February 2017

L

gt

QIRAIG

DRJIECT MAMAGEMEMT GROURF

Action Language for Foundational UML (Alf)
Concrete Syntax for a UML Action Language

Version 1.1 Beta

OMG Document Number: ptc/2017-02-08
Standard document URL: http://www.omg.org/spec/ALF/1.1
Machine Readable File(s):

http://www.omg.org/spec/ALF/20170201/Alf-Syntax.xmi

http://www.omg.org/spec/ALF/20170201/Alf-Library.xmi
http://lwww.omg.org/spec/ALF/20120827/ActionLanguage-Profile.xmi

http://www.omg.org/spec/ALF/1.1
http://www.omg.org/spec/ALF/20120827/ActionLanguage-Profile.xmi
http://www.omg.org/spec/ALF/20170201/Alf-Library.xmi
http://www.omg.org/spec/ALF/20170201/Alf-Syntax.xmi

Copyright © 2010-2013 88solutions Corporation

Copyright © 2013 Commissariat a | Energie Atomique-CEA

Copyright © 2010-2017 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2010-2013 International Business Machines

Copyright © 2010-2013 Mentor Graphics Corporation

Copyright © 2010-2013 No Magic, Inc.

Copyright © 2010-2013 Visumpoint

Copyright © 2010-2017 Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® XMI® and IMM® are
registered trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified
Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA
logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™ | MOF™ | OMG Interface Definition Language (IDL)™ ,
and OMG SysML™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue

(http://www.omg.org/report_issue).

http://www.omg.org/report_issue

Contents

2 CONTOITNATCE. ceeeeeeeeeeeeeeeeeeeeeesesesesesesasssssesss 3
2.1 OV OIVICW . ettt ettt e et e ettt e ettt ettt ettt ettt ettt et et i et e e e e et eeeeeeeeeeeees 3
2.2 Syntactic CONTOIMIANCE . .uuiiiiiiiiiiiiiiiiiiiiiieieiiiiee et eeeeeeeeeeetee et eeeeeeeeiieeieeeeeeeanns 3
2.3 Semantic CONTOIMANCE. ...euiiiiiiiiuiieiiiiiiiiiiiiiiiiii i e eeeeeeeieeee oot eeeeeeeeeeeeeeiiiieeeeeeeeeeinns 3
2.4 Additional Conformance POINES.ueeiiiiiiiueieiiiiiiiiiiiiiiiiiieiieeeeeiieieeeeeeeeeeiiieeeeeeeeeiiieeieeeeeeeanns 4

3 Normative ReferenCes...cceeeerscnneeeeeeceeanssssansessaseecsssssansssssssessssssssnsssssssssssssssansssssssssssssssssssssssssssssssannssssssses 5

0 OVEIVIEW..eeeeerereeneeeneanaeanaennssnsssssssssnsssssssssnssnssnsssssnsasssssassssnsnss 11
0.1 GENEIAL .uuuuiiiiiiiiiiiiiiiiiiii ittt ettt ettt ettt e et e e eieeeeeeeeeenns 11
6.2 Integration with UME MOAEIS.....ccoouueiiiiiiiiiiiiiiiiiiiiiiiii i eeiee e, 11
0.3 TemPIAteS . ouiiiiiiiiiiiiiiiiiii i ittt ettt ee e e e e e eeeeeeieines 12
6.4 1eXICAl STIUCTUIE . ..uvuviiiiiiiiiiiiiiiiieee ettt ee ettt eeeeeeeee et eeeeeeeeeeiieieeeeeeseeeeinns 14
6.5 CONCIEtE SYNMEAK . .uuiiiiiiiiiiiititeiiii e i ittt e ettt et eeeiee e ettt eeiieeeeeeeeeeeeiieeeeeeeeeeieinaaeees, 15
6.6 ADSTIACT SYNTAK . .eiiiiiiiiiiiiiiiiiiiiiiiieiiieee ettt ettt eeeee ettt ee e e et ei et e e e e et e e eeeeea 17
6.7 Mapping to Foundational UMIL.......cocuuvueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeiiieiiieeeeee e e 18
6.8 Organization of the SPeCIfICAtION. ..uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee et 18

6.9 ACKNOWICAEMENS. ...uuuuuueiiiiiiiiiiiiiiiiiiii it 19
7 Lexical StruCtUre....cccceceeeeeeeeenennnenneennnennsnsnsnsssssssssnsssnsssssssssssss 21
Tl GONETAL .uuuiuiiiiiiiiiii ittt et e et e e eeieeeeeeeeeenns 21
7.2 1AN€ TOIMUINATOTS . teeiiiiiiiiieeiiiiiiiiieieiiiiieeeee et eee e ettt ettt et eeeeeeeeiieeeeeeeeeeeiieeeeeeeeeeeeaineeseeeens 21
7.3 Input Elements and TOKENS.uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieii i ieiiieieieeeeeeeeeeeeeeeeeeeeiieeeeeeeeeeeeannns 21
T4 WHITE SPDACE. ittt ettt ettt eee ettt e e et e ee et eeeeeeee i 22
7.5 COMIMENES. 11ttveiiiiiii ittt et ee ettt ettt ettt ettt ettt ettt teee et eeeeeeeieeeeeeeeeeiiiareeeeeens 22
T5.1 GENEIAL uiiiiiiiiiiiiiiiiiiiii ettt e et ee ettt e e e et e e rrreeeieeeainns 22
7.5.2 1.eXiCal COMMICNES . .uuuvviiiiiiiiiiiiiiiiieieiiiieiieeeeee e e e et teeeeeeeeeeeeiiieeeeeeeeeeeiareeeeeeeen 22
7.5.3 Documentation COMMENES.eeieiueeiiiiieiieiiiiiieeiiiieeeeeeiee ettt eeeeeeeeeieeeeeeieeeeeiieeeeeeiaene. 23
T6 INAINICS . .oeiiiiiiiiiiie ittt ettt ettt ettt ettt et e et et e e e eieeeeeees 23
7.7 ReServed WOIS. ..ooooiiieeiiiiiiiiiiiiiiiiiiiee oottt ettt eee et eeeen 25
7.8 Primitive Lt@ralS......cceeeeuuvveiiiiiiiiiiiiiieiiiiiiiiiiiiiieeeeeee et eeeeeiee ettt eee et 26
T8.1 GENEIAL uuiiiiiiiiiiiiiiiiiiiii ettt ettt e ee ettt et e et e e reeeieeeainns 26
7.8.2 Boolean LiteralS........ceiiiieiiureeiiiiiiiiiiiiiiiiiiii i ieiiiiiiee et e e 26
7.8.3 Natural LIteralS....cuuiiiiiiiuuiiiiiiiiiiiiiiiiiiiiiiie oottt eeeeeeeeeiieeeeeeeeeeiiiiieeeeeeeeeiaens 26
7.8.4 Unbounded Value LiteralS.uueeeieiiiiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieiiieeieeeeeeeee e 28
7.8.5 String LAteralS....uveeiiiiuueiiiiiiiiieiiiiiiieeeiii ettt ettt 28
7.8.6 Real LIteralS. . cocuuvvveiiiiiiiiiiiiieiiiiiiiiiiiiiiiiii e ieiiieeeee e eeeeeeee oot eeeeieee e e eeieeeeeee e 28
7.9 PUNCHUATION . tttiiiiiiiiiiiiiiiiiee oottt ettt ettt e et e e ettt e e e et eeii e eeeeeeens 29
T 10 OPCIALOTS. s uuuutuieeiii i ettt ettt e ettt ettt e e et et e et eeeeeenn 30
8 EXPIeSSiONS. ceeeeeeeeeeeeeeeeereeeeeeeeeeeeeereeeeesseesssssesssesssssesses 32
Bl OV I VICW . uutueieiiiiiii ittt ettt et e ettt ettt e ettt ettt e et e ettt e e eeeeei e eeeeeeeens 32

Action Language for Foundational UML (ALF), v1.1 i

8.2 QUAIITTEA NN AITIES . .. ettt ettt e e e ettt et e e eee ettt e aaeeeeeee et aaaeaeaeeenannnaaaaseseeeesnnnnnnaaeaaeeeee 34

8.3 Primary EXPreSSIONS. c.uuuiiiieuueeeiiiitiieiiiiie e e ettt eee ettt e ettt eeee et ee et eeiee et eee e e e e 39
8.3 1 OVEIVICW . uuttiiiiiiiiiiieeeeeeeee ettt oottt ittt e et ettt eeeeeeeeeetee et eeeeeeeeeintteeeeeeeeeeeiiseeeeeeeess 39
8.3.2 Literal EXpPreSSIONS. .cuuueiiiiiuiiiiiiiieiiiieitii et eee e eeeee et eeeee et ettt eeee et eee et 40
8.3.3 NAME EXPIESSIONS. ciiieeuuuuiiiiiiiiiiiiiiiiiiieeeeeieiiiiiiieeeeeeeieieiieeieeeeeieiiiiieeieeeeeeeietteeeeeeeeeeeiiaeeeeess 41
8.3.4 thiS EXPIeSSIONS. .cuuvviiiiiieiiiiiitiii i it eeiee et eeee ettt ettt eeee et eee et eeeee et eeiaeeeeeeiaaeeeeenns 43
8.3.5 Parenthesized EXPreSSIONS. ..uuuuiiiiiiiiieieiiiiiiiiiiiiiiiieiiieeeeeeeeiieieeeeeeeeiieeeeeeeeeeeiiieeeeeeeeeeennnns 44
8.3.6 Property AccesS EXPIeSSIONS. c.uuuuiiiiiueeiiiiiiiiiiiiiiieiieiieeeeeiieeeeeeieeeeeeeeeeeeeeeeeeieeeeeiaeeeeens 44
8.3.7 InvOCatioN EXPIreSSIONS. .iviiiiiietiiiiiiiiiiiiiiiiiiiiiieeeeeeeiiieeeeeeeeteeeiteeeeeeeeeeieiiieeieeeeeeieerieeeeeen 46
8.3, 8 TUPICS. ettt ettt eaaene 47
8.3.9 Behavior Invocation EXPreSSIONS. ... iiieueeeeeiiiiiiiiiiiiiiiiiieiieeiiiiiiiieeeeeeeiiiiieeeeeeeeiiiiiieeeeeeenn 50
8.3.10 Feature Invocation EXPreSSIONS. ...uuuuiieeuueeiiiiieiiiiiiiiiiiiiiiiieeieiieieeeieeeeeeeeeeeeeeeeeeeeeeeennne, 54
8.3.11 Super Invocation EXPreSSIONS. . .ciieuuuueeiiiiiiiiiiiiiiiiiiiieeiiiiiiiiiiiiiieeeeeiiiiiieeeeeeeieiiiiieeeeeeeeeiennns 57
8.3.12 Instance Creation EXPIeSSIONS. ..c.uuuiiiiiiueeiiiiiieiiiiiiiieeeieiiiieeeeieeeeeieeeeeeeeeeeeeieeeeeeeeeeeennne, 58
8.3.13 Link Operation EXPreSSIONS....uiieuuuueeieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeiiiiiiieeieeeeeieiiiiireeeeeeeeeiineeeee, 62
8.3.14 Class Extent EXPIreSSIONS. ...uuueeeiiiueiiiiiieiiiiiiiiiieiiieeeeeeieeeeeeeeeeeeeeeeeeieeeeeeieeeeeeieeeeeennne, 64
8.3.15 Sequence Construction EXPIeSSIONS. c.uuuuuveeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeieiiieeeeeeeeeeiiiiiiiieeeeeenn 65
8.3.16 Sequence AccesS EXPIeSSIONS. ..uuuueiiiiiuiiiiiiiiiiiiiiiiiiiieiiiie e e e e 69
8.3.17 Sequence Operation EXPIreSSIONS. . ceuuurueiiiiiiiiiiiiiiiiiiieiiiiiiiiiiiiiieeeeeiiiiiiiieieeeeeiiiiiieeeieeeeeeeiinns 70
8.3.18 Sequence Reduction EXPreSSiONS. . ..eueeuueeiiiiiueeiiiiiiiieiiiiiiiiiiiiiiiiieiiieeeeiieee e, 73
8.3.19 Sequence EXpansion EXPIeSSIONS. ..uuuuuiuiiiiiiiiiueiieiiiiiieiiiiiiiiiiiiieeeeiiiiiiieiieeeeeeiiiiiiieeeeeeeeeiennnns 75
8.3.20 select and reject EXPIreSSIONS. ..ueeuuueiiieiiiiiiiiiiiiiiiiiiieeeiiieeeeeeeeeeeeee e eeieee e e, 77
8.3.21 collect and iterate EXPreSSIONS. ..uuuiiiiiiiiiiieeiiiiiiiiiiiiiiiiiiiiieeeeeeieiiiieeieeeeeeeiiieieeeeeeeeieiieeeeeean 78
8.3.22 forAll, exists and 0Ne EXPreSSIONS. . .ccouuuiiiiiiueiiiiiiiiieiiiiiiieeiiiieeeieieeeeeeieeeeeeieeeeeeeieeeeenene 79
8.3.23 iSUNIQUE EXPIESSION. cuuuuueiiiiiiiiiiiiitiiiiiiieeeiiiiiiiieeeeeeeeeeiiieeeeeeeeeeeiiiieeeeeeeeeeiesteeeeeeeeeeeeinnees 81

8.4 Increment and Decrement EXPreSSIONS. . .ueeuuueiiiiieeeeiiiiieiiiiiiiiieeiiiieieieiieieeeeieeeeeeeeeeiieeee e 81

8.5 UNATY EXPIESSIONS. tuuviiiiiiiiiiiiieeiiiiiiiieeeiitieeieeeeeeeieeieeeeeeeeeeieeeeeeeeeeeeeieiteeeeeeeeeeiintereeeeeeseeeenanes 83
8.5, 1 OVOIVICW. e uuuuiiiiiiieii ittt ettt ettt ettt e ettt et eee et eeieeeeeeaeeeeeinnenes 83
8.5.2 Boolean Unary EXDreSSIONS. ..uuuuuiiiiiiiiieieiiiieiiiiiiiiiiiiiieeeeeiiiiiiiiiiieeeeeiiiiiiieeeeeeeeiisiitieeeeeeeeeeeninns 83
8.5.3 BitString Unary EXPreSSIONS. . cceuueeeiieiiiiiiiiiiieiiiiiiiiieieiieeieeiieeeieeeeeeeiieeeeeeiieeeeeeieeeeeeenaenne. 84
8.5.4 Numeric Unary EXDreSSIONS. .uuuuuuiiiiiiiiiuieeiiiiiiiiiiiiiiiiiiiieeeieiiiiiiiiiieeeeeeeiiiiiieeeeeeeeeeiiiiieeeeeeeen 85
8.5.5 Cast EXPIeSSIONS. .uuviiiiireeiiiiiieeieiiiee e eeie et eeeee ettt ettt e ettt e e eeieeeeeeieeeeeeieeeeeeiaeeeeenns 86
8.5.6 1S01ation EXPreSSIONS. .uviiiiiieieiiiiiiieiiiiiiiiiiiieeeeeeeeeiieeeeee ettt e eeeeeeeiie et e e e e e eeiirreeeeeen 89

8.6 BINAry EXPIeSSIONS. .ouuuveiiiiiuieiiiiiiiiiiiiiiiii i e e eeie et e ettt eee et eeieeeeeeieeeeeieeeeeennes 89
801 OVEIVICW . uutviiiiiiiiiiiieeeeieeeee et eee e ettt ettt et e te ettt eeeeeeeeeeteeeeeeeeeeeeeiintteeeeeeeeeeeeiseseeeeeess 89
8.6.2 Arithmetic EXPreSSIONS. ..uuiiiiueiiiiiiieiiiiiieiiieiiieei e eeieee e e eeeeeeeeeeeeeeeeieeeeeieeeeeennne, 90
8.6.3 Shift EXPIESSIONS. 1eiuuteeiiiiiieiiiiiieiiiiiieieeieeitieiieeeeeeeeeieieeeeeeeeeiiteeeeeeeeeeeietaeeeeeeeeeeeeeineeeeeeens 92
8.6.4 Relational EXPreSSIONS. ..uuuiieureiiiiiieiiiiiiiiiiiieieii e e eeee e eeie et e eeieeeeeeieeeeeaneee 93
8.6.5 Classification EXPIeSSIONS. ..uuuuuuiiiiiiiiiiiiieiiiiiiiiiiiiiiiiiiiiieeeeeeeiiiiiiieeeeeeeieiiiieeeeeeeeeeiiiiireeeeeeen 95
8.6.6 EQUAlity EXPIreSSIONS. .oeiiiuuuiiiiiieiiiiiiitiieiieiiiieeeeei et eeeee et eeee e ettt et eeieeeeeieeeeeeiieeeeeeiaeeeeenns 96
8.6.7 1.0Z1CAl EXDICSSIONS . ciieiuuteiiiiiiiiiiiiiiitiiiiiieeeeiieiiiieeieeeeeeeeittiieeeeeeeeeeeiieeeeeeeeeeeeiiitteeeeeeeeeeiennnns 97
8.6.8 Conditional Logical EXPreSSIONS.uueiieureiiiiiieiiiiiiiiiiiiiiieieeiiiieeeeiiieeeeeeieeeeeeieeeeeiieeeeeennee, 99
8.6.9 Null-CoaleSCing EXPIeSSIONS. ..uiiiiiuueeeeiiiiiiiiiiiiiiiiiiiieiiiieiiiiiiiiieeeeieiiiiieieeeeeeeeiiitireeeeeeeeeainnns 101

8.7 Conditional-Test EXPIeSSIONS. . .uuueiiiieueeiiiiiiiiiiiiiiieiiiiteieeeeiieeeeeieeeeeeieeeeeieeeeeieeeeeeiaeeeeennee, 102

8.8 ASSIENMENt EXPIESSIONS. uvuueiiiiiiiiiiiiiiiiiiiiiieeiiiiiiiieeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeiieeeeeeeeeeeieeeeeees 105

9 Statements 111

9.1 OV OIVIEW. ettt ettt et ettt eee ettt eeeeeeeentteeeeeeeeeeiaintteeeeeeeeeeeiistteeeeeeeeeeeiensseeeeeess 111

ii Action Language for Foundational UML (ALF), v1.1

9.2 ANNOtAEd StA I EIIESt iit ittt e e e ettt eeeeee ettt eeeseeeestaaeennaaaaseeseeenennnaaeseeeeeeennennnaaaaeeeeeenn 114

IRE §o B DT AT 101 001 0 L 117
0.4 BlOCK Stal O IS . ..ttt ettt e e s e ettt e e e ee ettt e eesaee et ttee i aaeeaaeeeteeannnaaaaaeeeeeeennnnnaaeeeereennnnnnnnnns 118
9.5 EMPLY StatOIMEINES . ¢ eeeereeeeeeiiieiitieeeee et e eeeeee e eeeeeeeeereeeteaeeeeeeeeeeenneeaeeeeeeeeeereeaaaeeeeeerernrnnaaaseeeeeeees 121

9.6 Local Name Declaration StatementsS...........eeeeiiiiiiieeeeiiiiiiiiiiiiiiiiiieiieeeiiiiiiiiiieeeeeeeiiiiiieeeeeeeeeiiinens 122
9.7 EXPression StatemMIENtS. .o.uuuueiieueeeeiiiieieiiiiiieeeeieeeeeiee et ettt eeee et 125
9.8 I StAtEIMIEIIES . eiiiiiiiiiiieiiiiiiiie ettt e ettt ee e e e e e e e e eeeee 126
9.9 SWitCh StateMENES. .c.uviiiieiiiiiiiitiiiiiiii it 129
9.10 While StateIMENTS. . ciiiieeeeeeiiiiiiiiiiiiiiiiiiieee e e e eeeeeeeeeeeeeeeeeeeiieeeeeeeee et eeeeeeeeeenneneeees 132
9.11 dO SHAtEMIENES. ..eeiieiuiiiiiiiiiii ittt ettt 133
9.12 f01 StAtEIMENTS. .uuuveiiiiiiiiiiiiieiiiiiii e eeeeeeeeee et e ettt eeee et eee et eeei et eeeeeeii e eeeeeeeeienes 135
9.13 break StatemMENtS. . oouueeiiiieiiiiiiiiiiiiiiiie ettt 139
9.14 1etUIN StAtEINEINES . ..uuvueseeesieeeeeeeeeeeeeeeeeeeeeeeee ettt teetetttetteteeeteeteeteteeettttettteteeeeeestaeeeeeeeeseeseeeseeseeeeeeeees 139
9.15 acCePt StALCIMEINES . eeieuiieeieieiiiiiiiiiiei ettt eeieee et eee ettt ettt ettt 140
9.16 ClasSify StAteMENTS. . cceuueeeeiiiiiiiiiiiiiiiiiiie i ee et eeeeee et e e eee et eeeee e 143
10 UNES.ceeerreeeeeessnneeeessnseeesssnsseecsssnssscsssasssecassnssssesssnsssssssansssesssnssssssssassssssssnsssssssansssssssnsssssssansssssssansssassas 146
JO.1 O VI VICW . uututtiiiiieiiiieeeieeeee ettt eee e ettt ettt ee et e eeet et eeeeeeeeiesateeeeeeeeeeeeineteeeeeeeeeeeaisseeeeeeess 146
10.2 NAIMICSPDACES . teeiiiiiiiiiititeeeeeee et ieei ettt ettt ettt ettt ettt ee e e ettt eee e eeee et eeeeieeereeeeeieiaeeeeeee 153
10.3 PACKAGES. oottt e e e et et e e eeeee et 154
10.4 ClaSSITIOTS uvueiiiiteiiiiiitie ittt ettt ettt ettt ettt et et e eeeiaeeeeeans 156
1O.4.1 OVEIVICW . uuriiiiiiiiiiieiiiiiieeeeeieeeee e ettt eeeeeeeeeeeeeeeeeeeiiteeeeeeeeeeeeiiteteeeeeeeeeiesneeeeeeess 156
10.4.2 ClaSSCS. .oiuueeiiiiieeie ittt ettt ettt ettt et e e ee e, 159
10.4.3 ACHIVE ClaSSES. . iiiiuueeeiiiiiiiiiiiieiiiieeieeeeeieeieieeee et eeeeee et e eeeee ettt eeeeeeeeeeiiieeeeeeeeeeeeineeeeees 162
10.4.4 DAt TYPES.coiiiiiiiiiieiiiiiii ittt ettt ettt ettt e e 165
10.4.5 ASSOCIALIONS. 1uuvviiiiiiiiiiiieiiiiieeeeeeieitieeeeeeeeeeeeteeeeeeeeteeieeeeeeeeeeiistteeeeeeeeeeeiiieteeeeeeeeeiinnnes 167
10.4.6 ENUMEIATIONS. c.vueiiiiuiiiiiiiiiiiiiiiiie e eeee ettt eeee et eee et eeie et e ettt eeeaeeeeeeieeeeeieeeeeenneess 168
10.4.7 STENALS..uuueeiiiiiiiiiiiiieiiieee oottt ee e ettt ettt e e e et it eeeeeeiinaeaeens 170
10.4.8 ACUVITICS . couvveiiiiiteiiiiiiieii e iee e ettt ettt et et e et et eeeeeae et eeaeeeeeieeeeeeiaeeeeeeisaeeeeanns 171
10.5 QAU CS. 1 uuuuueteteeeteeeeeittttetteetetetettetetetettttetettteteetetsetetstetetttetetsteteteteteteseteeeeeteteeetseerereeeeeees 175
10.5.1 OVEIVICW . eeiuuuiiiiiiiiiiiiiie ettt eee et et e ettt e ettt e et eeeeeiaeeeeeeitaeeeeeiiaeeeeans 175
10.5.2 PrOPEITIES. .o ieeiiiiiieeiiiieieiiieeeeeee ettt e ettt e e ettt e e et e ettt e e e e e eeiaeeeas 175
10.5.3 OPCIaAtiONS. .oeeiureiiiiiitiiiiieieie et eeee et eeeee ettt eee et ee et ee e eeaeee e 179
10.5.3.1 CONSUUCLOTS . oevvetiiiiiiiiieiiieieieieieieeeee ettt eeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeeeeeereeeeeeeeeeeees 182
10.5.3.2 DESTIUCTOTS, 1oeiiiiiiiiiiiiiiiiieieiieiiitieei et ee ettt ettt ettt eeeeieeeeeeeeeeeiiiaeeeeeeeeeenns 185
10.5.4 RECEDUIONS. ceeeiiiiiiiiiiieiiiiieieeieiieieeee ettt e e eeeeeietieeeeeeeeeeiinieeeeeeeeeeeeiiteeeeeeeeeeeiinneeeeeeens 187

11 Standard Model LiDrary...ccccccceeeeceesneeeeeeecccscssnnssssecccssssssnnsssssssccsssssssnsssssssscssssssanssssssssssssssssnsssssssses 190
L1 1 OVOIVIEW . eiiiiiiiiiietiiiieeeee ettt e e et ettt e eeeeeeeiteeeeeeeeeeeeinteeeeeeeeeeesiiteeeeeeeeeeesennnes 190
11.2 ActionLanguage Profile.........ceieeiueiiiiiiiiiiiiiiiiiiiiiiiii i 190
11.3 PrimitiVe TVDES. cuuiiiiiiiiuieiiiiiieeiiiieiiiiieeee ettt ee ettt eeeeeeeeeeiteeeeeeeeeeieneteeeeeeeeeeeieneeeeeess 191
11.3.1 NAtUTAl TYPCuueiiiiuiiiiiiiiiiiiiie ettt eeeee e eeeeeeeieeeeeeiaeeeenns 192
11.3.2 Bit SN TV PC .ttt ettt eee et eeeeeeeeeeeeeeeiieeeeeeieeeeiieeeeeeanns 192
11.4 Primitive BeNAVIOTS. ..ocouveiiiiiuiiiiiiiiiiiiiiiiiiiiiii e 192
11.4.1 BoOlean FUNCHONS. ...cciiiiiiieiiiiiiiiiiieieiieieiee ettt eeeeeeeeeeeiiieeeeeeeann 193
11.4.2 Integer FUNCHIONS. ..oieuuiiiiiiiiiiiiiiiiii it eeeee e eeeeeeeeeeeeeennee, 194
11.4.3 REAl FUNCHOMNS. uuttiiiiiiiiiiiiiiiiiiiiie ettt eeeeeeeeeeeeeeeeeeeeieeieeeeeeen 195
11.4.4 String FUNCHONS. c..uuviiiiiiiiiiiiiiiii it eeee et eeeeeeeeiieeeeeiaeeeeeans 196

Action Language for Foundational UML (ALF), v1.1 iii

11.4.5 UnlimitedNatural FUNCHIONS . . .ciiiiutese sttt ete ettt teeeeeeeseeeteteeetaaaaeaeeeeeeennnnaesaeeeeeeennnns 197

11.4.6 Bit String FUNCHONS. ...uveiiiiiuiiiiiiiiiiiiieiiiie e eeeeee e e e eeeeeeeieeeeeiiaeeeeennns 198
11.4.7 Sequence FUNCHONS. ...oiiiieueeiiiiiiiiiiiieiiiieeee e eeeeeeieeeeeeeeeeeeeeeeeeeeeeeiaeieeeeeeeann 200
11.5 Basic Input and OUEPUL.eiieeiieiiiiiiiiiiiiiiiie e 205
11.6 Collection FUNCHONS. ...iiiiiieetiiiiiiiiieiiiitiiiiiee e eeeeeeeeiiieeeeeeeeeeitiiieeeeeeeeeiinnees 205
11.7 COlleCtion CIASSES. . cuuuiiiiiiuuiiiiiiiieiieieiie et eee e e ettt eeiee et eee et eeieeeeeeisaeeeeennns 208
11,70 BaA@T ittt ettt e e e e e et eeeeeen 211
11.7.2 ColleCtioN<T ™. i iiuiiiiiiiiieii ettt eee et eeiee et e e e eeeiaeeenen 211
11.7.3 DEQUEST ™ ittt eeiaeen 214
1174 BV . ettt ettt e i e eee e 215
11,75 LSt T ettt e e e e e e eeeenees 216
11.7.6 Map<K eV, VAIUC™......ooiiueiiiiiiiiiiiiiiii it eeeeeeeeieee e 219
11.7.7 OrderedSetT =, ittt eeee ettt e e e e eee et e e e e e e eeeareeeeen 222
11,78 QUEUC T ittt 225
11,7, St ittt e et et e e e et eeeenaeeas 228
12 Common AbStract SYNEAX.....cceeeeeeessneeeeeeeecasssssnnsssseeccsssssssnsssssssscsssssssnnssssssssssssssnnsssssssssssssssansssssssses 230
12,1 O VI VICW . uutttteiiiieiiiieeeieee oottt e e ettt et ee ettt iet e eeeeeeeeeieseteeeeeeeeeeeeintteeeeeeeeeeeaisseeeeeeess 230
12.2 Class DeSCIIPIONS . .eeeuureeiiiiiuteiiiiiieeeeeite e e ettt e eei ettt eeee et eeee et eeieeeeeeiaeeeeeiseeeeeeisaeeeeenns 232
12.2.1 ASSIGNEASOUICE. .oiuueeieiiiiiiiiiieiieieiiieee et eeeeeee et e eeeee ettt eeeeeeieieteeeeeeeeeeeeinneeeeees 232
12.2.2 DocumentedEICMENtuuviiiiiiiiiiiiiiiiiiiiiiiiiieiie e 233
12.2.3 ElementReferenCe. . ooiuuuueiiiiiiiiiiiiiiiiiiiii ettt eee e 234
12.2.4 ExternalElementReference. ..ouuuueiiiuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 234
12.2.5 Internal ElementR eferenCe. . uuuuiiiiiiiiiiiiieiiiiiiiiiiieiiieiieee et 234
12.2.6 SyntaxEICMENt. . cuuuiiiiiiiiiiiiiiiiiiiiiiie et 235
13 EXpressions ADSEIACt SYNEAX.ccceeeeeeeeeeeeeeeeeeseeeseseeeseeeseessssesess 237
13,1 OVOIVICW . ueieiiiuueiiii ettt ettt ettt ettt ettt et ee e et et e eeiteeeeeiiseeeeeesaeeeeennns 237
13.2 ClaSS DESCIIPIIONS . teviieiiuitteiiiiiieiiiieieiiiieeeeeeieietieeieeeeeeeeetieeeeeeeeeeieiieeeeeeeeeeeeeiiteeeeeeeeeeeeienseeeeees 244
13.2.1 ArithmetiCEXPIeSSION . ..eiiiuuriiiiiiiiiiiieiiiii et eeeeeeeeeieeeeennee, 244
13.2.2 ASSIgNMENtEXDIESSION. .oeeuuueiiiiiiiiiiiiiiieiiiiieeeeeeeieiieieeeeeeeeeeiiieeeeeeeeeeeieieeeeeeeeeeeiiieeeeeeean 246
13.2.3 BehaviorInvocation EXPIreSSION. ..uueeiieureieiiiiiiiiiiiiiiiiiiiiiiieeeiiieeeiieeeeeeeee e 251
13.2.4 Binary EXPreSSIOMN . uueiiiiiiiiiiutieiiiiiiieiiiitiiiieieeeeeeeieieiieeeeeeeeeeeeeeeeeeeeeeiiteteeeeeeeeeeeiaeeeeeeeen 252
13.2.5 BitStringUnary EXPreSSION. .ouuueiiiiieeitiiiieieiiiiieieeiiiiiieeeiieieeeeeieeeeeieeeeeeieeeeeeiaeeeeeiaeeeeenns 253
13.2.6 Boolean L iteral EXPIeSSION . ocuuuueeeiiiiiiiiiiiiiiiiiiiieiieieiiiieieeeeeeeeiiiiieeeeeeeeeiiiiieeeeeeeeeieineieeeeen, 254
13.2.7 BooleanUnary EXPreSSION. . euuuueeiiiiueiiiiiiiiiiiieiiiie e eeieeeeeeeeeeeeeeeeeeiaeeeeeeiaenn 254
13.2.8 CaAStE XPI@SSION . utiiiiiiiieitiiiiiiieieeiietiiiieeeeeeeeeteeeeeeeeeeeiteeeeeeeeeeeiiteeeeeeeeeeiiittteereeeeeeeainns 255
13.2.9 ClasSEXteNtEXPIeSSION...cuuueiiiiiiiiiiiiiiiiii i e eeeee e eeeeeee e eeeeeeeeeieeeeennne, 256
13.2.10 ClasSificatioNEXPIeSSION. .uuuueveiiieiiiieiiiiiiiiieieiieieiieieeeeeeeeiiieeeeeeeeeiiiiieeeeeeeeeienaeeeeeen, 257
13.2.11 CollectOrIterate EXPreSSION. . uueuueiiiiiiieiiiiiiiiii it eeeeeeeeeieeeeeieeeeeiaeeeeeenns 258
13.2.12 ConditionallLogiCalEXPreSSION . ouuuuueiiiiiiiiiiiiiiiiiiiieiieieiiiiiiieeieeieiiiiiieieeeeeeeeiiiiieeeeeeeeeinnns 259
13.2.13 Conditional TeStEXPIeSSION. ..eiuuuiiiiiiiiiiiiiiiiieiiiiiiee e, 260
13.2.14 EQUAlItY EXPIESSION .eiiiiiiuiiiiiiiiiiiiiiiiiiiiiieeeeeieeiiiieeeeeeeeetiieeeeeeeeeeeiiiiieeeeeeeeeeeiaeeeeeeeee 261
13.2.15 EXPI@SSION . uuueieiiuteeiiiitteieeieee e eeeee et eeeee ettt et ettt eeit e et eete et eeieeeeeeiaeeeeeeseeeeeeiaeeeees 263
13.2.16 EXteNtOrE X PIreSSION . uviiiiiiiiiiiiiiiiiiiiiiieiiiiieiiieeeeeieiiiiiieieeeeeeeeiiiiieeeeeeeeeeeiiieeeeeeeeeeeeineeeeees 264
13.2.17 FeatureInvocatioN EXPIreSSION . c..uuiiieureiiiiiiiiiiiiiiiiiiiieiiiee e eeeieieeeeieeeeeeeeeeeeieeeeenne, 265
13.2.18 FeatureLeftHandSId@. . ..oooeiiiueiiiiiiiiiiiiiiiiiiiiiiee et 266
13.2.19 FeatureReferenCe. .uuuuiiiueiiiiiiiiiiiiiiiiiiiiiiii e 267

Action Language for Foundational UML (ALF), v1.1

13.2.20 FOrAllOrEXiStSOrONe E X DI ESSI0MN. . ettt e et eeteeeeeeeeeeteeeeeaaeseseeeeeeennnaaeaaeeeeeeeannnnaaaaas 268

13.2.21 IncrementOrDecrementEXPreSSION. ..uueuuueiiiiiuiiiiiiiiiiiiiiiiiiiieiiiiie e e, 268
13.2.22 InstanceCreatioNEXPIeSSION. . .uiiuuueieiiieiiiiiiiiiiiiiiieeeeeieiiiiiiieeeeeieiiiiieeieeeeeeeiiiiiieeeeeeeeeeeinns 270
13.2.23 InvOCAtiONEXPIESSION . .ecuueiiiiiiuiiiiiiiiiiiie e eie ettt eeeee e eeeeeeeeeieeeeennne, 272
13.2.24 1S0]1atiONE X PIeSSION. t.viiiiiiiiiiiiiiiiieiiiiieiiiiiiie e eeeeeieeieeeeeeeeieeeeeeeeeeiiieeeeeeeeeeenaieeeeen, 274
13.2.25 ISUNIQUEEXPIESSION. c.uvviiiiiiuieiiiiiiiiieeiiiie i eeeieee et eeee e eeeeeeeieeeeeeiaeeeeeiaeeeeenns 275
13.2.26 LeftHANASIAC. c.uvvviiiiiiiiiiiiiiiiiieiiieeeieeeeie et 276
13.2.27 LinkOperatioN EXPIreSSION. ..uueeiieueeeeiiiiiiiiiiiiiieeeieiieieeeieeeeeeeieieeeeieeeeeeieeeeeeiieeeeeeiiaeeeenns 276
13.2.28 Literal EXPreSSION . e uueeiiiiiiiiiiiiiiiiiiiiiieieiiieieieeeeeieiiiiieeeeeeeeeeeeiiieeeeeeeeeeeiitieeeeeeeeeeeeineeeeees 277
13.2.29 LOZICAIEXPIESSION . c.uuueiiiiuiiiiiiiiieeeiei ettt eeee et ettt eeeee et ettt eieeeeeeieeeeeeeeeeeenne, 278
13.2.30 NamMEBINAINEG. cuuvviiiiiuiiiiiiiiiiiiiieiiiie et eeeieeeeeieeeeeieeeeeeirereeeeans 279
13.2.31 NamMedEXPIeSSION. .uvueiiiiiiiiiiiiiieiiieiiie e e eeeee et eeeee et eeee et eeeieeeeeeieeeeeeieeeeeeitaeeeenns 280
13.2.32 NamedTemplate Binding.........oooieeuuuuiiiiiiiiiiiiiiiiiiiiiiiiieeiiieiee e eeeeeeieeeeeee e 281
13.2.33 NAMEATUPLC. .eeeuuiiiiiiiiiiii ittt eeeee et et eeee e 281
13.2.34 NamMEE X PIESSION. 1eviiiiiiiiiiiiiiiiiiieeieiiiiiiiieeeeeieeieiieeeeeeeeeiiieeeeeeeeeeeiiieeeeeeeeeeeieaaeeeeeeeee 282
13.2.35 NameLeftHandSide.......oooouueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii i 283
13.2.36 NaturalLiteral EXPreSSION. .ooeeuuueeeiiiiiiiiiiiiiiiiiiiieieiieiiiiiieieeeeeeeeiiiiieeeeeeeeeeeiiieeeeeeeeeeeeineneeees 285
13.2.37 NullCoaleSCINgE X PIeSSION. ..eeeieuieiiiiiieiieiiiiiiieeeeieieeeeeiee e eeeieeeeeieeeeeiieeeeeieeeeeeiaeeeenns 286

13.2.38 NumericUNary EXDIESSION. c.uuuuuveiieeiiiieiiiiiiiiieieeeeieiiiiieiieeeeeeeiiiiiieeeeeeeeiiiiiieeeeeeeeieinaeeeeeen, 287
13.2.39 OutputNamMedEXPIreSSION. .e.uuueiiiiiiiiiiiiiieiiiiiiie e eeeiee e eeieeeeeeieeeeeiaeeeeenns 288
13.2.40 Positional Template Binding.......ueeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeieeiieeeeeeeeeeeieeeeeeeeeeeiiiaee 288
13.2.41 PoSitioNalTUPLC. .euuveiiiiiiiiiiiiiiiiii it 289
13.2.42 Property ACCEeSSEXPIESSION. cuviiiiiiueiiiiiiiiiiiieiiiiiiiiieeeeeieiiieiieeeeeeeeieiieeeeeeeeeiitiieeeeeeeeeeianns 289
13.2.43 QualifiedNAMC.ooiiiuiiiiiiiiiiiiiiiii et 290

13.2.44 RealliteralE X eSS0 . e e eee ettt tee et ettt eeeeseeeeeeenenaaaaeeeeeeeennnnaaaeeeseeaennnnnaaaseeeeeeennns 292
13.2.45 Relational E X DI S SIOM . e eeeaeaeeeaeaeeeaaaaeaeaeaaeaaaaaeaeaaaaaaaaaaaeaeeasasas 293

13.2.46 SelectOrR e1€Ct EXPIeSSION . .uviiiueiiiiiiieiiiiiiiiiieeeiiieeeeeeeeeeiieeeeeeeeeeeeeeeeeiieeeeeeeeeeenne, 294
13.2.47 SequenceAcCeSSEXPIESSION. ..uiiiiiureiiiiiiiiiiiiiiiiiiiiiiiie et e et eeiee e eeieee e e 295
13.2.48 SequenceConstructioNEXPIeSSION. . .cieeueeveiiiiiiiiiiiiiiiieiiieieeeeiiiiiieeeeeeeeiiiieeeeeeeeeeniieeeen, 296
13.2.49 SequenCeEICMENTS. . .uuiiiuiiiiiiiiiiiiiiiiii et 297
13.2.50 SequenceEXpanSionEXPIeSSION. . ouuiiuuueeeiiiiiiiiieiiiiiiiiieieeeeieiiieieeeeeeeiiiiieeeeeeeeeeiiiieeeeennn 298
13.2.51 SequenceEXPreSSIONIIST . c.uvvveiiiieeiiiiiiiiiiiiiiiii i it 299

13.2.54 SequenceReduction EXPreSSION . cuuuuueeieiiiiiiiiiiiiiiiiiieiiiiiiieiieee e eeeeeeieeeeeeeennns 303
13.2.55 ShiftEXPIeSSION. .eiiuueiiiiiiiiiieiiiiiii ettt et eeeee et eee e 304
13.2.56 Stringliteral EXPIeSSION. uuiiiiiiiiiiuieiiiiiiiieeiiiiiiie e eeeeeiieeeee et eeeiieeeeeeeeeeeiiieeeeeeeeieienes 305
13.2.57 SuperInvocatioNEXPreSSION. ..uuuueiiiieeiiiiiiiiiiiiiieieeeiieieeieieeieeeieeeeeeieeeeeeieeeeeieeee e 305
13.2.58 Template Binding........ooiiieuueeiiiiiiiiiiiiiiiiiiiieeeeeeeeiiiieeee ettt 306
13.2.59 TemplateParameterSubStitutioN. ... eeeeuueeeeiiiieieiiiiiiiiiiiieieiiiiiie e eieieeeeeieieeeeiieeeeennns 306
13.2.60 ThiSEXDIESSION. .oeeeueteeiiiiiiiiiiiiiieiiiiiieeeiieieieieeeeeeeeiiieeeeeeeeeeeeeiiieeeeeeeeeeeesisteeeeeeeeeeeeiinneeeess 307
13,261 TUPIC..uueiiiiiiiiiiiiiii ittt e 308
13.2.62 UnNAry EXDIESSION. e uueeiiiiiiiiiiieiieiieeieiieiiiiiiiiieeeeeeieiiieeeeeeeeeeeiiieeeeeeeeeeeeiiiteeeeeeeeeeeieisneeeeeens 309
13.2.63 UnboundedLiteral EXPreSSION. . euiiuuueiiiiiiiiiiiiiiiiiiiiiiiieiiiiiie e e e 309
14 Statements AbStract SYNEAX......ccccceeeeenesnsesnsssssssssnssse 312
L4, 1 OVOIVICW . ueeeiiiuieiiii ittt ettt ettt ettt ettt ettt ettt e et et e eeeisaeeeeeeisseeeeeisaeeeeennns 312
14.2 ClasS DESCIIPIIONS . teviiiiiitteiiiiiiieiiiiiiieiiiieeeeeeieiitieieeeeeeeeeeiieieeeeeeeeeieieeieeeeeeeeieiiteeeeeeeeeeeeienseseeees 316

Action Language for Foundational UML (ALF), v1.1 v

14.2.1 ACCEDEBIOCK . . ittt et e et e ettt eeeee e ettt e aaaeeeeeteetaanaaataeeteteentnnaaaaaaas 316

14.2.2 AcCeptStateMENE. .ooeeiuiiieieiieiiiiiiiiiieiiie e e ettt eeeeeens 317
14.2.3 ANNOTAtION . uuiiiiiiiiiiiiiiiiiiiiie et eeeeeeeeiee et e et eee ettt eeeeee it eeeeeeeeeeineraeees 318
14.2.4 BIOCK . .iiiiuiiiiiiiiiiii ittt 319
14.2.5 BlOCKStAtEMENT . .eiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiee et eeeeeeeeeeei et e e eeeeer e eeeeeiennes 320
14.2.6 BreakStatement, . .oeeuueeiiiieiiiiiiiiiiiiiiiie i 321
14.2.7 ClasSifyStatemMIEn .. .uueeeeeeiiiiiiiiiiiiiiiieeieeiiiiiieee et eeeeeeeieeeeeeeeeeeie e e e e e ee i 321
14.2.8 CoONCUITENTCIAUSES . ..eiiuueiiiiiiieiiiiiiiie i eeeeee e et et eeieeeeeeiaeeeeeiaeeeeeans 322
14.2.9 DOStAtCIMCNL . .uuuuueeeseeitiiitsiititetitiiiettttteeteteeetetteesetteeeeeseseateeetstetetatstetsteesteteteeeteeeeeeeeeeeees 323
14.2.10 EmMpPtyStatemMIENt. . uuueeeeeeieiiiiiiiiiiiiiieiiiiiiiiiiieiiieieeeeeiieeeeeeeeeeeeieeeee et eeeeeeeiaeee 324

14.2.11 EXPreSSionStateIMIENt. .oueuueeeeeieieiiiiiiiiiiiiiiiieiiiiiiiiiiieeeeeeeeiiiiiiieeeeeeeeiiiiiieeeeeeeeeiiiisiiieeeeeeeean 325
14.2.12 FOrStatemMIENt. .uuueeeeiieiiiiiiiiiiiiiii i e e ieiieiiei ettt eeeeieee et eeieie et ee i 325
14.2.13 TfSEAtEMENT . eueeiiiiiiiiiiiiiiiiie ettt ee e e eeeee e e et e e e e e eeeeennees 327
14.2.14 InLineStatemeNt. .. eceueeeiiiiiiiiiiiie ettt 328
14.2.15 LocalNameDeclarationStatement. ..o.u.ueeeeeeeiiiiiiiiiiiiiiieeieieiiiiiieieeeeeeeiieieeeeeeeeeiieeeeeeen 329
14.2.16 LoopVariableDefInitioN.eeeueeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieceieeeeiee e 330
14.2.17 NONFINAICTAUSE. 1.vvviiiiiiiiiiiiiiiiiiiiiiieeeieeieee ettt eeeeeeeeeieeeeeeeeeeeiiaeeeeeeeen 332
14.2.18 QualifiedNamMELaSt. . ..cceiueiiiiiiiiiiiiiiiii e 333

14.2.19 RetUIMStAt@IMIENT . .uuuuteeseseeeseeteeeiiieteeeieiteteiieiieeieieiiieseetteeeeesaeeeeeseeteeseeeeeseeeseeeseeeeseeeeeeeeeenees 334
14.2.20 StAtCIMENT. . eiiiiieiiiiiiiiiiii i eeeeeeee ettt ettt e 334
14.2.21 SWItCHCIAUSE. .uvvvviiiiiiiiiiiiiiiiiiiiie et eeeeeeeeeeeeeeeeeiee e e e e eeeeeiaeeeeeeeenn 336
14.2.22 SWitChStAteMEN . . eeeiiuiiiiiiiiiiiiiiiiiie et 337
14.2.23 WhileStatemeNt. .. uueeeeeiiiiiiiiiiiiiiiieeieeeiiiiiiee ettt eeeeeeeiiiieeeeeeeeeeenaeeeeeen, 338
15 Units ADSEract SYNEAX....cceeeeeeeeeeescesssnssseeeeccasssssnnnsssssesesssssssnssssssesssssssssansssssssessssssssssssssssssssssssnnssssssses 340
L5.] O VI VICW .ttt ettt et ettt eee e et eet et eeeeeeeeieseteeeeeeeeeeeeineteeeeeeeeeeeaisseeeeeeess 340
15.2 Class DeSCIIPTIONS . .oeeuuueeiiiiiuteiiiiiiee e et e et e ettt ettt eeee e et eee et eeieeeeeeiaeeeeeiseeeeeeiaeeeeenns 342
15.2.1 ActiveClaSSDefINItiON . c.uuuueiiiiiiiiiiiiiiiiiiiei e eeeeeeieee et eeeeeeeeeeeeeeeeiennns 342
15.2.2 ActiVityDefINitiON . oeieuueiiiiiiiiieiiiiiie e e, 343
15.2.3 ASSOCIatioND e INItiON. uuiiiiiiiiieiiiiiiiiiieieeiiiiiiieee ettt ee e 344
15.2.4 ClasSDefINItiON. .eeuueeiiiiiiiiiiiiiiiie ittt 345
15.2.5 ClasSifierDefiNitionN. ..uueeeiiiiieeeiiiiiiiiiiieiiiiiiiieee ettt eeeeeeeie e e e eeeeiaeeen, 345
15.2.6 ClassifierTemplateParameter.oo..eeeeeiuviiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiieiiieiieieeeieieeee e, 346
15.2.7 DataTypeDefInitiOn. ..ooieeeeeeeiiiiiiiiiiiiiiiiiieeeee e eee e eeeiiieeeeeeeeeeiiiieeeeeeeeean 347
15.2.8 ElementImportReference. . .oouueiiiieueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeiiieeiei e 347

Vi

15.2.9 EnumerationDefInition....eiieieeeuueeiiiiiiiiiiiiiiiiiiiieeeee ettt ee e 348
15.2.10 EnumerationLiteralNaAMI@. ...eeeuuueiiiiiiiiiiiiiiiiiiiiiiiieiiiiiee e 349
15.2.11 FOrmalParamiEter. . ..uuiiiiueeeeeeiiiiiiiiiiiiiiiiieeeeeeeeeiiiieee e eeeeee e eeeeeeeeiiieeeeeeeeeeeiiiiieeeeeeeeann 349
15.2.12 ImMpPOrtedMEMIDET . c..uueiiiiieiiiiiiiiiii ittt 350
15.2.13 IMPOItREFOICNCE. cuuuueiiiiiiiiiiiiiiiiiiiiieeeeeeieiee ettt eeeeaee 350
15.2. 14 MCIMDCT uueiiiiiiiiiiiiiii ettt 351
15.2.15 NameSpaceD efiNitionN . ..uuuueeiiiiiiiieeiiiiiiiiiiieeeiiiiiiieeeeeieiieiiee e eeeiiiieeeeeeeeeiiereeeeeeeeienns 353
15.2.16 OperatioNDefiNItioN. ...uueeiiieueiiiiiiiiiieiiiiii et eeeeee e 354
15.2.17 PackageD efiNition . ..ueeeiiiiiiieiiiiiiieiiiieiiiiiiiieeeee ettt e e, 356
15.2.18 PackageImportReference. ..oouueuiiiiueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieiiieeeei e 357
15.2.19 PropertyDefinitioN. .coeuueeeeieeieiiiiiiiiiiiiiiiieeeiiiiiiiiieeeeieeiiieeee et eeeiiieeeeeeeeeeeieeeeeeeeieienes 357
15.2.20 ReceptionDefINItioON . c.uueeiiiuiiiiiiiiiieiiiiiiiiiiiiii et 358
15.2.21 SignalDefINitiON . uueeieiiiiiiiiiiiiiiiiieeeiiiiiiiieee ettt eeee e e e e 359

Action Language for Foundational UML (ALF), v1.1

15.2.22 SionalReceptionD e NItION. oo iieuee ettt e e e e et eeeeeeeeetteeaaaaeeeaeeeeeennnaaaaeeaeeeeeeannnns 360

15.2.23 StereotyPeANNOLAtION. ...veeiiieeeiiiiiiiiiiiiiiieeeeiiee et eeiee et eeeee e 360
15.2.24 Tag@eAValUC. ..ottt ee e 361
15.2.25 Tag@edValueliSt . ..oiieueeiiiiiiiiiiiiiiiiie e 362
15.2.26 TypedElementDefinition......eeeiiiiiiiiiiieiiiiiiiiiiiiiiiiieee et eeeeiiieeeeeeenn 362
15.2.27 UnitDefINitioN. eeeieureiiiieiiiiiiiiiiiiiiiiiiee ettt eeee e 364
16 Common MAPPING.....ccceeeneeennsesesssase 366
16.1 GONETAL .eeiiiiuiiiiiiiiiii ittt 366
16.2 SYNtAX EIOIMENTS. uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiieeeeeeeeeieei e eeeeeiieeeeeeeeeeeeteeeeeeeeeeeeiitieeeeeeeeeeienns 366
16.3 Documented EleMENtS.oiiiueiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiee e eeeeeeeeeee e 366
16.4 Element ReferenCeS. .uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieie oottt 366
16.5 ASSIZNEA SOUICES. .uueiiiiuieiiiiiieiiiiiiiei ettt ettt eee ettt eeie e e eieeeeeeiaeeeeeineeeen 366
17 EXpressions MAapPiNg........eeeeeeeeeeeeeeeeeeeenennesnsesssnsesss 368
171 GONETAL .eeiiiiuiiiiiiiiiiii ittt 368
17.2 QUAalified NAIMES. ..oeiiiiiiiiiiieiiiiiieiieieetiieieie e iee e ettt et e eeeeeeeeeeeeeeeeeitieeeeeeeeeeeienees 368
17.3 Literal EXPreSSIONS. .ouiiiuueiiiiitseiieiieei e et e ettt ettt eeee et eeee et eeeeeeeeeieeeeeeaeeeeeeinaeene, 368
17.4 NAME EXPIeSSIONS. toiiiiiiiueeeiiiiiieiiiiiiiiiiiiieeeeeieiiteieiieeeeeeeeeitiieeeeeeeeeieieeeeeeeeeeeeiitteeeeeeeeeeeienseeeeess 368
17.5 thiS EXPIESSIONS. teeiieuusiiiiiitiiiiiiiei e ettt ettt ee et ee ettt eeee et eee et eeeeeeeeeiseeeeeeiaaeeeeenes 369
17.6 Property AcCCeSS EXPIeSSIONS. ..uiiiiiiiiiueeeiiiiiiiiiiiiiiiiiiiiiieieeeeiiiieieeeeeeeieiiiieeieeeeeeeeiiiiiieeeeeeeeeienees 369
17.7 InvOCation EXPIESSIONS. ...uvueiiiiueiiiiiiiiiiiiieieieeiei e ettt eeee et eeeeeeeeeeeeeeeieeeeeeeeeeeiieeeeenne, 369
178 TUDICS. ettt ettt ettt ettt ettt ee e e eeieeeeeiteeeeainaeeeeaans 370
17.9 Behavior Invocation EXPreSSIONS. . cuuueiiiiiueiiiiiiiiiiiiiiiiiiiiiiiieeeiiiieeeeeeeeeeeieeeeeeeeeeeeieeeeennee 370
17.10 Feature Invocation EXPIeSSIONS. ...uuuuiiiiiiiieiiiiiiiiiiiiiiiiiieiiiieeeeiiiiiiiiiieeeeeeeeeiiiiieeeeeeeeeeeiiieeeeeeann 371
17.11 Super Invocation EXPreSSIONS. . cuuuuieiieeeiiiiiiiiiiiiiiieiiiiiiiieeeeeeeeeeeieeeeeeeeeeeeiieeeeeeieeeeeeiene. 372
17.12 Instance Creation EXDPreSSIONS. ..uuuuuiiiiiiiiiieeeiiiiiiiieiiiiieiiiiieeeeeiiiiiiiiiieeeeeeeiiiiiieeeeeeeeeeiiinieeeeeeen 372
17.13 Link Operation EXPreSSIONS. . eceuueeiiiiieeiiiiiiiieiiiiiieeiiiieeeeeeieieeeiieeeeeeiieeeeeeieeeeeiieeeeeeiaeeeenns 373
17.14 Class EXtent EXPreSSIONS. ..uuuiieuueeiiiiiiiiiiiiiiiiiiiiiieeiiiiiiiiiiieeeeeiiiiiiiiieeeeeeeeiiiieeeeeeeeeeeeiiinneeeeeeeen 374
17.15 Sequence Construction EXPreSSION.uuiieuueeeiiiiiiiiiiiiiiiiiiiiiiiieiiiieiieieeieieeeeeeeeieeeeeeiieeeeennns 374
17.16 Sequence AcCCESS EXPIESSIONS. cuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiiiiiiieeeeeeeieiiieeeeeeeeeeiiieeeeeeeeeeieieaeeeeeees 375
17.17 Sequence Operation EXPreSSIONS. ...uuuuieuueeiiiieeiiiiiiiiiiiiiiieiieieiieeiieeieeeieeeeeeieeeeeieeeeeennenn. 375
17.18 Sequence Reduction EXPreSSiON..cuuuuueiiiiiiiiiiiiiiiiiiiiiiiiieiiiiiieieeeeeeeiiieeeeeeeeeeieeeeeeeeeeeniieeees 375
17.19 Sequence EXpansion EXPreSSIONS. . ce.uueiiiieueiiiiiiiiiiiiiiiiiiieiiiieieieeeeeeiiieeeeieeeeeieeeeeiiaeeeens 376
17.20 Increment and Decrement EXPIreSSIONS. ..cueieuuueeeiiiiiiiiiiiiiiiiieieiiiiiiiiiiiieeeeeeiiiiiiiieeeeeeeeeiiniieeeeee, 377
17.21 UNAry EXPreSSIONS. . eeuueeiiiiiseiiiiieieeiiiteieeeeieeeeeeeee e e eeee et eeee et eiee et eeieeeeeieeeeeeiaeeeeeinaeeees 377
17.22 Binary EXPrESSION . uuuiiiiiiiiitueiiiiiiiiiiiiiiiiiiiieeeeeeiiiiiiieieeeeeieiiiiieeeeeeeeeeiiistteeeeeeeeeeeiiisteeeeeeeeeeaiinns 379
17.23 Conditional-Test EXPreSSIONS. c..uuuiiieiureiiiiiieiiiiiiiiiieiiiiiieiiieeieeeeeieieeeeieeeeeeieeeeeeieeeeeeiaeeeeenns 382
17.24 ASSIgNMENt EXPIESSIONS. 1uuvviiiiiiiiiiiieeiiiiiiiieiiiiiiiiiiieeeeeieeiiiiieeeeeeeeeiiiiiieeeeeeeeeeeeiiieeeeeeeeeeeiiinees 383
18 Statements MAPPING....ccceeeeeeeeresssaseereeeecasssssnnssssssecsssssssnssssssssssssssssnssssssssssssssssansssssssssssssssnssssssssssssssss 387
I8.1 GONEIAL .uuuiiiiiiiiiiiiiiiiiiie ettt e ettt e e et e ittt ettt ee e e eeeeeeee i trreeeeeeeainns 387
18.2 In-11N€ StateMENTS . ..ecuuueiiiiiuieiiiiiiiiiiiiiii ettt et eeie ettt 387
18.3 BIOCK StatemENtS. ..cuuueeeiiiiiiiiiiiiiiiiiiiiie ettt e et eee e ee e eeeenn 387
18.4 EMPtY Stat@MIENTS . uuueiiiiiiiiiiiiiieiiieiiiiiiiiieeiei e e e eeeeiieee ettt eeeeiee et ettt it eeeeeieeeeeeeeieans 388

18.5 Local Name Definition StatementS. . ..cceuuuveeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeiiiiiiieieeeeeeeiiiiiiiieeeeeeeinns 388
18.6 EXPression Stat@mMENtS.eeeeeueeeiiiiiieiiiitiieiiiieiieeiiiieee e e eeie et eeeeeeeeeie et eeiee e eeieee e 388
18.7 1f StAtEIMENTS .. iiieeeeiiiiiiiieeeiiiiieiie e eeeeeeetee e eeeeeeee ettt ettt ee et e e et eeeeeiaereeeeeeaeenns 388
18.8 SWItCh StateMENTS. . .eeiiiiuiiiiiiiiiiiiiiiiiei it ee ettt 389

Action Language for Foundational UML (ALF), v1.1 vii

1 8.0 WHILE StA I OIS . ettt e et e ettt et e ee ettt eeeaeeeeetteeeeaaaaeeaeeeenennnaaaaeeeseeensnnnnaaaeeeeeenennnnnns 389

18.10 dO StAteMIENES. ..uvviiiieiiiiiiiiiiie i eeee ettt eie e eeaeeeeeans 390
18.11 fOr StatEIMENTS. . eiiueeiieiiiiiiiiiiiieiiiieee ettt e eeeeeeee et eeeeeteite et eeeeeeeeitieiieeeeeeen 391
18.12 break StatemMENtS.uueiiiiueeieiiiiiiiiiiiiii ettt eeiee e 392
18.13 return StatemMENtS. . .ouuueeeiieiiiiiiieeeiiieieeeeeeeee et 392
18.14 accept StAtCIMENES .. eeeuuuvieeiiiiiiiieiiiiieeii ittt ettt ettt e 392
18.15 classify StateImMENTS. ..uuuviieiiiiiiiiiiiiiiiiiiiieiiieiiiiie e eeeeee e eeeeeeee e et e e e et e 393
19 Units MAPPING...ceeeeeeeeeeeeessesssssseeccecsssssnnsssssssssssssssnnsssssssssassssssnsssssssssssssssnssssssssssssssssansssssssssssssssnssssass 395
19.1 GONEIAL .uuviiiiiiiiiiieiiiiiie oottt e et ettt e e e et e e ettt ee e et e eitrreeeeeeeainns 395
19.2 Namespace DefInitioNS. ...uuueeeiieueeiiiiiiiiiiiiiiieiiiiii e eeeeeeeeeee e eeeee e e, 395
19.3 Package DefinitioNnS . ..uueiiiiieeeieeeiiiiiiiiiieiiiiiiiiie e eeeiiiee ettt eeeee e eeeeeieianns 395
19.4 Classifier DefiNitioNS.ueeiiiiueiiiiiiiieiiiiiiiiiieiiie e eeiei et eeieee et eeiee et eeiee e 396
19.5 ClaSS DEfINItIONS. uuueiiiiiiiiiiiiiiiiiiiiiiiiieeetiieieeeeeeeeeeteeeeee et eetieieieeeeeeeeiistieeeeeeeeeeeiiaeeeeeeeeeeeainns 396
19.6 Active Class DefinitioNS. ...ueeeeeeueiiiiiiiiiiiiiiiiiiieiiii et eeie e 397
19.7 Data TYPE DefINitiONS. .uuueeeeiiiiiiieiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeiiieeeeeeeeeeiiieeeeeeeeeeeiiiiieeeeeeeeeiiiiiieeeeeenn 397
19.8 Ass0ciation DefinitionNS. . .uuiieeueeiiiiiiiiiiiiiiiiiieiii e 397
19.9 Enumeration DefinitionsS. ..ooeuuuuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeiiiiiiieeeeeeeeeiiiiieeeeeeeeesiiiiieeeeeeeeainns 397

19.10 Signal (and Signal Reception) DefInitiONS uees 397

19.11 ACtiVity DefinitiONS. . uuueeeieiiiiiiiiiiiiieieiiieeiiiiieieee et eeeeeeeeie et eeeeeieeeeeeeeeeeeieeeeeeeann 398
19.12 Typed Element DefinitionS. ... ceeuueeiiiiiueiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeieiiieeeeeeeeeeeeeeieeeee e 398
19.13 FOrmal ParametersS......uuiiieeuueeeiiiiiiiiiiiiiiiiiiiieeeeieiiiieiieeeeeeeeiiiieeeeeeeeeiieeeeeeeeeeiiiieeeeeeeeieianns 399
19.14 Property DefinitionS. . .cceuueeeiiiiiiiiiiiiiiiiiiiiiie it 399
19.15 Operation DefinitionS. . cuueeeeueeeiiieiiiiiiiieiiiiiiieieieeiiiieee e eeeeiiieeeeeeeeeeiieeeeeeeeeeeiiiiieeeeeeeeeeenns 399
19.16 Reception DefinitioNS. .. eeeeuuueeiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e 400
Annex A: Semantic Integration with State Machines and Composite Structure.....cccceceeeeeeeeeeeeeeenees 401
AL OVOIVICW . ueiiiittiii ittt ettt ettt ettt e ettt eeee et ee et et eeeeeree e, 401
A2 State MAChINES. .uuveiiiiiiiiiiiiiiiiiiiiiie ettt e e e e e e ee e 401
A.3 COMPOSItE STUCTUIC . .eeiuuueiiiiiiiiiiiiiiiiii ettt eeee et eeieeeeeeieeeeeeaaeee, 405
Annex B: Extended Examples.......ccceeeeeeeeeeeeeeeeeeeeeeeeeeeenaeneesesssesesssosss 409
B.1 QUICKSOIt ACHVIEY . cuuviiiiiiuiiiiiiiiiiiiieitii ettt eee ettt eeee e eeiee e eeieeeeeeiaeeeeennee, 409
B.1.1 Quicksort Functional Implementation...........uoiueeeiueeeeiieiiiiiiiiiiiiiiieeeeiiiieiiiiieeeeeeeeiiiiiieeeeeen, 409
B.1.2 Quicksort “In Place” Implementation...........cccueeeiiiiueeeiiiiiiiiiiiiiieiiiiiiieiiiiieieieiieieeieiieeeennn, 413
B.2 ONling BOOKSTOTE. .uuuteiiiiiiiiiiiiiiiiiiiieieee et eeeiieeeeeeeeieieeeeeeeeeeiteeeeeeeeeeeeeieeeeeeeeeea 415
B.2.1 Graphical Model for Ordering........o..eeeiiiueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiieieeeeiieeeeeieeeeeeieeeen, 415
B.2.2 Alf Representation of Entry Behaviors........ooiiiieuveeeiiiiiiiiiiiiiiiiiiiiieeiieeieieeeeeeeeeiiieeee 417
B.2.2.1 Activity EstabliShCUStOMETuuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeiiiie e e, 418
B.2.2.2 Activity ProceSSCNAIGE. ..uuuvvviiiiiiiiiiiiiiiiiiiiiieeeieeieieeeee e eeeeaee 419
B.2.2.3 Activity DeclineCRar@e.cceuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiie e, 420
B.2.2.4 Activity PACKANASIID..c.uuuviiiiiiiiiiiiiiiiiiiiieeeeeeiieeee et 420
B.2.2.5 Activity NotifVOfDEIVEIY. . oiieeuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeieieeeeeieeeeeeeeeeeaann 420
B.2.3 Alf Representation of the Ordering Model.......coouuueeiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeiieeee 420
B.2.3.1 Package Ordering.......ccuueiiiiiuiiiiiiiiiiiiiiieiiiieiiie e 421
B.2.4 ClaSS OTAeT cciiiiiiiiieiiiiiiiiiiiiiiiiieeie oo eeeeieeeeeeeeeeieeeeeeeeeeeeteeeeeeeeeeeiireeeeen 422
B.3 Property Management SeIVICE.....uuiiiiuueiiiiiuiiiiiiiiiiiiiiiiiieeieieieeeeiieeeeeeieeeeeieeeeeeieeeeeeiaeeeeennee 425

B.3.1 The Property Management MOdEl......oouuuuuieiiiiiiiieee et ee e e e ettt ieeeeeeeeeeeeeeniaaasaaaaes 425

B.3.2 DaAta MOl ceiiieiiiiiiiiiiiiiiiiiiiit ettt ettt ettt ettt et e eet et et eeeeeeeeereteeeretereteteeereeeteteeetetetetetteeeeteeeee: 426

viii Action Language for Foundational UML (ALF), v1.1

B.3.3 MESSAZE MOAEL.... it e et ettt e eee ettt aeeeeea et eeaeatiaaaaeeeeseeneannnaaseeeeeeeennnnns 428

B.3.3.1 ReqQUESt MCSSAGES. .eeiuuuireieiiieiiiiiiiieiiie e ieeeeeee ettt ettt eee ittt 428
B.3.3.2 RePIY MESSAZES.coiiiiiuueeeiiiiiiiiiiieiiieeiieeeeeeeeiiieeee ettt e ee ettt e e e e e e eeeeen 429
B.3.4 Service MOA@l...uuiiiuuiiiiiiiiiiiiiiiiiiiiiiiii i 430
B.3.5 Property Management Service MethodS.......uuuviiiiiiiiiuuveiiiiiiiiiiiiiiiiiiiiieeeeieieeee e 431
B.3.5.1 PrOPCItY.cciieiuuieeiiiiiiiiiieiiiiiiie ettt 431
B.3.5.2 Identifier FACtOIY..oooouueeiiiiiiiiiiiiiiiiiiiiieeeeieeieee ettt eee e 432

B.3.5.3 Property Management Service Implementation eeeeeeeeeeeeeeeieeeeeieeeeeeeieeereeeeeeeeereeeeeeeeees 433

B.4 Alf Standard Library Collection Classes Implementation..........ceeuveeeeieeeeiiiiiieeeeiiiieeeiiiiiiiveeeenn. 440
B.4.1 INtrodUCHION. cc.uueiiiiiiiiiiiiiiiii it 440
B.4.2 CollectionClasSeS: i IMPl...uueeeiiiiiieieiiiiiiieiiiieiiiiiieeee et eeeeeeeeeeeeeeeeeeiieeeeeeeeieanes 440
B.4.3 CollectionClasses::Impl::CollectionImpl.........oeeeeiueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieiieeeennee 441

B.4.4 CollectionClasses::Impl::OrderedCollectionImpl........ceeeeeeiiiiueeeeiiiiiiiiiiiiiiiiiiieieeieeiiieeeen, 443
B.4.5 CollectionClasses: . ImpPliiSet. . eeuuuiiiiieiiiiiiiiiiiiiiiiii i 444
B.4.6 CollectionClasses:: Impl::OrderedSet.......uuuuiiiiiiiiueeeiiiiiiiiiiiiiiiiiiiieeeeeieeiieeeee e, 446
B.4.7 CollectionClasses:: Impl::Ba@.......oooeeuviieeeeeeeeeeeen 448
B.4.8 CollectionClasses: :ImMpPlii it uuuuiiiiiieiieeiiiiiiiiiiiiiiiiiiieeeeeeeeiiiieeeee e eeeeiiiieeeeeeen 450
B.4.9 CollectionClasses: . ImpliiQUEUC. . .ccuueeiiiieiiiiiiiiiiiiiiiieieiiiiieeieeeeeieeeeeeeee e 453
B.4.10 CollectionClasses: . ImMpPliiDeqUE . uuueeieeiiiiiiiiiiiiiiiieiiieieiieeeeeeeeeieieeee e eeeeeneees 455
B.4.11 CollectionClasses::-ImpliiMaD....ueeeiiiueiiiiiiiiiiiiiiieiieiieeeeeeieeeeeeeeeeeeeeeeeeeeeeee e 457
Annex C: Consolidated LI GIralINar.....cccceeeeeeeeeeeeeeeeeesesss 460
C.l INtrOAUCHION. cecuueeeiiieiiiii ittt ettt eeeaee e 460
C.2 LexXiCal ANALYZOT ciiiiiiiiiiiiiiiiiiee oottt ettt e e et e e e e e ee e 460
L3 P AT sttt ettt et et e 464

Action Language for Foundational UML (ALF), v1.1 ix

Action Language for Foundational UML (ALF), v1.1

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit
computer industry standards consortium that produces and maintains computer industry specifications
for interoperable, portable, and reusable enterprise applications in distributed, heterogeneous
environments. Membership includes Information Technology vendors, end users, government agencies,
and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG?’s specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a
full-lifecycle approach to enterprise integration that covers multiple operating systems, programming
languages, middleware and networking infrastructures, and software development environments. OMG’s
specifications include: UML® (Unified Modeling Language™); CORBA® (Common Object Request
Broker Architecture); CWM™ (Common Warehouse Metamodel); and industry-specific standards for
dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks.
Specifications are available from this URL:

http://'www.omg.org/spec

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
CORBA/IIOP
Data Distribution Services
Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
UML, MOF, CWM, XM
UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface
Specifications

CORBAServices

Action Language for Foundational UML (ALF), v1.1 Xi

http://www.omg.org/

CORBAFacilities
OMG Domain Specifications
CORBA Embedded Intelligence Specifications
CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications,
available in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or
by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Ave
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org

xii Action Language for Foundational UML (ALF), v1.1

http://www.iso.org/

1 Scope

The Action Language for Foundational UML (or “Alf”) is a textual surface representation for UML
modeling elements. The execution semantics for Alf are given by mapping the Alf concrete syntax to the
abstract syntax of the standard Foundational Subset for Executable UML Models (known as
“Foundational UML” or “tUML”). The result of executing an Alf input text is thus given by the
semantics of the f{UML model to which it is mapped, as defined in the f{UML specification.

A primary goal of an action language is to act as the surface notation for specifying executable behaviors
within a wider model that is primarily represented using the usual graphical notations of UML. For
example, this might include methods on the operations of classes or transition effect behaviors on state
machines.

However, Alf also provides an extended notation that may be used to represent structural modeling
elements. Therefore, it is possible to represent a UML model entirely using Alf, though Alf syntax only
directly covers the limited subset of UML structural modeling available in the fUML subset.

Key guiding principles in the design of Alf include the following:

« Alf has a largely C-legacy (“Java like”) syntax, since that is most familiar to the community that
programs detailed behaviors. Nevertheless, Alf allows UML textual syntax when it exists (e.g., colon
syntax for typing, double colon syntax for name qualification, etc.).

 Alf does not require graphical models to change in order to accommodate use of the action language
(e.g., special characters are allowed in names, arbitrary names are allowed for constructors, etc.).
Further, while Alf maps to the fUML subset in order to provide its execution semantics, it is usable
in context of models not limited to the fUML subset.

« Alf provides a naming system that is based on UML namespaces for referencing elements outside of
an activity but also provides for the consistent use of local names to reference flows of values within
an activity.

» Alfuses an implicit type system that allows but does not require the explicit declaration of typing
within an activity, always providing for static type checking, based at least on typing declared in the
structural model elements.

 Alf has the expressivity of OCL in the use and manipulation of sequences of values. These sequence
expressions are fully executable in terms of fUML expansion regions, allowing the simple and
natural specification of highly concurrent computations.

» While the primary goal of Alf is to be an action language, Alf also provides concrete syntax for
structural modeling, largely within the bounds of the fUML subset.

Action Language for Foundational UML (ALF), v1.1 1

Action Language for Foundational UML (ALF), v1.1

2 Conformance

2.1 Overview
There are two main aspects of conformance to the Alf standard:

» Syntactic Conformance. Alf input text must conform syntactically to one of the levels defined below
in2.2.

o Semantic Conformance. A conforming modeling tool must process syntactically conforming Alf text
in one of the ways defined below in 2.3.

In addition, 2.4 defines two further mandatory conformance points.

2.2 Syntactic Conformance

Clause 6 discusses the overall requirements for processing of Alf input text. For the purposes of the
present discussion of syntactic conformance, “syntactic processing” includes lexical analysis, as
specified in Clause 7, the parsing of the various Alf features specified in Clauses 8 through 10 and the
static semantic analysis of Alf abstract syntax trees specified in Clauses 12 through 15.

There are three levels of syntactic conformance, depending on whether syntactic processing must be
supported for all features specified in Clauses 8 through 10, or only some subset of them.

1. Minimum Conformance. Conformance at this level requires the ability to process a subset of the
syntax defined in Clauses 8 and 9, but none of the syntax defined in Clause 10. The exact subset that
must be supported is identified in each of the syntactic grammar specifications in Clauses 8 and 9.
The intent of Minimum Conformance is to provide a subset of Alf that is usable for writing textual
action language snippets within a larger graphical UML model and that includes only the capabilities
available in a traditional, procedural programming language.

2. Full Conformance. Conformance at this level requires the ability to process all the syntax defined in
Clauses 8 and 9, but none of the syntax defined in Clause 10. At Full Conformance, Alf provides a
complete action language for representing behavior within a structural model represented in a typical
UML modeling environment outside of Alf (see 6.2).

3. Extended Conformance. Conformance level requires the ability to process all the syntax defined in
Clauses 8, 9 and 10. This includes not only the action language capabilities of Full Conformance, but
also the structural modeling capabilities defined in Clause 10.

2.3 Semantic Conformance

The execution semantics for Alf are described informally in Clauses 8 through 10 and specified by a
formal mapping to fUML in Clauses 16 through 19. A conforming execution tool must implement the
specified semantics for the syntactic subset of Alf to which the tool conforms.

The execution semantics for all Alf constructs are formally specified via their mapping to f{UML (see
6.7) and the execution of the resulting fUML model per the semantics of the f{UML Specification.
However, a conforming modeling tool does not need to actually perform this mapping in order to
execute Alf input text. Indeed, there are three ways in which the tool may implement the specified Alf
execution semantics.

Action Language for Foundational UML (ALF), v1.1 3

l.
2.

Interpretive Execution. The modeling tool directly interprets and executes the Alf input text.

Compilative Execution. The modeling tool compiles the Alf text to a UML model conforming to the
fUML subset (at level L3) and executes that per the semantics specified in the fUML Specification,
perhaps in the context of the execution of a larger model that may not conform to the f{UML subset.

NOTE. The compiled model resulting from the Alf text does not have to be the same as that
resulting from the standard mapping to fUML defined in the Alf specification (though it must have
an equivalent effect—see below), but it must be conformant to the fUML subset and thus executable
by a fUML-conforming execution tool.

Translational Execution. The modeling tool translates the Alf text, as well as any surrounding larger
UML model as appropriate, into some executable form on a non-UML target platform, and executes
the translation on that platform.

In all cases, the portion of the execution corresponding to an Alf input text must have the equivalent
effect to mapping that text to fUML per the Alf specification and executing the resulting model per the
semantics specified in the fUML Specification. For the purposes of semantic conformance as defined
here, this means that:

The effect of executing the Alf text within any larger containing model is per the equivalent f{UML
semantics.

Any visible effect produced by executing the Alf text within the target execution environment is per
the equivalent f{UML semantics (where, for the purposes of fUML semantics, the execution
environment is as defined in Clause 2 of the fUML Specification).

2.4 Additional Conformance Points

There are two additional mandatory conformance points for this standard:

1.

2.

Template Semantics. Every conformant modeling tool must conform to the template semantics
specified in 6.3.

Library Implementation. Every conformant modeling tool must provide an implementation of the Alf
Standard Modeling Library, conforming to the specification given in Clause 11.

Action Language for Foundational UML (ALF), v1.1

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this specification.

« OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1
(http://www.omg.org/spec/UML/2.4.1/Infrastructure) — Referenced in the following as “UML
Infrastructure”

» OMG Unified Modeling Language (OMG UML) Superstructure, Version 2.4.1
(http://www.omg.org/spec/UML/2.4.1/Superstructure) — Referenced in the following as “UML
Superstructure”

« Semantics of a Foundational Subset for Executable UML Models (fUML), Version 1.3
(http://www.omg.org/spec/FUML/1.3) — Referenced in the following as “fUML Specification”

» Object Constraint Language, Version 2.2 (http://www.omg.org/spec/OCL/2.2) — Referenced in the
following as “OCL Specification”

Action Language for Foundational UML (ALF), v1.1

http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/FUML/1.3
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Infrastructure

Action Language for Foundational UML (ALF), v1.1

4 Terms and Definitions

Execution Semantics

For the purposes of this specification, the behavioral semantics of UML constructs that specify
operational action over time, describing or constraining allowable behavior in the domain being
modeled. (From the f{UML Specification.)

Execution Tool

Any tool that is capable of executing any valid UML model that is based on the foundational subset and
expressed as an instantiation of the UML 2.0 abstract syntax metamodel. This may involve direct
interpretation of UML models and/or generation of equivalent computer programs from the models
through some kind of automated transformations. Such a tool may also itself be concurrent and
distributed. (From the fUML Specification.)

Foundational Subset

The subset of UML to which execution semantics are given in order to provide a foundation for
ultimately defining the execution semantics of the rest of UML. (From the fUML Specification.)

Modeling Environment

A user environment provided by a modeling tool that allows for the creation and modification of a UML
model. In a modeling tool that is an execution tool, the modeling environment may also allow for direct
execution of the model.

Modeling Tool

Any tool that allows for the creation and management of UML models. A modeling tool that allows
those models to be executed is also an execution tool.

Action Language for Foundational UML (ALF), v1.1 7

Action Language for Foundational UML (ALF), v1.1

5 Symbols

There are no symbols or abbreviated terms necessary for the understanding of this specification.

Action Language for Foundational UML (ALF), v1.1

10

Action Language for Foundational UML (ALF), v1.1

6 Overview

6.1 General

An Alf input text is a concrete representation for UML model elements in the Foundational UML
(fUML) abstract syntax subset (see f{UML Specification, Clause 7). Such an input text may be part of a
wider UML model only parts of which are represented in Alf, or it may be the representation of an entire
model in its own right. In either case, this specification defines how concrete Alf input text is processed
into an abstract syntax representation of UML model elements.

6.2 Integration with UML Models

The UML Superstructure specification defines the standard graphical and textual notations used to
express a UML model. In this context, Alf can be used as an alternative textual notation to represent
portions of the overall model. The following are the ways in which Alf may be so used:

« Asdescribed in 8.1, an Alf expression may be used any place a UML value specification is allowed.
This may be done either by including the Alf text as the body of a UML opaque expression or the Alf
text may be compiled into an equivalent UML activity to act as the specification of such an
expression. In addition, there are special syntactic forms for instance creation and sequence
construction expressions that do not require the explicit annotation of redundant type information in
Alf expressions that are used to specify the default values for properties or parameters.

» Asdescribed in 9.1, a sequence of Alf statements may be used in two ways:

1. To define the behavior of a UML action within an activity or interaction model. The Alf text may
be included as the body of a UML opagque action or it may be compiled into an equivalent UML
structured activity node (which is a kind of action).

2. To define the behavior of a complete UML behavior. The Alf text may be included as the body of
a UML opaque behavior or it may be compiled into an equivalent UML activity (which is a kind
of behavior).

» As described in 10.1, an Alf model unit may be used to represent the model of a classifier or package
that is intended to be individually referenced as a named element. Such a model unit may represent
an entire UML model (at least within the limits of the fUML subset) or it may represent a model
element (such as a class or standalone activity) intended to be used within some larger model.

