEmptyStatementSequence

SwitchCase = <CASE> Expression <COLON>
SwitchDefaultClause = <DEFAULT_> <COLON> NonEmptyStatementSequence
NonEmptyStatementSequence = (DocumentedStatement)+

/* WHILE STATEMENTS */
WhileStatement = <WHILE> <LPAREN> Expression <RPAREN> Block

/* DO STATEMENTS */
DoStatement = <DO> Block <WHILE> <LPAREN> Expression

 <RPAREN> <SEMICOLON>

/* FOR STATEMENTS */
ForStatement = <FOR> <LPAREN> ForControl <RPAREN> Block
ForControl = LoopVariableDefinition

 (<COMMA> LoopVariableDefinition)*
LoopVariableDefinition = Name <IN> Expression

 (<DOUBLE_DOT> Expression)?
| QualifiedName Name <COLON> Expression

/* BREAK STATEMENTS */
BreakStatement = <BREAK> <SEMICOLON>

/* RETURN STATEMENTS */
ReturnStatement = <RETURN> (Expression)? <SEMICOLON>

428 Action Language for Foundational UML (ALF) 1.0, Beta 2

/* ACCEPT STATEMENTS */
AcceptStatement = AcceptClause

 (SimpleAcceptStatementCompletion
 | CompoundAcceptStatementCompletion)

SimpleAcceptStatementCompletion
= <SEMICOLON>

CompoundAcceptStatementCompletion
= Block (<OR> AcceptBlock)*

AcceptBlock = AcceptClause Block
AcceptClause = <ACCEPT> <LPAREN> (Name <COLON>)?

 QualifiedNameList <RPAREN>

/* CLASSIFY STATEMENTS */
ClassifyStatement = <CLASSIFY> Expression ClassificationClause

 <SEMICOLON>
ClassificationClause = ClassificationFromClause

 (ClassificationToClause)?
| (ReclassifyAllClause)?
 ClassificationToClause

ClassificationFromClause = <FROM> QualifiedNameList
ClassificationToClause = <TO> QualifiedNameList
ReclassifyAllClause = <FROM> <STAR>
QualifiedNameList = QualifiedName (<COMMA> QualifiedName)*

/*********
 * UNITS *
 *********/
UnitDefinition = (NamespaceDeclaration)?

 (ImportDeclaration)*
 (<DOCUMENTATION_COMMENT>)?
 StereotypeAnnotations NamespaceDefinition

StereotypeAnnotations = (StereotypeAnnotation)*
StereotypeAnnotation = <AT> QualifiedName

 (<LPAREN> TaggedValues <RPAREN>)?
TaggedValues = QualifiedNameList

| TaggedValueList
TaggedValueList = TaggedValue ("," TaggedValue)*
TaggedValue = Name <THICK_ARROW>

 (<BOOLEAN_LITERAL>
 | <STRING_LITERAL>
 | <STAR>
 | (<PLUS> | <MINUS>)?
 (<DECIMAL_LITERAL>
 | <BINARY_LITERAL>
 | <OCTAL_LITERAL>
 | <HEX_LITERAL>
)
)

NamespaceDeclaration = <NAMESPACE> QualifiedName <SEMICOLON>
ImportDeclaration = ImportVisibilityIndicator <IMPORT>

 ImportReference <SEMICOLON>
ImportVisibilityIndicator = <PUBLIC> | <PRIVATE>

Action Language for Foundational UML (ALF) 1.0, Beta 2 429

ImportReference = ColonQualifiedName
 (<DOUBLE_COLON> <STAR>
 | AliasDefinition)?
| DotQualifiedName
 (<DOT> <STAR> | AliasDefinition)?
| Name
 ((<DOUBLE_COLON> | <DOT>) <STAR>
 | AliasDefinition)?

AliasDefinition = <AS> Name

/* NAMESPACES */
NamespaceDefinition = PackageDefinition | ClassifierDefinition
VisibilityIndicator = ImportVisibilityIndicator | <PROTECTED>

/* PACKAGES */
PackageDeclaration = <PACKAGE> Name
PackageDefinition = PackageDeclaration PackageBody
PackageDefinitionOrStub = PackageDeclaration

 (<SEMICOLON> | PackageBody)
PackageBody = <LBRACE> (PackagedElement)* <RBRACE>
PackagedElement = (<DOCUMENTATION_COMMENT>)?