Since an Alf text can be processed into a UML abstract syntax representation, a portion of a model
represented in Alf can always be integrated into a larger model on that basis (as noted above), regardless
of the surface representation of any portion of the model. Nevertheless, even when such compilation is
done, it will generally still be desirable to also store the original Alf text in the model, since it would not
otherwise be possible to exactly reproduce that text (with user formatting, etc.) from the model
representation. This is done by attaching a comment to the top-level element resulting from the
processing of an Alf model unit with the Alf text for the unit as the body of the comment and the applied
stereotype «TextualRepresentation» with tagged value {language = "a1f"}. This stereotype is
from the standard ActionLanguage profile defined in 11.2.

Action Language for Foundational UML (ALF), v1.1 1

6.3 Templates

Templates, defined in 17.5 of the UML Superstructure, are not included in the f{UML subset.
Nevertheless, Alf text may be used as snippets within the context of a wider model that is a template.
Since template parameters are tied to parameterable elements that are used as regular model elements
within the context of the template model (see UML Superstructure, 17.5.1), Alf text may refer to these
elements in the usual way.

However, templates are particularly useful for modeling parameterized types, and they are, in fact, used
in this way in the CollectionClasses model in the Alf Standard Model Library (see 11.7). But Alf text
that uses types that are instantiations of such templates still needs to be mapped to f{UML in order to
provide its formal semantics. This requires a way to define the semantics of template binding in terms of
constructs available in the f{UML subset.

According to the UML Superstructure specification (17.5.2 TemplateableElement, under Semantics),
“The semantics of a [template] binding relationship is equivalent to the model elements that would result
from copying the contents of the template into the bound element, replacing any elements exposed as a
template parameter with the corresponding element(s) specified as actual parameters in this binding.”
This section also states that “In a canonical model a bound element does not explicitly contain the model
elements implied by expanding the templates it binds to, since those expansions are regarded as
derived.” However, by actually carrying out the expansion, one can obtain an equivalent model that does
not explicitly refer to the original template or the binding of its parameters. (This is analogous to the
way other forms of derivation in the UML abstract syntax model are handled in fUML—see fUML
Specification, 8.1.)

In order to make the explicit copy semantics of template binding more precise, an equivalent bound
element may be constructed for any element with a template binding by the following steps:

1. Copy the template associated with the template signature that is the target of the template binding.
For the present purposes, a copy of a model element is an instance of the same metaclass as the
original model element that has the same values as the original element for all non-composite
properties (owned attributes and association ends) and copies (in the same sense) of the values from
the original element for all composite properties.

2. If the copy specializes any elements that are templates, then redirect the generalization relationships
to equivalent bound elements for the general elements, using the same template binding. If the copy
is an operation that has an associated method that is also a template, then replace that method with
an equivalent bound element using the same template binding.

NOTE. The UML Superstructure does not address the issue of methods of template operations.
However, it is necessary for the method of a template operation to also be a template, presumably
with the same template parameters as the operation. In particular, operation template parameters are
typically used to parameterize the types of operation parameters, but the method of an operation does
not directly reference the parameters of the operation that specifies it. Rather, the method has its own
parameter list, which must match that of the operation (see UML Superstructure, 13.3.2). The types
of the method parameters would thus need to be separately templated to match the template
parameterization of the operation.

3. For each element owned directly or indirectly by the copy, replace any reference to the parametered
element of a template parameter of the copy with a reference to the actual element associated with

12 Action Language for Foundational UML (ALF), v1.1

the parameter in the template binding (if any). If an actual element has a template binding itself, then
reference the equivalent bound element.

4. Remove all template parameters that are referenced in the template binding from the template
signature of the copy. If this would remove all template parameters from the template signature, then
remove the template signature entirely.

The syntax for template binding in Alf is defined in 8.2. Only a limited set of template bindings may be
so notated in Alf. Specifically:

« The binding must specify an actual element for every template parameter of the template.
» The element being bound must not have template parameters of its own.

Thus, the equivalent bound element (as defined above) for a template binding notated in Alf will always
be a directly usable non-template element. However, in this context, it is important that two identical
template bindings be considered to result in the same element. Otherwise, every template binding would
lead to a separate instantiation of the template, even if the bindings were equivalent, which would have
undesirable consequences.

For example, a set of integers may be notated in Alf as set<Integer>, using the standard template
collection class set and the standard primitive type Integer. If each occurrence in a model of the Alf
text “set<Integer>" resulted in a different equivalent bound element, then an object created using one
such occurrence would not be type compatible with, say, a formal parameter of an operation whose type
is given by another such occurrence. Clearly this is not desirable.

Therefore, the template bindings within a model must be replaced as a whole using the following steps:

1. Partition the set of all elements with template bindings in the model into disjoint subsets of elements
with identical bindings. Two template bindings are considered identical if they have the same set of
parameter substitutions. Two parameter substitutions are considered to be the same if they reference
the same formal parameter and actual element.

NOTE. The sameness of parameter substitutions is determined by the elements referenced,
regardless of the names that may be used to reference those elements in the Alf text for a template
binding. That is, the use of unqualified names, qualified names or aliases is irrelevant to the
determination of whether two template bindings are identical, so long as corresponding names
resolve to the same element.

2. For each subset, create a single equivalent bound element (as defined above), starting with any one
member of the subset.

3. Replace any reference to any element in the model with a template binding with a reference to the
equivalent bound element for its subset.

In order to simplify the identification of equivalent bound elements after the above substitutions are
carried out, Alf defines a standard naming convention for such elements, constructed as follows:

2

1. Take the fully qualified name of each actual element in the template binding and replace all “: :
separators with “s” characters. If the actual element is itself a template binding, then use the name of
the equivalent bound element. If the actual element is empty (null), then use “any” as the name of
the actual element. (While the Alf syntax for template bindings given in 8.2 does not actually allow
any to be used as a template argument, such an argument can result from the rules for the implicit
binding for a template behavior as given in 8.3.9)

Action Language for Foundational UML (ALF), v1.1 13

[

2. Concatenate the modified names, separated by
with “ ” (two underscores).

(one underscore), and prepended and postpended

3. Concatenate “s$”, the name of the target template of the template binding and the argument name
list from 2 to produce the standard name of the equivalent bound element.

For example, the standard name for the equivalent bound element for set<Integer> is

SSet UMLSAuxiliaryConstructsSPrimitiveTypes$Integer

Note that the qualified name for an element is determined by its owning namespace. Therefore, even
thoughtheIRHHC“Integer”reﬂﬂVeShlAJfH)“Alf::Library::PrimitiveTypes:: Integer”, this
element is just an import of “UML: : AuxiliaryTypes::PrimitiveTypes:: Integer’ (see 11.3), and it
is the latter qualified name that is used.

Since the initial copy of the template model element also copies the reference to the namespace of the
original template, the equivalent bound element is considered to be added to that namespace. A
modeling environment must disallow any user-created element in a namespace with template elements
with a name that would conflict with a standard equivalent bound element name created as defined
above.

NOTE. The concept of equivalent bound elements defined above is intended to provide a specification
of the semantics of template instantiation compatible with execution semantics that are defined only on
the f{UML subset. It is not required that a conforming implementation actually physically generate
equivalent bound elements in order to execute Alf text, particularly if that implementation semantically
conforms through interpretive or translational execution (see 2.3). However, an implementation that
conforms through compilative execution must produce a UML model conforming to the fUML subset,
in which case the implementation would, in fact, need to replace templates and bindings with equivalent
elements as described here (or similar elements with an equivalent effect, as discussed in 2.3).

6.4 Lexical Structure

The lexical structure of Alf defines how the string of characters in an Alf input text is divided into a set
of input elements. Such input elements can be categorized as whitespace, comments, or tokens.

Lexical analysis is the process of converting an Alf input text into a corresponding stream of input
elements. After lexical analysis, whitespace and comments are discarded and only tokens are retained for
the subsequent step of parsing. Lexical analysis for Alf is thus essentially the same as is done for the
processing of any typical textual programming language.

The Alf lexical structure is specified by a lexical grammar in which characters are terminal elements and
the input elements resulting from lexical analysis are non-terminal elements. The lexical grammar is
defined using an Extended Backus-Naur Form (EBNF) notation, whose conventions are given in Table
6.1.

14 Action Language for Foundational UML (ALF), v1.1

Table 6.1 EBNF Notation Conventions

Terminal element "terminal"

Non-terminal element NonterminalElement
Sequential elements Elementl Element2
Alternative elements Elementl | Element2
Optional element (zero or one) [Element]

Repeated element (zero or more) { Element }

Production definition NonterminalElement = ..

* The escape sequences given in Table 7.1 are also used to represent the corresponding special
characters within terminal elements in the EBNF notation.

6.5 Concrete Syntax

The concrete syntax of Alf defines how lexical tokens are grouped into an abstract syntax tree. Parsing
is the process of constructing an abstract syntax tree from the tokens produced by the lexical analysis of
an Alf text. The parsing of an Alf input text is thus essentially the same as is done for the processing of

any typical textual programming language.

The Alf concrete syntax is specified by a syntactic grammar whose definition is also based on the EBNF
notation given in Table 6.1. However, elements of the productions in the syntactic grammar are further
annotated to indicate how an abstract syntax tree is to be constructed during parsing. The EBNF
specification of Alf syntax provides the basis for the context-free parsing of an Alf input text. Context-
dependent constraints are then enforced on the abstract syntax representation.

As described further below in 6.6, the abstract syntax for Alf is specified as a UML class model. A
production in the syntactic grammar results in the synthesis of an instance of a class in the abstract
syntax. The production definition defines a name for the instance being synthesized, which is used in the
body of the production, and declares the class of the instance.

For example, the production

LocalNameDeclarationStatement (s: LocalNameDeclarationStatement)
= NameDeclaration(s) "=" InitializationExpression(s.expression) ";"

declares that it synthesizes an object called s of class LocalNameDeclarationStatement. Note the
name of the class of the synthesized object is often the same as the non-terminal defined by the
production, as in this example, but this is not always the case.

Annotations are parenthesized in the body of a production. There are several forms of annotation, as
shown in Table 6.2. For example, the body of the production given above may be read as follows: a
LocalNameDeclarationStatement consists of a NameDeclaration (which is parsed into the object s),
followed by “=", followed by an InitializationExpression (the abstract syntax representation of

C‘.,,

which is assigned to the expression attribute of object s), followed by a ;.

Action Language for Foundational UML (ALF), v1.1 15

Table 6.2 Abstract Syntax Synthesis Notation

Non-terminal NonterminalElement (x) The object x is constrained to be the same

object constraint as the object synthesized for the
immediately preceding non-terminal
element.

Non-terminal NonterminalElement (x.p) | The object synthesized for the immediately

property constraint preceding non-terminal element is added to

the list of values of property p of object x.
If the non-terminal element is a lexical
token, then the string image of the token is

added to the property.
Terminal string "terminal" (x) The synthesized “object” x, which must
constraint have the primitive type string, is

constrained to have the string image of the
immediately preceding terminal element as

it’s value.
Terminal property | "terminal" (x.p) The string image of the immediately
constraint preceding terminal element is added to the
list of values of property p of object x.
General constraint | (expr) The OCL constraint expression expr must
be true.

If an annotation appears in an alternative or optional element group, then it only applies if the content of
that group actually applies during parsing. If an annotation appears in a repeating group, then it applies
during each repeated application of the content of that group.

For example, the following is the production for the non-terminal NameDeclaration used in the body of
the production for LocalNameDeclarationStatement above.
NameDeclaration(s: LocalNameDeclarationStatement)
= "let" Name (s.name) ":" TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)]

| TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)] Name (s.name)

According to this production, a NameDeclaration may have one of two alternative forms:

» The terminal element “1et”, followed by a Name (a lexical token whose string image is assigned to
the name property of object s), followed by a “:”, followed by a TypeName (Whose value is assigned
to s.typeName), optionally followed by a MultiplicityIndicator (if there is a
MultiplicityIndicator, then s.hasMultiplicity must be true).

» A TypeName (Whose value is assigned to s.typeName) optionally followed by a
MultiplicityIndicator (if thereis a MultiplicityIndicator,then s.hasMultiplicity must
be true), followed by a Name (Whose string image is assigned to s.name).

Finally, consider the production

ColonQualifiedName (g: QualifiedName)
= Name (g.name) "::" { Name (g.name) "::" } Name (g.name)

16 Action Language for Foundational UML (ALF), v1.1

In this case, the first name is assigned to the property q.name, and then subsequent names, if any, are
appended as additional values of that same property. Clearly, for this to be valid, the property
QualifiedName: :name must have a multiplicity upper bound of *.

Technically, the Alf concrete syntax is specified (as described above) using a simplified form of an
attributive grammar. Each production has a single synthesized attribute. In an attributive grammar, the
values for synthesized attributes are passed upwards in the parse tree. The Alf concrete grammar does
not include any inherited attributes, however. Inherited attributes are passed downwards in the parse tree
in order to enforce context-sensitive constraints. For Alf, such constraints are instead specified on the
abstract syntax representation after parsing.

6.6 Abstract Syntax

The abstract syntax for Alf is a UML class model of the tree of objects synthesized from parsing an Alf
text (as described above in 6.5). The Alf concrete syntax is context free and parsing based on this syntax
results in a strictly hierarchical parse tree. The synthesized abstract syntax tree is an abstraction of the
complete parse tree—for example, punctuation symbols are not included in the abstract syntax tree—but
it is still a hierarchical tree structure.

SyntaxElement

AN

DocumentedElement |Qua|ifiedName| | Expression| | Tuple | | LeftHandSide |

+documentation : String [*]
AN

I,

|NameBinding| |FeatureReference| |NamedExpression| Expressions

| TemplateBinding| |TemplateParameterSubstitution| | SequenceElements |

| Statement | |Block | |NonFinaICIause | |SwitchCIause| AcceptBlock
Statements
|Annotation | |ConcurrentCIauses | | LoopVariableDefinition | |QualifiedNameList |
|UnitDefinition| | Member | |ImportReference | |StereotypeAnnotation| |TaggedVaIue| |TaggedVaIueList| Units

Figure 6.1 Top-Level Syntax Element Classes

The nodes of an abstract syntax tree are objects known as syntax elements. Every syntax element class
descends from the root abstract class SyntaxElement. Figure 6.1 shows this root class and its top-level
descendents. Note that certain of the classes shown in Figure 6.1 are subclasses of the intermediate
DocumentedElement class. These classes represent elements that may be annotated with documentation

Action Language for Foundational UML (ALF), v1.1 17

comments (see 7.5.3) that are preserved in the ultimate f{UML model, as opposed to lexical comments
(see 7.5.2), which are not so preserved.

While the abstract syntax tree synthesized from parsing an Alf text is strictly hierarchical, there are
important non-hierarchical relationships and constraints between Alf elements that may be determined
solely from static analysis of the abstract syntax tree. Such static semantic analysis is also common in
the processing of a typical programming language, particularly for resolving names and type checking.
However, the analysis for Alf is somewhat different than for the typical case, since it is used to gather
additional information required for mapping to fUML, rather than generating machine code as in the
case of a programming language.

6.7 Mapping to Foundational UML

The final step in the processing of an Alf input text is the mapping of the abstract syntax tree for the text,
completed with derived property values from static semantic analysis, to a representation in terms of the
fUML abstract syntax; that is, as interrelated instances of the abstract syntax metaclasses specified in
Clause 7 of the fUML Specification. The fUML abstract syntax representation can be built via a
generally depth-first traversal of the Alf abstract syntax tree, with the static semantic information
providing non-hierarchical relationships across the tree structure.

Concurrency

Most mainstream programming languages are based on an inherently sequential model of computation.
Statements are executed sequentially, argument expressions are evaluated in lexical order, etc. In many
cases, however, such specifically fined-grained sequential execution (especially in expressions) is
entirely inessential to the computation being carried out and unnecessarily restricts the options for how
the computation can be implemented. This has become a problem, for example, in implementing such
languages in a way that takes advantage of the increasing amount of parallelism available in mainstream
hardware platforms.

On the other hand, the execution semantics for activities in f{UML are inherently concurrent. In general,
the semantics of UML activities place no restriction on the concurrent execution of nodes within the
activity, other than that imposed by the explicit object and control flows between those nodes, and the
Alf mapping to fUML takes advantage of this concurrency in many places, particularly in the mapping
of expressions. For example, the argument expressions in an operation invocation or an arithmetic
expression are evaluated concurrently, rather than sequentially.

However, as noted in fUML Specification, 8.5.2.1 (under the Threading Model heading), the
concurrency in the fUML semantics “does not require the implementation of actual parallelism in a
conforming execution tool. It simply means that such parallelism is allowed and that the execution
semantics provide no further restriction on the serialization of execution across concurrent
[computations].”

Correspondingly, any place in the description of the Alf semantics that computations are specified to be
concurrent, this should be understood to simply mean that there is no requirement that they be carried
out in any particular sequential order. If desired, though, a conformant tool may still carry out the
computations completely sequentially, in any desired order. Or it may actually carry out some or all of
the computations in parallel, either virtually (e.g., in separate threads) or physically (on separate
processors).

18 Action Language for Foundational UML (ALF), v1.1

6.8 Organization of the Specification
This Alf specification document is organized into five parts.

The first part comprises the initial clauses, through Clause 6. These clauses contain introductory material
and an overview of how the Alf language is defined.

The second part contains a complete description of the Alf language. Clause 7 defines the lexical
structure for Alf, which specifies how lexical analysis is to be carried out for an Alf input text. Clauses 8
through 10 provide the core description of Alf constructs in the syntactic areas of expressions,
statements and units. Within these clauses, the for each construct formally defines its concrete syntax
and the synthesis of the abstract syntax from that. Each also includes examples of the use of the
construct and an informal description of the semantics of the construct. Clause 11 defines a standard
model library that must be provided with any Alf implementation. This library includes the f{UML
Foundational Model Library (see Clause 9 of the f{UML Specification) plus additional primitive types
and primitive behaviors. It also includes a set of collection classes and the profile used in attaching Alf
text to the models to which that text was mapped.

The third part provides the complete definition of the abstract syntax of Alf, including the formal
specification of the static semantics for Alf in terms of additional derived properties and constraints.
Each of the four clauses in this part correspond to a package in the top-level decomposition of the Alf
abstract syntax model.

The fourth part gives the formal mapping of the abstract syntax, as annotated during static semantic
analysis, to the f{UML subset of the UML abstract syntax. The four clauses in this part also correspond to
the abstract syntax packages.

The fifth part comprises the annexes, all of which are informative, not normative. Annex A discusses the
integration of Alf execution semantics with the non-fUML execution semantics of state machine and
composite structure models. Annex B provides a number of extended examples of the use of Alf. Annex
C provides a grammar for all of Alf, in a form better suited to automated processing than the productions
used in the main body of the specification, which are intended for clarity of presentation rather than
processing.

6.9 Acknowledgments
The following people from the various submitting organizations contributed to this specification:
» Ed Seidewitz, Model Driven Solutions
« Kim Letkeman, IBM
 Stephen Mellor, Mentor Graphics
¢ Manfred Koethe, 88 Solutions
 Nerijus Jankevicius, No Magic

We would also like to acknowledge Doug Tolbert, CSC, for his thorough review of the specification as
the head of the Evaluation Working Group.

Action Language for Foundational UML (ALF), v1.1 19

20

Action Language for Foundational UML (ALF), v1.1

7 Lexical Structure

7.1 General

Lexically, an Alf input text can be considered to be a sequence of input elements. This clause describes
the structure of these input elements. After lexical analysis, the text can then be interpreted as a sequence
of tokens that are then parsed according to the Alf syntax, as defined in Clauses 8 through 10.

7.2 Line Terminators

The input text can be divided up into lines separated by line terminators. A line terminator may be a
single character (such as a line feed) or a sequence of characters (such as a carriage return/line feed
combination). This specification does not require any specific encoding for a line terminator, but any
encoding used must be consistent throughout any specific input text. Any characters in the input text that
are not a part of line terminators are referred to as input characters.

Grammar

LineTerminator
— vv\nu
InputCharacter
= any character other than LineTerminator

7.3 Input Elements and Tokens

An input element can be white space, a lexical comment or a token. Tokens include documentation
comments, names, reserved words, literals, punctuation and operators. After white space and lexical
comments are removed, the sequence of tokens is interpreted according to the Alf syntax.

Grammar

InputText
= InputElement { InputElement }
InputElement
= WhiteSpace
| LexicalComment
| Token
Token = DocumentationComment
| Name
| ReservedWord
| Literal
| Punctuation
| Operator

Cross References

1. WhiteSpace see 7.4
2. LexicalComment see 7.5.2
3. DocumentationComment see 7.5.3
4. Name see 7.6
5. ReservedWord see 7.7
6. Literal see 7.8

Action Language for Foundational UML (ALF), v1.1 21

7. Punctuation see 7.9

8. Operator see 7.10
7.4 White Space

A white space character is a space, tab, form feed or line terminator. Any contiguous sequence of white
space characters can be used to separate tokens that would otherwise be considered to be part of a single
token. It is otherwise ignored.

There are two cases in which the line terminator is not syntactically considered to be white space. A list
of annotations for a statement begins with the token “//@” and must end in a line terminator (see 9.2).
And the heading for an in-line statement begins with the token *“/+*e” and must end in a line terminator
(see 9.3).

Grammar

WhiteSpace
= " " | "\t" | "\f"
| LineTerminator

Cross References

1. LineTerminator see 7.2

7.5 Comments

7.5.1 General

Comments are used to annotate other elements of the input text. They have no computable semantics, but
simply provide information useful to a human reader of the text. There are three kinds of comments:

1. An end-of-line comment includes all the text from the initial characters ““//” to the end of the line,
except that “//e” begins a statement annotation rather than a comment (see 9.2).

2. An in-line comment includes all the text from the initial characters ““/*” to the final characters “*/”,
except that “/**” begins a documentation comment rather than a lexical comment (see below) and
“/*@” begins an inline code block (see 9.2).

3. A documentation comment includes all the text from the initial characters “/**” to the final
characters “*/”. The comment text is the text between the initial characters “/**” and the final
characters “*/”.

The first two kinds of comments are together known as lexical comments.

7.5.2 Lexical Comments

Lexical comments are not considered tokens. Therefore they are stripped from the input text and not
parsed as part of the Alf syntax. The comment symbols and all comment text are ignored. However, a
comment cannot occur within a name (see 7.6) or a string literal (see 7.8.5).

Examples
// This is an end-of-line comment and will be ignored.

/* This is an in-line comment and will be ignored. */

22 Action Language for Foundational UML (ALF), v1.1

Grammar

LexicalComment

= EndOfLineComment

| InLineComment
EndOfLineComment

= "//"™ [NotAt { InputCharacter }] LineTerminator
NotAt = InputCharacter but not "@Q"
InLineComment

= "/*" [NotStarNotAt CommentText] "*/"
CommentText

= { NotStar } [StarCommentText]
StarCommentText

= "*" [NotStarNotSlash CommentText]
NotStar

= InputCharacter but not "*"

| LineTerminator
NotStarNotAt

= InputCharacter but not "*" or "@"

| LineTerminator
NotStarNotSlash

= InputCharacter but not "*" or "/"

| LineTerminator

Cross References
1. InputCharacter see 7.2

2. LineTerminator see 7.2

7.5.3 Documentation Comments

Unlike lexical comments, documentation comments are lexically processed as tokens and can therefore
be included as syntactic elements. The intent is for documentation comments to be mapped to UML
comment elements, containing the comment text, that are actually included as part of the target model.
Note that line terminators are allowed within documentation comments.

Examples
/** This is documentation text to be included in the model. */
Grammar

DocumentationComment
= "/**" CommentText "*/"

Cross References

1. CommentText see 7.5.2

7.6 Names

The name of a named element denotes the element without reference to the namespace of which it is a
member (if any). A name may contain any character. However, names that have the form of identifiers
may be represented more simply.

The initial character of an identifier must be one of a lowercase letter, an uppercase letter or an
underscore. The remaining characters of an identifier are allowed to be any character allowed as an
initial character plus any digit. However, a reserved word may not be used as a name, even though it has

Action Language for Foundational UML (ALF), v1.1 23

the form of an identifier (see 7.7). The Boolean literals true and false also have the form of identifiers,
but they are considered lexically to be primitive literals rather than names (see 7.8.2).

An unrestricted name, on the other hand, is represented as a non-empty sequence of characters
surrounded by single quotes. The characters within the single quotes may not include non-printable
characters (including backspace, tab and newline). However, these characters may be included as part of
the name itself through use of an escape sequence. In addition, the single quote character or the
backslash character may only be included by using an escape sequence.

An escape sequence is a sequence of two text characters starting with the backslash as an escape
character, which actually denotes only a single character (except for the newline escape sequence, which
represents however many characters is necessary to represent an end of line in a specific implementation
—see 7.2). Table 7.1 shows the meaning of the allowed escape sequences.

Table 7.1 Escape Sequences

Escape Sequence Meaning
\' Single Quote
\" Double Quote
\b Backspace
\f Form Feed
\t Tab
\n Line Terminator
N\ Backslash

It is an error to follow a backslash in an unrestricted name with any other character than allowed in one
of the escape sequences above.

Two names are the same if and only if they are composed of the same characters in the same sequence.
In particular the case of alphabetic characters is significant (both in identifiers and unrestricted names).

However, an implementation is permitted to consider two names to be conflicting even if they are not
the same, but every implementation must observe at least the following rules:

« Two different identifiers are never conflicting.

» The corresponding identifier for an unrestricted name is the identifier that results from prepending
the name with an underscore and then removing all non-alphanumeric characters from the name
other than underscore (_) and dollar sign (). If the corresponding identifiers for two unrestricted
names are different, then the original names do not conflict.

NOTE. The above implementation freedom for name conflicts is intended to make the handling of
names simpler for implementations that map Alf text to a target language in which all names must
follow the grammar of identifiers. The prepended underscore in a corresponding identifier assures that
the result is a legal identifier even if the result would otherwise begin with a number or be empty. Dollar
signs are included in corresponding identifiers because they are used in the standard names for
equivalent bound elements—see 6.3.

Examples

customer

24 Action Language for Foundational UML (ALF), v1.1

nextOrder

vt

'orders in cart'
'On/0ff Switch'
Grammar

Name = Identifier

| UnrestrictedName
Identifier

= IdentifierChars but not a ReservedWord or BooleanLiteral
IdentifierChars

= IdentifierlLetter { IdentifierLetterOrDigit }
IdentifierLetterOrDigit

= IdentifierlLetter

| Digit
IdentifierLetter

= "a" "z" |
Digit = "0O"

| NonzeroDigit
NonzeroDigit

= "1" "on
UnrestrictedName

= "'" NameCharacter { NameCharacter }
NameCharacter

= InputCharacter but not "'" or "\\"

| EscapeSequence
EscapeSequence

= "\\" EscapedCharacter
EscapedCharacter

= mrn | "\"" |

nwpn LAl | "7"

worn

"b" | "f" | "t" | "\\"

" n " |
Cross References

1. InputCharacter see 7.2

7.7 Reserved Words

A reserved word is a token that has the lexical structure of an identifier but is not allowed to actually be

used as an identifier (see 7.6).

Grammar
ReservedWord
= "abstract" | "accept" | "active" | "activity" | "allInstances" | "any"
| "as" | "assoc" | "break" | "case" | "class" | "classify" | "clearAssoc"
| "compose" | "createLink" | "datatype" | "default" | "destroyLink" | "do"
| "alge" | "enum" | "for" | "from" | "hastype" | wifn | "import" | "ip"
| "inout" | "instanceof" | "let" | "namespace" | "new" | "nonunique" | "null"
| "or"™ | "ordered" | "out" | "package" | "private" | "protected" | "public"
| "receive" | "redefines" | "reduce" | "return" | "sequence" | "specializes"
| "super" | "signal" | "switch" | "this" | "to" | "while"

Action Language for Foundational UML (ALF), v1.1

25

7.8 Primitive Literals

7.8.1 General

A primitive literal is used to represent the value of a primitive type. Note that an enumeration literal is
not actually denoted as a literal in a lexical sense, but rather by its name as a named element (see also
8.3.3 on name expressions).

Grammar

PrimitiveLiteral
= BooleanLiteral
| Naturalliteral
| UnboundedValuelLiteral
| StringLiteral
| RealLiteral

Cross References

1. BooleanLiteral see 7.8.2
2. NaturalLiteral see 7.8.3
3. UnboundedValueLiteral see 7.8.4
4. StringLiteral see 7.8.5
5. RealLiteral see 7.8.6

7.8.2 Boolean Literals

A Boolean literal represents a literal Boolean model element, with the primitive type Boolean. The
literal “crue” represents an element with the value true, while the literal “false” represents an element
with the value false.

Grammar

BooleanLiteral
= "true" | "false"

7.8.3 Natural Literals

A natural literal represents a natural number—that is, a non-negative integer. The sets of values of the
primitive types Integer and UnlimitedNatural both have the natural numbers as a subset. A natural
literal may thus be used to represent values of either of these types.

NOTE. An effective literal for negative values of type Integer can be obtained by applying the unary
numeric negation operator (see 8.5.4) to a natural literal. The unbounded value of type
UnlimitedNatural has its own literal (see 7.8.4).

The Alf standard model library primitiveTypes package includes the type Natural thatis a
specialization of both Integer and UnlimitedNatural (see 11.3.1), and natural literals are considered
to inherently have this type. However, since UML does not provide any literal specification metamodel
representation for Natural, any time a natural literal is used, it must be possible to determine from
context whether it is an integer or an unlimited natural value that is actually required, so the proper
metamodel representation can be chosen when the literal is mapped to f{UML. If this cannot be
determined implicitly, then an explicit cast (see 8.5.5) to type Integer or type UnlimitedNatural must
be used.

26 Action Language for Foundational UML (ALF), v1.1

A natural literal may be expressed in decimal (base 10), binary (base 2), octal (base 8) or hexadecimal
(base 16). A decimal literal consists of either the single character “0”, representing the integer 0, or a

€,

digit from “1” to ““9” optionally followed by one or more digits from “0” to “9”, representing a positive
integer. A binary literal consists of the prefix “ob” or “08” followed by one or more of the binary digits
“0” or “1”. A hexadecimal literal consists of the prefix “0x” or “0x” followed by one or more

hexadecimal digits. Hexadecimal digits with values 10 through 15 are represented by the letters “a”
through “£” or “a” through “r”, respectively (case is not significant). An octal literal consists of the digit

[%2d e~

“0” followed by one or more digits from “0” to “7”. Underscores may be inserted between digits but are
ignored in determining the value of the literal.

Subclause 9.3.2 of the fUML Specification allows a conforming implementation to limit the supported
values for Integer and UnlimitedNatural types to a finite set. An Alf implementation may also adopt
such a limitation, in which case it may reject any natural literal representing a value outside the
supported set.

Examples

1234

0

0b1010111000010000
0B0O100 1010 0101 1011
0xAE10

0X4a 5b

057410

0 045 133

Grammar

NaturallLiteral

= DecimalLiteral
BinaryLiteral

| HexLiteral

| Octalliteral
DecimallLiteral

—_ "O"

| NonzeroDigit { [" "] Digit }
BinaryLiteral

= BinaryPrefix BinaryDigit { [" "] BinaryDigit }
BinaryPrefix

— "O" "b"

["Qo™ "B"
BinaryDigit

= "o"™ | "i"
HexLiteral

= HexPrefix HexDigit { [" "] HexDigit }
HexPrefix

= "o" "x"

["Oo™ "x©
HexDigit

= Digit

["a™ .. """

["A"™ .. "EF"

Action Language for Foundational UML (ALF), v1.1 27

Octalliteral

= "0" [" "] Octalbigit { [" "] OctalbDigit }
OctalbDigit

— " O " - " 7 "

Cross References
1. NonzeroDigit see 7.6
2. Digit see 7.6

7.8.4 Unbounded Value Literals

An unbounded value literal represents a literal unlimited natural model element for the value unbounded
of the primitive type UnlimitedNatural. Other unlimited natural values are represented as natural
literals (see 7.8.3).

Grammar

UnboundedValueLiteral

— mwxn

7.8.5 String Literals

A string literal represents a literal string model element, with the primitive type string. The string
value of the element is given as a sequence of characters, with escape characters resolving to their
meaning as given in 7.6, surrounded by double quote characters (which are not included as part of the
string value). The empty string is represented by a pair of double quote characters with no other
characters intervening between them.

Examples

"This is a string."

"This is a string with a quote character (\") in it."
"This is a string with a new line (\n) in it."
Grammar

StringLiteral
= "\"" { StringCharacter } "\""
StringCharacter
= InputCharacter but not "\"" or "\\"
| EscapeSequence

Cross References
1. InputCharacter see 7.3

2. EscapeSequence see 7.6

7.8.6 Real Literals

A real literal represents a real number, with the primitive type rReal. A real literal consists of a decimal
(base 10) whole-number part, optionally followed by a decimal point and a decimal fraction part,
optionally followed by an exponent (power of 10) part. If a real literal includes an exponent, then the
decimal point is optional; otherwise it is required (even if not followed by a fraction part). An exponent

(1]

part is indicated by the letter “e” or “E”, followed by an optionally signed integer. Underscores may be

28 Action Language for Foundational UML (ALF), v1.1

inserted between digits in the whole-number, fraction or exponent parts, but are ignored in determining
the value of the literal.

Subclause 9.3.3 of the fUML Specification allows a conforming implementation to limit the range of the
supported values for type Real. An Alf implementation may also adopt such a limitation, in which case
it may reject any real literal representing a value outside the supported range. The fUML Specification
also allows a conforming implementation to only support a restricted value set for type Real. An Alf
implementation may also adopt such a limitation, in which case it may map the value of a real literal to
the closest value supported within the implemented value set. Finally, the f{UML Specification allows a
conforming implementation to include additional special values that are instances of the real type but
are not numeric values (such as infinite values and “not a number” values used in some floating-point
implementations). Alf does not provide real literal representations for such values.

Examples
3.14

0.0

1234.
.0625

5E3
0.314e+1
2E-10
6.022 140 9e+23
0.1E1 000
Grammar

Realliteral
= [DecimalNumeral] "." DecimalNumeral [ExponentPart]
| DecimalNumeral ExponentPart

DecimalNumeral
= Digit { ["_"] Digit }
ExponentPart
= ExponentIndicator [Sign] DecimalNumeral

ExponentIndicator
— "e" | "E"

Sign = "+" | mw_mn
Cross References

1. Digit see 7.6

7.9 Punctuation
The tokens below are considered to be punctuation.

NOTE. Some tokens below are made up of two symbols that may themselves individually be tokens.
Nevertheless, the two-symbol token is not considered a combination of the individual symbol tokens.

“.’)

For example, “: :” is considered a single token, not a combination of two ““:” tokens. Input characters

Action Language for Foundational UML (ALF), v1.1 29

are grouped from left to right to form the longest possible sequence of characters to be grouped into a
single token. Thus “a: : :b” would analyzed into four tokens: “a”, “::”, “:” and “b”.
Grammar
Punctuation
— " (" | ") " | "{" | "}" | " [" | "] " | ";" "," "." ":"

I " " I mwe.e..n I ":>" I "_>"

7.10 Operators

The tokens below are considered to be operators.

Grammar

Operator
= nw_mnw | ">" | "<" | " ! " | w._.mn | "?" | "@" | "$"
| nw__mn | H<=H | H>=H | H!=H | H&&H | " | | " | H++H | w__mn
| "+" | mw_mn | mwekmn | "/" | "&" | " | " | nmAmNn | "%"
| "+=" | nw__m | mx_n | "/=" | "&:" | " |=" | nA_mn | "%:"
| "<<" | ">>" | ">>>" | "<<:" | ">>:" | ">>>:"

30 Action Language for Foundational UML (ALF), v1.1

8 Expressions

8.1 Overview

An expression is a behavioral unit that evaluates to a (possibly empty) collection of values. Expressions
may also have side effects, such as changing the value of an attribute of an object.

The full conformance level includes all kinds of expressions specified in this clause. However, the
minimum conformance level only requires a subset of the full expression syntax. Therefore, in each of
the concrete syntax grammar productions given in the subclauses of this clause, some portion of the
production may be italicized. Only the italicized portions apply at the minimum conformance level.
Unitalicized portions may be ignored for minimum conformance. (See also 2.2 on the definition of
syntactic conformance.)

This subclause describes the top-level syntax and semantics for expressions. The next level
categorization of expressions syntactically is into conditional-test expressions (see 8.7) and assignment
expressions (see 8.8). However, in the subclauses following this subclause, expressions are described in
a traditional “bottom up” fashion, starting with the simplest forms of expressions and working back up
to conditional-test and assignment expressions.

Syntax

Expression(e: Expression)
= ConditionalExpression (e)
| AssignmentExpression (e)

SyntaxElement

|

Expression

Figure 8.1 Base Abstract Syntax for Expressions

Cross References

1. Syntax Element see 6.6
2. ConditionalExpression see 8.7
3. AssignmentExpression see 8.8
Semantics

Integration with UML

An Alf expression can be inserted into a UML model using an opaque expression (UML Specification,
7.3.35) in which the unprocessed text of the Alf expression is used as the body of the opaque expression
and the corresponding language string is "a1£". Opaque expressions are kinds of value specifications
(UML Specification, 7.3.54). Thus, an Alf expression may be used in a UML model any place that a
value specification is allowed.

Action Language for Foundational UML (ALF), v1.1 31

In addition, a special form of initialization expression may be for instance creation and sequence
construction expressions acting as the specification of default values of properties or parameters. In such
initialization expressions, an explicit description of the type of the expression does not need to be
included, as is the case for normal instance creation and sequence construction expressions, since this
can be inferred from the declared type of the property or parameter. (Instance creation expressions are
described in 8.3.12 and sequence construction expressions are described in 8.3.15. The use of their
special forms in initialization descriptions within Alf is discussed for local name declaration statements
in 9.6 and for property initialization in 10.5.2.)

The execution semantics of an Alf expression are given formally by the mapping to UML activity graphs
given in the following subclauses. An Alf expression can therefore always be compiled to a part or all of
a UML activity model (which does not necessarily need to be the same as the formal mapping, but must
have an equivalent effect to it—see 2.3). If the expression appears as part of a statement, then the
compilation of the expression will be part of the compilation of the statement (see Clause 9). Otherwise,
the compilation of the expression may be inserted as an activity that is the associated behavior of a
corresponding opaque expression (see UML Superstructure 13.3.21) that is constructed as follows:

« A single return parameter of the type of the Alf expression.

« The activity nodes and edges resulting from the compilation of the Alf expression (semantically
equivalent to the formal mapping as specified in the following subclauses).

» A ssingle activity parameter node associated with the return parameter, which becomes the target of
an outgoing object flow from the result source element from the mapping of the Alf expression (see
the definition of “result source element” given under Mapping below).

Indeed, the semantics of an opaque expression that only includes unprocessed Alf text in its body may
be considered equivalent to an opaque expression with an associated behavior constructed strictly
according to the formal fUML mapping for the Alf expression.

NOTE. Opaque expressions are not included at all in f{UML, so the execution of such an expression,
even one with a behavior conformant to the Alf subset, is still not fully defined within by the f{UML
standard.

An expression either has a statically determined #ype or can be statically determined to be untyped. All
values resulting from evaluation of the expression will be of the type of the expression, if it has one. If
the expression is untyped, then the result values may have any type. For simplicity of terminology in this
clause, an untyped expression will be referred to as having “type any”.

An expression also has a statically determined multiplicity. The number of values resulting from the
evaluation of the expression will be no smaller than the multiplicity lower bound and no higher than the
multiplicity upper bound (or unbounded if the upper bound is the unbounded value “*”).

Local Names and Assigned Sources

The evaluation of an expression may depend on the values assigned to local names used in the
expression. Local names are used in Alf to denote intermediate values in computations within a
statement sequence (see 9.1). Alf is designed so, on the surface, local names can be assigned and
reassigned in a similar way to variables in more traditional programming languages. However, the
underlying fUML metamodel for actions and activities is fundamentally based on data flow, not on an
implicit underlying store of variables. Therefore, the assignments of and references to local names in an
Alf input text need to be mapped to appropriate object flow edges from the mapping of the appropriate
assignment to the mapping of the reference that requires that assigned value.

32 Action Language for Foundational UML (ALF), v1.1

Carrying out this mapping requires an analysis of the set of local names that are statically known to have
assigned values during the execution of any Alf statement. The assigned source for a local name is the
syntax element that, when executed, will provide the actual assigned value for that local name. If the
assigned source for a local name is known, then a reference to the assigned value of that local name can
be mapped to an object flow from the mapping of the assigned source. (See also the discussion of local
names relative to statements in Clause 9.)

Since a local name may also be defined or reassigned within an expression, one can refer to the
assignments (i.e., the statically determined assigned sources) for local names both before and after the
evaluation of an expression. Most kinds of expressions do not actually themselves change the assigned
source of a name. An assignment expression (see 8.8) is, of course, the main kind of expression that
changes the assigned source for a name. However, invocation expressions (see 8.3.7) may assign names
via out and inout parameters. Increment and decrement expressions also act as assignments (see 8.4).

Other than the kinds of expressions listed above, the only way that an assigned source may change in an
expression is if it contains one of the above kinds of expression, directly or indirectly, as a
subexpression. Unless otherwise stated, it can be assumed that the assigned source of a name before any
subexpression of an expression is the same as the assigned source before the expression.

Further, in general, it is only legal to assign a name in at most one subexpression of any expression.
Therefore, unless otherwise stated, the assigned source for a name after an expression is the same as
after any subexpression. Specific assignment rules for various kinds of expressions are described in their
respective subclauses.

NOTE. The above rule allows most subexpressions to be evaluated concurrently.

8.2 Qualified Names

A name is used to identify a UML named element (see UML Superstructure, 7.3.34), which may or may
not be a member of one or more namespaces (see UML Superstructure, 7.3.35). A named element that is
not a member of any namespace is referred to as a local name, and the scope within which it can be
referenced is limited. In contrast, a named element that is a member of a namespace may be referenced
from outside the namespace in which it is defined (depending on its visibility — see UML Superstructure,
7.3.56) and, if defined in a package (see UML Superstructure, 7.3.38), may be imported into another
namespace (see UML Superstructure, subclauses 7.3.15 and 7.3.40).

A namespace is itself a named element. A qualified name is one that includes both the unqualified name
of' a named element as well as the name of a namespace of which the named element is a member. The
name of the namespace may or may not itself be qualified. A local name is never qualified.

A qualified name has the form of a list of the names of namespaces followed by the unqualified name of
the named element. Syntactically, the names in the list are separated by the either the symbol “: :” or the
symbol “.”

NOTE. The UML Superstructure specifies the symbol “: :” as the separator used in qualified names.

However, it is also common in other languages to use “.” in qualified names, so Alf allows either. Only
one or the other must be used throughout a single qualified name, though.

If any individual name listed in a qualified name is for a template (see 6.3 on templates), then a template
binding may be optionally provided with that name. A template binding lists the qualified names of
argument elements to be substituted for each of the formal template parameters in the template,

"

surrounded by the angle brackets “<” and “>”.

Action Language for Foundational UML (ALF), v1.1 33

The fully qualified name of a named element is either its unqualified name, if it is not owned by a
namespace, or else its name qualified with the fully qualified name of its owning namespace.

Examples

customer

Ordering: :0rder::customer
Ordering.Order.customer
FoundationalModelLibrary: :BasicInputOutput
FoundationalModellLibrary.BasicInputOutput
Set<Integer>

Map<K=>String, V=>Entry>

Map<String, Entry>.KeySet

List< List<String> >
CollectionClasses::Set<Integer>::add
Syntax

TypeName (q: QualifiedName)
= QualifiedName (q)
| "any"
QualifiedName (q: QualifiedName)
= ColonQualifiedName (q)
| DotQualifiedName (q)
| UnqualifiedName (q)
PotentiallyAmbiguousQualifiedName (q: QualifiedName)
= ColonQualifiedName (q)
| DotQualifiedName (q) (g.isAmbiguous=true)
| UnqualifiedName (q)
ColonQualifiedName (q: QualifiedName)
= NameBinding (q.nameBinding) "::" { NameBinding (g.nameBinding) "::" }
NameBinding (q.nameBinding)
DotQualifiedName (q: QualifiedName)
= NameBinding (g.nameBinding)) "." { NameBinding (g.nameBinding) "." }
NameBinding (q.nameBinding)
UnqualifiedName (q: QualifiedName)
= NameBinding (q.nameBinding)
NameBinding (n: NameBinding)
= Name (n.name) [TemplateBinding(n.binding)]
TemplateBinding (b: TemplateBinding)
= PositionalTemplateBinding (b)
| NamedTemplateBinding (b)
PositionalTemplateBinding (b: PositionalTemplateBinding)
= "<" QualifiedName (b.argumentName)
{ "," QualifiedName (b.argumentName) } ">"
NamedTemplateBinding (b: NamedTemplateBinding)
= "<" TemplateParameterSubstitution (b.substitution)
{ "," TemplateParameterSubstitution (b.substitution) } ">"
TemplateParameterSubstitution(s: TemplateParameterSubstitution)
= Name (s.parameterName) "=>" QualifiedName (s.argumentName)

NOTE. Named template binding notation is not available at the minimum conformance level (see 2.2).

34 Action Language for Foundational UML (ALF), v1.1

SyntaxElement

I

QualifiedName +nameBinding

+isAmbiguous : Boolean =false | 0..1 {ordered?

NameBinding

+name : String

+argumentName |1 1.* +argumentName L
+binding | 0..1
TemplateBinding
7AY
0.1
PositionalTemplateBinding NamedTemplateBinding
0.1

+substitution [1..*

TemplateParameterSubstitution

0.1 +parameterName : String
Figure 8.2 Abstract Syntax of Qualified Names
Cross References
1. Syntax Element see 6.6
2. Name see 7.6
Disambiguation
It is ambiguous whether a syntactic element of the form n,.n,. .. .n,, where the n, are name bindings

and m > 2, should be parsed as a qualified name or a feature reference (see 8.3.6) when the element is
used in the following contexts.

« Asan Expression (NameExpression, 8.3.3, VErSus PropertyAccessExpression, 8.3.6)

e Asan InvocationTarget (BehaviorInvocationTarget, 8.3.9, versus FeatureInvocationTarget,

8.3.10)
 AsaleftHandSide (QualifiedName VErsus FeatureReference, see 8.8)

In these cases, the element is initially parsed as a qualified name with isambiguous=true. It is then
disambiguated as follows:

e Ifn,.n,. .. .n,, resolves to a namespace, then the original element should be considered a qualified
name.

« Else, the original element should be considered a feature reference, with name n, and target
expression determined by the disambiguation (if necessary) of n,.n,. .. .n,..

Action Language for Foundational UML (ALF), v1.1 35

Semantics

Element naming and namespaces do not have executable semantics and are therefore not addressed in

the fUML Specification. Nevertheless, the use of named elements is particularly important in Alf, since,
in a textual notation, model elements are primarily referenced by name. Such named references must be
resolved into actual abstract syntax element references when the Alf text is mapped into a f{UML model.

The semantics of names, namespaces and visibility are defined in detail in the UML Superstructure,
particularly in subclauses 7.3.35 Namespace, 7.3.56 VisibilityKind, 7.3.15 ElementImport and 7.3.40
Packagelmport. Depending on the context in which it is used (as defined in subsequent subclauses), a
name may either be part of the definition of a named element or it may denote a reference to a named
element defined elsewhere.

Current Scope

The current scope for the resolution of a reference to a name is the specific innermost namespace in
which that named reference lexically appears.

A name is said to be visible in the current scope if a named element with the given name is a member of
the current scope namespace or is visible in the namespace immediately enclosing the current scope (if
any). Such an element may be referenced using an unqualified name.

Otherwise the first name listed in a qualified name must be visible as an unqualified name in the current
scope in which the qualified name occurs. Each succeeding name must be the name of a visible member
of the preceding namespace.

Type Names

A type constrains the values represented by a #yped element (see UML Superstructure, 7.3.52). Any
value in UML is an instance of some classifier, so a type is always given by naming a classifier, which
constrains the typed element to instances of that classifier. If the named classifier is a femplate (see 6.3
on templates), then an argument type must be given for each parameter of the template. The association
of a classifier template with its arguments is known as a type binding.

A type name may be either a qualified name or the keyword any. If a type name is a qualified name,
then this name must resolve to a classifier, which constrains a typed element to represent the values that
are instances of that classifier. The keyword any is used to indicate that a typed element is actually
untyped, that is, that there are no constraints on the values it may represent.

Type Conformance

One classifier conforms to another if the two classifiers are equivalent or if any direct generalization of
the first classifier conforms to the second classifier. For the purpose of conformance, two classifiers are
considered equivalent if they are the same or if they both have template bindings for equivalent
templates with equivalent arguments for all template parameters (for non-classifier template parameters,
the arguments must be identical).

NOTE. Type conformance as defined in UML Superstructure, 7.3.8, does not include the above rule for
equivalence of classifiers with template bindings. This additional rule follows from the substitution
semantics used in Alf for template bindings, such that classifiers with equivalent bindings are considered
to have the same equivalent bound element after substitution of actual parameters (see 6.3).

Template Bindings

If a qualified name resolves to a template—that is, an element with template parameters—then a
template binding may be appended to the qualified name. Such a binding names an argument element to

36 Action Language for Foundational UML (ALF), v1.1

be substituted for each template parameter. Such a qualified name with a template binding may itself be
used as the qualification part of a larger qualified name.

The argument elements in a template binding may not themselves be templates. Each argument must be
compatible with the corresponding template parameter. In general, a template parameter may represent
any kind of packageable element, any kind of connectable element or an operation, and a compatible
argument for a template parameter must be an element of the same kind. In addition, the following
special compatibility rules must hold for specific kinds of elements:

Classifier. A classifier template parameter may have constraining classifiers. A classifier template
parameter with no constraining classifiers may be substituted with any classifier. A template
parameter with constraining classifiers must be substituted with an argument that conforms to all of
the constraining classifiers (see the definition of type compatibility above).

Value Specification. An argument is compatible with a value specification template parameter if it is
a value specification whose type conforms to the type of the value specification represented by the
template parameter.

Operation. An argument is compatible with an operation template parameter if it is an operation with
the same number of parameters, in the same order, with the same types as the operation represented
by the template parameter.

Connectable Element. An argument is compatible with a connectable element template parameter if
it is the same kind of connectable element with the same type as the connectable element represented
by the template parameter.

NOTE. Templates are specified in 17.5 of the UML Superstructure. Specifically:

Classifiers as parameterable elements are described in UML Superstructure, 17.5.7, and classifier
template parameters are described in 17.5.8. The above rule for compatibility presumes that
allowSubstitutable=false for all classifier template parameters with constraining classifiers.

Value specifications as parameterable elements are described in UML Superstructure, 17.5.20,
including the compatibility rule given above.

Operations as parameterable elements are described in UML Superstructure, 17.5.15, and operation
template parameters are described in 17.5.16. However, even though 17.5.16 mentions “additional
semantics related to the compatibility of actual and formal operation parameters”, no such additional
semantics are actually provided in 17.5.15. Nevertheless, the compatibility rule given above for
operations given above is necessary to ensure that the substitution of an argument for an operation
template parameter leaves the model well formed.

Connectable elements as parameterable elements are described UML Superstructure, 17.5.17, but
this subclause does not specify any special compatibility rule for connectable elements. However,
the compatibility rule given above for connectable elements is necessary in general to ensure that the
substitution of an argument for a connectable element template parameter leaves the model well
formed. UML Superstructure, 17.5.19, also describes specifically properties as parameterable
elements, giving a compatibility rule of type conformance that is looser than the rule for connectable
elements given above. However, since a property could be used within the body of a template as
both a value and the target of an assignment, simple type conformance is not enough to ensure well-
formedness on substitution. Instead, the arguments for template parameters representing properties
(which are, in the end, kinds of connectable elements) are required in Alf to follow the general
connectable element compatibility rule given above.

Action Language for Foundational UML (ALF), v1.1 37

Either positional or named notation may be used for template arguments. If positional notation is used,
then the template arguments are matched to corresponding template parameters in order, and arguments
must be provided for all template parameters. If named notation is used, then each template parameter
must be named in exactly one template parameter substitution, but the order of the substitutions is
irrelevant.

For example, the standard library class set has a single template parameter T. The following are all legal
bindings for this template, assuming that Task names a classifier.

Set<Integer>
Set<Task>

Set<Set<Integer> >

NOTE. The space between the right angle brackets at the end of the last example above are necessary in
order for it to parse correctly. If there was no space, then the symbol ‘“>>" would be recognized as a
right shift operator, not two angle brackets (see 7.9 on the lexical analysis of multi-character symbols).

The standard library class Map has two template parameters, key and value. The following are all
equivalent bindings for this template.

Map<String, Definition>
Map<Key=>String, Value=>Definition>

Map<Value=>Definition, Key=>String>
8.3 Primary Expressions

8.3.1 Overview

Primary expressions include the simplest kinds of expressions, from which more complicated kinds are
constructed. Parenthesized expressions are also considered primary expressions. The categorization into
primary expressions is purely a concept of the concrete syntax, with no additional abstract syntax or
mapping specification beyond that given for the various kinds of expressions so categorized.

Syntax

PrimaryExpression (e: Expression)
= NameExpression (e)
| NonNamePrimaryExpression (e)
NonNamePrimaryExpression (e: Expression)
= LiteralExpression (e)
| ThisExpression (e)
| ParenthesizedExpression(e)
| PropertyAccessExpression (e)
| InvocationExpression (e)
| InstanceCreationExpression (e)
| LinkOperationExpression (e)
| ClassExtentExpression (e)
| SequenceConstructionExpression (e)
| SequenceAccessExpression (e)
| SequenceOperationExpression (e)
| SequenceReductionExpression (e)
| SequenceExpansionExpression (e)

38 Action Language for Foundational UML (ALF), v1.1

Cross References

1. LiteralExpression see 8.3.2
2. NameExpression see 8.3.3
3. ThisExpression see 8.3.4
4. ParenthesizedExpression see 8.3.5
5. PropertyAccessExpression see 8.3.6
6. InvocationExpression see 8.3.7
7. InstanceCreationExpression see 8.3.12
8. LinkOperationExpression see 8.3.13
9. ClassExtentExpression see 8.3.14
10. SequenceConstructionExpression see 8.3.15
11. SequenceAccessExpression see 8.3.16
12. SequenceOperationExpression see 8.3.17
13. SequenceReductionExpression see 8.3.18
14. SequenceExpansionExpression see 8.3.19
Semantics

See the discussion of semantics for each kind of expression in subsequent subclauses.

8.3.2 Literal Expressions

A literal expression comprises a single primitive literal (see 7.8). (Note that enumeration literals are not

denoted using literal expression but, rather, using name expressions—see 8.3.3.)
Syntax

LiteralExpression(e: LiteralExpression)

= BooleanLiteralExpression (e)

| NaturalLiteralExpression(e)

| UnboundedLiteralExpression (e)

| StringLiteralExpression (e)

| RealLiteralExpression (e)
BooleanLiteralExpression (e: BooleanLiteralExXpression)

= BooleanLiteral (e.image)
NaturalliteralExpression (e: NaturalLiteralExpression)

= NaturalLiteral (e.image)
UnboundedLiteralExpression (e: UnboundedLiteralExpression)

= UnboundedValueLiteral
StringLiteralExpression(e: StringLiteralExpression)

= StringLiteral (e.image)
RealliteralExpression(e: RealLiteralExpression)

= RealLiteral (e.image)

Action Language for Foundational UML (ALF), v1.1

39

Expression

AN
LiteralExpression
yAN
BooleanLiteralExpression UnboundedLiteralExpression RealLiteralExpression
+image : String +image : String
NaturalLiteralExpression StringLiteralExpression
+image : String +image : String

Figure 8.3 Abstract Syntax of Literal Expressions

Cross References

1. BooleanLiteral see 7.8.2
2. NaturalLiteral see 7.8.3
3. UnboundedValueLiteral see 7.8.4
4. StringLiteral see 7.8.5
5. RealLiteral see 7.8.6
6. Expression see 8.1
Semantics

A literal expression evaluates to the single primitive value denoted by its primitive literal.

The type of a literal expression is the primitive type corresponding to the kind of primitive literal it
comprises. Its multiplicity is always [1..1].

8.3.3 Name Expressions

A name expression evaluates to the values denoted by a name.
Syntax

NameExpression (e: NameExpression)
= PotentiallyAmbiguousQualifiedName (e.name)

40 Action Language for Foundational UML (ALF), v1.1

Expression

|

NameExpression

0.1
+name |1

QualifiedName

Figure 8.4 Abstract Syntax for Name Expressions

Cross References

1. Expression see 8.1
2. QualifiedName see 8.2
3. PotentiallyAmbiguousQualifiedName see 8.2

NOTE. see 8.2 for rules on the disambiguation of a qualified name with the dot notation used as a name
expression versus a property access expression.

Semantics

The given name for a name expression must either resolve to an enumeration literal name or to a
parameter or local name with an assigned source before the name expression. However, a name with a
@parallel annotation as its assigned source may not be used as a name expression (as discussed in
9.12).

A local name is never qualified.

A parameter name may only be used if the name expression appears within the body of a behavior with
parameters (see UML Superstructure, 13.3.2). The parameter name may be qualified by the name of the
behavior or, if the behavior is the method of an operation, by the name of the operation. But this is never
required since the names of the parameters of a behavior are always in the current scope of the definition
of the behavior.

A name expression is evaluated as follows:
» Local Name. The values of a local name are those given by its assigned source.

o Parameter Name. The values of a parameter name are those given by its assigned source. For an in
or inout parameter, this will initially be the value assigned to the parameter when the enclosing
behavior began execution. However, an inout parameter may be reassigned, in which case its
assigned source will change (see 8.8). An out parameter is always given a value only by explicit
assignment (see 8.8).

o FEnumeration Literal Name. The value of an enumeration literal name is the named enumeration
literal.

The type and multiplicity of a name expression are the same as its name, determined as given below:

» Local Name. As determined by its assigned source (see 8.8).

Action Language for Foundational UML (ALF), v1.1 41

Parameter Name. For an in parameter or and inout parameter that has not been assigned, as
declared for the named parameter. Otherwise, as determined for its assigned source (see 8.8).

Enumeration Literal. The type is the corresponding enumeration and the multiplicity is [1..1].

8.3.4 this Expressions

A this expression consists of the keyword this. It evaluates to a reference to the context value for the
context in which the this expression occurs.

Syntax

ThisExpression(e: ThisExpression)

= "this"

Expression

|

ThisExpression

Figure 8.5 Abstract Syntax of this Expressions

Cross References

1.

Expression see 8.1

Semantics

The static type of a this expression is the statically determined context classifier for the context in
which the this expression occurs. The context classifier is determined as follows:

If the expression appears in a method, classifier behavior or property default value, the context
classifier is the classifier that owns the method, classifier behavior or property.

If the expression appears in a behavior (other than a classifier behavior) that is owned by another
behavior, then the context classifier is the context of the owning behavior. (For example, if a state
machine is acting as a classifier behavior, then its context classifier is the classifier that owns it, and
this is also the context classifier for all effect, entry, exit and do behaviors within it.)

Otherwise the context classifier is the behavior containing the this expression.

NOTE. The derivation of the context property of a behavior is defined in 13.3.2 of the UML
Superstructure.

The context value to which a this expression evaluates is determined as follows:

42

For the method of a behavioral feature (see UML Superstructure, 13.3.3) other than a constructor, the
context value is the value on which the behavioral feature was invoked.

For a constructor (see UML Superstructure, 9.3.1) or property default value (see UML
Superstructure, 7.3.44), the context object is the newly constructed value.

For a classifier behavior (see UML Superstructure, 13.3.4), the context value is the instance of the
active class for which the behavior is executing.

Action Language for Foundational UML (ALF), v1.1

« For a behavior owned by another behavior (such as an entry action on a state machine), the context
value is the context value of the invoking instance owning behavior.

» Otherwise, the context value is the behavior instance being executed.

Note that the dynamic type of the context value returned by a this expression may actually be a
subclass of the static type of the this expression.

The multiplicity of a this expressionis [1..1].

8.3.5 Parenthesized Expressions
A parenthesized expression is a contained expression surrounded by parentheses.

Syntax

ParenthesizedExpression (e: Expression)
= "(" Expression(e) ")"

NOTE. A parenthesized expression has the abstract syntax of its contained expression.
Semantics
A parenthesized expression is evaluated by evaluating the contained expression and results in the values

of the contained expression. The use of parenthesizes only effects order of evaluation, not how the
contained expression is evaluated.

The type and multiplicity of a parenthesized expression are the same as the contained expression.

8.3.6 Property Access Expressions

A property access expression is used to access the value of a property of instances of a classifier. It is
denoted by feature reference, which consists of a target primary expression (see 8.3.1) and the name of a
property of the type of the target expression.

Examples
polevValue.im
this.node
members.name
jack.house
Concrete Syntax

PropertyAccessExpression (e: PropertyAccessExpression)
= FeatureReference (e.featureReference)
FeatureReference (f: FeatureReference)
= FeatureTargetExpression (f.expression) "." NameBinding (f.nameBinding)
FeatureTargetExpression (e: Expression)
= NameTargetExpression (e)
| NonNamePrimaryExpression (e)
NameTargetExpression (e: NameExpression)
= ColonQualifiedName (e.name)

NOTE. see 8.2 for rules on the disambiguation of a qualified name using the dot notation to a property
access expression. Such a potentially ambiguous expression is always initially parsed as a qualified
name. This is why a NameTargetExpression is not allowed to be a DotQualifiedName or an

Action Language for Foundational UML (ALF), v1.1 43

UnqualifiedName, since, along with the dot notation for the feature reference, this should initially be
parsed as a potentially ambiguous qualified name rather than a feature reference.

+expression
1

Expression

PropertyAccessExpression

0.1
+featureReference |1
FeatureReference
0.1
0.1

+nameBinding |1

NameBinding

Figure 8.6 Abstract Syntax of Property Access Expressions

Cross References

1. Name see 7.6
2. Expression see 8.1
3. ColonQualifiedName see 8.2
4. NameBinding see 8.2
5. NonNamePrimaryExpression see 8.3.1
Semantics

The target expression in a property access expression may not be untyped nor may its type be a primitive
type or enumeration. The identified property name must denote either:

A structural feature (owned or inherited) of the type of the target expression.

« The name of an association end of a binary association, the opposite end of which is typed by the
type of the target expression.

If the identified property is a template, then a template binding must be provided with arguments for all
its template parameters.

For it to be legal to use the name of an association end in a property access expression, there must be
exactly one binary association visible in the current scope that meets the above criterion and the given
name must not also be the name of a structural feature of the type of the target expression.

If the target expression has multiplicity [1..17], then result of the collection expression will always be a
single instance. This is known as a single instance property access. If the target expression has
multiplicity other than [1..1], then the property access expression is known as a sequence property
access. Such an expression is equivalent to a collect expression (see 8.3.21) as described below under
Sequence Property Access.

44 Action Language for Foundational UML (ALF), v1.1

The type of a property access expression is the same as the type of the named property. The multiplicity
upper and lower bounds of the property access expression are equal to the product of the upper and
lower bounds, respectively, of the named property and the target expression.

A property access expression is evaluated by first evaluating the target expression, which results in a
sequence of instances. The result of the property access expression is then a sequence containing the
union of the values of the named property for each of the target instances.

Single Instance Property Access

In the case of a single instance property access expression, the target expression will always evaluate to
exactly one instance. If the property name is for a structural feature, then the resulting values of the
property access expression are the values of that structural feature for the given instance.

A property access expression may also be used to access the values of an opposite association end of a
binary association in which the instance participates. In this case, the resulting values are the values of
named end of all links of the association for which the value of the opposite end is the given instance.

As an example of an association end access, consider the following association (represented in Alf
notation—see 10.4.5).

assoc Owns {
owner: Person;
house: House[*];

}

If the association owns is in the current scope (that is, visible without qualification), and jack is a
Person, then the expression

jack.house

is equivalent to the association read expression (see 8.3.9)
Owns: :house (owner => Jjack)
Sequence Property Access

A sequence property access expression of the form primary. name is equivalent to a collect expression
(see 8.3.21) of the form

primary -> collect x (x.name)

NOTE. It is not an error for the result of the target expression in a property access expression to be
empty. In this case, the property access expression evaluates to an empty sequence.

8.3.7 Invocation Expressions

An invocation expression is used to invoke a behavior, either directly by name or indirectly by calling an
operation or sending a signal. An invocation expression consists of a target, which may be a behavior
name, a behavioral feature reference or a super reference, and a tuple, which provides actual arguments
for any parameters of the invoked behavior or behavioral feature.

Syntax

InvocationExpression(e: InvocationExpression)
= InvocationTarget (e) Tuple(e.tuple)
InvocationTarget (e: InvocationExpression)
= BehaviorInvocationTarget (e)
| FeatureInvocationTarget (e)
| SuperInvocationTarget (e)

Action Language for Foundational UML (ALF), v1.1 45

Expression

|

InvocationExpression L;invocation *uple .{ Tuple
| 1 1

Figure 8.7 Abstract Syntax of Invocation Expressions

Cross References

1. Expression see 8.1

2. Tuple see 8.3.8
3. BehaviorlnvocationTarget see 8.3.9
4. FeaturelnvocationTarget see 8.3.10
5. SuperlnvocationTarget see 8.3.11
Semantics

For each type of invocation expression, the target potentially specifies a set of parameters for which
actual arguments need to be provided in the invocation. For in parameters, the argument is a value that
is assigned to the corresponding parameter. For inout and out parameters, the argument must be an
expression of the form that is legal on the left hand side of an assignment (see 8.8 on assignments).

An invocation expression may assign to names that are used as arguments for out or inout parameters.
This is discussed as part of the semantics for tuples (see 8.3.8). The assigned source for a name after the
invocation expression is the same as the assigned source after the tuple.

For a synchronous behavior or operation call, if the invoked behavior has a return parameter, then the
values on that parameter at the completion of the invocation provide the result of the invocation
expression. Otherwise the invocation expression produces no result values.

Specific semantics for each kind of invocation expression are further discussed in subclauses 8.3.9 to
8.3.11.

8.3.8 Tuples

A tuple is a list of expressions used to provide the arguments for an invocation. There are two kinds of
tuples, positional tuples and named tuples. In a positional tuple, the arguments are matched to the
parameters in order, by position. A named tuple, on the other hand, includes an explicit identification of
the name of the parameter corresponding to each argument.

NOTE. The sequence operation expression notation is not available at the minimum conformance level
(see 2.2).

Syntax

Tuple (t: Tuple)
= PositionalTuple(t)
| NamedTuple (t)
PositionalTuple(t: PositionalTuple)
= "(" [TupleExpressionList(t)] ")"

46 Action Language for Foundational UML (ALF), v1.1

TupleExpressionList (t: PositionalTuple)
= Expression(t.expression) { "," Expression(t.expression) }
NamedTuple (t: NamedTuple)
= " (" NamedExpression (t.namedExpression)
{ "," NamedExpression (t.namedExpression) }
NamedExpression(n: NamedExpression)
= Name (n.name) "=>" Expression (n.expression)

") "

SyntaxElement

i

. . +invocation +tuple
InvocationExpression jge-

1 1

Tuple

+namedExpression [NamedExpression

0..1 * +name : String
{ordered}

PositionalTuple NamedTuple

0.1 0.1 0.1

+index
0.1

+expression | EXpression

*

{ordered}

+expression
1

Figure 8.8 Abstract Syntax of Tuples

Cross References

1. Name see 7.6
2. Expression see 8.1
3. InvocationExpression see 8.3.7
Semantics

A tuple is evaluated by evaluating each of its constituent expressions concurrently. For arguments of in
and inout parameters, the argument expression is fully evaluated to a value. For arguments of out
parameters, the constituent parts of the argument expression are evaluated as if for the left hand side of
an assignment (see 8.8).

NOTE. Since the argument expressions in a tuple are evaluated concurrently, they should not have side
effects that influence each other’s evaluation.

Arguments

In a positional tuple, each argument expression corresponds, in order, to a parameter for the invocation
in which the tuple is used.

In a named tuple, the argument names must be parameter names for the invocation in which the tuple is
used. The arguments may appear in any order, but a parameter name may appear at most once in the

Action Language for Foundational UML (ALF), v1.1 47

tuple, and every non-optional parameter (i.e., having multiplicity lower bound greater than zero) of a
target must be named in the invocation of that target.

A tuple may have fewer argument expressions than parameters. For a positional tuple, the unmatched
parameters are those sequentially after the ones matched by the given argument expressions. For a
named tuple, the unmatched parameters are those that are not named. An unmatched parameter must
have mode out or have a multiplicity lower bound of 0.

For example, consider an activity with the following signature:

activity A(in x: Integer, in y: Boolean[0..11])

The following is then an invocation of this activity with a positional tuple:

A(1l, true)

In this case, the argument 1 corresponds to the parameter x and the argument true corresponds to the
parameter y. This is equivalent to the invocation with the named tuple:

A(x=>1, y=>true)

However, with a named tuple, the order of the arguments may be changed:

A(y=>true, x=>1)

Further, since the parameter y is optional (multiplicity lower bound of 0), no argument needs to be
provided for it at all in the named tuple notation. For example, the following invocation using a named
tuple:

A(x=>1)

is equivalent to the following invocation using a position tuple:

A(1)

which is in turn equivalent to:

A(1, null)

Assignment

Tuples with arguments corresponding to inout or out parameters act as assignments. The expressions
corresponding to such parameters must have the form of the left hand side of an assignment (see 8.8),
that is, either a local name or an attribute reference, possibly indexed. The assigned source for a name
after the argument expression is determined as for the left hand side of an assignment, with the
parameter as its assigned expression.

An argument expression for an inout parameter must also meet the static semantics of a name
expression (see 8.3.3) or property access expression (see 8.3.6), if it is not index, or a sequence access
expression (see 8.3.16), if it is indexed, but the argument expression for an out parameter does not.
Thus, a local name used as the argument for an out parameter does not have to have an assigned source
before the tuple, and a local name without a previous assigned source is considered to be newly defined
with the same type and multiplicity as the out parameter.

A name may be assigned in at most one argument expression of a tuple. If there is one such argument
expression, then the assigned source for the name after the tuple is the assigned source for the name after
that argument expression. Otherwise the assigned source after the tuple is the same as before the tuple.

The result of an assignment to a name in one argument expression will not be used in other argument
expressions. New local names defined in one argument expression cannot be used in another.

48 Action Language for Foundational UML (ALF), v1.1

NOTE. This rule allows the argument expressions in a tuple to be evaluated concurrently.

8.3.9 Behavior Invocation Expressions

The simplest kind of invocation expression is the direct invocation of a behavior. In a behavior
invocation expression, the target is given as the (qualified) name of the behavior to be invoked.

The same syntax may also be used with the qualified behavior of an association end as the target. In this
case, the argument expressions in the tuple give the values for each of the other ends of the association.
The result of the expression is a sequence of values of the target end for all links of the association that
have the given values for the other ends.

Examples

Behavior Invocation

ComputeInterest (amount)

Start (monitor => systemMonitor)
including<Integer> (Integer([]{1,2,3}, 4)
Association Read

Roster::player (team=>t, season=>y)
Roster.player (t,vy)

Owns: :house (jack)

Syntax

BehaviorInvocationTarget (e: BehaviorInvocationExpression)
= PotentiallyAmbiguousQualifiedName (e.target)

InvocationExpression

T

BehaviorlnvocationExpression

0.1
+target | 1

QualifiedName

Figure 8.9 Abstract Syntax for Behavior Invocation Expressions

Cross References

1. QualifiedName see 8.2
2. PotentiallyAmbiguousQualifiedName see 8.2
3. InvocationExpression see 8.3.7

NOTE. See 8.2 for rules on the disambiguation of a qualified name with the dot notation initially parsed
as a behavior invocation target to a feature invocation target.

Action Language for Foundational UML (ALF), v1.1 49

Semantics

A behavior invocation expression is evaluated by first evaluating the argument tuple (see 8.3.8). The
completion of the evaluation then depends on whether the target name resolves to a behavior or an
association end. The given target name must identify either a visible behavior or an association end
within the current scope of the behavior invocation expression. The target cannot be a template, though
it may be a binding of a template behavior or association end (see 8.2).

Behavior Invocation

If the target is a behavior, then arguments are matched with parameters of the behavior as described in
8.3.8. Normally, each argument expression of the invocation must be statically compatible with the
corresponding parameter. That is:

» For an in parameter, the argument expression must be assignable to the parameter (see 8.8 for the
definition of assignability).

» For an out parameter, the parameter must be assignable to the argument expression.

« For an inout parameter, the argument expression and the parameter must be assignable to each
other.

If the target behavior is not a template or it is the binding of template with arguments for all template
parameters, then the above compatibility conditions can be checked directly based on the behavior
signature. However, the target behavior is also allowed to be a template, as long as all unbound template
parameters are classifier template parameters. In this case, the types to be used as arguments for the
template parameters are inferred from the types of the argument expressions as follow:

» For each classifier template parameter, the argument type is the effective common ancestor of the
types of all the argument expressions corresponding to the in and inout parameters of the template
behavior that have the classifier template parameter as their type, if such an effective common
ancestor exists (see 8.7 for the definition of effective common ancestor). If a relevant parameter has
a multiplicity upper bound greater than 1 and the type of an argument expression is a collection class
(see 11.7), then the type of the result of the tosequence operation of that collection class should be
used, rather than the type of the argument expression itself.

« If there are no in or inout parameters that have a classifier template parameter as their type, or there
is no effective common ancestor of the relevant argument expression types, then the argument type
for that classifier template parameter is any.

The target of the behavior invocation is then considered to be an implicit binding of the behavior
template, using the inferred argument types for each template parameter. If a classifier template
parameter has constraining classifiers, the corresponding inferred argument must meet these constraints
(see 8.2 on template binding with classifier constraints), or the invocation is illegal. If the implicit
binding is legal, the static compatibility of the argument expressions for the invocation can then be
checked in the normal way against the signature of this implicit binding. The invocation is illegal if the
compatibility checks fail.

For example, the including function from the standard library collectionFunctions package (see
11.6) has the signature

including<T> (in seqg: T[] sequence, in element: T):
T[] sequence

The invocation

50 Action Language for Foundational UML (ALF), v1.1

including (Integer[]{1,2,3}, 4)
is then equivalent to
including<Integer> (Integer([]{1,2,3}, 4)

Since the literal 4 has type Natural (see 7.8.3) and the effective common ancestor of Integer and
Natural iS Integer (since Integer generalizes Natural—see 11.3.1). The result is a sequence of
Integer values.

NOTE. The above rule for argument type inference does not attempt to account for behavior parameters
that may have types that are template bindings using the behavior template parameters as arguments (for
example, bindings of collection class with a behavior template parameter as an argument). This greatly
simplifies the inference rule and is adequate in most cases. In particular, the fact that the standard
collection functions in Alf can use the UML notion of multiplicity rather than collection classes in the
typing of parameters reduces the need for a more complicated inference rule in cases involving
sequences and collections.

When a behavior invocation expression is evaluated, the values resulting from the evaluation of each
input argument expression are assigned to the appropriate in and inout parameter and the behavior is
invoked. Once the behavior completes execution, the result values for each inout and out parameter are
assigned to their corresponding output arguments. (Note that these assignments may involve implicit
conversions, as discussed in 8.8.)

If the named behavior has a return parameter, then the behavior invocation expression evaluates to the
value of that parameter. The type and multiplicity of the behavior invocation expression are the same as
for the return parameter.

If the named behavior does not have a return parameter, then it evaluates to the null (empty) collection.
It is untyped with multiplicity [0..07].

Indexing

The primitive behaviors listed in Table 8.1, from the sequenceFunctions (see 11.4.6) and
CollectionFunctions (see 11.6) library packages, all have index parameters used to indicate a
position in an input sequence. Normally, indexing in Alf (and UML) is from a starting value of 1 for the
first position. However, if a behavior invocation expression for one of the behaviors listed in Table 8.1 is
contained, directly or indirectly, within a statement to which the annotation @indexFrom0 applies (see
9.2), then the index argument is adjusted so that indexing is from 0.

Action Language for Foundational UML (ALF), v1.1 51

Table 8.1 Library Primitive Behaviors with index Parameters

SequenceFunctions| CollectionFunctions
At at
IncludeAt includeAt
InsertAt insertAt
IncludeAllAt includeAllAt
ExcludeAt excludeAt
ReplacingAt replacingAt
addalt
addAllAt
removeAt
replaceAt
For example, given the sequence
a = Integer[]{10, 20, 30, 40}

the behavior invocation expression at (seq=>a, index=>3) would normally evaluate to 30, because
that is the third element in the sequence. However, within the scope of an @indexFrom0 annotation, the
same expression would evaluate to 40, because that is the element at index 3 when indexing starts at 0.

Further, within the scope of an eindexFrom0 annotation, the value returned from invocations of the
SequenceFunctions: :IndexOf and CollectionFunctions::indexOf library functions is adjusted to
return a 0-based rather than a 1-based index. For example, using the sequence from above, the behavior
invocation expression indexOf (a, 30) would normally evaluate to 3. However, within the scope of an
@indexFrom0 annotation, the same expression would evaluate to 2.

Association Read

When an association end name is used in a behavior invocation expression, the association end may be
thought of as a function from the values of the other association ends to the values on the target
association. Arguments are matched to the ends of the association other than the target end. For the
purposes of this matching, the non-target association ends are treated as if they were in parameters.
Each argument expression must be statically compatible with the type of the corresponding association
end, as described above.

The expression evaluates to all values of the target end of the links of the association whose other ends
have the values given as arguments. The type and multiplicity of the invocation expression are the same
as the type and multiplicity of the target association end.

For example, given the association

assoc Roster {
public team: Team[*];
public season: Year[*];
public player: Player[*];
}

the expression

Roster::player (team=>t, season=>y)

52 Action Language for Foundational UML (ALF), v1.1

or, equivalently,

Roster.player (t,vy)
evaluates to the collection of players who played on team t in year y.

The behavior invocation expression notation for reading an association can be used for associations with
any number of ends. This is in contrast to the property access expression notation (see 8.3.6), which can
only be used to read binary associations. Of course, the behavior invocation form may also be used to
read binary associations. So, for example, the expression

Owns: :house (jack)

is equivalent to

jack.house

8.3.10 Feature Invocation Expressions

A feature invocation expression has a feature reference as its target. The referenced feature consists of a
primary expression (see 8.3.1) and the name of either an operation or a reception owned by the type of
the primary expression. If the named feature is an operation, then the feature invocation expression
denotes a call to that operation. If the feature is a reception, then the feature invocation expression
denotes sending an instance of the signal corresponding to the reception.

Examples

group.activate (nodes, edges)

actuator.Initialize (monitorRef => systemMonitor)
Syntax

FeatureInvocationTarget (e: FeaturelInvocationExpression)
= FeatureReference (e.target)
| "this"

InvocationExpression

|

FeaturelnvocationExpression

0.1

+target|0..1

FeatureReference

Figure 8.10 Abstract Syntax of Feature Invocation Expressions

Cross References

1. FeatureReference see 8.3.6

2. InvocationExpression see 8.3.7

NOTE. see 8.2 for rules on the disambiguation of a qualified name with the dot notation initially parsed

as a behavior invocation target to a feature invocation target.

Action Language for Foundational UML (ALF), v1.1 53

Semantics

If a feature invocation expression has a target feature reference, the primary expression in the feature
reference must not be untyped. The named feature must denote either a visible operation or a visible
reception of type of the primary expression, known as the farget type. An operation call is distinguished
from a signal send by whether the named feature is an operation or a reception. If the named feature is a
template operation, then a template binding must be provided with arguments for all its template
parameters. The primary expression in the feature reference is evaluated before the invocation argument
expressions and names assigned in the primary expression are available in the argument expressions.

If the feature invocation target is the single keyword “this”, the invocation expression must appear in
the definition of the method of a constructor operation; that is, an operation with the standard stereotype
«Create» (see UML Superstructure, 9.3.1). The name of the invoked operation is then implicitly taken
to be the name of the owning classifier of the operation and the target type is taken to be that classifier.

Operation Call

If the named feature is an operation, then determining which operation to actually call is complicated by
the possibility of operation overloading. The determination is made in the following steps:

1. Identify all concrete operations of the target type with the given name. If there is not at least one
such operation, then the feature invocation expression is illegal.

2. From the set determined in Step 1, select the operations for which the tuple is statically compatible
with the operation parameters, as defined for a behavior invocation (see 8.3.9). Due to the
assignability rules, there may be more than one. If there is not at least one, then the feature
invocation expression is illegal.

3. From the set determined in Step 2, select the most specific operations. One operation is more
specific than another if it has fewer parameters or if it has the same number of parameters and

o Each of its in parameters is assignable to the corresponding parameter of the other operation, in
order (see 8.8 for the definition of assignability).

o Each of the out or return parameters of the other operation is assignable to its corresponding
parameter, in order.

NOTE. Any corresponding inout parameters of operations remaining after Step 2 that have
matching arguments will necessarily be assignable to each other.

An operation in a set is most specific if there is no other operation in the set that is more specific than
it.