 StereotypeAnnotations
 ImportVisibilityIndicator
 PackagedElementDefinition

PackagedElementDefinition = PackageDefinitionOrStub
| ClassifierDefinitionOrStub

/***************
 * CLASSIFIERS *
 ***************/
ClassifierDefinition = ClassDefinition

| ActiveClassDefinition
| DataTypeDefinition
| EnumerationDefinition
| AssociationDefinition
| SignalDefinition
| ActivityDefinition

ClassifierDefinitionOrStub = ClassDefinitionOrStub
| ActiveClassDefinitionOrStub
| DataTypeDefinitionOrStub
| EnumerationDefinitionOrStub
| AssociationDefinitionOrStub
| SignalDefinitionOrStub
| ActivityDefinitionOrStub

ClassifierSignature = Name (TemplateParameters)?
 (SpecializationClause)?

TemplateParameters = <LT> ClassifierTemplateParameter
 (<COMMA> ClassifierTemplateParameter)* <GT>

ClassifierTemplateParameter = (<DOCUMENTATION_COMMENT>)? Name
 (<SPECIALIZES> QualifiedName)?

SpecializationClause = <SPECIALIZES> QualifiedNameList

/* CLASSES */
ClassDeclaration = (<ABSTRACT>)? <CLASS> ClassifierSignature
ClassDefinition = ClassDeclaration ClassBody
ClassDefinitionOrStub = ClassDeclaration (<SEMICOLON> | ClassBody)
ClassBody = <LBRACE> (ClassMember)* <RBRACE>

430 Action Language for Foundational UML (ALF) 1.0, Beta 2

ClassMember = (<DOCUMENTATION_COMMENT>)?
 StereotypeAnnotations
 (VisibilityIndicator)?
 ClassMemberDefinition

ClassMemberDefinition = ClassifierDefinitionOrStub
 | FeatureDefinitionOrStub

/* ACTIVE CLASSES */
ActiveClassDeclaration = (<ABSTRACT>)? <ACTIVE> <CLASS>

 ClassifierSignature
ActiveClassDefinition = ActiveClassDeclaration ActiveClassBody
ActiveClassDefinitionOrStub = ActiveClassDeclaration

 (<SEMICOLON> | ActiveClassBody)
ActiveClassBody = <LBRACE> (ActiveClassMember)* <RBRACE>

 (<DO> BehaviorClause)?
BehaviorClause = Block | Name
ActiveClassMember = (<DOCUMENTATION_COMMENT>)?

 StereotypeAnnotations
 (VisibilityIndicator)?
 ActiveClassMemberDefinition

ActiveClassMemberDefinition = ClassMemberDefinition
| ActiveFeatureDefinitionOrStub

/* DATA TYPES */
DataTypeDeclaration = (<ABSTRACT>)? <DATATYPE>

 ClassifierSignature
DataTypeDefinition = DataTypeDeclaration StructuredBody
DataTypeDefinitionOrStub = DataTypeDeclaration

 (<SEMICOLON> | StructuredBody)
StructuredBody = <LBRACE> (StructuredMember)* <RBRACE>
StructuredMember = (<DOCUMENTATION_COMMENT>)?

 StereotypeAnnotations (<PUBLIC>)?
 PropertyDefinition

/* ASSOCIATIONS */
AssociationDeclaration = (<ABSTRACT>)? <ASSOC> ClassifierSignature
AssociationDefinition = AssociationDeclaration StructuredBody
AssociationDefinitionOrStub = AssociationDeclaration

 (<SEMICOLON> | StructuredBody)

/* ENUMERATIONS */
EnumerationDeclaration = <ENUM> Name (SpecializationClause)?
EnumerationDefinition = EnumerationDeclaration EnumerationBody
EnumerationDefinitionOrStub = EnumerationDeclaration

 (<SEMICOLON> | EnumerationBody)
EnumerationBody = <LBRACE> EnumerationLiteralName

 (<COMMA> EnumerationLiteralName)* <RBRACE>
EnumerationLiteralName = (<DOCUMENTATION_COMMENT>)? Name

/* SIGNALS */
SignalDeclaration = (<ABSTRACT>)? <SIGNAL> ClassifierSignature
SignalDefinition = SignalDeclaration StructuredBody
SignalDefinitionOrStub = SignalDeclaration

 (<SEMICOLON> | StructuredBody)

/* ACTIVITIES */

Action Language for Foundational UML (ALF) 1.0, Beta 2 431

ActivityDeclaration = <ACTIVITY> Name (TemplateParameters)?
 FormalParameters (<COLON> TypePart)?