If there are multiple operations remaining after the above steps, the feature invocation expression is
illegal.

If there is a single operation remaining after the above steps, this is the operation to be called.

If the operation is a constructor, then the invocation expression is an alternative constructor invocation.
Such an invocation is illegal unless it occurs in an expression statement (see 9.7) as the first statement in
the definition for the method of a constructor operation. If the feature invocation target is the single
keyword “this”, then the identified operation with the same name as the target type must be a
constructor, or the expression is illegal.

54 Action Language for Foundational UML (ALF), v1.1

If there are no operations left after the above steps, the feature invocation expression is illegal, with one
exception. If the operation name is “destroy” and the tuple is empty, then the feature invocation
expression is legal and considered to be an implicit object destruction expression.

NOTE. The identifier “destroy” is not reserved and it is possible for a class to have an explicit
parameterless operation called “destroy”. By convention, any such operation should be a destructor, in
which case it can be considered to be an explicit override of the implicit object destruction behavior.

If the feature invocation expression is for an operation with a return parameter, then the type of the
feature invocation expression is the same as for the return parameter. For a single instance feature
invocation, the multiplicity is also the same. For a collection feature invocation, the multiplicity is
determined as for the corresponding collect expression (see 8.3.21), as described under Sequence
Feature Invocation below.

If a feature invocation expression is for an operation without a return parameter, then it is untyped with
multiplicity [0..0].

Signal Send

If the named feature is a reception, then arguments are matched with attributes of the associated signal
as described in 8.3.8, with the attributes being considered as parameters. Each argument expression must
be assignable to the corresponding attributes (see 8.8 for the definition of assignability), the attributes
being effectively considered as in parameters.

A feature invocation expression for a signal send is untyped with multiplicity [0..0].
Single Instance Feature Invocation

A feature invocation expression is evaluated by first evaluating the primary expression, which results in
a sequence of instances. The denoted invocation is then carried out on each element of the sequence.

If the primary expression of the feature reference for a feature invocation expression has multiplicity
[1..11, then the invocation expression is a single instance feature invocation. Otherwise it is a
sequence feature invocation. An alternative constructor invocation must always be a single instance
feature invocation.

For a single instance feature invocation, the result of the primary expression will always be a single
instance. In this case, if the named feature is an operation, the invocation is a call to the named operation
on the given instance. The tuple is evaluated to provide arguments for the operation parameters. The call
is polymorphic, so, if the dynamic type of the instance has an operation that redefines the named
operation (directly or indirectly), it is the redefined operation that is called.

If the operation is a destructor (i.e., it has the standard stereotype «Destroy»), then it is called just as a
normal operation. However, after the completion of the call to the destructor, the target instance is
destroyed, except if the target instance is the same as the current context object, in which case the
destructor is called, but the instance is not destroyed.

If the expression is an implicit object destruction expression, then evaluation of the expression simply
results in the target instance being destroyed, except, as above, if the target instance is the same as the
current context object, in which case the object destruction expression has no effect.

If the named feature is a reception, the invocation is a sending of an instance of the signal associated
with the reception. The tuple is evaluated to provide values for the attributes of the signal. Each signal
attribute is treated as effectively an in parameter for the purposes of the invocation.

Action Language for Foundational UML (ALF), v1.1 55

Sequence Feature Invocation

A sequence feature invocation expression of the form primary.name tuple is equivalent to a sequence
expansion expression (see 8.3.21) of the form

primary -> collect x (x.name tuple)

NOTE. This means that the argument expressions in the tuple for the feature invocation are re-
evaluated for the invocation on each instance in the sequence. It is not an error for the result of the
primary expression in a feature invocation expression to be empty. In this case, no invocations occur and
the tuple is never evaluated. It also means that, as would be the case for the equivalent sequence
expansion expression, it is not allowed to reassign local names within the tuple of a sequence feature
invocation (see also 8.3.19). A (parenthesized) null-coalescing expression (see 8.7) can be used as the
primary of a feature invocation expression to ensure that it is a single instance feature invocation.

8.3.11 Super Invocation Expressions

A super invocation expression is used to invoke an operation of a superclass of the current context class.
It is syntactically similar to a feature invocation expression (see 8.3.10), but with the keyword super
used as the target. Unlike a feature invocation expression, however, a super invocation expression may
name a superclass operation by a qualified name, if this is necessary in order to disambiguate operations
with the same name from different superclasses.

Examples
super.run ()
super.initialize (startvValue)

super.Person: :setName (name)

Syntax
SuperInvocationTarget (e: SuperInvocationExpression)
= "super" ["." QualifiedName (e.target)]
InvocationExpression

T

SuperinvocationExpression

0.1
+target|0..1

QualifiedName

Figure 8.11 Abstract Syntax for Super Invocation Expressions

Cross References
1. QualifiedName see 8.2

2. InvocationExpression see 8.3.7

56 Action Language for Foundational UML (ALF), v1.1

Semantics

If the super invocation target includes a qualified name with a qualification, then this qualification must
resolve to one of the superclasses of the current context class, and the invoked operation must come
from this superclass. If the given name is not qualified, then the invoked operation may come from any
of the superclasses of the context class.

If the super invocation target is the single keyword “super” (with no qualified name), the invocation
expression must appear in the definition of the method of a constructor operation; that is, an operation
with the standard stereotype «Create» (see UML Superstructure, 9.3.1). The name of the invoked
operation is then implicitly taken to be the name of the owning classifier of the operation, which must
have a single superclass, from which the invoked operation is to come.

The operation to be called is determined using the following steps:

1. Identify all the concrete operations with the given name that are members of the relevant superclass
or superclasses (as discussed above). If there is not at least one such operation, then the super
invocation expression is illegal.

2. From the set determined in Step 1, select the operations for which the tuple is statically compatible
with the operation parameters, as defined for a behavior invocation (see 8.3.9). Due to the
assignability rules, there may be more than one. If there is not at least one, then the super invocation
expression is illegal.

3. From the set determined in Step 2, select the most specific operations, as defined in Step 3 of the
determination of the operation for a feature invocation expression (see 8.3.10). If there is a single
operation remaining, this is the operation to be called. Otherwise, the super invocation expression is
illegal.

If the identified operation is a constructor, then the invocation expression is a super constructor
invocation. Such an invocation is illegal unless it occurs in an expression statement (see 9.7) at the start
of the definition for the method of a constructor operation such that any statements preceding it are also
super constructor invocations. If the super invocation target is the single keyword “super”, then the
identified operation must be a constructor, or the expression is illegal.

If the identified operation is a destructor (i.e., it has the standard stereotype «Destroy»), then the super
invocation expression must itself appear within the method of a destructor operation.

When a super invocation expression is evaluated, its tuple is first evaluated to provide arguments for the
operation parameters. The method of the named superclass operation is then called on the current
context object. Note that the call is nof polymorphic—the statically determined superclass method
behavior is always directly invoked.

If the super invocation expression has a return parameter, then the type and multiplicity of the super
invocation expression is the same as for the return parameter. If the operation does not have a return
parameter, then the super invocation expression is untyped with multiplicity [0..0].

8.3.12 Instance Creation Expressions

An instance creation expression is used to create a new instance of a class or data type. In either case, an
instance creation expression consists of the keyword new followed by a (possibly qualified) name and a
tuple.

Action Language for Foundational UML (ALF), v1.1 57

Examples

Object Creation

new Employee (id, name)

new Employee::transferred(employeeInfo)
new Set<Integer> (Integer[]{1,2,3})

Data Value Creation

new Position(1,2)

new Position (x=>1, y=>2)

Syntax

InstanceCreationExpression(e: InstanceCreationExpression)
= "new" QualifiedName (e.constructor) Tuple (e.tuple)

InvocationExpression

|

InstanceCreationExpression

0..1
+constructor (0..1

QualifiedName

Figure 8.12 Abstract Syntax of Instance Creation Expressions

Cross References

1. QualifiedName see 8.2
2. InvocationExpression see 8.3.7
3. Tuple see 8.3.8
Semantics

Since an instance creation expression involves the invocation of a constructor operation, it is possible for
it to assign to names used as arguments for out or inout parameters, as for a regular invocation
expression (see 8.3.7). The name given in an instance creation expression must resolve to a class, data
type or a constructor operation. If the name given in an instance creation expression denotes both a class
and a data type, then the expression is illegal. If the qualified name denotes a data type, but not a class,
then the instance creation expression is a data value creation expression. Otherwise it is an object
creation expression.

The element named in an instance creation expression may not be a template, though it may be a binding
of a template with arguments given for all template parameters.

Object Creation Expression

If the name in an instance creation expression denotes a constructor operation or a class, then the
expression creates an object. If the name is for a constructor, then the newly created object is an instance
of the class that owns the constructor. Otherwise, the object is an instance of the explicitly named class.

58 Action Language for Foundational UML (ALF), v1.1

If the name denotes neither a class nor a data type, then it must denote a constructor (see UML
Superstructure, 9.3.1), which is determined using the following steps:

1.

Identify all the constructors with the given name. Due to overloading there may be more than one. If
there is not at least one, then the object creation expression is illegal.

From the set determined in Step 1, select the constructors for which the tuple is statically compatible
with the constructor parameters, as defined for a behavior invocation (see 8.3.9). Due to the
assignability rules, there may be more than one. If there is not at least one, then the object creation
expression is illegal.

From the set determined in Step 2, select the most specific constructors, as defined in Step 3 of the
determination of the operation for a feature invocation expression (see 8.3.10). If there is a single
constructor remaining, this is the constructor to be called. Otherwise, the object creation expression
is illegal.

NOTE. A constructor is always required to have a single return type that is the same as the class being
constructed (see UML Superstructure, subclauses 9.3.1).

If the name denotes a class, then the constructor to be used is determined as above, except that, in the
first step, constructors are identified that are owned members of the named class with the same name as
the class. Further, if no constructor is found, then the object creation expression is considered to be
constructorless. However, a constructorless instance create expression may not have any arguments and
is only legal if the named class has no constructor operations (see 10.5.3.1).

The class of the object being created must not be abstract, unless all of the following conditions hold:

The object creation expression is not constructorless.
The namespace that owns the class of the constructor also owns a package with the name Tmp1.
The tmp1 package contains a class with the same name as the class of the constructor.

The Tmp1 class has a constructor that redefines the constructor (which implies that the Impl class
must be a direct or indirect subclass of the class of the constructor).

If these conditions hold, then the identified Tmp1 class constructor is used instead of the original abstract
class constructor, and the object that is created is actually an instance of the Tmp1 class.

NOTE. The above mechanism is intended to allow for the definition of abstract classes in model
libraries that may be directly referenced by user models and constructed as if they were concrete.
Different execution tools may provide different actual concrete implementations of the library classes in
the nested Tmp1 package of the model library without changing the library classes actually referenced in
user models. In particular, the Alf standard model library collectionClass package uses this
mechanism (see 11.7).

If an object creation expression is not constructorless, then, in addition to creating an object, evaluation
of the expression calls the identified constructor on the newly created object. If a constructor is
explicitly named in the expression, then that is the constructor that is called. For example, the expression

new Employee::transferred(employeeInfo)

creates an object of the class Employee and calls the constructor transferred on that object with the
argument employeeInfo.

Action Language for Foundational UML (ALF), v1.1

59

If the object creation expression names a class, then the constructor called is one with the same name as
the class. Thus, the expression

new Employee (id, name)
is equivalent to
new Employee::Employee (id, name)

If an object creation expression is constructorless, then evaluation of the expression still results in the
creation of a new object of the named class, but no constructor operation is called. However, if any
attributes of the class have default value expressions (see UML Superstructure, 7.3.44), then these are
evaluated to give the initial values of the corresponding attributes. Such initialization has the semantics
of an assignment of the expression to the attribute (see 8.8). Attributes are initialized in the order in
which they are defined in the class.

Finally, if the class of the object being created is active, then the classifier behavior for that class is
automatically started once the object is created and after any constructor call completes. In addition,
each classifier behavior of a direct or indirect active superclass is also started, unless that classifier
behavior is redefined in another superclass or the class of the object being created.

NOTE. While UML allows for the redefinition of behaviors (see UML Superstructure, 13.3.2), this is
not included in the f{UML subset (see f{UML Specification, 7.3.2.1). Nevertheless, Alf notation may be
used to create an instance of a class with a classifier behavior that redefines the classifier behavior of its
superclass. For example, such redefinition is common when state machines are used as classifier
behaviors. The intent is that the behavior specified in the redefined behavior is automatically included in
the redefining behavior, which only specifies incremental and compatible extensions to the redefined
behavior. Therefore, it would be redundant in this case to start both the redefined and redefining
behaviors. Only the redefining behavior should be started.

The type of an object creation expression is the class that owns the constructor (which is the named
class, if it is named explicitly) and the multiplicity is [1..1].

Data Value Creation Expression

If the name in an instance creation expression denotes a data type, then the expression creates a data
value. In this case, the tuple is used to specify values for the attributes of the data value. If a named tuple
is used, then the names must correspond to the names of the attributes of the data type. The identified
data type must not be abstract.

Arguments are matched with attributes of the named data type as described in 8.3.8, with the attributes
being considered as in parameters. Each argument expression must be assignable to the corresponding
attribute (see 8.8 for the definition of assignability).

For example, consider the data type

datatype Position {
public x: Integer;
public y: Integer;
}

All the following data value expressions create equivalent data values of this type:
new Position(1l,2)
new Position (x=>1, y=>2)

new Position (y=>2, x=>1)

60 Action Language for Foundational UML (ALF), v1.1

The type of a data value creation expression is the named data value and the multiplicity is [1..1].

8.3.13 Link Operation Expressions

A link operation expression is used to create or destroy instances of a named association, known as /links.
A link operation expression has a similar syntax to an invocation expression, consisting of a farget
association name, a link operation name and a tuple of actual arguments for the link operation.

Examples

Owns.createlLink (jack, newHouse)

Owns.createlLink (owner=>jack, house=>newHouse)
Owns.createlink (owner=>jack, house[l]=>newHouse)
Owns.destroyLink (owner=>jack, house=>newHouse)
Owns.clearAssoc (jack)

Syntax

LinkOperationExpression(e: LinkOperationExpression)
= QualifiedName (e.associationName) "." LinkOperation (e.operation)
LinkOperationTuple (e.tuple)
LinkOperation (op: String)
= "createLink" (op)
| "destroyLink" (op)
| "clearAssoc" (op)
LinkOperationTuple (t: Tuple)
= PositionalTuple (t)
| IndexedNamedTuple (t)
IndexedNamedTuple (t: NamedTuple)
= "(" IndexedNamedExpression (t.expressions)
{ "," IndexedNamedExpression (t.expressions) } ")"
IndexedNamedExpression (n: NamedExpression)
= Name (n.name) [Index(n.index)] "=>" Expression(n.expression)
Index (e: Expression)
= "[" Expression(e) "]"

InvocationExpression

LinkOperationExpression

+operation : String

0.1

+associationName |1

QualifiedName

Figure 8.13 Abstract Syntax of Link Operation Expressions

Cross References

1. Name see 7.6

Action Language for Foundational UML (ALF), v1.1 61

2. Expression see 8.1
3. QualifiedName see 8.2
4. InvocationExpression see 8.3.7
5. PositionalTuple see 8.3.8
6. NamedTuple see 8.3.8
7. NamedExpression see 8.3.8
Semantics

The target of a link operation expression is a qualified name that must resolve to an association. The
expression must name one of the link operations in Table 8.2 (note that link operation names are
reserved words). These operations are used to create or destroy links of the named association.

Table 8.2 Link Operations

Operation Description
A.createlink(el,eZ2..) Create a link of association A with end values e1, e2, ...
Association A must not be abstract.
A.destroylLink(el,e2,..) | Destroy a link of association A with end values e1, e2, ...
A.clearAssoc (e) Destroy all links of association A with at least one end value e.

Argument expressions in the tuples for a link operation other than clearassoc are matched to the
association ends of the named association, where the ends are treated as if they were in parameters (see
8.3.8). Indexes are only allowed on the names for ordered association ends. The expression in an index
must have a type that conforms to the type UnlimitedNatural and a multiplicity upper bound of 1.

The link operation clearaAssoc must have a positional tuple with a single argument.
A link operation expression is untyped with multiplicity [0..07.

For example, given the association

assoc Owns {
owner: Person;
house: House[*];

}
the expression

Owns.createlLink (jack, newHouse)

creates a link with the given end values (note that the order of the arguments corresponds to the order of
the association ends in the association definition). This link can then be destroyed using the expression

Owns.destroyLink (jack, newHouse)

Named tuple notation may also be used:

Owns.createlLink (owner=>jack, house=>newHouse)

and

Owns.destroyLink (owner=>jack, house=>newHouse)

in which case the order of the arguments is immaterial.

62 Action Language for Foundational UML (ALF), v1.1

If an association end is ordered, then the position of a link for the end can be indicated using an index.
For example, if the association above was modified so that the house end is ordered, then the expression

Owns.createlink (owner=>jack, house[l]=>newHouse)

inserts the newHouse at the beginning of the list of houses for jack. If an index is not given for an
ordered end, then the default is *, which indicates adding at the end.

Normally, indexing in Alf (as in UML) is from 1. However, if a link operation expression is contained,
directly or indirectly, within a statement to which the annotation @indexFrom0 applies (see 9.2), then
indexing is from 0. Thus, if the example given above where in the scope of an @indexFrom0 annotation,
then newHouse would be inserted at the second position in the list of houses for jack, rather than at the
beginning, because an index of 1 indicates the second position when indexing starts at 0.

Finally, there is an additional link operation, clearAssoc, which may only be used with associations. It
destroys all links of the named association that have at least one end with a given value. Thus, the
expression

Owns.clearAssoc (jack)
destroys all links between jack and any house.

NOTE. For a binary association (such as the example owns used above), links may also be effectively
created and destroyed using property access notation, as if association ends were properties of their
opposite types. Thus the expression add (jack.house, newHouse) (Or jack.house->add (newHouse))
can be used to create an owns link, remove (jack.house, newHouse) (OI‘ jack.house-

>remove (newHouse)) to destroy it and jack.house = null to clear the association. (see 8.3.6 on
property access expressions and 8.3.6 on sequence operation expressions.)

8.3.14 Class Extent Expressions
A class extent expression returns a sequence of the objects in the extent of a named class.

Examples

Customers.allInstances ()

Syntax

ClassExtentExpression (e: ClassExtentExpression)
= QualifiedName (e.type) "." "alllInstances" "(" ")"
Expression

|

ClassExtentExpression

0.1
+className |1

QualifiedName

Figure 8.14 Abstract Syntax for Class Extent Expressions

Action Language for Foundational UML (ALF), v1.1 63

Cross References

1. Expression see 8.1
2. QualifiedName see 8.2
Semantics

The name given in a class extent expression must denote a class. A class extent expression evaluates to a
sequence (in an arbitrary order) of the objects in the extent of the named class. The extent of a class is
the set of objects that currently exist at the specific execution locus at which the class extent expression
is evaluated.

NOTE. The concept of an execution locus is defined in the f{UML Specification, 8.2. The
correspondence of the actual execution environment to one or more fUML loci is specific to the
execution tool.

The type of a class extent expression is the named class, and its multiplicity is [0..*].

8.3.15 Sequence Construction Expressions

A sequence construction expression is used to group values into a sequence of a specific type. The most
direct form of a sequence construction expression is a list of expressions enclosed in braces and
preceded by a specification of the desired type with the multiplicity indicator “ [1”. There is also a
special notation for the case of a sequence of consecutive integers.

A sequence construction expression may also be used to create an instance of a collection class (see 11.7)
initialized from the given sequence of values. This form has the same syntax as above, except that the
specified type must be a collection class and no multiplicity indicator is included.

A sequence construction expression may optionally start with the keyword new, analogously to the
syntax of an instance creation expression (see 8.3.12).

Examples

Integer([]{1, 3, 45, 2, 3}

Set<Integer>{1l, 3, 45, 2, 3}

new String[]{"apple", "orange", "strawberry", }

new List< List<String> >{{"apple","orange"}, {"strawberry", "raspberry"}}
Integer[]{1l..6+4}

null

Syntax

SequenceConstructionExpression (e: SequenceConstructionExpression)
= NullExpression (e.hasMultiplicity=true)
| SequenceElementsExpression (e)
NullExpression
= "null"
SequenceElementsExpression (e: SequenceConstructionExpression)
= ["new"] SequenceElementsTypePart (e)
"{" SequenceElements (e.elements) "}"
SequenceElementsTypePart (e: SequenceConstructionExpression)
= TypeName (e. typeName)
[MultiplicityIndicator (e.hasMultiplicity=true)]

64 Action Language for Foundational UML (ALF), v1.1

MultiplicityIndicator
p— "[" "] ”n
SequenceElements (se: SequenceElements)
= SequenceElementList (se)
| SequenceRange (se)
SequenceElementList (sel: SequenceExpressionList)
= [SequenceElement (sel.element) { "," SequenceElement (sel.element) }
[", "]]
SequenceElement (e: Expression)
= Expression (e)
| SequencelInitializationExpression (e)
SequencelInitializationExpression(e: SequenceConstructionExpression)
= ["new"] "{" SequenceElements (e.elements) "} "
SequenceRange (sr: SequenceRange)

= Expression(sr.rangeLower) ".." Expression (sr.rangeUpper)
+rangelLower
Expression

+rangeUpper
1

+element

{ordered}

SequenceElements |'+elements SequenceConstructionExpression
] 0.1 0.1 +hasMultiplicity : Boolean = false

0.1
+typeName |0..1

0.1

QualifiedName

SequenceExpressionList

0.1 SequenceRange

0.1

Figure 8.15 Abstract Syntax of Sequence Construction Expressions

Cross References

1. Expression see 8.1
2. TypeName see 8.2
3. ExpressionList see 8.3.8
Semantics

Type Part

A sequence construction expression begins with a type part that that consists of a type name (see 8.2)
and an optional multiplicity indicator “11”.

If a multiplicity indicator is included, the type name may be either a qualified name or the keyword any.
If it is a qualified name, then this name must resolve to a classifier, which is the type of the sequence

Action Language for Foundational UML (ALF), v1.1 65

construction expression. The qualified name must not resolve to a template, though it may be the
binding of a template classifier.

If a multiplicity indicator is not included, then the type name must be the qualified name of a collection
class (see 11.7). In this case, the sequence construction expression has the collection class as its type.

Sequence Elements

The type part of a sequence construction expression is followed by a specification of the elements of a
sequence. This may be given either as a sequence element list or a sequence range.

A sequence element list is an explicit list of expressions. Each expression in the list must have a
multiplicity upper bound of no more than 1. The multiplicity lower and upper bounds of the sequence
element list are given by the sum of the multiplicity lower and upper bounds of each of the expressions
in the list. A sequence element list is evaluated by evaluating each expression in the list, in order, each of
which will return at most one value. The result of the sequence element list is the sequence of values
returned, in order.

A sequence range has the form Expr1..Expr2, where both expressions are of a type that conforms to
type Integer and have a multiplicity upper bound of 1. A sequence range denotes all integers from the
value of the first expression up to and including the value of the second expression. Note that the two
expressions in a sequence range are evaluated concurrently. For example, the sequence range {1..6+4}
is equivalent to the sequence element list {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The multiplicity of the
sequence range is [0..*].

If the type part of the sequence construction expression has a multiplicity indicator, then the result of the
expression is the result of evaluating the sequence element specification for the expression. If the
expression has a sequence element list, and the type name in the type part is not any, then the type of
each expression in the list must either conform to the given type or be convertible to it by bit string
conversion or real conversion (see 8.8 on type conformance, bit string conversion and real conversion).

Collection Object Creation

If the type part of the sequence construction expression does not have a multiplicity indicator, then the
expression is equivalent to an instance creation expression (see 8.3.12) with a constructor for the given
collection class and the sequence elements used as the constructor argument. The result of the
expression is a single collection object, so its multiplicity is [1..1].

For example, the sequence construction expression
Set<Integer>{1l, 2, 3, 4}

(where set is a collection class from the Alf Standard Model Library, see 11.7) is equivalent to the
instance creation expression

new Set<Integer> (Integer[]{l, 2, 3, 4})

When used to construct a collection object, it is possible that the elements of a sequence element list are
themselves collections. In this case, the type parts of the nested sequence construction expressions may
be omitted, since their types may be inferred from the element type of the collection class being
constructed.

For example, the sequence construction expression

List< Set<Integer> >{{1}, {2,3}, {4,5,6}}

is equivalent to

66 Action Language for Foundational UML (ALF), v1.1

List< Set<Integer> >{Set<Integer>{1l}, Set<Integer>{2,3}, Set<Integer>{4,5,6}}

which is in turn equivalent to the following nested instance creation expression:

new List< Set<Integer> > (Set<Integer>[]{
new Set<Integer>(1l),
new Set<Integer>(Integer[]{2,3}),
new Set<Integer>(Integer([]{4,5,6})

1)

Note that this nesting of sequence construction expressions only applies to the case of the construction
of a collection object. Sequences of values are themselves flat in Alf. Thus, the following expression is
not legal:

Integer[]1{{1}, {2,3}, {4,5,6}} // Illegal!
Empty Sequences

The list of element expressions in a sequence construction expression may be empty. However, the static
type of an empty sequence is still as specified in the expression. Thus, Integer[]{} is an empty
sequence of integers while string[]{} is an empty sequence of strings. An empty sequence has
multiplicity [0..0].

The keyword nul1 is equivalent to any [] { }, that is, an untyped empty sequence.

8.3.16 Sequence Access Expressions

A sequence access expression is used to obtain a specific element of an expression. It contains two
subexpressions, a primary expression and an index expression (within brackets).

Examples
this.getTypes () [1]
Syntax

SequenceAccessExpression(e: SequenceAccessExpression)
= PrimaryExpression (e.primary) Index(e.index)

+primary . +index
Expression
1 1
/\

SequenceAccessExpression
0.1 0.1

Figure 8.16 Abstract Syntax of Sequence Access Expressions

Cross References

1. Expression see 8.1
2. PrimaryExpression see 8.3.1
3. Index see 8.3.13

Action Language for Foundational UML (ALF), v1.1 67

Semantics

The two subexpressions of a sequence access expression are evaluated concurrently. The index
expression must evaluate to a single integer value that indicates the element of the collection to which
the collection access expression evaluates.

Indexing is from 1, unless the sequence access expression is contained, directly or indirectly, within a
statement to which the annotation @indexFrom0 applies (see 9.2), in which case indexing is from 0. If
the index value is less than 1 (0, if indexing is from 0) or greater than the size of the collection (size of
the collection minus 1, if indexing is from 0), then the expression returns no value.

For example, given the sequence
a = Integer[]{10, 20, 30, 40}

the sequence access expression a [3] normally evaluates to 30. However, if the expression is within the
scope of an @indexFrom0 annotation, then it evaluates to 40, because that element is at index 3 when
indexing starts at 0.

If the index value is less than 1 or greater than the size of the collection, then the expression returns no
value.

The type of a sequence access expression is the same as the type of its primary expression. Its
multiplicity is [0..1].

8.3.17 Sequence Operation Expressions

A sequence operation expression is an alternative notation for applying a behavior as an operation on a
sequence of values. When the target of a normal operation invocation expression evaluates to a sequence
of values, the operation is invoked on each object in the sequence (see 8.3.10). A sequence operation
expression, on the other hand, can be used to invoke in an operation-like way a behavior that is intended
to operate on a sequence as a whole.

Similarly to an operation invocation expression, a sequence operation expression consists of a primary
expression, an operation name and a tuple. However, the primary expression and the operation name are

[

separated by the symbol “->” rather than the ““.” used for a normal operation invocation. (The symbol ““-
>” can be thought of as indicating the “flow” of a sequence of values into the sequence operation.)

NOTE. The sequence operation expression notation is not available at the minimum conformance level
(see 2.2).

Examples
selectedCustomers->notEmpty ()
memberList->includes (possibleMember)
memberList->including (newMember)
products->removeAll (rejects)

Syntax

SequenceOperationExpression (e: SequenceOperationExpression)
= ExtentOrExpression(e.primary) "->" QualifiedName (e.operation)
Tuple (e.tuple)
ExtentOrExpression(e: ExtentOrExpression)
= QualifiedName (e.name)
| NonNamePrimaryExpression (e.nonNameExpression)

68 Action Language for Foundational UML (ALF), v1.1

InvocationExpression Expression

+nonNameExpression |0..1

0.1
SequenceOperationExpression .MJ ExtentOrExpression
0.1 1 |
0.1
0.1

+operation |0..1
+name
0..1

QualifiedName

Figure 8.17 Abstract Syntax for Sequence Operation Expressions

Cross References

1. Expression see 8.1
2. QualifiedName see 8.2
3. NonNamePrimaryExpression see 8.3.1
4. InvocationExpression see 8.3.7
5. Tuple see 8.3.8
Semantics

Sequence Operation Invocation

The “operation” name in a sequence operation expression does not actually name an operation. Instead,
it must resolve to the name of a behavior with at least one parameter. The first parameter of this behavior
must have direction in or inout and a multiplicity of [0..*]. The primary expression of the link
operation expression must be assignable to this parameter (see 8.8 for the definition of assignability).

The tuple of a sequence operation expression contains arguments for any parameters of the named
behavior other than the first. Argument matching and compatibility is as required for a behavior
invocation (see 8.3.9).

While a sequence operation expression is intended to look notationally similar to an operation
invocation, it is actually executed equivalently to a behavior invocation expression (see 8.3.9).
Specifically, the target primary expression and any argument expressions in the tuple are all evaluated
concurrently. The named behavior is then invoked on the resulting arguments as for a behavior
invocation.

For example, suppose a is a sequence. Then the sequence operation expression
a->including (x)

is equivalent to the following behavior invocation expression for the library behavior including:
including (a, x)

Both of these expression evaluate to a sequence with all the elements of a and the additional element x
at the end.

By contrast, suppose that a is a sequence of objects of the same class, which has an operation called
including. Then, the operation call

Action Language for Foundational UML (ALF), v1.1 69

a.including (x)
results in including (x) being called on each member of the sequence a.

If the sequence operation expression is contained, directly or indirectly, within a statement to which the
annotation @indexFrom0 applies (see 9.2), then the invocation of certain library functions involving
indexing is adjusted exactly as for the equivalent behavior invocation expression (as described in 8.3.9).
“In-Place” Sequence Operations

If the first parameter of the behavior has direction inout, then the primary expression for the sequence
operation expression is restricted to the syntax and static semantic constraints of the left-hand side of an
assignment (see 8.8). If the primary expression is a local name or parameter name, then the assigned
source for that name after the sequence operation expression is the sequence operation expression itself.
If the primary expression is an attribute reference with a local name or parameter name and has a type

that is a structured data type, then the assigned source for that name after the sequence operation
expression is the sequence operation expression itself.

The Alf standard collectionFunctions package (see 11.6) contains a number of behaviors that operate
on sequences. The majority of these have an in direction for their target sequence parameter and
produce a result via a return parameter. However, certain of them have an inout direction for their
sequence parameter, with the effect of updating a sequence “in place”.

For example,

a->add(2)

is equivalent to

add (a, 2)

which results in the same effective behavior as

a = a->including (2)

Clearly, in this case, the target primary expression must have the form of the left hand side of an

¢ _ 9

assignment (see 8.8). Note that if the target primary expression is a local name (such as “a” in the
example above), then, by the usual semantics of inout parameters, such an “in place” sequence
operation expression is considered to be a re-assignment of that local name (see 8.3.8 on assignments
and inout parameters).

Sequence Operations on Collections

The assignability rule for collection conversion (see 8.8) leads to special behavior in the case in which
the type of the initial primary expression is a collection class (see 11.7) and its multiplicity upper bound
is no greater than 1 (and as long as the initial parameter is an in parameter). In this case, the operation
toSequence is first called on the collection object resulting from evaluating the primary expression, and
the sequence operation is then performed on the resulting sequence.

For example, suppose customerList has the type List<Customer>. Then the expression
customerList->size ()
is equivalent to

size (customerList)

Since the argument type for the CollectionFunctions: :size has multiplicity [*], this is equivalent to

size (customerList.toSequence())

70 Action Language for Foundational UML (ALF), v1.1

which gives the number of elements in the collection. Note that this gives the same result as a regular
call on the size operation provided by a collection object:

customerList.size ()

Sequence Operations on Extents

There is also a special notation option for sequence operation expressions in which the initial primary
expression may be replaced with the name of a class to implicitly denote the collection that is the current
extent of that class. If the primary expression of a sequence operation expression is a class name, then it
is considered to be equivalent to a class extent expression for the named class (see 8.3.14). However, if
there is a local name or parameter name in the current extent with the same name as the class name, then
the primary expression is considered a name expression for the given name (see 8.3.3) rather than a class
extent expression.

For example, the expression

Customer->size ()

is equivalent to
Customer.allInstances ()->size()
or

size (Customer.allInstances())

which all evaluate to the number of objects currently in the extent of the customer class (where
Customer.allInstances () is a class extent expression—see 8.3.14).

8.3.18 Sequence Reduction Expressions

A sequence reduction expression is used to reduce a sequence of values to a single value by combining
the elements of the sequence using a binary operator. A sequence reduction expression has a similar
syntax to a sequence operation expression (see 8.3.17) in that it starts with a primary expression
followed by the “flow” symbol “->". This is then followed by the keyword “reduce” and the qualified
name of a behavior that acts as the binary operator over elements of the sequence.

As for sequence operation expressions (see 8.3.17), sequence reduction expressions also allow the
special notation in which a class name is used as a shorthand for a class extent expression.

NOTE. The sequence reduction expression notation is not available at the minimum conformance level
(see 2.2).

Examples
subtotals->reduce '+'

rotationMatrices->reduce ordered MatMult

Syntax
ReductionExpression(e: ReductionExpression)
= ExtentOrExpression(e.primary) "->" "reduce"
["ordered" (e.isOrdered=true)] QualifiedName (e.behavior)

Action Language for Foundational UML (ALF), v1.1 71

Expression

|

i i +primar
SequenceReductionExpression y /’| ExtentOrExpression
+isOrdered : Boolean = false 0.1 1

0.1
+behaviorName | 1

QualifiedName

Figure 8.18 Abstract Syntax for Sequence Reduction Expressions

Cross References

1. Expression see 8.1

2. QualifiedName see 8.2

3. ExtentOrExpression see 8.3.17
Semantics

The qualified name in a sequence reduction expression must denote a behavior with two in parameters
and a return parameter and no other parameters. The parameters must all have the same type as the
primary expression and multiplicity [1..1]. The identified behavior must not be a template, though it
may be a binding of a template behavior (see 8.2)

The named behavior is invoked repeatedly on pairs of values resulting from the evaluation of a target
primary expression. Each time it is invoked, it produces one output that replaces the two input elements
in an intermediate version of the sequence. This repeats until the sequence is reduced to a single value.

For example, the expression

Integer([]{1l, 2, 3} -> reduce '+'

evaluates to 6—the same as 1+2+3 (see also 8.3.15 on the sequence construction expression notation
used in the primary expression above).

Normally, the order in which the behavior of a sequence reduction expression is applied to pairs of
values is indeterminate. This will not affect the result of the expression if the behavior is commutative
and associative. For example, in the above example using addition may be evaluated as 1+2+3 or 1+3+2
or 2+3+1, or in any other order, and the result is always 6.

However, if the reducing behavior is not commutative and associative, or has side effects, then the order
in which elements are selected from the sequence will affect the result of the expression. In this case, an
ordered reduction may be used by adding the keyword “ordered”, so the reducing behavior will be
applied to adjacent pairs according to the collection order. The result of each invocation of the behavior
replaces the two values taken as input at the same position in the order as the original two values.

For example, matrix multiplication is not commutative. The expression

Matrix[]{A, B, C} -> reduce ordered MatMult

will be deterministically be evaluated as MatMult (MatMult (A, B),C), not in any other order.

72 Action Language for Foundational UML (ALF), v1.1

A sequence reduction expression has the same type as its argument expression and multiplicity [1..1].

Even though a sequence reduction expression is not equivalent to a behavior invocation, a collection
object may be directly acted on in such an expression analogously to how it may be acted on in a
sequence operation expression (see 8.3.17). The operation toSequence is called on the collection object,
and the reduction is applied to the result of that operation.

For example, if vector has the type List<Integer>, then the sequence reduction expression

vector -> reduce '+'

is equivalent to

vector.toSequence () -> reduce '+'

Also as for sequence operation expressions (see 8.3.17), sequence reduction expressions allow the
special notation in which a class name is used as a shorthand for a class extent expression.

8.3.19 Sequence Expansion Expressions

A sequence expansion expression is used to specify a computation that operates on all the elements of a
sequence. Such an operation is said to expand the collection. In all cases except the iterate operation,
this expansion is parallel, in the sense that the computations on each sequence element are carried out
concurrently.

A sequence expansion expression has a similar syntax to a sequence operation expression (see 8.3.17),
except that, in addition to giving the name of the expansion operation, the expression also gives a name
for an expansion variable. This expansion variable is used to hold the value of each element in the
sequence during the expansion computation.

NOTE. The sequence expansion expression notation is not available at the minimum conformance level
(see 2.2).

Syntax
SequenceExpansionExpression (e: SequenceExpansionExpression)
= ExtentOrExpression(e.primary) "->" ExpansionOperation (e)
Name (e.variable) " (" Expression(e.argument) ")"

ExpansionOperation (e: SequenceExpansionExpression)
= SelectOrRejectOperation (e)
| CollectOrIterateOperation (e)
| ForAllOrExistsOrOneOperation (e)
| IsUniqueOperation (e)

Action Language for Foundational UML (ALF), v1.1 73

+argument

Expression

SequenceExpansionExpression

+operation : String
0.1 +variable : String

0.1
+primary |1

ExtentOrExpression

Figure 8.19 Abstract Syntax of Sequence Expansion Expressions

Cross References

1. Name see 7.6

2. Expression see 8.1

3. QualifiedName see 8.2

4. ExtentOrExpression see 8.3.17
5. SelectionOrRejectOperation see 8.3.20
6. CollectOrlterateOperation see 8.3.21
7. ForAllOrExistsOrOneOperation see 8.3.22
8. IsUniqueOperation see 8.3.23
Semantics

The operation name in a sequence expansion expression must be one of the reserved keywords listed in
Table 8.3.

Table 8.3 Sequence Expansion Operations

Operation Description

select Select a sub-sequence of elements for which a condition is true.

reject Select a sub-sequence of elements for which a condition is false.

collect Concurrently apply a computation on each element of a sequence.
iterate Sequentially apply a computation to each element of a sequence.

forall Test if a condition is true for all elements of a sequence.

exists Test if a condition is true for at least one element of a sequence.

one Test if a condition is true for exactly one element of a sequence

isUnique Test if a computation has a different value for every element of a sequence.

Assignments made in the primary expression of a sequence expansion expression are available within its
argument expression. In addition, the expansion variable is available as a local name within the
argument expression, with the same type as the primary expression and multiplicity [1..1]. Its name
must not conflict with any already assigned local name. Its assigned source is the sequence expansion
expression itself.

74 Action Language for Foundational UML (ALF), v1.1

For example, in the expression

c—->select x (x>1)

9

“select” is the expansion operation name and “x” is the expansion variable name.

An expansion variable may not be reassigned within the argument expression of a sequence expansion
expression, and it is considered unassigned after the sequence expansion expression. Further, while the
argument expression may reference local names defined outside that expression, it may not reassign
such local names. New local names may be defined and referenced within the argument expression, but
all such names are considered unassigned after the sequence expansion expression.

NOTE. The above rule is necessary, since, if the sequence being expanded is empty, the argument
expression will never be evaluated and names assigned within it would have no value on their assigned
source. The rule also allows sequence expansion expressions to be mapped to expansion regions, which
are not allowed to have outgoing flows or output pins in fUML (see fUML Specification, 7.4.5.2.2).

Even though a sequence expansion expression is not equivalent to a behavior invocation, a collection
object may be directly acted on in such an expression analogously to how it may be acted on in a
sequence operation expression (see 8.3.17). The operation tosequence is called on the collection object,
and the expansion is applied to the result of that operation.

For example, if customerList has the type List<Customer>, then the sequence expansion expression
customerList->select ¢ (c.name == customerName)

is equivalent to

Customer.toSequence () ->select ¢ (c.name == customerName)

Also as in a sequence operation expression (see 8.3.17), a sequence expansion expression allows the
special notation in which the initial primary expression may be replaced with the name of a class to
implicitly denote the the current extent of that class. Thus, the expression

Customer->select ¢ (c.name == customerName)
is equivalent to
Customer.allInstances () ->select ¢ (c.name == customerName)

(where Customer.allInstances () is a class extent expression—see 8.3.14).

Specific semantics for each kind of sequence expansion operation are further discussed in subsequent
subclauses.

8.3.20 select and reject Expressions

The select and reject operations are used in a sequence expansion expression (see 8.3.19) to specify a
selection of elements from a sequence. The select operation is used to select elements that meet a
given condition, while the reject operation is used to select those that do not meet a condition.

NOTE. The sequence expansion expression notation is not available at the minimum conformance level
(see 2.2).

Examples
employees->select e (e.age>50)

employees->reject e (e.isMarried)

Action Language for Foundational UML (ALF), v1.1 75

Syntax

SelectOrRejectOperation(e: SelectOrRejectExpression)
= "select" (e.operation)
| "reject" (e.operation)

SequenceExpansionExpression

SelectOrRejectExpression

Figure 8.20 Abstract Syntax for select and reject Expressions

Cross References

1. SequenceExpansionExpression see 8.3.19
Semantics

A sequence expansion expression with a select or reject expression must have an argument
expression with a type that conforms to type Boolean and a multiplicity upper bound of 1. The sequence
expansion expression has the same type and multiplicity upper bound as its primary expression and a
multiplicity lower bound of 0.

The select operation specifies a subset of a sequence. Each element for which the argument expression
evaluates to true is included in the result sequence.

For example, the following expression selects all employees greater than 50 years old:

employees->select e (e.age>50)

The reject operation is similar to select, except that elements for which the argument expression
evaluates to false are included in the result sequence. The reject operation is thus equivalent to a
select operation with the argument expression negated.

For example, the following expression selects all employees who are not married:

employees->reject e (e.isMarried)

8.3.21 collect and iterate Expressions

The collect and iterate operations are used in a sequence expansion expression (see 8.3.19) to
specify a sequence that is derived from some other sequence, but which may contain different elements
than the original sequence. This computation is carried out concurrently in the case of the collect
operation, but sequentially in the case of the iterate operation.

Examples

employees->collect e (e.birthDate)
processSteps—->iterate step (step.execute())
Syntax

CollectOrIterateOperation(e: CollectOrIterateExpression)
= "collect" (e.operation)
| "iterate" (e.operation)

76 Action Language for Foundational UML (ALF), v1.1

SequenceExpansionExpression

CollectOrlterateExpression

Figure 8.21 Abstract Syntax of collect and iterate expressions
Cross References

1. SequenceExpansionExpression see 8.3.19

Semantics

A sequence expansion expression with a collect or iterate operation may have an argument
expression of any type. The sequence expansion expression has the same type as its argument expression
and a multiplicity determined by multiplying the corresponding lower and upper bounds of the
collection and argument expressions (where the product of the unbounded value * with anything is
considered to be *).

The result of a collect or iterate operation is the sequence of the results of evaluating the argument
expression for each element of the input sequence.

For example, the following expression results in the sequence of birth dates of all employees:

employees->collect e (e.birthDate)

Note that, when the argument expression is a property access expression, the collect operation is the
same as a property access expression directly on the input sequence (see 8.3.6). Thus, the above example
is equivalent to the simpler expression

employees.birthDate

An iterate operation has the same behavior as a collect operation, except that the argument
expression is evaluated sequentially for all elements of the input sequence, in order, rather than
concurrently, as is the case for collect. This can be useful when the argument expression potentially
has side effects.

For example, in the evaluation of the expression

processSteps->iterate step (step.execute())

the execution of the process steps will occur sequentially, and the execution of each step will take place

in the context resulting from the completion of the previous step. As for collect, any results returned
from the execute operation invocations will be collected into a result sequence.

8.3.22 forall, exists and one Expressions

The forall, exists and one operations are used in a sequence expansion expression (see 8.3.19) to test
a Boolean argument expression on the elements of a sequence. The forall operation tests that the
condition holds for all elements, the exists operation that it holds for at least one element and the one
operation that it holds for exactly one element.

Examples

employees->forAll e (e.age<=65)

Action Language for Foundational UML (ALF), v1.1 77

employees->exists e (e.firstName=="Jack")
employees->one e (e.title=="President")
Syntax

ForAllOrExistsOrOneOperation(e: ForAllOrExistsOrOneExpression)
= "forAll" (e.operation)
| "exists" (e.operation)
| "one" (e.operation)

SequenceExpansionExpression

ForAllIOrExistsOrOneExpression

Figure 8.22 Abstract Syntax for forAll, exists and one Expressions
Cross References

1. SequenceExpansionExpression see 8.3.19

Semantics

A sequence expansion expression with a foral1l, exists Or one operation must have an argument
expression with a type that conforms to type Boolean and a multiplicity upper bound of 1. The sequence
expansion expression has type Boolean and multiplicity [1..1].

The result of a fora11 operation is true of the argument expression evaluates to true for all elements of
the input sequence and false otherwise.

For example, the following expression evaluates to true if every employee is no older than 65:
employees->forAll e (e.age<=65)

The result of an exists operation is true if the argument expression evaluates to true for at least one
element of the input sequence.

For example, the following expression evaluates to true if at least one employee has the first name
"Jack":

employees->exists e (e.firstName=="Jack")

The result of a one operation is true if the argument expression evaluates to true for exactly one element
of the input sequence.

For example, the following expression evaluates to true if there is exactly one employee with the title
"President":

employees->one e (e.title=="President")

8.3.23 isUnique Expression

The isunique operation is used in a sequence expansion expression (see 8.3.19) to test whether an
expression evaluates to a different value for every element of a collection.

78 Action Language for Foundational UML (ALF), v1.1

Examples
employees->isUnique e (e.employeeldentificationNumber)
Syntax

IsUniqueOperation(e: IsUniqueExpression)
= "isUnique" (e.operation)

SequenceExpansionExpression

IsUniqueExpression

Figure 8.23 Abstract Syntax for isUnique Expressions

Cross References

1. SequenceExpansionExpression see 8.3.19
Semantics

A sequence expansion expression with an isUnique operation must have a single argument expression
with a multiplicity upper bound of 1. The sequence expansion expression has type Boolean and
multiplicity [1..1].

The result of an isunique operation is true if the argument expression evaluates to a different value for
every element of the input collection.

For example, the following expression evaluates to true if every employee has a unique employee
identification number:

employees->isUnique e (e.employeeldentificationNumber)

8.4 Increment and Decrement Expressions

An increment expression is one that uses the increment operator ++. A decrement expression is one that
uses the decrement operator --. Either of these operators may be used in either a prefix form, in which
the operator appears before the operand expression, or a postfix form, in which the operator appears after
the operand expression.

Examples
Postfix Form
count++
size--
total[i]++
Prefix Form
++count

—-—-numberWaiting[queueIndex]

Action Language for Foundational UML (ALF), v1.1 79

Syntax

IncrementOrDecrementExpression (e: IncrementOrDecrementExpression)

= PostfixExpression(e)

| PrefixExpression(e) (e.isPrefix=true)
PostfixExpression (e: IncrementOrDecrementExXpression)

= LeftHandSide (e.operand) AffixOperator (e.operator)
PrefixExpression (e: IncrementOrDecrementExpression)

= AffixOperator (e.operator) LeftHandSide (e.operand)
AffixOperator (op: String)

= "++" (op) | n__nmn (op)

Expression

|

IncrementOrDecrementExpression

+isPrefix : Boolean = false
+operator : String

0.1

+operand |1

LeftHandSide

Figure 8.24 Increment and Decrement Expressions

Cross References

1. Expression see 8.1
2. LeftHandSide see 8.8
Semantics

The operand expression for an increment or decrement expression must conform to the syntax and static
semantics for the left hand side of an assignment (see 8.8). It must have a type that conforms to type
Integer and multiplicity upper bound of 1. The increment or decrement expression has type Integer,
the same multiplicity lower bound as its operand expression and a multiplicity upper bound of 1.

The effect of an increment or decrement expression is to increment (++) or decrement (--) the value of
its operand and then reassigns the result to the operand. If the operator is used as a postfix, then the
value of the expression is the value of its operand before it is reassigned. If the operator is used as a
prefix, the value of the expression is the values of its operand affer it is reassigned.

For example, if the local name a has the value 5, then both a++ and ++a assign the value 6 to a.
However the value of the expression a++ itself is 5, while the value of ++a is 6.

8.5 Unary Expressions

8.5.1 Overview

A unary expression is an expression with a single operand expression and an operator that performs
some action on the values produced by the operand. Unary operators include numeric unary operators,
Boolean negation and isolation. Cast expressions, which filter a sequence of values based on type, are

80 Action Language for Foundational UML (ALF), v1.1

also considered unary expressions in terms of concrete syntax, even though their “operator” is given by
a type name, not a fixed symbol.

The static and execution semantics of each kind of unary expression are discussed further in subsequent
subclauses.

Syntax

UnaryExpression(e: Expression)
= PrimaryExpression(e)
| IncrementOrDecrementExpression (e)
| BooleanUnaryExpression (e)
| BitStringUnaryExpression(e)
| NumericUnaryExpression (e)
| CastExpression(e)
| IsolationExpression (e)

Expression

UnaryExpression

0.1 +operator : String

Figure 8.25 Base Abstract Syntax for Unary Expressions
Cross References

1. Expression see 8.1

2. PrimaryExpression see 8.3.1
3. IncrementOrDecrementExpression see 8.4

4. BooleanUnaryExpression see 8.5.2
5. NumericUnaryExpression see 8.5.4
6. CastExpression see 8.5.5
7. IsolationExpression see 8.5.6

8.5.2 Boolean Unary Expressions

A Boolean unary expression is a unary expression whose operator acts on and produces Boolean values.
The only Boolean unary operator is the negation operator !.

Examples

lisActive

'this.running

Syntax

BooleanUnaryExpression (e: BooleanUnaryExpression)
= "!"(e.operator) UnaryExpression (e.operand)

Action Language for Foundational UML (ALF), v1.1 81

UnaryExpression

|

BooleanUnaryExpression

Figure 8.26 Abstract Syntax of Boolean Unary Expressions
Cross References

1. UnaryExpression see 8.5.1
Semantics

A Boolean unary expression must have an operand expression with a type that conforms to type
Boolean and multiplicity [1..1]. The Boolean unary expression has type Boolean and multiplicity
[1..1].

The functionality of the Boolean negation operator is the same as an application of the Alf library
BooleanFunctions::'!"' function (see 11.4.1) with the operand expression as its argument. If the
operand is true, the result is false. If the operand is false, the result is true.

8.5.3 BitString Unary Expressions

A BitString unary expression is a unary expression whose operator acts on a bit string (or an integer
convertible to a bit string) and produces a bit string. The only BitString unary operator is the bit-wise
complement operator ~.

Examples
~registerContext
~memory.getByte (address)
Syntax

BitStringUnaryExpression (e: BitStringUnaryExpression)
= "~"(e.operator) UnaryExpression (e.operand)

UnaryExpression

T

BitStringUnaryExpression

Figure 8.27 Abstract Syntax of BitString Unary Expressions
Semantics

A BitString unary expression must have an operand expression with a type that conforms to type
BitString or Integer and multiplicity [1..1]. The BitString unary expression has type BitString
and multiplicity [1..1]. If the operand is an integer, then it is first converted to a bit string by applying
the library BitStringFunctions: :ToBitString function (see 11.4.6).

82 Action Language for Foundational UML (ALF), v1.1

The functionality of the Bitstring bit-wise complement operator is the same as an application of the
Alf library BitStringFunctions::'~"' function (see 11.4.6) with the operand expression as its
argument. The result is a bit string that has a bit set (value 1) in each bit position in which the operand
bit string had its bit unset (value 0) and a bit unset (value 0) in each bit position in which the operand bit
string had its bit set (value 1).

8.5.4 Numeric Unary Expressions

A numeric unary expression is a unary expression that acts on and produces numeric values. The
numeric unary operators are + and -.

Examples

+1234

-42

+ (a*b)

-absoluteValue

Syntax

NumericUnaryExpression (e: NumericUnaryExpression)

= NumericUnaryOperator (e.operator) UnaryExpression (e.operand)
NumericUnaryOperator (op: String)

= "+" (Op) | mnm_n (Op)

UnaryExpression

T

NumericUnaryExpression

Figure 8.28 Abstract Syntax of Numeric Unary Expressions

Cross References
1. UnaryExpression see 8.5.1
Semantics

A numeric unary expression must have an operand expression with a type that conforms to type Integer
or Real and a multiplicity upper bound of 1. A numeric unary expression has type Integer if its
operand is of type Integer and type rReal if its operation is of type Real. It has the same multiplicity
lower bound as its operand expression and a multiplicity upper bound of 1.

The unary plus operator does not change its operand value, while the unary minus operator negates it.
The unary minus operator has the same functionality as application of the Alf library
IntegerFunctions: :Neg function (see 11.4.2), if the operand is of type Integer, or

RealFunctions: :Neg function (see 11.4.3), if the operand is of type real, with the operand expression
as the argument.

NOTE. While the unary plus operator does not have any mathematical effect on its operand, it can be
used as a way to effectively denote an Integer literal value. For example the literal “1234” has the type

Action Language for Foundational UML (ALF), v1.1 83

Natural (see 7.8.3) and could be either an Tnteger or an UnlimitedNatural value. However the
expression “+1234” is unambiguously an Integer.

8.5.5 Cast Expressions

A cast expression is used to filter the values of its operand expression to those of a given type. The type
is named within parentheses and prefixes the operand expression as an effective unary operator.

Examples

(fUML: :Syntax::Activity) this.getTypes ()
(Person) invoice.payingParty

(any) this

Syntax

CastExpression(e: CastExpression)

= "(" TypeName (e.typeName) ")" NonNumericUnaryExpression (e.operand)
NonNumericUnaryExXpression (e: ExXpression)

= PrimaryExpression(e)

| PostfixExpression(e)

| BooleanUnaryExpression (e)

| BitStringUnaryExpression (e)

| CastExpression (e)

| IsolationExpression (e)

+operand _ | Fxpression

CastExpression

0.1

0.1
+typeName | 0..1

QualifiedName

Figure 8.29 Abstract Syntax of Cast Expressions

Cross References

1. Expression see 8.1

2. TypeName see 8.2

3. QualifiedName see 8.2

4. PrimaryExpression see 8.3.1
5. TypeName see 8.3.15
6. PostfixExpression see 8.4

7. BooleanUnaryExpression see 8.5.2
8. IsolationExpression see 8.5.6

84 Action Language for Foundational UML (ALF), v1.1

Semantics

Unless the type name in a cast expression is the keyword any, the cast expression has the given type (see
also 8.2 on type names). If the type name is any, then the cast expression is untyped. If the type name is
a qualified name, then it must resolve to a classifier, which must not be a template, though it may be a
binding of a template classifier.

A cast expression is evaluated by first evaluating its operand expression, producing a sequence of
values. Any values of the operand expression whose dynamic type does not conform to the type of the
cast expression are filtered out, so that all result values of the cast expression are of the given type. If the
cast expression is untyped, then no values are filtered out.

For example, the cast expression
(Integer)any[]{1l, "banana", 2}
evaluates to

Integer[]1{1,2}

The library type Natural is a subtype of Integer and UnlimitedNatural. This means that natural
literals of type Natural (see 7.8.3) can be cast to Integer or UnlimitedNatural. Thus, (Integer)2 is
the Integer value 2, while (UnlimitedNatural)2 isthe UnlimitedNatural value 2.

In addition, for the purpose of a cast expression, any non-negative Integer value is considered to
conform to the type unlimitedNatural, and vice versa. Integer values are converted to
UnlimitedNatural values using the Alf library IntegerFunctions::ToUnlimitedNatural
function (see 11.4.2). unlimitedNatural values are converted to Integer values using the Alf
library unlimitedNaturalFunctions::ToInteger function (see 11.4.5).

For example, the cast expression

(Integer)UnlimitedNatural[]{1l,2,*}

evaluates to

Integer[]{1,2}

and the cast expression

(UnlimitedNatural) Integer[]{-1,0,1}

evaluates to

UnlimitedNatural[]{0,1}

Further, any Integer value is considered to conform to the type BitString and vice versa.
Integer values are converted to BitString values using the Alf library
BitStringFunctions::ToBitString function and BitString values are converted to Integer
values using the BitStringFunctions: :ToInteger function (see 11.4.6).

Finally, any Integer value is also considered to conform to the type Real and vice versa. Integer
values are converted to Real values using the Alf library IntegerFunctions: : ToReal function
(see 11.4.2) and real values are converted to Integer values using the
RealFunctions: :ToInteger function (see 11.4.3).

Action Language for Foundational UML (ALF), v1.1 85

The multiplicity lower bound of a cast expression is 0, unless one of the following conditions hold, in
which case the multiplicity lower bound is the same as that of its operand expression.

» The cast expression is untyped.

« The type of the cast expression is Integer and the type of its operand expression is BitString or
Real.

» The type of the cast expression is BitString or Real and the type of its operand expression is
Integer.

« The type of the operand expression of the case expression conforms to the type of the cast
expression.

The multiplicity upper bound of a cast expression is the same as that of its operand expression.

8.5.6 Isolation Expressions

An isolation expression is a unary expression with the isolation operator s.

NOTE. The isolation expression notation is not available at the minimum conformance level (see 2.2).
Examples

Sthis.monitor.getActiveSensor () .getReading ()

Syntax

IsolationExpression(e: IsolationExpression)
= "$" (e.operator) UnaryExpression (e.operand)

UnaryExpression

T

IsolationExpression

Figure 8.30 Abstract Syntax of Isolation Expressions
Cross References

1. UnaryExpression see 8.5.1
Semantics

The isolation operator indicates that its operand expression should be evaluated in isolation, similarly to
the use of the @isolated annotation for a statement (see 9.2). That is, during the evaluation of the
operand expression, no object accessed as part of the evaluation of the expression or as the result of a
synchronous invocation from the expression may be modified by any action that is not executed as part
of the operand expression or as the result of a synchronous invocation from that expression.

NOTE. See 8.5.4.1 of the fUML Specification for a complete discussion of the semantics of isolation.

An isolation expression has the type and multiplicity of its operand expression.

86 Action Language for Foundational UML (ALF), v1.1

8.6 Binary Expressions

8.6.1 Overview

A binary expression is an expression with two operand expressions and an operator that performs some
action on the values produced by the operands. Binary operators include arithmetic, relational, equality,
logical and conditional logical operators. Classification expressions, which test if a value has a certain
type, are also syntactically similar to binary expressions, except that one of the “operands” of a
classification expression is actually a type name.

Syntax

See the concrete syntax for each kind of binary expression in subsequent subclauses.

+operand1 +operand2
" :
1 A 1

BinaryExpression

0.1 +operator : String 0.1

Figure 8.31 Base Abstract Syntax for Binary Expressions

Semantics

Except in the case of conditional logical expressions (see 8.6.8), the operand expressions of a binary
expression are evaluated concurrently and then the operator is applied to their results. Because of the
concurrent evaluation of the operands, it is not legal to assign the same local name in both operand
expressions.

The semantics of each kind of binary expression are discussed further in subsequent subclauses.

8.6.2 Arithmetic Expressions

An arithmetic expression is a binary expression with an arithmetic operator. Arithmetic operators
include the multiplicative operators are =, / and % and the additive operators + and -. The
multiplicative operators all have a higher precedence than the additive operators. All arithmetic
operators are syntactically left-associative (they group from left to right).

Examples

amount * interestRate

duration / timeStep

length % unit

initialPosition + positionChange
basePrice - discount

Syntax

UnaryOrMultiplicativeExpression (e: ExXpression)
= UnaryExpression (e)
| MultiplicativeExpression(e)

Action Language for Foundational UML (ALF), v1.1 87

MultiplicativeExpression (e: ArithmeticExpression)
= UnaryOrMultiplicativeExpression (e.operandl)
MultiplicativeOperator (e.operator) UnaryExpression (e.operandZ?)
MultiplicativeOperator (op: String)
= mnmxn (op) | "/" (op) | "%" (op)
UnaryOrArithmeticExpression (e: Expression)
= UnaryOrMultiplicativeExpression (e)
| AdditiveExpression(e)
AdditiveExpression (e: ArithmeticExpression)
= UnaryOrArithmeticExpression (e.operandl)
AdditiveOperator (e.operator)
UnaryOrMultiplicativeExpression (e.operandZ)
AdditiveOperator (op: String)
= myn (Op) | m_nm (Op)

BinaryExpression

|

ArithmeticExpression

Figure 8.32 Abstract Syntax of Arithmetic Expressions

Cross References

1. UnaryExpression see 8.5.1
2. BinaryExpression see 8.6.1
Semantics

The operand expressions for an arithmetic operator other than + or ¢ must be of a type that conforms to
type Integer or Real. The operand expressions for the + operator must either both have types that
conform to type Integer or Real or both have types that conform to type string. The operand
expressions for the $ operator must both be of type Integer. In all cases, the operand expressions must
have a multiplicity upper bound of 1.

The functionality of the arithmetic operators is equivalent to the application of the similarly named
primitive functions from the library IntegerFunctions package (see 11.4.2), RealFunctions package
(see 11.4.3) or stringFunctions package (see 11.4.4), depending on the type of the operand
expressions, with the two operand expressions as arguments. If one of the operand expressions is of type
Real and the other is of type Integer, then the primitive function from the RealFunctions package is
used, with real conversion performed on the Tnteger operand (see 8.8).

The * operator denotes multiplication, the / operator denotes division and the % operator denotes
remainder. The + operator denotes either addition or string concatenation. The - operator denotes
subtraction.

An arithmetic expression has the same type as its operands and a multiplicity upper bound of 1. Its
multiplicity lower bound is 0 if its operator is / or if the lower bound if either operand expression is 0
and 1 otherwise.

NOTE. A division by zero results in no value, so a division operation has a multiplicity lower bound of
0.

88 Action Language for Foundational UML (ALF), v1.1

8.6.3 Shift Expressions

A shift expression is a binary expression with a shift operator. The shift operators are left shift <<, signed
right shift >> and unsigned right shift >>>. They have a lower precedence than any of the arithmetic
operators. They are syntactically left-associative (they group left to right). The first operand of a shift
operator must be a bit string (or an integer convertible to a bit string) and the second operand then
specifies the number of bit positions that bit string is to be shifted.

Examples

bitmask << wordLength
wordContent >> offset
(value&0xF0) >>> 8

Syntax

ArithmeticOrShiftExpression(e: Expression)
= UnaryOrArithmeticExpression (e)
| ShiftExpression (e)
ShiftExpression (e: ShiftExpression)
= ArithmeticOrShiftExpression (e.operandl) ShiftOperator (e.operator)
UnaryOrArithmeticExpression (e.operandZ)
ShiftOperator (op: String)
= NMegn (Op) | LSS (Op) | LSS (Op)

BinaryExpression

T

ShiftExpression

Figure 8.33 Abstract Syntax of Shift Expressions

Cross References

1. BinaryExpression see 8.6.1
2. UnaryOrArithmeticExpression see 8.6.2
Semantics

The first operand expression of a shift expression must have a type that conforms to the type BitString
or Integer. The second operand expression must have a type that conforms to the type Integer. The
operand expressions must each have multiplicity [1..1].

The shift operators are used to perform bit shifts on bit strings. If the first operand is an integer, then it is
first converted to a bit string by applying the library BitStringFunctions:: ToBitString function
(see 11.4.6). High-order bits in a bit string are considered to be on the left, while low-order bits are on
the right.

The functionality of the shift operators is equivalent to the application of the similarly named primitive
functions from the library BitstringFunctions package (see 11.4.6) with the two operand expressions
as arguments.

Action Language for Foundational UML (ALF), v1.1 89

The value of b<<n is b left-shifted n positions. Since the bit string length is fixed, the left n bits of b are
lost. The right n bits of the resulting value are zero.

The value of b>>n is b right-shifted n positions. Since the bit string length is fixed, the right n bits of b
are lost. The left n bits of the resulting value are set the same as the rightmost (highest bit position) bit of
b. If b is the twos-complement representation of an integer (e.g., if it was converted from an integer
value), then this corresponds to sign-extension of the original value.

The value of b>>>n is the same as for b>>n, except that the left n bits of the resulting value are zero
(zero-extension instead of sign-extension).

A shift expression has type Bitstring and multiplicity [1..17.

8.6.4 Relational Expressions

A relational expression is a binary expression with a relational operator. The relational operators are <,
>, <= and >=. They have a lower precedence than any of the arithmetic or shift operators. The relational
operators are not associative, and it is not legal to use more than one in an expression without
parentheses. For example, a<b<c is not syntactically legal, though (a<b)<c and a< (b<c) are. (But, even
with parentheses, these expressions are not actually useful, since the parenthesized expression has type
Boolean, which is not legal as an argument to the outer < operator.)

NOTE. The restriction on associative relational expressions avoids a syntactic ambiguity with the
syntax for the invocation of a template behavior with an explicit binding. For example, the expression

A (C) can be unambiguously parsed as an invocation of the behavior A, since the “>” cannot
legally be parsed as a relational greater than operator.

Examples

sensorReading > threshold
size < maxSize

size >= minSize

count <= limit

Syntax

ShiftOrRelationalExpression(e: Expression)
= ArithmeticOrShiftExpression (e)
| RelationalExpression (e)
RelationalExpression(e: RelationalExpression)
= ArithmeticOrShiftExpression (e.operandl)
RelationalOperator (e.operator)
ArithmeticOrShiftExpression (e.operand?2)
RelationalOperator (op: String)
= "<" (op) | ">" (op) | "<:" (op) | ">:" (op)

90 Action Language for Foundational UML (ALF), v1.1

BinaryExpression

|

RelationalExpression

Figure 8.34 Abstract Syntax of Relational Expressions

Cross References
1. BinaryExpression see 8.6.1
2. ArithmeticOrShiftExpression see 8.6.3

Semantics

The operand expressions for a comparison operator must both have a type that conforms to type
Natural, Integer or Real, or both have a type that conforms to type Natural or

UnlimitedNatural. That is, it is not allowed to have one operand expression be Integer or Real and
the other be unlimitedNatural. The operand expressions must each have a multiplicity upper bound of
1.

The relational operators are used to compare the values of two numbers. The number being compared
may be either integers, reals or unlimited naturals, but it is not legal to directly compare an integer or
real to an unlimited natural number.

Thus, the expression

3 < *

is legal (and evaluates to true), since the natural literal 3 is automatically cast to UnlimitedNatural in
this context. However, the expression

+3 < *

is not legal, because the literal +3 has type Integer. A cast expression (see 8.5.5) must be used in order
to directly compare an integer value to an unlimited natural value; for example,

(UnlimitedNatural) (+3) < *
evaluates to true.

The functionality of the relational operators is equivalent to the application of the similarly named
primitive functions from the library IntegerFunctions package (see 11.4.2), RealFunctions package
(see 11.4.3) or unlimitedFunctions package (see 11.4.5), depending on the type of the operand
expressions, with the two operand expressions as arguments. If one of the operand expressions is of type
Real and the other is of type Integer, then the primitive function from the RealFunctions package is
used, with real conversion (see 8.8) performed on the Integer operand.

NOTE. The Alf Standard Model Library comparison functions are based on the comparison functions
available in the fUML Foundation Model Library. The Foundation Model Library does not provide
comparison operators for the primitive type string.

A comparison expression has type Boolean and a multiplicity upper bound of 1. Its multiplicity lower
bound is 0 if the lower bound if either operand expression is 0 and 1 otherwise.

Action Language for Foundational UML (ALF), v1.1 91

8.6.5 Classification Expressions

A classification expression is an expression with a single operand expression followed by one of the
classification operators instanceof or hastype. A classification expression is used to determine
whether the result of its operand expression has a certain type, which is given as a qualified name after
the classification operator.

Examples

action instanceof ActionActivation
'signal' hastype SignalArrival
Syntax

RelationalOrClassificationExpression(e: Expression)
= ArithmeticOrRelationalExpression (e)
| ClassificationExpression(e)
ClassificationExpression (e: ClassificationExpression)
= ArithmeticOrRelationalExpression (e.operand)
ClassificationOperator (e.operator)
QualifiedName (e. typeName)
ClassificationOperator (op: String)
= "instanceof" (op) | "hastype" (op)

UnaryExpression

ClassificationExpression

0.1

+typeName 1

QualifiedName

Figure 8.35 Abstract Syntax of Classification Expressions

NOTE. The concrete syntax for classification expressions, in terms of form and precedence, is similar to
that of a normal binary expression, except that one of the “operands” is a type rather than a second
expression. However, since only one operand is actually an expression, in the abstract syntax a
classification expression is treated as a kind of unary expression.

Cross References

1. QualifiedName see 8.2
2. UnaryExpression see 8.5.1
3. ArithmeticOrRelationalExpression see 8.6.4
Semantics

The qualified name in a classification expression must resolve to a classifier. The classifier must not be a
template, though it may be the binding of a template classifier (see 8.2). However, if one operand
expression is of type Integer and the other is of type rReal, then real conversion (see 8.8) is performed

92 Action Language for Foundational UML (ALF), v1.1

on the Tnteger operand and the resulting real value is used for the comparison. Thus, 1 == 1.0, for
example, evaluates to true.

The operand expression must have multiplicity [1..1]. A classification expression has type Boolean
and multiplicity [1..17].

The instanceof operator checks if the dynamic type of its operand conforms to the given type—that is,
whether the argument type is the same as or a direct or indirect subclass of the given type. The hastype
operator, on the other hand, checks if the dynamic type of its argument is the same as the given type.

8.6.6 Equality Expressions

An equality expression 1s a binary expression with one of the equality operators == (equal to) or ! = (not
equal to). The equality operators are analogous to the relational operators, except for their lower
precedence. They are syntactically left-associative (they group left to right), so a==b==c parses as
(a==b) ==c. However, the result type of a==b is Boolean, so if c is not Boolean, the expression will
always be false. Thus, a==b==c does not test whether a, b and c are all equal.

Examples

errorCount==0
nextRecord!=endRecord
list.next==null
Syntax

ClassificationOrEqualityExpression (e: Expression)
= RelationalOrClassificationExpression (e)
| EqualityExpression(e)
EqualityExpression (e: BinaryExpression)
= ClassificationOrEqualityExpression (e.operandl)
EqualityOperator (e.operator)
RelationalOrClassificationExpression (e.operand?2)
EqualityOperator (op: String)
- nN—__n (Op) | mr=n (Op)
EqualityOrAndExpression (e: Expression)
= ClassificationOrEqualityExpression (e)
| AndExpression (e)

BinaryExpression

|

EqualityExpression

Figure 8.36 Abstract Syntax of Equality Expressions

Cross References
1. BinaryExpression see 8.6.1

2. RelationalOrClassificationExpression see 8.6.5

Action Language for Foundational UML (ALF), v1.1 93

Semantics

For primitive types, the equality operators test whether two values of the same type are the same value.
A value of a primitive type is never equal to a value of any other type.

NOTE. Since string is a primitive type in UML, not a class, strings may be tested for equality of value
using the regular equality operators.

For structured data types, the equality operators test whether two values of the same type have equal
values for each corresponding attribute. A value of one structured data type is never equal to a value of
any other type. Note also that the participation of a value in association links does not affect its equality
to other values.

For classes, the equality operators test whether the argument values are references to the same object,
that is, they test object identity.

Further, if one of the arguments to an equality operator is empty (that is, it is the empty sequence), then
it is considered to be equal to another empty value, but unequal to any non-empty value. Thus, a==nul1l
is true if and only if isEmpty (a).

An operand expression for an equality operator must have a multiplicity upper bound of 1. An equality
expression has type Boolean and multiplicity [1..1].

8.6.7 Logical Expressions

A logical expression is a binary expression with one of the logical operators, including the and operator
&, the exclusive or operator ~ and the inclusive or operator |. These operators may also be used to
perform bit-wise logical operations on bit strings (or integers convertible to bit strings). The logical
operators have different precedence, with s« having the highest precedence and | having the lowest
precedence. They all have lower precedence than the equality operators.They are syntactically left-
associative (group left-to-right) and commutative (if their argument expressions have no side effects).

Examples
sensorOff | sensorError
i > min & i < max | unlimited

bitString ~ mask
registerContent & OxO00FF
Syntax

EqualityOrAndExpression (e: Expression)
= (ClassificationOrEqualityExpression (e)
| AndExpression (e)
AndExpression(e: LogicalExpression)
= EqualityOrAndExpression(e.operandl) "&" (e.operator)
ClassificationOrEqualityExpression (e.operandZ2)
AndOrExclusiveOrExpression (e: Expression)
= EqualityOrAndExpression (e)
| ExclusiveOrExpression (e)
ExclusiveOrExpression (e: LogicalExpression)
= AndOrExclusiveOrExpression (e.operandl) """ (e.operator)
EqualityOrAndExpression (e.operand?2)
ExclusiveOrOrInclusiveOrExpression(e: Expression)
= AndOrExclusiveOrExpression (e)
| InclusiveOrExpression (e)

94 Action Language for Foundational UML (ALF), v1.1

InclusiveOrExpression(e: LogicalExpression)
= ExclusiveOrOrInclusiveOrExpression (e.operandl) "|'"(e.operator)
AndOrExclusiveOrExpression (e.operand?2)

BinaryExpression

T

LogicalExpression

Figure 8.37 Abstract Syntax of Logical Expressions

Cross References

1. BinaryExpression see 8.6.1
2. ClassificationOrEqualityExpression see 8.6.6
Semantics

The operand expressions for a logical operator must be of a type that conforms to type Boolean,
BitString or Integer. However, if one of the operands is Boolean, then the other must also be
Boolean. The operand expressions must each have multiplicity [1..1]. Any operand that is an integer is
converted to a bit string by applying the library BitStringFunctions: :ToBitString function (see
11.4.6).

The functionality of the logical operators is equivalent to the application of the similarly named
primitive functions from the library BooleanFunctions package (see 11.4.1), if the operands have type
Boolean, Or BitStringFunctions package (see 11.4.6), with the two operand expressions as
arguments.

For Boolean operands, the logical operators perform the indicated logical operation and produce a
Boolean result:

« For s, the result value is true if both argument values are true; otherwise, the result is false.
« For », the result value is true if the argument values are different; otherwise, the result is false.
« For |, the result value is false if both argument values are false; otherwise, the result is true.

For Bitstring or Integer operands, the logical operators perform the indicated logical operation, as
above, bit-wise on corresponding bits of the operands and produce a BitString result. For the purpose
of carrying out bit-wise logical operations, a bit that is set (value of 1) is considered to be “true” while a
bit that is unset (value of 0) is considered to be “false”.

A logical expression has the same type as its operand expressions and multiplicity [1..17].

8.6.8 Conditional Logical Expressions

A conditional logical expression is a binary expression using one of the conditional logical operators ss
(conditional-and) and | | (conditional-or). The operators are similar to the logical operators & and |,
except that the evaluation of their second operand expression is conditioned on the result of evaluating
the first expression. In the case of the s& operator, the second operand is evaluated only if the value of

Action Language for Foundational UML (ALF), v1.1 95

the first operand is true. In the case of the | | operator, the second operand is evaluated only if the value
of the first operand is false.

Examples

index > 0 && value[index] < limit
index == || value[index] >= limit
Syntax

InclusiveOrOrConditionalAndExXpression (e: ExXpression)
= ExclusiveOrOrInclusiveOrExpression (e)
| ConditionalAndExpression(e)
ConditionalAndExpression (e: ConditionalLogicalExpression)
= InclusiveOrOrConditionalAndExpression (e.operandl) "&&" (e.operator)
ExclusiveOrOrInclusiveOrExpression (e.operand?2)
ConditionalAndOrConditionalOrExpression(e: Expression)
= InclusiveOrOrConditionalAndExpression (e)
| ConditionalOrExpression (e)
ConditionalOrExpression(e: ConditionalLogicalExpression)
= ConditionalAndOrConditionalOrExpression (e.operandl) "||"(e.operator)
InclusiveOrOrConditionalAndExXpression (e.operand?2)

BinaryExpression

ConditionalLogicalExpression

Figure 8.38 Abstract Syntax of Conditional Logical Expressions

Cross References
1. BinaryExpression see 8.6.1

2. ExclusiveOrOrInclusiveOrExpression see 8.6.7

Semantics

An expression with a conditional-and operator is evaluated by first evaluating its first operand
expression. If the first operand expression evaluates to true, then the second operand expression is
evaluated, and its value is the value for the conditional-and expression. If the first operand expression
evaluates to false, however, the conditional-and expression evaluates to false without ever evaluating its
second operand expression.

An expression with a conditional-or operator is evaluated by first evaluating its first operand expression.
If the first operand expression evaluates to false, then the second operand expression is evaluated, and its
value is the value for the conditional-or expression. If the first operand expression evaluates to true,
however, the conditional-or expression evaluates to true without ever evaluating its second operand
expression.

Since, if the second operand expression is evaluated at all, it is always evaluated after the first, a
conditional logical operator expression is fully associative, even in the presence of side effects. That is,
not only does an expression of the form (expri ss expr2) s& expr3produce the same result as
exprl && (expr2 && expr3),the subexpression expri, including any side effects, will always be

96 Action Language for Foundational UML (ALF), v1.1

evaluated before expr2, and expr2 before expr3. Similarly, an expression of the form (expri ||
expr2) || expr3produces the same result as expri || (expr2 || expr3), with the subexpression
exprl always evaluated before expr2, and expr2 before expr3. Note that this is not guaranteed for the
logical operators & and |, for which the operand expressions are evaluated concurrently.

The operand expressions to a conditional logical expression must be of a type that conforms to type
Boolean and have multiplicity [1..1]. A conditional logical expression has type Boolean and
multiplicity [1..17].

Assignments made in the first operand expression of a conditional logical expression are available in the
second operand expression, if it is evaluated. The multiplicity and type of local and parameter names
reference in the second operand expression are adjusted based on the first operand expression evaluating
to true, for a conditional-and expression, or false, for a conditional-or expression (see 8.7 on local name
multiplicity and type adjustment).

Local names that are defined in either the first or the second operand expression are also available after
the conditional logical expression. If a name is defined in the second operand expression, and that
expression is not evaluated, then the name is defined but empty after the evaluation of the conditional
logical expression.

8.6.9 Null-Coalescing Expressions

A null-coalescing expression is a binary expression using the null-coalescing operator 2. The second
operand expression of a null-coalescing expression is evaluated if the first operand expression does not
produce a value (that is, it evaluates to nul1). The null-coalescing operator has a higher precedence than
any other binary operator and it is syntactically right-associative (it groups right-to-left), so an
expression of the form a?2b?2c is equivalent to a?2 (b?2c) and will evaluate to the first of the values of
a, b or c that is not nul1, or to null if all of a, b and ¢ are nul1l.

Examples

this.getSelectedDirectory() ?? this.defaultDirectory
Customer->select ¢ (c.email == email) ?? new Customer (email)
list[2] ?7? list([1]

WriteLine (content ?2? "null");

Syntax

ConditionallLogicalOrNullCoalescingExpression (e: Expression)
= ConditionalAndOrConditionalOrExpression (e)
| NullCoalescingExpression (e)
NullCoalescingExpression(e: NullCoalescingExpression)
= ConditionalAndOrConditionalOrExpression (e.operandl) "?2?" (e.operator)
ConditionallLogicalOrNullCoalescingExpression (e.operand?2)

BinaryExpression

T

NullCoalescingExpression

Figure 8.39 - Abstract Syntax of Null-Coalescing Expressions

Action Language for Foundational UML (ALF), v1.1 97

Cross References
1. BinaryExpression see 8.6.1

2. Conditional AndOrConditionalOrExpression see 8.6.8
Semantics

A null-coalescing expression is evaluated by first evaluating its first operand expression. If this
expression produces at least one value, then these values are the result of the null-coalescing expression.
If the evaluation of the first operand expression produces no values (i.e, it is equal to nu11), then the
second operand expression is evaluated and its result is the result of the null-coalescing expression.

If either of the operand expressions of a null-coalescing expression is identically null (that is, it is
untyped with multiplicity 0..0), then the type of the null-coalescing expression is the same as the type of
the other operand expression. Otherwise, the type of a null-coalescing is the effective common ancestor
(see 8.8) of the types of its operand expressions, if that exists, and it is untyped if no effective common
ancestor exists.

The multiplicity lower bound of a null-coalescing expression is the same as that of its first operand
expression, if that is not 0; otherwise it is 1, if the multiplicity lower bound of the second operand
expression is not 0; otherwise it is 0. The multiplicity upper bound of the null-coalescing expression is
the maximum of the multiplicity upper bounds of its two operand expressions.

Assignments made in the first operand expression of a null-coalescing expression are available in the
second operand expression, if it is evaluated. Local names that are defined in the either the first or
second operand expression are also available after the null-coalescing expression. If a name is defined in
the second operand expression, and that expression is not evaluated, then the name is defined but empty
after the evaluation of the null-coalescing expression.

NOTE. A null-coalescing expression of the form operandl 22 operand2 is equivalent to a conditional-
test expression (see 8.7) of the form

(temp = operandl) != null? temp: operand?

where temp is some local name not otherwise used. Notice, in particular, that the first operand

expression is only evaluated once, with the result of that evaluation being used both for the test against
null and for the result of the overall expression, if it is not null.

8.7 Conditional-Test Expressions

A conditional-test expression uses the Boolean value of one expression to determine which of two other
expressions should be evaluated. The conditional-test operator thus has three operands. The 2 symbol
appears between the first and second operand expressions and : appears between the second and third
expressions. The conditional-test operator is syntactically right-associative (it groups right-to-left), so
that an expression of the form a2b:c?d:e is equivalent to a?b: (c2d:e).

Examples
isNormalOps? readPrimarySensor (): readBackupSensor ()
Syntax

ConditionalExpression(e: Expression)
= ConditionalLogicalOrNullCoalescingExpression (e)
| ConditionalTestExpression (e)

98 Action Language for Foundational UML (ALF), v1.1

ConditionalTestExpression (e: ConditionalTestExpression)
= ConditionalLogicalOrNullCoalescingExpression(e.operandl) "?"
Expression (e.operand?2) ":" ConditionalExpression (e.operand3)

+operand1
1
+operand2

1
+operand3

Expression

1| ConditionalTestExpression

olele

Figure 8.40 Abstract Syntax of Conditional-Test Expressions

Cross References
1. Expression see 8.1

2. ConditionalLogicalOrNullCoalescingExpression see 8.6.9
Semantics

A conditional test is evaluated by first evaluating the first operand expression. If this expression
evaluates to true, then the second operand expression is evaluated, providing the values for the
conditional-test expression. If the first operand expression evaluates to false, then the third operand
expression is evaluated, providing the values for the conditional-test expression.

The first operand expression for a conditional-test operator must be of a type that conforms to type
Boolean and have multiplicity [1..1].

The type of a conditional-test operator expression is the effective common ancestor (see below) of the
types of its second and third operand expressions, if one exists. If none exists, then the conditional-test
operator expression is untyped.

The multiplicity lower bound of a conditional-test operator expression is zero if the multiplicity lower
bound of its first operand expression is zero and the minimum of the multiplicity lower bounds of its
second and third operand expressions otherwise. Its multiplicity upper bound is the maximum of the
multiplicity upper bounds of its second and third operand expressions.

A conditional-test operator has special rules for assignment, since it evaluates its arguments sequentially.
Local names assigned in the first operand expression may be used in the second and third operand
expressions. The multiplicity and type of local and parameter names in the second operand expression
are adjusted based on the first operand expression evaluating to true (see below on local name
multiplicity and type adjustment). Similarly, the multiplicity and type of local and parameter names in
the second operand expression are adjusted based on the first operand expression.

Further, any newly defined local names in the second and third argument expressions must be defined in
both those expressions.

Action Language for Foundational UML (ALF), v1.1 99

Effective common ancestor

A common ancestor for a set of classifiers is a classifier that is either equal to or a generalization
(directly or indirectly) of all the classifiers in the given set.

A most specialized common ancestor i1s a common ancestor for which there is no other common
ancestor, for the same given set of classifiers, that is a specialization (directly or indirectly) of the most
specialized common ancestor. Due to multiple generalization, it is possible for a set of classifiers to have
more than one most specialized common ancestor.

If a set of classifiers has a single most specialized common ancestor, then this is the effective common
ancestor for the set. Otherwise, the effective common ancestor of the set of most specialized common
ancestors (if any) is also the effective common ancestor of the original set of classifiers. Note that some
sets of classifiers have no effective common ancestor.

Local name and multiplicity adjustment

The assigned source information for a local or parameter name may be adjusted if it is known to be null,
non-null or of a certain type if a given Boolean expression is considered to be true or false (depending
on the context), as follows:

« If the name is known to be null, its multiplicity lower bound is adjusted to 0.
« If the name is known to be non-null, its multiplicity lower bound is adjusted to 1.

« If the name is known to be of a certain type, its known subtype is set to that type (this will always be
a subtype of the original implicitly or explicitly declared type of the name).

Whether a local or parameter name is known null, non-null or of a certain type is determined as given
below.

The relevant names of an expression £ are defined as follows:

« If £1is a name expression (see 8.3.3) consisting of a single local or parameter name, then that is the
single relevant name for E.

« If £ is an assignment expression (see 8.8), then its relevant names include all the relevant names of
its right-hand side, and, if its left-hand side is a local or parameter name, then that name is included,
t0o.

 If £1is a parenthesized expression (see 8.3.5), then its relevant names are all those of its contained
expression.

» Otherwise, E has no relevant names.

For a Boolean expression of one of the following forms, all the relevant names of the contained
expression E are known to be null if the containing expression evaluates to true or known to be non-null
if the containing expression evaluates to false.

« A behavior invocation expression (see 8.3.9) of the form IsEmpty (E) or isEmpty (E).
» A sequence operation expression (see 8.3.17) of the form E->IsEmpty () or E->isEmpty ().
« An equality expression (see 8.6.6) of the form £ == null.

For a Boolean expression of one of the following forms, all the relevant names of the contained
expression E are known to be null if the containing expression evaluates to false or known to be non-null
if the containing expression evaluates to true.

100 Action Language for Foundational UML (ALF), v1.1

« A behavior invocation expression (see 8.3.9) of the form NotEmpty (E) Of notEmpty (E).
« A sequence operation expression (see 8.3.17) of the form E->NotEmpty () Or E->notEmpty ().
* An equality expression (see 8.6.6) of the form £ !'= null.

In the above, IsEmpty and NotEmpty are primitive behaviors from the library package
SequenceFunctions (see 11.4.7), and isEmpty and notEmpty are primitive behaviors from the library
package CollectionFunctions (see 11.6). These primitive behaviors may also be referenced via
qualified names or import aliases, as appropriate in the context of the containing expression.

For a classification expression (see 8.6.5) of the E instanceof Tor E hastype T, all the relevant
names of the contained expression E are known to have type T if the containing expression evaluates to
true.

If a conditional-and expression (see 8.6.8 of the form E1 ss& E2 evaluates to true, then any relevant
name of £1 is known to be null, non-null or of a certain type, if this can determined as given above
assuming E1 evaluates to true, and similarly for £2. If a conditional-or expression (see 8.6.8) of the form
E1 || E2evaluates to false, then any relevant name of £1 is known to be null, non-null or of a certain
type, if this can determined as given above assuming £1 evaluates to false, and similarly for £2.

For expressions other than one of the forms given above, no determination is made on whether any
names referenced in the expression are null, non-null or of a certain type.

8.8 Assignment Expressions

An assignment expression is used to assign a value to a local name, output parameter or attribute. There
are nine assignment operators. A simple assignment 1s one made using the simple assignment operator =.
A compound assignment uses one of the eight other operators, which compound a binary operator with
an assignment.

An assignment operator has two operand expressions. The first is known as the left-hand side and has a
form restricted to representing a local name, an output parameter or a (possibly indexed) attribute. The
left-hand side denotes the target to be assigned by the assignment expression. The second operand
expression is known as the right-hand side. The right-hand side expression evaluates to the value or
values that are assigned to the target designated by the left-hand side.

All assignment operators are syntactically right-associative (they group right-to-left). Thus, an
expression of the form a=b=c is equivalent to a= (b=c), which assigns the value of ¢ to b and then
assigns the value of b to a.

Examples
customer = new Customer () // Local name assignment
customer[i] = new Customer () // Indexed local name assignment

reply = this.createReply(request,result) // Output parameter assignment

customer.email = checkout.customerEmail // Attribute assignment
customer.address[i] = newAddress // Indexed attribute assignment
X += 4 // Compound assignment
filename += ".doc" // Compound assignment

Action Language for Foundational UML (ALF), v1.1 101

Syntax

AssignmentExpression (e: AssignmentExpression)
= LeftHandSide (e.leftHandSide) AssignmentOperator (e.operator)
Expression (e.rightHandSide)
LeftHandSide (1hs: LeftHandSide)
= NameLeftHandSide (lhs) [Index(lhs.index)]
| FeatureLeftHandSide (lhs) [Index (lhs.index)]
| "(" LeftHandSide (lhs) ")"
NameLeftHandSide (1hs: NameLeftHandSide)
= PotentiallyAmbiguousQualifiedName (1hs.target)
FeatureLeftHandSide (1hs: FeatureLeftHandSide)
= FeatureReference (lhs.feature)
AssignmentOperator (op: String)
= "="(op) | "+="(op) | "-="(op) | "*="(op) | "&="(op) | "/="(op) |
"&:" (Op) I "I =n (Op) I nmAa_—_n (Op) I "<<:" (Op) I ">>:" (Op) I ">>>:" (Op)

+index - +rightHandSide
Expression ;
0.1

AssignmentExpression

+operator : String 0.1

0..1
+leftHandSidey 1
LeftHandSide

I

FeatureLeftHandSide NamelLeftHandSide

0.1

0.1 0..1
+feature | 1 +target | 1

FeatureReference QualifiedName

Figure 8.41 Abstract Syntax for Assignment Expressions

Cross References

1. Expression see 8.1

2. QualifiedName see 8.2

3. FeatureReference see 8.3.6
4. Index see 8.3.13

NOTE. See 8.2 for rules on the disambiguation of a qualified name with the dot notation versus a
feature reference used as a left-hand side.

102 Action Language for Foundational UML (ALF), v1.1

Semantics
Left-Hand Side

The left-hand side of an assignment expression may be one of the following:

» Local name. The assigned source of the local name before the assignment expression must not be a
loop variable definition (see 9.12), a eparallel annotation (see 9.12) or a sequence expansion
expression (see 8.3.19).

» Output parameter name. The named parameter must have mode out or inout. A parameter name
may be qualified with the name of the behavior or operation that owns it, though this is not required.
The identified parameter must not be a template. The assignment expression must appear within the
definition of the behavior that owns the parameter or the method of the operation that owns the
parameter.

 Property reference. A property reference is a feature reference that names a property of the type of its
primary expression. As for a property access expression (see 8.3.6), the identified property may be
either a structural feature or an association end, but must not be a template. The primary expression
of the property reference must have a multiplicity upper bound of 1.

A left-hand side may also include an index. An index expression must have a type that conforms to type
Integer and a multiplicity upper bound no greater than 1. An index is only allowed on a local or
parameter name if the name has been previously assigned and on a property reference if the named
property is ordered.

The type of the left-hand side is determined as given below:

o Local Name. Determined by its first assignment. If this is the first assignment of the local name, then
the type of the left-hand side is the type of the right-hand side expression.

o Parameter Name. As declared for the named parameter.
» Property Reference. As given for the named property.

If the left-hand side has an index, then the multiplicity of the left-hand side is [0..1]. Otherwise, the
multiplicity of the left-hand side is determined as given for its type above. If this is the first assignment
of the local name, then the multiplicity lower bound for the new local name is 0 if the multiplicity lower
bound of the right-hand side is 0 and 1 otherwise; the multiplicity upper bound of the new local name is
1 if the multiplicity upper bound of the right-hand side is 1 and * otherwise..

Assignability

The right-hand side of an assignment must be assignable to the left-hand side. In general, this means
that the right-hand side is statically compatible in type and multiplicity with the left-hand side, either
directly or after the application of a conversion.

A right-hand side is assignable to a left-hand side if any of the following conditions hold:

1. Conformance. The left-hand is untyped or the right-hand side has a type that conforms to the type of
the left-hand side (see 8.2 for the definition of type conformance). If the multiplicity upper bound of
the left-hand side is less than or equal to 1, then the multiplicity upper bound of the right-hand side
cannot be greater than that of the left-hand side. If the multiplicity lower bound of the left-hand side
is greater than 0, and the left-hand side is nof a local name, then the multiplicity lower bound of the
right-hand side cannot be 0.

Action Language for Foundational UML (ALF), v1.1 103

2. Null Conversion. The right-hand side is untyped with a multiplicity of [0..0] (i.e., guaranteed to be
null) and the left-hand side has a multiplicity lower bound of 0 (regardless of type).

3. Collection Conversion. The type of the right-hand side is a collection class (see 11.7), the right-hand
side has a multiplicity upper bound of 1 and the type and multiplicity of the result of applying the
toSequence operation to the right-hand side would be assignable to the left-hand side. The assigned
value is the result of implicitly calling the toSequence operation on the result of evaluating the
right-hand side expression.

4. Bit String Conversion. The type of the right-hand side conforms to Integer, and the type of the left-
hand side is Bitstring. If the multiplicity upper bound of the left-hand side is less than or equal to
1, then the multiplicity upper bound of the right-hand side cannot be greater than that of the left-hand
side. The assigned value is the result of implicitly invoking the standard library
BitStringFunctions::ToBitString function (see 11.4.6) on each of the values in the result of
evaluating the right-hand side expression. Note that both collection conversion and bit string
conversion may apply. In this case, bit string conversion is applied after collection conversion.

5. Real Conversion. The type of the right-hand side conforms to Integer, and the type of the left-hand
side conforms to rReal. If the multiplicity upper bound of the left-hand side is less than or equal to 1,
then the multiplicity upper bound of the right-hand side cannot be greater than that of the left-hand
side. The assigned value is the result of implicitly invoking the standard
IntegerFunctions: :ToReal function (see 11.4.2) on each of the values in the result of evaluating
the right-hand side expression. Note that hoth collection conversion and real conversion may apply.
In this case, real conversion is applied after collection conversion.

The concept of assignability is defined here for assignments, but it can actually be applied between any
two typed elements with multiplicity. It is used in this way to define the required compatibility between
formal parameters and arguments in the tuples of an invocation expression (see 8.3.9). When
assignability is used in this general way, the term “left-hand side” used here in its definition should be
read as “the target element” and the term “right-hand side” should be read as “the source element”.

Simple Assignment

A simple assignment has the form 1hs = expr. The right-hand side expression of a simple assignment
must be assignable to the left-hand side, as defined above.

When a simple assignment expression is evaluated, the right-hand side expression is evaluated first. If
the left-hand side contains an index expression, this is evaluated affer the right-hand side expression.
The result of the right-hand side expression is then assigned to the left-hand side, as described below
(possibly after conversion as discussed above).

If the left-hand side does nof have an index expression, then the assignment proceeds as follows:

« Local name. If the local name already exists, then it is assigned a new value, with its static assigned
source considered to have a the type of the right-hand side expression as its known subtype (see also
the discussion of local name multiplicity and type adjustment in 8.7). Otherwise, the assignment
expression acts as the definition of a new local name with the type of the right-hand side expression.
In either case, the multiplicity for the local name after the assignment is determined based on the
multiplicity of the right-hand side expression, as described above for when the local name is being
newly defined.

104 Action Language for Foundational UML (ALF), v1.1

NOTE. It is not required to declare a local name before its first assignment. A first assignment can
be used to implicitly define a new local name. However, if a local name is defined using a local
name declaration statement (see 9.6), that is considered to be its first assignment.

» Qutput parameter name. A new value is assigned to the named parameter, with its static assigned
source considered to have a the type of the right-hand side expression as its known subtype (see also
the discussion of local name multiplicity and type adjustment in 8.7). Note that any previously
assigned value is effectively overwritten. That is, at the completion of the execution of a behavior,
output parameters are given their last assigned value. The multiplicity of the new assigned source for
the parameter is determined based on the multiplicity of the right-hand side expression in the same
way as for a local name (note that this may be different than the multiplicity of the left-hand side
containing the parameter, which will be the same as the declared multiplicity of the parameter).

» Property reference. A new value is assigned to the named property of the referenced object or
structured data value.

If the property reference has a primary expression that is a local name or parameter name and has a
type that is a structured data type, then the assignment to the property reference effectively assigns a
new data value to that local or parameter name, with the given property updated.

If the left-hand side includes an index, then only the value at the index position is overwritten by the
right-hand side value. However, if the right-hand side value is an empty collection, then the former value
at the index position is removed without being replaced by a new value. Indexing is from 1, unless the
assignment expression is contained, directly or indirectly, within a statement to which the annotation
eindexFrom0 applies (see 9.2), in which case indexing is from 0.

NOTE. Since null represents the empty collection, not a value itself, an expression of the form x.a[2]
= null will remove the second value of the collection x.a, not assign some “nul1” value to it.

A simple assignment expression has the type and multiplicity of its right-hand side expression.

As noted earlier for a property reference left-hand side, an assignment expression may also be used to
update a binary association in which an instance participates via reference to the opposite association
end. In this case, the effect of the assignment is equivalent to an appropriate link operation (see 8.3.13).

As an example of an association end update, consider the following association (represented in Alf
notation—see 10.4.5).

assoc Owns {
owner: Person;
house: House[*];

}

If the association owns is in the current scope (that is, visible without qualification), and newHouse is a
House, then the expression

newHouse.owner = jack;

is equivalent to the link operation

Owns.createLink (owner => jack, house => newHouse)

The result value of an assignment expression is the value of the right-hand side. Thus, the expression

WriteLine(a = "x")

Action Language for Foundational UML (ALF), v1.1 105

assigns 3 to a and then writes the value “x”. Note that this should not be confused with the named tuple
notation, such as

WriteLine (value => "x")

_ 9

which uses the “=>" symbol, rather than “=".
Compound Assignment

A compound assignment has the form 1hs op= expr, where op is any arithmetic (sees 8.6.1) or logical
(see 8.6.7) operator. It is equivalent to 1hs = 1hs op expr (except that, if 1hs contains an index
expression, it is only evaluated once).

In a compound assignment expression, if the left-hand side is a name (qualified or unqualified), it must
also satisfy the semantics of a name expression (see 8.3.3). If the left-hand side is a feature reference,
then it must also satisfy the static semantics of a property access expression (see 8.3.6). If the left-hand
side has an index, then, in addition to the requirements for its name or feature reference, the left-hand
side overall must also satisfy the semantics of a sequence access expression (see 8.3.16).

Both the left-hand side and the right-hand side must have multiplicity upper bounds of 1 and must have
the types that are consistent with the arithmetic or logical operator used in the compound assignment
operator (sees 8.6.1 or 8.6.7, respectively), that is, such that the equivalent expression 1hs op expris
legal.

106 Action Language for Foundational UML (ALF), v1.1

9 Statements

9.1 Overview

Statements are segments of behavior that are executed for their effect and do not have values. They are
the primary units of sequencing and control in the Alf representation of behavior. This clause defines the
kinds of statement allowed in Alf.

The full conformance level includes all kinds of statements specified in this clause. However, the
minimum conformance level only requires a subset of the full statement syntax. Therefore, in each of the
concrete syntax grammar productions given in the subclauses of this clause, some portion of the
production may be italicized. Only the italicized portions apply at the minimum conformance level.
Unitalicized portions may be ignored for minimum conformance. (See also 2.2 on the definition of
syntactic conformance.)

A statement sequence is an Alf text consisting of a list of statements juxtaposed in a linear order. Such
statement sequences may be attached to UML models in order to specify behaviors. A block is a
delineation of a statement sequence for use as a component of a larger syntactic construct.

Examples

{
'activity' = (Activity) (this.types[1l]);
group = new ActivityNodeActivationGroup () ;
group.activityExecution = this;
this.activationGroup = group;
group.activation ('activity'.node, 'activity'.edge);

}
Syntax

Block (b: Block)
= "{" StatementSequence(b) "}"
StatementSequence (b: Block)
= { DocumentedStatement (b.statement) }
DocumentedStatement (s: Statement)
= [DocumentationComment (s.documentation)] Statement (s)
Statement (s: Statement)
= AnnotatedStatement (s)
| InLineStatement (s)
| BlockStatement (s)
| EmptyStatement (s)
| LocalNameDeclarationStatement (s)
| ExpressionStatement (s)
| IfStatement (s)
| SwitchStatement (s)
| WhileStatement (s)
| DoStatement (s)
| ForStatement (s)
| BreakStatement (s)
| ReturnStatement (s)
| AcceptStatement (s)
| ClassifyStatement (s)

Action Language for Foundational UML (ALF), v1.1 107

DocumentedElement

SyntaxElement

+documentation : String [*]

T T

Block | *statement] Statement

0.1 {ordered} [+/islsolated : Boolean

Figure 9.1 Base Abstract Syntax for Statements and Blocks

Cross References

1. SyntaxElement see 6.6
2. DocumentedElement see 6.6
3. DocumentationComment see 7.5.3
4. AnnotatedStatement see 9.2
5. InLineStatement see 9.3
6. BlockStatement see 9.4
7. EmptyStatement see 9.5
8. LocalNameDeclarationStatement see 9.6
9. ExpressionStatement see 9.7
10. IfStatement see 9.8
11. SwitchStatement see 9.9
12. WhileStatement see 9.10
13. DoStatement see 9.11
14. ForStatement see 9.12
15. BreakStatement see 9.13
16. ReturnStatement see 9.14
17. AcceptStatement see 9.15
18. ClassifyStatement see 9.16
Semantics

Unless otherwise annotated (see 9.3), all the statements in a statement sequence are executed
sequentially in order. See also the discussion for each kind of statement in the following subclauses.

Integration with UML

An Alf statement sequence can be inserted into a UML model using an opaque behavior (UML
Superstructure, 13.3.20) in which the unprocessed text of the Alf statement sequence is used as the body
of the opaque behavior and the corresponding language string is "a1f". Opaque behaviors may be used
in a UML model any place that a behavior is allowed.

108 Action Language for Foundational UML (ALF), v1.1

An Alf statement sequence can also be inserted into a UML activity using an opaque action (UML
Superstructure, 11.3.26) in which the unprocessed text of the Alf statement sequence is used as the body
of the opaque action and the corresponding language string is "a1£". The input and output pins of such
an action must all be named. The input pins are considered to be the assigned sources (see 8.1) for their
names within the statement sequence. The names of the output pins may be assigned within the
statement sequence, and their assigned sources at the end of the statement sequence provide the values
for the corresponding output pins. The names of other visible model elements (qualified as necessary)
may also be used as usual within the statement sequence (see 8.3.3 on name expressions).

The execution semantics of Alf statements are given formally by the mapping to UML activity graphs
given in the following subclauses. An Alf statement sequence can therefore always be compiled to a part
or all of a UML activity model (which does not necessarily need to be the same as the formal mapping,
but must have an equivalent effect to it—see 2.3).

Indeed, the semantics of an opaque behavior that only includes unprocessed Alf text in its body may be
considered equivalent to an activity with the same parameters as the opaque behavior, containing the
activity nodes and edges mapped from the body of the opaque behavior. The semantics of an opaque
action that only includes unprocessed Alf text in its body may be considered equivalent to a structured
activity node with the same input and output pins as the opaque action, containing the activity nodes and
edges mapped from the body of the opaque behavior.

Local Names

Local names (see 8.1) are used in Alf to denote intermediate values in computations within a statement
sequence. The scope of such a local name is from the point at which it is defined lexically to the end of
the outermost enclosing statement sequence, excluding alternate clauses of the same if, switch or
accept statement (see 9.8, 9.9 or 9.15, respectively). Alf does not provide hierarchical scoping of local
names defined in nested blocks.

The assignments of and references to local names in an Alf input text need to be mapped to appropriate
object flow edges from the mapping of the appropriate assignment to the mapping of the reference that
requires that assigned value. The assigned source for a local name is the Alf element that, when
executed, will provide the actual assigned value for that local name. If the assigned source for a local
name is known, then a reference to the assigned value of that local name can be mapped to an object
flow from the mapping of the assigned source.

Since local names can be reassigned in Alf (see 8.8 on assignment expressions), the assigned source for
any given local name can be different at different points in a statement sequence. In order to carry out
the above mapping, it must always be possible to determine at most one assigned source for any local
name at any point in the text. The general rule is that the latest assignment “lexically previous” to a
reference to a local name is used as the assigned source for that reference. However, some care must be
given to carefully defining this term when assignments are allowed within control structures such as
conditional and looping statements.

The static semantic rules for local names provide the necessary formalization for determining assigned
sources. As with other static semantic rules, these rules are applied by traversing the abstract syntax tree
of a statement sequence. At each point in this traversal, the rules determine the set of local names with
assigned sources. A name that has no assigned source is known as an unassigned name.

When the analysis reaches a specific node in the abstract syntax tree representing a certain kind of Alf
construct, a local name with an assigned source is said to have that source before the construct in
question. If the name is unassigned, then it is said to be unassigned before the construct. The assignment

Action Language for Foundational UML (ALF), v1.1 109

rules then determine what the assigned source for the name is after that construct, continuing the
traversal to the next node in the parse tree. The rules may also place restrictions on what assignments are
allowed, in order that the analysis may be carried out.

NOTE. The assignment rules for statements often refer to the rules for assigned values before and after
the evaluation of expressions within the statement. These rules are given for each kind of expression in
the subclauses of Clause 8.

The assigned source for a name before the first statement of a statement sequence is the same as the
assigned source before the statement sequence. The assigned source for a name before each statement
other than the first is the assigned source after the previous statement (as determined by the rules of the
following subclauses for each kind of statement). The assigned source for a name after a statement
sequence is the same as the assigned source after the last statement of the sequence.

Note that a block in Alf is basically just a syntactic delineation of a sequence of statements and does not
introduce new semantics as such. In particular, a block does not introduce a lexically nested scope for
local names. That is, local names with assigned sources lexically previous to and visible from the
statement sequence of a block cannot be redefined in the block (as with a local name declaration
statement—see 9.6), though they can generally be reassigned unless there is some specific rule

otherwise (such as the special rules for reassignment of local names in a parallel for statement—see
9.12).

9.2 Annotated Statements

Certain statements may have annotations that effect the execution of the statement. An annotation has
the form of an identifier preceded by a “@” character. Note that the identifiers for annotations are not
reserved words, but only a limited set of predefined annotation identifiers can be used (see Table 9.1).

A set of annotations for a statement are listed on one or more lines preceding the statement. Each of
these lines has a similar form to an end-of-line lexical comment (see 7.5). This syntax reflects the fact
that an annotation is essentially a directive used in the mapping of the annotated statement, not an
executable construct in its own right. An annotation may place restrictions on the allowed form of the
statement being annotated, but that statement is still always legal even if the annotation is removed.

Examples

//Qisolated

{
temperature = temperatureSensor.read();
pressure = pressureSensor.read();

ActuateControl (temperature, pressure);

}
Syntax

AnnotatedStatement (s: Statement)
= "//@" Annotation (s.annotation) { "@" Annotation(s.annotation) }
["//" { InputCharacter }] LineTerminator
Statement (s)
Annotation(a: Annotation)
= Identifier(a.identifier)
[" (" Name (a.argument) { "," Name (a.argument) ")"]

110 Action Language for Foundational UML (ALF), v1.1

Statement

0.1
+annotation |*

Annotation

+identifier : String
+argument : String [*]

Figure 9.2 Abstract Syntax of Annotations

Cross References

1. LineTerminator see 7.2
2. InputCharacter see 7.2
3. Identifier see 7.6
4. Statement see 9.1

NOTE. The lexical element LineTerminator is used as a syntactic non-terminal element in the
production for Annotatedstatement above and must not be ignored as white space in this case (see also
7.4). Even though the initial “//e” token has a form similar to the start of an end-of-line comment (see
7.5), annotations must specifically follow the syntax shown above. However, a list of annotations may
be followed by a “//”, the characters after which are ignored, giving the same effect as having an end-
of-line comment at the end of the annotation line.

Semantics

Annotations

Even though syntactically any statement may be annotated, specific annotations may only be used with
the specific statements to which they apply. Table 9.1 lists all allowable annotations and the statements
to which they apply. The @isolated, @indexFrom0 and @indexFroml annotations apply to all
statements (other than empty and break statements) and their effect is described below. The effect of
each of the other annotations is described in the subclause for the statement (or statements) to which it
applies.

Table 9.1 Allowable Annotations

Annotation Applicable Statement Allows Arguments?
, Any statement other than an
isolated No
empty statement or break.
deternmina if (see 9.8) No
te switch (see 9.9)
if (see 9.8)
assured switch (see 9.9) No
block (see 9.3) No
parallel
for (see 9.12) Yes

Action Language for Foundational UML (ALF), v1.1 11

, Any statement other than an

indexFrom0 No
empty statement or break.

, Any statement other than an

indexFrom0 No
empty statement or break.

Since the syntax allows an annotated statement to itself be annotated, annotations may be spread across
multiple lines preceding a single “base” statement. For the purposes of determining applicability, per
Table 9.1, of a further annotation of an annotated statement, the annotated statement is to be considered
to be of the same kind as its base statement. However, no annotation may be applied more than once to
the same base statement.

Arguments

The syntax for annotations allows for an optional list of names to be given as arguments of the
annotation. Currently, only the éparallel annotation on a for statement allows such argument (see
9.12 for rules related to names used as such arguments).

Isolation

The annotation @isolated may be used with any statement other than the empty or break statements,
indicating that the statement is executed in isolation. That is, during the execution of the statement, no
object accessed as part of the execution of the statement or as the result of a synchronous invocation
from the statement may be modified by any action that is not executed as part of the statement or as the
result of a synchronous invocation from the statement.

The semantics of isolation is discussed in 8.5.4.1 of the f{UML specification.
NOTE. The unary operator $ can also be used to denote isolation at the expression level (see 8.5.6).
Indexing from 0 and 1

The annotation @indexFrom0 may be used with any statement other than the empty or break statements
to indicate that, in expressions within that statement, indexing of the positions of elements in a sequence
will start from O for the first element, rather than the default, which is indexing from 1. This annotation
effects behavior invocation expressions and sequence operation expressions for certain library functions
(see 8.3.9 and 8.3.17), link operation expressions with indexed arguments (see 8.3.17), sequence access
expressions (see 8.3.16) and indexed left-hand sides (see 8.8).

The scope of an eindexFrom0 annotation includes any expressions contained directly in the annotated
statement, as well as any statements nested, directly or indirectly, in the annotated statement, unless a
nested statement has the annotation @indexFroml applied. The annotation @indexFroml has the
converse effect to @indexFrom0, restoring the default of indexing from 1 for all contained expressions
and nested statements, other than nested statements that have the annotation @indexFrom0 explicitly
applied.

NOTE. In UML, the indexing of the positions of elements in a sequence always starts with 1 for the first
element, so this is also the default for Alf. However, in other languages with a syntax similar to Alf's,
indexing is usually from O for the first element. The @indexFrom0 annotation is provided to ease the
adaption of existing code from such languages into Alf text. However, use of indexing from 1 is
generally preferred, since this is consistent with standard UML modeling semantics.

112 Action Language for Foundational UML (ALF), v1.1

9.3 In-line Statements

An in-line statement allows code in a language other than Alf to be inserted in-line as an Alf statement.
The actual interpretation and execution of such inline code is implementation dependent. Typically, such
code would be passed directly to a target implementation platform, but the details are not defined in the
Alf standard. While syntactically a statement, an in-line statement has a form similar to an in-line lexical
comment, to indicate that the in-line code is not included in normal Alf language processing.

The language used for the in-line code is identified by a name. There is no standard list of language
names, but the following names are recommended to promote potential interoperability for commonly
embedded language fragments.

e Java
e C

e 'C++'!
. CcH

Example

/*Q@inline ('C++') // Native code
*data = this;
controller->initiate () ;

*/
Syntax

InLineStatement (s: InLineStatement)
= InLineHeader (s) CommentText (s.code) "*/"
InLineHeader (s: InLineStatement)
= "/*@" "inline" " (" Name (s.language) ")"
["//" { InputCharacter }] LineTerminator

Statement

T

InLineStatement

+language : String
+code : String

Figure 9.3 Abstract Syntax of In-Line Statements

Cross References

1. LineTerminator see 7.2
2. InputCharacter see 7.2
3. CommentText see 7.5.2
4. Name see 7.6

NOTE. The lexical element LineTerminator is used as a syntactic non-terminal element in the
production for InLineHeader above and must not be ignored as white space in this case (see also 7.4).
Even though the initial “/*e” token has a form similar to the start of an in-line comment (see 7.5), an in-
line statement header must specifically follow the syntax shown above. However, the inline annotation

Action Language for Foundational UML (ALF), v1.1 113

may be followed by a “//”, the characters after which are ignored to the end of line, giving the same
effect as having an end-of-line comment on the header line. Comments may also be used in the body
code of an in-line statement, as allowed by the specific language in which that code is written. However,
since the comment delimiter “*/” is used to end an in-line statement, comment syntax using this
delimiter cannot be used within the in-line statement.

Semantics
The execution semantics for an in-line statement are implementation specific.

Any relationship of code within an in-line statement to named elements outside of the in-line statement
is also implementation specific.

9.4 Block Statements

A block (see 9.1) may itself be executed as a statement.
Examples
{ index = this.getIndex(); this.list[index] = this.update (index); }

The example below represents the activity graph shown in Figure 9.4.

//@parallel
{
'activity' = (Activity) (this.types[1]1); // Segment 1
{ // Segment 2
group = new ActivityNodeActivationGroup() ;
group.activityExecution = this;
}
{ // Segment 3

this.activationGroup = group;
group.activation ('activity'.node, 'activity'.edge);

114 Action Language for Foundational UML (ALF), v1.1

«structured»
Segment 1

4 :stactu_red: N
as Activity |

constructor

{[Add activationGroup J

—— activity |
«] |/
r T stuctreds Vo structwed» B
Segment 2 [Segment 3
{____?straztur_ed»____—l |
| [
| Create ActivityNodeActivationGroup T
| | | 4 «structured»
| [|
| | Read Self
|
| [Call ActivityNodeActivationGroup] [| []
| [
[
l)

S ——

«sfructured»

(«structured»

[Add activityExecution j

Read Self

\
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
/

Figure 9.4 Sample Activity Diagram
Syntax

BlockStatement (s: Statement)
= Block (s.block)

Action Language for Foundational UML (ALF), v1.1 115

Statement

T

BlockStatement

0.1
+block | 1

Figure 9.5 Abstract Syntax for Block Statements

Cross References

1. Statement see 9.1
2. Block see 9.1
Semantics

Sequential Execution

The execution of a block statement consists simply in the execution of the block (see 9.1). Unless the
block statement has a @parallel annotation (see below), this means that the statements in the block are
executed sequentially in order.

Local names assigned before a block statement may be reassigned within the constituent block of the
statement. Further, new local names may be defined within the block. Such new local names are
available outside the block after completion of execution of the block statement, with the values they
held at the completion of execution of the block. Thus, blocks do not introduce lexically nested scopes
for defining local names in Alf.

Parallel Execution

A block statement may have a eparallel annotation. In this case, the statements in the block are all
executed concurrently. All the statements of a parallel block are enabled to start executing when the
block is executed and the block does not complete execution until all statements complete their
execution (that is, there is an implicit join of the concurrent executions of the statements).

If a block statement has a @parallel annotation, any name assigned in one statement of the block may
not be further assigned in any subsequent statement in the same block.

NOTE. The above rule allows a name assigned in one statement in a parallel block to be used in a
subsequent statement, but not reassigned. This allows data dependencies between otherwise parallel
executions of these statements. However, such dependencies are somewhat restricted, since a newly
defined name is still only visible in lexically following statements, as for a sequential block. This
restriction prevents the possibility of a block statement being invalidated simply by removing a
@parallel annotation from it.

For example, in the block

//@parallel

{
a=F(1);

116 Action Language for Foundational UML (ALF), v1.1

the invocations of the behaviors F and G will execute concurrently with no dependencies between them.
The block as a whole completes execution only after hoth invocations are complete.

However, there may be data dependencies between the statements in a parallel block. For example, the
statements in the block

//@parallel
{
a = F(1);
b = G(a);

}

will execute sequentially, despite the @parallel annotation, because the invocation of G cannot proceed
until a value is available for a.

In order to prevent data conflicts, it is illegal to assign the same name in more than one statement in a
parallel block. Thus, the block

//@parallel

{
a = 1;
a =F(a); // Illegal!
b =G(2);

}
is illegal, since the name a is reassigned in the second statement. However, the following block is legal:

//@parallel
{
{

}
b =G(2);
}

This is because the block now consists of just two statements, the first of which happens to be a
(sequential) block statement. Only the first of these actually assigns a value to the name a. The value of
a after the first statement in the parallel block, and hence after the parallel block as a whole, is the value
given to it (sequentially) by the second assignment.

9.5 Empty Statements

An empty statement does nothing.

Syntax
EmptyStatement (s: EmptyStatement)

— m.n
7

Action Language for Foundational UML (ALF), v1.1 117

Statement

EmptyStatement

Figure 9.6 Abstract Syntax of Empty Statements
Cross References

1. Statement see 9.1
Semantics

Any empty statement has no effect when it is executed.

9.6 Local Name Declaration Statements

A local name declaration is used to define a local name, declare its type and provide an initial value for
it. The local name declaration statement has two forms. In the first form, the local name being defined
precedes the type name:

let interest : CurrencyAmount = this.principal * this.rate * period;
In the second form, the type name precedes the local name:

CurrencyAmount interest = this.principal * this.rate * period;

The two forms are completely equivalent. In both cases, the local name is assigned the result of
evaluating the expression.

NOTE. The first form of local name declaration is consistent with the usual UML notation for declaring
the type of a name. The second form is consistent with the form of declarations in many common
programming languages and also emphasizes the essential semantics of the statement as an assignment
with an added type constraint.

Examples
let currentOffer : Offer = this.offers[1l];

let origin : Point = new(0,0);

CurrencyAmount interest = this.principal * this.rate * period;

let inactiveMembers : Member[] = members -> select member (!member.active):;
RealProperty[] realProperties = (RealProperty)assets;

IntegerlList list = {1, 2, 3};

Set<RealProperty> fixedAssets = new { land, home, condominium };

Syntax

LocalNameDeclarationStatement (s: LocalNameDeclarationStatement)

= NameDeclaration(s) "=" InitializationExpression(s.expression) ";"
InitializationExpression (e: Expression)

= Expression(e)

| SequencelInitializationExpression (e)

| InstancelInitializationExpression (e)

118 Action Language for Foundational UML (ALF), v1.1

InstancelInitializationExpression (e: InstanceCreationExpression)
= "new" Tuple(e.tuple)
NameDeclaration (s: LocalNameDeclarationStatement)
= "let" Name (s.name) ":" TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)]
| TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)] Name (s.name)

Statement

|

LocalNameDeclarationStatement

+expression .
+name : String o1 p 7 Expression

+hasMultiplicity : Boolean = false

0..1
+typeName [0..1

QualifiedName

Figure 9.7 Abstract Syntax of Local Name Declaration Statements

Cross References

1. Name see 7.6

2. Expression see 8.1

3. QualifiedName see 8.2

4. TypeName see 8.2

5. InstanceCreationExpression see 8.3.12
6. SequencelnitializationExpression see 8.3.15
7. MultiplicityIndicator see 8.3.15
8. Statement see 9.1
Semantics

The local name in a local name declaration statement must be unassigned before the statement and
before the expression in the statement. It must remain unassigned after the expression. The assigned
source for the name after the local name declaration statement is the statement itself.

Typing

The new local name has the type given by the type name in the statement (see 8.2 on type names). The
multiplicity lower bound of the local name is O if the assigned expression has a lower bound of 0,
otherwise it is 1. If the multiplicity indicator “[1” is specified with the type, then the multiplicity upper
bound of the local name is *, otherwise it is 1 and the multiplicity upper bound of the assigned
expression must not be greater than 1.

Alf does not require that a local name be explicitly declared before its first use. If not explicitly declared,
the type of the local name is determined by its first assignment (see 8.8). However, if the type is

Action Language for Foundational UML (ALF), v1.1 119

explicitly declared, it may be more general than the type of the initially assigned expression, allowing a
wider range of values in later assignments.

For example, the following is legal:

let v: Vehicle = new Car();
v = new Truck();

presuming that car and Truck are both subclasses of vehicle. However, the following would not be
legal:

v = new Car();
v = new Truck(); // Type error!

because the initial assignment would determine the type of v as being car, which is not compatible with
Truck.

A similar effect to the legal assignment above can be achieved using a type cast (see 8.5.5):

v = (Vehicle)new Car();
v = new Truck(); // Legal

Even though the initial value assigned to v here is a car, the type of the expression ““ (vehicle) new
Car ()”is vehicle, due to the cast. Therefore, the initial assignment determines the type of v as being
Vehicle, so the second assignment is legal.

However, there is an important semantic difference. Type casts in Alf filter values that cannot be cast, so
that

v = (Vehicle)new House();

is legal and will assign nul1 to v. On the other hand, the following is not legal:
let v: Vehicle = new House(); // Type error!

since the class House does not statically conform to the declared type vehicle.
Initialization Expressions

Since a local name declaration statement already includes an explicit declaration of the type of a new
name, it is possible to use simplified forms for sequence construction expressions (see 8.3.15) and
instance creation expressions (see 8.3.12) used as initialization expressions in local name declaration
statements. In these simplified forms, the explicit type part usually included in the expressions may be
omitted, with the type declared as part of the statement being used instead.

For example, in the statement
let fixedAssets: RealProperty[] = { land, home, condominium };

the type part normally required for a sequence construction expression has been omitted. The statement
is equivalent to one in which the type part for the sequence construction expression is the same as the
type declared for the new local name:

let fixedAssets: RealProperty[] = RealProperty[]{ land, home, condominium };

This simplified form may also be used when initializing collection objects. Thus, the statement

let fixedAssets: Set<RealProperty> = { land, home, condominium };

is equivalent to

120 Action Language for Foundational UML (ALF), v1.1

let fixedAssets: Set<RealProperty> =
Set<RealProperty>{ land, home, condominium };

Similarly, in the statement
let origin : Point = new(0,0);
the explicit constructor description has been omitted from the instance creation expression, leaving only

the keyword new and the tuple. The statement is equivalent to one in which the instance creation
expression is explicitly for the type declared for the new local name:

let origin : Point = new Point (0,0);
NOTE. The initialization expression short hands can also be used in Alf expressions representing default

values, either as integrated with a non-Alf representation of a property or parameter (see 8.1) or as the
initializer for the definition of an attribute in Alf (see 10.5.2).

9.7 Expression Statements

An expression statement simply consists of an expression (see Clause 8) followed by a semicolon.
Examples

currentOffer = this.offers[1];

monitor.SignalAlarm(sensorId);

this.interest = this.principal * this.rate * period;

Syntax

ExpressionStatement (s: ExpressionStatement)

= Expression(s.expression) ";"

Statement

T

ExpressionStatement

0.1

+expression | 1

Expression

Figure 9.8 Abstract Syntax of Expression Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
Semantics

An expression statement is executed by evaluating the expression (see Clause 8). If the expression
produces one or more values, these are discarded.

Action Language for Foundational UML (ALF), v1.1 121

The values assigned to any local names within an expression statement (e.g., via an assignment
expression—see 8.8) may be accessed after the execution of the statement by using the local names in
name expressions (see 8.3.3).

9.8 if Statements

An i statement allows for the conditional execution of one of a set of blocks of statements. The
conditional blocks are organized into sequential sets of concurrent clauses. Each clause in a concurrent
set includes a conditional expression (which must be of a type that conforms to type Boolean) and a
block to execute if that condition is true. An if statement may also optionally have a final clause with a
block to execute if no other conditions are true.

NOTE. The notation for concurrent clauses is not available at the minimum conformance level (see 2.2).
Examples

if (reading > threshold) {
monitor.raiseAlarm(sensorId);

}

//@determinate Qassured

if (reading <= safelimit) {
condition = normal; }

or if (reading > safelimit && reading <= criticallLimit) {
condition = alert; }

or if (reading > criticallimit) {
condition = critical; }

Syntax

IfStatement (s: IfStatement

= "if" SequentialClauses(s) [FinalClause(s.finalClause)]
SequentialClauses (s: IfStatement)

= ConcurrentClauses (s.nonFinalClauses)

{ "else" "if" ConcurrentClauses (s.nonFinalClauses) }
ConcurrentClauses (c: ConcurrentClauses)
= NonFinalClause (c.clause) { "or" "if" NonFinalClause(c.clause) }

NonFinalClause (c: NonFinalClause)

= "(" Expression(c.expression) ")" Block(c.block)
FinalClause (b: Block)

= "else" Block (b)

122 Action Language for Foundational UML (ALF), v1.1

Statement

T

IfStatement

0.1

1

+nonFinalClauses | 1.* {ordered}

ConcurrentClauses

1

+clause | 1..* 0.1 | +finalClause
NonFinalClause +bod W
0.1 1
0.1
+condition| 1
Expression

Figure 9.9 Abstract Syntax of i £ Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
3. Block see 9.1
Semantics

Each set of concurrent clauses is executed in sequence until a condition evaluates to true. Within each
set, all the conditional expressions are evaluated in parallel. If any condition evaluates to true, then the
associated block may be executed. If more than one condition evaluates to true, then one associated
block is chosen non-deterministically to execute. If no conditions evaluate to true, execution proceeds
with the next set of concurrent clauses.

All the condition expressions of an if statement must have type Boolean and a multiplicity of [1..1].
Sequential Clauses

In its simplest form, an i f statement has a single condition which determines whether or not a single
block is executed. For example, in

if (reading > threshold) {
monitor.raiseAlarm(sensorId);

}

the invocation is executed only if the condition reading > threshold is true. A final clause may be
added, as in

if (reading > threshold) {
monitor.raiseAlarm(sensorId);

Action Language for Foundational UML (ALF), v1.1 123

else {
monitor.logReading (sensorId, reading);

}
In this case, the 1ogreading operation is called if reading > threshold is false.

An if statement may also have a list of conditional clauses that are tested sequentially. For example,

if (reading <= safelimit) {
condition = normal;

}
else if (reading <= criticallimit) {
condition = alert;

}
else {
condition = critical;

}
Concurrent Clauses

Clauses beginning with or instead of el1se are tested concurrently rather than sequentially. For example,

if (reading <= safelimit) {
condition = normal;

}

or if (reading > safelimit && reading <= criticallLimit) {
condition = alert;

}

or if (reading > criticallLimit) {
condition = critical;

}

Note that the second condition has the added test reading > safeLimit, since the first condition will
no longer be evaluated sequentially before the second. If this addition had not been made, then, if, in
fact, reading <= safeLimit was true, both of the first two conditions could be true, and either of the
associated blocks might actually execute (but only one would).

Sequential and conditional clauses can also be mixed, but sets of contiguous concurrent clauses are
always sequenced together. Thus, in

if (reading <= safelimit) ({
condition = normal; }

else if (reading > safelimit && reading <= criticallimit} {
condition = alert; }

or if (reading > criticallimit && reading < errorLimit) {

condition = critical; }
else {
condition = error; }

if the first condition is false, then both the next two conditions are evaluated concurrently. If both these
conditions are also false, then the final clause is executed.

Annotations

The annotations Gassured and Gdeterminate may be used with an if statement (see also 9.2 on
annotations). The annotation eassured indicates that at least one condition in the if statement will
always evaluate to true. The annotation edeterminate indicates that at most one condition will evaluate
to true. The annotations may be used together, which indicates that exactly one condition will always
evaluate to true.

124 Action Language for Foundational UML (ALF), v1.1

Names

New local names may not be defined in conditional expressions, since these may not always be
evaluated, but existing local names may be reassigned. However, the same name may not be assigned in
more than one conditional expression within the same concurrent set of clauses, because these
expressions are evaluated concurrently, so assignments of the same name in more than one of them
could potentially conflict. Assignments made in the conditional expression of a non-final clause are
available in the block of that clause.

New local names may be defined in the clause blocks of an if statement. If such a name is defined in
more than one clause block, its type after the it statement is the effective common ancestor (see the
definition in 8.7) of the type of the name in each clause in which it is defined with a multiplicity lower
bound that is the minimum of the lower bound for the name in each clause and a multiplicity upper
bound that is the maximum of the upper bound for the name in each clause. If the name is not defined in
every clause of the if statement, then it is considered to have multiplicity lower and upper bounds of 0
for the purposes of the above bounds determination. If the clause of the i f statement that is executed
does not define a name that is defined in a different clause, then that name is defined but empty after the
execution of the if statement.

The multiplicity and typing of local and parameter names referenced in the block of a clause of an if
statement are adjusted based on the conditional expression of the clause evaluating to true (see 8.7 on
local name multiplicity and type adjustment). In addition, the multiplicity and typing are similarly
adjusted based on the conditional expressions of all the preceding clauses in the i f statement evaluating
to false.

9.9 switch Statements

A switch statement executes one of several blocks depending on the value of an expression. The body
of the switch statement consists of a list of clauses, each of which consists of a set of case labels and a
block. Each of the case labels contains an expression that must evaluate to a single value of a type that
conforms to the type of the switch expression (see 8.2 for the definition of type conformance). In
addition, a switch statement may have a final clause with the label default.

Examples

switch (month) {
case 1l: case 3: case 5: case 7: case 8: case 10: case 12:
numDays = 31;
case 4: case 6: case 9: case 11:
numbDays = 30;
case 2:
if (((year % 4 == 0) &
|| (year % 400 =
numDays = 29;
}
else {
numDays = 28;
}
default:
WriteLine ("Invalid month.");
numDays = 0;

[}

& !(year % 100 == 0))
=0)) {

Action Language for Foundational UML (ALF), v1.1 125

Syntax

SwitchStatement (s: SwitchStatement)
= "switch" " (" Expression(s.expression) ")"
" SwitchClause (s.nonDefaultClause) }
[SwitchDefaultClause(s.defaultClause)] "}"
SwitchClause (s: SwitchClause)
= SwitchCase (s.case) { SwitchCase(s.case) }
NonEmptyStatementSequence (s.block)
SwitchCase (e: Expression)
= "case" Expression(e) ":"
SwitchDefaultClause (b: Block)
= "default" ":" NonEmptyStatementSequence (b)
NonEmptyStatementSequence (b: Block)
= DocumentedStatement (b.statement) { DocumentedStatement (b.statement) }

Statement
SwitchStatement
0.1
1
+expression |1 +nonDefaultClause | * +defaultClause [0..1
Expression ‘case SwitchClause *block
1.* 0.1

Figure 9.10 Abstract Syntax of switch Statements

Cross References

1. Expression see 8.1
2. DocumentedStatement see 9.1
Semantics

Switch Execution

When a switch statement is executed, first the switch expression is evaluated and then all the case
expressions are evaluated concurrently. The switch expressions and all case expressions must have a
multiplicity upper bound no greater than 1. If the result of any case expression equals the result of the
switch expression, then the associated statement sequence is enabled for execution. If more than one
statement sequence is enabled, then one of them is non-deterministically selected for execution.

If no case expressions have a result equal to the result of the switch expression, and there is a default
clause, then the statement sequence associated with the default clause is executed. Since all the case
expressions must be checked before a default clause can execute, the execution of the default clause
always happens sequentially after the completion (and failure) of all case tests.

If no case expressions have a result equal to the result of the switch expression, and there is not a default
clause, then the switch statement has no further effect.

“Equality” of values is evaluated as for an equality operator (see 8.6.6).

126 Action Language for Foundational UML (ALF), v1.1

NOTE. Case expressions are evaluated concurrently, not sequentially, and execution does not “fall
through” from one switch clause to the next, as it does in traditional C switch statements. This means
that it is not necessary to place a break statement at the end of a switch clause to avoid execution
continuing with the next clause. However, placing a break at the end of the clause anyway will not harm
the overall execution of the switch statement. (See also 9.13 on break statements.)

Annotations

The annotations Gassured and @determinate may be used with a switch statement (see also 9.2 on
annotations). The annotation @assured indicates that the result of at least one clause in the switch
statement will always be executed. The annotation @determinate indicates that at most one clause will
execute. The annotations may be used together, which indicates that exactly one clause will always
execute.

Names

New local names may not be defined in case expression, but existing local names may be reassigned.
However, the same name may not be assigned in more than one case expression because these
expressions are evaluated concurrently, so assignments of the same name in more than one of them
could potentially conflict. Assignments made in the case expressions of a switch clause are available in
the statement sequence of that clause.

New local names may be defined in the statement sequences of a switch statement. If such a name is
defined in more than one switch clause, its type after the switch statement is the effective common
ancestor (see the definition in 8.7) of the type of the name in each clause in which it is defined with a
multiplicity lower bound that is the minimum of the lower bound for the name in each clause and a
multiplicity upper bound that is the maximum of the upper bound for the name in each clause. If the
name is not defined in every clause of the switch statement, then it is considered to have multiplicity
lower and upper bounds of 0 for the purposes of the above bounds determination. If the clause of the
switch statement that is executed does not define a name that is defined in a different clause, then that
name is defined but empty after the execution of the switch statement.

9.10 while Statements

A while statement executes an expression and a block until the value of the expression is false.

Examples

while ((last = this.list->size()) > 0) {
this.list[last].cleanUp();
this.list->remove (last);

}

while (file.hasMore()) {
nextRecord = file.readNext () ;
if (nextRecord!=null) {
checksum = ComputeChecksum(checksum, nextRecord) ;
}
}

Syntax

WhileStatement (s: WhileStatement)
= "while" "(" Expression(s.condition) ")" Block (s.body)

Action Language for Foundational UML (ALF), v1.1 127

Statement

T

WhileStatement *condition Expression
0.1 1

0..1
+body | 1

Figure 9.11 Abstract Syntax of while Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
3. Block see 9.1
Semantics

When a while statement is executed, its expression is evaluated. If the expression evaluates to false, the
execution of the while statement is complete. Otherwise, its block is executed, and then the entire
while statement is executed again, beginning with re-evaluating the expression.

The condition expression of a while statement must have a type that conforms to type Boolean and a
multiplicity of [1..1].

Names

Local names defined within the condition expression of a while statement are available within the body
block of the while statement, with the value as computed on each iteration of the loop. They are also
available after completion of execution of the while statement, with the values assigned as of the last
evaluation of the while condition expression.

Local names defined within the body block of a while statement may be used within that block. They
are also available after the completion of execution of the while statement, with values assigned as of
the last iteration of the loop. If the loop has no iterations and the body block is not executed, then names
defined in that block are defined but empty after the execution of the while statement.

Local names defined before a while statement may be reassigned within the while statement. After
completion of execution of the while statement, they have the values assigned as of the last evaluation
of the while statement.

The multiplicity and typing of local and parameter names in the body block of a while statement are
adjusted based on the condition expression of the while statement evaluating to true (see 8.7 on local
name multiplicity and type adjustment). The multiplicity and typing of local and parameter names after
the while statement are adjusted based on the condition expression evaluating to false.

9.11 do Statements

The do statement executes a block and an expression repeatedly until the value of the expression is false.

128 Action Language for Foundational UML (ALF), v1.1

Examples

do {
line = file.readNext ()
WriteLine (line) ;
} while (line != endMarker);
do {
reading = sensor.getNextReading() ;
Record (reading) ;
} while (!reading.isFinal());
Syntax

DoStatement (s: DoStatement)
= "do" Block(s.body) "while" "(" Expression(s.condition) ")'" ";"

Statement

DoStatement *eondition Expression
0.1 1

0.1
+body |1

Figure 9.12 Abstract Syntax of do Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
3. Block see 9.1
Semantics

When a do statement is executed, its block is executed first. Then its expression is evaluated. If the result
of the expression is true, then the entire do statement is executed again. If the result of the expression is
false, the execution of the do statement is complete.

The condition expression of a do statement must have a type that conforms to type Boolean and a
multiplicity of [1..1].

Names

Local names defined before a do statement may be reassigned within the do statement and new local
names may be defined within the do statement, in either the condition expression or the block. Local
names defined within the condition expression are not available within the body block, but they are

available after completion of the do statement, with values assigned as of the last evaluation of the do
condition expression.

Local names defined within the body block of a do statement are available within the condition
expression of the do statement, with the value as computed on each iteration of the loop. They are also

Action Language for Foundational UML (ALF), v1.1 129

available after completion of execution of the do statement, with the values assigned as of the last
evaluation of the do condition expression.

Local names defined before a do statement may be reassigned within the do statement. After completion
of execution of the do statement, they have the values assigned as of the last evaluation of the do
statement.

The multiplicity and typing of local and parameter names after a do statement are adjusted based on the
condition expression of the do statement evaluating to false (see 8.7 on local name multiplicity and type
adjustment).

9.12 for Statements

The for statement executes a block repeatedly while assigning a loop variable to successive values of a
sequence.

Examples

for (member in memberList) ({
names->add (member.name) ;
addresses->add (member.address) ;

}

for (sensor in sensors) {
if ((reading = sensor.reading())->isEmpty()) {
break;
}
if (reading > noiselLimit) {
readings->add (reading) ;
}
}
for (i in 1..recordCount) {
processRecord (i) ;

}

//@parallel

for (ActivityEdgeInstance outgoingEdge: this.outgoingEdges) {
outgoingEdge.sendOffer (tokens) ;

}

// Fast Fourier Transformation computation
//@parallel (Sn_Even, Sn_0dd)
for (lower in S Lower, upper in S Upper, root in V) {
//@parallel
{
Sn_Even -> add(lower+upper) ;
Sn_0dd -> add((lower-upper) *root) ;
}
}

Syntax

ForStatement (s: ForStatement)
= "for" "(" ForControl(s) ")" Block (s.body)
ForControl (s: ForStatement)
= LoopVariableDefinition(s.variableDefinition)
{ "," LoopVariableDefinition(s.variableDefinition) }

130 Action Language for Foundational UML (ALF), v1.1

LoopVariableDefinition (v: LoopVariableDefinition)
= Name (v.variable) "in" Expression (v.expressionl)
[".." Expression(v.expressionZ?)]
| TypeName (v.typeName) Name (v.variable) ":"
Expression (v.expressionl) (typelIsInferred=false)

SyntaxElement Statement

|

LoopVariableDefinition +variableDefinition
+variable : String ForStatement
+typelsinferred : Boolean = true | 1..* {ordered}
0.1 0.1 0.1 +forStatement [0..1
+typeName |0..1 +expression1] 1 0..1] +expression2 +body |1

QualifiedName Expression W

Figure 9.13 Abstract Syntax of for Statements

Cross Reference

1. Name see 7.6
2. Expression see 8.1
3. QualifiedName see 8.2
4. Statement see 9.1
5. Block see 9.1
Semantics

Loop Variables

A for statement defines one or more loop variables that are given successive values from sequences
during the execution of the loop. A loop variable definition in a for statement is thus the assigned source
for the loop variable name so defined within the for statement. The name of a loop variable must be
unassigned before the for statement, may not be otherwise assigned within the for statement, and is
considered unassigned after the for statement.

There are two forms for a loop variable definition.

In the first form, the type of the loop variable is given implicitly by the expression from whose result the
loop variable takes values. For example, suppose that the name memberList has the type Member and a
multiplicity of [0..*] in the statement
for (member in memberList) {

names—>add (member.name) ;

addresses->add (member.address) ;

}

The loop variable member is then implicitly given the type Member, the same type as that of the name
expression memberList.

Action Language for Foundational UML (ALF), v1.1 131

However, collection conversion may be performed on the expression in a loop variable definition. That
is, if the type of the expression is a collection class (see 11.7) and the multiplicity upper bound of the
expression is no greater than 1, then the operation toSequence is implicitly called on the expression to
produce the sequence of values for the loop variable. The loop variable is then the type of the result of
the tosequence call (i.e., the element type of the collection). Thus, the example above would still be
legal if the type of memberList was, e.g., List<Member>.

In the second form, the type of the loop variable is declared explicitly. For example, the following
statement is semantically equivalent to the example given above:
for (Member member: memberList) {

names->add (member.name) ;

addresses->add (member.address) ;

}

In this form, the declared type of the loop variable normally must conform to the type of the expression
(see 8.2 for the definition of type conformance). However, if collection conversion applies to the
expression, then the declared type must conform to the element type of the collection.

NOTE. The second form of loop variable definition has a similar syntax to that used in a “for each”
statement in Java.

A loop variable definition of the form var in expri..expr2is ashorthand for var in Integer[]
{exprl..expr2} (see 8.3.15 on ranges in sequence construction expressions). In this case, both
expressions must have a type that conforms to type Integer and a multiplicity upper bound of 1. A loop
variable so defined takes on sequential integer values in each loop iteration, beginning with the value
given by expri and ending with the value given by expr2. If the second value is less than the first, then
the for loop execution completes with no iterations.

Iterative Execution

When a for statement is executed, the expressions in its loop variable definitions are evaluated
sequentially. If the result for the first variable is a sequence of at least one value, and the for statement
has no while condition expression, then the block of the for statement is executed once for each value
in the sequence. On each such execution, the local names of the loop variables within the block have
corresponding values from the sequences resulting from the evaluation of the expressions in their
definitions.

Note that the sequences for all the loop variables in a specific execution of a for statement should have
the same size. However, if this is not true, it is the sequence for the first variable that controls the
execution. If another variable has a sequence of a larger size than the first variable, then the additional
values will be ignored. If it has a sequence of a smaller size, then the variable will be empty on iterations
after all values in its sequence have been used. For this reason, the first loop variable has the multiplicity
[1..1], while any other loop variables are given the multiplicity [0..1].

NOTE. At the minimum conformance level (see 2.2), a for statement is allowed to have only one loop
variable.

By default, the executions of the body block of a for statement occur in sequential iterations. Values are
taken from the sequence for each loop variable in order.

Since a loop variable expression is only evaluated once, any local names defined in it have the values
assigned during that evaluation for all executions of the body block of the for statement, unless
reassigned within that block.

132 Action Language for Foundational UML (ALF), v1.1

Local names defined within the body block of a for statement are prohibited from being accessed
outside the for statement, since they could be uninitialized if the for statement does not execute its
body. Local names defined within an expression in a loop variable definition are available after
completion of execution of the for statement.

Parallel Execution

If a for statement is preceded by a @parallel annotation (see 9.2), then the executions of the body
block of the for statement occur concurrently rather than sequentially.

A @parallel annotation may include a list of names. Each such name must be already assigned before
the body of the for statement, with a multiplicity upper bound other than 1. They may then be used
within the body block of the for statement to collect values across the concurrent executions of that
block (any prior assigned values are lost). As such, these names may only appear within the for
statement as the target argument (i.e., argument to the first parameter) for the add function from the Alf
CollectionsFunctions library package (see 11.6).

For example, consider the following piece of a Fast Fourier Transform (FFT) computation, using an
iterative for statement.

Sn _Even = Integer[]{};
Sn _O0dd = Integer[]{};
for (lower in S Lower, upper in S Upper, root in V) {
Sn_Even -> add(lower+upper) ;
Sn_0dd -> add((lower-upper) *root) ;

}

This is computationally correct, but it forces sequential execution of what is essentially a parallel
algorithm. This can be corrected by inserting appropriate @parallel annotations:
}i

Sn_Even = Integer|

14
Sn_0dd = Integer[]({}

//@parallel (Sn_Even, Sn_0dd)
for (lower in S Lower, upper in S Upper, root in V) {
//@parallel
{
Sn_Even -> add(lower+upper) ;
Sn_0dd -> add((lower-upper) *root);
}
}

The listing of the names sn_Even and sn_0dd in the @parallel annotation is required so that the add
operation invocations continue to be permitted within the for statement.

NOTE. The normal behavior invocation notation (see 8.3.9) may also be used for the add function
instead of the sequence operation notation (see 8.3.17). For example “Sn_Even->add (lower+upper) ;’
may instead be written “add (sSn_Even, lower+upper);”. The behavior invocation notation is available
at the minimum conformance level, while the sequence operation notation is not available until the full
conformance level (see also 2.2 on syntactic conformance levels).

2

If, after the loop variable definitions of a parallel for statement, a name has an assigned source, then it
must have the same assigned source after the block of the for statement. Other than for names defined in
the @parallel annotation of the for statement, the assigned source for such names is the same after the

Action Language for Foundational UML (ALF), v1.1 133

for statement as before it. Any names defined in the e@parallel annotation have the for statement itself
as their assigned source after the for statement.

Unlike the case of an iterative for statement, names defined before a parallel for statement may not be
reassigned within the statement, unless they are listed in the @parallel annotation for the statement. As
in the iterative case, any names defined within the body of a parallel for statement are not available
outside of the for statement.

9.13 break Statements

A break statement completes execution of an enclosing switch, while, do or for statement.

Syntax

BreakStatement (s: BreakStatement)
= "break n ",. n

Statement

T

BreakStatement

Figure 9.14 Abstract Syntax of break Statements

Cross References
1. Statement see 9.1

Semantics

A break statement may only be used directly or indirectly within the body of a switch, while, do or
for statement (sees 9.9, 9.10, 9.11 and 9.12, respectively), except that the innermost enclosing such
statement must not be a for statement with a @parallel annotation. When a break statement is
executed, it transfers control to the innermost enclosing switch, while, do or for statement, which then
immediately completes normally.

9.14 return Statements

If an activity has a return parameter, then a return statement may be used to provide a value for that
parameter and terminate execution of the activity.

Examples

return item;

return list[index];

return x * factorial(x-1);

Syntax

ReturnStatement (s: ReturnStatement)
= "return" [Expression(s.expression)] ";"

134 Action Language for Foundational UML (ALF), v1.1

Statement

|

ReturnStatement

0.1

+expression | 0..1

Expression

Figure 9.15 Abstract Syntax of return Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
Semantics

A return statement is used to terminate the execution of the enclosing behavior. If the enclosing behavior
has a return parameter, then the return statement must have an expression that is assignable to the return
parameter (see 8.8 for the definition of assignability). Otherwise, it must not have an expression.

When a return statement is executed, , if it has an expression, that expression is evaluated, and the
resulting values (if any) are assigned to the return parameter. The execution of the enclosing behavior
then immediately terminates.

9.15 accept Statements
An accept statement is used to accept the receipt of one or more types of signals.

NOTE. accept statements are not available at the minimum conformance level (see 2.2).
Examples
accept (sig: SignalNewArrival, SignalTermination);

accept (arrival: SignalNewArrival) ({
WriteLine (arrival.name) ;

terminate = false;

} or accept (SignalTermination) {
terminate = true;

}

Syntax

AcceptStatement (s: AcceptStatement)
= SimpleAcceptStatement (s)
| CompoundAcceptStatement (s)
SimpleAcceptStatement (s: AcceptStatement)
= AcceptClause(s.acceptBlock) ";"
CompoundAcceptStatement (s: AcceptStatement)
= AcceptBlock (s.acceptBlock) { "or" AcceptBlock(s.acceptBlock) }
AcceptBlock (a: AcceptBlock)
= AcceptClause(a) Block(a.block)

Action Language for Foundational UML (ALF), v1.1 135

AcceptClause (a: AcceptBlock)
= "accept" " (" [Name(a.name) ":"] QualifiedNameList (a.signalNames)
") "
QualifiedNameList (gList: QualifiedNamelList)
= QualifiedName (gList.name) { "," QualifiedName (gList.name) }

Statement

|

AcceptStatement

1

+acceptBlock | 1..*

AcceptBlock +block »@
+name : String [0..1]| 0.1 0.1

0.1

+signalNames| 1

QualifiedNameList tname. JQualifiedName
01 1%

l

SyntaxElement

Figure 9.16 Abstract Syntax of accept Statements

Cross References

1. Name see 7.6
2. Expression see 8.1
3. QualifiedNameList see 8.2
4. Statement see 9.1
5. Block see 9.1
Semantics

An accept statement can only be used within the definition of an active behavior or the classifier
behavior of an active class. All listed qualified names in an accept clause of an accept statement must
resolve to signals for which the enclosing behavior has a reception. These signals must not be templates,
though they can be the bindings of template signals (see 8.2). No signal may be named in more than one
accept clause of an accept statement.

Simple accept Statements

In its simplest form, an accept statement simply identifies a signal by name:

accept (SignalNewArrival);

136 Action Language for Foundational UML (ALF), v1.1

When this statement is executed, the thread of execution it is on is suspended, waiting for the receipt of
an instance of the signal signalNewArrival. When such a receipt later triggers the accept statement, it
completes its execution, and further execution on its thread can continue.

An accept statement can also optionally include the definition of a local name that is used to hold an
accepted signal instance:

accept (arrival: SignalNewArrival);
WritelLine (arrival.name) ;

A local name so defined has the signal as its type. It must be unassigned before the accept statement.

A single accept statement can list multiple signals, any one of which may trigger it. If the accept
statement includes a local name, then this local name will hold whichever signal instance is actually
received. The type of such a local name is the effective common ancestor of the listed signals (as defined
in 8.7), if one exists, and is untyped otherwise.

For example:

accept (sig: SignalNewArrival, SignalTermination);
if (sig instanceof SignalNewArrival) {

WriteLine (((SignalNewArrival)sig) .name) ;
terminate = false;

} else {
terminate = true;

}

Compound accept Statements

In the example above, which of multiple signals was actually received is determined by testing the type
of the instance received. This is such a typical pattern that Alf provides a compound version of the
accept statement that allows the explicit specification of separate clauses for the receipt of different
signals. Each clause is triggered on a specific set of signals and, if any one of them is received, an
associated block is executed, after which execution of the accept statement is complete.

For example, the above example can be rewritten as follows using a compound accept statement:

accept (arrival: SignalNewArrival) {
WriteLine (arrival.name) ;

terminate = false;
} or accept (SignalTermination) {
terminate = true;

}

For a compound accept statement, a local named defined in an accept clause (such as arrival in the
example above) is available only in the body of that clause and is considered unassigned after the
accept statement. New local names may be defined within the accept statement (such as terminate in
the example above). After the accept statement, such a new local name has a type that is the effective
common ancestor (see the definition in 8.7) of the type of the name in each accept clause in which it is
defined with a multiplicity lower bound that is the minimum of the lower bound for the name in each
clause and a multiplicity upper bound that is the maximum of the upper bound for the name in each
clause. If the name is not defined in every clause of the accept statement, then it is considered to have
multiplicity lower and upper bounds of 0 for the purposes of the above bounds determination. If the
clause of the accept statement that is executed does not define a name that is defined in a different
clause, then that name is defined but empty after the execution of the accept statement.

Action Language for Foundational UML (ALF), v1.1 137

9.16 classify Statements

A classify statement is used to dynamically reclassify an already existing object. The statement
identifies an already existing object and the classes from which and/or to which the identified object is
to be reclassified.

NOTE. classify statements are not available at the minimum conformance level (see 2.2).
Examples

classify principal from * to Administrator;

classify principal from Administrator;

classify monitor from InActiveMonitor to ActiveMonitor;

classify this
from Pending, Overdue
to Resolved, InProcess;

Syntax

ClassifyStatement (s: ClassifyStatement)
= "classify" Expression(s.expression) ClassificationClause(s) ";"
ClassificationClause(s: ClassifyStatement)
= ClassificationFromClause (s.fromList)
[ClassificationToClause(s.toList)]
| [ReclassifyAllClause (s.isReclassifyAll=true)]
ClassificationToClause (s.tolList)
ClassificationFromClause (gqList: QualifiedNameList)
= "from" QualifiedNameList (gList)
ClassificationToClause (gList: QualifiedNameList)
= "to" QualifiedNameList (gList)
ReclassifyAllClause (gList: QualifiedNamelist)

= "from" mwekmn
Statement
Classifystatement +expression EXpr'eSSion
+isReclassifyAll : Boolean =false | 0.1 1
0.1 0.1

+fromList |0..1 0..1] +toList

QualifiedNameList

Figure 9.17 Abstract Syntax of classify Statements

Cross Reference

1. Expression see 8.1
2. Statement see 9.1
3. QualifiedNameList see 9.15

138 Action Language for Foundational UML (ALF), v1.1

Semantics

The target expression in a classify statement must have a class as its static type. All qualified names
listed in the from or to lists must resolve to classes. All the classes in the from and to lists must be
subclasses of the static type of the target expression and none of them may have a common superclass
that is a subclass of the static type of the target expression (that is, they must be disjoint subclasses).

NOTE. The restriction on reclassification to be only between disjoint subclasses allows type safety to be
maintained if all potentially reclassifiable objects are only referenced via their superclass interface.
However, it is still possible to downcast such an object to a subclass, and type safety may be violated if
that subclass is later removed from the object via some other reference.

The target expression of a classify statement must evaluate to a single object. When the classify
statement completes execution, the object is no longer classified by the classes in the from list (unless
they are also in the to list) and is classified by all the classes in the to list.

If the £rom list is given as “*”, then all the current classes of the identified object are removed and
replaced with the classes in the to list. In this case, the to list must not be empty.

Neither destructor nor constructor operations are called during reclassification, and any initializers on
attributes of classes in the to list are not evaluated. All new attributes are initialized as empty, even if
this violates their declared multiplicity. However, if any of the classes on the to list are active classes
with classifier behaviors, then these behaviors are started for the target object (except that any such
behavior that is already running from the previous classification is not restarted but simply continues to
run).

Action Language for Foundational UML (ALF), v1.1 139

140 Action Language for Foundational UML (ALF), v1.1

10 Units

10.1 Overview

Alf adds the concept of a unit to the basic UML concepts of namespaces and packages. A unit is a
namespace defined using Alf notation that is not itself textually contained in any other Alf namespace
definition.

This clause describes how structural models (largely within the fUML subset) can be represented
textually as Alf units. This includes the notation for defining the kinds of classifiers included in the
fUML subset (see 10.4) and for defining packages to group the definition of other elements (see 10.3).
Subclause 10.5 discusses the representation of various kinds of features of classifiers.

The structural modeling constructs defined in this clause are only included at the extended compliance
level of Alf (see 2.2 on the definition of syntactic conformance).

Units are lexically independent (though semantically related) segments of Alf text that provide a level of
granularity similar to typical programming language text files. A unit may also have subunits that define
namespaces that are owned (directly or indirectly) by the unit but whose Alf definition is given by a unit
that is textually separate from the base unit. Inclusion in the base unit is indicated using a stub
declaration in the base unit and a namespace declaration in the definition of the subunit.

Since an Alf unit can be processed into a UML abstract syntax representation, a portion of a model
represented in Alf can always be integrated into a larger model on that basis, regardless of the surface
representation of any portion of the model.

Examples
private import ProductSpecification::Product; // Element import
private import EE OnlineCustomer as OL Customer; // Element import with alias
private import DomainDataTypes::*; // Package import
package Ordering // Unit definition
{

class Order; // Stub declaration
}
namespace Ordering; // Namespace declaration
public import Customer; // Public element import
/** Order class of the Ordering subsystem. */ // Documentation comment
class Order { // Subunit definition
}
@apply (DataProfile) // Profile application
@Entity (tableName=>"CustomerTable") // Stereotype annotation

class Customer ({

Action Language for Foundational UML (ALF), v1.1 141

Syntax

UnitDefinition(u: UnitDefinition)
= [NamespaceDeclaration (u.namespaceName)]
{ ImportDeclaration (u.import) }
[DocumentationComment (u.documentation)]
{ StereotypeAnnotation(u.definition.annotation) }
NamespaceDefinition(u.definition)
NamespaceDeclaration (g: QualifiedName)
= "namespace" QualifiedName (gq) ";"
ImportDeclaration(i: ImportReference)
= ImportVisibilityIndicator (i.visibility) "import"
ImportReference (i) ";"
ImportVisibilityIndicator (v: String)
= "public" (v) | "private" (v)
ImportReference (i: ImportReference)
= ElementImportReference (1)
| PackageImportReference (i)
ElementImportReference (i: ElementImportReference)
= QualifiedName (i.referentName) [AliasDefinition(i.alias)]
AliasDefinition(n: String)
= "as" Name (n)
PackageImportReference (i: PackageImportReference)
= ColonQualifiedName (i.referentName) "::" "*x"
| DotQualifiedName (i.referentName) "." "*"
| UnqualifiedName (i.referentName) "::" "*x"
| UnqualifiedName (i.referentName) "." "*"
StereotypeAnnotation(s: StereotypeAnnotation)
= "@" QualifiedName (s.stereotypeName) [" (" TaggedValues(s) ")"]
TaggedValues (s: StereotypeAnnotation)
= QualifiedNamelList (s.names)
| TaggedValuelist (s.taggedValues)
TaggedValuelist (t: TaggedValuelist)
= TaggedValue (t.taggedValue) { "," TaggedValue (t.taggedvValue) }
TaggedValue (t: TaggedValue)
= Name (t.name) "=>" LiteralValue (t)
LiteralValue (t: TaggedValue)
= BooleanLiteral (t.value)
| [NumericUnaryOperator (t.operator)] NaturallLiteral (t.value)
| [NumericUnaryOperator (t.operator)] ReallLiteral (t.value)
| UnboundedValueLiteral (t.value)
| StringLiteral (t.value)

142 Action Language for Foundational UML (ALF), v1.1

DocumentedElement

+alias : String [0..1]

+documentation : String [*] Member 01
QualifiedName || fnamespaceName _fiy uinefinition | Unit +deﬁnition.(NamespaceDefinition
0.1 0.1 0.1
1| +referentName +unit § 1
SyntaxElement
lﬁ « | tannotation
+import |*
H
ImportReference 0.1 |stereotypeAnnotation | 0.1
0.1 +visibility : String
2 0.1
| 0..1¥+taggedVaIues 0.1f +names
ElementimportReference PackagelmportReference TaggedValuelList QualifiedNameList
+taggedValue |* 1 +stereotypeName
e ®

TaggedValue

+name : String
+value : String
+operator : String [0..1]

Figure 10.1 Abstract Syntax of Unit Definitions

Cross References

1. DocumentedElement
2. DocumentationComment
3. Name

4. BooleanLiteral

5. NaturalLiteral

6. UnboundedValueLiteral
7. StringLiteral

8. RealLiteral

9. QualifiedName

10. ColonQualifiedName
11. DotQualifiedName

12. UnqualifiedName

13. NumericUnaryOperator

14. QualifiedNameList

see 6.6
see 7.5.3
see 7.6
see 7.8.2
see 7.8.3
see 7.8.4
see 7.8.5
see 7.8.6
see 8.2
see 8.2
see 8.2
see 8.2
see 8.5.4
see 9.15

Action Language for Foundational UML (ALF), v1.1

QualifiedName

143

15. NamespaceDefinition see 10.2
16. Member see 10.2

Semantics
Subunits

Each kind of namespace definition (as given in subsequent subclauses) includes the specification of a
name for the namespace, which, for a unit definition, becomes the name of the unit. If the unit definition
has a namespace declaration, then the unit is an owned member of that namespace. If the declared
namespace is contained itself in an Alf unit, then the unit definition is for a subunit and the declared
namespace must have a stub declaration for the subunit. A namespace is always denoted in a namespace
declaration by its fully qualified name (as defined in 8.2).

For example, the following definition for the package ordering has a stub declaration for the class
Order.

package Ordering {
class Order; // Stub declaration

}

The subunit defining class order must then have a corresponding namespace declaration indicating that
it is completing a stub in the namespace ordering.

namespace Ordering; // Namespace declaration
class Order { // Subunit definition

}
(See the subclause for each kind of namespace definition for further discussion of stub declarations.)
Model Units

An Alf model unit is an Alf unit that is not a subunit of any other Alf unit. It may be used to represent the
model of a classifier or package that is intended to be individually referenced as a named element.

A model unit is not required to have a namespace declaration. But, if it does have such a declaration,
then, by definition, the referenced namespace will not be represented using Alf. If it does not have a
namespace declaration, then which namespace it is placed in, if any, is tool specific.

A model unit may represent an entire UML model (at least within the limits of the fUML subset) or it
may represent a model element (such as a class or standalone activity) intended to be used within some
larger model. The Alf specification does not define how such an Alf unit is created within a specific
modeling environment or how it is attached to some larger model within the environment. It does,
however, place requirements on the modeling environment to allow references from within Alf units to
named elements defined in namespaces outside of those units (see 10.2).

Import Declarations

An import declaration specifies a UML import dependency (see UML Superstructure, subclauses 7.3.15
and 7.3.39). Such a declaration may specify an element import or a package import, and it may be
public or private. Alf notation only provides for import declarations on namespaces defined as units. The
import declarations for a unit are placed after the namespace declaration (if any) and before any
stereotype annotations and the body of the definition for the unit. The qualified name given in an import
declaration must be a fully qualified name (as defined in 8.2).

For an element import reference:

144 Action Language for Foundational UML (ALF), v1.1

« The name must resolve to a packageable element with either an empty or public visibility.

 The visibility of the named element within the scope of the unit definition is as specified in the UML
Superstructure, 7.3.15, ElementImport.

For a package import reference:
« The name must resolve to a package with either an empty or public visibility.

 The visibility of the named element within the scope of the unit definition is as specified in the UML
Superstructure, 7.3.39, PackageImport.

For example, the following is a private element import declaration.

private import ProductSpecification::Product; // Element import
package Ordering { // Namespace definition

}

This declaration specifies that the element with the qualified name ProductSpecification::Product
be included as a member of the namespace ordering. Since this is a private import, the element is
imported as a private member and is not visible outside ordering. On the other hand, a public import
such as

public import ProductSpecification::Product; // Public element import
package Ordering { // Namespace definition

}

specifies that the element be imported as a public member of ordering. In this case, the qualified name
Ordering: : Product refers to the same element as ProductSpecification: : Product.

An element may also be imported with an alias. For example:

public import ProductSpecification::Product as Prod; // Import with alias
package Ordering { // Namespace definition

}

In this case, within the ordering namespace, the unqualified name for
ProductSpecification: :Product 18 Prod, not Product. Further, since the import is public, outside
ordering the qualified name ordering: : Prod can be used to refer to the same element as
ProductSpecification: :Product.