ActivityDefinition = ActivityDeclaration Block
ActivityDefinitionOrStub = ActivityDeclaration (<SEMICOLON> | Block)
FormalParameters = <LPAREN> (FormalParameterList)? <RPAREN>
FormalParameterList = FormalParameter (<COMMA> FormalParameter)*
FormalParameter = (<DOCUMENTATION_COMMENT>)?

 StereotypeAnnotations ParameterDirection Name
 <COLON> TypePart

ParameterDirection = <IN> | <OUT> | <INOUT>

/* FEATURES */
FeatureDefinitionOrStub = AttributeDefinition

| OperationDefinitionOrStub
ActiveFeatureDefinitionOrStub = ReceptionDefinition

| SignalReceptionDefinitionOrStub

/* PROPERTIES */
PropertyDefinition = PropertyDeclaration <SEMICOLON>
AttributeDefinition = PropertyDeclaration (AttributeInitializer)?

 <SEMICOLON>
AttributeInitializer = <ASSIGN> InitializationExpression
PropertyDeclaration = Name <COLON> (<COMPOSE>)? TypePart
TypePart = TypeName (Multiplicity)?
TypeName = (QualifiedName | <ANY>)
Multiplicity = <LBRACKET> (MultiplicityRange)? <RBRACKET>

 (<ORDERED> (<NONUNIQUE>)?
 | <NONUNIQUE> (<ORDERED>)?
 | <SEQUENCE>
)?

MultiplicityRange = (<DECIMAL_LITERAL> <DOUBLE_DOT>)?
 UnlimitedNaturalLiteral

UnlimitedNaturalLiteral = <DECIMAL_LITERAL> | <STAR>

/* OPERATIONS */
OperationDeclaration = (<ABSTRACT>)? Name FormalParameters

 (<COLON> TypePart)? (RedefinitionClause)?
OperationDefinitionOrStub = OperationDeclaration (<SEMICOLON> | Block)
RedefinitionClause = <REDEFINES> QualifiedNameList

/* RECEPTIONS */
ReceptionDefinition = <RECEIVE> QualifiedName <SEMICOLON>
SignalReceptionDeclaration = <RECEIVE> <SIGNAL> Name

 (SpecializationClause)?
SignalReceptionDefinitionOrStub

= SignalReceptionDeclaration
 (<SEMICOLON> | StructuredBody)

432 Action Language for Foundational UML (ALF) 1.0, Beta 2

	Preface
	PART I - INTRODUCTION
	1 Scope
	2 Conformance
	2.1 Syntactic Conformance
	2.2 Semantic Conformance
	2.3 Additional Conformance Points

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Overview
	6.1 Integration with UML Models
	6.2 Templates
	6.3 Lexical Structure
	6.4 Concrete Syntax
	6.5 Abstract Syntax
	6.6 Mapping to Foundational UML
	6.7 Organization of the Specification
	6.8 Acknowledgments

	PART II - LANGUAGE DESCRIPTION
	7 Lexical Structure
	7.1 Line Terminators
	7.2 Input Elements and Tokens
	7.3 White Space
	7.4 Comments
	7.4.1 Lexical Comments
	7.4.2 Documentation Comments

	7.5 Names
	7.6 Reserved Words
	7.7 Primitive Literals
	7.7.1 Boolean Literals
	7.7.2 Natural Literals
	7.7.3 Unbounded Value Literals
	7.7.4 String Literals