A package import declaration may be used to import all the elements of a package. For example, the
following declaration:

private import ProductSpecification::*; // Package import
package Ordering { // Namespace definition

}

specifies that all the elements of the package ProductSpecification should be imported into the
namespace Ordering as private members. This is equivalent to giving a private element import
declaration for each of the elements in ProductSpecification. As with an element import declaration,
a package import may also be public. However, aliases cannot be defined with a package import.

NOTE. The UML semantics of importing an element is simply that it becomes a member of the
importing namespace. A namespace is not required to have an import dependency in order to reference

Action Language for Foundational UML (ALF), v1.1 145

an external element from within the namespace. In Alf, importing an element means the name of the
imported element is in the current scope within the importing namespace and can, therefore, be used
without qualification (see 8.2). However, it is always possible to refer to an element using its fully
qualified name (if such exists) without having to import the element.

Unless it is stereotyped as a «kModelLibrary», an Alf model unit has an implicit, private package import
for each of the sub-packages of the a1f: :Library package (see 11.1). These packages must therefore be
available in the modeling environment for any Alf unit. (Note that it is unnecessary for subunits to have
such implicit imports, since they will have visibility to the imports on the enclosing model unit.)

The standard «ModelLibrary» stereotype can be applied to a package to indicate that it “‘contains model
elements that are intended to be reused by other packages” (see UML Superstructure, Annex C). This
stereotype can be applied to a package represented in Alf using a @Mode1Library annotation (see
below). A model-unit package so annotated does not have the implicit imports for the
StandardModelLibrary packages and must import these explicitly if they are needed.

NOTE. This rule is to allow for the minimization of dependencies of model library packages
represented in Alf on other packages that they may not need. It also allows for the possibility of
representing the standardModelLibrary as a model library package in Alf without requiring it to
implicitly, circularly import subpackages of itself.

Stereotype Annotations

A stereotype annotation specifies the application of a stereotype to a unit. Such annotations are listed
immediately before the namespace definition for the unit. In general, the qualified name in a stereotype
application must resolve to a stereotype in a profile applied to some (directly or indirectly) enclosing
package. The unit must be of a syntactic type that corresponds to the metaclass extended by the
identified stereotype. Any stereotype may be applied at most once to a unit.

NOTE. Profiles and stereotypes are not included in the fUML subset. However, allowing stereotype
application in Alf provides an extensible annotation mechanism based on profiles. Modeling tools may
use such annotations to implement profile-specific mappings of Alf text to the strict f{UML subset for
execution. Note, however, that Alf does not provide a textual notation for the definition of profiles, only
their application.

The stereotype name does not need to be qualified if there is only one applied profile with a stereotype
of the given name (except for the special cases given in Table 10.1 and discussed further below).
Otherwise the stereotype must be fully qualified with the name of the profile. However, the UML
superstructure standard profiles (see UML Superstructure, Annex C) are considered to be implicitly
applied, and stereotypes from these profiles can always be used without explicit qualification of their
names. Thus, any stereotype with a name that conflicts with the name of a standard stereotype must
always be fully qualified.

A stereotype annotation may optionally be followed by a list of tagged values. There are two forms for
such a list.

The first form has a syntax similar to that of a named tuple (see 8.3.8), with a value associated with each
attribute of the stereotype. Optional attributes (multiplicity lower bound of 0) may be omitted. This Alf
syntax only allows for tagged values of a primitive type and only one value per attribute. Therefore, this
form of annotation can only be used for stereotypes with attributes that have one of the standard
primitive types (Boolean, String, Integer, Real Or UnlimitedNatural) and a multiplicity lower
bound of at most 1.

146 Action Language for Foundational UML (ALF), v1.1

The second form of tagged value list is a list of qualified names. In this case, the stereotype must have a
single attribute whose type is a metaclass from the UML abstract syntax. The listed names must be fully
qualified and resolve in model scope for the unit to model elements consistent with the required
metaclass for the stereotype (see 10.2 for the definition of model scope).

Alf also uses the annotation syntax for a limited number of cases other than strict stereotype application,
as shown in Table 10.1. In the case that there are visible stereotypes with the same name as these special
case annotations, then the unqualified names always denote the special cases, not the stereotypes. To
apply the stereotypes, they must be qualified with the name of the profile in which they are defined,
whether or not that would otherwise be necessary.

Table 10.1 Non-Stereotype Annotations

Annotation Applies To Description

Capply (pi,..,Ps) | Package Definition Apply the profiles denoted by the qualified names p.,
..., p.. The names must resolve to profiles.

@primitive Data Type Definition | If applied to a data type, indicates that the data type is
or Activity Definition | to be registered as a primitive data type. The data
type may not have any attributes.

If applied to an activity, indicates that the activity is
instead to be mapped as a primitive behavior. How
the implementation of this primitive behavior is
actually defined is implementation specific.

Definitions marked as primitive may not be templates

or stubs.
Cexternal NamespaceDefinition | Must be applied to a stub declaration. Indicates that
(file=>"...") the stub is to be completed by a subunit

implementation external to the normal UML/AIf
modeling environment. How this implementation is
attached to the UML model and what specific kinds
of namespaces can be annotated as external are tool-
specific. However, the file tag can optionally be
used to give a file reference for the subunit
implementation.

The first special case shown in Table 10.1 is for denoting the application of a profile. For cases other
than the standard UML profiles, such a profile application annotation for the profile must appear before
the stereotypes for the profile are used in stereotype annotations. Once a profile is applied to a unit,
however, it is also available without further application to all subunits of that unit.

10.2 Namespaces

A namespace is a UML element used to provide the definition context for a set of named elements
known as the owned members of the namespace. A package is a UML construct whose primary function
is simply as a namespace for defining other elements (see 10.3). However, a classifier (class, structured

Action Language for Foundational UML (ALF), v1.1 147

data type, enumeration, association, signal or activity) also acts as a namespace for various sub-elements
defined within it (see 10.4). Generally, each kind of namespace has specific restrictions on the kinds of
named elements that can be owned members, as reflected in the Alf notation for them described in
subsequent subclauses.

In UML, an operation is also considered to be a namespace for its parameters, and it can be used as such
in the qualified name for those parameters (see 8.2). However, an operation can only be defined
textually within the context of a class (sees 10.4.2 and 10.5.3). Therefore, the definition of an operation
in Alf is not considered to syntactically be a namespace definition, in the same sense that package and
classifier definitions are. In particular, an operation definition cannot be used as a unit (though an
activity acting as the method for an operation can be used as a subunit completing an operation stub
declaration—see 10.4.8).

Since a namespace is a named element, it may itself be an owned member of an enclosing namespace. In
addition to its owned members, the members of a namespace include the members of any enclosing
namespace (unless hidden by an owned member with the same name). A namespace may also have
members that are imported from other packages.

Syntax

NamespaceDefinition (d: NamespaceDefinition)
= PackageDefinition (d)
| ClassifierDefinition (d)
VisibilityIndicator(v: String)
= ImportVisibilityIndicator (v)
| "protected" (v)

NOTE. The actual definition of specific kinds of named elements allowed in various kinds of
namespaces is given in the following subclauses. However, the syntax and semantics of visibility are
discussed here, because they are largely common across the different kinds of named element
definitions.

DocumentedElement

+documentation : String [*]

|

Member

+ownedMember - i
w—. +name : String ‘Hﬁmnotatlon StereotypeAnnotation
+visibility : String [0..1] 0.1 *

ordered
{ } +isStub : Boolean = false

erarme%.{ NamespaceDefinition

Figure 10.2 Abstract Syntax of Namespace Definitions

Cross References
1. DocumentedElement see 6.6

2. ImportVisibilityIndicator see 10.1

148 Action Language for Foundational UML (ALF), v1.1

3. StereotypeAnnotation see 10.1

4. PackageDefinition see 10.3
5. ClassifierDefinition see 10.4
Semantics

Members

Each kind of namespace definition contains constituent definitions for owned members of the
namespace. The members of a namespace must be distinguishable as specified in the UML
Superstructure, 7.3.34, Namespace. However, in any case that the UML Superstructure considers two
names to be distinguishable if they are different, an Alf implementation may instead impose the stronger
requirement that the names not be conflicting, in the sense defined in 7.6 (of the Alf specification).

Model Scope

All owned members of an Alf namespace must be represented in Alf. However, Alf text may occur in the
context of a larger UML model, not all of which is represented in Alf. In such a case, it is possible from
within the Alf text to refer by name to named elements defined in the wider model context. For any Alf
namespace, the model scope is the innermost namespace enclosing the Alf namespace that is not itself
represented in Alf, if any. If there is no such namespace, then the Alf unit has an empty model scope.

Whether a name is visible in the model scope is expected to be determined using the usual UML
Superstructure rules. At the very least, the names of all members of the model scope namespace should
be visible. However, the management of namespaces at the model scope and any enclosing namespaces
above that is the responsibility of the modeling environment and not otherwise defined in the Alf
specification.

UML does not in general require that a named element be a member of a namespace or that there be
only one hierarchy of namespaces. However, in order to be referenced in an Alf text, any model element
external to that text must be nameable by a qualified name beginning with a name visible in the model
scope.

Visibility
The visibility of a name outside the scope of the namespace owning the named element can be
controlled by placing a visibility indicator on the definition of the named element: one of “public”,

“private” or “protected”. A named element definition with no visibility indicator is considered to
have package visibility.

The visibility of a named element outside its defining scope is as defined in the UML Superstructure,
7.3.55, VisibilityKind.

10.3 Packages

A package is a namespace whose sole function is to group its member elements, which must be
packageable elements. In Alf, the supported kinds of packageable element definitions are just the
namespace definitions for packages and the various kinds of classifiers (see 10.4). Note also that only
packageable elements may be imported into other namespaces (see 10.1).

A packageable element may be fully defined within the textual body of a package definition.
Alternatively, a stub declaration may be given for the element, which includes only the element name
and visibility (and, for an activity, its signature). The full definition of the element is then given in a
subunit definition (see 10.1).

Action Language for Foundational UML (ALF), v1.1 149

Examples

package Ordering
{

public assoc Selects

{

public cart: ShoppingCart[0..*];
public selectedProducts: Product[l..*];
public selectionInfo: ProductSelection;

}

public active class ShoppingCart;
public abstract active class Order;
public class ProductSelection;

}
Syntax

PackageDeclaration (d: PackageDefinition)

= "package" Name (d.name)

PackageDefinition (d: PackageDefinition)

// Base unit

// Nested namespace

// Stub declaration

= PackageDeclaration(d) "{" { PackagedElement (d.ownedMember) } "}"

PackagedElement (m: Member)

= [DocumentationComment (m.documentation)
{ StereotypeAnnotation (m.annotation)
ImportVisibilityIndicator (m.visibility)

PackagedElementDefinition (m: Member)
= NamespaceDefinition (m)
| NamespaceStubDeclaration (m)
NamespaceStubDeclaration (m: Member)
= PackageStubDeclaration (m)
| ClassifierStubDeclaration (m)
PackageStubDeclaration (m: Member)

= PackageDeclaration(m) ";" (m.isStub=true)

NamespaceDefinition

PackageDefinition

Figure 10.3 Abstract Syntax of Package Definitions

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6
3. StereotypeAnnotation see 10.1
4. NamespaceDefinition see 10.2
5. ImportVisibilityIndicator see 10.2
6. ClassifierStubDeclaration see 10.4
150

PackagedElementDefinition (m)

Action Language for Foundational UML (ALF), v1.1

Semantics
The package being defined is the current scope for all packaged element definitions within it.

Stereotype annotations apply to the element defined by the following packaged element definition. Such
annotations have the same semantics as annotations made on a unit definition (see 10.1), except that the
qualified names do not need to be fully qualified and are resolved in the current scope of the enclosing
package, rather than in model scope. If the package element definition is a stub declaration, then the

annotation for a stereotype may be applied either to the stub declaration or the subunit definition, but not
both.

See also the discussion of the semantics for namespaces in general in 10.2.

10.4 Classifiers

10.4.1 Overview

A classifier specifies a classification of instances according to their features. Classifiers may participate
in generalization relationships, which can result in its feature elements being inherited. Alf supports the
following kinds of classifier: classes (including active classes), structured data types, enumerations,

associations, signals and activities. This subclause specifies how each kind of classifier may be defined
in Alf.

Syntax

ClassifierDefinition(d: ClassifierDefinition)

= ClassDefinition (d)

| ActiveClassDefinition (d)

| DataTypeDefinition (d)

| EnumerationDefinition (d)

| AssociationDefinition (d)

| SignalDefinition (d)

| ActivityDefinition (d)
ClassifierDeclaration(d: ClassifierDefinition)

= ClassDeclaration (d)

| ActiveClassDeclaration (d)

| DataTypeDeclaration (d)

| EnumerationDeclaration (d)

| AssociationDeclaration (d)

| SignalDeclaration (d)

| ActivityDeclaration (d)
ClassifierStubDeclaration(d: ClassifierDefinition)

= ClassifierDeclaration(d) ";" (d.isStub=true)
ClassifierSignature(d: ClassifierDefinition)
= Name (d.name) [TemplateParameters(d)]

[SpecializationClause(d.specialization)]
TemplateParameters (d: ClassifierDefinition)
= "<" ClassifierTemplateParameter (d.ownedMember)
{ "," ClassifierTemplateParameter (d.ownedMember) } ">"
ClassifierTemplateParameter (p: ClassifierTemplateParameter)
= [DocumentationComment (p.documentation)] Name (p.name)
[TemplateParameterConstraint (p.specialization)]
(p.visibility="private" and p.isAbstract=true)
TemplateParameterConstraint (gList: QualifiedNameList)
= "specializes" QualifiedName (gList.name)

Action Language for Foundational UML (ALF), v1.1 151

SpecializationClause (qList: QualifiedNameList)
= "specializes" QualifiedNamelList (gList)

NamespaceDefinition
ClassifierDefinition +specialization QualifiedNameList
+isAbstract: Boolean =false | 0..1 0.1

|

ClassifierTemplateParameter

Figure 10.4 Abstract Syntax of Classifier Definitions

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. QualifiedNameList see 9.15
4. NamespaceDefinition see 10.2
5. ClassDefinition see 10.4.2
6. ClassDeclaration see 10.4.2
7. ActiveClassDefinition see 10.4.3
8. ActiveClassDeclaration see 10.4.3
9. DataTypeDefinition see 10.4.4
10. DataTypeDeclaration see 10.4.4
11. AssociationDefinition see 10.4.5
12. AssociationDeclaration see 10.4.5
13. EnumerationDefinition see 10.4.6
14. EnumerationDeclaration see 10.4.6
15. SignalDefinition see 10.4.7
16. SignalDeclaration see 10.4.7
17. ActivityDefinition see 10.4.8
18. ActivityDeclaration see 10.4.8
Semantics

As a namespace, a classifier includes definitions of features as elements. The detailed semantics for each
kind of classifier are described in following sections of this subclause.

152 Action Language for Foundational UML (ALF), v1.1

The semantics of classifiers are primarily static. However, a classifier provides the specification for
creating instances that have execution semantics, as noted in the following sections of this subclause.

Specialization

In general, a classifier may specialize other classifiers of the same kind. That is, classes may specialize
classes, data types may specialize data types, etc. If a classifier specializes one or more other classifiers,
then the names of the classes it specializes are listed in a specialization clause following the keyword

(13 . . 2
specializes .

If a classifier listed in a specialization clause is a template (see below), then it must have a template
binding giving arguments for all template parameters (see 8.2). Alf does not provide a notation for
specializing an uninstantiated template classifier.

A classifier inherits non-private members from the classifiers it specializes. The visibility of inherited
members from the classifiers named in the specialization part is as specified in the UML Superstructure,
7.3.8, Classifier. Further, when used as a type, a classifier conforms to any classifier that it specializes
(see 8.2 for the full definition of type conformance).

Any additional rules related to specialization of specific kinds of classifiers are discussed in the
following subclauses on each kind of classifier.

Template Parameters

Alf provides general notation for the binding of the parameters of the various kinds of templates allowed
by UML (see 8.2). Also also provides a notation for defining templates, but only for template classifiers
whose template parameters are for classifiers. The primary motivation for including this capability in Alf
is to allow for the definition of parameterized types, such as those defined in the Alf standard library
package CollectionClasses (see 11.7), and parameterized behaviors (which are kinds of classes in
UML), such as those defined in the Alf standard library package CollectionFunctions (see 11.6).

A classifier template parameter may optionally be constrained, such that any valid argument for the
parameter must conform to a given classifier. If a parameter is so constrained, then the constraining
classifier is named in a specialization clause for that parameter.

For example, a template class with the signature sorter<T>, then T could be bound to any classifier for
T. However, if the signature was Sorter<T specializes Comparable>, then T could only be legally
bound to a class that was a subclass (directly or indirectly) of the class Comparable.

NOTE. Classifier templates are specified in the UML Superstructure, 17.5.7, with classifier template
parameters described in 17.5.8. For classifier template parameters mapped from Alf, the
allowSubstitutable property is always false.

Within the body of the definition of a classifier with template parameters, the parameters may be used as
types. If a parameter is not constrained, then it is treated as if it was a data type with no attributes or
operations. If the parameter is constrained, then it is considered to be the same kind of classifier as its
constraining classifiers and to specialize the constraining classifier. Template parameters are always
considered to be abstract classifiers that may not be directly instantiated, since any parameter could be
substituted with an actual argument that is abstract. Template parameters are not visible outside of the
classifier definition.

NOTE. The allowance for substituting a classifier template parameter without a constraining classifier
with a classifier of any kind, regardless of the kind of parameterable element the template has, is a
semantic variation point given in UML Superstructure, 17.5.7. This allowance is necessary in order to

Action Language for Foundational UML (ALF), v1.1 153

provide for parameterized types that may be instantiated with any kind of argument type. The notational
default for an unconstrained classifier template parameter is specified in UML Superstructure, 17.5.8, to
be that it is considered to have a parameterable element that is a class. However, presuming, instead, that
it is an abstract data type, as given above, prevents it from being used in places that require a class,
which would result in an ill-formed model if the parameter was substituted with a type other than a
class. There are no instances in the Alf notation in which an abstract data type (with no attributes or
operations) may be used, but some other kind of classifier could not be used in the same place.

When the template classifier is instantiated and its parameters are bound, the result is effectively an
equivalent bound element in which all of the template parameters have been replaced with the arguments
to which they are bound (see 6.3 on the copy semantics of templates). A template parameter without a
constraining classifier may actually be bound to an argument that is any kind of classifier, not just a
class, as long as this would not make the equivalent bound element ill formed. A template parameter
with a constraining classifier must be bound to an argument classifier that conforms to the constraining
classifier.

10.4.2 Classes

A class is a classifier whose instances are objects. The features of a class may include properties (see
10.5.2) and operations (see 10.5.3). (An active class may also have receptions as features—see 10.4.3.)

Examples
abstract class Selection { // Abstract class
public abstract getSelectionValue () : Money;
// Bbstract operation definition
}
class ProductSelection // Concrete subclass

specializes Selection {

private quantity: Count; // Attribute definition
private unitPriceOfSelection: Money;

public select // Operation stub declaration
(in cart: Cart, in product: Product, in quantity: Count);

public getQuantity(): Count ({ // Concrete operation definition
return self.quantity;

}

public getUnitPriceOfSelection(): Money {
return self.unitPriceOfSelection;

}

/** The total value is given by the // Documentation comment
quantity times the unit price. */
public getSelectionValue () : Money { // Redefined operation

return self.getQuantity * self.getUnitPriceOfSelection;
}

}

abstract class Collection<T>{ .. }

154 Action Language for Foundational UML (ALF), v1.1

class MapToString<T> specializes Map<Entry=>T, Value=>String> { }

class Sorter<T specializes Comparable> {

private list: List<T>;
@Create public Sorter () { }
@Create public Sorter(list: List<T>);

public append(elements: List<T>);
public sort();

public getList(): List<T>;

public clear();

}

Syntax
ClassDeclaration(d: ClassDefinition)

= ["abstract" (d.isAbstract=true)] "class" ClassifierSignature (d)
ClassDefinition(d: ClassDefinition)

= ClassDeclaration(d) "{" { ClassMember (d.ownedMember) } "} "

ClassMember (m: Member)
= [DocumentationComment (m.documentation)]
{ StereotypeAnnotation (m.annotation) }
[VisibilityIndicator (m.visibility)] ClassMemberDefinition (m)
ClassMemberDefinition (m: Member)
= ClassifierDefinition (m)
| ClassifierStubDeclaration (m)
| FeatureDefinition (m)
| FeatureStubDeclaration (m)

ClassifierDefinition

ClassDefinition

Figure 10.5 Abstract Syntax of Class Definitions

Cross References

1. DocumentationComment see 7.5.3
2. StereotypeAnnotation see 10.1
3. VisibilityIndicator see 10.2
4. ClassifierDefinition see 10.4.1
5. ClassifierStubDeclaration see 10.4.1
6. ClassifierSignature see 10.4.1
7. FeatureDefinition see 10.5.1
8. FeatureStubDeclaration see 10.5.1

Action Language for Foundational UML (ALF), v1.1 155

Semantics

If the class definition is a subunit definition, then the definition of the namespace owning the class must
include a class stub declaration for the class.

Class Members
The class being defined is the current scope for all class member definitions within it.

The properties of a class define attributes that may take on values of the appropriate type in objects of
the class.

The operations of a class may be invoked on objects of the class using invocation expressions (see
8.3.10). The method for an operation (as representable in Alf) is an activity that provides the behavior
for the operation. The method definition for an operation may either be included in the class definition,
or the class definition may include a stub declaration for the operation, which is then completed in a
subunit (see 10.1). Note that a subunit that completes an operation stub declaration must be an activity
(see 10.4.8).

A class is a namespace (see 10.2), and all its features are namespace members. A class may also define
nested classifiers as namespace members. For purposes of naming, such classifier definitions are
identical to definitions made within a package (see 10.3). However, as members of the classifier
namespace, they have visibility of private members of the classifier that would not be visible outside the
classifier.

For example, activities are kinds of classifiers (see 10.4.8) and can, therefore, have definitions nested
inside a class.

class Singleton {

@Create private Singleton() {}
public activity getSingleton(): Singleton {
instance = Singleton.allInstances/();
if (instance -> isEmpty()) {
instance = new Singleton();

}

return instance([l];

}

In the above example, the activity getSingleton is nested in the class singleton. Because of this, it
has visibility to the private constructor for singleton, which is not visible outside of the class.

Any member definition of a class may be preceded by a documentation comment (see 7.5.3) that is
attached to the element being defined.

A member definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see 10.1), except that the qualified
names do not need to be fully qualified and are resolved in the current scope of the enclosing class,
rather than in model scope. If the class member definition is a stub declaration, then the annotation for a
stereotype may be applied either to the stub declaration or the subunit definition, but not both.

Class Specialization

A class may specialize one or more other classes, in which case it inherits members from the classes it
specializes (its superclasses). Each of the names in the specialization part of a class definition must

156 Action Language for Foundational UML (ALF), v1.1

resolve to a class. The visibility of inherited members from the classes named in the specialization part
is as specified in the UML Superstructure, 7.3.8, Classifier.

All non-private members of superclasses are inheritable, except for operations redefined in the subclass
(see 10.5.3). However, all members of a namespace must be distinguishable. 1t is therefore not legal to
define a class to inherit members that are not distinguishable.

By default, two named elements are distinguishable if they are either different kinds of elements (e.g., a
property as opposed to an operation) or they have different names. However, operations with the same
name may be distinguished if they have different signatures (see 10.5.3). Such operations are said to be
overloaded.

NOTE. Alf does not allow the redefinition of any kinds of class members other than operations, because
this is the only kind of redefinition allowed in the f{UML subset (see fUML Specification, 7.2.2). The
constraint on distinguishability of namespace members is given in 7.3.34 of the UML Superstructure.
The default definition for distinguishability of named elements is given in 7.3.33 of the UML
Superstructure. The rule for the distinguishability for operations is that defined for all behavioral
features in 7.3.5 of the UML Superstructure. Note that there is no special rule for activities, so all
activities in a given namespace must have different names, regardless of their signature (that is, activities
cannot be overloaded).

A subclass inherits non-private nested classes from its superclasses as well as features. Thus, a subclass
of the singleton class given in the example above will inherit the public activity getSingleton, but
not the private constructor.

NOTE. The general rules for inheritance of members are defined for all classifiers in 7.3.8 of the UML
Superstructure. The exclusion of redefined members is given for classes in 7.3.7 of the UML
Superstructure.

A class may be defined to be abstract. An abstract class cannot be instantiated, but it can be used as a
superclass of other classes. Only abstract classes may have abstract operations (see 10.5.3), whether
these operations are directly owned by the class or inherited. A class that is not abstract is known as a
concrete class.

Class Instantiation

An object is created as an instance of a class using an instance creation expression (see 8.3.12). An
object has referential value semantics (see fUML Specification, 8.3.2). That is, the equality of objects is
based on their identity, not on the values of their properties (see also 8.6.6 on the semantics of equality).

10.4.3 Active Classes

An active class is one whose instances (active objects) have independent threads of control. The
independent behavior of an active class is specified by its classifier behavior. When a contrast is
necessary, a class that is non-active may be referred to as a passive class.

An active class may have attributes, operations and nested classifiers, just like a passive class (see
10.4.2). However, only an active class may have receptions (see 10.5.4) as features and only active
objects may receive signals.

NOTE. An activity is a kind of class in UML, but activities are never explicitly declared as active in Alf.
Instead, activities used as operation methods are always mapped as not active, while standalone
activities are always mapped as active (sees 10.4.8 and 19.10).

Action Language for Foundational UML (ALF), v1.1 157

Examples

active class Order { //

public
public
public
public

public
public
public
public
public

dateOrderPlaced: Date; //
totalvalue: Money;
deliveryAddress: MailingAddress;
contactPhone: TelephoneNumber;

receive
receive
receive
receive
receive

CheckOut; //
SubmitCharge;
PaymentDeclined;
PaymentApproved;
OrderDelivered;

} do Order Behavior //

abstract active class ProcessQueue { //

private busy: Boolean = false;

public receive signal Wait { //
public process: Process;

}

public receive signal Release {}

protected abstract enqueue (in process:

protected abstract dequeue(): Process;

protected abstract processesWaiting() :

} do {
while (
accep
if

} e

true) {
t (sig:

1lse {

//

An active class

Attribute definitions

Reception definitions

Classifier behavior stub

Abstract active class

Signal reception definitions

Process); // Abstract operations

Boolean;

In-line classifier behavior

Wait) { // Accept statement for signals
(this.busy) {
this.enqueue (sig.process) ;

sig.process.resume () ;

}

} or
if

} e

accept

(Release) {

(this.processesWaiting()) {
this.dequeue () .resume () ;

1se {

this.busy = false;

}

}

active class ProcessQueuelmpl //
specializes ProcessQueue {

private
private

private
private

158

Concrete active subclass

Concrete operation redefinitions

waitingProcesses: Process[*] ordered;
enqueue (in process: Process); //
dequeue () : Process;
processesWaiting () : Boolean;

Action Language for Foundational UML (ALF), v1.1

}
Syntax

// No additional behavior

ActiveClassDeclaration(d: ActiveClassDefinition)
"active" "class"

= ["abstract" (d.isAbstract=true)

ClassifierSignature (d)

]

ActiveClassDefinition (d: ActiveClassDefinition)
= ActiveClassDeclaration(d) "{" { ActiveClassMember (d.ownedMember) }
"1" ["do" BehaviorClause(d.classifierBehavior)
(d.classifierBehavior.visibility="private")
(d.ownedMember->includes (d.classifierBehavior))]
BehaviorClause (a: ActivityDefinition)

= Block(a.body)

| Name (a.name) (a.isStub=true)

ActiveClassMember (m: Member)

= [DocumentationComment (m.documentation)]
{ StereotypeAnnotation (m.annotation)
[VisibilityIndicator (m.visibility)]

ActiveClassMemberDefinition (m:

Member)

= ClassMemberDefinition (m)
| ActiveFeatureDefinition (m)
| ActiveFeatureStubDeclaration (m)

ClassDefinition
yA

ActiveClassDefinition

0.1

+das$ﬁmBehaWorx0_1

ActivityDefinition

Figure 10.6 Abstract Syntax for Active Class Definitions

Cross References
DocumentationComment
Name

Block
StereotypeAnnotation
VisibilityIndicator
ClassifierSignature
ClassDefinition
ClassMemberDefinition

ActivityDefinition

= 0 ©® 2N kWD -

0. ActiveFeatureDefinition

see 7.5.3
see 7.6
see 9.1
see 10.1
see 10.2
see 10.4.1
see 10.4.2
see 10.4.2
see 10.4.8
see 10.5.1

Action Language for Foundational UML (ALF), v1.1

}

ActiveClassMemberDefinition (m)

159

11. ActiveStubDeclaration see 10.5.1
Semantics
See also the discussion of the general semantics of classes in 10.4.2.

The classifier behavior of an active class is specified as an activity that is a private owned behavior of
the class. This activity may be named in the definition of the active class, in which case the activity must
be separately defined as a subunit of the active class with the given activity name. Alternatively, the
activity may be specified with a block (see 9.1) directly attached to the active class definition. (Note that
in neither case may the activity have parameters.)

An active class may specialize other classes, including passive classes, with the normal inheritance rules
(see 10.4.2). However, a passive class may not specialize an active class.

Since the classifier behavior is always private, it is not inherited by subclasses. However, an instance of
an active class with active superclasses will have the behavior specified for all its superclasses, as well
as any behavior specified for the subclass. The classifier behavior for an active class may only accept
signals for which the class has a reception, either directly or inherited from a superclass (see also 10.5.4
on receptions).

An active class may be abstract (see also 10.4.2), in which case it cannot be instantiated, but it can be
used as the superclass of other active classes.

Active Class Instantiation

An active object is created like any other object using an instance creation expression. However, when
an active object is created, its classifier behavior is automatically started (see 8.3.12).

10.4.4 Data Types

In Alf, the unqualified term data type is always used to refer to a structured data type, not an
enumeration or primitive type. The instances of such a data type are known as data values. The features
of a data type must be properties (see 10.5.2).

Examples

datatype Complex {
public re: Real;
public im: Real;

}
Syntax

DataTypeDeclaration(d: DataTypeDefinition)
= ["abstract" (d.isAbstract=true)] "datatype" ClassifierSignature (d)
DataTypeDefinition (d: DataTypeDefinition)
= DataTypeDeclaration(d) "{" { StructuredMember (d.ownedMember) } "}"
StructuredMember (m: Member)
= [DocumentationComment (m.documentations]
{ StereotypeAnnotation (m.annotations) } ["public" (m.visibility)]
PropertyDefinition (m)

160 Action Language for Foundational UML (ALF), v1.1

ClassifierDefinition

|

DataTypeDefinition

Figure 10.7 Abstract Syntax of Data Type Definitions

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. StereotypeAnnotation see 10.1
4. ClassifierDefinition see 10.4.1
5. ClassifierSignature see 10.4.1
6. PropertyDefinition see 10.5.2
Semantics

If the data type definition is a subunit definition, then the definition of the namespace owning the data
type must include a data type stub declaration for the data type.

Data Type Members

The data type being defined is the current scope for all property definitions within it. As for a class (see
10.4.2), the properties of a data type define attributes that may take on values of the appropriate type in
instances of the data type.

NOTE. Alf does not allow private or protected visibility to be specified for data type attributes. Since
operations and nested classifiers are not allowed on data types, there would be no way to access data
type attributes that are private or protected. Both public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see 10.1), except that the qualified
names do not need to be fully qualified and are resolved in the current scope of the enclosing data type,
rather than in model scope.

Data Type Specialization

A data type may specialize one or more other data types, in which case it inherits attributes from the data
types it specializes (its supertypes). Each of the names in the specialization part of a data type must
resolve to a data type. The visibility of inherited members from the data types named in the
specialization part is as specified in the UML Superstructure, 7.3.8, Classifier.

All non-private attributes of the supertypes are inheritable. However, all attributes of a data type,
whether owned or inherited, must have unique names. It is therefore not legal to define a data type to
inherit attributes with the same name as each other or any defined in the subtype.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML
Superstructure. The default definition for distinguishability of named elements is given in 7.3.33 of the
UML Superstructure.

Action Language for Foundational UML (ALF), v1.1 161

A data type may be defined to be abstract. An abstract data type cannot be instantiated, but it can be
used as a supertype of other data types.

Data Type Instantiation

Like an object, a data value is created as an instance of a data type using an instance creation expression
(see 8.3.12). However, unlike objects, the data values do not have independent identity and two data
values of the same type are considered equal if the values of their corresponding attributes are equal (see
also 8.6.6 on the semantics of equality).

10.4.5 Associations

An association is a classifier that specifies a semantic relationship that may exist between two or more
instances. The instances of an association are known as /inks. The features of an association must all be
properties (see 10.5.2).

Examples
assoc Selection {
public cart: ShoppingCart[0..*]; // Association end definitions
public selectedProduct: Product[l..*];
public selectionInfo: ProductSelection;
}
Syntax
AssociationDeclaration(d: AssociationDefinition)
= ["abstract" (d.isAbstract=true)] "assoc" ClassifierSignature (d)
AssociationDefinition(d: AssociationDefinition)
= AssociationDeclaration(d) "{" StructuredMember (d.ownedMember)

StructuredMember (d.ownedMember) { StructuredMember (d.ownedMember) }

"}"

NOTE. An association must have at least two association ends.

ClassifierDefinition

|

AssociationDefinition

Figure 10.8 Abstract Syntax of Association Definitions

Cross References

1. ClassifierDefinition see 10.4.1
2. ClassifierSignature see 10.4.1
3. StructuredMember see 10.4.4
Semantics

If the association definition is a subunit definition, then the definition of the namespace owning the
association must include an association stub declaration for the association.

162 Action Language for Foundational UML (ALF), v1.1

Association Ends

The association being defined is the current scope for all property definitions within it. The properties of
an association are the association ends whose values are the instances being related by a specific
instance of the association.

NOTE. Per the fUML subset, association ends, as structural features, are always owned by their
association (see fUML Specification, 7.2.2). Alf does not allow private or protected visibility to be
specified for association ends, because there would be no way to access them. Public and package
visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see 10.1), except that the qualified
names do not need to be fully qualified and are resolved in the current scope of the enclosing
association, rather than in model scope.

If an association definition contains an association end that is a composed property, then it must have
exactly two association ends.

NOTE. The UML Superstructure, 7.3.3, requires that a composition association be binary.
Association Specialization

An association may specialize one or more other associations, in which case it inherits association ends
from the associations it specializes (its superassociations). Each of the names in the specialization part
of an association must resolve to an association. The visibility of inherited association ends from the
associations named in the specialization part is as specified in the UML Superstructure, 7.3.8, Classifier.

All non-private association ends of superassociations are inheritable. However, all association ends of an
association, whether owned or inherited, must have unique names. It is therefore not legal to define an
association to inherit association ends with the same name as each other or any defined in the
subassociation.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML
Superstructure. The default definition for distinguishability of named elements is given in 7.3.33 of the
UML Superstructure.

An association may be defined to be abstract. An abstract association cannot be instantiated, but it can
be used as a superassociation of other associations.

Association Instantiation

Links are created and destroyed as instances of an association using the createLink and destroyLink
link operations (see 8.3.13). Links are not themselves values. However, the properties of the links of an
association may be queried using an association read expression (which has the form of a behavior
invocation—see 8.3.9) or a property access expression (for a binary association—see 8.3.6).

10.4.6 Enumerations
An enumeration is a classifier whose allowed instances are a specified set of enumeration literals.

Examples
enum TrafficLightColor { RED, YELLOW, GREEN }

Action Language for Foundational UML (ALF), v1.1 163

Syntax

EnumerationDeclaration (d: EnumerationDefinition)
= "enum" Name (d.name) [SpecializationClause(d.specialization)]
EnumerationDefinition(d: EnumerationDefinition)
= EnumerationDeclaration(d) "{" EnumerationLiteralName (d.ownedElement)
{ "," EnumerationLiteralName (d.ownedElement) } "}"
EnumerationLiteralName (m: EnumerationLiteralName)
= [DocumentationComment (m.documentation)]
Name (m.name) (m.visibility="public")

NOTE. Enumerations cannot have template parameters, since there would not be any way to use them
within the enumeration definition.

ClassifierDefinition Member
EnumerationDefinition EnumerationLiteralName

Figure 10.9 Abstract Syntax of Enumeration Definitions and Enumeration Literal Names

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. Member see 10.2
4. ClassifierDefinition see 10.4.1
5. SpecializationClause see 10.4.2
Semantics

If the enumeration definition is a subunit definition, then the definition of the namespace owning the
enumeration must include an enumeration stub declaration for the enumeration.

Enumeration Literals

The enumeration being defined is the current scope for all enumeration literal names defined within it.
Enumeration literals are the only members allowed for an enumeration.

NOTE. Alf assumes public visibility for all enumeration literals.

Enumerations are not actually instantiated, but, rather, their enumeration literals are simply referenced
by name (see 8.3.3).

Enumeration Specialization

An enumeration may specialize one or more other enumerations, in which case it inherits enumeration
literals from the enumerations it specializes (its supertypes). Each of the names in the specialization part
of an enumeration must resolve to an enumeration. The visibility of inherited members from the
enumerations named in the specialization part is as specified in the UML Superstructure, 7.3.8,
Classifier.

164 Action Language for Foundational UML (ALF), v1.1

All enumeration literals of the supertypes are inheritable. However, all enumeration literals of an
enumeration, whether owned or inherited, must have unique names. It is therefore not legal to define an
enumeration to inherit members with the same name as each other or any defined in the subtype.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML
Superstructure. The default definition for distinguishability of named elements is given in 7.3.33 of the
UML Superstructure. Since an enumeration is not actively instantiated, there is no reason to be able to
define one as abstract.

10.4.7 Signals

A signal is a classifier whose instances may be sent asynchronously (see 8.3.10) to an active object (see
also 10.4.3). The ability for an object to receive a certain signal is specified using a reception declaration
in the class of the object (see 10.5.4). The features of a signal must all be properties (see 10.5.2).

Examples
signal SubmitCharge {
public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;
public cardExpirationDate: MonthYear;
public cardholderName: PersonalName;
}
Syntax
SignalDeclaration(d: SignalDefinition)
= ["abstract" (d.isAbstract=true)] "signal" ClassifierSignature (d)
SignalDefinition(d: SignalDefinition)
= SignalDeclaration(d) "{" { StructuredMember (d.ownedMember) } "}"
ClassifierDefinition

|

SignalDefinition

Figure 10.10 Abstract Syntax of Signal Definitions

Cross References

1. ClassifierDefinition see 10.4.1
2. ClassifierSignature see 10.4.1
3. StructuredMember see 10.4.4
Semantics

If the signal definition is a subunit definition, then the definition of the namespace owning the signal
must include a signal stub declaration (or signal reception stub declaration—see 10.5.4) for the signal.

Signal Attributes

The signal being defined is the current scope for all property definitions within it. The properties of a
signal are the attributes of the signal whose values in an instance of the signal are data that is transmitted
by sending the signal.

Action Language for Foundational UML (ALF), v1.1 165

NOTE. Alf does not allow private or protected visibility to be specified for attributes of a signal,
because there would be no way to access them. Public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see 10.1), except that the qualified
names do not need to be fully qualified and are resolved in the current scope of the enclosing signal,
rather than in model scope.

Signal Specialization

A signal may specialize one or more other signals, in which case it inkerits attributes from the signals it
specializes (its supersignals). Each of the names in the specialization part of a signal must resolve to a
signal. The visibility of inherited members from the signals named in the specialization part is as
specified in the UML Superstructure, 7.3.8, Classifier.

All non-private attributes of the supersignals are inheritable. However, all attributes of a signal, whether
owned or inherited, must have unique names. It is therefore not legal to define a signal to inherit
attributes with the same name as each other or any defined in the subsignal.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML
Superstructure. The default definition for distinguishability of named elements is given in 7.3.33 of the
UML Superstructure.

A signal may be defined to be abstract. An abstract signal cannot itself be sent (see 8.3.10), but it can be
used as a supersignal of other signals.

Signal Instantiation

Signals are implicitly instantiated as part of the asynchronous feature invocation of a reception (see
8.3.10). Such instances may be received using an accept statement (see 9.15). Once received, the
attributes of a signal instance (if any) may be accessed just like the properties of any other kind of
instance (see 8.3.6).

10.4.8 Activities

An activity is “the specification of parameterized behavior as the coordinated sequencing of subordinate
units whose individual elements are actions” (UML Superstructure, 12.3.4). It is the fundamental
mechanism for behavioral modeling in Alf.

Activities are namespaces (see 10.2) that may be defined as Alf units (see 10.1). Activities may also be
implicitly defined by the in-line specification of behavior for active classes (see 10.4.3) or operations
(see 10.5.3).

In UML, activities are also classes (see UML Superstructure, 12.3.4) and so may have attributes,
operations and specialization. However, for simplicity, Alf does not provide a textual notation for
features and specializations on activities. Instead, an active class may be used to model structural
features along with a related behavior (see 10.4.3).

Examples

activity getNodeActivations
(in node: ActivityNode): ActivityNodeActivation[*] {
return this.activations -> select a (a.node == node);

166 Action Language for Foundational UML (ALF), v1.1

activity execute()
{ //@parallel
{ 'activity' = (Activity) (this.types[1l]);
{ group = new ActivityNodeActivationGroup () ;
group.activityExecution = this;

this.activationGroup = group;
group.activate('activity'.node, 'activity'.edge);

}

activity Order Behavior() {
accept (checkout: Checkout);
this.establishCustomer (checkout) ;

do {

accept (chargeSubmission: SubmitCharge);
this.processCharge (chargeSubmission) ;

accept (PaymentDeclined) {
declined = true;
this.declineCharge () ;

} or accept (PaymentApproved) {
declined = false;

}
} while (declined);

this.packAndShip () ;

accept (OrderDelivery);

this.notifyOfDelivery () ;
}

Syntax

ActivityDeclaration(d: ActivityDefinition)
= "activity" Name (d.name) [TemplateParameters(d)] FormalParameters (d)
[ReturnParameter (d.ownedMember)]
ActivityDefinition(d: ActivityDefinition)
= ActivityDeclaration(d) Block (d.body)
FormalParameters (d: NamespaceDefinition)
= "(" [FormalParameterList(d)] ")"
FormalParameterList (d: NamespaceDefinition)
= FormalParameter (d.ownedMember) { "," FormalParameter (d.ownedMember) }
FormalParameter (p: FormalParameter)
= [DocumentationComment (p.documentations)]
{ StereotypeAnnotation(p.annotations) }
ParameterDirection (p.direction) Name (p.name) ":"

TypePart (p)
ParameterDirection(dir: String)
= "in" (dir) | "out" (dir) | "inout" (dir)

Action Language for Foundational UML (ALF), v1.1 167

ReturnParameter (p: FormalParameter)
= ":" TypePart(p) (p.direction="return")

ClassifierDefinition TypedElementDefinition
ActivityDefinition FormalParameter
+direction : String
0.1

Figure 10.11 Abstract Syntax of Activity Definitions and Formal Parameters

Cross References

1. Block see 9.1

2. ClassifierDefinition see 10.4.1
3. TypePart see 10.5.2
4. TypedElementDefinition see 10.5.2
Semantics

Formal Parameters

The definition of an activity includes the names and types of any in, out and inout parameters, as well
as, optionally, the type of a single return parameter. The activity acts as the namespace for its parameters
(but parameters are not packageable elements and, therefore, cannot be imported; see 10.3). Return
parameters cannot be named in Alf. The type part of a formal parameter definition statically specifies the
type and multiplicity of the formal parameter in the same way as for a property (see 10.5.2).

A formal parameter may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see 10.1), except that the qualified
names do not need to be fully qualified and are resolved in the current scope of the enclosing activity,
rather than in model scope.

Activities as Units

An activity definition can either be a model unit in itself or a subunit of another Alf unit. As a subunit,
an activity definition may complete a stub declaration for an activity as a nested classifier (see 10.4.2),
as the classifier behavior of an active class (see 10.4.3) or as the method of an operation (see 10.5.3).

An activity definition that completes a classifier behavior declaration may not be a template and may not
have any parameters. An activity definition that completes an operation also may not be a template but
must have formal and return parameters (if any) that match exactly, in order, the parameters of the
operation in direction, name, type and multiplicity. An activity definition that completes a nested activity
stub must also match the parameters of the stub, as for an operation. (The type name of a parameter of
an activity does not need to lexically match exactly that of the corresponding operation parameter, but

168 Action Language for Foundational UML (ALF), v1.1

the activity parameter type name must resolve to the same classifier as the corresponding parameter of
the operation, or the activity and operation parameters must both be untyped.)

Note also that any stereotype annotations made on an activity definition subunit (see 10.1) that
completes an operation maps to a stereotype on the method for that operation, not the operation itself.
Stereotype annotations for the operation itself (such as ecreate for a constructor or ebestroy for a
destructor) must be made on the operation stub declaration (see 10.4.2).

Local and Parameter Names

An activity can introduce /ocal names for elements within it. Such named elements are not namespace
elements of the activity. Local names are used in Alf to denote intermediate values in computations
within an activity. The scope of such local names is generally from the point at which they are defined
lexically to the end of the containing activity. However, the local names defined in an activity are never
visible outside that activity. (See also the discussion of local names in subclauses 8.1 and 9.1.)

The names of the parameters of an activity are not technically local names, since they are owned
namespace members of the activity. However, they are used within the body of an activity in much the
same way as local names. Further, while parameter names may be qualified with the name of the
activity, this is not required, meaning that they are generally written as unqualified names, again much
like local names.

An in parameter may be referenced by name within the body of an activity (see 8.3.3), but it cannot be
reassigned. It is treated similarly to a local name whose assigned source is always given by its input
value at the start of the execution of an activity.

Both out and inout parameters, on the other hand, may be referenced and assigned (see 8.8) within the
body of an activity. An out parameter is initially unassigned, while an inout parameter is initially
assigned its input value at the start of the execution of an activity. The values returned for these
parameters by the activity are from their final assigned sources. If an out parameter has a multiplicity
lower bound greater than 0, then it must have an assigned source after the last statement in the block
given in the activity definition.

Activity Execution

An activity may be executed as the classifier behavior of an active class (see 10.4.3), as an operation
method (see 10.5.3) or as a stand-alone behavior in its own right. A classifier behavior is automatically
started asynchronously when an instance of the class that owns it is created (see 8.3.12). A stand-alone
activity can also be started asynchronously by instantiating it as a class, as long as it does not have
parameters (see 8.3.12), or it can be called synchronously using a behavior invocation (see 8.3.9). An
operation method can only be called synchronously (see 8.3.10).

However it is invoked, an activity is then executed by executing the block given in its definition (see
9.1). That is, each of the statements in the block are executed sequentially in order, and the activity
terminates once the last statement in the block completes execution or if a return statement is executed
(see 9.14). If the activity has a return parameter with a multiplicity lower bound greater than 0, then it
must be statically determinable that the activity will terminate by the execution of a return statement.

Action Language for Foundational UML (ALF), v1.1 169

10.5 Features

10.5.1 Overview

A feature declares a behavioral or structural characteristic of the instances of a classifier. A structural
characteristic is declared using a property (see 10.5.2). A behavioral characteristic is declared using an
operation (see 10.5.3) or (for an active class) a reception (see 10.5.4).

Syntax

FeatureDefinition (m: Member)

= AttributeDefinition (m)

| OperationDefinition (m)
FeatureStubDeclaration (m: Member)

= QOperationStubDeclaration (m)
ActiveFeatureDefinition (m: Member)

= ReceptionDefinition (m)

| SignalReceptionDefinition (m)
ActiveFeatureStubDeclaration (m: Member)

= SignalReceptionStubDeclaration (m)

Cross References

1. Member see 10.2

2. AttributeDefinition see 10.5.2
3. OperationDefinition see 10.5.3
4. OperationStubDeclaration see 10.5.3
5. ConstructorDefinition see 10.5.3.1
6. ConstructorStubDeclaration see 10.5.3.1
7. DestructorDefinition see 10.5.3.2
8. DestructorStubDeclaration see 10.5.3.2
9. ReceptionDefinition see 10.5.4
10. SignalReceptionDefinition see 10.5.4

11. SignalReceptionStubDeclaration see 10.5.4
Semantics

See the discussion of the semantics of each kind of feature in subsequent subclauses.

10.5.2 Properties

A property is a structural feature of a classifier. The attributes of classes, data types and signals are
properties, as are the association ends of an association.

Example

amount: Money = 0;

products: Product [1l..*] ordered;
wheels: compose Wheel [2..4];

position: Point = new(0,0);

170 Action Language for Foundational UML (ALF), v1.1

colors: Set<Color> = { Color::red, Color::blue, Color::green };

Syntax

PropertyDefinition(d: PropertyDefinition)

= PropertyDeclaration(d) ";"
AttributeDefinition (d: PropertyDefinition)

= PropertyDeclaration(d) [AttributeInitializer(d.initializer)
AttributeInitializer (e: Expression)

= "=" InitializationExpression (e)
PropertyDeclaration(d: PropertyDefinition)

= Name (d.name) ":" ["compose" (d.isComposite=true)] TypePart (d)
TypePart (d: TypedElementDefinition)

= TypeName (d.typeName) [Multiplicity(d)]
Multiplicity(d: TypedElementDefinition)

= MultiplicityRange (d) [OrderingAndUniqueness (d)]
OrderingAndUniqueness (d: TypedElementDefinition)

= "ordered" (d.isOrdered=true) ["nonunique" (d.isNonunique=true)]

| "nonunique" (d.isNonunique=true) ["ordered" (d.isOrdered=true) |

| "sequence" (d.isOrdered=true and d.isNonunique=true)
MultiplicityRange (d: TypedElementDefinition)

= MultiplicityIndicator (d.upperBound="*")

| "[" [DecimallLiteral (d.lowerBound) ".."]

UnlimitedNaturalliteral (d.upperBound) "]1"

UnlimitedNaturallLiteral (v: String)

= DecimalLiteral (v)

| UnboundedValueLiteral (v)

] w.mn

Member

TypedElementDefinition

+lowerBound : String [0..1] +typeName o
+upperBound : String = "1" — yp . QualifiedName
+isOrdered : Boolean = false - -
+isNonunique : Boolean = false

T

PropertyDefinition

+isComposite : Boolean = false

0..1

+initializer | 0..1

Expression

Figure 10.12 Abstract Syntax of Property Definitions

Cross References
1. Name see 7.6

2. NaturalLiteral see 7.8.3

Action Language for Foundational UML (ALF), v1.1 171

3. UnboundedValueLiteral see 7.8.4
4. Expression see 8.1

5. QualifiedName see 8.2
6. TypeName see 8.2
7. InitializationExpression see 9.6

8. Member see 10.2
Semantics

Property Definition
The classifier that owns a property provides the current scope for naming in the property definition.

The property definition statically specifies the type and multiplicity associated with the property name.
If the property type is given by a qualified name, then this name must resolve to a classifier. This
classifier may not be a template, though it may be the binding of a template classifier with arguments
provided for all template parameters.

Alternatively, a property may by untyped. An untyped property is indicated by using the keyword any in
place of a classifier name.

The type of a property restricts the values that may be held by the property to instances of the given
type. If the property is untyped, there are no restrictions on the value the property may hold.

The multiplicity of a property specifies the upper and lower bounds of the cardinality of values a
property may have in any one instance of its owning classifier. If no multiplicity is specified for a
property, the default multiplicity is [1..17]. If only a single bound is specified, then this is considered to
be both the upper and lower bound, except in the case of a multiplicity specified as [*], which is
equivalent to [0..*]. A multiplicity specification of [] (that is, brackets with no explicit bounds) is also
considered equivalent to [0..*].

By default, a property with a multiplicity upper bound greater than 1 is considered to be unordered and
non-unique. However, this default may be overridden by using the keywords ordered and/or nonunique
in the property definition.

The Alf notation for properties is thus similar to the usual notation used in UML diagrams. For example,
the property definition

items: Item [0..*] ordered nonunique;

declares a property that can hold zero or more objects of type Item in an ordered sequence. If the
multiplicity is [0..*], then a shorter form can also be used in which the range 0. . * is implicit:

items: Item|[] ordered nonunique;

In addition, the single keyword “sequence” may be used in place of the combination of the two
keywords “ordered” and “nonunique”. Thus, the following is also equivalent to the declarations above:

items: Item[] sequence;
Composition

If a property definition includes the keyword “compose”, then it is considered to be a composition of the
values it holds. This has semantic implications when an instance of the owning classifier of the property
is destroyed (see 10.5.3.2).

172 Action Language for Foundational UML (ALF), v1.1

For example, consider the class

class C {
public a: A = new A();
public b: compose B = new B();

}

When an instance of class c is destroyed, the object it holds for attribute b will also be automatically
destroyed, but the object it holds for attribute a will not.

Composition properties can also be included in association definitions. For example:

assoc R {
public c: C;
public d: compose D;

}

Note that (per UML Superstructure, 7.3.3) the composition annotation is on the part end of the
composite association. That is, in the above association, c is the composite while d is the part. Thus,
when an instance of class c is destroyed, if there is a link of association r with that object at one end,
then that link and the instance of D at the other end will also be destroyed.

NOTE. Alf provides no notation for shared aggregation, since this has no semantic effect. However,
properties specified outside of Alf notation with aggregation=shared are treated the same way as
properties with aggregation=none.

Attribute Initialization

The attributes of a class are properties (see 10.4.2). However, unlike the case of other property
definitions, Alf provides a notation for the initializer of an attribute, which is an expression that is
evaluated every time the class containing the attribute is instantiated, with the result being assigned to
the attribute. The enclosing class is the current scope for names in the expression. The evaluation of
initializers is carried out as part of the execution of the creation of a newly instantiated object (see 8.3.12
on the creation of objects and 10.5.3.1 on constructors).

NOTE. The fUML subset does not include default values for properties (see fUML Specification, 7.2.2).
However, the evaluation of attribute initializer expressions in Alf are mapped as part of the constructor
for the enclosing class that owns the attribute, which can be executed within the f{UML subset. The
attribute initializers themselves do not need to be referenced during model execution.

Instance creation (see 8.3.12) and sequence construction (see 8.3.15) expressions use as initializers may
be written in the shorthand initialization expression form, as for a local name declaration statement (see
9.6). For example, the attribute definition

position: Point = new(0,0);

1s equivalent to

position: Point = new Point (0,0);

and the attribute definition

colors: Set<Color> = { Color::red, Color::blue, Color::green };
is equivalent to

colors: Set<Color> = Set<Color>{ Color::red, Color::blue, Color::green };

Action Language for Foundational UML (ALF), v1.1 173

10.5.3 Operations

An operation is a behavioral feature of a class that provides the specification for invoking an associated
method behavior. Only classes may have operations as features. An operation is called on an instance of
a class that has it as a feature using an invocation expression (see 8.3.10).

Examples

// BAbstract operation
abstract select(in cart: Cart, in product: Product, in quantity: Count);

// In-line definition

select (in cart: Cart, in product: Product, in quantity: Count) {
Selects.createlink (cart, product, this);
this.quantity = quantity;
this.unitPriceOfSelection = product.getUnitPrice();

}

// Stub declaration
unitPrice () : Money redefines Selection::getUnitPriceOfSelection;

Syntax

OperationDeclaration(d: OperationDefinition)
= ["abstract" (d.isAbstract=true)] Name (d.name)
FormalParameters (d.ownedMember) [ReturnParameter (d.ownedMember) |
[RedefinitionClause (d.redefinition)]
OperationDefinition(d: OperationDefinition)
= OperationDeclaration(d) Block (d.body)
OperationStubDeclaration (d: OperationDefinition)
= OperationDeclaration(d) ";" (d.isStub=not d.isAbstract)
RedefinitionClause (gList: QualifiedNameList)
= "redefines" QualifiedNameList (gList)

NamespaceDefinition
OperationDefinition +body |Block
+isAbstract : Boolean =false | (.1 0..1
0.1

+redefinition [0..1

QualifiedNamelList

Figure 10.13 Abstract Syntax of Operation Definitions

Cross References

1. Name see 7.6
2. Block see 9.1
3. QualifiedNameList see 9.15
4. NamespaceDefinition see 10.2

174 Action Language for Foundational UML (ALF), v1.1

5. FormalParameters see 10.4.8

6. ReturnParameter see 10.4.8
7. TypePart see 10.5.2
Semantics

Operation Signature

The definition of an operation includes the names and types of any in, out and inout parameters, as
well as, optionally, the type of a single return parameter. The operation acts as the namespace for its
parameters (but parameters are not packageable elements and, therefore, cannot be imported; see 10.3).
Return parameters cannot be named in Alf. The type part of a formal parameter definition statically
specifies the type and multiplicity of the formal parameter in the same way as for a property (see
10.5.2).

The signature is the list of types of the parameters of an operation, in the order of the parameters. If an
operation has a return parameter, it is always listed after any other parameters. The directions (in, out,
inout, return) of the parameters are not considered part of the operation signature.

A formal parameter may also have one or more stereotype annotations applied to it. Such annotations
have the same semantics as annotations made on a unit definition (see 10.1), except that the qualified
names do not need to be fully qualified and are resolved in the current scope of the enclosing activity,
rather than in model scope.

Operation Distinguishability

Two operations are considered distinguishable within the same namespace if they have different names
or different signatures. It is illegal to define two indistinguishable operations within the same class.

For example:

class C {
f (in x: Integer)
f (in x: Boolean)
f (in x: Integer)
f (out x: Integer

: Integer;

: Integer; // Legal, different parameter type.

: Boolean; // Legal, different return type.

): Integer; // Illegal! Parameter types are the same.

}

The first three operations above are distinguishable, even though they have the same name. They are
said to be overloaded. The last operation, however, has the same signature as the first one, and is
therefore illegal in the same class.

NOTE. The rule for distinguishability of operations is defined in general for behavioral features in 7.3.5
of the UML Superstructure. The requirement for distinguishability of namespace members is given in
7.3.34 of the UML Superstructure.

Operation Redefinition

It is also illegal to inherit an operation that is not distinguishable from all other owned and inherited
operations of a class (see also 10.4.2). However, an operation from a superclass that is redefined in a
subclass is not considered to be inherited into the subclass. It is therefore legal for the redefining
operation to have the same name and signature as the operation it redefines.

In Alf, if an operation is defined in a subclass that is indistinguishable from an operation that would
otherwise be inherited from a superclass, then the subclass operation is instead considered to redefine

Action Language for Foundational UML (ALF), v1.1 175

the superclass operation. If there are multiple indistinguishable operations inheritable from different
superclasses, then the redefining operation is considered to redefine them all.

It is also possible to explicitly specify an operation redefinition. In this case, the name of the redefining
operation may be different than the name of the redefined operation. Each qualified name in the
redefinition clause in the declaration of the redefining operation must resolve to a visible operation of a
superclass that is consistent with the redefining operation being declared, as specified in UML
Superstructure, 7.3.36, Operation.

For example, in the following class definitions:
class A { p(in x: Integer); }
class B (p(in x: Integer); }

class C specializes A,B { p(in x: Integer); }

the final class definition is equivalent to

class C specializes A,B {
p(in x: Integer) redefines A::p, B::p;
}

Note that, in this case, it would be illegal to redefine only one of a: :p and B: : p with an
indistinguishable operation, since then the other superclass operation would still be inherited and would
conflict with the redefining operation in c.

In the case of the explicit definition, it would also be possible to give the operation in ¢ a different name:

class C specializes A,B {
renamed (in x: Integer) redefines A::p, B::p;

}

Note that, in this case, the operations A: :p and B: :p are still not inherited by c—c has no operation
called p. On the other hand, in
class C specializes A,B {

renamed (in x: Integer) redefines A::p;

}

only a: :p is redefined in C, as renamed, and B: :p is, therefore, still inherited. But there is no name
conflict, and ¢ will have both an operation called renamed and an inherited operation called p.

NOTE. The rule for consistency between redefined and redefining operations is given in 7.3.36 of the
UML Superstructure. The general UML rule is that the types of the redefining operation must conform
to the types of the redefined operation. Unfortunately, this does not take into account the directions of
the parameters. Alf requires that the redefining operation have parameters with the same types and
directions as the redefined operation.

Operation Method

An operation is called using an invocation expression (see 8.3.10). The behavior of an operation is given
by its method.

The method for an operation is specified as an activity that is a private owned behavior of the class (note
that the method visibility is separate from the operation visibility). The operation may have a stub
declaration, in which case its method must be separately defined as an activity subunit of the class
owning the operation. Alternatively, the method may be specified using a block (see 9.1) in-line with the
operation definition. The names of parameters defined in the operation declaration are visible (as local

176 Action Language for Foundational UML (ALF), v1.1

names) within all constituent parts of the block in this case. As for an activity definition (see 10.4.8), if
an out parameter has a multiplicity lower bound greater than 0, there must be an assigned source for it
after the last statement of the block, and, if the operation has a return parameter with multiplicity lower
bound greater than 0, then it must be statically determinable that execution of the block will terminate
via a return statement.

The method of a redefining operation in a subclass overrides the methods of the operations it redefines.
That is, when any of the redefined superclass operations are invoked on an instance of the subclass, it is
the overriding method in the subclass that is executed, not the superclass method (see 8.3.10).

An abstract operation does not have a method. However, such an operation may be redefined in a
subclass by a concrete operation with a method. Only abstract classes may have abstract operations (see
10.4.2). A concrete class that has superclasses with abstract operations must redefine all those operations
to be concrete.

10.5.3.1 Constructors

A constructor is an operation, specially identified using the ecreate stereotype annotation (see 10.1),
and used to initialize a newly created object. The constructor to be used for this purpose is given in the
instance creation expression that creates the object (see 8.3.12).

NOTE. Constructor operations are discussed in the UML Superstructure specification primarily in the
context of composite structure (see UML Superstructure, 9.3.1). However, the «Create» stereotype is
generally available to annotate a constructor operation (see UML Superstructure, C.1). An Alf
constructor maps to an operation with this stereotype. Strictly, the use of this stereotype is outside the
fUML subset. However, the stereotype is only used to signal that the annotated operation may be used in
an instance creation expression. The actual mapping for an instance creation expression results in a
create object action with a regular operation call on the constructor, which may be executed within the
fUML subset (see 8.3.12).

Examples
@Create public Table(in rows: Integer, in columns: Integer);

@Create
public ProductSelection
(in cart: Cart, in product: Product, in quantity: Count);

@Create

private registered() {
Repository::get () .register (this);

}

Semantics

Default Constructors

Every class represented in Alf notation (see 10.4.2) is always mapped as having at least one constructor.
If no constructor is explicitly defined for the class, then the class is assumed to have a default
constructor. The name of the default constructor is the same as the name of the class.

NOTE. This means that the instantiation of a class defined using Alf textual notation is never
“constructorless” as defined in 8.3.12.

The behavior of the default constructor is to initialize any attributes owned by the class of a newly
created object that have initializers in their definition (see 10.5.2). Such initialization has the semantics

Action Language for Foundational UML (ALF), v1.1 177

of an assignment of the expression to the attribute (see 8.8). Attributes are initialized in the order in
which they are defined in the class.

Note that an attribute initializer expression may refer to attributes within the same class, including the
attribute being initialized. This means that the attribute being initialized and attributes defined later than
the attribute being initialized may be used before they are themselves initialized. Such uninitialized
attributes will be empty, which may violate the multiplicity lower bounds given in their definitions.

For example, consider the following class definition.

class Initialization {
public a: Integer = this.b -> size();
public b: Integer = 1;
}
An object created with the expression new Initialization () has a with value 0 (since b has not been
initialized yet) and b with value 1.

Explicit Constructors

An explicit constructor definition has the same syntax as a regular operation definition, with the
stereotype annotation @Create. An explicit constructor may have the name of its class, like a default
constructor. However, it may also have a different name than that of its class, in which case the
constructor is explicitly identified by name when used in an instance creation expression (see 8.3.12).

If a class has an explicit constructor definition, then the default constructor is no longer available, even
if the defined constructor has a different name than the default constructor.

A constructor may also have parameters, but no return type is explicitly given. Implicitly, every
constructor has the class it is constructing as its return type. This implicit return type is included in the
signature for the constructor.

A class may have more than one constructor, any of which may be used in an instance creation
expression for objects of the class.

As operations, non-private constructors are inheritable and the usual distinguishability rules apply (see
10.5.3). Note that constructors from different classes are always distinguishable, though, because at least
their return types will be different.

Unlike a normal operation, a constructor may not be redefined in a subclass. Only a constructor directly
owned by a class may be used in an instance creation expression for an instance of the class (see 8.3.12).

When an object is initialized using an explicit constructor, the default constructor attribute initialization
behavior (as described above) is always performed before the explicit constructor behavior. For
example, suppose the above example were modified as shown below.

class Initialization {

public a: Integer;
public b: Integer = 1;

@Create public Initialization() {
this.a = this.b -> size();
}
}

The creation expression new Initialization () now results in an object having a with value 1, since
attribute b is initialized before the body of the constructor is executed.

178 Action Language for Foundational UML (ALF), v1.1

The body of a constructor may contain an alternative constructor invocation for another constructor in
the same class or super constructor invocations for constructors in immediate superclasses. The syntax
for such invocations is the same as a normal operation invocation (sees 8.3.10 and 8.3.11). In addition,
only within a constructor body, the symbol “this” may be used as an alternative constructor invocation
target, with the same meaning as invoking a constructor with the same name as the class. If the class has
exactly one superclass, then the symbol “super” may also be used as a super constructor invocation
target, with the same meaning as invoking a constructor on the superclass with the same name as the
superclass.

For example, the following class definition contains an explicit invocation of one of its own constructors
and one from its superclass.
class B specializes A {
@Create public B(in x: Integer) {
super.A(x);

}

@Create public B() {
this.B(x);
}
}

Using the special invocation syntax allowed in constructors, this could also be written as follows.

class B specializes A {
@Create public B(in x: Integer) {
super (x) ;

}

@Create public B() {
this (x);
}
}

An alternative constructor invocation may only occur as the first statement of the body of a constructor
(as specified in the static semantics for feature invocation expressions in 8.3.10). Super constructor
invocations must all occur at the beginning of the body of a constructor, with no other statements
preceding them, and no more than one invocation for each superclass (as specified in the static
semantics for super invocation expressions in 8.3.11).

In the absence of explicit constructor invocations at the start of a constructor body (and also in the case
of the default constructor behavior), a super constructor invocation is made implicitly for each
immediate superclass, in the order the superclasses appear in the specializes list of the class
containing the constructor, before executing any statements in the constructor body. If the constructor
body begins with explicit superclass constructor invocations for some but not all superclasses of the
class containing the constructor, then super constructor invocations are made implicitly for all
remaining superclass, before executing any statements in the constructor body.

If a class has multiple superclasses, then it is possible that these superclasses may themselves have one
or more common ancestor classes (this is sometimes referred to as “diamond inheritance”). In this case,
the above rules may result in the same constructor of a common ancestor class being called more than
once or more than one constructor from the same common ancestor class being called. However, once a
constructor from a class is called on an object, that object is considered to be initialized for that class. If
another call is made, either explicitly or implicitly, on an object using any constructor from a class for

Action Language for Foundational UML (ALF), v1.1 179

which the object is already initialized, then that constructor has no further effect: no default initialization
is carried out, no implicit super constructor calls are made and the body of the constructor is not
executed.

10.5.3.2 Destructors

A destructor 1s an operation, specially identified using the @pestroy stereotype annotation (see 10.1),
used to clean up an object that is to be destroyed. A call to a destructor not only invokes the destructor’s
behavior, but also results in the actual destruction of the object (see the semantics of destructor
invocation under subclauses 8.3.10 and 8.3.11).

NOTE. The UML Superstructure specification defines the «bestroy» stereotype to annotate a
destructor operation (see C.1). An Alf destructor maps to an operation with this stereotype. Strictly, the
use of this stereotype is outside the fUML subset. However, the stereotype is only used to signal that the
annotated operation may be used in an instance destruction expression. The actual mapping for an
instance destruction expression results in a regular operation call on the destructor, which may be
executed within the fUML subset, followed by a destroy object action (sees 8.3.10 and 8.3.11).

Examples
@Destroy public ProductSelection();

@Destroy

private unregister () {
Repository::get () .unregister (this);
super.destroy () ;

}
Semantics

Default Destructors

Every class represented in Alf notation (see 10.4.2) is always mapped as having at least one destructor. If
no destructor is explicitly defined for the class, then the class is assumed to have a default constructor.
The name of the default destructor is “destroy”.

NOTE. This means that a call to the default destructor destroy is always an explicit destructor call, not
an implicit destructor invocation as defined in 8.3.10.

The behavior of the default destructor is to first call the destructor destroy () (i.e., with no arguments)
on any immediate superclasses (if such exists), in the order in which those superclasses are given in the
specializes list for the class of the object being destroyed. The destroy () destructor (if it exists) is
then called on any object that is the value of a composite attribute or on the opposite end of a composite
association. Destructors are called on attributes in the order in which they are defined in the class of the
object being destroyed. The order in which destructors are called on objects related by composite
association is not specified.

Explicit Destructors

An explicit destructor definition has the same syntax as a regular operation definition, with the
stereotype @Destroy. The name of the destructor may then be used in an invocation expression to
destroy an object of the class (see 8.3.10).

If a class has an explicit destructor definition, then the default destructor is no longer available, even if
the defined destructor has a different name than destroy.

A destructor may also have parameters, but may not have a return parameter.

180 Action Language for Foundational UML (ALF), v1.1

A class may have more than one destructor, any of which may be used in an instance destruction
expression for objects of the class.

As operations, non-private destructors are inheritable and the usual distinguishability rules apply (see
10.5.3). If a class has a destructor named destroy, with no arguments (either implicitly as the default
destructor or explicitly), then a similar destructor named destroy with no arguments in a subclass
implicitly redefines the superclass destructor. Otherwise, a destructor may not be explicitly redefined in
a subclass. Only a destructor directly owned by a class may be used in an invocation expression used to
destroy an instance of the class (see 8.3.10).

When an object is destroyed using an explicit destructor, the default destructor behavior is not
performed, so any desired calls to superclass or composite part destructors must be made explicitly.

The body of a destructor may contain explicit invocations of other destructors in the same class (targeted
to “this”) or a superclass (targeted to “super”). However, such invocations act just like normal
operation calls and do not cause the destruction of the object. An object is not actually destroyed until
the completion of the original destructor invocation (sees 8.3.10 and 8.3.11).

For example, the following class definition contains an explicit invocation of one of its own destructors
and of a destructor from its superclass.
class D specializes C {
@Destroy public destroy () {
super.destroy () ;

}

@Destroy public cancel (in reason: String) {
WritelLine (reason) ;
this.destroy();
}
}

If d is an instance of D, then the expression d.cancel ("Example™) will result in the destruction of d
only after the completion of the invocation of cancel ("Example"), not by any of the intermediate
destructor calls.

10.5.4 Receptions

A reception is a behavioral feature of an active class that declares that instances of the class are prepared
to react to the receipt of a specific signal. Only active classes may have receptions as features. Normally,
the signal is defined separately and referenced by name in the reception declaration. As a convenience,
Alf also allows the definition of the signal and a declaration of a reception of it to be combined into a
signal reception definition.

Examples

receive Checkout;

receive signal SubmitCharge {

public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

public cardExpirationDate: MonthYear;

public cardholderName: PersonalName;

Action Language for Foundational UML (ALF), v1.1 181

Syntax

ReceptionDefinition(d: ReceptionDefinition)
= "receive" QualifiedName (d.signalName) ";"
(d.name=d.signal.nameBinding->last () .name))
SignalReceptionDeclaration (d: SignalReceptionDefinition)
= "receive" "signal" Name (d.name)
[SpecializationClause (d.specialization)]
SignalReceptionDefinition(d: SignalReceptionDefinition)
= SignalReceptionDeclaration(d) "{"
{ StructuredMember (d.ownedMember) } "}"
SignalReceptionStubDeclaration(d: SignalReceptionDefinition)

= SignalReceptionDeclaration(d) ";" (d.isStub=true)
Member
T SignalDefinition

ReceptionDefinition

0.1
SignalReceptionDefinition

+signalName | 1

QualifiedName

Figure 10.14 Abstract Syntax of Reception Definitions and Signal Reception Definitions

Cross References

1. Name see 7.6

2. QualifiedName see 8.2

3. Member see 10.2
4. SpecializationClause see 10.4.2
5. StructuredMember see 10.4.4
6. SignalDefinition see 10.4.7
Semantics

The owning classifier definition of a reception definition or a signal reception definition must be for an
active class. An invocation of a reception on an instance of the owning active class results in a sending
of the specified signal to that instance (see 8.3.10).

Reception Definitions
The name in a reception definition must be the visible name of a signal.

The reception is given the same name as the base name of the signal without any qualification. Since
receptions must be distinguished by name, this means that no active class may have more than one
reception (inherited or owned) for a signal with a given name.

NOTE. The general requirement for distinguishability of namespace members is given in 7.3.34 of the
UML Superstructure. This is not overridden in 13.2.23 of the UML Superstructure on receptions.

182 Action Language for Foundational UML (ALF), v1.1

Signal Reception Definitions

A signal reception definition defines both a reception as an owned feature of the active class and a signal
as a nested classifier of the owning class of the reception. The static semantics for a signal definition
(see 10.4.7) thus also apply to a signal reception definition. However, a signal reception definition may
not have template parameters.

For example, the following active class definition:

active class Order {

receive signal SubmitCharge {

public
public
public
public

}

accountNumber:
billingAddress:
cardExpirationDate:
cardholderName:

is equivalent to:

active class Order {

receive SubmitCharge;

signal SubmitCharge {

public
public
public
public

}

accountNumber:
billingAddress:
cardExpirationDate:
cardholderName:

BankCardAccountNumber;
MailingAddress;
MonthYear;
PersonalName;

BankCardAccountNumber;
MailingAddress;
MonthYear;
PersonalName;

Note that, even though the reception and the signal have the same name, there is no distinguishability
conflict, because receptions and signals are separate syntactic types. The name Order: : SubmitCharge
in this example can thus refer to either the reception or the signal, depending on context.

Action Language for Foundational UML (ALF), v1.1 183

184 Action Language for Foundational UML (ALF), v1.1

11 Standard Model Library

11.1 Overview

Every modeling environment using Alf must also make available a set of models known as the A/f
Standard Model Library. This library consists of the profile ActionLanguage and the model library
package a1f::Library. The A1f::Library package contains the subpackages shown in Figure 11.1.

NOTE. The ActionLanguage profile is not nested within A1f: : Library because it may also be useful
outside the context of Alf.

| —
PrimitiveTypes
FoundationalModelLibrary::
BasiclnputOutput

{uri=http://Iwww.omg.org/spec/Primitive Types/20110701}

N N
I I
| «import» | «import»
PrimitiveTypes «import» PrimitiveBehaviors BasiclnputOutput
CollectionFunctions CollectionClasses

Figure 11.1 Alf Standard Model Library Subpackages

The ActionLanguage profile is described in 11.2. The subpackages of a1f: :Library are then described
in subsequent subclauses.

11.2 ActionLanguage Profile

The ActionLanguage profile contains the single stereotype shown in Figure 11.2. When applied to a
comment, this stereotype indicates that the body of the comment is the textual representation of the
element to which the comment is attached, potentially including the representation of other modeling
elements contained in the element to which the comment is attached (see 6.2). The language attribute
gives the name of the language in which the comment body text is written, using the same naming
conventions as for the language attribute of an opaque behavior.

Action Language for Foundational UML (ALF), v1.1 185

«Metaclass»
Comment

«stereotype»
TextualRepresentation

+language : String

Figure 11.2 Stereotype TextualRepresentation

11.3 Primitive Types

The fUML Foundational Model Library imports the primitiveTypes package from the UML
Infrastructure (see fUML Specification, Clause 9). Since the Alf Standard Model Library builds on the
primitive behaviors defined in the fUML Foundational Model Library (see 11.4 below), the
Alf::Library::PrimitiveTypes package also imports the UML primitiveTypes package, as shown
in Figure 11.1 (see also UML Infrastructure, 13.1). This makes the UML primitive types Integer,
Boolean, String and UnlimitedNatural available in the a1f: :Library::PrimitiveTypes
namespace. In addition to the imported types, the Alf primitiveTypes package also includes Natural
and BitString types, as described in the remainder of this subclause.

To be recognized as primitive types in an fUML execution environment, the types defined in the
Alf::Library::PrimitiveTypes package (including imported types) must be registered with any
execution locus at which they are to be used (see fUML Specification, 8.2.1).

NOTE. While the real primitive type defined in UML 2.4.1 is imported into the Alf PrimitiveTypes

package, Alf does not currently provide operations or primitive behaviors to support this type. It is
expected that such support will be provided in a subsequent version of Alf.

11.3.1 Natural Type

As shown in Figure 11.3, the primitive type Natural specializes both Integer and UnlimitedNatural.
Natural literals have the type Natural unless they can be determined statically to be of type Integer
or UnlimitedNatural from their context of use (see 7.8.3).

«primitive» «primitive»
Integer UnlimitedNatural

«primitive»
Natural

Figure 11.3 Primitive Type Natural

186 Action Language for Foundational UML (ALF), v1.1

11.3.2 Bit String Type

The primitive type Bitstring represents values that are uninterpreted sequences of bits, each of which
has either be set (bit value of 1) or unset (bit value of 0). Alf does not provide direct literals for bit
strings, but the standard BitstringFunctions package provides functions for converting integers to bit
strings and vice versa.

The length of a bit string is the number of bits in the string. For any conforming implementation, all bit
strings must have the same length, but this length may differ between implementations. However, if an
implementation limits supported integer values to a finite set (as permitted in 9.2 of the f{UML
Specification), the implemented bit string length must be at least long enough to represent the
conversion from every supported integer value (positive or negative). If an implementation does not
limit supported integer values, then the implemented bit string length must not be smaller than 32.

11.4 Primitive Behaviors

As shown in Figure 11.4, the a1f: :Library: :PrimitiveBehaviors package has subpackages
corresponding to each of the subpackages in the f{UML standard FoundationalModelLibrary::
PrimitiveBehaviors package (see fUML Specification, 9.3) except for the ListFunctions package.
Each of these primitive behavior packages imports the primitive functions from the corresponding
fUML package, renaming certain functions with aliases so that they have names consistent with the
corresponding operators used in the Alf expression syntax. In addition, the Alf PrimitiveBehaviors
package also includes the BitStringFunctions and sequenceFunctions packages.

FoundationalModelLibrary::PrimitiveBehaviors:: FoundationalModelLibrary::PrimitiveBehaviors::
IntegerFunctions StringFunctions
N N
] N [
FoundationalModelLibrary::PrimitiveBehaviors:: | | | FoundationalModelLibrary::PrimitiveBehaviors:: | | FoundationalModelLibrary::PrimitiveBehaviors::
BooleanFunctions | RealFunctions | UnlimitedNaturalFunctions
N | N | N
I «import» | «import» I «import» | «import» I «import»
| | | | |
1 1 1!] ! —
BooleanFunctions IntegerFunctions RealFunctions StringFunctions UnlimitedNaturalFunctions
BitStringFunctions SequenceFunctions

Figure 11.4 Primitive Behavior Packages

To be usable in an f{UML execution environment, implementations of all of the function behaviors in
each of the subpackages of the A1f::Library::PrimitiveBehaviors package (including imported
behaviors) must be registered with any execution locus at which they are to be used (see f{UML
Specification, 8.2.1). These implementations must conform to the specifications for the behaviors they
implement, as given in f{UML Specification, 9.2, or in this subclause, as appropriate.

Action Language for Foundational UML (ALF), v1.1 187

11.4.1 Boolean Functions

The alf::Library::PrimitiveBehaviors::BooleanFunctions package imports all the behaviors

contained in the f{UML FoundationalModelLibrary: :PrimitiveBehaviors::

BooleanFunctions

package. Table 11.1 lists these functions with their Alf aliases, along with their corresponding f{UML
name. The formal specification for these functions is given in 9.3.1 of the fUML Specification.

Table 11.1 Boolean Functions

Function Signature fUML Name Description
'|'"(in x: Boolean, in y: Boolean): Or True if either x or v is true.
Boolean
"“'(in x: Boolean, in y: Boolean): Xor True if either x or vy is true, but not both.
Boolean
'&' (in x: Boolean, in y: Boolean): And True if both x and vy are true.
Boolean
'!"(in x: Boolean): Boolean Not True if x 1s false.
Implies Implies True if x is false, or if x is true and y is
(in x: Boolean, in y: Boolean): true.
Boolean
ToString (in x: Boolean): String ToString Converts x to a String value.
ToBoolean (in x: String): ToBoolean Converts x to a Boolean value.
Boolean[0..1]

11.4.2 Integer Functions

TheAlf::Library::PrimitiveBehaviors::IntegerFunctionspackagehﬂpoﬂsaﬂthebehavkﬂs
contained in the f{UML FoundationalModelLibrary: :PrimitiveBehaviors::IntegerFunctions
package. Table 11.2 lists these functions with their Alf aliases, along with their corresponding f{UML
name. The formal specification for these functions is given in 9.3.2 of the fUML Specification.

The package also includes the additional ToNatural and Toreal functions, in addition to the functions
imported from the f{UML IntegerFunctions package. The ToNatural function converts a string
representation of a natural (unsigned) number in any of the forms given in 7.8.3, as opposed to the
ToInteger function which only converts from a decimal string representation (and also allows a sign).
The Toreal function converts an integer value to a real value, equivalent to the result of using the f{UML
IntegerFunctions::'/"' function (real division) to divide the integer value by 1.

188

Action Language for Foundational UML (ALF), v1.1

Table 11.2 Integer Functions

Function Signature fUML Name Description
Neg(in x: Integer): Integer Neg The negative value of x.
Abs (in x: Integer): Integer Abs The absolute value of x.
'+'(in x: Integer, in y: Integer): + The value of the addition of x and v.
Integer
'-'(in x: Integer, in y: Integer): - The value of the subtraction of x and y.
Integer
'"*'(in x: Integer, in y: Integer): * The value of the multiplication of x and
Integer
v
'"/'(in x: Integer, in y: Integer): Div The number of times that v fits
Integer[0..1] completely within x.
'$'(in x: Integer, in y: Integer): Mod The result is x modulo y.
Integer
Max (in x: Integer, in y: Integer): Max The maximum of x and y.
Integer
Min(in x: Integer, in y: Integer): Min The minimum of x and y.
Integer
'<'(in x: Integer, in y: Integer): < True if x is less than y.
Boolean
'>'(in x: Integer, in y: Integer): > True if x is greater than y.
Boolean
'<='(in x: Integer, in y: <= True if x 1s less than or equal to y.
Integer) :
Boolean
'>='(in x: Integer, in y: >= True if x is greater than or equal to y.
Integer) :
Boolean
ToString (in x: Integer): String ToString COHVCHSXiD(iStringVahw.
ToUnlimitedNatural ToUnlimited | Converts x to an UnlimitedNatural
(1nlx? Integer) : Natural value.
UnlimitedNatural[0..1]
ToInteger (in x: String): ToInteger | Converts x to an Integer value.
Integer[0..1]
ToNatural (in x: String): Converts x to an Integer value, where x
Integer[0..1]

is any legal representation of a natural
literal.

ToReal (in

x: Integer):

Real

Converts x to a Real value.

11.4.3 Real Functions

The A1f::Library::PrimitiveBehaviors: :RealFunctions package imports all behaviors contained
inthefUhdLEbundationalModelLibrary::PrimitiveBehaviors::RealFunctionspackage.Tﬁbk
11.3 lists these functions with their Alf aliases, along with their corresponding fUML name. The formal
specifications for these functions is given in 9.3.3 of the fUML Specification.

Action Language for Foundational UML (ALF), v1.1

189

Table 11.3 Real Functions

Function Signature fUML Name Description

Neg (in x: Real): Real Neg The negative value of x.

Abs (in x: Real): Real Abs The absolute value of x.

'+’ (in x: Real, in y: Real): Real + The value of the addition of x and .

‘-'(in x: Real, in y: Real): Real - The value of the subtraction of x and y.

‘*'(in x: Real, in y: Real): Real * The value of the multiplication of x and y.

‘/Y(in x: Real, in y: Real): / The value of the division of x and y.

Real[0..1]

Max (in x: Real, in y: Real): Real Max The maximum of X and y.

Min(in x: Real, in y: Real): Real Min Thenﬁnhnunlofxandy;

‘<’ (in x: Real, in y: Real): < True if x is less than y.

Boolean

‘>’ (in x: Real, in y: Real): > True if x is greater than y.

Boolean

‘<=’ (in x: Real, in y: Real): <= True if x is less than or equal to y.

Boolean

‘>=" (in x: Real, in y: Real): >= True if x 1s greater than or equal to y.

Boolean

Floor (in x: Real): Integer[0..1] Floor The largest integer that is less than or
equal to x.

Round (in x: Real): Integer([0..1] Round The integer that is closest to x. (When
there are two such integers, the largest
one.)

ToString (in x: Real): String ToString Converts X to a String value.

ToInteger (in x: Real): ToInteger Convmisxtoanlmtegervahw.

Integer[0..1]

ToReal (in x: String): Real[0..1] ToReal Converts x to a Real value.

11.4.4 String Functions

TheAlf::Library::PrimitiveBehaviors:

190

:StringFunctions package imports all the behaviors
contained in the f{UML FoundationalModelLibrary: :PrimitiveBehaviors:: StringFunctions
package. Table 11.4 lists these functions with their Alf aliases, along with their corresponding f{UML
name. The formal specification for these functions is given in 9.3.4 of the fUML Specification.

Action Language for Foundational UML (ALF), v1.

Table 11.4 String Functions

Function Signature fUML Name Description
'+'(in x: String, in y: String): Concat The concatenation of x and y.
String
Size(in x: String): Integer Size The number of characters in x.
Substring Substring | The substring of x starting at character
(in x: String, number 1lower, up to and including
in lower: Integer,
in upper: Integer): character number upper. Character
String[0..1] numbers run from 1 to size (x).

11.4.5 UnlimitedNatural Functions

TheAlf::Library::PrimitiveBehaviors::UnlimitedNaturalFunctionspackagehnpoﬂsaﬂthe
behaviors contained in the f{UML FoundationalModelLibrary: :
PrimitiveBehaviors::UnlimitedNaturalFunctions package. Table 11.5 lists these functions with
their Alf aliases, along with their corresponding fUML name. The formal specification for these
functions is given in 9.3.5 of the fUML Specification.

Table 11.5 UnlimitedNatural Functions

Function Signature fUML Name Description
Max Max The maximum of x and y.
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
UnlimitedNatural
Min Min The minimum of x and y.
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
UnlimitedNatural
<! < True if x is less than y.
(in x: UnlimitedNatural,
in y: UnlimitedNatural) :
Boolean
">! > True if x is greater than y.
(in x: UnlimitedNatural,
in y: UnlimitedNatural) :
Boolean
<=t <= True if x is less than or equal to y.
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
Boolean
'>=" >= True if x is greater than or equal to y.
(in x: UnlimitedNatural,
in y: UnlimitedNatural):

Boolean

ToString (in x: UnlimitedNatural) : ToString Converts x to a String value.
String

ToInteger ToInteger | Converts x to an Integer value.

(in x: UnlimitedNatural) :
Integer[0..1]

ToUnlimitedNatural (in x: String): ToUnlimited | Converts x to an UnlimitedNatural
UnlimitedNatural[0..1] Natural value.

Action Language for Foundational UML (ALF), v1.1 191

11.4.6 Bit String Functions

The a1f::Library::PrimitiveBehaviors::BitStringFunctions package contains a set of
functions used to manipulate bit strings. Table 11.6 lists a basic set of functions included in the package
for constructing and accessing bit strings. Table 11.7 lists functions corresponding to bit-wise operations
for which there is a binary operator syntax.

Table 11.6 Basic Bi tString Functions

Function Signature Description
IsSet (in b: BitString, n: Integer): True if the n-th bit of b is set. Bits are numbered
Boolean from zero starting with the rightmost bit position.

If n is greater than or equal to the length of the bit
string, then the result for the leftmost bit is
returned.

BitLength(): Integer The implemented bit string length.

ToBitString (in n: Integer): BitString The bit string representation of n.

ToInteger (in b: BitString): Integer The integer represented by the bit string b.

ToHexString (in b: BitString): String The string representation of b as a hexadecimal
numeral.

ToOctalString(in b: BitString): String | The string representation of b as an octal numeral.

There are no literals for bit strings, so the only way to construct a bit string is by using the function
toBitstring. This function takes an integer value and returns a bit string consisting of the twos-
complement binary representation of that value, with the low-order bit being the rightmost bit (bit
position 0). If an implementation supports arbitrary integer values, and the twos-complement
representation of an integer value is longer than the bit string length for that implementation, then the
result of toBitsString consists of the low-order bits of the representation, truncated at the implemented
bit string length.

Note that, in most cases, it is not necessary to call toBitString explicitly, because such a call is
automatically inserted as a result of implicit bit string conversion of an integer value (see 8.8). The
function tolnteger performs the inverse conversion from a bit string to an integer value.

Alf provides special operator syntax for unary and binary bit-wise and shift functions on bit strings (sees
8.5.3, 8.6.7 and 8.6.3). This operator syntax is a shorthand for the invocation of the correspondingly
named function behaviors given in Table 11.7. The required behavior of each of these functions is
specified as a post-condition on its result, written in the Object Constraint Language (OCL), Version 2.2
(see the OCL Specification). The standard OCL notation is extended to allow calls to the functions
isSet and length defined in Table 11.6.

192 Action Language for Foundational UML (ALF), v1.1

Table 11.7 Bit-wise Operator Functions

Function Signature

Description

'~'"(in b: BitString): BitString

The bit-wise complement of b.

Post:
Sequence{0..BitLength()-1}->
forAll (i |
IsSet (result,i)= not IsSet (b,1i)
)

'6¢' (in bl: BitString, in b2:
BitString) :
BitString

The bit-wise “and” of b1 and b2.

Post:
Sequence{0..BitLength()-1}->
forAll (1 |
isSet (result,i) =
isSet (bl,1i) and isSet (b2,1)
)

'“'(in bl: BitString, in b2:
BitString) :
BitString

The bit-wise “exclusive or” of b1 and b2.

Post:
Sequence{0..BitLength()-1}->
forAll (i |
IsSet (result,i) =
IsSet (bl,i) xor IsSet (b2,1i)
)

"I'"(in bl: BitString, in b2:
BitString) :
BitString

The bit-wise “inclusive or” of b1 and b2.

Post:
Sequence{0..BitLength()-1}->
forAll (1 |
IsSet (result,i) =
IsSet(bl,i) or IsSet (b2,1)
)

'<<'"(in b: BitString, in n:
BitString

Integer) :

The bit string b shifted n places to the left.

Post:
if n <= 0 then result = b
else
Sequence{0..BitLength()-1}->
forAll (1 |
if i < n then
not IsSet (result,i)
else
IsSet (result,i) =
IsSet (b,i-n)
endif
)
endif

Action Language for Foundational UML (ALF), v1.1

193

Table 11.7 Bit-wise Operator Functions

Function Signature Description
'>>'(in b: BitString, in n: Integer): The bit string b shifted n places to the right with
BitString “sign extension” of the leftmost bit.
Post:

if n <= 0 then result =Db

else
Sequence{0..BitLength()-1}->
forAll (i |

if i < BitLength()-n then
IsSet (result,i) =
IsSet (b, i+n)
else
IsSet (result,i) =
IsSet (b,BitLength()-1)
endif
)
endif
'>>>'(in b: BitString, in n: Integer): | The bit string b shifted n places to the right.
BitString

Post:
if n <= 0 then result = b
else
Sequence{0..BitLength()-1}->
forAll (i |
if i < BitLength()-n then
IsSet (result,i) =
IsSet (b,i+n)
else
not IsSet (result,i)
endif

endif

11.4.7 Sequence Functions

The A1f::Library::PrimitiveBehaviors: :SequenceFunctions package contains a set of functions
used to manipulate sequences of values. Table 11.8 lists function behaviors that are included in the
SequenceFunctions package. The required behavior of each function is specified as a post-condition on
its result, written in the Object Constraint Language (OCL), Version 2.2 (see the OCL Specification). In
some cases, a pre-condition is also specified for a function. In this case, if the pre-condition is violated,
then the function completes execution, but produces no output value. The result parameters for such
functions are specified to have multiplicity 0..1 to allow for this.

Note that all the functions in Table 11.8 take a sequence as an in parameter and return some result based
on that sequence. Since these functions are intended to apply to sequences of any type of value, the
function parameters for such sequences and their elements are untyped. This, however, means that, using
the normal typing rules, any type information on an input sequence to one of these functions is lost when
the function is used, which can be inconvenient.

For example, suppose integerList is a sequence of type Integer and consider the application of the
Including function to it to define an extended list. Unfortunately, the following is illegal:

194 Action Language for Foundational UML (ALF), v1.1

let extendedList: Integer[] = Including(integerList, 1); // Type error!

Since the result of the call to inc1uding is untyped, it is not assignable to extendedList, which has type

Integer. Instead, an explicit cast must be used:

let extendedList: Integer[] = (Integer)Including(integerList, 1); // Legal

To avoid having to do this, the template function behaviors in the cCollectionFunctions package (see
11.6) should generally be used in preference to the primitive behaviors defined in the
SequenceFunctions package. Note, however, that these template functions are actually defined in terms
of the primitive sequence functions, since only non-template primitive behavior implementations can be

registered with the f{UML execution locus.

Table 11.8 Sequence Functions

Function Signature

Description

Size The number of elements in segq.
(in seqg: any[*] sequence):
Integer Post: result = seg->size()
Includes

(in seqg: any[*] sequence,
in element: any):
Boolean

True if element is an element of seq, false
otherwise.

Post: result = seg->includes (element)

Excludes
(in seqg: any[*] sequence,
in element: any):
Boolean

True if element is not an element of seq, false
otherwise.

Post: result = seg->excludes (element)

Count
(in seq: any[*] sequence,

The number of times that element occurs in seq.

in element: any): Post: result = seg->count (element)
Integer
IsEmpty True if seq is empty.
(in seqg: any[*] sequence) :
Boolean Post: result = seg->isEmpty ()
NotEmpty True if seq is not empty.
(in seqg: any[*] sequence) :
Boolean Post: result = seg->notEmpty ()
IncludesAll True if seql contains all the elements of seq2, false

(in seqgl: any[*] sequence,
in seqg2: any[*] sequence):
Boolean

otherwise.

Post: result = seqgl->includesAll (seg2)

ExcludesAll
(in segl: any[*] sequence,
in seg2: any[*] sequence) :
Boolean

True if c1 contains none of the elements of seq2,
false otherwise.

Post: result = segl->excludesAll (seg2)

Equals
(in seqgl: any[*] sequence,
in seg2: any[*] sequence):
Boolean

True if seql contains the same elements as seq2 in
the same order.

Post: result = (seqgl=seq2)

At
(in seqg: any[*] sequence,
in index: Integer):
any[0..1]

The index-th element of seq.

Pre: index>=1 and index<=seqg->size ()
Post: result = seg->at (index)

Action Language for Foundational UML (ALF), v1.1

195

Table 11.8 Sequence Functions

Function Signature

Description

IndexOf
(in seqg: anyl[*],
in element: any):
Integer[0..1]

The index of element In seq.

Pre: seg->includes (element)
Post: seg->indexOf (element)

First
(in seqg: any[*] sequence):
any[0..1]

The first element of seq.

Pre: c->notEmpty ()
Post: result = seg->first()

Last
(in seq: any[*] sequence):
any[0..1]

The last element of seq.

Pre: seg->notEmpty ()
Post: result = seg->last()

Union
(in seqgl: any[*] sequence,

in seg2: any[*] sequence):

any[*] sequence

The sequence consisting of all elements of seql
followed by all elements of seq2.

Post: result = segl->union (seg2?)

Intersection
(in segl: any[*] sequence,

in seqg2: any[*] sequence) :

any[*] sequence

The sequence consisting of all elements of seq1 that
are also in seq2.

Post: result = segl->iterate(
e; s = Sequence{} |
if seg2->excludes(e) then s
else s->append(e) endif)

Difference
(in segl: any[*] sequence,
in seqg2: any[*] sequence
any[*] sequence

) 2

The sequence consisting of all the elements of seq1
not in seq?2.

Post: result = segl->iterate(
e; s = Sequence{} |
if seg2->includes(e) then s
else s->append(e) endif)

Including
(in seqg: any[*] sequence,
in element: any):
any[*]sequence

The sequence consisting of all elements of seq
followed by element.

Post: result = seg->including(element)

IncludeAt
(in seqg: any[*] sequence,
in index: Integer,
in element: any):
any[*] sequence

The sequence consisting of seq with element
inserted at position index.

Post: result =
if index>=1 and index<=seg->size()+1
then
seg->insertAt (index, element)
else
seq
endif

196

Action Language for Foundational UML (ALF), v1.1

Table 11.8 Sequence Functions

Function Signature

Description

InsertAt
(in seqg: any[*] sequence,
in index: Integer,
in element: any):
any[*]sequence

The sequence consisting of seq with element
inserted at position index. (This is the same as
_includeAt. insertAt is included for consistency
with the similar OCL operation on sequences.)

Post: result =
if index>=1 and index<=seqg->size()+1
then
seg->insertAt (index,element)
else
seq
endif

IncludeAllAt
(in segl: any[*] sequence,
in index: Integer,
in seg2: any[*] sequence:
any[*] sequence

The sequence consisting of seq1 with all elements
of seq2 inserted at position index.

Post: result =
if index>=1 and index<=seqg->size () +1
then
seqgl->subSequence (1, index-1) ->
union (seqg2) ->
union (segl->subsequence (index,
segl->size()))
else
seq
endif

Excluding
(in seqg: any[*] sequence,
in element: any):
any[*] sequence

The sequence consisting of all elements of seq apart
from all occurrences of element.

Post: result = seg->iterate(
e; s = Sequence{} |
if e=element then s
else s->append(e) endif)

ExcludingOne
(in seqg: any[*] sequence,
in element: any):
any[*] sequence

The sequence consisting of seq with the first
occurrence of element (if any) removed.

Post: result =

if seg->includes(element) then
let index = seg->indexOf (element)
in
seqg->subSequence (1, index-1) ->
union (seg->
subSequence (index+1,seg->size()))

else
seq

endif

Action Language for Foundational UML (ALF), v1.1

197

Table 11.8 Sequence Functions

Function Signature

Description

ExcludeAt
(in seqg: any[*] sequence,
in index: Integer):
any[*] sequence

The sequence consisting of seq with the index-th
element removed.

Post: result =

if index>=1 and index<=c->size then
seg->subSequence (1, index-1) ->
union (seg->
subSequence (index+1, seg->size()))

else
seq

endif

Replacing
(in seq: any[*] sequence,
in element: any,
in newElement: any):
any[*] sequence

The sequence consisting of seq with all occurrences
of element replaced with newElement.

Post: result->size() = seg->size() and
Sequence{l..seqg->size () }->forAll (i |
result->at (1) =
if seg->at (i) = element then
newElement
else
seg->at (i)
endif

ReplacingOne
(in seqg: any[*] sequence,
in element: any,
in newElement: any):
any[*] sequence

The sequence consisting of seq with the first
occurrence of element (if any) replaced with

newkElement.

Post: result =
if seg->excludes(element) then seq
else
let index=seqg->indexOf (element) in
seg->subSequence (1, index-1) ->
union (seg->
subSequence (index, seg->size()))
endif

ReplacingAt
(in seqg: any[*] sequence,
in index: Integer,
in element: any):
any[*] sequence

The sequence consisting of seq with the element at
position index replaced with the given element.

Pre: index>=1 and index<=seqg->size ()
Post: result =
seg->subSequence (1, index-1) ->
union (seg->
subSequence (index, seg->size ()))

198

Action Language for Foundational UML (ALF), v1.1

Table 11.8 Sequence Functions

Function Signature Description

Subsequence The sub-sequence of seq consisting of the elements
1 . * o . . . o .
(in seq: any[*] sequence, at position lower up to and including position upper.

in lower: Integer,
in upper: Integer) : If upper is larger than the size of seq, then it is

any[*] sequence treated as if it was equal to the size.

Pre: lower<=upper
Post: result =
seg->subSequence (lower.max (1),
upper.min (seq->size()))

ToOrderedSet The sequence seq with all duplicates removed.
(in seq: any[*] sequence):
any[*] ordered Post :
result = seg->asOrderedSet ()

11.5 Basic Input and Output

As shown in Figure 11.1, the a1f: :Library: :BasicInputOutput package imports the f{UML standard
FoundationalModelLibrary: :BasicInputOutput package (see fUML Specification, 9.5). This makes
the fUML input-output classes available via the A1f: :Library: :BasicInputOutput namespace. In
addition, the FoundationalModelLibrary: :BasicInputOutput package imports the
FoundationalModelLibrary: :Common package, so the common classes from that package are also
available via the A1f: :Library: :BasicInputOutput namespace.

11.6 Collection Functions

The a1f::Library::CollectionFunctions package contains template versions of the sequence
functions defined in the A1f: :Library: :PrimitiveBehaviors::SequenceFunctions package. Each
collection function has a single template parameter, the type of values in the sequence be operated on.
The type inference rule for the invocation of template behaviors (see 8.3.9) then allows these behaviors
to be invoked without having to explicitly notate the binding of their template parameter.

For example, if integerList is a sequence of type Integer, then the statement

let extendedList: Integer[] = including(integerList, 1);

is equivalent to

let extendedList: Integer[] = including<Integer>(integerList, 1);

Since the result type of including<Integer> is Integer, the right-hand side of this statement is
assignable to the left-hand side without the need for an explicit cast.

Each of the functions defined in the SequenceFunctions package has a template version defined as an
activity in the collectionFunctions package. The body of this activity simply calls the corresponding
primitive function and returns the result of that call, cast to the appropriate result type. For example, the
including function may be defined as follows as an Alf unit (see 10.4.8 on activity definitions):
namespace Alf::Library::CollectionFunctions;
activity including<T> (in seq: T[*] sequence, in element: T):

T[*] sequence

{

return (T)PrimitiveBehaviors::SequenceFunctions::Including(seq, element);

Action Language for Foundational UML (ALF), v1.1 199

}
Other functions are defined similarly.

NOTE. According to the copy semantics for templates (see 6.3), a call to a bound template activity, such
as including<Integer>, has the semantics of a call to an effective bound element constructed from a
copy of the template activity with each occurrence of the template parameter T replaced by the actual
argument type. However, once static analysis is complete, a call to such a bound activity will have a
semantically equivalent effect (in the sense defined in 2.3) to a direct call to the corresponding sequence
function, without even a need for any cast (since the definitions of the sequence functions guarantee that
their results have the expected dynamic type, even if the statically declared type is any). Therefore, a
compliant compilative implementation may, if desired, produce a target fUML model that replaces calls
to bound collection functions with direct calls to the corresponding sequence functions.

All the primitive sequence functions take a sequence as an in parameter and return some result based on
that sequence (see 11.4.7) and, therefore, so do the corresponding collection functions. The collection
functions may also take collection objects (see 11.7) as inputs because of the collection conversion rule
for assignability (see 8.8). This is particularly useful when using a collection as the source in the
sequence operation notation (see 8.3.17). The returned result, however, is always a sequence, though this
may be used to construct a new collection object.

The collectionFunctions package also includes a number of additional activities that take a sequence
as an inout parameter and make changes to that sequence “in place”. Table 11.9 lists these behaviors.
The bodies of these in-place behaviors are defined to be an Alf assignment expression, generally
involving one of the base set of collection functions. For example, the full definition of the add function,
as an Alf unit, is
namespace Alf::Library::CollectionFunctions;
activity add<T> (inout seqg: T[*] sequence, in element: T):

T[*] sequence

{

return seq = including(seq,element) ;

}

The in-place functions cannot be used with collection objects, since the inout parameter cannot be
assigned back to the collection object. However, all collection classes have regular operations that
correspond to the functionality of the “in place” functions (see 11.7). The in-place collection functions
are intended to provide similar functionality for sequences to that provided by the similarly named
operations on collection objects.

200 Action Language for Foundational UML (ALF), v1.1

Table 11.9 Collection “In-Place” Behaviors

Activity Signature

Description

add<T>
(inout seqg: T[*] ordered,
in element: T):
T[*] sequence

Append element to the end of seq.

seq = including (seq,element)

addAll<T>
(inout seqgl: T[*] sequence,
in seg2: T[*] sequence):
T[*] sequence

Append all elements of seq2 to seql.

seql = union (seql,seg?2)

addAt<T>
(inout seqg: T[*] sequence,
in index: Integer,
in element: T):
T[*] sequence

Insert element at position index of seq.

seq = includeAt (seq, index,element)

addAl1At<T>
(inout seqgl: T[*] sequence,
in index: Integer,
in seg2: T[*] sequence):
T[*] sequence

Insert all elements of seq2 into seql at position

index.

seq = includeAllAt (seq,index,element)

(inout seq: T[*] sequence,
in index: Integer):
T[*] sequence

remove<T> Remove all occurrences of element from seq.
(inout seqg: T[*] sequence,
in element: T): T[*] sequence seq = excluding (seq, element)
removeAll<T> Remove all elements of seq2 from seql.
(inout seq: T[*] sequence,
in in seqg2 : T[*] sequence): seql = difference (seql, seg2)
T[*] sequence
removeOne<T> Remove the first occurrence of element (if any)
(inout seq: T[*] sequence, ﬁonlseq
in element: T): T[*] sequence)
seq = excludingOne (seq,element)
removeAt<T>

Remove the element at position index from seq.

seq = excludeAt (seq, index)

replace<T>
(inout seq: T[*] sequence,
in element: T,
in newElement: T):
T[*] sequence

Replace all occurrences of element in seq with
newElement.

seq = replacing(seq,element,newElement)

replaceOne<T>
(inout seqg: T[*] sequence,
in element: T,
in newElement: T):
T[*] sequence

Replace the first occurrence of element in seq (if
any) with newElement.

seq =
replacingOne (seq,element, newElement)

replaceAt<T>
(inout seq: T[*] sequence,
in index: Integer,
in element: T):
T[*] sequence

Replace the element at position index in seq with
the given element.

seq = replacingAt (seq,index,element)

clear<T>
(inout seqg: T[*])

Clear all elements of seq.

seq = null

Action Language for Foundational UML (ALF), v1.1

201

11.7 Collection Classes

The a1f::Library::CollectionClasses package contains a set of template classes (see 6.3 on the
semantics of templates) related to collections. These provide the ability to create and manipulate
collections in a manner familiar from object-oriented programming languages. They may be used
instead of or in conjunction with the basic use of UML sequences and functions to handle collections.
Figure 11.5 is a class diagram of the contents of the CollectionClasses package.

In many places in Alf, collection objects may be used in the same way as a basic UML sequence of
values. For example, the Alf assignability rules provide for collection conversion in which a collection
object is automatically converted to a sequence via an implicit call to its tosequence () operation (see
8.8). In the main body of the specification, a collection object is any object whose type is a collection
class. A collection class is any class that has a constructor of the same name with a single in parameter
that is a sequence and an operation called tosequence that returns a sequence of the same type as the
constructor input (known as the collection class's sequence type) and no other parameters. A template
binding of any of the public template classes contained in the CollectionClasses package (other than
the collection superclass) conforms to this definition of collection class. However, it is allowable for a
modeler to define other collection classes meeting the above definition, possibly, but not necessarily, as
subclasses of template bindings of standard collection classes.

Note that all the classes shown in Figure 11.5 are abstract, but that they all also define constructor
operations. Using the mechanism described in 8.3.12, the concrete implementations for these classes are
defined in a packaged named 1mp1 nested in the CollectionClasses package, as shown in Figure 11.6.
With this mechanism, user models can reference and use the standard abstract classes as if they were
concrete, and specific execution tools can define different implementations for these classes without
affecting the classes actually referenced by user models.

A conformant implementation of the collectionClasses package is not allowed to alter the definition
of the classes shown in Figure 11.5. Rather, such an implementation must implement each of the Tmp1
classes shown in Figure 11.6. This may be done either by providing external library implementations for
the classes, through a mechanism specific to the execution tool, or by extending the model shown in
Figure 11.6 by providing a fUML-conformant method for each of the public operations of the classes. In
doing the latter, a conformant implementation is also allowed to:

« Replace public owned operations with inherited operations of the same signature.

« Add additional features and other members to the classes, as long as their visibility is private or
protected, as well as additional private members to the Tmp1 package.

B.4 gives a sample non-normative implementation of the CollectionClasses: : Impl package as an Alf
unit. The following subclauses describe each of the abstract template classes shown in Figure 11.5.

202 Action Language for Foundational UML (ALF), v1.1

T I_Key

- —— = Ivalue l
Collection — — ==
Map
+add()
+addAll() «Create»+Map()
+clear() «Destroy»+destroy()
+count() +clear()
+equals() +entries()
+excludes() +ex;:(l)udesAll()
+excludesAll() +ge
sincludes () «dataType» +keys()
+includesAll() Entry gl *includesAll)
+HsEmpty() +key : Key +includesKey ()
+notEmpty() +value - Value +includes Value()
+remove() N +HsEmpty()
7] +removeAll() N +notEmpty()
7 |+removeOne() N +put()
winds 7~ +replace() «bind» *outAll()
<T->T> +replaceOne() <T->T> +remove()
- s +retainAll() N +removeAll)
s +size() +size()
s +toSequence() N +oSequence()
v _ N +values()
Y N«bind» N
| <T->T> \
Collection<T> Collection<T> Collection<T>
: IT IT : IT
U | —_ —_—— —_ —_
Set Bag Queue
«Create»+Set() «Create»+Bag() «Create»+Queue()
«Destroy»+destroy() «Destroy»+destroy() «Destroy»+destroy()
+add() +add() +add()
+addAll() +addAll() +addAll()
+count() +equals() +addLast()
+equals() ™ +equals()
7N «Bind» «bind» :i’;ﬁg "
<T->T> Vi
| <T->T> . T +removeAll()
Set<T> Bag<T> +removeOne()
+removeFirst()
+removeFirstOne()
+replace()
+replaceOne()
trofai
& T | & T retainAll()
_ — = = — N«bind»
OrderedSet List | <T>T>
«Create»+OrderedSet() «Createx»+List()
«Destroy»+destroy() «Destroy»+destroy() Queve<T>
+add() +add()
+addAll() +addAll()
+addAlIAt() +addAllAt()
+addAt() +addAt() - - —
+at() +at() & IT
+equals() +equals() s
+irst() +irst() Deque
+index Of() +index Of{() «Create»+Deque()
+ast() +ast() «Destroy»+destroy()
+remove() +remove() +addFirst()
+removeAll() +removeAll() +ast()
+removeOne() +removeOne() +removel ast()
+removeAl() +removeAt() +removel astOne()
+replace() +replace()
+replaceAt() +replaceOne()
+replaceOne() +replaceAt()
+retainAll() +retainAll()
+subOrderedSet() +subList()

Figure 11.5 Collection Classes

Action Language for Foundational UML (ALF), v1.1 203

T | | T)
Set Bag T OrderedSet | List
«pmna» /|\«D"'IG>) /I\((Dln[])) «pImIna»
| <T->T> | <T->T> | <T->T> | <T->T>
Set<T> Bag<T> OrderedSet<T> List<T>
- - = —- — - 4 —- - — — - — — 4
& |T] & |7 . T I I:) JT |
Set Bag OrderedSet List
«Create»+Set() «Create»+Bag() «Create»+OrderedSet() «Createx»+List()
«Destroy»+destroy() «Destroy»+destroy() «Destroy»+destroy() «Destroy»+destroy()
+add() +add() +add() +add()
+addAll() +addAll() +addAll() +addAll()
+clear() +clear() +addAllAt() +addAllAt()
+count() +count() +addAt() +addAt()
+equals() +equals() +at() +at()
+excludes() +excludes() +clear() +clear()
+excludesAll() +excludesAll() +count() +count()
+includes() +includes() +equals() +equals()
+includesAll() +includesAll() +excludes() +excludes()
+isEmpty() +isEmpty() +excludesAll() +excludesAll()
+notEmpty() +notEmpty() +Hirst() +irst()
+remove() +remove() +includes() +includes()
+removeAll() +removeAll() +includesAll() +includesAll()
+removeOne() +removeOne() +indexOf() +indexOf()
+replace() +replace() +isEmpty() +isEmpty()
+replaceOne() +replaceOne() +last() +ast()
+retainAll() +retainAll() +notEmpty() +notEmpty()
+size() +size() +remove() +remove()
+toSequence() +toSequence() +removeAll() +removeAll()
+removeAt() +removeAt()
- — — 4 - — — +removeOne() +removeOne()
1T T +replace() +replace()
_ = = - - — d +replaceAt() +replaceAt()
Queue Deque +replaceOne() +replaceOne()
+retainAll() +retainAll()
N - +size() +size()
| Z?’_’f_’; | ia’_'"f;; +subOrderedSet() +subList()
+toSequence() +toSequence()
Queue<T> Deque<T> =
Key [
IValue
= il
Map
T -IJ 1T] «bind»
Queus Deque | <Key->Key, Value->Value>
«Create»+Queue() «Create»+Deque() Map<Key,Value>
«Destroy»+destroy() «Destroy»+destroy()
+add() +add()
+addAll() +addAll()
+addLast() +clear() r— — —
+clear() +addFirst() Key |
+count() +addLast() & Ivalue
+equals() +count()
+excludes() +equals() Map
+excludesAll() +excludes() «Create»+Map()
+includes() +excludesAll() «Destroy»+destroy()
+includesAll() +includes() +clear()
+isEmpty() +includesAll() +entries()
+notEmpty () +isEmpty() +excludesAll()
+remove() +ast() +get()
+removeAll() +notEmpty() +keys()
+removeFirst() +remove() +includesAll()
+removeFirstOne() +removeAll() +includesKey()
+removeOne() +removeFirst() +includesValue()
+replace() +removeFirstOne() +isEmpty()
+replaceOne() +removeLast() +notEmpty()
+retainAll() +removelLastOne() +put()
+size() +removeOne() +pUtAll()
+toSequence() +replace() +remove()
+replaceOne() +removeAll()
+retainAll() +size()
+size() +toSequence()
+toSequence() +values()

Figure 11.6 Collection Class Implementations

204 Action Language for Foundational UML (ALF), v1.1

11.7.1 Bag<T>

Concrete unordered, non-unique collection. Supports duplicate entries.
Generalizations

» Collection<T>
Operations

[1] add (in element : T) : Boolean
Insert the given element into this bag. Always returns true.

post: self.toSequence()->asBag() = self@pre.toSequence()->asBag()->including(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this bag. Return true if the given sequence is not empty.

post: self.toSequence()->asBag() = self@pre.toSequence()->asBag()->union(seq->asBag())

[3] Bag (in seq : T [0..*] sequence) : Bag<T>
Construct a bag and add all elements in the given sequence.

post: result.toSequence()->asBag() = seq->asBag()

[4] destroy ()
Destroy this bag.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this bag is equal to the given sequence considered as a bag.

post: result = (self@pre.toSequence()->asBag() = seq->asBag())
11.7.2 Collection<T>

An abstract collection of elements of a specified type <T>. Various concrete subclasses support ordered
and unordered collections, with and without duplicates allowed.

Generalizations
None
Operations

[1] add (in element : T) : Boolean
Insert the given element into this collection. Return true if a new element is actually inserted.

post: result = self.size() > self@pre.size() and
result implies self.count(element) = self@pre.count(element)+1

Action Language for Foundational UML (ALF), v1.1 205

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this collection. Returns true if this collection increased in
size.

post: result = self.size() > self@pre.size() and
self.includesAll(seq)

[3] clear ()
Remove all elements from this collection.

post: result = self.isEmpty()

[4] count (in element : T) : Integer {query}
Return the number of elements in this collection that match a specified element.

post: result = self.toSequence()->count(element)

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this collection is equal to the given sequence.

post: result implies self.includesAll(seq)

[6] excludes (in element : T) : Boolean {query}
Return true if this collection does not contain the given element.

post: result = self.toSequence()->excludes(element)

[7] excludesAll (in seq : T [0..*] sequence) : Boolean {query}
Return true if all elements in the given sequence are not in this collection.

post: result = self.toSequence()->excludesAll(seq)

[8] includes (in element : T) : Boolean {query}
Return true if this collection contains the given element.

post: result = self.toSequence()->includes(element)

[9] includesAll (in seq : T [0..*] sequence) : Boolean {query}
Return true if all elements in the given sequence are also in this collection.

post: result = self.toSequence()->includesAll(seq)

[10] isEmpty () : Boolean {query}
Return true if this collection contains no elements.

206 Action Language for Foundational UML (ALF), v1.1

post: result = self.toSequence()->isEmpty()

[11] notEmpty () : Boolean {query}
Return true if this collection contains at least one element.

post: result = self.toSequence()->notEmpty()

[12] remove (in element : T) : Integer

Remove all occurrences of the given element from this collection and return the count of elements
removed removed.

post: result = self@pre.count(element) and
self.size() = self@pre.size() - result and
self@pre.toSequence()->forAll(e | self.count(e) =
if e = element then 0
else self@pre.count(e) endif)

[13] removeAll (in seq : T [0..*] sequence) : Boolean

Remove all occurrences of all elements in the given sequence from this collection. Return true if the size
of this collection changes.

post: result = self.size() < self@pre.size() and
self.toSequence()->asSet() = self@pre.toSequence()->asSet() - seq->asSet() and
self.toSequence()->forAll(e | self.count(e) = self@pre.count(e))

[14] removeOne (in element : T) : Boolean

Remove one occurrence of the given element from this collection and return true if an occurrence of
element was removed. If the collection is ordered, the first element will be removed.

post: result = self@pre.includes(element) and
self.size() = self@pre.size() - (if result then 1 else 0) endif and
self@pre.toSequence()->forAll(e | self.count(e) =
if result and e = element then self@pre.count(e)-1
else self@pre.count(e) endif)

[15] replace (in element : T, in newElement : T) : Integer

Replace all occurrences of the given element with a new element and return the count of replaced
elements.

post: result = if element<>newElement then self@pre.count(element) else 0 endif and
self.size() = self@pre.size() and
self.toSequence()->forAll(e | self.count(e) =
if e = newElement then self@pre.count(e)+result
else self@pre.count(e) endif)

Action Language for Foundational UML (ALF), v1.1 207

[16] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with newElement and return true
if an element was replaced. If the collection is ordered, this will be the first occurrence.

post: result = (self@pre.includes(element) and element<>newElement) and
self.size() = self@pre.size() and
self.toSequence()->forAll(e | self.count(e) =
if result and e = element then self@pre.count(e)-1
else if result and e = newElement then self@pre.count(e)+1
else self@pre.count(e) endif endif)

[17] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this collection that are NOT in the given sequence. Return true if
the size of this collection changes.

post: result = self.size() < self@pre.size() and
self.toSequence()->asBag() = self@pre.toSequence()->asBag()->intersection(seq->asSet())

[18] size () : Integer {query}
Return the number of elements contained in this collection.

post: result = self@pre.toSequence()->size()

[19] toSequence () : T [0..*] sequence {query}

Return a sequence (UML ordered, non-unique collection) containing the elements of this collection. If
the specific kind of collection orders its elements, then the returned sequence will have this order.
Otherwise the order of the elements in the returned sequence is arbitrary. (The requirements on the
returned sequence from this operation are specified implicitly by the required behavior of the mutating
operations on the various Collection subclasses.)

11.7.3 Deque<T>

Double-Ended Queue (pronounced "deck"). Concrete ordered, nonunique collection. Supports duplicate
entries. Ordered by position. Insertion and removal can occur at the front or the back of a deque. Can
operate as FIFO (in at back, out at front). Can operate as Stack (in at front/back, out at front/back).

Generalizations
o Queue<T>
Operations

[1] addFirst (in element : T) : Boolean
Add element into this deque at the front. Always returns true.

post: result = true and
self.toSequence() = self@pre.toSequence()->prepend(element)

208 Action Language for Foundational UML (ALF), v1.1

[2] Deque (in seq : T [0..*] sequence) : Deque<T>
Construct a deque and add the elements in the given sequence.

post: self.toSequence() = seq

[3] destroy ()
Destroy this deque.

[4]1ast () : T [0..1] {query}
Return, but do not remove, the element at the back of the queue, if one exists.

pre: self.notEmpty()
post: result = self.toSequence()->1ast()

[5] removeLast () : T [0..1]
Remove and return the element at the back of the deque if one exists.

pre: self.notEmpty()
post: result = self@pre.toSequence()->last() and
self.toSequence() = self@pre.toSequence->subSequence(1,self@pre.size()-1)

[6] removeLastOne (in element : T) : T[0..1]

Remove and return the last occurrence of the given element in this deque. If this deque is empty or the
element is not found in this queue, return nothing.

pre: self.includes(element)
post: result = element and

let revSeq = self@pre.toSequence()->reverse() in

let index = revSeq.indexOf(element) in

self.toSequence() = revSeq->subSequence(1,index-1)->union(revSeq-
>subSequence(index+1,revSeq->size()))->reverse()

11.7.4 Entry

An association of value to key. Note that entries are data values that are always passed by copy.
Changing an entry returned outside of a map will NOT effect the association within the map.
Generalizations
None
Attributes

* key:Key

The key for this association, used for lookup
 value : Value

An optional value for this association

Action Language for Foundational UML (ALF), v1.1 209

11.7.5 List<T>

Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by position in list.
Generalizations

+ Bag<T>
Operations

[1] add (in element : T) : Boolean
Append the given element into this list at the end. Always returns true.

post: self.toSequence() = self@pre.toSequence()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Append all elements in the given sequence onto the end of this list. Return true if the given collection is
not empty.

post: self.toSequence() = self@pre.toSequence()->union(seq)

[3] addAllAt (in index : Integer, in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this list at the given position index. Return true if the given
collection is not empty.

pre: index >= 1 and index <= self.size()+1
post: result = self.size() > self@pre.size() and

self.toSequence() = Sequence{1..seq->size() } ->iterate(i; s = self@pre.toSequence() | s-
>insertAt(index+i-1, sequence->at(i))

[4] addAt (in index : Integer, in element : T) : Boolean
Insert an element into this list at the given position index. Always return true.

pre: index > 1 and index <= self.size()+1
post: result = true and
self.toSequence() = self@pre.toSequence()->insertAt(index,element)

[5] at (in index : Integer) : T [0..1] {query}
Return the element at the given position index or nothing if there is no element at the given position.

pre: index > 0 and index <= self.size()
post: result = self@pre.toSequence()->at(index)

[6] destroy ()
Destroy this list

210 Action Language for Foundational UML (ALF), v1.1

[7] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this list is equal to the given sequence.

post: result = (self@pre.toSequence() = seq)

[8] first () : T [0..1] {query}
Returns the first element in this list, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[9] indexOf (in element : T) : Integer [0..1] {query}

Return the position of the first occurrence of the given element in this list or nothing if the element is not
included in this collection.

pre: self.includes(element)
post: result = self@pre.toSequence() -> indexOf(element)

[10] last () : T [0..1] {query}
Returns the last element in this list, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[11] List (in seq : T [0..*] sequence) : List<T>
Construct a list and add all elements in the given sequence

post: result.toSequence() = seq

[12] remove (in element : T) : Integer
Remove all occurrences of the given element from this list and return the count of elements removed.

post: self.toSequence() = self@pre.toSequence()->excluding(element)

[13] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given sequence from this list. Return true if the size of this list changes.

post: self.toSequence()
= seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[14] removeAt (in index : Integer) : T [0..1]

Remove the element at the given position index and shift all trailing elements left by one position.
Return the removed element, or nothing if the index is out of bounds.

pre: index > 0 and index <= self.size()

Action Language for Foundational UML (ALF), v1.1 211

post: result = self@pre.at(index) and
let preSeq = self@pre.toSequence() in
self.toSequence() = preSeq->subSequence(1, index-1)->union(preSeq->subSequence(index+1,

self@pre.size()))

[15] removeOne (in element : T) : Boolean

Remove first occurrence of the given element from this list and return true if an occurrence of element
was removed.

post: self.toSequence() =
let preSeq = self@pre.toSequence() in
if result then
let index = self@pre.indexOf(element) in
self.toSequence() = preSeq->subSequence(1, index-1)->
union(preSeq->subSequence(index+1, self@pre.size()))
else preSeq endif

[16] replace (in element : T, in newElement : T) : Integer

Replace all occurrences of the given element with a new element and return the count of replaced
elements.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
if self@pre.at(i) = element then newElement
else self@pre.at(i) endif)

[17] replaceAt (in index : Integer, in element : T) : T [0..1]
Replace the element at the given position index with the given new element. Return the replaced
element, or nothing if the index is out of bounds

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and

let preSeq = self@pre.toSequence() in

self.toSequence() = preSeq->subSequence(1, index-1)->append(newElement)->union(preSeq-
>subSequence(index+1, self@pre.size()))

[18] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with
newElement and return true if an element was replaced.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =

if result and i1 = self@pre.indexOf(element) then newElement
else self@pre.at(i) endif)

212 Action Language for Foundational UML (ALF), v1.1

[19] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this list that are NOT in the given collection. Return true if the
size of this collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; a =
self@pre.toSequence() | seq->excluding(element))

[20] subList (in fromIndex : Integer, in tolndex : Integer) : List<T> {query}

Return a new list containing all elements of this list from the lower position index up to and including
the upper position index.

post: if lower < 1 or upper > self.size() then
result.toSequence()->empty/()
else
result.toSequence() = self.toSequence()->subSequence(lower,upper)
endif

11.7.6 Map<Key, Value>

Dictionary of key and value pairs called "entries". Concrete unordered, unique (by key) collection.
Generalizations

None

Operations

[1] clear ()
Remove all entries in this map.

post: self.isEmpty()

[2] destroy ()
Destroy this map.

[3] entries () : Set<Entry> {query}
Return a set of copies of the entries in this map.

post: result.equals(self.toSequence())

[4] excludesAll (in entries : Entry [0..*]) : Boolean {query}
Returns true if this map contains none of the given entries.

post: result = self.toSequence()->excludesAll(entries)
[5] get (in key : Key) : Value [0..1] {query}

Returns the value associated with the given key, or nothing if there is no entry in this map with its key
equal to key.

Action Language for Foundational UML (ALF), v1.1 213

pre: self.keys().toSequence()->includes(key)
post: result = self.toSequence()->select(e | e.key = key).value

[6] includesAll (in entries : Entry [0..*]) : Boolean {query}
Returns true if this map contains all of the given entries.

post: result = self.entries().includesAll(entries)

[7] includesKey (in key : Key) : Boolean {query}
Return true if this map contains an entry with its key equal to the given key.

post: result = self.keys().includes(key)

[8] includesValue (in value : Value [0..1]) : Boolean {query}
Return true if an entry in this map has its value equal to value.

post: result = self.toSequence()->exists(e | e.value = value)

[9] isEmpty () : Boolean {query}
Return true if this map contains no entries.

post: result = self.toSequence()->isEmpty()

[10] keys () : Set<Key> {query}
Return a set of copies of the keys in this map.

post: result.equals(self.toSequence().key)

[11] Map (in entries : Entry [0..*]) : Map<Key, Value>
Construct a map and add the given entries. No two entries may have the same key.

pre: entries->isUnique(key)
post: result.toSequence()->asSet() = sequence->asSet()

[12] notEmpty () : Boolean {query}
Return true if this map contains at least one entry.

post: result = self.toSequence()->notEmpty/()

[13] put (in key : Key, in value : Value [0..1]) : Value [0..1]

Associate a value with a key, creating a new entry if necessary. Return the previously associated value,
or nothing if this is a new entry.

214 Action Language for Foundational UML (ALF), v1.1

post: result = self@pre.get(key) and
self.toSequence().key->asSet() = self@pre.toSequence().key->asSet()->including(key) and
self.toSequence()->isUnique(key) and
self.keys().toSequence()->forAll(k | self.get(k) =
if e key = key then value else self@pre.get(k))

[14] putAll (in entries : Entry [0..%])

Add all the given entries to this map. Any entry with a key already present in this map replaces the
previous entry in this map. No two of the given entries may have the same key.

pre: entries->isUnique(key)
post: self.toSequence().key->asSet() = self@pre.toSequence().key->asSet()->union(entries->asSet())
and
self.toSequence()->isUnique(key) and
self.keys().toSequence()->forAll(k | self.get(k) =
if entries.key->includes(k) then entries->select(key=k)
else self@pre.get(k))

[15] remove (in key : Key) : Value [0..1]
Remove any association of a value to the given key. Return the value previously associated with the key,
or nothing if there was no previous entry for the key

pre: self.includesKey(key)
post: result = self@pre.get(key) and
self.toSequence()->isUnique(key) and
self.toSequence()->asSet() = self@pre.toSequence()->reject(e | e.key = key)->asSet()

[16] removeAll (in keys : Key [0..*])
Remove all associations of a value to any of the given keys.

post: self.toSequence()->isUnique(key) and
self.toSequence()->asSet() = self@pre.toSequence()->reject(e | keys->includes(e.key))->asSet()

[17] size () : Integer {query}
Returns the number of entries in this map.

post: result = self.toSequence()->size()

[18] toSequence () : Entry [0..*] sequence {query}

Return a sequence (UML ordered, non-unique collection) containing copies all entries in this map. The
order is arbitrary. (The requirements on the returned sequence from this operation are specified
implicitly by the required behavior of the mutating operations of the Map class.)

Action Language for Foundational UML (ALF), v1.1 215

[19] values () : Bag<Value> {query}

Return a bag of copies of the values in this map. (A bag is returned, since a single value may be
associated with more than one entry in the map.)

post: result.equals(self.toSequence().value)
11.7.7 OrderedSet<T>

Concrete ordered, unique collection. Does not support duplicate entries. Ordered by position.
Generalizations

+ Set<T>
Operations

[1] add (in element : T) : Boolean

Append the given element into this ordered set at the end. Return true if a new element is actually
inserted.

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Append all elements in the given sequence onto the end of this ordered set. Returns true if this collection
increased in size.

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->union(seq->asOrderedSet())

[3] addAllAt (in index : Integer, in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this ordered set at the given position index. Returns true if

the size of the ordered set increases (that is, if at least some of the inserted elements were not duplicates
of elements already in the set).

pre: index >= 1 and index <= self.size()+1
post: result = self.size() > self@pre.size() and

self.toSequence()->asOrderedSet() = Sequence{1..seq->size() } ->iterate(i; set =
self@pre.toSequence()->asOrderedSet() | set->insertAt(index+i-1, seq->at(i))

[4] addAt (in index : Integer, in element : T) : Boolean

Insert an element into this ordered set at the given position index. Return true if the element was actually
added to the set.

pre: index > 1 and index <= self.size()+1

post: result = (self.size() = self@pre.size() + 1) and
self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()-

>insertAt(index,element)

216 Action Language for Foundational UML (ALF), v1.1

[5] at (in index : Integer) : T [0..1] {query}
Return the element at the given position index or nothing if there is no element at the given position.

pre: index > 0 and index <= self.size()
post: result = self@pre.toSequence()->at(index)

[6] destroy ()
Destroy this ordered set.

[7] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this ordered set is equal to the given sequence considered as an ordered set.

post: result = (self@pre.toSequence()->asOrderedSet() = seq->asOrderedSet())

[8] first () : T [0..1] {query}
Returns the first element in this ordered set, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[9] indexOf (in element : T) : Integer [0..1] {query}

Return the position of the first occurrence of the given element in this ordered set or nothing if the
element is not included in this collection.

pre: self.includes(element)
post: result = self@pre.toSequence() -> indexOf(element)

[10] last () : T [0..1] {query}
Returns the last element in this ordered set, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->last()

[11] OrderedSet (in seq : T [0..*] sequence) : OrderedSet<T>
Constructs an ordered set and adds all elements in the given sequence, in order.

post: result.toSequence()->asOrderedSet() = seq->asOrderedSet()

[12] remove (in element : T) : Integer

Remove all occurrences of the given element from this ordered set and return the count of elements
removed. (For an ordered set, this has the same effect as removeOne, since duplicates are not allowed.)

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->excluding(element)

Action Language for Foundational UML (ALF), v1.1 217

[13] removeAll (in seq : T [0..*] sequence) : Boolean

Remove all elements in the given sequence from this ordered set. Return true if the size of this ordered
set changes.

post: self.toSequence() = seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[14] removeAt (in index : Integer) : T [0..1]

Remove the element at the given position index and shift all trailing elements left by one position.
Return the removed element, or nothing if the index is out of bounds.

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
self.toSequence() = self@pre.toSequence()->excluding(result)

[15] removeOne (in element : T) : Boolean

Remove one occurrence of the given element from this ordered set and return true if an occurrence of
element was removed. (For an ordered set, this has the same effect as remove, since duplicates are not
allowed.)

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->excluding(element)

[16] replace (in element : T, in newElement : T) : Integer

Replace all occurrences of the given element with newElement and return the count of replaced
elements. (For an ordered set, this has the same effect as replaceOne, since duplicates are not allowed.)

post: self.toSequence() = if result then
self@pre.toSequence()->excluding(element)->insertAt(newElement,
self@pre.indexOf(element))
else
self@pre.toSequence()
endif

[17] replaceAt (in index : Integer, in newElement : T) : T [0..1]

Replace the element at the given position index with the given new element. Return the replaced
element, or nothing is the index is out of bounds

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
self.toSequence() = self@pre.toSequence()->excluding(result)->insertAt(index,newElement)

[18] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with newElement and return true if an element was
replaced. (For an ordered set, this has the same effect as replace, since duplicates are not allowed.)

218 Action Language for Foundational UML (ALF), v1.1

post: self.toSequence() = if result then
self@pre.toSequence()->excluding(element)->insertAt(newElement,
self@pre.indexOf(element))
else
self@pre.toSequence()
endif

[19] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this ordered set that are NOT in the given sequence. Return true
if the size of this collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; s =
self@pre.toSequence() | s->excluding(element))

[20] subOrderedSet (in lower : Integer, in upper : Integer) : OrderedSet<T> {query}

Return a new ordered set containing all elements of this ordered set from the lower position index up to
and including the upper position index.

post: if lower < 1 or upper > self.size() then
result.toSequence()->empty()
else
result.toSequence() = self.toSequence()->subSequence(lower,upper)
endif

11.7.8 Queue<T>

First In First Out Queue. Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by
position. Considering the queue as a sequence, insertion occurs at the back of the queue, removal at the
front.

Generalizations
» Collection<T>
Operations

[1] add (in element : T) : Boolean
Add the given element into this queue at the back. Always returns true.

post: self.toSequence() = self@pre.toSequence()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Add all elements in the given sequence to this queue at the back. Return true if the given collection is
not empty.

post: self.toSequence() = self@pre.toSequence()->union(seq)

Action Language for Foundational UML (ALF), v1.1 219

[3] addLast (in element : T) : Boolean

Add the given element into this queue at the back. Always returns true. (This is the same functionality as
the add operation.)

post: result = true and
self.toSequence() = self@pre.toSequence()->append(element)

[4] destroy ()
Destroys this queue.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this queue is equal to the given sequence.

post: result = self@pre.toSequence() = seq

[6] first () : T [0..1] {query}
Return, but do not remove, the element at the front of the queue, if one exists.

pre: self.notEmpty()
post: result = self.toSequence()->first()

[7] Queue (in seq : T [0..*] sequence) : Queue<T>
Construct a queue and add all elements in the given sequence.

post: result.toSequence() = seq

[8] remove (in element : T) : Integer
Remove all occurrences of the given element from this queue and return the count of elements removed.

post: self.toSequence() = self@pre.toSequence()->excluding(element)

[9] removeAll (in seq : T [0..*] sequence) : Boolean

Remove all elements in the given collection from this queue. Return true if the size of this queue
changes.

post: self.toSequence()
= seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[10] removeFirst () : T[0..1]
Remove and return the element at the front of the queue if one exists.

pre: self.notEmpty()

post: result = self@pre.toSequence()->first() and
self.toSequence()->self@pre.toSequence()->subSequence(2,self@pre.size())

220 Action Language for Foundational UML (ALF), v1.1

[11] removeFirstOne (in element : T [1]) : T [0..1]

Remove and return the first occurrence of the given element in this queue. If this queue is empty or the
element is not found in this queue, return nothing.

pre: self.includes(element)
post: result = element and

let preSeq = self@pre.toSequence() in

let index = preSeq.indexOf{element) in

self.toSequence() = preSeq->subSequence(1,index-1)->union(preSeq-
>subSequence(index+1,preSeq->size()))

[12] removeOne (in element : T) : Boolean

Remove the first occurrence of the given element from this queue and return true if an occurrence of
element was removed.

post: self.toSequence() =
let preSeq = self@pre.toSequence() in
if result then
let index = self@pre.indexOf(element) in
self.toSequence() = preSeq->subSequence(1, index-1)->
union(preSeq->subSequence(index+1, self@pre.size()))
else preSeq endif

[13] replace (in element : T, in newElement : T) : Integer

Replace all occurrences of the given element with a new element and return the count of replaced
elements.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
if self@pre.at(i) = element then newElement
else self@pre.at(i) endif)

[14] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with
newElement and return true if an element was replaced.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
if result and i1 = self@pre.indexOf(element) then newElement
else self@pre.at(i) endif)

[15] retainAll (in seq : T) : Boolean
Remove all instances of all elements in this queue that are NOT in the given collection. Return true if

the size of this collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; s =
self@pre.toSequence() | s->excluding(element))

Action Language for Foundational UML (ALF), v1.1 221

11.7.9 Set<T>

A concrete unordered, unique collection. Does not support duplicate entries.
Generalizations

» Collection<T>
Operations

[1] add (in element : T) : Boolean
Insert the given element into this set. Return true if a new element is actually inserted.

post: self.toSequence()->asSet() = self@pre.toSequence()->asSet()->including(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this set. Returns true if this collection increased in size.

post: self.toSequence()->asSet() = self@pre.toSequence()->asSet()->union(seq->asSet())

[3] count (in element : T) : Integer {query}
The number of elements in this set that match a specified element.

post: result = if self@pre.includes(element) then 1 else 0 endif

[4] destroy ()
Destroy this set.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this set is equal to the given sequence considered as a set.

post: result = (self@pre.toSequence()->asSet() = seq->asSet())

[6] Set (in seq : T [0..*] sequence) : Set<T>
Construct a set and add all elements in the given sequence.

post: result.toSequence()->asSet() = seq->asSet()

222 Action Language for Foundational UML (ALF), v1.1

12 Common Abstract Syntax

12.1 Overview

Parsing an Alf text synthesizes an abstract syntax tree (see 6.5). Static semantic analysis then adds
associated with the syntax elements in the abstract syntax tree (see 6.6). Such information is formally
specified using derived attributes and associations in the UML abstract syntax model. Thus, a syntax
element class will generally have two kinds of properties: synthesized properties, whose values are
determined during parsing, and derived properties, whose values are determined during static semantic
analysis. The specification for each derived property includes a constraint that defines its derivation.

In addition, the specification of a syntax class includes various constraints that must be checked during
the course of static semantics analysis. If any of these constraints are violated, then the input text is not
legal and must be rejected. The specification of the class may also include helper operations that can be
used in both the class constraints and property derivations.

Clauses 8, 9 and 10 described the synthesized abstract syntax for Alf expressions, statements and units.
This clause extends that abstract syntax model to include the derived properties and constraints that
specify the static semantics of Alf. Clauses 16 through 19 then specify the mapping from the Alf abstract
syntax, after static semantic analysis, to the fUML subset of the UML abstract syntax.

The UML model of the Alf abstract syntax is contained within the package a1f: : syntax. It comprises
four subpackages: Common, Expressions, Statements and Units. The content of each of these
packages is described in this and the following three clauses.

The a1f::Syntax: :Common package contains the root abstract classes syntaxElement and
DocumentedElement. It also contains common ElementReference and AssignedSource classes that
are used throughout the rest of the abstract syntax model. Element reference and assigned source objects
are not themselves syntax elements but, rather, represent certain relevant information determined during
the static semantic analysis of an abstract syntax tree and associated with elements of that tree.

The mapping of common elements to UML is given in Clause 16.
Element References

As discussed in subclauses 8.2 and 10.2, a name resolves to the model element that it names. If this
model element is defined outside the context of the Alf text in which the reference to its name appears,
then the resolution is straightforward. However, the situation is more complicated if the element being
referenced is defined within the same Alf text as the reference itself. This is because the name must be
resolved during static semantic analysis, but, at that point, the Alf representation of the element being
referenced has not yet been mapped to UML.

In order to handle this in a general way, the Alf abstract syntax uses a generic concept of element
reference. Such a reference may be an external element reference, meaning that it is a reference to a
model element defined in the UML model external to the Alf text. Or it may be an internal element
reference, meaning that it is a reference to the syntax element in the Alf text which will ultimately be
mapped to the desired model element. The necessary properties of a referenced element required for
static semantic analysis may be obtained from either an external or internal element reference.

Action Language for Foundational UML (ALF), v1.1 223

Assigned Sources

As discussed in subclauses 8.1 and 9.1, the assigned source for a local name is the statically determined
syntax element that, when executed, will provide the actual assigned value for that local name. If the
assigned source for a local name is known, then a reference to the assigned value of that local name can
be mapped to an object flow from the mapping of the assigned source.

During static semantic analysis, it is necessary to know what names have assigned sources before and
after each expression node and each statement node within the abstract syntax tree. Information on the
assigned source includes not only the source element itself, but also the soriginally declared type, the
statically best known subtype and the multiplicity of the value produced by that source.

A parameter name for an in or inout parameter may also have that parameter as its assigned source (see
8.3.3). If a parameter name is used in an Alf expression that is within a non-Alf unit, then the named
parameter may be an external UML model element. As shown in Figure 12.3, the source of an assigned
source is an element reference (rather than just an Alf syntax element), in order to allow for this case.

SyntaxElement

T

DocumentedElement

+documentation : String [*]

Figure 12.1 Syntax Elements

ElementReference
ExternalElementReference InternalElementReference
+element|1 +element| 1
& &
«Metaclass» Syntax::Common::
Element SyntaxElement

Figure 12.2 Element References

224 Action Language for Foundational UML (ALF), v1.1

AssignedSource

+source

+name : String
+upper : UnlimitedNatural
+lower : Integer

*

1

+type
0.1 0.1

+subtype
yp o

0.1

+/knownType
o

Figure 12.3 Assigned Sources

0.1

12.2 Class Descriptions

12.2.1 AssignedSource

! ElementReference

An assignment of a source element that gives the value of a local name or input parameter name, along

with a record of the defined type (if any) and multiplicity of the name.

Generalizations

None

Synthesized Properties
lower : Integer

The multiplicity lower bound for the name.

name : String

The local name for which this is the assigned source.

source : ElementReference

A reference to the element that is to be the source for the assigned value of the given local name.

subtype : ElementReference [0..1]

A reference to the element that gives the best known type for the latest assignment to the local
name (if any). This will always be a subtype of the type of the assigned source.

type : ElementReference [0..1]

A reference to the element that gives the type for the local name (if any), as originally declared or

assigned.

upper : UnlimitedNatural

The multiplicity upper bound for the local name.

Derived Properties
knownType : ElementReference [0..1]

Action Language for Foundational UML (ALF), v1.1

A reference to the element that represents the best known type for the local name.

225

Constraints
[1] assignedSourceKnownTypeDerivation

If the subtype of an assigned source is empty, then its known type is the same as its type. Otherwise, its
known type is the same as its subtype.

Helper Operations
None

12.2.2 DocumentedElement
A syntax element that has documentation comments associated with it.

Generalizations
» SyntaxElement

Synthesized Properties
« documentation : String [*]

The documentation text to be associated with a syntax element. Each string is intended to be
mapped to the body of a comment element in the target UML model.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.3 ElementReference

A reference to a model element, either directly or via its Alf abstract syntax representation. (NOTE: The
definitions of all the helper operations of ElementReference are specific to its subclasses.)

Generalizations
None

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

226 Action Language for Foundational UML (ALF), v1.1

12.2.4 ExternalElementReference
A direct reference to a UML model element.

Generalizations
+ ElementReference

Synthesized Properties
» element : Element

The referenced model element.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.5 InternalElementReference
A direct reference to a UML model element.

Generalizations
 ElementReference

Synthesized Properties
+ element : SyntaxElement

The Alf syntax element that represents the referenced model element.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.6 SyntaxElement

A syntax element synthesized in an abstract syntax tree, along with any additional information
determined during static semantic analysis.

Generalizations
None

Synthesized Properties
None

Action Language for Foundational UML (ALF), v1.1 227

Derived Properties
None

Constraints
None

Helper Operations
None

228

Action Language for Foundational UML (ALF), v1.1

13 Expressions Abstract Syntax

13.1 Overview

The a1f::syntax: :Expressions package contains the abstract syntax model for expressions. The
syntax and semantics of expressions are discussed in Clause 8. Their mapping to UML is given in

Clause 17.

+/assignmentBefore

SyntaxElement

AN

Expression

+/lower : Integ

+/upper : UnlimitedNatural

er

* *

*

+/type | 0..1

NameBinding

+binding

+nameBinding [* 4
{ordered}

*

*

AssignedSource

ElementReference

+/referent

+/assignmentAfter |. *

0.1
0.1
+/qualification

+name : String

0.1 0.1

+/unqualifiedName

TemplateBinding

A

PositionalTe

mplateBinding

0.1

QualifiedName

+isAmbiguous : Boolean = false
+/pathName : String
+/isFeatureReference : Boolean

+ftemplateName 0.1 101 [0-1]

+/disambiguation |0..1

FeatureReference

Figure 13.1 Expressions and Qualified Names

Action Language for Foundational UML (ALF), v1.1

+argumentName

0.1

NamedTem

plateBinding

1.

o———
+argumentName

+substitution | 1..

0.1

*

e
TemplateParameterSubstitution

0.1

+parameterName : String

229

Expression

AN
LiteralExpression
AN
BooleanLiteralExpression UnboundedLiteralExpression ReallLiteralExpression
+image : String +image : String
NaturalLiteralExpression StringLiteralExpression
+image : String +image : String
Figure 13.2 Literal Expressions
- +expression
Expression
+/propertyAccess
ThisExpression —|NameExpression [o _1 0.1 'lPropertyAccessExpression
* *

A
+/enumerationLiteral |0-1 1 | +/feature

+fassignment|0..1 +name |1 ElementReference | +/referent

AssignedSource QualifiedName

0.1

w1 i+featureReference

NameBinding *tnameBinding FeatureReference
1 0..1 l 0.1

SyntaxElement

Figure 13.3 Basic Primary Expressions

230 Action Language for Foundational UML (ALF), v1.1

+nonNameExpression
Expression | g 1

+/expression

—

P ionE. 3 +/referent
Tuple +uple +invocation InvocationExpression - o7 ElementReference
1 1 +/isBehavior : Boolean "
+/isAssociationEnd : Boolean +/boundReferent
+/isOperation : Boolean 0.1
FeatureReference o/ (€21ure +fisDestructor : Boolean -
0.1 * +/isimplicit : Boolean +/parameter
+arget]0..1 +fisSignal : Boolean * {ordeted)

T

SuperinvocationExpression

0.1

FeaturelnvocationExpression

InstanceCreationExpression LeftHandSide
+/isConstructorless : Boolean

0.1 +/isObjectCreation : Boolean 0..1 | +/leftHandSide

0.1
SequenceOperationExpression

+/isCollectionConversion : Boolean
+/isBitStringConversion : Boolean

BehaviorinvocationExpression

LinkOperationExpression

+operation : String
0.1 +/isCreation : Boolean
" +/isClear : Boolean

0.1 0.1
0.1 +primary | 1
+associationName |1 +construbtor ExtentOrExpression _
QualifiedName | 0-1 -
+target] —
+operation -
0..1 p
+target gﬁ1ame o1
1

0.1

Figure 13.4 Invocation Expressions

Action Language for Foundational UML (ALF), v1.1 231

0.1

+/input

0.1

Tuple

+tuple

+invocation - z
InvocationExpression

1

NamedTuple

0..1
{ordered}

*

NamedExpression

+namedExpression

+index

PositionalTuple

+name : String

+/isCollectionConversion : Boolean

+/isBitStringConversion : Boolean

+/isRealConversion : Boolean

|

+/°Utpi‘t OutputNamedExpression

0.1
+/leftHandSide [1

LeftHandSide

Figure 13.5 Tuples

232

0.1

0.1

+expression

0.1

1

0.1

{ordered}
+expression

Expression

Action Language for Foundational UML (ALF), v1.1

+rangelower

+argument

1 Expression
+rangeUpper +index
1 1
+element +primary
{ordered}
0.1 A

ClassExtentExpression

SequenceAccessExpression

0.1

SequenceExpansionExpression

*

1 l+/variabIeSource

AssignedSource

0.1
SequenceConstructionExpression SequenceReductionExpression
+hasMultiplicity : Boolean = false +isOrdered : Boolean = false +operation : String
+variable : String
0.1 0.1 0.1 0.1
0.1
+elements |0..1 +/referent¥1
SequenceElements ElementReference
+/upper : UnlimitedNatural
+/lower : Integer
T 1| +behaviorName
1 . .
0.1 +classNama® QualifiedName | *Primaryy 1 +pr|mary.1
) +typeName ’TE.xtentOrExpression
SequenceExpressionList 0.1
0.1 SequenceRange
0.1

Figure 13.6 Sequence Expressions

SequenceExpansionExpression

i

SelectOrRejectExpression

ForAllOrExistsOrOneExpression

IsUniqueExpression

CollectOrlterateExpression

Figure 13.7 Sequence Expansion Expressions

Action Language for Foundational UML (ALF), v1.1

233

+/expression

Expression

IncrementOrDecrementExpression +heature ElementReference
+isPrefix : Boolean = false 0.1
+operator : String)

* |+/isFeature : Boolean +/<'=‘~°’S'9mnen'f/,|AssignedSource
+/isindexed : Boolean * 0..1
+/isDataValueUpdate : Boolean

0..1

+operand |1

LeftHandSide

Figure 13.8 Increment and Decrement Expressions

+operan§i Expression

UnaryExpression

0..1 +operator : String

]

NumericUnaryExpression || | BooleanUnaryExpression || |IsolationExpression

BitStringUnaryExpression ClassificationExpression

+/isBitStringConversion : Boolean | |+/isDirect : Boolean

Figure 13.9 Unary Expressions

234 Action Language for Foundational UML (ALF), v1.1

+operand1 - +operand2
1 1
A

BinaryExpression

0..1 +operator : String 0.1

ArithmeticExpression RelationalExpression EqualityExpression NullCoalescingExpression
+/isConcatenation : Boolean +/isUnlimitedNatural : Boolean +/isNegated : Boolean
+/isReal : Boolean +/isReal : Boolean +/isRealConversion1 : Boolean
+/isRealConversion1 : Boolean || | +/isRealConversion1 : Boolean +/isRealConversion2 : Boolean
+/isRealConversion2 : Boolean || |+/isRealConversion2 : Boolean

ShiftExpression LogicalExpression ConditionalLogicalExpression

+/isBitStringConversion : Boolean | |+/isBitWise : Boolean
+/isBitStringConversion1 : Boolean
+/isBitStringConversion2 : Boolean

Figure 13.10 Binary Expressions

- +operand1
Expression y
+operand ; +operand2
1 1
+operand3
1
0.1 0.1 [0..1
CastExpression ConditionalTestExpression
0.1
0..1

+typeName | 0..1

QualifiedName

Figure 13.11 Cast and Conditional-Test Expressions

Action Language for Foundational UML (ALF), v1.1 235

+index

+rightHandSide

Expression
0.1

+/expression

1

0.1
AssignmentExpression +eature ElementReference
+operator : String 0.1
0.1 | +/isindexed : Boolean
+/isArithmetic : Boolean +/assi ¢
01 +/isDefinition : Boolean assignmen AssignedSource
h +/isSimple : Boolean * 0..1
:;::Ez?g/r:h:gﬁglc?:tz'Boolean +/assignmentBefore| * *1" +/assignmentAfter
+/isCollectionConversion : Boolean
+/isBitStringConversion : Boolean
+/isRealConversion : Boolean
0.1
+leftHandSide | 1
LeftHandSide *
0.1 +/referent : ElementReference [0..1] [*
+/type : ElementReference [0..1]
+/lower : Integer
+/upper : UnlimitedNatural
FeatureLeftHandSide NameleftHandSide
0..1 0.1
+feature | 1 +target| 1
FeatureReference QualifiedName

Figure 13.12 Assignment Expressions
13.2 Class Descriptions

13.2.1 ArithmeticExpression
A binary expression with an arithmetic operator.

Generalizations

BinaryExpression

Synthesized Properties

Action Language for Foundational UML (ALF), v1.1

Derived Properties
« isConcatenation : Boolean

Whether this is a string concatenation expression.

« isReal : Boolean
Whether this is a real arithmetic expression.

+ isRealConversionl : Boolean
Whether Real conversion is required on the first operand of this expression.

« isRealConversion2 : Boolean
Whether Real conversion is required on the second operand of this expression.

Constraints
[1] arithmeticExpressionlsConcatenationDerivation

An arithmetic expression is a string concatenation expression if its type is String.

[2] arithmeticExpressionlsRealConversion1Derivation
Real conversion is required if the type of an arithmetic expression is a type that conforms to type Real
and the first operand expression has a type that conforms to type Integer.

[3] arithmeticExpressionlsRealConversion2Derivation
Real conversion is required if the type of an arithmetic expression is a type that conforms to type Real
and the second operand expression has a type that conforms to type Integer.

[4] arithmeticExpressionlsRealDerivation
An arithmetic expression is a real computation if its type conforms to type Real.

[5] arithmeticExpressionLowerDerivation

An arithmetic expression has a multiplicity lower bound of 0 if its operator is / or if the lower bound if
either operand expression is 0 and 1 otherwise.

[6] arithmeticExpressionOperandMultiplicity
The operand expressions of an arithmetic expressions must both have multiplicity upper bounds of 1.

[7] arithmeticExpressionOperandTypes
The operands of an arithmetic expression must both have types that conform to type Integer or Real,

unless the operator is + or %. If the operator is +, then both operands may also have types that conform
to type String. If the operator is %, then both operands must have types that conform to type Integer.

[8] arithmeticExpressionTypeDerivation

If both operands of an arithmetic expression operator are of a type that conforms to type Integer, then the
type of the expression is Integer. If one operand is of a type that conforms to type Real and the other
Integer or both are of a type that conforms to type Real, then the type of the expression is Real. If both
operands are of a type that conforms to type String, then the type of the expression is String. Otherwise
the expression has no type.

Action Language for Foundational UML (ALF), v1.1 237

[9] arithmeticExpressionUpperDerivation
An arithmetic expression has a multiplicity upper bound of 1.

Helper Operations
[1] minLowerBound() : Integer

The minimum lower bound is 0 for operands of arithmetic expressions other than concatenations (this
allows for the propagation of a null returned from a division by zero in an operand).

13.2.2 AssignmentExpression
An expression used to assign a value to a local name, parameter or property.

Generalizations
« Expression

Synthesized Properties
« leftHandSide : LeftHandSide

The left-hand side of the assignment, to which a value is to be assigned.

e operator : String
The image of the assignment operator used in the expression.

« rightHandSide : Expression
The right-hand side expression of the assignment, which produces the value being assigned.

Derived Properties
« assignment : AssignedSource [0..1]

If the left-hand side is a name, then the new assigned source for that name.

e expression : Expression [0..1]

If this is a compound assignment, then the effective expression used to obtain the original value
of the left-hand side to be updated.

« feature : ElementReference [0..1]

If the left-hand side is a feature, then the referent for that feature.

» isArithmetic : Boolean

If this is a compound assignment, whether the compound assignment operator is arithmetic or
not.

« isBitStringConversion : Boolean
Whether BitString conversion is required for this assignment.

* isCollectionConversion : Boolean

238 Action Language for Foundational UML (ALF), v1.1

Whether collection conversion is required for this assignment.

« isDataValueUpdate : Boolean
Whether this assignment updates an attribute of a data value held in a local name or parameter.

 isDefinition : Boolean
Whether this assignment is the definition of a new local name or not.

o isFeature : Boolean
Whether the left-hand side is a feature or not.

e isIndexed : Boolean
If the left-hand side is a feature, whether it has an index or not.

« isRealConversion : Boolean
Whether Real conversion is required for this assignment.

« 1sSimple : Boolean
Whether this is a simple assignment or not.

Constraints

[1] assignmentExpressionAssignmentDerivation

The new assigned source for an assignment to a local name is the assignment expression (including a
data value update). If the assignment is a definition, then the type is given by the right-side, otherwise
the type is the same as for the previous assigned source for the local name. The multiplicity lower bound
is 0 if the lower bound of the right-hand side is 0 and otherwise 1, and the multiplicity upper bound is 1
if the upper bound of the right-hand side is 1 and * otherwise, except that: if the left-hand side is a data-
value update, the multiplicity is the same as for the previous assignment, and, if the left-hand side is
indexed (but not a data-value update), the multiplicity is [0..*]. If the assignment expression does not
require any conversions, then the subtype of the assignment is the type of the right-hand side expression;
otherwise it is null.

[2] assignmentExpressionAssignmentsBefore

The assigned source of a name before the right-hand side expression of an assignment expression is the
same as the assigned source before the assignment expression. The assigned source of a name before the
left-hand side is the assigned source after the right-hand side expression.

[3] assignmentExpressionCompoundAssignmentMultiplicityConformance

For a compound assignment, both the left-hand and right-hand sides must have a multiplicity upper
bound of 1.

[4] assignmentExpressionCompoundAssignmentTypeConformance

For a compound assignment, if the operator is an arithmetic operator, then either the left-hand side and
the right-hand side both have types that conform to type Integer, the left-hand side has a type that
conforms to type Real and the right-hand side has a type that conforms to type Integer or Real, or they

Action Language for Foundational UML (ALF), v1.1 239

both have types that conform to type String and the operator is +. If the operator is a logical operator,
then either the left-hand side and the right-hand side both have types that conform to type Boolean or Bit
String or the left-hand side has a type that conforms to type Bit String and the right-hand side has a type
that conforms to type Integer. If the operator is a shift operator, then the left-hand side must have a type
that conforms to type Bit String and the right-hand side must have a type that conforms to type Integer.

[5] assignmentExpressionDataValueUpdateLegality

If an assignment expression has a feature with a primary expression whose type is a data type, then the
assignment expression must be a data value update.

[6] assignmentExpressionExpressionDerivation

For a compound assignment, the effective expression is the left-hand side treated as a name expression,
property access expression or sequence access expression, as appropriate for evaluation to obtain the
original value to be updated.

[7] assignmentExpressionFeatureDerivation

If the left-hand side of an assignment expression is a feature, then the feature of the assignment is the
referent of the left-hand side.

[8] assignmentExpressionlsArithmeticDerivation

An assignment expression is an arithmetic assignment if its operator is a compound assignment operator
for an arithmetic operation.

[9] assignmentExpressionlsBitStringConversionDerivation

An assignment requires BitString conversion if the type of the left-hand side is BitString and either the
type of the right-hand side is Integer or collection conversion is required and the type of the right-hand
side is a collection class whose sequence type is Integer.

[10] assignmentExpressionlsCollectionConversionDerivation

An assignment requires collection conversion if the type of the right-hand side is a collection class and
its multiplicity upper bound is 1, and the type of the left-hand side is not a collection class.

[11] assignmentExpressionlsDataValueUpdateDerivation

An assignment expression is a data value update if its left hand side is an attribute of a data value held in
a local name or parameter.

[12] assignmentExpressionlsDefinitionDerivation
An assignment expression is a definition if it is a simple assignment and its left hand side is a local name
for which there is no assignment before the expression.

[13] assignmentExpressionlsFeatureDerivation

The left hand side of an assignment expression is a feature if it is a a feature left-hand side or a name
left-hand side for a name that disambiguates to a feature.

240 Action Language for Foundational UML (ALF), v1.1

[14] assignmentExpressionlsIndexedDerivation
The left hand side of an assignment expression is indexed if it has an index.

[15] assignmentExpressionlsRealConversionDerivation

An assignment requires Real conversion if the type of the left-hand side is a type that conforms to type
Real and either the type of the right-hand side is a type that conforms to type Integer or collection
conversion is required and the type of the right-hand side is a collection class whose sequence type is a
type that conforms to type Integer.

[16] assignmentExpressionlsSimpleDerivation

An assignment expression is a simple assignment if the assignment operator is "=".
[17] assignmentExpressionLowerDerivation

A simple assignment expression has the same multiplicity lower bound as its right-hand side expression.
A compound assignment expression has the same multiplicity as its left-hand side.

[18] assignmentExpressionSimpleAssignmentMultiplicityConformance

If the left-hand side of a simple assignment is not a local name and the multiplicity lower bound of the
left-hand side is greater than 0, then the multiplicity lower bound of the right-hand side cannot be 0. If
the left-hand side is not a new local name and the multiplicity upper bound of the left-hand side is less
than or equal to 1, then the multiplicity upper bound of the right-hand side cannot be greater than that of
the left-hand side.

[19] assignmentExpressionSimpleAssignmentTypeConformance

If the left-hand side of a simple assignment is not a new local name, and the right-hand side is not null,
then either the left-hand side must be untyped or the right-hand side expression must have a type that
conforms to the type of the left-hand side.

[20] assignmentExpressionTypeDerivation

A simple assignment expression has the same type as its right-hand side expression. A compound
assignment expression has the same type as its left-hand side.

[21] assignmentExpressionUpperDerivation
An assignment expression has the same multiplicity upper bound as its right-hand side expression.

Helper Operations
[1] adjustMultiplicity(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the left-hand side is not indexed and is not a feature reference, then the assigned name is considered
be known null if the condition is true, or known non-null if the condition is false. The right-hand side is
then also checked for known nulls or non-nulls.

[2] adjustType(assignments : AssignedSource [*], subtype : ElementReference) : AssignedSource [*]

If the left-hand side is not indexed and is not a feature reference, then the assigned name is considered to
have the given subtype. The type of the right-hand side is then also adjusted as appropriate.

Action Language for Foundational UML (ALF), v1.1 241

[3] declaredType() : ElementReference

If an assignment expression is a simple assignment, then its declared type is the declared type of the
right-hand side expression. Otherwise it is the type of the assignment expression.

[4] updateAssignments () : AssignedSource [*]

The assignments after an assignment expression are the assignments after the left-hand side, updated by
the assignment from the assignment statement, if any.