	7.8 Punctuation
	7.9 Operators

	8 Expressions
	8.1 Overview
	8.2 Qualified Names
	8.3 Primary Expressions
	8.3.1 Overview
	8.3.2 Literal Expressions
	8.3.3 Name Expressions
	8.3.4 this Expressions
	8.3.5 Parenthesized Expressions
	8.3.6 Property Access Expressions
	8.3.7 Invocation Expressions
	8.3.8 Tuples
	8.3.9 Behavior Invocation Expressions
	8.3.10 Feature Invocation Expressions
	8.3.11 Super Invocation Expressions
	8.3.12 Instance Creation Expressions
	8.3.13 Link Operation Expressions
	8.3.14 Class Extent Expressions
	8.3.15 Sequence Construction Expressions
	8.3.16 Sequence Access Expressions
	8.3.17 Sequence Operation Expressions
	8.3.18 Sequence Reduction Expressions
	8.3.19 Sequence Expansion Expressions
	8.3.20 select and reject Expressions
	8.3.21 collect and iterate Expressions
	8.3.22 forAll, exists and one Expressions
	8.3.23 isUnique Expression

	8.4 Increment and Decrement Expressions
	8.5 Unary Expressions
	8.5.1 Overview
	8.5.2 Boolean Unary Expressions
	8.5.3 BitString Unary Expressions
	8.5.4 Numeric Unary Expressions
	8.5.5 Cast Expressions
	8.5.6 Isolation Expressions

	8.6 Binary Expressions
	8.6.1 Overview
	8.6.2 Arithmetic Expressions
	8.6.3 Shift Expressions
	8.6.4 Relational Expressions
	8.6.5 Classification Expressions
	8.6.6 Equality Expressions
	8.6.7 Logical Expressions
	8.6.8 Conditional Logical Expressions

	8.7 Conditional-Test Expressions
	8.8 Assignment Expressions

	9 Statements
	9.1 Overview
	9.2 Annotated Statements
	9.3 In-line Statements
	9.4 Block Statements
	9.5 Empty Statements
	9.6 Local Name Declaration Statements
	9.7 Expression Statements
	9.8 if Statements
	9.9 switch Statements
	9.10 while Statements
	9.11 do Statements
	9.12 for Statements
	9.13 break Statements
	9.14 return Statements
	9.15 accept Statements
	9.16 classify Statements

	10 Units
	10.1 Overview
	10.2 Namespaces
	10.3 Packages
	10.4 Classifiers
	10.4.1 Overview
	10.4.2 Classes
	10.4.3 Active Classes
	10.4.4 Data Types
	10.4.5 Associations
	10.4.6 Enumerations
	10.4.7 Signals
	10.4.8 Activities

	10.5 Features
	10.5.1 Overview
	10.5.2 Properties
	10.5.3 Operations
	10.5.3.1 Constructors
	10.5.3.2 Destructors

	10.5.4 Receptions

	11 Standard Model Library
	11.1 ActionLanguage Profile
	11.2 Primitive Types
	11.2.1 Natural Type
	11.2.2 Bit String Type

	11.3 Primitive Behaviors
	11.3.1 Boolean Functions
	11.3.2 Integer Functions
	11.3.3 String Functions
	11.3.4 UnlimitedNatural Functions
	11.3.5 Bit String Functions
	11.3.6 Sequence Functions

	11.4 Basic Input and Output
	11.5 Collection Functions
	11.6 Collection Classes
	11.6.1 Bag<T>
	11.6.2 Collection<T>
	11.6.3 Deque<T>
	11.6.4 Entry
	11.6.5 List<T>
	11.6.6 Map<Key, Value>
	11.6.7 OrderedSet<T>
	11.6.8 Queue<T>
	11.6.9 Set<T>

	PART III - ABSTRACT SYNTAX
	12 Common Abstract Syntax
	12.1 Overview
	12.2 Class Descriptions
	12.2.1 AssignedSource
	12.2.2 DocumentedElement
	12.2.3 ElementReference
	12.2.4 ExternalElementReference
	12.2.5 InternalElementReference
	12.2.6 SyntaxElement

	13 Expressions Abstract Syntax
	13.1 Overview
	13.2 Class Descriptions
	13.2.1 ArithmeticExpression
	13.2.2 AssignmentExpression
	13.2.3 BehaviorInvocationExpression
	13.2.4 BinaryExpression
	13.2.5 BitStringUnaryExpression
	13.2.6 BooleanLiteralExpression
	13.2.7 BooleanUnaryExpression
	13.2.8 CastExpression
	13.2.9 ClassExtentExpression
	13.2.10 ClassificationExpression
	13.2.11 CollectOrIterateExpression
	13.2.12 ConditionalLogicalExpression
	13.2.13 ConditionalTestExpression
	13.2.14 EqualityExpression
	13.2.15 Expression
	13.2.16 ExtentOrExpression
	13.2.17 FeatureInvocationExpression
	13.2.18 FeatureLeftHandSide
	13.2.19 FeatureReference
	13.2.20 ForAllOrExistsOrOneExpression
	13.2.21 IncrementOrDecrementExpression
	13.2.22 InstanceCreationExpression
	13.2.23 InvocationExpression
	13.2.24 IsolationExpression
	13.2.25 IsUniqueExpression
	13.2.26 LeftHandSide
	13.2.27 LinkOperationExpression
	13.2.28 LiteralExpression
	13.2.29 LogicalExpression
	13.2.30 NameBinding
	13.2.31 NamedExpression
	13.2.32 NamedTemplateBinding
	13.2.33 NamedTuple
	13.2.34 NameExpression
	13.2.35 NameLeftHandSide
	13.2.36 NaturalLiteralExpression
	13.2.37 NumericUnaryExpression
	13.2.38 OutputNamedExpression
	13.2.39 PositionalTemplateBinding
	13.2.40 PositionalTuple
	13.2.41 PropertyAccessExpression
	13.2.42 QualifiedName
	13.2.43 RelationalExpression
	13.2.44 SelectOrRejectExpression
	13.2.45 SequenceAccessExpression
	13.2.46 SequenceConstructionExpression
	13.2.47 SequenceElements
	13.2.48 SequenceExpansionExpression
	13.2.49 SequenceExpressionList
	13.2.50 SequenceOperationExpression
	13.2.51 SequenceRange
	13.2.52 SequenceReductionExpression
	13.2.53 ShiftExpression
	13.2.54 StringLiteralExpression
	13.2.55 SuperInvocationExpression
	13.2.56 TemplateBinding
	13.2.57 TemplateParameterSubstitution
	13.2.58 ThisExpression
	13.2.59 Tuple
	13.2.60 UnaryExpression
	13.2.61 UnboundedLiteralExpression

	14 Statements Abstract Syntax
	14.1 Overview
	14.2 Class Descriptions
	14.2.1 AcceptBlock
	14.2.2 AcceptStatement
	14.2.3 Annotation
	14.2.4 Block
	14.2.5 BlockStatement
	14.2.6 BreakStatement
	14.2.7 ClassifyStatement
	14.2.8 ConcurrentClauses
	14.2.9 DoStatement
	14.2.10 EmptyStatement
	14.2.11 ExpressionStatement
	14.2.12 ForStatement
	14.2.13 IfStatement
	14.2.14 InLineStatement
	14.2.15 LocalNameDeclarationStatement
	14.2.16 LoopVariableDefinition
	14.2.17 NonFinalClause
	14.2.18 QualifiedNameList
	14.2.19 ReturnStatement
	14.2.20 Statement
	14.2.21 SwitchClause
	14.2.22 SwitchStatement
	14.2.23 WhileStatement

	15 Units Abstract Syntax
	15.1 Overview
	15.2 Class Descriptions
	15.2.1 ActiveClassDefinition
	15.2.2 ActivityDefinition
	15.2.3 AssociationDefinition
	15.2.4 ClassDefinition
	15.2.5 ClassifierDefinition
	15.2.6 ClassifierTemplateParameter
	15.2.7 DataTypeDefinition
	15.2.8 ElementImportReference
	15.2.9 EnumerationDefinition
	15.2.10 EnumerationLiteralName
	15.2.11 FormalParameter
	15.2.12 ImportedMember
	15.2.13 ImportReference
	15.2.14 Member
	15.2.15 NamespaceDefinition
	15.2.16 OperationDefinition
	15.2.17 PackageDefinition
	15.2.18 PackageImportReference
	15.2.19 PropertyDefinition
	15.2.20 ReceptionDefinition
	15.2.21 SignalDefinition
	15.2.22 SignalReceptionDefinition
	15.2.23 StereotypeAnnotation
	15.2.24 TaggedValue
	15.2.25 TaggedValueList
	15.2.26 TypedElementDefinition
	15.2.27 UnitDefinition

	PART IV - MAPPING TO FOUNDATIONAL UML
	16 Common Mapping
	16.1 Syntax Elements
	16.2 Documented Elements
	16.3 Element References
	16.4 Assigned Sources

	17 Expressions Mapping
	17.1 General
	17.2 Qualified Names
	17.3 Literal Expressions
	17.4 Name Expressions
	17.5 this Expressions
	17.6 Property Access Expressions
	17.7 Invocation Expressions
	17.8 Tuples
	17.9 Behavior Invocation Expressions
	17.10 Feature Invocation Expressions
	17.11 Super Invocation Expressions
	17.12 Instance Creation Expressions
	17.13 Link Operation Expressions
	17.14 Class Extent Expressions
	17.15 Sequence Construction Expression
	17.16 Sequence Access Expressions
	17.17 Sequence Operation Expressions
	17.18 Sequence Reduction Expression
	17.19 Sequence Expansion Expressions
	17.20 Increment and Decrement Expressions
	17.21 Unary Expressions
	17.22 Binary Expression
	17.23 Conditional-Test Expressions
	17.24 Assignment Expressions

	18 Statements Mapping
	18.1 General
	18.2 In-Line Statements
	18.3 Block Statements
	18.4 Empty Statements
	18.5 Local Name Definition Statements
	18.6 Expression Statements
	18.7 if Statements
	18.8 switch Statements
	18.9 while Statements
	18.10 do Statements
	18.11 for Statements
	18.12 break Statements
	18.13 return Statements
	18.14 accept Statements
	18.15 classify Statements

	19 Units Mapping
	19.1 General
	19.2 Namespace Definitions
	19.3 Package Definitions
	19.4 Classifier Definitions
	19.5 Class Definitions
	19.6 Active Class Definitions
	19.7 Data Type Definitions
	19.8 Association Definitions
	19.9 Enumeration Definitions
	19.10 Signal (and Signal Reception) Definitions
	19.11 Activity Definitions
	19.12 Typed Element Definitions
	19.13 Formal Parameters
	19.14 Property Definitions
	19.15 Operation Definitions
	19.16 Reception Definitions

	PART V - ANNEXES
	Annex A Semantic Integration with State Machines and Composite Structure (informative)
	A.1 State Machines
	A.2 Composite Structure

	Annex B Extended Examples (informative)
	B.1 Quicksort Activity
	B.1.1 Quicksort Functional Implementation
	B.1.2 Quicksort “In Place” Implementation

	B.2 Online Bookstore
	B.2.1 Graphical Model for Ordering
	B.2.2 Alf Representation of Entry Behaviors
	B.2.2.1 Activity EstablishCustomer
	B.2.2.2 Activity ProcessCharge
	B.2.2.3 Activity DeclineCharge
	B.2.2.4 Activity PackAndShip
	B.2.2.5 Activity NotifyOfDelivery

	B.2.3 Alf Representation of the Ordering Model
	B.2.3.1 Package Ordering

	B.2.4 Class Order

	B.3 Property Management Service
	B.3.1 The Property Management Model
	B.3.1.1 Data Model

	B.3.2 Message Model
	B.3.2.1 Request Messages
	B.3.2.2 Reply Messages

	B.3.3 Service Model
	B.3.4 Property Management Service Methods
	B.3.4.1 Property
	B.3.4.2 Identifier Factory
	B.3.4.3 Property Management Service Implementation

	B.4 Alf Standard Library Collection Classes Implementation
	B.4.1 CollectionClasses::Impl
	B.4.2 CollectionClasses::Impl::CollectionImpl
	B.4.3 CollectionClasses::Impl::OrderedCollectionImpl
	B.4.4 CollectionClasses::Impl::Set
	B.4.5 CollectionClasses::Impl::OrderedSet
	B.4.6 CollectionClasses::Impl::Bag
	B.4.7 CollectionClasses::Impl::List
	B.4.8 CollectionClasses::Impl::Queue
	B.4.9 CollectionClasses::Impl::Deque
	B.4.10 CollectionClasses::Impl::Map

	Annex C Consolidated LL Grammar (informative)
	C.1 Lexical Analyzer
	C.2 Parser