13.2.3 BehaviorlnvocationExpression
An invocation of a behavior referenced by name.

Generalizations
» InvocationExpression

Synthesized Properties
 target : QualifiedName

The qualified name of the behavior to be invoked.

Derived Properties
None

Constraints

[1] behaviorInvocationExpressionAlternativeConstructor

The referent may only be a constructor (as a result of the target disambiguating to a feature reference) if
this behavior invocation expression is the expression of an expression statement that is the first
statement in the definition for the method of a constructor operation.

[2] behaviorInvocationExpressionArgumentCompatibility

If the target qualified name does not disambiguate to a feature reference, then each input argument
expression must be assignable to its corresponding parameter and each output argument expression must
be assignable from its corresponding parameter. (Note that this implies that the type of an argument
expression for an inout parameter must be the same as the type of that parameter.)

[3] behaviorInvocationExpressionFeatureDerivation

If the target qualified name disambiguates to a feature reference, then the feature of a behavior
invocation expression is that feature reference.

[4] behaviorInvocationExpressionReferentConstraint

If the target qualified name does not disambiguate to a feature reference, then it must resolve to a
behavior or an association end, and, if it is a template behavior, then the implicit binding of this template
must be legal. Otherwise it must resolve to a single feature referent according to the overloading
resolution rules, unless it is an implicit destructor call (in which case it has no referent).

[5] behaviorlnvocationExpressionReferentDerivation

If the target of a behavior invocation expression resolves to a behavior, then the referent of the
expression is that behavior. If the target disambiguates to a feature reference, then the reference is the

242 Action Language for Foundational UML (ALF), v1.1

operation or signal being invoked. Otherwise, if the target resolves to a property that is an association
end, then the referent is that property.

Helper Operations
[1] adjustAssignments(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the invoked behavior is CollectionFunctions::isEmpty or SequenceFunctions::IsEmpty, then check the
argument expression for known nulls and non-nulls using the given truth condition. If the invoked
behavior is CollectionFunctions::notEmpty or SequenceFunctions::NotEmpty, then check the argument
expression for known nulls and non-nulls using the negation of the given truth condition.

13.2.4 BinaryExpression
An expression consisting of an operator acting on two operand expressions.

Generalizations
» Expression

Synthesized Properties
» operand] : Expression
The expression giving the first operand.

e operand?2 : Expression
The expression giving the second operand.

e operator : String
The symbol representing the operator.

Derived Properties
None

Constraints

[1] binaryExpressionOperandAssignments

The assignments in the operand expressions of a binary expression must be valid (as determined by the
validateAssignments helper operation).

[2] binaryExpressionOperandMultiplicity
The operands of a binary expression must both have a multiplicity lower bound no less than that given

by the minLowerBound helper operation. The operands of a binary expression must both have a
multiplicity upper bound no greater than that given by the maxUpperBound helper operation.

Helper Operations

[1] minLowerBound() : Integer
By default, the minimum allowed lower bound for an operand of a binary expression is 1.

[2] maxUpperBound() : UnlimitedNatural
By default, the maximum allowed upper bound for an operand of a binary expression is 1.

Action Language for Foundational UML (ALF), v1.1 243

[3] updateAssignments () : AssignedSource [*]

The assignments after a binary expression include all the assignments before the expression that are not
reassigned in either operand expression, plus the new assignments from each of the operand expressions.

[4] validateAssignments () : Boolean

In general the assignments before the operand expressions of a binary expression are the same as those
before the binary expression and, if an assignment for a name is changed in one operand expression,
then the assignment for that name may not change in the other operand expression. (This is overridden
for conditional logical expressions.)

13.2.5 BitStringUnaryExpression

Generalizations
» UnaryExpression

Synthesized Properties
None

Derived Properties
« isBitStringConversion : Boolean

Whether BitString conversion is required on the operand expression.

Constraints

[1] bitStringUnaryExpressionlsBitStringConversionDerivation

BitString conversion is required if the operand expression of a BitString unary expression has a type that
conforms to type Integer.

[2] bitStringUnaryExpressionLowerDerivation
A BitString unary expression has a multiplicity lower bound of 1.

[3] bitStringUnaryExpressionOperand

The operand expression of a BitString unary expression must have a type that conforms to type BitString
or Integer and multiplicity lower and upper bounds of 1.

[4] bitStringUnaryExpressionTypeDerivation
A BitString unary expression has type BitString.

[5] bitStringUnaryExpressionUpperDerivation
A BitString unary expression has a multiplicity upper bound of 1.

Helper Operations
None

244 Action Language for Foundational UML (ALF), v1.1

13.2.6 BooleanLiteralExpression
An expression that comprises a Boolean literal.

Generalizations
o LiteralExpression

Synthesized Properties
e 1mage : String
The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] booleanLiteralExpressionTypeDerivation

The type of a boolean literal expression is Boolean.

Helper Operations
None

13.2.7 BooleanUnaryExpression
A unary expression with a Boolean operator.

Generalizations
» UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] booleanUnaryExpressionLowerDerivation

A Boolean unary expression has the same multiplicity lower bound as its operand expression.

[2] booleanUnaryExpressionOperand

The operand expression of a Boolean unary expression must have a type that conforms to type Boolean
and a multiplicity upper bound of 1.

[3] booleanUnaryExpressionTypeDerivation
A Boolean unary expression has type Boolean.

[4] booleanUnaryExpressionUpperDerivation
A Boolean unary expression has a multiplicity upper bound of 1.

Action Language for Foundational UML (ALF), v1.1 245

Helper Operations
[1] adjustAssignments(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the expression is a negation, then check the operand expression for known nulls and non-nulls based
on the negation of the given truth condition.

13.2.8 CastExpression
An expression used to filter values by type.

Generalizations
« Expression

Synthesized Properties
« operand : Expression
The operand expression of the cast expression.

« typeName : QualifiedName [0..1]
The named type of the cast expression (if any)

Derived Properties
None

Constraints
[1] castExpressionAssignmentsBefore

The assignments before the operand of a cast expression are the same as those before the cast
expression.

[2] castExpressionLowerDerivation

If the type of a cast expression is empty, or its type conforms to Integer and the type of its operand
expression conforms to BitString or Real, or its type conforms to BitString or Real and its operand's type
conforms to Integer, or its operand's type conforms to its type, then the multiplicity lower bound of the
cast expression is the same as that of its operand expression. Otherwise it is 0.

[3] castExpressionTypeDerivation
The type of a cast expression is the referent of the given type name (if there is one).

[4] castExpressionTypeResolution
If the cast expression has a type name, then it must resolve to a non-template classifier.

[5] castExpressionUpperDerivation

A cast expression has a multiplicity upper bound that is the same as the upper bound of its operand
expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after a cast expression are the same as those after its operand expression.

246 Action Language for Foundational UML (ALF), v1.1

13.2.9 ClassExtentExpression

An expression used to obtain the objects in the extent of a class.

Generalizations
» Expression

Synthesized Properties
« className : QualifiedName

The name of the class whose extent is to be obtained.
Derived Properties
None

Constraints
[1] classExtentExpressionExtentType

The given type name must resolve to a non-template class.

[2] classExtentExpressionLowerDerivation
The multiplicity lower bound of a class extent expression is 0.

[3] classExtentExpressionTypeDerivation
The type of a class extent expression is the given class.

[4] classExtentExpressionUpperDerivation
The multiplicity upper bound of a class expression is *.

Helper Operations
None

13.2.10 ClassificationExpression
An expression used to test the dynamic type of its operand.

Generalizations
» UnaryExpression

Synthesized Properties
« typeName : QualifiedName

The name of the type that the operand is to be tested against.

Derived Properties
e isDirect : Boolean

Whether the test is for the operand to have the given type directly or to only conform to the given

type.

Action Language for Foundational UML (ALF), v1.1

247

» referent : ElementReference

Whether the test is for the operand to have the given type directly or to only conform to the given

type.

Constraints
[1] classificationExpressionlsDirectDerivation

A classification expression is direct if its operator is "hastype".

[2] classificationExpressionLowerDerivation
A classification expression has a multiplicity lower bound of 1.

[3] classificationExpressionOperand

The operand expression of a classification expression must have multiplicity lower and upper bounds of
1.

[4] classificationExpressionReferentDerivation
The referent of a classification expression is the classifier to which the type name resolves.

[5] classificationExpressionTypeDerivation
A classification expression has type Boolean.

[6] classificationExpressionTypeName
The type name in a classification expression must resolve to a non-template classifier.

[7] classificationExpressionUpperDerivation
A classification expression has a multiplicity upper bound of 1.

Helper Operations
[1] adjustAssignments(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the truth condition is true and the type of the operand of a classification expression does not conform
to the referent type of the classification expression, then set the known type of the operand of the
classification expression to be the referent type of the classification expression.

13.2.11 CollectOrlterateExpression
A sequence expansion expression with a collect or iterate operation.

Generalizations
« SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

248 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] collectOrlterateExpressionLowerDerivation

A collect or iterate expression has a multiplicity lower bound that is the product of the bounds of its
primary and argument expressions.

[2] collectOrlterateExpressionTypeDerivation
A collect or iterate expression has the same type as its argument expression.

[3] collectOrlterateExpressionUpperDerivation

A collect or iterate expression has a multiplicity upper bound that is the product of the bounds of its
primary and argument expressions.

Helper Operations

None

13.2.12 ConditionalLogicalExpression

A binary expression with a conditional logical expression, for which the evaluation of the second
operand expression is conditioned on the result of evaluating the first operand expression.

Generalizations
» BinaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints

[1] conditionalLogicalExpressionLowerDerivation
A conditional logical expression has a multiplicity lower bound of 1.

[2] conditionalLogicalExpressionOperands
The operands of a conditional logical expression must have a type that conforms to type Boolean.

[3] conditionalLogicalExpressionTypeDerivation
A conditional logical expression has type Boolean.

[4] conditionalLogicalExpressionUpperDerivation
A conditional logical expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

If a name has the same assigned source after the second operand expression as before it, then that is its
assigned source after the conditional logical expression. Otherwise its assigned source after the

Action Language for Foundational UML (ALF), v1.1 249

conditional logical expression is the conditional logical expression itself. If a name is unassigned before
the second operand expression but assigned after it, then it has a multiplicity lower bound of 0 after the
conditional logical expression.

[2] validateAssignments () : Boolean

The assignments before the first operand expression of a conditional logical expression are the same as
those before the conditional logical expression. The assignments before the second operand expression
are the same as those after the first operand expression, adjusted for known nulls and non-nulls based on
the first operand expression being true, for a conditional-and expression, or false, for a conditional-or
expression.

13.2.13 ConditionalTestExpression

An expression that uses the value of one operand expression to condition the evaluation of one of two
other operand expressions.

Generalizations
« Expression

Synthesized Properties
e operand]l : Expression
The first operand expression, which provides the condition to be tested.

« operand?2 : Expression
The second operand expression, to be evaluated if the condition is true.

e operand3 : Expression
The third operand expression, to be evaluated if the condition is false.

Derived Properties

None

Constraints

[1] conditional TestExpressionAssignmentsBefore

The assignments before the first operand expression of a conditional-test expression are the same as
those before the conditional-test expression. The assignments before the second and third operand
expressions are the same as those after the first operand expression.

[2] conditional TestExpressionCondition

The first operand expression of a conditional-test expression must be of a type that conforms to type
Boolean and have multiplicity lower and upper bounds of 1.

[3] conditional TestExpressionLowerDerivation

The multiplicity lower bound of a conditional-test operator expression is the minimum of the
multiplicity lower bounds of its second and third operand expressions.

250 Action Language for Foundational UML (ALF), v1.1

[4] conditional TestExpressionTypeDerivation

The type of a conditional-test operator expression is the effective common ancestor (if one exists) of the
types of its second and third operand expressions.

[5] conditional TestExpressionUpperDerivation

The multiplicity upper bound of a conditional-test operator expression is the maximum of the
multiplicity upper bounds of its second and third operand expressions.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

Returns unchanged all assignments for local names that are not reassigned in either the second or third
operand expressions. Any local names that have different assignments after the second and third operand
expressions are adjusted to have the conditional-test expression as their assigned source. If such a local
name is defined in one operand expression but not the other, then it is adjusted to have multiplicity lower
bound of 0 after the conditional test expression. If a local name has a new assignment after each of the
second and third expressions, then, after the conditional-test expression, it has a type that is the effective
common ancestor of its type after the second and third operand expressions, adjusted for known null and
non-null names from the first operand expression being true, for the second operand expression, or false,
for the third operand expression, a multiplicity lower bound that is the minimum of the lower bounds
after the second and third operand expressions and a multiplicity upper bound that is the maximum of
the upper bounds after the second and third expressions.

13.2.14 EqualityExpression
A binary expression that tests the equality of its operands.

Generalizations
» BinaryExpression

Synthesized Properties
None

Derived Properties
» isNegated : Boolean

Whether the test is for being not equal.

 isRealConversionl : Boolean
Whether Real conversion is required on the first operand of this expression.

 isRealConversion2 : Boolean
Whether Real conversion is required on the second operand of this expression.

Constraints
[1] equalityExpressionlsNegatedDerivation

my—=n

An equality expression is negated if its operator is

Action Language for Foundational UML (ALF), v1.1 251

[2] arithmeticExpressionlsRealConversion1Derivation
An equality expression requires Real conversion if the first operand is of type Integer and the second is
of type Real.

[3] arithmeticExpressionlsRealConversion2Derivation
An equality expression requires Real conversion if the first operand is of type Real and the second is of
type Integer.

[3] equalityExpressionLowerDerivation
An equality expression has a multiplicity lower bound of 1.

[4] equalityExpressionTypeDerivation
An equality expression has type Boolean.

[5] equalityExpressionUpperDerivation
An equality expression has a multiplicity upper bound of 1.

Helper Operations

[1] adjustAssignments (assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the one operand expression has multiplicity 0..0, then check the other operand expression for known
nulls and non-nulls, using the exclusive-or of the given truth condition and whether the equality
expression is negated or not.

[2] minLowerBound () : Integer
The minimum lower bound is 0 for operands of equality expressions.

13.2.15 Expression
A model of the common properties derived for any Alf expression.

NOTE: The derivations for all properties of Expression except AssignmentsAfter are specific to its
various subclasses.

Generalizations
+ SyntaxElement

Synthesized Properties
None

Derived Properties
« assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this expression. This includes not
only any assignments made within the expression, but also any assignments that are unchanged
from before the expression.

252 Action Language for Foundational UML (ALF), v1.1

« assignmentBefore : AssignedSource [*]

The assigned sources for local names available lexically before this expression.

« lower : Integer
The statically determined lower bound of the multiplicity of this expression.

« type : ElementReference [0..1]

A reference to the element that specifies the statically determined type for this expression (if
any).

« upper : UnlimitedNatural
The statically determined upper bound of the multiplicity of this expression.

Constraints
[1] expressionAssignmentAfterDerivation

The assignments after an expression are given by the result of the updateAssignments helper operation.

[2] expressionUniqueAssignments
No name may be assigned more than once before or after an expression.

Helper Operations
[1] adjustAssignments (assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

Returns the given assignments, adjusted for known nulls, known non-nulls and best known types, based
on the given truth condition. By default, no changes are made. (This operation is overridden for
conditional logical, binary unary, equality, behavior invocation, sequence operation and classification
expressions that may be used to form checks for null and non-null values and type classification.)

[2] adjustMultiplicity (assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

Returns the given assignments, adjusted for known nulls and non-nulls, based on the given truth
condition. By default, no changes are made. (This operation is overridden for name and assignment
expressions that may be used to provide the names that are checked for being null or non-null.)

[3] adjustType (assignments : AssignedSource [*], subtype : ElementReference) : AssignedSource [*]

Returns the given assignments, adjusted for the given best-known subtype. By default, no changes are
made. (This operation is overridden by name and assignment expressions that may be used to provide
the names that are checked for type classification.)

[4] declaredType () : ElementReference

Return the type of the expression, based on the originally declared types of names in the expression. By
default, this is the expression type.

[5] updateAssignments () : AssignedSource [*]

Returns the assignments from before this expression updated for any assignments made in the
expression. By default, this is the same set as the assignments before the expression. This operation is
redefined only in subclasses of Expression for kinds of expressions that make assignments.

Action Language for Foundational UML (ALF), v1.1 253

13.2.16 ExtentOrExpression

The target of a sequence operation, reduction or expansion expression, which may be either a primary
expression or a class name denoting the class extent.

Generalizations
None

Synthesized Properties
e name : QualifiedName [0..1]

If the target is a qualified name, then that name, before it is disambiguated into either a name
expression or a class name.

« nonNameExpression : Expression [0..1]
The target primary expression, if it is not a qualified name.

Derived Properties
« expression : Expression
The effective expression for the target.

Constraints
[1] extentOrExpressionExpressionDerivation

The effective expression for the target is the parsed primary expression, if the target is not a qualified
name, a name expression, if the target is a qualified name other than a class name, or a class extent
expression, if the target is the qualified name of a class.

Helper Operations
None

13.2.17 FeaturelnvocationExpression
An invocation of a feature referenced on a sequence of instances.

Generalizations
» InvocationExpression

Synthesized Properties
 target : FeatureReference [0..1]

A feature reference to the target feature to be invoked.

Derived Properties
None

Constraints
[1] featurelnvocationExpressionAlternativeConstructor

An alternative constructor invocation may only occur in an expression statement as the first statement in
the definition for the method of a constructor operation.

254 Action Language for Foundational UML (ALF), v1.1

[2] featurelnvocationExpressionFeatureDerivation

If a feature invocation expression has an explicit target, then that is its feature. Otherwise, it is an
alternative constructor call with its feature determined implicitly.

[3] featurelnvocationExpressionlmplicitAlternativeConstructor

If there is no target feature expression, then the implicit feature with the same name as the target type
must be a constructor.

[4] featurelnvocationExpressionReferentDerivation

If a feature invocation expression is an implicit object destruction, it has no referent. Otherwise, its
referent is the operation or signal being invoked.

[5] featurelnvocationExpressionReferentExists

If a feature invocation expression is not an implicit destructor call, then it must be possible to determine
a single valid referent for it according to the overloading resolution rules.

Helper Operations
None

13.2.18 FeatureLeftHandSide
A left-hand side that is a property reference.

Generalizations
« LeftHandSide

Synthesized Properties
» feature : FeatureReference

The structural feature being assigned.

Derived Properties
None

Constraints
[1] featureLeftHandSideAssignmentA fterDerivation

The assignments after a feature left-hand side are the assignments after the expression of the feature
reference or, if there is an index, those after the index expression.

[2] featureLeftHandSideAssignmentBeforeDerivation

The assignments before the expression of the feature reference of a feature left-hand side are the
assignments before the feature left-hand side.

[3] featureLeftHandSideAssignmentsBefore

If a feature left-hand side has an index, then the assignments before the index expression are the
assignments after the expression of the feature reference.

Action Language for Foundational UML (ALF), v1.1 255

[4] featureLeftHandSideFeatureExpression

The expression of the feature reference of a feature left-hand side must have a multiplicity upper bound
of 1.

[5] featureLeftHandSideIndexedFeature
If a feature left-hand side has an index, then the referent of the feature must be ordered and non-unique.

[6] featureLeftHandSideLowerDerivation

If a feature left-hand side is indexed, then its lower bound is 0. Otherwise, its lower bound is that of its
referent.

[7] featureLeftHandSideReferentConstraint
The feature of a feature-left hand side must have a single referent that is a structural feature.

[8] featureLeftHandSideReferentDerivation

The referent of a feature left-hand side is the structural feature to which the feature reference of the left-
hand side resolves.

[9] featureLeftHandSideTypeDerivation
The type of a feature left-hand side is the type of its referent.

[10] featureLeftHandSideUpperDerivation

If a feature left-hand side is indexed, then its upper bound is 1. Otherwise, its upper bound is that of its
referent.

Helper Operations
None

13.2.19 FeatureReference

A reference to a structural or behavioral feature of the type of its target expression or a binary
association end the opposite end of which is typed by the type of its target expression.

Generalizations
+ SyntaxElement

Synthesized Properties
» expression : Expression

The target expression.

« nameBinding : NameBinding
The name of the feature.

256 Action Language for Foundational UML (ALF), v1.1

Derived Properties
» referent : ElementReference [*]

The features referenced by this feature reference.

Constraints
[1] featureReferenceReferentDerivation

The features referenced by a feature reference include the features of the type of the target expression
and the association ends of any binary associations whose opposite ends are typed by the type of the
target expression.

[2] featureReferenceTargetType

The target expression of the feature reference may not be untyped, nor may it have a primitive or
enumeration type.

Helper Operations
None

13.2.20 ForAllOrExistsOrOneExpression
A sequence expansion expression with a forAll, exists or one operation.

Generalizations
» SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] forAllOrExistsOrOneExpressionArgument

The argument of a forAll, exists or one expression must have a type that conforms to type Boolean and a
multiplicity upper bound of 1.

[2] forAllIOrExistsOrOneExpressionLowerDerivation
A forAll, exists or one expression has a multiplicity lower bound of 1.

[3] forAllOrExistsOrOneExpressionTypeDerivation
A forAll, exists or one expression has the type Boolean.

[4] forAllOrExistsOrOneExpressionUpperDerivation
A forAll, exists or one expression has a multiplicity upper bound of 1.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 257

13.2.21 IncrementOrDecrementExpression
A unary expression with either an increment or decrement operator.

Generalizations
» Expression

Synthesized Properties
« operator : String
The operator for this increment or decrement expression, either "++" for increment or "--" for
decrement.

 isPrefix : Boolean = false
Whether the operator is being used as a prefix or a postfix.

« operand : LeftHandSide
The operand, which must have the form of an assignment left-hand side.

Derived Properties
« assignment : AssignedSource [0..1]

If the operand is a name, then the new assigned source for that name.

¢ expression : Expression
The effective expression used to obtain the original value of the operand to be updated.

« feature : ElementReference [0..1]

If the operand is a feature, then the referent for that feature.

« isDataValueUpdate : Boolean
Whether this expression updates an attribute of a data value held in a local name or parameter.

« isFeature : Boolean
Whether the operand is a feature or not.

+ isIndexed : Boolean
If the operand is a feature, whether it has an index or not.

Constraints
[1] incrementOrDecrementExpressionAssignmentDerivation

If the operand of an increment or decrement expression is a name, then the assignment for the
expression is a new assigned source for the name with the expression as the source.

[2] incrementOrDecrementExpressionAssignmentsBefore

The assignments before the operand of an increment or decrement expression are the same as those
before the increment or decrement expression.

258 Action Language for Foundational UML (ALF), v1.1

[3] incrementOrDecrementExpressionExpressionDerivation

The effective expression for the operand of an increment or decrement expression is the operand treated
as a name expression, property access expression or sequence access expression, as appropriate for
evaluation to obtain the original value to be updated.

[4] incrementOrDecrementExpressionFeatureDerivation
If the operand of an increment or decrement expression is a feature, then the referent for the operand.

[5] incrementOrDecrementExpressionlsDataValueUpdateDerivation

An increment or decrement expression is a data value update if its operand is an attribute of a data value
held in a local name or parameter.

[6] incrementOrDecrementExpressionlsFeatureDerivation

An increment or decrement expression has a feature as its operand if the operand is a feature left-hand
side or a name left-hand side for a name that disambiguates to a feature.

[7] incrementOrDecrementExpressionlsindexedDerivation
An increment or decrement expression is indexed if its operand is indexed.

[8] incrementOrDecrementExpressionLowerDerivation
An increment or decrement expression has the same multiplicity lower bound as its operand expression.

[9] incrementOrDecrementExpressionOperand

The operand expression must have a type that conforms to type Integer or Real and a multiplicity upper
bound of 1.

[10] incrementOrDecrementExpressionTypeDerivation

If the operand of an increment or decrement expression is of a type that conforms to type Integer or
Real, then the type of the expression is Integer or Real, respectively. Otherwise the expression has no

type.

[11] incrementOrDecrementExpressionUpperDerivation
An increment or decrement expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after an increment and decrement expression include all those after its operand
expression. Further, if the operand expression, considered as a left hand side, is a local name, then this is
reassigned.

13.2.22 InstanceCreationExpression
An expression used to create a new instance of a class or data type.

Generalizations
» InvocationExpression

Action Language for Foundational UML (ALF), v1.1 259

Synthesized Properties
« constructor : QualifiedName [0..1]

The name of the class constructor operation to be invoked or the name of a class or data type.

Derived Properties
» isConstructorless : Boolean

Whether this is a constructorless object creation expression.

« isObjectCreation : Boolean
Whether this is an object creation expression or a data value creation expression.

Constraints
[1] instanceCreationExpressionConstructor

The constructor name must resolve to a constructor operation (that is compatible with the tuple argument
expressions), a class or a data type, but not both a class and a data type. Further, if the constructor name
of an instance creation expression is empty, then the referent must be determined from the context of use
of the expression.

[2] instanceCreationExpressionConstructorlessLegality

If the expression is constructorless, then its tuple must be empty and the referent class must not have any
owned operations that are constructors.

[3] instanceCreationExpressionDataTypeCompatibility

If an instance creation expression is a data value creation (not an object creation), then the tuple
argument expressions are matched with the attributes of the named type.

[4] instanceCreationExpressionFeatureDerivation
There is no feature for an instance creation expression.

[5] instanceCreationExpressionlsConstructorlessDerivation
An instance creation expression is constructorless if its referent is a class.

[6] instanceCreationExpressionlsObjectCreationDerivation
An instance creation expression is an object creation if its referent is not a data type.

[7] instanceCreationExpressionReferent

If the referent of an instance creation expression is an operation, then the class of that operation must not
be abstract. Otherwise, the referent is a class or data type, which must not be abstract.

[8] instanceCreationExpressionReferentDerivation

The referent of an instance creation expression is normally the constructor operation, class or data type
to which the constructor name resolves. However, if the referent is an operation whose class is abstract
or is a class that is itself abstract, and there is an associated Impl class constructor, then the referent is

260 Action Language for Foundational UML (ALF), v1.1

the Impl class constructor.

Helper Operations
[1] parameterElements () : ElementReference [*]

Returns the parameters of a constructor operation or the attributes of a data type, or an empty set for a
constructorless instance creation.

13.2.23 InvocationExpression
An expression denoting the invocation of a behavior or operation, or the sending of a signal.

Generalizations
« Expression

Synthesized Properties
« tuple : Tuple
The tuple for the invocation expression.

Derived Properties
¢ boundReferent : ElementReference [0..1]
If the referent of the invocation expression is a template behavior, then the implicit bound
element for the referent, otherwise the same as the referent.

« feature : FeatureReference [0..1]

For an invocation of a feature, the reference to that feature. This property is set for a feature
invocation expression or for an expression initially parsed as a behavior invocation expression
that disambiguates to a feature invocation expression.

» isAssociationEnd : Boolean
Whether this is an association read or not.

« isBehavior : Boolean
Whether this is a behavior invocation or not.

 isDestructor : Boolean
If this is an operation call, whether the operation is a destructor.

« isImplicit : Boolean
Whether this is an implicit object destruction.

« isOperation : Boolean
Whether this is an operation call or not.

 isSignal : Boolean
Whether this is a signal send or not.

Action Language for Foundational UML (ALF), v1.1

261

« parameter : ElementReference [*]

Element references to the parameters of the referent, in order.

« referent : ElementReference [0..1]

The behavior, operation or signal being invoked. The derivation of this property is specific to
each kind of invocation expression.

Constraints
[1] invocationExpressionAssignmentA fter

If the invocation is a sequence feature invocation, then the assignments after the tuple of the invocation
expression must be the same as the assignments before.

[2] invocationExpressionAssignmentsBefore

The assignments before the target expression of the feature reference of an invocation expression (if
any) are the same as the assignments before the invocation expression.

[3] invocationExpressionlsAssociationEndDerivation
An invocation expression is an association end read if its referent is an association end.

[4] invocationExpressionlsBehaviorDerivation
An invocation expression is a behavior invocation if its referent is a behavior.

[5] invocationExpressionBoundReferentDerivation

If the referent of an invocation expression is a template behavior, then the bound referent is the implicit
template binding of this template; otherwise it is the same as the referent. For an implicit template
binding, the type arguments of for the template are inferred from the types of the arguments for in and
inout parameters of the template behavior. If the resulting implicit template binding would not be a legal
binding of the template behavior, then the invocation expression has no bound referent.

[6] invocationExpressionIsDestructorDerivation

An invocation expression is a destructor call either implicitly or if it is an explicit operation call to a
destructor operation.

[8] invocationExpressionlsImplicitDerivation

An invocation expression is an implicit object destruction if it has a feature with the name "destroy" and
no explicit referents.

[7] invocationExpressionlsOperationDerivation
An invocation expression is an operation call if its referent is an operation.

[9] invocationExpressionlsSignalDerivation
An invocation expression is a signal send if its referent is a signal.

262 Action Language for Foundational UML (ALF), v1.1

[10] invocationExpressionLowerDerivation

If the referent of an invocationExpression is an operation or behavior with a return parameter, then the
lower bound of the expression is that of the return parameter. If the referent is a classifier, then the lower
bound is 1. If the referent is a property, then the lower bound is that of the property. Otherwise the lower
bound is 0.

[11] invocationExpressionParameterDerivation

The parameters of an invocation expression are given by the result of the parameterElements helper
operation.

[12] invocationExpressionTemplateParameters

If the referent of the invocation expression is a template, then all of its template parameters must be
classifier template parameters. Note: This allows for the possibility that the referent is not an Alf unit, in
which case it could have non-classifier template parameters.

[13] invocationExpressionTypeDerivation

If the (bound) referent of an invocationExpression is an operation or behavior with a return parameter,
then the type of the expression is that of the return parameter (if any). If the referent is a classifier, then
the type is the referent. If the referent is a property, then the type is that of the property. Otherwise the
expression has no type.

[14] invocationExpressionUpperDerivation

If the referent of an invocationExpression is an operation or behavior with a return parameter, then the
upper bound of the expression is that of the return parameter. If the referent is a classifier, then the upper
bound is 1. If the referent is a property, then the upper bound is that of the property. Otherwise the upper
bound is 0.

Helper Operations
[1] parameterElements () : ElementReference [*] {ordered}

Returns references to the elements that act as the parameters of the referent. If the referent is a behavior
or operation, these are the owned parameters, in order. If the (bound) referent is an association end, then
the parameters are the other association ends of the association of the referent end, which are treated as
if they were in parameters. Otherwise (by default), they are any properties of the referent (e.g., signal
attributes), which are treated as if they were in parameters. (This is defined as a helper operation, so that
it can be overridden by subclasses of InvocationExpression, if necessary.)

[2] updateAssignments () : AssignedSource [*]
The assignments after an invocation expression are the same as those after the tuple of the expression.

13.2.24 IsolationExpression
An expression used to evaluate its operand expression in isolation.

Generalizations
» UnaryExpression

Action Language for Foundational UML (ALF), v1.1 263

Synthesized Properties
None

Derived Properties
None

Constraints
[1] isolationExpressionLowerDerivation

An isolation expression has the multiplicity lower bound of its operand expression.

[2] isolationExpressionTypeDerivation
An isolation expression has the type of its operand expression.

[3] isolationExpressionUpperDerivation
An isolation expression has the multiplicity upper bound of its operand expression.

Helper Operations
None

13.2.25 IsUniqueExpression
A sequence expansion expression with a isUnique.

Generalizations
» SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] isUniqueExpressionExpressionArgument

The argument of an isUnique expression must have a multiplicity upper bound of 1.

[2] isUniqueExpressionLowerDerivation
An isUnique expression has a multiplicity lower bound of 1.

[3] isUniqueExpressionTypeDerivation
An isUnique expression has the type Boolean.

[4] isUniqueExpressionUpperDerivation
An isUnique expression has a multiplicity upper bound of 1.

Helper Operations
None

264 Action Language for Foundational UML (ALF), v1.1

13.2.26 LeftHandSide
The left-hand side of an assignment expression.

NOTE: The derivations for the derived properties of LeftHandSide are specific to its various subclasses.

Generalizations
+ SyntaxElement

Synthesized Properties
« index : Expression [0..1]
An optional expression that evaluates to an index into the values of an ordered sequence.

Derived Properties
« assignmentAfter : AssignedSource [*]

The assignments after the left-hand side.

» assignmentBefore : AssignedSource [*]

» lower : Integer
The statically determined lower bound of the multiplicity of this left-hand side.

« referent : ElementReference [0..1]

A reference to the assignable element denoted by this left-hand side, if one exists (i.e., the left-
hand side is not for the first assignment of a local name).

« type : ElementReference [0..1]
A reference to the element that specifies the statically determined type of this left-hand side (if
any).

« upper : UnlimitedNatural
The statically determined upper bound of the multiplicity of this left-hand side.

Constraints
[1] leftHandSideIndexExpression

If a left-hand side has an index, then the index expression must have a multiplicity upper bound no
greater than 1.

Helper Operations
None

13.2.27 LinkOperationExpression
An expression used to create or destroy the links of an association.

Generalizations
» InvocationExpression

Action Language for Foundational UML (ALF), v1.1 265

Synthesized Properties
» associationName : QualifiedName

The qualified name of the association whose links are being acted on.

e operation : String
The name of the link operation.

Derived Properties
o isClear : Boolean

Whether the operation is clearing the association.

 isCreation : Boolean
Whether the operation is for link creation.

Constraints
[1] linkOperationExpressionArgumentCompatibility

Each argument expression must be assignable to its corresponding expression.

[2] linkOperationExpressionAssociationReference
The qualified name of a link operation expression must resolve to a single association.

[3] linkOperationExpressionFeatureDerivation
There is no feature for a link operation expression.

[4] linkOperationExpressionlsClearDerivation
A link operation expression is for clearing an association if the operation is "clearAssoc".

[5] linkOperationExpressionlsCreationDerivation
A link operation expression is for link creation if its operation is "createLink".

[6] linkOperationExpressionReferentDerivation
The referent for a link operation expression is the named association.

Helper Operations
[1] parameterElements () : ElementReference [*]

For a clear association operation, returns a single, typeless parameter. Otherwise, returns the ends of the
named association.

13.2.28 LiteralExpression
An expression that comprises a primitive literal.

Generalizations
» Expression

Synthesized Properties
None

266 Action Language for Foundational UML (ALF), v1.1

Derived Properties
None

Constraints
[1] literalExpressionLowerDerivation

The multiplicity lower bound of a literal expression is always 1.

[2] literalExpressionUpperDerivation
The multiplicity upper bound of a literal expression is always 1.

Helper Operations
None

13.2.29 LogicalExpression
A binary expression with a logical operator.

Generalizations
» BinarvExpression

Synthesized Properties
None

Derived Properties
« 1sBitStringConversionl : Boolean

Whether the first operand expression requires BitString conversion.

 isBitStringConversion2 : Boolean
Whether the second operand expression requires BitString conversion.

« isBitWise : Boolean
Whether this is a bit-wise logical operation on bit strings.

Constraints
[1] logicalExpressionlsBitStringConversion1Derivation

BitString conversion is required if the first operand expression of a logical expression has a type that
conforms to type Integer.

[2] logicalExpressionlsBitStringConversion2Derivation

BitString conversion is required if the second operand expression of a logical expression has a type that
conforms to type Integer.

[3] logicalExpressionlsBitWiseDerivation
A logical expression is bit-wise if the type of its first operand is not Boolean.

Action Language for Foundational UML (ALF), v1.1 267

[4] logicalExpressionLowerDerivation
A logical expression has a multiplicity lower bound of 01.

[5] logicalExpressionOperands

The operands of a logical expression must have types that conforms to type Boolean, Integer or
BitString. However, if one of the operands is Boolean, then the other must also be Boolean.

[6] logicalExpressionTypeDerivation
A logical expression has type Boolean if it is not bit-wise and type BitString if it is bit-wise.

[7] logicalExpressionUpperDerivation
A logical expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.30 NameBinding
An unqualified name, optionally with a template binding.

Generalizations
o SyntaxElement

Synthesized Properties
« Dbinding : TemplateBinding [0..1]
The template binding to be used, if the name denotes a template.

* name : String

An unqualified name. For names that appeared as unrestricted names in the input text, the string
value here excludes the surrounding single quote characters and has any escape sequences
resolved to the denoted special characters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.31 NamedExpression
A pairing of a parameter name and an argument expression in a tuple.

Generalizations
o SyntaxElement

268 Action Language for Foundational UML (ALF), v1.1

Synthesized Properties
« expression : Expression

The argument expression.

« index : Expression [0..1]
An expression whose value gives an index into an ordered parameter. (This is only used in link
operation expressions.)

« isRealConversion : Boolean
Whether the argument expression requires Real conversion.

« name : String
The parameter name.

Derived Properties
« isBitStringConversion : Boolean

Whether the argument expression requires bit string conversion.

« isCollectionConversion : Boolean
Whether the argument expression requires collection conversion.

Constraints
[1] namedExpressionlsBitStringConversionDerivation

Bit string conversion is required if the type of the type of the corresponding parameter is BitString, or a
collection class whose sequence type is BitString, and the type of the argument expression is not
BitString.

[2] namedExpressionlsCollectionConversionDerivation

Collection conversion is required if the type of the corresponding parameter is a collection class and the
type of the argument expression is not.

[3] namedExpressionlsRealConversionDerivation

Real conversion is required if the type of the corresponding parameter is a type that conforms to type
Real, or a collection class whose sequence type is a type that conforms to type Real, and the type of the
argument expression is not a type that conforms to type Real.

Helper Operations
None

13.2.32 NamedTemplateBinding
A template binding in which the arguments are matched to formal template parameters by name.

Generalizations
» TemplateBinding

Action Language for Foundational UML (ALF), v1.1 269

Synthesized Properties
e substitution : TemplateParameterSubstitution [1..*]

The substitutions of arguments for template parameters.

Derived Properties
None

Constraints

None

Helper Operations
None

13.2.33 NamedTuple
A tuple in which the arguments are matched to parameters by name.

Generalizations
o Tuple

Synthesized Properties
« namedExpression : NamedExpression [*]

The argument expressions for this tuple paired with the corresponding parameter names.

Derived Properties
None

Constraints
[1] namedTupleArgumentNames

The name of a named expression of a named tuple must be the name of a parameter of the invocation the
tuple is for. No two named expressions may have the same name.

Helper Operations
None

13.2.34 NameExpression
An expression that comprises a name reference.

Generalizations
» Expression

Synthesized Properties
* name : QualifiedName

The qualified name referenced in this expression. (For a local name, this will actually have no
qualification.)

Derived Properties
» assignment : AssignedSource [0..1]
The assigned source for the referenced name, if the name is a local or parameter name.

270 Action Language for Foundational UML (ALF), v1.1

« enumerationLiteral : ElementReference [0..1]

The identified enumeration literal, if the referenced name is for an enumeration literal.

» propertyAccess : PropertyAccessExpression [0..1]

The equivalent property access expression, if the referenced name disambiguates to a feature
reference.

Constraints
[1] nameExpressionAssignmentDerivation

If the name in a name expression is a local name or parameter name for an out parameter, then its
assignment is its assigned source before the expression. If the name is a parameter name for an in or
inout parameter, then its assignment is its assigned source before the expression, if it has one, and,
otherwise, it is a new assignment whose source is the named parameter and whose type and multiplicity
are those of the parameter.

[2] nameExpressionEnumerationLiteralDerivation

If the name in a name expression resolves to an enumeration literal name, then that is the enumeration
literal for the expression.

[3] nameExpressionLowerDerivation
The multiplicity lower bound of a name expression is determined by its name.

[4] nameExpressionProperty AccessDerivation

If the name in a name expression disambiguates to a feature reference, then the equivalent property
access expression has the disambiguation of the name as its feature. The assignments before the property
access expression are the same as those before the name expression.

[5] nameExpressionResolution

If the name referenced by this expression is not a disambiguated feature reference or a local or
parameter name, then it must resolve to exactly one enumeration literal.

[6] nameExpressionTypeDerivation

The type of a name expression is determined by its name. If the name is a local name or parameter with
an assignment, then the type of the name expression is the best known type of that assignment. If the
name is an enumeration literal, then the type of the name expression is the corresponding enumeration.
If the name disambiguates to a feature reference, then the type of the name expression is the type of the
equivalent property access expression.

[7] nameExpressionUpperDerivation
The multiplicity upper bound of a name expression is determined by its name.

Action Language for Foundational UML (ALF), v1.1 271

Helper Operations
[1] adjustMultiplicity(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the name does not disambiguate to a feature reference, then it is considered known null if the
condition is true and known non-null if the condition is false.

[2] adjustType(assignments : AssignedSource [*], subtype : ElementReference) : AssignedSource [*]
If the name does not disambiguate to a feature reference, then it is considered to have the given subtype.

[3] declaredType() : ElementReference

If a name expression has a derived assignment, then its declared type is the type of that assignment.
Otherwise it is the same as the type of the expression.

[4] updateAssignments () : AssignedSource [*]

If propertyAccess is not empty (i.e., if the referenced name disambiguates to a feature reference), then
return the assignments after the propertyAccess expression. Otherwise, return the result of the superclass
updateAssignments operation.

13.2.35 NameLeftHandSide
A left-hand side that is a name.

Generalizations
« LeftHandSide

Synthesized Properties
+ target : QualifiedName

The name that is the target of the assignment.

Derived Properties
None

Constraints

[1] nameLeftHandSideAssignmentAfterDerivation

If a name left-hand side has an index, then the assignments after the left-hand side are the same as the
assignments after the index. If the left-hand side has no index, but its target disambiguates to a feature
reference, then the assignments after the left-hand side are the assignments after the feature expression.
Otherwise the assignments after the left-hand side are the same as the assignments before the left-hand
side.

[2] nameLeftHandSide AssignmentsBefore

If the target of a name left-hand side disambiguates to a feature reference, then the assignments before
the expression of the feature reference are the assignments before the left-hand side. If a name left-hand
side has an index, then the target must either disambiguate to a feature reference or already have an
assigned source, and the assignments before the index expression are the assignments before the left-
hand side or, if the target disambiguates to a feature reference, the assignments after the expression of
the feature reference.

272 Action Language for Foundational UML (ALF), v1.1

[3] nameLeftHandSideFeatureExpression
If the target of a name left-hand side disambiguates to a feature reference, then the expression of the
feature reference must have a multiplicity upper bound of 1.

[4] nameLeftHandSideIndexedFeature

If the target of a name left-hand side disambiguates to a feature reference, and the left-hand side has an
index, then the referent of the feature reference must be ordered and non-unique.

[5] nameLeftHandSideLowerDerivation

If a name left-hand side is indexed, then its lower bound is 0. Otherwise, if the left-hand side is for a
local name with an assignment, than its lower bound is that of the assignment, else, if it has a referent,
then its lower bound is that of the referent.

[6] nameLeftHandSideNontemplateTarget
The target of a name left-hand side must not have a template binding.

[7] nameLeftHandSideReferentDerivation

If the target of a name left-hand side disambiguates to a structural feature, then the referent of the left-
hand side is that feature. If the target resolves to a parameter, then the referent is that parameter. If the
target resolves to a local name, then the referent is the assigned source for that local name, if it has one.

[8] nameLeftHandSideTargetAssignment

The target of a name left hand side may not already have an assigned source that is a loop variable
definition, an annotation, a sequence expansion expression or a parameter that is an in parameter.

[9] nameLeftHandSideTargetResolution

If the target of a name left-hand side is qualified, then, if it does not disambiguate to a feature, it must
have a referent that is a parameter of an operation or behavior that is the current scope the left-hand is in,
and, if it does disambiguate to a feature, it must have a single referent that is a structural feature.

[10] nameLeftHandSideTypeDerivation

If a name left-hand side is for a local name with an assignment, then its type is that of that assignment.
Otherwise, if the left-hand side has a referent, then its type is the type of that referent.

[11] nameLeftHandSideUpperDerivation

If a name left-hand side is indexed, then its upper bound is 1. Otherwise, if the left-hand side is for a
local name with an assignment, than its upper bound is that of the assignment, else, if it has a referent,
then its upper bound is that of the referent.

Helper Operations
None

13.2.36 NaturalLiteralExpression
An expression that comprises a natural literal.

Action Language for Foundational UML (ALF), v1.1 273

Generalizations
o LiteralExpression

Synthesized Properties
e 1mage : String
The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] naturalLiteralExpressionTypeDerivation

The type of a natural literal is the Alf library type Natural.

NOTE: If the context of a natural literal expression unambiguously requires either an Integer or an
UnlimitedNatural value, then the result of the literal expression is implicitly downcast to the required
type. If the context is ambiguous, however, than an explicit cast to Integer or UnlimitedNatural must be
used.

Helper Operations
None

13.2.37 NullCoalescingExpression

An expression that evaluates to the result of its first operand expression, unless that result is null and it
has a second operand expression, in which case it evaluates to the result of its second operand
expression.

Generalizations

+ BinaryExpression
Synthesized Properties
None
Derived Properties
None
Constraints

[1] nullCoalescingExpressionAssignmentsBefore

The assignments before the first operand expression of a null-coalescing expression are the same as
those before the null-coalescing expression. The assignments before the second operand expression are
the same as those after the first operand expression.

[2] nullCoalescingExpressionLowerDerivation

The multiplicity lower bound of a null-coalescing expression is the multiplicity lower bound of its first
greater than 0; otherwise it is 1, if the multiplicity lower bound of its second operand expression is
greater than 0; otherwise, it is 0.

274 Action Language for Foundational UML (ALF), v1.1

[3] nullCoalescingExpressionTypeDerivation

If one of the operand expressions of a null-coalescing expression is identically null (untyped with
multiplicity 0..0), then the type of the null-coalescing expression is the same as the type of the other
operand expressions. Otherwise, the type of a null-coalescing expression is the effective common
ancestor of the types of its operands, if one exists, and empty, if it does not.

[4] nullCoalescingExpressionUpperDerivation

The multiplicity upper bound of a null-coalescing expression is the maximum of the multiplicity upper
bounds of its operands.

Helper Operations
[1] minLowerBound() : Integer

The minimum lower bound of an operand of a null-coalescing expression is 0.

[2] maxUpperBound() : UnlimitedNatural
The maximum upper bound of an operand of a null-coalescing expression is * (unbounded).

[3] updateAssignments() : AssignedSource [*]

If a name has the same assigned source after the second operand expression of a null-coalescing
expression as before it, that is its assigned source after the null-coalescing expression. Otherwise, its
assigned source after the null-coalescing expression is the null-coalescing expression. If a name is
unassigned before the second operand expression but assigned after it, then it has a multiplicity lower
bound of 0 after the null-coalescing expression.

13.2.38 NumericUnaryExpression
A unary expression with a numeric operator.

Generalizations
+ UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] numericUnaryExpressionLowerDerivation

A numeric unary expression has the same multiplicity lower bound as its operand expression.

[2] numericUnaryExpressionOperand

The operand expression must have a type that conforms to type Integer or Real and a multiplicity upper
bound of 1.

Action Language for Foundational UML (ALF), v1.1 275

[3] numericUnaryExpressionTypeDerivation

If the operand of a numeric unary expression is of a type that conforms to type Integer, then the
expression is Integer. Of the operand is of a type that conforms to type Real, then the type of the
expression is Real. Otherwise it has no type.

[4] numericUnaryExpressionUpperDerivation
A numeric unary expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.39 OutputNamedExpression
A named argument expression for an output parameter.

Generalizations
» NamedExpression

Synthesized Properties
None

Derived Properties
» leftHandSide : LeftHandSide

The argument expression considered as an assignment left-hand side.

Constraints

[1] outputNamedExpressionForm

The argument for an output parameter must be either be null, a name expression, a property access
expression, or a sequence access expression whose primary expression is a name expression or a
property access expression.

[2] outputNamedExpressionLeftHandSideDerivation

The equivalent left-hand side for an output named expression depends on the kind of expression. If the
expression is a name expression with no disambiguation, then the left-hand side is a name left-hand side
with the name from the name expression. If the expression is a name expression that disambiguates to a
feature reference, then the left-hand side is a feature left-hand side for that feature reference. If the
expression is a property access expression, then the left-hand side is a feature left-hand side for the
feature reference of the property access expression. If the expression is a sequence access expression,
then the left-hand side is a name left-hand side or feature left-hand side, as above, depending on whether
the primary expression of the sequence access expression is a name expression or property access
expression, and an index given by the index expression of the sequence access expression. Otherwise the
left-hand side is empty.

Helper Operations
None

276 Action Language for Foundational UML (ALF), v1.1

13.2.40 PositionalTemplateBinding

A template binding in which the arguments are matched to formal template parameters in order by
position.

Generalizations
« TemplateBinding

Synthesized Properties
« argumentName : QualifiedName [1..*]
The arguments for this template binding, to be matched by position to the template parameters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.41 PositionalTuple
A tuple in which the arguments are matched to parameters in order by position.

Generalizations
o Tuple

Synthesized Properties
» expression : Expression [*]
The argument expressions for this tuple, to be matched by position to the invocation parameters.

Derived Properties
None

Constraints
[1] positional TupleArguments

A positional tuple must not have more arguments than the invocation it is for has parameters.

Helper Operations
None

13.2.42 PropertyAccessExpression
An expression comprising a reference to a structural feature.

Generalizations
« Expression

Action Language for Foundational UML (ALF), v1.1 277

Synthesized Properties
» featureReference : FeatureReference

A reference to a structural feature.

Derived Properties
» feature : ElementReference

The referenced structural feature.

Constraints
[1] propertyAccessExpressionAssignmentsBefore

The assignments before the expression of the feature reference of a property access expression are the
same as before the property access expression.

[2] propertyAccessExpressionFeatureDerivation

The feature of a property access expression is the structural feature to which its feature reference
resolves.

[3] propertyAccessExpressionFeatureResolution
The feature reference for a property access expression must resolve to a single structural feature.

[4] propertyAccessExpressionLowerDerivation

The multiplicity lower bound of a property access expression is given by the product of the multiplicity
lower bounds of the referenced feature and the target expression.

[5] propertyAccessExpressionTypeDerivation
The type of a property access expression is the type of the referenced feature.

[6] propertyAccessExpressionUpperDerivation

The multiplicity upper bound of a property access expression is given by the product of the multiplicity
upper bounds of the referenced feature and the target expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after a property access expression are the same as those after the target expression of its
feature reference.

13.2.43 QualifiedName
The representation of a qualified name as a sequence of individual simple names.

Generalizations
+ SyntaxElement

Synthesized Properties
« isAmbiguous : Boolean = false

Whether this qualified name is ambiguous.

278 Action Language for Foundational UML (ALF), v1.1

nameBinding : NameBinding [*]
The sequence of individual name bindings in this qualified name.

Derived Properties

disambiguation : FeatureReference [0..1]

The disambiguation into a feature reference of a syntactic element initially parsed as a qualified
name.

isFeatureReference : Boolean
Indicates whether this qualified name has been disambiguated to a feature reference.

pathName : String

"n..n

The complete path name for the qualified name, with individual name bindings separated by "::
punctuation.

qualification : QualifiedName [0..1]
The qualified name corresponding to the qualification part of this qualified name, if any.

referent : ElementReference [*]

The possible referents to which this qualified name may resolve. (Note that the UML rules for
namespaces in general allow a namespace to contain elements of different kinds with the same
name.) If the qualified name is for a template instantiation, then the referent is the equivalent
bound element.

templateName : QualifiedName [0..1]

If this qualified name is for a template binding, then the name of the template for which this
qualified name is a binding.

unqualifiedName : NameBinding
The rightmost individual name binding in the qualified name, without the qualification.

Constraints
[1] qualifiedNameDisambiguationDerivation

If a qualified name is not ambiguous or it has a qualification that resolves to a namespace, then it is has
no disambiguation. Otherwise, its disambiguation is a feature reference with a name given by the
unqualified name of the qualified name and a target expression determined by the disambiguation of the
qualification of the qualified name.

[2] qualifiedNamelsFeatureReferenceDerivation

A qualified name is a feature reference is its disambiguation is not empty.

[3] qualifiedNameLocalName

If a qualified name is a local name, then the reference must be within the same local scope as the
definition of the named element.

Action Language for Foundational UML (ALF), v1.1 279

[4] qualifiedNameNonLocalUnqualifiedName

If a qualified name is an unqualified, non-local name, then it must be visible in the current scope of the
use of the name.

[5] qualifiedNamePathNameDerivation
The path name for a qualified name consists of the string representation of each of the name bindings,

separated by "::" punctuation. The string representation of a name binding is its name followed by the
representation of its template binding, if it has one. The string representation of a positional template
binding consists of an ordered list of the path names of its argument qualified names separated by
commas, all surrounded by the angle brackets "<" and ">". The string representation of a named
template binding consists of an ordered list of its template parameter substitutions, each consisting of the
formal parameter name followed by "=>" followed by the path name of the argument qualified name,

separated by commas, all surrounded by the angle brackets "<" and ">".

[6] qualifiedNameQualificationDerivation

The qualification of a qualified name is a empty if the qualified name has only one name binding.
Otherwise it is the qualified name consisting of all the name bindings of the original qualified name
except for the last one. The qualification of a qualified name is considered ambiguous if the qualified
name is ambiguous and has more than two name bindings.

[7] qualifiedNameQualifiedResolution

If a qualified name has a qualification, then its unqualified name must name an element of the
namespace named by the qualification, where the first name in the qualification must name an element
of the current scope.

[8] qualifiedNameReferentDerivation

The referents of a qualified name are the elements to which the name may resolve in the current scope,
according to the UML rules for namespaces and named elements.

[9] qualifiedNameTemplateBinding

If the unqualified name of a qualified name has a template binding, then the template name must resolve
to a template. The template binding must have an argument name for each of the template parameters
and each argument name must resolve to a classifier. If the template parameter has constraining
classifiers, then the referent of the corresponding argument name must conform to all those constraining
classifiers.

[10] qualifiedNameTemplateNameDerivation

If the last name binding in a qualified name has a template binding, then the template name is a qualified
name with the same template bindings as the original qualified name, but with the template binding
removed on the last name binding.

[11] qualifiedNameUnqualifiedNameDerivation
The unqualified name of a qualified name is the last name binding.

280 Action Language for Foundational UML (ALF), v1.1

Helper Operations
None

13.2.44 ReallLiteralExpression
An expression that comprises a real literal.

Generalizations
« Literal Expressions

Synthesized Properties
« image : String

The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] realLiteralExpressionTypeDerivation

The type of a real literal expression is the Alf library type Real.

Helper Operations
None

13.2.45 RelationalExpression
A binary expression with a relational operator.

Generalizations
» BinaryExpression

Synthesized Properties
None

Derived Properties
» 1isReal : Boolean

Whether this is a Real comparison.

» isRealConversionl : Boolean

Whether Real conversion is required on the first operand of this expression.

« isRealConversion2 : Boolean

Whether Real conversion is required on the second operand of this expression.

« isUnlimitedNatural : Boolean
Whether this is an UnlimitedNatural comparison.

Action Language for Foundational UML (ALF), v1.1

281

Constraints
[1] relationExpressionlsRealConversion1Derivation

A relational expression requires Real conversion if it is a Real comparison and its first operand is of a
type that conforms to type Integer.

[2] relationExpressionlsRealConversion2Derivation

A relational expression requires Real conversion if it is a Real comparison and its second operand is of a
type that conforms to type Integer.

[3] relationExpressionlsRealDerivation

A relational expression is a Real comparison if either one of its operations has a type that conforms to
type Real.

[4] relationalExpressionlsUnlimitedNaturalDerivation

A relational expression is an UnlimitedNatural comparison if either one of its operands has type
UnlimitedNatural.

[5] relationalExpressionLowerDerivation

A relational expression has a multiplicity lower bound of 0 if the lower bound if either operand
expression is 0 and 1 otherwise.

[6] relational ExpressionOperand Types

The operand expressions for a comparison operator must both be of a type that conforms to type Natural,
Integer or Real, or both be of types that conform to type Natural or UnlimitedNatural.

[7] relational ExpressionTypeDerivation
The type of a relational expression is Boolean.

[8] relational ExpressionUpperDerivation
A relational expression has a multiplicity upper bound of 1.

Helper Operations

[1] minLowerBound () : Integer

The minimum lower bound is 0 for operands of relational expressions (this allows for the propagation of
a null returned from an arithmetic expression used as an operand).

13.2.46 SelectOrRejectExpression
A sequence expansion expression with a select or reject operation.

Generalizations
» SequenceExpansionExpression

Synthesized Properties
None

282 Action Language for Foundational UML (ALF), v1.1

Derived Properties
None

Constraints
[1] selectOrRejectExpressionArgument

The argument of a select or reject expression must have a type that conforms to type Boolean and a
multiplicity upper bound of 1.

[2] selectOrRejectExpressionLowerDerivation
A select or reject expression has a multiplicity lower bound of 0.

[3] selectOrRejectExpressionTypeDerivation
A select or reject expression has the same type as its primary expression.

[4] selectOrRejectExpressionUpperDerivation
A select or reject expression has the same multiplicity upper bound as its primary expression.

Helper Operations
None

13.2.47 SequenceAccessExpression
An expression used to access a specific element of a sequence.

Generalizations
» Expression

Synthesized Properties

« index : Expression
The expression whose value is the index of the element being accessed in the sequence.

« primary : Expression
The expression whose value is the sequence being accessed.

Derived Properties
None

Constraints
[1] sequenceAccessExpressionIndexMultiplicity

The multiplicity upper bound of the index of a sequence access expression must be 1.

[2] sequenceAccessExpressionlndexType
The type of the index of a sequence access expression must be Integer.

[3] sequenceAccessExpressionLowerDerivation
The multiplicity lower bound of a sequence access expression is 0.

Action Language for Foundational UML (ALF), v1.1 283

[4] sequenceAccessExpressionTypeDerivation
The type of a sequence access expression is the same as the type of its primary expression.

[5] sequenceAccessExpressionUpperDerivation
The multiplicity upper bound of a sequence access expression is 1.

Helper Operations
None

13.2.48 SequenceConstructionExpression
An expression used to construct a sequence of values.

Generalizations
« Expression

Synthesized Properties
« elements : SequenceElements [0..1]

The specification of the elements in the sequence.

« hasMultiplicity : Boolean = false
Whether the sequence construction expression has a multiplicity indicator.

« typeName : QualifiedName [0..1]

The name of the type of the elements in the sequence.

Derived Properties
None

Constraints

[1] sequenceConstructionExpressionAssignmentsBefore

If the elements of a sequence construction expression are given by a sequence expression list, then the
assignments before the first expression in the list are the same as the assignments before the sequence
construction expression, and the assignments before each subsequent expression are the assignments
after the previous expression. If the elements are given by a sequence range, the assignments before both
expressions in the range are the same as the assignments before the sequence construction expression.

[2] sequenceConstructionExpressionElementType

If the elements of a sequence construction expression are given by a sequence range, then the expression
must have a type that conforms to type Integer. If the elements are given by a sequence element list, and

the sequence construction expression has a non-empty type, then each expression in the list must have a

type that either conforms to the type of the sequence construction expression or is convertible to it by bit
string conversion or real conversion.

[3] sequenceConstructionExpressionLowerDerivation

If a sequence construction expression has multiplicity, then its multiplicity lower bound is given by its
elements, if this is not empty, and zero otherwise. If a sequence construction expression does not have

284 Action Language for Foundational UML (ALF), v1.1

multiplicity, then its multiplicity lower bound is one.

[4] sequenceConstructionExpressionType

If the type name of a sequence construction expression is not empty, then it must resolve to a non-
template classifier. If the expression does not have multiplicity, then its type must be a collection class.

[5] sequenceConstructionExpressionTypeDerivation

If the type name of a sequence construction expression is not empty, then the type of the expression is
the classifier to which the type name resolves.

[6] sequenceConstructionExpressionUpperDerivation

If a sequence construction expression has multiplicity, then its multiplicity upper bound is given by its
elements, if this is not empty, and zero otherwise. If a sequence construction expression does not have
multiplicity, then its multiplicity upper bound is one.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

If the elements of the sequence construction expression are given by a sequence expression list, then
return the assignments after the last expression in the list (if the list is empty, then return the assignments
before the sequence construction expression). If the elements are given by a sequence range, then return
the union of the assignments after each of the expressions in the range.

13.2.49 SequenceElements
A specification of the elements of a sequence.

Generalizations
o SyntaxElement

Synthesized Properties
None

Derived Properties
« lower : Integer

The multiplicity lower bound of the elements of the sequence. The derivation for this property is
given in the subclasses of SequenceElements.

« upper : UnlimitedNatural

The multiplicity upper bound of the elements of the sequence. The derivation for this property is
given in the subclasses of SequenceElements.

Constraints
None

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 285

13.2.50 SequenceExpansionExpression

An expression used to carry out one of a predefined set of operations over each of the elements in a
sequence.

Generalizations

« Expression
Synthesized Properties
« argument : Expression

The argument expression. The exact form required for this expression depends on which
expansion operation is being carried out.

e operation : String
The name of the operation to be carried out.

e primary : ExtentOrExpression

The class name or primary expression that evaluates to the sequence to be acted on.

 variable : String
The name of the expansion variable available as a local name within the argument expression.

Derived Properties
» variableSource : AssignedSource

The assigned source for the expansion variable within the argument expression. The source is
actually the sequence expansion expression itself.

Constraints

[1] sequenceExpansionExpressionAssignmentsA fterArgument

The assignments after the argument expression of a sequence expansion expression must be the same as
the assignments before the argument expression.

[2] sequenceExpansionExpressionAssignmentsBefore Argument

The assignments before the argument expression of a sequence expansion expression include those after
the primary expression plus one for the expansion variable.

[3] sequenceExpansionExpressionAssignmentsBeforePrimary

The assignments before the primary expression of a sequence expansion expression are the same as the
assignments before the sequence expansion expression.

[4] sequenceExpansionExpressionVariableName

The expansion variable name may not conflict with any name already assigned after the primary
expression.

286 Action Language for Foundational UML (ALF), v1.1

[5] sequenceExpansionExpressionVariableSourceDerivation

The assigned source for the expansion variable of a sequence expansion expression is the expression
itself. The type for the assignment is the type of the primary expression of the sequence expansion
expression and the multiplicity lower and upper bounds are 1.

Helper Operations

[1] updateAssignments () : AssignedSource [*]
The assignments after a sequence expansion expression are the same as after its primary expression.

13.2.51 SequenceExpressionList
A specification of the elements of a sequence using a list of expressions.

Generalizations
» SequenceElements

Synthesized Properties
« eclement : Expression [*]

The list of expressions whose values determine the elements of the sequence.

Derived Properties
None

Constraints
[1] sequenceExpressionListLowerDerivation

The multiplicity lower bound of the elements of a sequence expression list is given by the sum of the
lower bounds of each of the expressions in the list.

[2] sequenceExpressionListUpperDerivation

The multiplicity upper bound of the elements of a sequence expression list is given by the sum of the
upper bounds of each of the expressions in the list. If any of the expressions in the list have an
unbounded upper bound, then the sequence expression list also has an unbounded upper bound.

Helper Operations
None

13.2.52 SequenceOperationExpression
An expression used to invoke a behavior as if it was an operation on a target sequence as a whole.

Generalizations
» InvocationExpression

Synthesized Properties
« operation : QualifiedName [0..1]

The qualified name of the behavior being invoked.

Action Language for Foundational UML (ALF), v1.1 287

e primary : ExtentOrExpression

The expression or class name whose value is gives the sequence to be operated on.

Derived Properties
« isBitStringConversion : Boolean

Whether type primary expression requires BitString conversion.

« isCollectionConversion : Boolean
Whether the primary expression requires collection conversion.

« leftHandSide : LeftHandSide [0..1]

The effective left-hand side corresponding to the primary expression, if the sequence operation is
“in place” (that is, has a first parameter with direction inout).

Constraints
[1] sequenceOperationExpressionArgumentCompatibility

The type of an input argument expression of a sequence operation parameter must be assignable to its
corresponding parameter. The type of an output parameter must be assignable to its corresponding
argument expression. (Note that this implies that the type of an argument expression for an inout
parameter must be the same as the type of that parameter.)

[2] sequenceOperationExpressionAssignmentsAfter

A local name that is assigned in the primary expression of a sequence operation expression may not be
assigned in any expression in the tuple of the sequence operation expression.

[3] sequenceOperationExpressionAssignmentsBefore

The assignments before the primary expression of a sequence operation expression are the same as the
assignments before the sequence operation expression.

[4] sequenceOperationExpressionFeatureDerivation
There is no feature for a sequence operation expression.

[5] sequenceOperationExpressionlsBitStringConversionDerivation

BitString conversion is required if type of the first parameter of the referent of a sequence operation
expression is BitString and either the type of its primary expression is Integer or collection conversion is
required and the type of its primary expression is a collection class whose sequence type is Integer.

[6] sequenceOperationExpressionlsCollectionConversionDerivation

Collection conversion is required if the type of the primary expression of a sequence operation
expression is a collection class and the multiplicity upper bound of the primary expression is 1.

[7] sequenceOperationExpressionLeftHandSideDerivation

If the operation of a sequence operation expression has a first parameter whose direction is inout, then
the effective left-hand side for the expression is constructed as follows: If the primary is a name
expression, then the left-hand side is a name left-hand side with the name from the name expression as

288 Action Language for Foundational UML (ALF), v1.1

its target. If the primary is a property access expression, then the left-hand side is a feature left hand side
with the feature reference from the property access expression as its feature. If the primary is a sequence
access expression whose primary is a name expression or a property access expression, then the left-
hand side is constructed from the primary of the sequence access expression as given previously and the
index of the sequence access expression becomes the index of the left-hand side.

[8] sequenceOperationExpressionOperationReferent

There must be a single behavior that is a resolution of the operation qualified name of a sequence
operation expression with a least one parameter, whose first parameter has direction in or inout, has
multiplicity [0..*] and to which the target primary expression is assignable. If any resolution of the
operation name is a template behavior, then the implicit template binding of that behavior, if legal, is
used to check the assignability of the target primary expression.

[9] sequenceOperationExpressionReferentDerivation

The referent for a sequence operation expression is the behavior named by the operation for the
expression.

[10] sequenceOperationExpressionTargetCompatibility

If the first parameter of the referent has direction inout, then the parameter type must have the same type
as the primary expression, the primary expression must have the form of a left-hand side and, if the
equivalent left-hand side is for a local name, that name must already exist. The first parameter must be
assignable to the effective left-hand side.

Helper Operations
[1] adjustAssignments(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the invoked behavior is CollectionFunctions::isEmpty or SequenceFunctions::IsEmpty, then check the
primary expression for known nulls and non-nulls using the given truth condition. If the invoked
behavior is CollectionFunctions::notEmpty or SequenceFunctions::NotEmpty, then check the primary
expression for known nulls and non-nulls using the negation of the given truth condition.

[2] parameterElements () : ElementReference [*]

Returns the list of parameter elements from the superclass operation, with the first parameter removed
(since the argument for the first parameter is given by the primary expression of a sequence operation
expression, not in its tuple).

[3] updateAssignments () : AssignedSource [*]

The assignments after a sequence operation expression include those made in the primary expression
and those made in the tuple and, for an "in place" operation (one whose first parameter is inout), that
made by the sequence operation expression itself.

13.2.53 SequenceRange
A specification of the elements of a sequence as a range of integers.

Generalizations
» SequenceElements

Action Language for Foundational UML (ALF), v1.1 289

Synthesized Properties
« rangeLower : Expression

The expression whose value gives the lower bound for the range.

« rangeUpper : Expression
The expression whose value gives the upper bound for the range.

Derived Properties
None

Constraints
[1] sequenceRangeAssignments

A local name may be defined or reassigned in at most one of the expressions of a sequence range.

[2] sequenceRangeExpressionMultiplicity
Both expression in a sequence range must have a multiplicity upper bound of 1.

[3] sequenceRangel.owerDerivation
The multiplicity lower bound of a sequence range is 0.

[4] sequenceRangeUpperDerivation

The multiplicity uper bound of a sequence range is * (since it is not possible, in general, to statically
determine a more constrained upper bound).

Helper Operations
None

13.2.54 SequenceReductionExpression

An expression used to reduce a sequence of values effectively by inserting a binary operation between
the values.

Generalizations
» Expression

Synthesized Properties
e behaviorName : QualifiedName

The name of the behavior to be used as the reducer.

o 1sOrdered : Boolean = false
Whether this is an ordered reduction or not.

« primary : ExtentOrExpression
The target class name or primary expression for the reduction.

Derived Properties
» referent : ElementReference

290 Action Language for Foundational UML (ALF), v1.1

A reference to the behavior to be used as the reducer.

Constraints
[1] sequenceReductionExpressionAssignmentsBefore

The assignments before the target expression of a sequence reduction expression are the same as the
assignments before the sequence reduction expression.

[2] sequenceReductionExpressionBehavior
The behavior name in a sequence reduction expression must denote a behavior.

[3] sequenceReductionExpressionBehaviorParameters

The referent behavior must have two in parameters, a return parameter and no other parameters. The
parameters must all have the same type as the argument expression and multiplicity [1..1].

[4] sequenceReductionExpressionLowerDerivation
A sequence reduction expression has a multiplicity lower bound of 1.

[5] sequenceReductionExpressionReferentDerivation

The referent for a sequence reduction expression is the behavior denoted by the behavior name of the
expression.

[6] sequenceReductionExpressionTypeDerivation
A sequence reduction expression has the same type as its primary expression.

[7] sequenceReductionExpressionUpperDerivation
A sequence reduction expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after a sequence reduction expression are the same as after its primary expression.

13.2.55 ShiftExpression

Generalizations
« BinaryExpression

Synthesized Properties
None

Derived Properties
« isBitStringConversion : Boolean

Whether the first operand expression requires BitString conversion.

Action Language for Foundational UML (ALF), v1.1 291

Constraints
[1] shiftExpressionlsBitStringConversionDerivation

BitString conversion is required if the first operand expression of a shift expression has a type that
conforms to type Integer.

[2] shiftExpressionLowerDerivation
A shift expression has a multiplicity lower bound of 1.

[3] shiftExpressionOperands

The first operand expression of a shift expression must have a type that conforms to the type BitString or
Integer. The second operand expression must have a type that conforms to the type Integer.

[4] shiftExpressionTypeDerivation
A shift expression has type BitString.

[5] shiftExpressionUpperDerivation
A shift expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.56 StringLiteralExpression
An expression that comprises a String literal.

Generalizations
o LiteralExpression

Synthesized Properties
« 1image : String
The textual image of the literal token for this expression, with quote characters removed and
escaped sequences resolved to the denoted special character.

Derived Properties
None

Constraints
[1] stringLiteralExpressionTypeDerivation

The type of a string literal expression is String.

Helper Operations
None

13.2.57 SuperinvocationExpression
An invocation expression used to invoke an operation of a superclass.

Generalizations
* InvocationExpression

292 Action Language for Foundational UML (ALF), v1.1

Synthesized Properties
« target : QualifiedName [0..1]

The name of the operation to be invoked, optionally qualified with the name of the appropriate
superclass.

Derived Properties
None

Constraints
[1] superInvocationExpressionConstructorCall

If the referent is the method of a constructor operation, the super invocation expression must occur in an
expression statement at the start of the definition for the method of a constructor operation, such that any
statements preceding it are also super constructor invocations.

[2] superInvocationExpressionDestructorCall

If the referent is the method of a destructor operation, the super invocation expression must occur in an
within the method of a destructor operation.

[3] superInvocationExpressionFeatureDerivation
There is no feature for a super invocation.

[4] superInvocationExpressionlmplicitTarget

If the target is empty, the super invocation expression must occur within the method of an operation of a
class with a single superclass and the referent must be the method of a constructor operation of that
superclass.

[5] superInvocationExpressionOperation

It must be possible to identify a single valid operation denoted by the target of a super invocation
expression that satisfies the overloading resolution rules.

[6] superInvocationExpressionQualification

If the target has a qualification, then this must resolve to one of the superclasses of the current context
class.

[7] superInvocationExpressionReferentDerivation

The referent of a super invocation expression is the method behavior of the operation identified using
the overloading resolution rules.

Helper Operations
None

13.2.58 TemplateBinding
A list of type names used to provide arguments for the parameters of a template.

Action Language for Foundational UML (ALF), v1.1 293

Generalizations
+ SyntaxElement

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.59 TemplateParameterSubstitution
A specification of the substitution of an argument type name for a template parameter.

Generalizations
o SyntaxElement

Synthesized Properties
« argumentName : QualifiedName

The name of the argument type.

e parameterName : String
The name of the template parameter.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.60 ThisExpression
An expression comprising the keyword “this”.

Generalizations
« Expression

Synthesized Properties
None

Derived Properties
None

294 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] thisExpressionLowerDerivation

The multiplicity lower bound of a this expression is always 1.

[2] thisExpressionTypeDerivation

The static type of a this expression is the statically determined context classifier for the context in which
the this expression occurs.

[3] thisExpressionUpperDerivation
The multiplicity upper bound of a this expression is always 1.

Helper Operations
None

13.2.61 Tuple
A list of expressions used to provide the arguments for an invocation.

Generalizations
« SyntaxElement

Synthesized Properties
» invocation : InvocationExpression

The invocation expression of which this tuple is a part.

Derived Properties
« input : NamedExpression [*]

The argument expressions from this tuple, matched to the input parameters (direction in and
inout) of the invocation. An empty sequence construction expression is included for any input
parameter that is not explicitly matched in the tuple.

« output : OutputNamedExpression [*]

The argument expressions from this tuple, matched to the output parameters (direction inout and
out) of the invocation. An empty sequence construction expression is included for any output

parameter that is not explicitly matched in the tuple.
Constraints
[1] tupleAssignmentsAfter

A name may be assigned in at most one argument expression of a tuple.

[2] tupleAssignmentsBefore

The assignments before each expression in a tuple are the same as the assignments before the tuple,
except in the case of a name expression that defines a new local name, in which case the assigned source
for the new name is included in the assignments before the name expression. (Note that the assigned
source for a new name is included before the name expression so that the nameExpressionResolution
constraint is not violated.) The assignments before the tuple are the same as the assignments after the
feature reference of the invocation of the tuple, if the invocation has one, or otherwise the assignments

Action Language for Foundational UML (ALF), v1.1 295

before the invocation.

[3] tuplelnputDerivation

A tuple has the same number of inputs as its invocation has input parameters. For each input parameter,
the tuple has a corresponding input with the same name as the parameter and an expression that is the
matching argument from the tuple, or an empty sequence construction expression if there is no matching
argument.

[4] tupleNullInputs
An input parameter may only have a null argument if it has a multiplicity lower bound of 0.

[5] tupleOutputDerivation

A tuple has the same number of outputs as its invocation has output parameters. For each output
parameter, the tuple has a corresponding output with the same name as the parameter and an expression
that is the matching argument from the tuple, or an empty sequence construction expression if there is no
matching argument.

[6] tupleOutputs
An output parameter may only have a null argument if it is an out parameter.

Helper Operations
None

13.2.62 UnaryExpression
An expression consisting of an operator acting on a single operand expression.

Generalizations
» Expression

Synthesized Properties
« operand : Expression
The expression giving the operand.

« operator : String
The symbol representing the operator.

Derived Properties
None

Constraints
[1] unaryExpressionAssignmentsBefore

The assignments before the operand of a unary expression are the same as those before the unary
expression.

296 Action Language for Foundational UML (ALF), v1.1

Helper Operations
[1] updateAssignments () : AssignedSource [*]

By default, the assignments after a unary expression are the same as those after its operand expression.

13.2.63 UnboundedLiteralExpression
An expression that comprises an unbounded value literal.

Generalizations
o LiteralExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] unboundedLiteralExpressionTypeDerivation

The type of an unbounded literal expression is UnlimitedNatural.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 297

298 Action Language for Foundational UML (ALF), v1.1

14 Statements Abstract Syntax

14.1 Overview

The a1f::Syntax::Statement package contains the abstract syntax model for statements. The syntax
and semantics of statements are discussed in Clause 9. Their mapping to UML is given in Clause 18.

SyntaxElement

Block

+statement

0.1 {ordered} *

+/assignmentBefore

+/assignmentBefore AssignedSource

DocumentedElement

+documentation : String [*]

+/enclosingStatement

Statement *

+/islsolated : Boolean
+/isindexFrom0 : Boolean

+/assignmentAfter

*

Figure 14.1 Statements and Blocks

Action Language for Foundational UML (ALF), v1.1

0.1

+/assignmentAfter

+annotation

*

Annotation

+identifier : String
+argument : String [*]

299

Statement | */target
1

BlockStatement
EmptyStatement ExpressionStatement BreakStatement
+/isParallel : Boolean
0..1 0..1
+block | 1 InLineStatement LocalNameDeclarationStatement
+language : String +name : String
W +code : String +hasMultiplicity : Boolean = false
0.1 0.1
—{ReturnStatement +typeName [0..1
0.1 QualifiedName
+expression |0..1
1 | +expression

Expression
+expression

1

+ behavic1>r ElementReference).<+étyr1)e

Figure 14.2 Simple Statements

300 Action Language for Foundational UML (ALF), v1.1

Statement

I

IfStatement SwitchStatement
+/isAssured : Boolean +/isAssured : Boolean
+fisDeterminate : Boolean| 0..1 0.1 +fisDeterminate : Boolean

1
1 0.1
+nonFinalClauses |1..* {ordered} +nonDefaultClause |, *
ConcurrentClauses SwitchClause
1
0..1]0..1
+/assignmentBefore | * +clause [1.* +finalClause[0..1 0..1| +defaultClause
AssignedSource NonFinalClause +b°d1 Block |. *block
0.1 1
0.1
+conditio
+case
Expression 1
+expression

Figure 14.3 Conditional Statements

Action Language for Foundational UML (ALF), v1.1 301

Statement

+condition |1

Expression

+condition

Figure 14.4 Loop Statements

302

~
WhileStatement DoStatement ForStatement
0.1 +fisParallel : Boolean
0.1 0.1 0.1
+body | 1 0.1]0.1
+body +body

SyntaxElement

+variableDefinition | 1..* {ordered} T

+expression1

1 0..1

+expression2

LoopVariableDefinition

+variable : String
+typelsinferred : Boolean = true

0.1 0.1 +/isCollectionConversion : Boolean

+/isFirst : Boolean

*typeName QualifiedName
0 0.1

*ype T ElementReference
* 0.1

* *

+/assignmentBefore | * * |, +/assignmentAfter

AssignedSource

Action Language for Foundational UML (ALF), v1.1

Statement Expression

paN
1] +expression
| 0.1
AcceptStatement ClassifyStatement

*

+/isSimple : Boolean +isReclassifyAll : Boolean = false

1 * *
. 0.1
+acceptBlock | 1. +/behavior |1 +/fromClass
Block gb;ock01 AcceptBlock Hsignal [pe o
N " __|+name : String [0..1] 1. +foClass
0.1
+signalNames |1
+fromList
QualifiedNamelList 01
SyntaxElement K— +&>List
0.1
0.1
+name [1..*

QualifiedName

Figure 14.5 accept and classify Statements

14.2 Class Descriptions

14.2.1 AcceptBlock
A block of an accept statement that accepts one or more signals.

Generalizations
» SyntaxElement

Synthesized Properties
« block : Block [0..1]

The body of the accept block, executed if one of the named signals is received.

e name : String [0..1]
The local name to which an accepted signal instance will be assigned.

« signalNames : QualifiedNameList
A list of names of the signals accepted by this accept block.

Derived Properties
« signal : ElementReference [1..*]

The signals denoted by the signal names of the accept block.

Action Language for Foundational UML (ALF), v1.1

0.1

303

Constraints
[1] acceptBlockSignalDerivation

The signals of an accept block are the referents of the signal names of the accept block.

[2] acceptBlockSignalNames
All signal names in an accept block must resolve to signals.

Helper Operations
None

14.2.2 AcceptStatement
A statement used to accept the receipt of instances of one or more signals.

Generalizations
» Statement

Synthesized Properties
« acceptBlock : AcceptBlock [1..*]

One or more blocks for accepting alternate groups of signals.

Derived Properties
* behavior : ElementReference

The behavior containing the accept statement.

 isSimple : Boolean
Whether the accept statement is simple or not.

Constraints
[1] acceptStatementAssignmentsA fter

If a name is assigned in any block of an accept statement, then the assigned source of the name after the
accept statement is the accept statement itself.

[2] acceptStatementAssignmentsBefore

The assignments before any block of an accept statement are the assignments before the accept
statement.

[3] acceptStatementCompoundAcceptLocalName

For a compound accept statement, a local name defined in an accept block has the accept block as its
assigned source before the block associated with the accept block. The type of the local name is the
effective common ancestor of the specified signals for that accept clause, if one exists, and it is untyped
otherwise. However, the local name is considered unassigned after the accept statement.

[4] acceptStatementContext

An accept statement can only be used within the definition of an active behavior or the classifier
behavior of an active class.

304 Action Language for Foundational UML (ALF), v1.1

[5] acceptStatementEnclosedStatements

The enclosing statement for all statements in the blocks of all accept blocks of an accept statement is the
accept statement.

[6] acceptStatementIsSimpleDerivation

An accept statement is simple if it has exactly one accept block and that accept block does not have a
block.

[7] acceptStatementNames

Any name defined in an accept block of an accept statement must be unassigned before the accept
statement.

[8] acceptStatementNewAssignments

Any name that is unassigned before an accept statement and is assigned in one or more blocks of the
accept statement, has, after the accept statement, a type that is is the effective common ancestor of the
types of the name in each block in which it is defined, with a multiplicity lower bound that is the
minimum of the lower bound for the name in each block (where it is considered to have multiplicity
lower bound of zero for blocks in which it is not defined), and a multiplicity upper bound that is the
maximum for the name in each block in which it is defined.

[9] acceptStatementSignals

The containing behavior of an accept statement must have receptions for all signals from all accept
blocks of the accept statement. No signal may be referenced in more than one accept block of an accept
statement.

[10] acceptStatementSimpleAcceptLocalName

A local name specified in the accept block of a simple accept statement has the accept statement as its
assigned source after the accept statement. The type of the local name is the effective common ancestor
of the specified signals, if one exists, and it is untyped otherwise.

Helper Operations
[1] hasReturnValue() : Boolean

An accept statement has a return value if all of its accept clauses have return values.

14.2.3 Annotation
An identified modification to the behavior of an annotated statement.

Generalizations
o SyntaxElement

Synthesized Properties
e argument : String [*]
If permitted by the annotation, an optional list of local names relevant to the annotation.

 identifier : String

Action Language for Foundational UML (ALF), v1.1 305

The name of the annotation.

Derived Properties
None

Constraints
None

Helper Operations
None

14.2.4 Block
A grouped sequence of statements.

Generalizations
o SyntaxElement

Synthesized Properties
e statement : Statement [*]

The ordered sequence of statements in the block.

Derived Properties
« assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this block. This includes not only
any assignments made within the block, but also any assignments that are unchanged from before
the block.

« assignmentBefore : AssignedSource [*]

The assigned sources for local names available lexically before this block.

Constraints
[1] blockAssignmentA fterDerivation

If a block is not empty, then the assignments after the block are the same as the assignments after the last
statement of the block. Otherwise they are the same as the assignments before the block.

[2] blockAssignmentsBefore
The assignments before the first statement of a block are the same as the assignments before the block.

[3] blockAssignmentsBeforeStatements

The assignments before each statement in a block other than the first are the same as the assignments
after the previous statement.

Helper Operations
[1] hasReturnValue() : Boolean

A block has a return value if any of its statements has a return value.

306 Action Language for Foundational UML (ALF), v1.1

14.2.5 BlockStatement
A statement that executes a block.

Generalizations
» Statement

Synthesized Properties
» block : Block

The block to be executed.

Derived Properties
o isParallel : Boolean

Whether the statements in the block of this block statement should be executed concurrently.

Constraints
[1] blockStatementAssignmentsA fter

The assignments after a block statement are the same as the assignments after the block of the block
statement.

[2] blockStatementAssignmentsBefore

The assignments before the block of a block statement are the same as the assignments before the block
statement.

[3] blockStatementEnclosedStatements
The enclosing statement for all the statements in the block of a block statement is the block statement.

[4] blockStatementIsParallelDerivation
A block statement is parallel if it has a @parallel annotation.

[5] blockStatementParallelAssignments

In a parallel block statement, any name assigned in one statement of the block may not be further
assigned in any subsequent statement in the same block.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @isolated annotation, a block statement may have a @parallel annotation. It may not
have any arguments.

[2] hasReturnValue() : Boolean
A block statement has a return value if its block has a return value.

14.2.6 BreakStatement
A statement that causes the termination of execution of an immediately enclosing block.

Generalizations
» Statement

Action Language for Foundational UML (ALF), v1.1 307

Synthesized Properties
None

Derived Properties
» target : Statement

The enclosing statement that is terminated by this break statement.

Constraints
[1] breakStatementNonparallel Target

The target of a break statement may not have a @parallel annotation.

[2] breakStatementTargetDerivation

The target of a break statement is the innermost switch, while, do or for statement enclosing the break
statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

A break statement may not have any annotations.

14.2.7 ClassifyStatement
A statement that changes the classification of an object.

Generalizations
» Statement

Synthesized Properties

« expression : Expression
The expression to be evaluated to obtain the object to be reclassified.

e fromList : QualifiedNamelL.ist [0..1]
A list of names of classes to be removed as types of the object.

« isReclassifyAll : Boolean = false
Whether this classify statement reclassifies all types of the target object.

e toList : QualifiedNameList [0..1]

A list of names of classes to be added as types of the object.

Derived Properties
« fromClass : ElementReference [*]

The classes denoted by the names in the from list.

« toClass : ElementReference [*]

The classes denoted by the names in the to list.

308 Action Language for Foundational UML (ALF), v1.1

Constraints

[1] classifyStatementAssignmentsAfter
The assignments after a classify statement are the same as the assignments after its expression.

[2] classifyStatementAssignmentsBefore

The assignments before the expression of a classify statement are the same as the assignments before the
statement.

[3] classifyStatementClasses

All the from and to classes of a classify statement must be subclasses of the declared type of the target
expression and none of them may have a common superclass that is a subclass of the declared type of
the target expression (that is, they must be disjoint subclasses).

[4] classifyStatementClassNames
All qualified names listed in the from or to lists of a classify statement must resolve to classes.

[5] classifyStatementExpression
The expression in a classify statement must have a class as its type and multiplicity upper bound of 1.

[6] classifyStatementFromClassDerivation

The from classes of a classify statement are the class referents of the qualified names in the from list for
the statement.

[7] classifyStatementToClassDerivation

The to classes of a classify statement are the class referents of the qualified names in the to list for the
statement.

Helper Operations
None

14.2.8 ConcurrentClauses
A grouping of non-final conditional clauses to be tested concurrently.

Generalizations
+ SyntaxElement

Synthesized Properties
e clause : NonFinalClause [1..*]

The conditional clauses in the group.
Derived Properties

« assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this group of conditional clauses.

Action Language for Foundational UML (ALF), v1.1 309

Constraints
[1] concurrentClausesAssignmentsBefore

The assignments before the condition of each of the clauses in a set of concurrent clauses are the same
as the assignments before the concurrent clauses.

[2] concurrentClausesConditionAssignments

The same name may not be assigned in more than one conditional expression within the same
concurrent set of clauses.

Helper Operations
None

14.2.9 DoStatement
A looping statement for which the continuation condition is first tested after the first iteration.

Generalizations
» Statement

Synthesized Properties
« body : Block

The sequence of statements to be iteratively executed.

« condition : Expression
The expression to be evaluated to determine whether to continue looping.

Derived Properties
None

Constraints

[1] doStatementAssignmentsA fter

If the assigned source for a name after the condition expression is different than before the do statement,
then the assigned source of the name after the do statement is the do statement. Otherwise it is the same
as before the do statement. The assignments after the do statement are adjusted for known null and non-
null names and type classifications due to the condition expression being false.

[2] doStatementAssignmentsBefore

The assignments before the block of a do statement are the same as the assignments before the do
statement, except that any local names with a multiplicity lower bound of 0 after the condition
expression are adjusted to also have a multiplicity lower bound of 0 before the block.. The assignments
before the condition expression of a do statement are the same assignments after the block.

[3] doStatementCondition

The condition expression of a do statement must have a type that conforms to type Boolean and
multiplicity [1..1].

[4] doStatementEnclosedStatements

310 Action Language for Foundational UML (ALF), v1.1

The enclosing statement for all statements in the body of a do statement are the do statement.

Helper Operations
None

14.2.10 EmptyStatement
A statement that has no affect when executed.

Generalizations
» Statement

Synthesized Properties
None

Derived Properties
None

Constraints
[1] emptyStatementAssignmentsAfter

The assignments after and empty statement are the same as the assignments before the statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

An empty statement may not have any annotations.

14.2.11 ExpressionStatement
A statement that evaluates an expression when executed.

Generalizations
» Statement

Synthesized Properties
¢ expression : Expression

The expression to be evaluated.

Derived Properties
None

Constraints
[1] expressionStatementAssignmentsAfter

The assignments after an expression statement are the same as the assignments after its expression.

[2] expressionStatementAssignmentsBefore

The assignments before the expression of an expression statement are the same as the assignments
before the statement.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 311

14.2.12 ForStatement
A looping statement that gives successive values to one or more loop variables on each iteration.

Generalizations
» Statement

Synthesized Properties
* body : Block

The sequence of statements to be iteratively executed.

« variableDefinition : LoopVariableDefinition [1..*]

A list of definitions of one or more loop variables.

Derived Properties
« isParallel : Boolean

Whether the for statement is parallel.

Constraints
[1] forStatementAssignmentsAfter

The loop variables are unassigned after a for statement. Other than the loop variables, if the assigned
source for a name after the body of a for statement is the same as after the for variable definitions, then
the assigned source for the name after the for statement is the same as after the for variable definitions.
If name has a different assigned source after the body of the for statement than after the for variable
definitions, then the assigned source after the for statement is the for statement itself.

[2] forStatementAssignmentsBefore

The assignments before a loop variable definition in a for statement are the same as before the for
statement. The assignments before the body of the statement include all the assignments before the
statement plus any new assignments from the loop variable definitions, except that, if the statement is
parallel, the assigned sources of any names given in (@parallel annotations are changed to be the for
statement itself.

[3] forStatementEnclosedStatements
The enclosing statement for all statements in the body of a for statement are the for statement.

[4] forStatementlsParallelDerivation
A for statement is parallel if it has a @parallel annotation.

[5] forStatementLoop Variables

The assigned sources for loop variables after the body of a for statement must be the for statement (the
same as before the body).

[6] forStatementParallelAnnotationNames

A (@parallel annotation of a for statement may include a list of names. Each such name must be already
assigned after the loop variable definitions of the for statement, with a multiplicity upper bound other
than 1. These names may only be used within the body of the for statement as the first argument for the

312 Action Language for Foundational UML (ALF), v1.1

CollectionFunctions::add behavior.

[7] forStatementParallel Assignments A fter

If, after the loop variable definitions of a parallel for statement, a name has an assigned source, then it
must have the same assigned source after the block of the for statement. Other than for names defined in
the @parallel annotation of the for statement, the assigned source for such names is the same after the
for statement as before it. Any names defined in the @parallel annotation have the for statement itself as
their assigned source after the for statement. Other than names given in the @parallel annotation, if a
name is unassigned after the loop variable definitions, then it is considered unassigned after the for
statement, even if it is assigned in the block of the for statement.

[8] forStatementVariableDefinitions

The isFirst attribute of the first loop variable definition for a for statement is true while the isFirst
attribute if false for any other definitions.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @isolated annotation, a for statement may have a (@parallel annotation.

14.2.13 IfStatement
A conditional statement that executes (at most) one of a set of clauses based on boolean conditions.

Generalizations
» Statement

Synthesized Properties
« finalClause : Block [0..1]

A sequence of statements to be executed if no other clause has a successful condition.

« nonFinalClauses : ConcurrentClauses [1..*]

A list of groupings of concurrent clauses that are to be checked sequentially for a successful
condition.

Derived Properties
» isAssured : Boolean

Whether at least one condition in the if statement is assured to evaluate to true.

» isDeterminate : Boolean
Whether at most one condition in the if statement will ever to evaluate to true.

Constraints

[1] ifStatementAssignmentsAfter

Any name that is unassigned before an if statement and is assigned in one or more clauses of the if
statement, has, after the if statement, a type that is is the effective common ancestor of the types of the
name in each clause in which it is defined. For a name that has an assigned source after any clause of an
if statement that is different than before that clause, then the assigned source after the if statement is the

Action Language for Foundational UML (ALF), v1.1 313

if statement, with a multiplicity lower bound that is the minimum of the lower bound for the name in
each clause and a multiplicity upper bound that is the maximum for the name in each clause (where the
name is considered to have multiplicity [0..0] for clauses in which it is not defined and unchanged
multiplicity for an implicit final clause, unless the if statement is assured). Otherwise, the assigned
source of a name after the if statement is the same as before the if statement.

[2] ifStatementAssignmentsBefore

The assignments before each non-final clause of an if statement are the same as the assignments before
the if statement, adjusted for known nulls and non-nulls and type classifications due to the failure of the
conditions in all previous sets of concurrent clauses. If the statement has a final clause, then the
assignments before that clause are also the same as the assignments before the if statement, adjusted for
the failure of the conditions of all previous clauses.

[3] ifStatementEnclosedStatements

The enclosing statement of all the statements in the bodies of all non-final clauses and in the final clause
(if any) of an if statement is the if statement.

[4] ifStatementIsAssuredDerivation
An if statement is assured if it has an @assured annotation.

[5] ifStatementIsDeterminateDerivation
An if statement is determinate if it has an (@determinate annotation.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @isolated annotation, an if statement may have @assured and @determinate
annotations. They may not have arguments.

[2] hasReturnValue() : Boolean

An if statement has a return value if the bodies of all its clauses have return values, and it either has a
final clause or is assured.

14.2.14 InLineStatement
A statement that executes code in a language other than Alf.

Generalizations
» Statement

Synthesized Properties
e code : String

The in-line code to be executed.

» language : String
The name of the language in which the code is written.

314 Action Language for Foundational UML (ALF), v1.1

Derived Properties
None

Constraints
[1] inLineStatementAssignmentsAfter

The assignments after an in-line statement are the same as the assignments before the statement.

Helper Operations
None

14.2.15 LocalNameDeclarationStatement
A statement that declares the type of a local name and assigns it an initial value.

Generalizations
« Statement

Synthesized Properties
¢ expression : Expression

The expression to be evaluated to provide the initial value to be assigned to the local name.

« hasMultiplicity : Boolean = false
Whether the local name is to have a multiplicity upper bound of * rather than 1.

e name : String
The local name being declared.

« typeName : QualifiedName [0..1]
The declared type of the local name.

Derived Properties
« type : ElementReference [0..1]

The type declared for the given local name.

Constraints

[1] localNameDeclarationStatementAssignmentsA fter

The assignments after a local name declaration statement are the assignments after the expression of the
statement plus a new assignment for the local name defined by the statement. The assigned source for
the local name is the local name declaration statement. The local name has the type denoted by the type
name if this is not empty and is untyped otherwise. The multiplicity lower bound of the local name is 0
if the expression has a lower bound of 0, otherwise it is 1. If the statement has multiplicity, then the
multiplicity upper bound of the local name is *, otherwise it is 1.

[2] localNameDeclarationStatementAssignmentsBefore

The assignments before the expression of a local name declaration statement are the same as the
assignments before the statement.

Action Language for Foundational UML (ALF), v1.1 315

[3] localNameDeclarationStatementExpressionMultiplicity

If a local name declaration statement does not have multiplicity, then the multiplicity of upper bound of
the assigned expression must not be greater than 1.

[4] localNameDeclarationStatementExpressionType

If the expression of a local name declaration statement is an instance creation expression with no
constructor, and the type of the statement is a class or (structured) data type, then the referent of the
expression is the type of the statement. If the expression of a local name declaration statement is a
sequence construction expression with no type name, but with non-empty elements, then the type of the
expression is the type of the statement and the expression has multiplicity if and only if the statement
does.

[5] localNameDeclarationStatementLocalName

The local name in a local name declaration statement must be unassigned before the statement and
before the expression in the statement. It must remain unassigned after the expression.

[6] localNameDeclarationStatementType

If the type name in a local name declaration statement is not empty, then it must resolve to a non-
template classifier and the expression must be assignable to that classifier.

[7] localNameDeclarationStatementTypeDerivation

The type of a local name declaration statement with a type name is the single classifier referent of the
type name. Otherwise the type is empty.

Helper Operations
None

14.2.16 LoopVariableDefinition
The definition of a loop variable in a for statement.

Generalizations
+ SyntaxElement

Synthesized Properties
« expressionl : Expression

If there is only one expression, then this expression is evaluated to produce a sequence of values
to be assigned to the loop variable on successive iterations. Otherwise it is evaluated to provide
the first value of a range of values to be assigned to the loop variable.

« expression2 : Expression [0..1]

The expression to be evaluated to give the second value in a range of values to be assigned to the
loop variable.

« typelsinferred : Boolean = true
Whether the type of the variable is inferred or declared explicitly.

316 Action Language for Foundational UML (ALF), v1.1

NOTE: This flag is necessary to because a variable that is explicitly declared to have type "any"
will have an empty typeName, just like a variable whose type is to be inferred, but, in the former
case, the type is actually intended to be empty, not inferred.

« typeName : QualifiedName [0..1]
The declared type of the loop variable.

 variable : String
The name of the loop variable.

Derived Properties
« assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this loop variable definition. This
includes not only any assignments made within the statement, but also any assignments that are
unchanged from before the statement.

« assignmentBefore : AssignedSource [*]

The assigned sources for local names available lexically before this loop variable definition.

» 1sCollectionConversion : Boolean

Whether collection conversion is required.

 isFirst : Boolean
Whether this definition is the first in the list of definitions in the enclosing for statement.

« type : ElementReference [0..1]
The declared or inferred type of the loop variable.

Constraints
[1] loopVariableDefinitionAssignmentA fterDerivation

The assignments after a loop variable definition include the assignments after the expression (or
expressions) of the definition plus a new assigned source for the loop variable itself. The assigned source
for the loop variable is the loop variable definition. The multiplicity upper bound for the variable is 1.
The multiplicity lower bound is 1 if the loop variable definition is the first in a for statement and 0
otherwise. If collection conversion is not required, then the variable has the inferred or declared type
from the definition. If collection conversion is required, then the variable has the sequence type of the
collection class.

[2] loop VariableDefinitionAssignmentsBefore

The assignments before the expressions of a loop variable definition are the assignments before the loop
variable definition.

[3] loopVariableDefinitionDeclared Type

If the type of a loop variable definition is not inferred, then the first expression of the definition must
have a type that conforms to the declared type.

Action Language for Foundational UML (ALF), v1.1 317

[4] loopVariableDefinitionIsCollectionConversionDerivation

Collection conversion is required for a loop variable definition if the type for the definition is a
collection class and the multiplicity upper bound of the first expression is no greater than 1.

[5] loop VariableDefinitionRangeExpressions

If a loop variable definition has two expressions, then both expressions must have type Integer and a
multiplicity upper bound of 1, and no name may be newly assigned or reassigned in more than one of
the expressions.

[6] loopVariableDefinitionTypeDerivation

If the type of a loop variable is not inferred, then the variable has the type denoted by the type name, if it
is not empty, and is untyped otherwise. If the type is inferred, them the variable has the same as the type
of the expression in its definition.

[7] loopVariableDefinitionTypeName
If a loop variable definition has a type name, then this name must resolve to a non-template classifier.

[8] loopVariableDefinitionVariable

The variable name given in a loop variable definition must be unassigned after the expression or
expressions in the definition.

Helper Operations
None

14.2.17 NonFinalClause

A clause of an if statement with a conditional expression and a sequence of statements that may be
executed if the condition is true.

Generalizations
+ SyntaxElement

Synthesized Properties
e body : Block

The sequence of statements that may be executed if the condition evaluates to true.

« condition : Expression
The expression that is evaluated to determine whether the clause body may be executed.

Derived Properties
None

Constraints
[1] nonFinalClauseAssignmentsBeforeBody

The assignments before the body of a non-final clause are the assignments after the condition, adjusted
for known null and non-null names and type classifications due to the condition being true.

318 Action Language for Foundational UML (ALF), v1.1

[2] nonFinalClauseConditionLocalNames

If a name is unassigned before the condition expression of a non-final clause, then it must be unassigned
after that expression (i.e., new local names may not be defined in the condition).

[3] nonFinalClauseConditionType
The condition of a non-final clause must have a type that conforms to type Boolean and multiplicity

[1.1].

Helper Operations
[1] assignmentsAfter () : AssignedSource [*]

The assignments after a non-final clause are the assignments after the block of the clause.

[2] assignmentsBefore () : AssignedSource [*]
The assignments before a non-final clause are the assignments before the condition of the clause.

14.2.18 QualifiedNameList
A group of qualified names.

Generalizations
+ SyntaxElement

Synthesized Properties
e name : QualifiedName [1..*]

The names in the group.

Derived Properties
None

Constraints
None

Helper Operations
None

14.2.19 ReturnStatement
A statement that provides a value for the return parameter of an activity.

Generalizations
» Statement

Synthesized Properties
« expression : Expression [0..1]

The expression to be evaluated to provide the returned value.

Action Language for Foundational UML (ALF), v1.1 319

Derived Properties
e behavior : ElementReference

A reference to the enclosing behavior for this return statement.

Constraints
[1] returnStatementAssignmentsA fter

The assignments after a return statement are the same as the assignments after the expression of the
return statement.

[2] returnStatementAssignmentsBefore

The assignments before the expression of a return statement are the same as the assignments before the
statement.

[3] returnStatementContext

If the behavior containing the return statement has a return parameter, then the return statement must
have an expression, and the expression must be assignable to that return parameter.

Helper Operations
[1] hasReturnValue() : Boolean

A return statement is considered to have a return value.

14.2.20 Statement
A model of an Alf statement.

Generalizations
* DocumentedElement

Synthesized Properties
« annotation : Annotation [*]

The annotations applied to this statement.

Derived Properties
« assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this statement. This includes not
only any assignments made within the statement, but also any assignments that are unchanged
from before the statement.

« assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this statement.

« enclosingStatement : Statement [0..1]
The statement immediately enclosing this statement, if any.

+ isIndexFrom0 : Boolean
Whether indexing should be from 0 within this statement.

320 Action Language for Foundational UML (ALF), v1.1

o islsolated : Boolean
Whether this statement should be executed in isolation.

Constraints
[1] statementAnnotationsAllowed

All the annotations of a statement must be allowed, as given by the annotationAllowed operation for the
statement.

[2] statementIsIndexFrom(ODerivation

A statement has indexing from 0 if it has an @indexFromO annotation, or it is contained in a statement
with indexing from 0 and it does not have an @indexFrom1 annotation applied.

[3] statementlsIsolatedDerivation
A statement is isolated if it has an @jisolated annotation.

[4] statementUniqueAssignments
No name may be assigned more than once before or after a statement.

Helper Operations

[1] annotationAllowed (in annotation : Annotation) : Boolean

Returns true if the given annotation is allowed for this kind of statement. By default, only @isolated,
@indexFrom0 and @indexFrom1 annotations are allowed, with no arguments. This operation is
redefined only in subclasses of Statement for kinds of statements that allow different annotations than
this default.

[2] hasReturnValue() : Boolean

Returns true if this statement is assured to generate a return value. By default, a statement does not have
a return value.

14.2.21 SwitchClause

A clause in a switch statement with a set of cases and a sequence of statements that may be executed if
one of the cases matches the switch value.

Generalizations
+ SyntaxElement

Synthesized Properties
» block : Block

The sequence of statements that may be executed if one of the cases matches the switch value.

« case : Expression [1..*]
The expressions to be evaluated to provide values to test against the switch value.

Derived Properties
None

Action Language for Foundational UML (ALF), v1.1 321

Constraints
[1] switchClauseAssignmentsBefore

The assignments before the case expressions of any case expression of a switch clause are the same as
the assignments before the clause. The assignments before the block of a switch clause are the
assignments after all case expressions.

[2] switchClauseCaseLocalNames

If a name is unassigned before a switch clause, then it must be unassigned after all case expressions of
the clause (i.e., new local names may not be defined in case expressions).

[3] switchClauseCases
All the case expressions of a switch clause must have a multiplicity no greater than 1.

Helper Operations
[1] assignmentsAfter () : AssignedSource [*]

The assignments after a switch clause are the assignments after the block of the switch clause.

[2] assignmentsBefore () : AssignedSource [*]
The assignments before a switch clause are the assignments before any case expression of the clause.

14.2.22 SwitchStatement

A statement that executes (at most) one of a set of statement sequences based on matching a switch
value to a set of test cases.

Generalizations
« Statement

Synthesized Properties
« defaultClause : Block [0..1]

A sequence of statements to be executed if no switch clause case matches the switch value.

« expression : Expression
The expression to be evaluated to provide the switch value.

e nonDefaultClause : SwitchClause [*]

The set of switch clauses whose cases are to be tested against the switch value.

Derived Properties
» isAssured : Boolean

Whether at least one case in the switch statement is assured to match.

» isDeterminate : Boolean
Whether at most one case in the if statement will ever to match.

322 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] switchStatementAssignments

Any name that is unassigned before a switch statement and is assigned in one or more clauses of the
switch statement, has, after the switch statement, a type that is is the effective common ancestor of the
types of the name in each clause in which it is defined.

[2] switchStatementAssignmentsAfter

If a name has an assigned source after any clause of a switch statement that is different than before that
clause (including newly defined names), the assigned source after the switch statement is the switch
statement, with a multiplicity lower bound that is the minimum of the lower bound for the name in each
clause and a multiplicity upper bound that is the maximum for the name in each clause (where the name
is considered to have multiplicity [0..0] for clauses in which it is not defined and unchanged multiplicity
for an implicit default clause, unless the switch statement is assured). Otherwise, the assigned source of
a name after the switch statement is the same as before the switch statement.

[3] switchStatementAssignmentsBefore

The assignments before all clauses of a switch statement are the same as the assignments after the
expression of the switch statement.

[4] switchStatementCaseAssignments
The same local name may not be assigned in more than one case expression in a switch statement.

[5] switchStatementEnclosedStatements
A switch statement is the enclosing statement for the statements in all of its switch clauses.

[6] switchStatementExpression

A switch statement expression must have a multiplicity no greater than 1.
[7] switchStatementIsAssuredDerivation

A switch statement is assured if it has an @assured annotation.

[8] switchStatementIsDeterminateDerivation
A switch statement is determinate if it has a (@determinate annotation.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @isolated annotation, a switch statement may have @assured and @determinate
annotations. They may not have arguments.

[2] hasReturnValue() : Boolean

A switch statement has a return value if the blocks of all its clauses have return values, and it either has a
default clause or is assured.

14.2.23 WhileStatement
A looping statement for which the continuation condition is first tested before the first iteration.

Action Language for Foundational UML (ALF), v1.1 323

Generalizations
» Statement

Synthesized Properties
* body : Block

The sequence of statements to be iteratively executed.

« condition : Expression
The expression to be evaluated to determine whether to continue looping.

Derived Properties
None

Constraints
[1] whileStatementAssignmentsA fter

If the assigned source for a name after the block of a while statement is different than before the while
statement, then the assigned source of the name after the while statement is the while statement.
Otherwise it is the same as before the while statement. If a name is unassigned before the block of a
while statement and assigned after the block, then it has multiplicity lower bound of 0 after the while
statement. Otherwise, the assignments after the while statement are adjusted for known null and non-null
names and type classifications due to the condition expression being false.

[2] whileStatementAssignmentsBefore

The assignments before the condition expression of a while statement are the same as the assignments
before the while statement, except that any local names with a multiplicity lower bound of 0 after the
block are adjusted to also have a multiplicity lower bound of 0 before the condition expression. The
assignments before the block of the while statement are the same as the assignments after the condition
expression, adjusted for known null and non-null names and type classifications due to the condition
expression being true.

[3] whileStatementCondition

The condition expression of a while statement must have a type that conforms to type Boolean and
multiplicity [1..1].

[4] whileStatementEnclosedStatements
The enclosing statement for all statements in the body of a while statement are the while statement.

Helper Operations
None

324 Action Language for Foundational UML (ALF), v1.1

15 Units Abstract Syntax

15.1 Overview

The a1f::syntax::Units package contains the abstract syntax model for units. The syntax and
semantics of statements are discussed in Clause 10. Their mapping to UML is given in Clause 19.

DocumentedElement

+documentation : String [*]
pAY

QualifiedName rnamespaceName UnitDefinition Junt +deﬁn|t|o;1 NamespaceDefinition
0..1 0.1 0..1

+/isModelLibrary : Boolean

*

1 +referentName * —9 0.1
+unit § 1 +/subunit|0..1 (ordered] B
+ 0.1 oraeredy |« «|+
/namespacex +ownedMember /member
ElementReference SyntaxElement Member
0.1 |tname : String
+/referent|0..1 T +visibility : String [0..1]
; * +isStub : Boolean = false
+
mport [) | +/isFeature : Boolean = false
ImportReference +/isPrimitive : Boolean
+visibility : String +/isExternal : Boolean

0.1 T . zr

| ImportedMember
ElementimportReference PackagelmportReference +referentf
+alias : String [0..1] ElementReference
TaggedValue *|, +annotation
e
+name : String StereotypeAnnotation
+value : String 0.1
+operator : String [0..1] 0.1
0.1 v

1 l +stereotypeName
QualifiedName

+taggedValue |*

* 0..1] +taggedValues O..1‘ +names

TaggedValueList QualifiedNamelList

Figure 15.1 Unit and Namespace Definitions

Action Language for Foundational UML (ALF), v1.1 325

NamespaceDefinition

+/specializationReferent

I

*

*

,| ElementReference

ActiveClassDefinition [__*classifierBehavior ,,|ActivityDefinition

PackageDefinition ClassifierDefinition +specialization '| QualifiedNameList
+isAbstract : Boolean =false | 0..1 0..1
ClassDefinition AssociationDefinition SignalDefinition
AN
DataTypeDefinition EnumerationDefinition ClassifierTemplateParameter

0.1

SignalReceptionDefinition

0.1 |

+body| 0.1 0.1} +/effectiveBody

Block

Figure 15.2 Package and Classifier Definitions

326

Action Language for Foundational UML (ALF), v1.1

Member

!

TypedElementDefinition ReceptionDefinition EnumerationLiteralName
+lowerBound : String [0..1]
+upperBound : String ="1" 0.1
+isOrdered : Boolean = false +signalName | 1

+isNonunique : Boolean = false
+/lower : Integer = +typeName>‘| QualifiedName
+/upper : UnlimitedNatural 0.1 0.1

*lype I ElementReference m
0.1 1

| +/redefinedOperation | *

NamespaceDefinition
FormalParameter PropertyDefinition
+direction : String +isComposite : Boolean = false
+/isCollectionConversion : Boolean
+/isBitStringConversion : Boolean OperationDefinition
0.1 +isAbstract : Boolean = false
o +/isConstructor : Boolean *
+ *
initializer 4 0..1 +/isDestructor : Boolean
Expression 0.1 0.1
+redefinition | 0..1 +body| 0..1
QualifiedNameList Block |2

+/effectiveBody

Figure 15.3 Parameter, Feature and Enumeration Literal Definitions
15.2 Class Descriptions

15.2.1 ActiveClassDefinition
The definition of an active class.

Generalizations
o (ClassDefinition

Synthesized Properties
« classifierBehavior : ActivityDefinition [0..1]

The definition of an activity (which may be a stub) to act as the classifier behavior of the active
class.

Derived Properties
None

Action Language for Foundational UML (ALF), v1.1 327

Constraints
[1] activeClassDefinitionClassifierBehavior

If an active class definition is not abstract, then it must have a classifier behavior.

Helper Operations
[1] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this active class definition considered as a class
definition and the subunit is for an active class definition.

15.2.2 ActivityDefinition
The definition of an activity, with any formal parameters defined as owned members.

Generalizations
o (lassifierDefinition

Synthesized Properties
e body : Block [0..1]

The sequence of statements that defines the behavior of the activity (empty for a stub).

Derived Properties
« effectiveBody : Block [0..1]
If this activity definition is a stub, then the body of the corresponding subunit.

Constraints
[1] activityDefinitionEffectiveBodyAssignmentsBefore

The assignments before the effective body of an activity definition include an assignment for each "in"
or "inout" formal parameter of the activity definition, with the formal parameter as the assigned source.

[2] activityDefinitionEffectiveBodyDerivation

If an activity definition is a stub, then its effective body is the body of the corresponding subunit.
Otherwise, the effective body is the same as the body of the activity definition.

[3] activityDefinitionPrimitive
If an activity definition is primitive, then it must have a body that is empty.

[4] activityDefinitionReturn

If an activity definition has a return parameter with a multiplicity lower bound greater than 0, then the
effective body of the activity definition must have a return value.

[5] activityDefinitionSpecialization
An activity definition may not have a specialization list.

328 Action Language for Foundational UML (ALF), v1.1

Helper Operations

[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, an activity definition allows @primitive
annotations and any stereotype whose metaclass is consistent with Activity.

[2] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this activity definition considered as a classifier
definition and the subunit is for an activity definition. In addition, the subunit definition must have
formal parameters that match each of the formal parameters of the stub definition, in order. Two formal
parameters match if they have the same direction, name, multiplicity bounds, ordering, uniqueness and
type reference.

15.2.3 AssociationDefinition
The definition of an association, whose members must all be properties.

Generalizations
o (ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] associationDefinitionSpecializationReferent

The specialization referents of an association definition must all be associations.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, an association definition allows an
annotation for any stereotype whose metaclass is consistent with Association.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either an AssociationDefinition or an imported member whose
referent is an AssociationDefinition or an Association.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this association definition considered as a classifier
definition and the subunit is for an association definition.

15.2.4 ClassDefinition
The definition of a class, whose members may be properties, operations, signals or signal receptions.

Generalizations
o (lassifierDefinition

Action Language for Foundational UML (ALF), v1.1 329

Synthesized Properties
None

Derived Properties
None

Constraints
[1] classDefinitionAbstractMember

If a class definition is not abstract, then no member operations (owned or inherited) of the class
definition may be abstract.

[2] classDefinitionSpecializationReferent

The specialization referents of a class definition must all be classes. A class definition may not have any
referents that are active classes unless this is an active class definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, a class definition allows an annotation
for any stereotype whose metaclass is consistent with Class.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a ClassDefinition or an imported member whose referent is a
ClassDefinition or a Class.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this class definition considered as a classifier definition
and the subunit is for a class definition.

15.2.5 ClassifierDefinition
The definition of a classifier.

Generalizations
» NamespaceDefinition

Synthesized Properties
» isAbstract : Boolean = false

Whether the classifier is abstract or not.

» specialization : QualifiedNamelList [0..1]

The names of classifiers specialized by the classifier being defined.

Derived Properties
« specializationReferent : ElementReference [*]

References to the classifiers to which the names in the specialization list resolve.

330 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] classifierDefinitionInheritedMembers

The members of a classifier definition include non-private members inherited from the classifiers it
specializes. The visibility of inherited members is as specified in the UML Superstructure, 7.3.8.
Elements inherited from external classifiers are treated as imported members.

[2] classifierDefinitionSpecialization

Each name listed in the specialization list for a classifier definition must have a single classifier referent.
None of these referents may be templates.

[3] classifierDefinitionSpecializationReferentDerivation

The specialization referents of a classifier definition are the classifiers denoted by the names in the
specialization list for the classifier definition.

Helper Operations

[1] matchForStub (in unit : UnitDefinition) : Boolean

The namespace definition associated with the given unit definition must be a classifier definition. The
subunit classifier definition may be abstract if and only if the subunit classifier definition is abstract. The
subunit classifier definition must have the same specialization referents as the stub classifier definition.
(Note that it is the referents that must match, not the exact names or the ordering of those names in the
specialization list.) The subunit classifier definition must also have a matching classifier template
parameter for each classifier template parameter of the stub classifier definition. Two template
parameters match if they have same names and the same specialization referents.

15.2.6 ClassifierTemplateParameter

The definition of a classifier template parameter, which acts as a classifier within the definition of the
template.

Generalizations
o (ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Annotations are not allowed on classifier template parameters.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is a classifier template parameter.

Action Language for Foundational UML (ALF), v1.1 331

[3] matchForStub (in unit : UnitDefinition) : Boolean
Returns false. (Classifier template parameters cannot be stubs.)

15.2.7 DataTypeDefinition
The definition of a data type, whose members must all be properties.

Generalizations
o (ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] dataTypeDefinitionPrimitive

If a data type is primitive, then it may not have any owned members.

[2] dataTypeDefinitionSpecializationReferent
The specialization referents of a data type definition must all be data types.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, a data type definition allows @primitive
annotations plus any stereotype whose metaclass is consistent with DataType.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a DataTypeDefinition or an imported member whose referent is
a DataTypeDefinition or a DataType.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this data type definition considered as a classifier
definition and the subunit is for a data type definition.

15.2.8 ElementimportReference
An import reference to a single element to be imported into a unit.

Generalizations
« ImportReference

Synthesized Properties
 alias : String [0..1]
The alias to be used as the name for the imported element in the importing unit’s namespace.

Derived Properties
None

332 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] elementImportReferenceReferent

The referent of an element import reference must be a packageable element.

Helper Operations
None

15.2.9 EnumerationDefinition
The definition of an enumeration, whose members must all be enumeration literal names.

Generalizations
o (lassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] enumerationDefinitionSpecializationReferent

The specialization referents of a class definition must all be classes. A class definition may not have any
referents that are active classes unless this is an active class definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, an enumeration definition allows an
annotation for any stereotype whose metaclass is consistent with Enumeration.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either an EnumerationDefinition or an imported member whose
referent is an EnumerationDefinition or an Enumeration.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this enumeration definition considered as a classifier
definition and the subunit is for an enumeration definition.

15.2.10 EnumerationLiteralName
The definition of an enumeration literal, as a member of an enumeration definition.

Generalizations
« Member

Synthesized Properties
None

Action Language for Foundational UML (ALF), v1.1 333

Derived Properties
None

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns false. (Enumeration literal name cannot have annotations.)

15.2.11 FormalParameter
A typed element definition for the formal parameter of an activity or operation.

Generalizations
* TypedElementDefinition

Synthesized Properties
» direction : String

An indication of the direction of the parameter being defined.

Derived Properties
None

Constraints

[1] formalParameterAssignmentAfterBody

If a formal parameter has direction "out" and a multiplicity lower bound greater than 0, and its owning
activity or operation definition has an effective body, then there must be an assignment for the formal
parameter after the effective body that has a multiplicity greater than 0.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Parameter.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is a FormalParameter.

15.2.12 ImportedMember

Generalizations
e Member

Synthesized Properties
» referent : ElementReference

Derived Properties
None

334 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] importedMemberlsFeatureDerivation

An imported element is a feature if its referent is a feature.

[2] importedMemberNotStub
An imported element is not a stub.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns false. (Imported members do not have annotations.)

[2] isSameKindAs (in member : Member) : Boolean

If the given member is not an imported member, then return the result of checking whether the given
member is the same kind as this member. Else, if the element of the referent for this member is an Alf
member, then return the result of checking whether that element is the same kind as the given member.
Else, if the element of the referent for the given member is an Alf member, then return the result of
checking whether that element is the same kind as this member. Else, the referents for both this and the
given member are UML elements, so return the result of checking their distinguishability according to
the rules of the UML superstructure.

15.2.13 ImportReference
A reference to an element or package to be imported into a unit.

Generalizations
 SvyntaxElement

Synthesized Properties
« referentName : QualifiedName

The name of the element or package to be imported.

« unit : UnitDefinition
The unit that is making this import reference.

 visibility : String
An indication of the visibility of the import.

Derived Properties
« referent : ElementReference [0..1]

A reference to the imported element denoted by the given qualified name.

Constraints
[1] importReferenceReferent

The referent name of an import reference must resolve to a single element with public or empty
visibility.

Action Language for Foundational UML (ALF), v1.1 335

[2] importReferenceReferentDerivation

The referent of an import reference is the element denoted by the referent name.

Helper Operations

None

15.2.14 Member
A model of the common properties of the definition of a member of a namespace in Alf.

Generalizations

DocumentedElement

Synthesized Properties

annotation : StereotypeAnnotation [*]

The stereotype annotations on this member definition.

1sStub : Boolean = false
Whether this member definition is a stub for a subunit.

name : String
The name of the member.

namespace : NamespaceDefinition [0..1]

The namespace definition within which this member definition is nested, if any. (The namespace
definitions for units are not physically nested within another Alf namespace definition.)

visibility : String [0..1]
An indication of the visibility of the member outside of its namespace.

Derived Properties

336

isExternal : Boolean
Whether this member is external or not.

isFeature : Boolean = false
Whether this member is a feature of a classifier.

isPrimitive : Boolean
Whether this member is a primitive or not.

subunit : UnitDefinition [0..1]
The subunit corresponding to the member, if the member is a stub.

Action Language for Foundational UML (ALF), v1.1

Constraints
[1] memberAnnotations

All stereotype annotations for a member must be allowed, as determined using the stereotypeAllowed
operation.

[2] memberExternal
If a member is external then it must be a stub.

[3] memberIsExternalDerivation
A member is external if it has an @external derivation.

[4] memberlsPrimitiveDerivation
A member is primitive if it has a @primitive annotation.

[5] memberPrimitive

If a member is primitive, then it may not be a stub and it may not have any owned members that are
template parameters.

[6] memberStub

If a member is a stub and is not external, then there must be a single subunit with the same qualified
name as the stub that matches the stub, as determined by the matchForStub operation.

[7] memberStubStereotypes

If a member is a stub, then the it must not have any stereotype annotations that are the same as its
subunit. Two stereotype annotations are the same if they are for the same stereotype.

[8] memberSubunitDerivation

If the member is a stub and is not external, then its corresponding subunit is a unit definition with the
same fully qualified name as the stub.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true of the given stereotype annotation is allowed for this kind of element.

[2] isDistinguishableFrom (in member : Member) : Boolean

Returns true if this member is distinguishable from the given member. Two members are distinguishable
if their names are different or the they are of different kinds (as determined by the isSameKindAs
operation). However, in any case that the UML Superstructure considers two names to be
distinguishable if they are different, an Alf implementation may instead impose the stronger requirement
that the names not be conflicting.

[3] isSameKindAs (in member : Member) : Boolean
Returns true if this member is of the same kind as the given member.

Action Language for Foundational UML (ALF), v1.1 337

[4] matchForStub (in unit : UnitDefinition) : Boolean

Returns true of the given unit definition is a legal match for this member as a stub. By default, always
returns false.

15.2.15 NamespaceDefinition
A model of the common properties of the definition of a namespace in Alf.

Generalizations
» Member

Synthesized Properties
« ownedMember : Member [*] {ordered}

The definitions of owned members of the namespace.

 unit : UnitDefinition [0..1]
The unit for which this namespace is a definition, if any.

Derived Properties
« member : Member [*]

The owned and imported members of a namespace definition.

Constraints
[1] namespaceDefinitionMemberDerivation

The members of a namespace definition include references to all owned members. Also, if the
namespace definition has a unit with imports, then the members include imported members with
referents to all imported elements. The imported elements and their visibility are determined as given in
the UML Superstructure. The name of an imported member is the name of the imported element or its
alias, if one has been given for it. Elements that would be indistinguishable from each other or from an
owned member (as determined by the Member::isDistinguishableFrom operation) are not imported.

[2] namespaceDefinitionMemberDistinguishability

The members of a namespace must be distinguishable as determined by the
Member::isDistinguishableFrom operation.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is @external.

15.2.16 OperationDefinition
The definition of an operation, with any formal parameters defined as owned members.

Generalizations
» NamespaceDefinition

Synthesized Properties
e body : Block [0..1]

338 Action Language for Foundational UML (ALF), v1.1

The sequence of statements that defines the behavior of the operation (empty for a stub or
abstract operation).

« isAbstract : Boolean = false
Whether the operation being defined is abstract.

« redefinition : QualifiedNameList [0..1]

The names of other operations that are redefined by the operation being defined.
Derived Properties

« effectiveBody : Block [0..1]
If this operation definition is a stub, then the body of the corresponding subunit.

« isConstructor : Boolean
Whether this operation definition is for a constructor.

 isDestructor : Boolean
Whether this operation definition is for a destructor.

« redefinedOperation : ElementReference [*]

Constraints
[1] operationDefinitionAbstractOperation
If an operation definition is abstract, then its body must be empty.

[2] operationDefinitionConstructor

If an operation definition is a constructor, any redefined operation for it must also be a constructor. The
body of a constructor may contain an alternative constructor invocation for another constructor in the
same class or super constructor invocations for constructors in immediate superclasses.

[3] operationDefinitionConstructorDestructor
An operation definition cannot be both a constructor and a destructor.

[4] operationDefinitionDestructor
If an operation definition is a destructor, any redefined operation for it must also be a destructor.

[5] operationDefinitionEffectiveBodyAssignmentsBefore

The assignments before the effective body of an operation definition include an assignment for each "in"
or "inout" formal parameter of the operation definition, with the formal parameter as the assigned
source.

[6] operationDefinitionEffectiveBodyDerivation

If an operation definition is a stub, then its effective body is the body of the corresponding subunit.
Otherwise, the effective body is the same as the body of the operation definition.

Action Language for Foundational UML (ALF), v1.1 339

[7] operationDefinitionIsConstructorDerivation
An operation definition is a constructor if it has a (@Create annotation.

[8] operationDefinitionIsDestructorDerivation
An operation definition is a destructor if it has a @Destroy annotation.

[9] operationDefinitionlsFeatureDerivation
An operation definition is a feature.

[10] operationDefinitionNamespace
The namespace for an operation definition must be a class definition.

[11] operationDefinitionRedefinedOperationDerivation

If an operation definition has a redefinition list, its redefined operations are the referent operations of the
names in the redefinition list for the operation definition. Otherwise, the redefined operations are any
operations that would otherwise be indistinguishable from the operation being defined in this operation
definition.

[12] operationDefinitionRedefinedOperations

The redefined operations of an operation definition must have formal parameters that match each of the
formal parameters of this operation definition, in order. Two formal parameters match if they have the
same direction, name, multiplicity bounds, ordering, uniqueness and type reference.

[13] operationDefinitionRedefinition

Each name in the redefinition list of an operation definition must have a single referent that is an
operation. This operation must be a non-private operation that is a member of a specialization referent of
the class definition of the operation definition.

[14] operationDefinitionReturn

If an operation definition has a return parameter with a multiplicity lower bound greater than 0, then the
effective body of the operation definition must have a return value.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Operation.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either an OperationDefinition or an imported member whose referent
is an OperationDefinition or an Operation, and the formal parameters of this operation definition match,
in order, the parameters of the other operation definition or operation. In this context, matching means
the same name and type (per UML Superstructure, 7.3.5). A constructor operation without an explicit
return parameter is considered to implicitly have a return parameter, following any other formal
parameters, of the same type as the owner of the constructor operation.

340 Action Language for Foundational UML (ALF), v1.1

[3] matchForStub (in unit : UnitDefinition) : Boolean

The namespace definition associated with the given unit definition must be an activity definition with no
template parameters. In addition, the subunit definition must have formal parameters that match each of
the formal parameters of the stub definition, in order. Two formal parameters match if they have the
same direction, name, multiplicity bounds, ordering, uniqueness and type reference If this operation
definition is a constructor, then it is considered to have an implicit return parameter, following any other
formal parameters, with the same type as the class of the operation definition and a multiplicity of 1..1.

15.2.17 PackageDefinition
The definition of a package, all of whose members must be packageable elements.

Generalizations
» NamespaceDefinition

Synthesized Properties
None

Derived Properties
« appliedProfile : Profile [*]

The profiles applied (directly) to this package.

Constraints
[1] packageDefinitionAppliedProfileDerivation

The applied profiles of a package definition are the profiles listed in any @apply annotations on the
package.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed on any namespace definition, a package definition allows @apply
annotations plus any stereotype whose metaclass is consistent with Package.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a PackageDefinition or an imported member whose referent is
a PackageDefinition or a Package.
[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true of the namespace definition associated with the given unit definition is a package
definition.

15.2.18 PackagelmportReference
An import reference to a package all of whose public members are to be imported.

Generalizations
o ImportReference

Synthesized Properties
None

Action Language for Foundational UML (ALF), v1.1 341

Derived Properties
None

Constraints
[1] packagelmportReferenceReferent

The referent of a package import must be a package.

Helper Operations
None

15.2.19 PropertyDefinition
A typed element definition for a property (attribute or association end).

Generalizations
* TypedElementDefinition

Synthesized Properties
 initializer : Expression [0..1]

The expression to be evaluated to initialize the property.

« isComposite : Boolean = false
Whether the property being defined has composite aggregation.

Derived Properties
« isBitStringConversion : Boolean

Whether BitString conversion is required for the initialization of this property.

« isCollectionConversion : Boolean
Whether collection conversion is required for the initialization of this property.

Constraints
[1] propertyDefinitionInitializer

If a property definition has an initializer, then the initializer expression must be assignable to the
property definition. There are no assignments before an initializer expression.

[2] propertyDefinitionInitializer Type

If the initializer of a property definition is an instance creation expression with no constructor, and the
type of the property definition is a class or (structured) data type, then the referent of the expression is
the type of the property definition. If the initializer of a property definition is a sequence construction
expression with no type name, but with non-empty elements, then the type of the expression is the type
of the property definition and the expression has multiplicity if and only if the multiplicity upper bound
of the property definition is greater than 1.

342 Action Language for Foundational UML (ALF), v1.1

[3] propertyDefinitionIsBitStringConversionDerivation

A property definition requires BitString conversion if its type is BitString and the type of its initializer is
Integer or a collection class whose sequence type is Integer.

[4] propertyDefinitionIsCollectionConversionDerivation

A property definition requires collection conversion if its initializer has a collection class as its type and
the property definition does not.

[5] propertyDefinitionIsFeatureDerivation
A property definition is a feature.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Property.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a PropertyDefinition or an imported member whose referent is
a PropertyDefinition or a Property.

15.2.20 ReceptionDefinition
The declaration of the ability of an active class to receive a signal.

Generalizations
« Member

Synthesized Properties
« signalName : QualifiedName

The name of the signal to be received.

Derived Properties
« signal : ElementReference

Constraints
[1] receptionDefinitionIsFeatureDerivation

A reception definition is a feature.

[2] receptionDefinitionSignalDerivation
The signal for a reception definition is the signal referent of the signal name for the reception definition.

[3] receptionDefinitionSignalName

The signal name for a reception definition must have a single referent that is a signal. This referent must
not be a template.

Action Language for Foundational UML (ALF), v1.1 343

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Reception.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a ReceptionDefinition, a SignalReceptionDefinition or an
imported member whose referent is a ReceptionDefinition, a SignalReceptionDefinition, or a Reception.

15.2.21 SignalDefinition
The definition of a signal, whose members must all be properties.

Generalizations
o (ClassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] signalDefinitionSpecializationReferent

The specialization referents of a signal definition must all be signals.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, a signal definition allows an annotation
for any stereotype whose metaclass is consistent with Signal.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a SignalDefinition or an imported member whose referent is a
SignalDefinition or a Signal (where signal reception definitions are considered to be kinds of signal
definitions).

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this signal definition considered as a classifier
definition and the subunit is for a signal definition.

15.2.22 SignalReceptionDefinition
The definition of both a signal and a reception of that signal as a feature of the containing active class.

Generalizations
« SignalDefinition

Synthesized Properties
None

344 Action Language for Foundational UML (ALF), v1.1

Derived Properties
None

Constraints
[1] signalReceptionDefinitionIsFeatureDerivation

A signal reception definition is a feature.

Helper Operations
None

15.2.23 StereotypeAnnotation

An annotation of a member definition indicating the application of a stereotype (or one of a small
number of special-case annotations).

Generalizations
» SyntaxElement

Synthesized Properties
« names : QualifiedNameList [0..1]

A set of references to model elements required for the stereotype being applied.

» stereotypeName : QualifiedName
The name of the stereotype being applied.

» taggedValues : TaggedValueList [0..1]
A set of tagged values for the applied stereotype.

Derived Properties
» stereotype : Stereotype [0..1]
The stereotype denoted by the stereotype name.

Constraints
[1] stereotypeAnnotationApply

If the stereotype name of a stereotype annotation is "apply", then it must have a name list and all of the
names in the list must resolve to profiles.

[2] stereotypeAnnotationExternal

If the stereotype name of a stereotype annotation is "external", then it may optionally have a single
tagged value with the name "file" and no operator.

[3] stereotypeAnnotationNames

If a stereotype annotation has a stereotype and a list of names, then all the names in the list must resolve
to visible model elements and the stereotype must have a single attribute with a (metaclass) type and
multiplicity that are consistent with the types and number of the elements denoted by the given names.

Action Language for Foundational UML (ALF), v1.1 345

[4] stereotypeAnnotationPrimitive

If the stereotype name of a stereotype annotation is "primitive", then it may not have tagged values or
names.

[5] stereotypeAnnotationStereotypeDerivation

Unless the stereotype name is "apply", "primitive" or "external" then the stereotype for a stereotype
annotation is the stereotype denoted by the stereotype name.

[6] stereotypeAnnotationStereotypeName

nmn

The stereotype name of a stereotype annotation must either be one of "apply", "primitive" or "external",
or it must denote a single stereotype from a profile applied to an enclosing package. The stereotype
name does not need to be qualified if there is only one applied profile with a stereotype of that name or
if the there is a standard UML profile with the name.

[7] stereotypeAnnotationTagged Values

If a stereotype annotation has a stereotype and tagged values, then the each tagged value must have the
name of an attribute of the stereotype and a value that is legally interpretable for the type of that
attribute.

Helper Operations
None

15.2.24 TaggedValue
An assignment of a value to an attribute of an applied stereotype.

Generalizations
o SyntaxElement

Synthesized Properties
e name : String

The name of the stereotype attribute to be assigned a value.

« operator : String [0..1]
For a numeric value, an optional unary plus or minus operator.

« value : String
The string image of a literal value to be assigned to the stereotype attribute.

Derived Properties
None

Constraints
None

Helper Operations
None

346 Action Language for Foundational UML (ALF), v1.1

15.2.25 TaggedValueList
A set of tagged values for a stereotype application.

Generalizations

SyntaxElement

Synthesized Properties

taggedValue : TaggedValue [*]
The tagged values in the set.

Derived Properties

None

Constraints

None

Helper Operations

None

15.2.26 TypedElementDefinition

The common properties of the definitions of typed elements.

Generalizations

Member

Synthesized Properties

isNonunique : Boolean = false

Whether the element being defined is non-unique.

isOrdered : Boolean = false
Whether the element being defined is ordered.

lowerBound : String [0..1]

The string image of the literal given to specify the lower bound of the multiplicity of the element

being defined.

typeName : QualifiedName [0..1]
The name of the type of the element being defined.

upperBound : String = “1”

The string image of the literal given to specify the upper bound of the multiplicity of the element

being defined.

Derived Properties

lower : Integer

The multiplicity lower bound of the element being defined.

Action Language for Foundational UML (ALF), v1.1

347

« type : ElementReference [0..1]

« upper : UnlimitedNatural
The multiplicity upper bound of the element being defined.

Constraints
[1] typedElementDefinitionLowerDerivation

If the lower bound string image of a typed element definition is not empty, then the integer lower bound
is the integer value of the lower bound string. Otherwise the lower bound is equal to the upper bound,
unless the upper bound is unbounded, in which case the lower bound is 0.

[2] typedElementDefinitionTypeDerivation
The type of a typed element definition is the single classifier referent of the type name.

[3] typedElementDefinitionTypeName

The type name of a typed element definition must have a single classifier referent. This referent may not
be a template.

[4] typedElementDefinitionUpperDerivation

The unlimited natural upper bound value is the unlimited natural value of the uper bound string (with
"*" representing the unbounded value).

Helper Operations
None

15.2.27 UnitDefinition
The definition of a namespace as an Alf unit.

Generalizations
* DocumentedElement

Synthesized Properties
o definition : NamespaceDefinition

The definition of the unit as a namespace.

« import : ImportReference [*]
The set of references to imported elements or packages.
» namespaceName : QualifiedName [0..1]

A declaration of the name of the namespace that contains this unit as a subunit.

Derived Properties
+ appliedProfile : Profile [*]

The profiles applied to this unit.

348 Action Language for Foundational UML (ALF), v1.1

« isModelLibrary : Boolean
Whether this unit definition is for a model library or not.

« namespace : ElementReference [0..1]

A reference to the namespace denoted by the declared namespace name for the unit, if any.

Constraints
[1] unitDefinitionAppliedProfileDerivation

The profiles applied to a unit definition include any profiles applied to the containing namespace of the
unit definition. If the unit definition is for a package, then the applied profiles for the unit definition also
include the applied profiles for its associated package definition.

[2] unitDefinitionImplicitimports

Unless the unit definition is a model library, it has private package import references for all the sub-
packages of the Alf::Library package.

[3] unitDefinitionIsModelLibraryDerivation

A unit definition is for a model library if its associated namespace definition has a stereotype annotation
for the UML standard stereotype ModelLibrary.

[4] unitDefinitionNamespace

The declared namespace name for a unit definition, if any, must resolve to a UML namespace of an Alf
unit definition. If it is an Alf unit definition, then it must have a stub for this unit definition.

[5] unitDefinitionNamespaceDerivation

If a unit definition has a declared namespace name, then the containing namespace for the unit is the
referent for that name.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 349

350 Action Language for Foundational UML (ALF), v1.1

16 Common Mapping
16.1 General

The mapping specification for each syntactic area defines how a specific Alf abstract syntax tree
substructure is mapped into a corresponding part of the f{UML abstract syntax representation, in terms of
the further subtrees of that structure. This may be considered as a metamodel to metamodel
transformation.

1. The transformation is from the Alf abstract syntax metamodel to the f{UML abstract metamodel.

2. The transformation maps the root objects from the Alf abstract syntax representation to UML
elements. A well-formed Alf abstract syntax tree is always rooted in either an expression (see 12.2),
a statement sequence (see 13.2) or a unit (see 14.2).

The remainder of this clause defines the mapping of the common elements contained in the
Alf::Syntax::Common package (see Clause 12). The following three clauses give mappings for
elements in the Expressions, Statements and Units packages.

16.2 Syntax Elements

1. The root mapping takes an Alf syntax element to a UML element. By default, this mapping is empty,
but the mapping is overridden as appropriate for subclasses of SyntaxElement. In particular, such a
mapping definition is provided for Expression, Block, UnitDefinition and any kind of syntax
element that may be the target of an internal element reference.

16.3 Documented Elements

1. If an element includes documentation, then each documentation string maps to a comment element
attached to mapping of the documented element, with the comment body given by the
documentation text.

16.4 Element References

During mapping, an element reference is eventually mapped to a direct link to the referenced model
element, either as directly identified by an external element reference or as the model element mapped
from the syntax element identified by an internal element reference.

1. An element reference maps to a UML model element.
2. An external element reference maps to the identified model element.

3. Aninternal element reference maps to model element mapped from its identified syntax element.

16.5 Assigned Sources

An assigned source must ultimately map to an activity node that provides the source for an object flow
used to obtain the assigned value, as determined by the mapping of the source syntax element.

1. The mapping of the local name to an activity node depends on the assigned source syntax element
for that local name.

Action Language for Foundational UML (ALF), v1.1 351

2. An assigned source object is mapped to the appropriate activity node as determined by querying the
source syntax element.

352 Action Language for Foundational UML (ALF), v1.1

17 Expressions Mapping

17.1 General

This clause defines the mapping of Alf expressions to UML. The abstract syntax for Alf expressions is
described in Clause 13.

1. An Alf expression that is not contained in any other Alf text is mapped to UML as an activity with
one parameter: a return parameter that gives the result of the expression.

2. Any Alf expression maps to some or all of the nodes and edges in an activity (sometimes called a
subgraph of the activity).

3. The mapping of each kind of expression identifies the result source element in the mapping. This is
the activity node to which an outgoing object flow may be attached in order to obtain the result of
the expression. The result values of the expression correspond to the values of the sequence of object
tokens produced on the flow. In some cases (such as when an expression is used in an expression
statement; see 9.6) the result source element may remain unconnected. In this case the result values
of the expression are lost.

17.2 Qualified Names

The formal mapping of a qualified name is given in various contexts of its use in subsequent subclauses.
In general:

« When defining a named element, an unqualified name maps to the name of the named element, with
the fully qualified name mapping to the qualified name of the named element.

« When referencing a named element, its (qualified) name maps to a reference to that named element.

17.3 Literal Expressions

1. A literal expression maps to a value specification action with the literal mapping to an appropriate
literal primitive element. The result pin of the value specification action is the result source element
for the expression.

17.4 Name Expressions
1. A name expression maps to an activity graph depending on the kind of name referenced.

2. A name expression for a local name or parameter name is mapped to an object flow. The source of
the object flow is given by the assigned source for the name before the name expression. The target
of the object flow is determined by the context of the use of the name expression.

The assigned source of the name effectively also acts as the result source element for the expression.
Note that, if this source is never connected (for example, if the name expression is used by itself as
an expression statement), there can be no object flow and the name expression will actually not map
to anything (since it will have no effect).

If there is a structured activity node that owns (directly or indirectly) both the source and target of
the object flow, then the most deeply nested such node owns the object flow. Otherwise it is owned
by the enclosing activity.

Action Language for Foundational UML (ALF), v1.1 353

3. A name expression for an enumeration literal name is mapped to a value specification action whose
value is given by an instance literal specifying the given enumeration literal. The result pin of the
value specification action is the result source element for the expression.

4. A name expression for a name that disambiguates to a feature reference is mapped as a property
access expression consisting of that feature reference (see 8.3.6).

17.5 this Expressions

1. A this expression maps to a read self action. The result pin of the read self action is the result
source element for the expression.

17.6 Property Access Expressions

NOTE. The Alf property access expression notation may be used to represent the access to a property
(structural feature or opposite association end) of any kind of classifier other than a primitive type.
However, the only kinds of non-primitive classifiers in the fUML subset with properties are classes, data
types and signals. Therefore, a property access expression can only be mapped to fUML if the type of its
collection expression is a data type, class or signal, and the semantics of the expression are formally
defined only in this case.

1. A property access expression is mapped as either a single instance property access or a sequence
property access.

2. Asingle instance property access expression for an attribute is mapped to a read structural feature
action for the named structural feature. The result source element of the mapping of the target
expression is connected by an object flow to the object input pin of the read structural feature action.
The result pin of the action is the result source element for the property access expression.

3. A sequence property access expression is mapped as an expansion region similarly to a collect
expression (see 17.19).

17.7 Invocation Expressions

1. An invocation expression is mapped as a behavior invocation or a feature invocation. Subclause 17.8
describes the mapping for tuples in general. Subclause 17.9 describes the mapping for behavior
invocations (which also include a functional notation for reading associations). Subclause 17.10
describes the mapping for all other kinds of invocations. Note that, after static semantic analysis, a
super invocation is mapped as a behavior invocation (see 17.11).

2. If the invocation expression is the assigned source for a local name, then it must map to a call action
with result output pins. The actual source for the value of the local name is the fork node connected
to the result output pin with that name.

3. If the invocation maps to a call behavior action or a call operation action with a non-empty list of
argument pins and a result source element that is a result pin corresponding to a return parameter,
then the action is wrapped in a structured activity node with a single output pin and an object flow
from the formerly mapped result source element to the output pin. The structured activity node then
becomes the effective action for the mapping and its output pin becomes the new result source
element.

354 Action Language for Foundational UML (ALF), v1.1

NOTE. Wrapping a call action in a structured activity node as above ensures that the invocation
effectively produces a null token in the case that the call action itself does not actually fire because
its input pin multiplicities are not satisfied.

17.8 Tuples

1. An empty tuple (i.e., a positional tuple with no argument expressions) is mapped to nothing. A non-
empty tuple is mapped to a structured activity node containing the mapping of each of its argument
expressions. There is a control flow from the structured activity node to the invocation action taking
input from the tuple mapping.

2. For an argument for an in parameter, the argument expression is mapped as usual for an expression.
The result source element of such an expression provides the source for setting the value of the
associated parameter, unless conversion is required. If collection conversion is required, then the
result source element of the argument expression is connect by an object flow to an invocation of the
Collection::toSequence operation (see 11.7.2), and the result of that invocation provides the
source for setting the value of the associated parameter, unless bit string conversion is also require. If
bit string or real conversion is required, then either the result source element of the argument
expression or the result of the tosequence invocation, if collection conversion was required, is
connected by an object flow to an invocation of the BitStringFunctions: :toBitString function
(see 11.4.6) or IntegerFunctions: :ToReal (see 11.4.2), respectively, and the result of that
invocation provides the source for setting the value of the associated parameter. If the tuple is in a
behavior invocation expression or sequence operation expression to which indexing from 0 applies,
and the parameter is an affected index parameter (see 8.3.9), then the mapping of the argument
expression is adjusted as for the index expression of a sequence access expression (see 17.16).

3. For an argument for an out parameter, the argument expression is mapped as a left hand side of an
assignment (see 17.24): an argument that is a local name is mapped as a fork node while an
argument that is a feature reference is mapped as write structural feature value action. The output
from the invocation action for the corresponding parameter provides the assigned value.

4. For an argument for an inout parameter, the argument expression is mapped twice (as given above):
once as for an in parameter, to provide the input value for the parameter, and once as for an out
parameter, to provide the target for the output value.

17.9 Behavior Invocation Expressions

1. A behavior invocation expression whose qualified name disambiguates to a feature reference is
mapped as if it were a feature invocation expression (see 17.10). Otherwise, a behavior invocation
expression is mapped as either a behavior call or an association read.

2. Abehavior invocation expression whose qualified name resolves to a behavior maps to a call
behavior action for the named behavior.

If the behavior invocation expression has a non-empty tuple, then the call behavior action is the
target of a control flow whose source is the structured activity node mapped from the tuple.

Each input pin of the call behavior action corresponds to an in or inout parameter of the called
behavior. If there is an argument expression for that parameter in the tuple, then the input pin is the
target of an object flow whose source is the result source element of the argument expression.

Action Language for Foundational UML (ALF), v1.1 355

Similarly, each output pin of the call behavior action (other than the output pin for a return
parameter) corresponds to an out or inout parameter. If there is an argument expression for that
parameter in the tuple, then the output pin is the source of an object flow whose target is assigned
value input for the argument expression.

NOTE. Call behavior action pins corresponding to unmatched parameters remain unconnected.

If the behavior does not have a return parameter, then the behavior invocation expression has no
result source element. Otherwise, the output pin of the call behavior action corresponding to that
parameter is the result source element for the behavior invocation expression, unless indexing from 0
applies to the behavior invocation expression and the invocation is of a library function whose return
value is affected by this (see 8.3.9), in which case the output pin is connected by an object flow to an
invocation of the IntegerFunctions::'-' function (see 11.4.2) whose second argument is 1, and
the result of that invocation provides the result source element for the behavior invocation
expression.

A behavior invocation expression whose qualified name resolves to an association end maps to a
read link action with end data for the ends of the named association. Except for the end data for the
target end, the value input pins for each end are the target of an object flow from the result source
element of the mapping of the corresponding argument expression. The result output pin of the read
link action is the result source element for the association selection.

17.10 Feature Invocation Expressions

1.

3.

A feature invocation expression is mapped as either a single instance feature invocation or a
sequence feature invocation. For each kind of invocation, the result source element of the mapping
of the feature expression is connected by an object flow to the appropriate target activity node.

A single instance feature invocation is mapped as either a non-destructor operation call, an explicit
destructor call, an implicit destructor call or a signal send.

A sequence feature invocation is mapped as an expansion region similarly to a collect expression.

Operation Call

4.

An operation call (that is not a destructor call) maps to a call operation action for the named
operation. The result source element mapped from the primary expression of the feature invocation
expression is connected by an object flow to the target input pin of the call operation action.

The call operation action has argument and result input and output pins corresponding to the
parameters of the operation. These pins are connected to the appropriate mapping of argument and
result expressions from the tuple (see 17.8). If the operation has a return parameter, then the output
pin of the call operation action corresponding to that parameter is the result source element for the
feature invocation action. Otherwise it has no result source element.

Destructor Call

6.

356

If an operation call is a destructor call, and the feature invocation expression is not itself within the
method of a destructor, then the call operation action is followed by a destroy object action for the
target object with isDestroyOwnedObjects=true and isDestroyLinks=true. If the feature invocation is
within the method of a destructor, the destroy object action is conditioned on a test that the target
object is not the context object.

Action Language for Foundational UML (ALF), v1.1

NOTE. Object destruction is always done with isDestroyOwnedObjects=true and
isDestroyLinks=true, because this is the expected high-level behavior for object destruction.

7. If an operation call is an implicit object destruction expression, then it is mapped to just a destroy
object action, as above, without any operation call.

Signal Send

8. A signal send maps to a send signal action for the named signal. The result source element mapped
from the target expression of the feature invocation expression is connected by an object flow to the
target input pin of the send signal action.

The send signal action has argument input pins corresponding to the attributes of the signal. Each
argument input pin of the send signal action is the target of an object flow whose source is the result
source element of the argument expression (if there is one) mapped from the tuple (see 17.8) for the
corresponding signal attribute.

A signal send has no result source element.

17.11 Super Invocation Expressions

Once the target operation a super invocation expression is determined, the expression is mapped as a
behavior invocation to the method of that operation (see 17.9).

17.12 Instance Creation Expressions

1. An instance creation expression maps as an object creation expression or a data value creation
expression.

Object Creation Expression

2. An object creation expression maps as either a constructed object creation or a constructorless object
creation. If the class of the object being created is an active class, then the mapping also includes the
starting of the behavior of that object.

3. If the object creation expression is not constructorless, then the expression maps to a create object
action for the class of the constructor operation. The result of the create object action is used as the
target instance for an invocation of the constructor, mapped as for a feature invocation expression
(see 17.10). The result source element of the object creation expression is the result output pin of the
call operation action for the constructor operation.

4. If the object creation expression is constructorless, then the expression maps to a create object action
for the identified class. If none of the attributes owned or inherited by the class have default values,
then the result source element of the expression is the result output pin of the create object action.
Otherwise, the result output pin of the create object action is connected by an object flow to a
control-flow sequenced set of structured activity nodes containing write structural feature actions for
setting the default values of any attributes of the newly create object that have them.

NOTE. It is possible to notate in Alf a constructorless instance creation for any class. However,
default values for attributes are value specifications (see UML Superstructure, 7.3.44), and the only
kind of value specifications supported in f{UML are literal specifications and instance values, not
general expressions (see fUML Specification, 7.2.2.1). The mapping given here will support any
kind of value specification as a default value, but the result will not conform to the fUML subset if
the value specifications are outside that subset.

Action Language for Foundational UML (ALF), v1.1 357

5. Ifthe class of the object being created is an active class, then a fork node is added to the mapping
with an object flow from the original result source element, and that fork node becomes the new
result source element. The fork node is connected by object flows to the object input pins of start
object behavior actions for the class of the object being created and for each direct or indirect parent
class that has a classifier behavior, unless that classifier behavior is redefined in another parent class
or in the class of the object being created. In this case, the entire mapping is always placed within a
structured activity node.

NOTE. Classifier behaviors with parameters are not supported by Alf, nor is the asynchronous
starting of an instance of an activity with parameters. However, it is possible to notate the
instantiation of an activity as a class as long as the class has no parameters, in which case the activity
will, in fact, begin asynchronous execution.

Data Value Creation Expression

6. A data value creation expression maps to a value specification action with an instance value for the
named data type. If the tuple for the expression is non-empty, then the value specification action is
the target of a control flow whose source is the structured activity node mapped from the tuple (see
17.8). Further, the result of the value specification action is fed through a sequence of write
structural feature actions with values coming from the result source elements for the argument
expressions.

If the data value creation expression has an empty tuple, then the result source element is the result
pin of the value specification action. Otherwise, the result source element is the result of the
sequence of write structural feature actions.

17.13 Link Operation Expressions

1. A link operation expression for the operation createLink maps to a create link action for the named
association with isReplaceAll=false for all ends. The value input pin of the end creation data for
each end of the association is the target of an object flow from the result source element of the
mapping of the corresponding argument expression. If an association end is ordered, then the
insertAt input pin for that end is the target of an object flow from the result source element of the
mapping of the corresponding index expression (which defaults to * if not given explicitly). If
indexing from 0 applies to the link operation expression (see 8.3.13), then the mapping of the index
expression is adjusted as for the index expression of a sequence access expression (see 17.16, except
that the value is first tested whether it is equal to * and then converted to an integer and incremented
only if it is not.

2. A link operation expression for the operation destroyLink maps to a destroy link action for the
named association. The value input pin of the end creation data for each end of the association is the
target of an object flow from the result source element of the mapping of the corresponding
argument expression. If an association end is unordered, the isDestroyDuplicates=true. If an
association end is ordered, then isDestroyDuplicates=false and the insertAt input pin for that end is
the target of an object flow from the result source element of the mapping of the corresponding index
expression (which defaults to * if not given explicitly). If indexing from 0 applies to the link
operation expression (see 8.3.13), then the mapping of the index expression is adjusted as for the
index expression of a sequence access expression (see 17.16, except that the value is first tested
whether it is equal to * and then converted to an integer and incremented only if it is not.

358 Action Language for Foundational UML (ALF), v1.1

3. Alink operation expression for the link operation clearAssoc maps to a clear association action for
the named association. The object input pin of clear association action is the target of an object flow
from the result source element of the mapping of the argument expression.

17.14 Class Extent Expressions

1. A class extent expression maps to a read extent action for the named class. The result output pin of
the read extent action is the result source element for the class extent expression.

17.15 Sequence Construction Expression
Collection Object Creation Expression

1. A sequence construction expression that does not have multiplicity is mapped as an instance creation
expression (see 17.12) with a constructor for the collection class given by the type name (see 11.7).
The argument expression for the constructor is mapped as below for a sequence construction
expression with multiplicity for the sequence type of the collection class and the sequence elements
from the original expression.

Sequence Element List

2. A sequence construction expression that has multiplicity and a sequence list expression with a non-
empty expression list is mapped to a structured activity node with a single output pin whose type and
multiplicity, are as specified for the expression. The output pin is the result source element for the
expression.

3. Each element expression is mapped inside the structured activity node, with an object flow from its
result source element to the structured activity node output pin. If bit string or real conversion is
required on an element, then the result source element of the element expression is connected by an
object flow to an invocation of the BitStringFunction::ToBitString function (see 11.4.6) or
IntegerFunctions: :ToReal function (see 11.4.2), respectively, and the result of that invocation are
used as the result source for the element expression. If there is more than one element expression,
then the mapping for each element expression is wrapped in its own structured activity node and
they are connected sequentially by control flows.

Sequence Range

4. A sequence construction expression that has multiplicity and a sequence range expression is mapped
to a structured activity node with the range upper and lower expressions mapped inside it. The result
source elements of the upper and lower expressions are connected by object flows to input pins of a
loop node in the structured activity node. The loop node also has a third input pin that has a
multiplicity lower bound of 0. The output pin corresponding to this third input pin is the result
source element for the sequence range expression

5. The loop node is iterative, continually incrementing the value in its first loop variable until it reaches
the value of its second loop variable. On each iteration, it appends the value of its first loop variable
to the list in its third loop variable, which, at the end of the iteration, thus contains the desired
sequence.

Empty Collections

6. A sequence construction expression that has multiplicity and an empty expression list maps to a
value specification action for a literal null. The result output pin of the value specification has the

Action Language for Foundational UML (ALF), v1.1 359

type given for the sequence list expression and the multiplicity [1..17]. It is the result source
element for the expression.

7. The keyword nu11 is mapped as any[]{}.

17.16 Sequence Access Expressions

1.

A sequence access expression is mapped to a call to the primitive behavior
Alf::Library::PrimitiveBehaviors::SequenceFunctions: :At (see 11.4.7). The result source
element of the primary expression of the sequence access expression is connected by an object flow
to the first argument input pin of the call behavior action. The result source element of the index
expression is connected by an object flow to the second argument input pin. The result output pin of
the call behavior action is the result source element for the sequence access expression.

If indexing from 0 applies to the sequence access expression (see 8.3.16), then the mapping of its
index expression is adjusted as follows. The result source element of the index expression is
connected by an object flow to the first argument pin of a call to the primitive behavior
Alf::Library::PrimitiveBehaviors::IntegerFunctions::'+' (see 11.4.2), and the result of a
value specification action for the value 1 is connected to the second argument pin. The result output
pin of the call behavior action is then used as the result source element for the index.

17.17 Sequence Operation Expressions

1.

A sequence operation expression is mapped as a behavior invocation expression (see 17.9) for the
referent behavior, with the target primary expression as the first behavior argument. The result
source element for the sequence operation expression is that of the behavior invocation expression.

17.18 Sequence Reduction Expression

1.

A sequence reduction expression is mapped to a reduce action with the named behavior as the
reducer. The collection input pin is the target of an object flow from the result source element of the
mapping of the input expression. The result output pin of the reduce action is the result source
element for the reduction expression.

17.19 Sequence Expansion Expressions

1.

360

A sequence expansion expression maps to an expansion region with a single input expansion node.
Except for the iterate operation, the expansion region has mode=parallel. For the iterate
operation, the expansion region has mode=iterative.

The input expansion node has the same type as the primary expression. It is the target of an object
flow from the result source element of the mapping of the primary expression.

The argument expression is mapped inside the expansion region. The input expansion node is
connected by an object flow to a fork node within the expansion region that acts as the assigned
source for references to the expansion variable within the mapping of the argument expression.

The specific mapping for each kind of sequence expansion operation is further discussed in
subsequent subclauses.

Action Language for Foundational UML (ALF), v1.1

select and reject Expressions

5.

A select or reject expression is mapped as a sequence expansion expression (see 17.19). The
expansion region from this mapping has an output expansion node of the same type as the primary
expression of the sequence expansion expression. This node is the result source element for the
overall sequence expansion expression.

The result source element of the mapping of the argument expression is the source of the decision
input flow for a decision node inside the expansion region. The decision node also has an incoming
object flow from the expansion variable fork node and an outgoing object flow to the output
expansion node. For a select operation, the guard on the outgoing object flow is true. For a reject
operation, it is false.

collect and iterate Expressions

7.

A collect or iterate expression is mapped as a sequence expansion expression (see 17.19). The
expansion region has an output expansion node of the same type as the argument expression. The
result source element of the mapping of the argument expression is connected by an object flow
inside the expansion region to the output expansion node.

For an iterate operation, the expansion region has mode=iterative. Otherwise it has the normal
mode=parallel.

forAll, exists and one Expressions

9.

10.

11.

A forall expression is mapped the same as a reject expression, except that the output expansion
node of the expansion region is connected by an object flow to a call behavior action for the library
isEmpty function. The result output pin of the call behavior action is the result source element for
the forall expression.

An exists expression is mapped the same as a select expression, with the addition that, inside the
expansion region, the decision node is not directly connected to the output expansion node but,
rather, is connected to a fork node that is connected both to the output expansion node and to an
activity final node. Further, the output expansion node of the expansion region is connected by an
object flow to a call behavior action for the library notEmpty function. The result output pin of the
call behavior action is the result source element for the exists expression.

NOTE. The inclusion of an activity final node within the expansion region is intended to terminate
the region as soon as an element is found for which the Boolean expression is true. (Despite its
name, an activity final node within a structured node such as an expansion region only terminates
that structured node.)

A one expression is mapped the same as a select expression, except that the output expansion node
of the expansion region is connected by an object flow to a call behavior action for the library size
function. The result output pin of the call behavior action is then connected by an object flow to the
input pin of a test identity action whose other input pin is connected to a value specification action
for the value 1. The result output pin of the test identity action is the result source element of the one
expression.

isUnique Expressions

12.

An isUnique expression is mapped as a collect expression. The expansion output node of the
expansion region mapped from the collect expression is connected by an object flow to a fork not
which is then connect by object flows to an input expansion node and an input pin of another

Action Language for Foundational UML (ALF), v1.1 361

expansion region. The second expansion region is mapped similarly to a fora11 expression, with the
condition that the count of each value its sequence is 1. The result source element for the isunique
expression is the result output pin of the i sEmpty call on the output of the second expansion region.

17.20 Increment and Decrement Expressions

1.

An increment or decrement expression is mapped to a call behavior action for the + function (for
increment) or the - function (for decrement) from the library package
Alf::Library::PrimitiveBehaviors::IntegerFunctions (see 11.4.2).. The second argument
input pin of the call behavior action is connected by an object flow to the result output pin of a value
specification action for the value 1. The result output pin of the call behavior action is connected by
an object flow to a fork node, which acts as the source element when the expression is an assigned
source.

The operand is mapped first considered as an effective argument expression. If the increment or
decrement expression is a prefix expression, then the result source element of this mapping is
connected by an object flow to the first argument input pin of the call behavior action and the
assigned source element is also the result element for the expression. If it is a postfix expression,
then the result source element of the operand expression mapping is first connected to a fork node
and then that is connected to the argument input pin, and the fork node is the result source element
for the expression.

The operand is also mapped as a left-hand side to which is assigned the result of the call behavior
action (see 17.24).

If the operand has an index, then the index expression is only mapped once. The result source
element of the index expression is connected by an object flow to a fork node, which is used as the
source for the index value in the mapping of the operand expression both as an argument and as the
left hand side of the assignment.

17.21 Unary Expressions

Boolean Unary Expressions

1.

A Boolean unary expression with a Boolean negation operator is mapped as the equivalent behavior
invocation (see 17.9)for the function A1f::Library::
PrimitiveBehaviors::BooleanFunctions::'!"' (see 11.4.1) on the operand expression.

BitString Unary Expressions

2.

A BitString unary expression with a BitString negation operator is mapped as the equivalent
behavior invocation (see 17.9) for the function A1f: :Library::
PrimitiveBehaviors::BitStringFunctions::'~"' (see 11.4.6) on the operand expression. Note
that this includes the possibility of bit string conversion on the operand expression.

Numeric Unary Expressions

3.

362

A numeric unary expression with a plus operator is mapped as its operand expression. A numeric
unary expression with a minus operator is mapped as the equivalent behavior invocation (see 17.9)
for the function A1f::Library::PrimitiveBehaviors::IntegerFunctions: :Neg (see 11.4.2)
Alf::Library::PrimitiveBehaviors::RealFunctions: