An OMGP® Action Language for Foundational UML ™ Publication

OBJECT MANAGEMENT GROUP

Action Language for Foundational UML™ (Alf™)
Concrete Syntax for a UML Action Language

Version 1.1 (with change bars)

OMG Document Number: formal/2017-07-05
Date: July 2017
Normative reference: http://Iwww.omgq.org/spec/ALF/1.1

Machine readable file(s):

Normative: http://www.omg.org/spec/ALF/20170201/Alf-Syntax.xmi
http://www.omg.org/spec/ALF/20170201/Alf-Library.xmi

http://www.omg.org/spec/ALF/20120827/ActionLanguage-Profile.xmi

http://www.omg.org/spec/ALF/20120827/ActionLanguage-Profile.xmi
http://www.omg.org/spec/ALF/20170201/Alf-Library.xmi
http://www.omg.org/spec/ALF/20170201/Alf-Syntax.xmi
http://www.omg.org/spec/ALF/1.1

Copyright © 2010-2013 88solutions Corporation

Copyright © 2013 Commissariat a I’Energie Atomique et aux Energies Alternatives (CEA)
Copyright © 2010-2017 Data Access Technologies, Inc. (Model Driven Solutions)
Copyright © 2010-2013 International Business Machines

Copyright © 2010-2013 Mentor Graphics Corporation

Copyright © 2010-2013 No Magic, Inc.

Copyright © 2010-2013 Visumpoint

Copyright © 2010-2017 Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of
this specification in any company's products. The information contained in this document is subject to change
without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be deemed
to have infringed the copyright in the included material of any such copyright holder by reason of having used the
specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a
fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use
this specification to create and distribute software and special purpose specifications that are based upon this
specification, and to use, copy, and distribute this specification as provided under the Copyright Act; provided that:
(1) both the copyright notice identified above and this permission notice appear on any copies of this specification;
(2) the use of the specifications is for informational purposes and will not be copied or posted on any network
computer or broadcast in any media and will not be otherwise resold or transferred for commercial purposes; and (3)
no modifications are made to this specification. This limited permission automatically terminates without notice if
you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the
specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which
a license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or
scope of those patents that are brought to its attention. OMG specifications are prospective and advisory only.
Prospective users are responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights Reserved.
No part of this work covered by copyright herein may be reproduced or used in any form or by any means--graphic,
electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems--
without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP,
IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR
PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE
COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING
LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1)
(i1) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)
(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified
in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the
Federal Acquisition Regulations and its successors, as applicable. The specification copyright owners are as
indicated above and may be contacted through the Object Management Group, 109 Highland Avenue, Needham,
MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®,
OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube
Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these
materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if
and only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In
the event that testing suites are implemented or approved by Object Management Group, Inc., software developed
using this specification may claim compliance or conformance with the specification only if the software
satisfactorily completes the testing suites.

OMG?’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue.

Table of Contents

1 Scope 1
2 Conformance 1
2.1 O VI VIEW . eiiiiitieiiiiieeeeee ettt oottt ettt ettt et e ettt e ettt et ettt et eee ettt eee ittt eeeeeiieeeeeeiinees 1
2.2 Syntactic CONTOIANCE ceeeueiiiiiiiiiiiiiiiiiiieii oottt eeee e e e eeeeeeeeeeaeeeenn 1
2.3 Semantic CONTOIMANCE . .iiiiiuueiiiiiiiiiiiiiiieiiiii oottt e et eeeeeeee e e e e et eeeeeiteeeeeeeieeeeeeiieees 2
2.4 Additional Conformance POINTS.eiieuiiiiiiiiiiiiiiiiii it 2

3 Normative References 3
4 Terms and Definitions 3
5 Symbols 3
6 Overview 5
0.1 GENEIAL oiiiiiiiiiiiiiiiiiii oottt ettt ettt e e et et e et e e e et eeeeieeen 5
6.2 Integration With UMI MOAEIS...cccuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeiiiieeeeeieee ettt eeeeeeeeeeeeeeeeeeeinees 5
0.3 TOMIPIALES. cuueiiiiiiiieiiiiiiiiiii ettt ettt ettt et e e eee i 5
6.4 1.eXACAl STUCHUIE . ..eeiiuiiiiiiiiiiiii ittt ettt ettt ettt e eeeeenns 7
6.5 CONCICLE SYIMEAK . ..vevieiiiiittiiiiiiii ettt eee ettt ettt ettt ettt ettt ettt et ettt et eeit ettt eee et eeeie e eeeieeee 8
6.6 ADSTTACE SYINMEAK . .0iiiiittiiiiiiiiitiii ettt ettt ettt ettt ettt it e e et eeeeeeeeeeeanns 10
6.7 Mapping to Foundational UMIL.......cooiieiiiiiiiiiiiiiiiiiiiiieeeiieeiieeeiie ettt eeeeeeeeee e e eeeeeeeeeeeieeeeenes 10
6.8 Organization of the SPECIfICAtION . .cuuuiiiiiiiiiiiiiiiiiiiiiiieiii ettt 11
6.9 ACKNOWIEAGIMIEIES Leeuueiiiiiiiiiiiiiii ettt ettt ettt e et eeeeeeeeeeee 11

7 Lexical Structure 13
Tl GENEIAL ittt ettt e e ettt e ettt e e e et e et e et eeeeeieeeeeeinees 13
7.2 1iN€ TeIMUINALOTS. o uueiiiiiiiiietiiiieie ittt ettt ettt ettt ettt e et e ettt e et ettt et e e eenees 13
7.3 Input Elements and TOKEMS. .. .ccuueiiiuiiiiiiiiiiiiiiiiii ittt 13
T8 WTEE SPACE ctiiiteiiiieiiiieiieeee ettt ettt et ettt ettt et ettt ettt e e ettt e ettt et e e et e e ettt e it eeeiteeeenes 14
7.5 COMUMICIIES e utteiiieeeittee ettt ettt ettt ettt ettt ettt ettt et e ettt et et et e ee e eeeeiateeeeeiianees 14
5.1 GENETAL euuiiiiiiiiiiiiiiieieiiie oottt ettt e ettt ettt e e eeeeeieeeeeens 14

7.5.2 1.eXiCal COMUMEIIES. teiiiiueeiiiiiiiiiiiiiie ettt e ettt ettt ettt et ettt e et eeeeeeeeeeeeeeeeeeeieeeeeeeeieeeeeeae 14

7.5.3 Documentation COMIMIENTS. ..euiuuuiiiiiiieiiiiiiiiiiiieii ettt ettt et eeeeeeeeeeeeee et eeeeieeeeeeieeeeeeaes 15

o0 INQINICS oottt e e e ettt ettt te ettt ettt et e et aeeeeeereeeeeeeens 15
7.7 RESEIVEAd WOTAS . ..uviiiiuiiiiiiiiiiiii ittt e 17
7.8 PrimitiVe LAteTAlS. .ouueiiiuuiiiieiiiiiiiiiii ittt 17
T8.1 GENMETAL . euuueiiiiiiiiiiiiiiiiiiiii oottt ettt ettt e ettt et eeeeeiaeeeeens 17

7.8.2 BOOIEAN LAtETAIS. c.uviiiiueiiiieeiiiiiiiiiiii ittt ettt ettt e et e e 17

7.8.3 Natural LIteIalS. . oouiiiieuuiiiiiiiiiiiiiiiiiiiiiiiieieiii oottt e ettt ettt ettt e e e eeeeeeeeeees 18

7.8.4 Unbounded Value LiteralS....cc.uueiiiiieueeiiiiiiiiiiiiiiiiiiiiiiiieiiiieeieeiieeee et eeiieeeeenns 19

7.8.5 SHrING LALEIAIS. .oecuueiiiiiiiiiiiiiiiiiiiiii oottt 19

8.6 REAI LIt@IAlS . cuuviiiiiiieiiiiiiiiiiiiiiiiiiiei oottt et ee et eeeteeeeeiiees 19

7.9 PUNCHUATION. Lo uuiiiiiiiiiiiii i ittt ettt ettt e eenees 20

T 10 OPOIALOTS . ceeieuttiiiiiiiiteie ettt ettt ettt ettt eeieeeee 21

8 Expressions 23
Bl O VI VIOW ettt e ettt e ettt ettt ettt ettt e et e e ettt ettt eee et ee e ettt e ettt e et e e ereeiireeeas 23
8.2 QUALITIEA NAIMNES . euviiiiiiiieiii ittt ettt ettt eee e ettt et e et e et e et e e eeeeeaees 25
8.3 Primary EXPreSSIONS . cuuueeiiiiiiieiiiiiiieeii ettt ettt ettt ettt ettt e et et eeeieeeene 29
8.3] OV OIVICW .ttt ettt e ettt e e e e e e ieeeeeens 29

8.3.2 Literal EXPIeSSIONS. coouuueiiiiiiieiiiiiiiieeii ittt ettt ettt e ettt et ee et e e eeeeeeeieees 30

8.3.3 NaAME EXPIESSIONS. .. uvviiiiuiiiiieiii it ettt ettt ettt e ettt e ettt ettt e een et eee e e et e et e ieeeeineee 31

8.3.4 thiS EXPIESSIONS. toiiuueiiiiueiiiitiiiieei ittt ettt ettt ieeeenns 32

8.3.5 ParentheSized EXPIeSSIONS . ouuiiiieiiiieiiiietiiiietiieeiie e e e e eeeee et ettt et eeeeeeeeeeeeee e ettt eeeteeeeeeeeeeeeeieeeeeieeens 33

8.3.6 Property ACCESS EXPIESSIONS . .uiiieuuiiiieiiiiitiiieeiieieiiee et eeeei et e e e eee e e et eeeieeeeeee e et eeeeeeeee e e ettt eeie e e eeeeeene 33

8.3.7 INVOCAtION EXPIESSIONS . cuuviiiiiiieiiiiiiiieiiiie et ettt ettt et ettt ettt e et e e eeiaeeeean 35

Action Language for Foundational UML (ALF), v1.1 i

8.3 8 TUPDLES ettt ettt 36

8.3.9 Behavior Invocation EXPIeSSIONS . ..uuiieuiiieeiiiieeiiiieiiiieiiieieiieeeiieeeiieeetieeeeeieeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeieeeiieeeeenns 38
8.3.10 Feature INvVOCation EXPIeSSIONS. . cuuiiiieiiiieiiiietiiiieeiiiieiieieiieieieeeeieeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeiteeeeeeeeeieeeens 42
8.3.11 Super Invocation EXPreSSIONS. . uieuueiiiiiiiiiiiiiiiieiiiiiieeiiie ettt eeiaees 44
8.3.12 Instance Creation EXPIeSSIONS. uuuiiiiieeeiiiiiiieiiiiiiiieiiiie e eeeeeee ettt eeeeeeeeeee ettt ee e ee e e 46
8.3.13 Link Operation EXPreSSIONS. .ooueuuuiiiiiiiiiiiiiiiiiiiiiieieiiii oottt 48
8.3.14 Class EXtent EXPIESSIONS. .uuiiiuuiiiiiiieiiiiiiiiieeiiiiiieeeeee oot eeeee e eee e et ee ettt ee et ettt e e e ee e 51
8.3.15 Sequence Construction EXPreSSTIONSueieuuiiiieeiiiiiiiiieiiiieii ittt 51
8.3.16 Sequence AcCCESS EXPIESSIONS. ..euieuuiiiisiiiiti ittt ettt ettt eeeeeenns 54
8.3.17 Sequence Operation EXPIeSSIONS. ..uiieuiiieeiiiitiiiiiiiiiiieiieieeeiiieeieeeeiieeeeeeeeeeeeeee e et eeeeeeeeeeeeieeeeeeeeeeeeeeineens 55
8.3.18 Sequence Reduction EXPIreSSIONS. .uviieuiiiieiiiieeiiiieiiieiiiiiiieeeiie e eeeieeeeeee e e eeeeeeeee e et eeeeeeeeeeeiieeeeenns 58
8.3.19 Sequence EXpansion EXPIeSSIONS . ..uuuiieuuuiiiiiiiiiiiiiiieeiiii e iee ettt eeeeeeie e et et eeeeeeeeeiees 59
8.3.20 select and 1e]ect EXPIreSSIONS . uuuuiiiiiieeiiiiiiiiiiiiii i eeee ettt eiieeeens 61
8.3.21 collect and iterate EXPIESSIONS . .uuiiieueeiiiiiiiiiiiiiiiiiiieie et eeeeee e ettt ettt eeieeeeeeans 62
8.3.22 forAll, exists and 0Ne EXPreSSIONS. ..uuuuiiiiiiieiiiiiiiiiiiiiiieiiei oottt 63
8.3.23 1SUNIQUE EXPIrESSION. 1eeuuviiiriiiiiiiiiiiiiii oottt 64
8.4 Increment and Decrement EXPreSSIONS .. .ccuuiiieuuiiiieiiiiiiiiiiiiiiii e eiee ettt 65
8.5 UNAIY FXDIESSIONS . uviiieeiiiieiiiiieeieietieeetei e et ettt ettt ettt ettt ettt eeee et et ee ettt e ettt e eeeeeeeteeeeneeee ettt eeeteeeeeeeeeeeeeeenteeeenens 66
8.5, 1 OVEIVICW . eteiiieueiii ettt e ettt ettt ettt et e et e e ettt eet et eet et ee et eet et e ettt e ettt e eet e eiteeeeteeeenns 66
8.5.2 Boolean Unary EXPreSSIONS. cuuuuiiiiiieeeiiiiiiiiiiiiiiieiiiiie oot e ettt e ettt et eeiee e e et eeeeeieeeeeeieees 67
8.5.3 BitString UnNary EXPreSSIONS. .uuueiiiieueeiiiiiiieeiiieiiiiiieiie ettt eeeeetee e eeeeeeee et eeeeeeeeeeieeeeeeeieeeeeeieeeeeeienees 67
8.5.4 Numeric UnNary EXPreSSIONS. uuuuiiiieeeiiiiiiiiiiiiiiiiiiiiiie oottt eeeeee e eeeeeeeeeeeieeeeeeeeieeeeeeenees 68
8.5.5 CaSt EXPIESSIONS . uutiiiiiieeiiiiii ittt ettt ettt et eeeiaeeeen 69
8.5.6 1S01ation EXPIreSSIONS . ..uviiireiiiieeiiiieie it ettt ettt eiteeeens 71
8.6 BINAry EXPIeSSIONS. .oeiuuiiiitiiiitiiiie ettt ettt 71
801 OV OIVICW . utteiiiiiieiiiieeee oottt ettt ettt ettt ettt ettt ettt ettt eei e eeeieteeeeea 71
8.60.2 ATithmetic EXPIESSIONS . uvvieueiiiieiiiiiiiieiii ettt ettt et e ettt e eeeeeeeeeeeeeeeeeeeeeeteeeeeeeeeeteeeeeeeeeieeeens 72
8.0.3 Shift EXDI@SSIOMNS. utiiiiiiieeiiiiiiieieei ettt ettt ettt ettt et ettt e et e ettt e eieeeeeeiieeeeens 73
8.6.4 Relational EXPIreSSIONS. cuuueiiiiiieiiiiiiiiieieiieeieeei ettt ettt e e ettt ettt e et eeiieeeeee 74
8.6.5 Classification EXPIeSSIONS. ouuuiiiiiiieeiiiiiiiiiiiii ittt ettt eeeeeeeee e 76
8.6.6 EQUality EXPIeSSIONS. uiiiiiuuiiiiiiiiiiiiiiiiieieii ettt ettt ee e 77
8.6.7 1.0ZGICAl EXPIESSIONS . ..uiiiueeiiiiueiiiiiiiiieii it e ittt ettt ettt ettt e i 78
8.6.8 Conditional 1.0gical EXPIeSSIONS. . ouuiiiiriiiieiiiiiiiiiiie i ittt eeee et eeaeeeeaeeeans 79
8.6.9 Null-CoaleSCing EXPIESSIONS . uviiuuiiiieiiiitiiiiitiiieiiieeii e e e et et eeeee e e et eeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeieeeeieeeeeeeees 80
8.7 Conditional-Test EXPIreSSIONS. c.uiiieeeiiieeeiiiitiiiieiiiieeiieeeee e e eeie et e ettt eeteeeeteeeeteeeeeeeeeeeeeeeeteeeeeeeeeeeeeeeeeeeeneeeeeieeen 82
8.8 ASSIZNMENT EXPIESSTONS . teiiiiuiiiiiiiiieeiiiii ittt oot e e ettt e ettt e e e eeeee et e e ittt e e e et eeeeeaeeene 84
9 Statements 89
D1 OVEIVIEW attiiiiiieiiiiiieeeeeeeeeeee ettt ettt e e ettt e e ettt e ettt e e e et eeeeeeeeeeea 89
9.2 ANNotated StAteMIENTS . ooieuueiiiiiiiiiiiiiiieiiii ittt ettt ettt eeiieeeeeiieees 92
9.3 IN-1iNE STALCIMENTS . .uveiiiriiiiiiiiiiiei ittt ettt ettt ettt ettt ee ettt 94
9.4 BlOCK STAtEIMENTS. c.veiiiuiiiiiueiiiiiii ittt ettt 95
9.5 EMPLY StAtEIMEINES. .oiiiiiiueiiiiiiiiiiiiiiii ittt ettt ettt ettt et e e e eeeeeene 98
9.6 Local Name Declaration State@mENTS, .. .o..uiieuiiiieiiiieiiiieiiiiiiieieiieeeeieieieeeeieeeeieeeeeeeeieeeeeeeieeeeeeeeeeieeeeeeeeeeeeeeenns 98
9.7 EXPreSSion StaAteIMIEITS. . oeueeiiiiiieeeiiiiiieiiiiii e ettt ettt et et e e ettt et et e e e eeiaeeeeeeens 101
9.8 I StALEIMENES, ouiiiiiieiiiiiiiiiiiii ittt ettt ettt et ettt e e eiteeeeeeinees 102
9.9 SWItCH STAtEIMEITS. eeeuiiiiieiiiiiiiiiiiiiieie ettt 105
9.10 While StaAtemMIENTS. .oocueiiiiiiiiiiiiiiiiiiiii ettt ettt ee e 107
.11 dO StAtEMIENES. .oouueiiiiiiiiiii ittt 108
9.12 01 StALEIMIEINES. ..eeiitiiiiueii ittt 109
9.13 DIreak StATEIMIENES. c.oiieeiiiiiiiiiiiiiiiii ettt ettt ettt ettt ettt e ettt ettt et ee et eet e e ettt et e it eeeiteeeenes 112
9.14 retUrn StAtEIMIEIES . . ouuveeiiiiietiiiiii ittt ettt e et et e et eeeeaeeeea 113
9.15 aCCEPt StALEIMEIES . cuuvviiiiiiiiiiiiii ittt ettt et e e ee et eeeieeeeeaes 113
9.16 ClasSify StAtEIMENTS. ..uuviiiiiiitiiiiiiiiiiiii ittt et eeeeeeeeene 116
10 Units 119
JO.1 OVOIVIEW ettt e oottt eet et ettt et et oo ettt et ettt et ettt ettt e e et e e eeiaeeen 119

ii Action Language for Foundational UML (ALF), v1.1

10.2 NAIICSDACES e eeeeuiriteteeit ettt ettt ettt ettt ettt ettt eeeenes 125
10.3 PACKAGES. ooiiiieuieiiiiiiieiiii ettt ettt ettt et ettt ettt eeeeete e eeeieaaeen 126
10.4 ClaSSTITIOTS. viieeiiiieeiiiiiieeeie ettt ettt ettt et ettt e et e ettt et e ettt ettt et et e et e et e e et eeeeteeeas 127
1O.4. 1 OVOIVICW . uttiiiiiiiieiiiiie oot e oottt e et et ettt ettt e et eeeeeet et et eeet e et eei et e e e e et e eeeeeaens 127
10.4.2 ClaASSES . utueiiiiiieeiiieeeeeee oottt ettt et et ettt et et e e it e e et et eeeeeeeeeee 130
10.4.3 ACHIVE ClaASSES.ceeuuueiiiiiiiiiiiiiieiiiee oot e oottt ettt e et e e eeeeeiaees 133
10.4.4 Data Ty DO eeeiiiiiiiiii ittt ettt et e e et e ettt et ee e et et et et e e i e ieieeees 136
10.4.5 ASSOCTATIONS, 1.eeiuvviiiiueiiiieii it i ittt ettt ettt ettt e e et e ettt ettt e ettt et e et eiiaeeeenes 137
10.4.6 ENUMETAtIONS . .euvviiiiuiiiiiiiiiiii ittt ettt ettt et e et eee et et e oottt ettt iteeeeineeeenes 138
10.4.7 STGNALS. tiiieuiiiiiiiiiiiiiieiie ettt ettt et e ettt e ettt et e e e e et e e eeeee e 139
1048 ACHVITIES . uviiieiiiieuiiiiiiiiieii e e oottt et eee et e ettt eee e e ettt ettt ettt e ettt e ettt eee e ettt eeie e iieeeeieeea 141
10,5 FOALUIES. cvviiiiieeeiiiiiiiiiii ettt ettt ettt ettt et et e et ettt et e iteeeeeeieeeene 144
1O.5.1 OVOIVIEW . uuteiiiiiiieeiiie oottt oottt e ettt ettt et ettt ettt e ettt e e e e ettt e et eeeeeeeens 144
10.5.2 PrODEITIES e ettt ettt et eeeeeeeeeeeeans 144
10.5.3 OP@IAtIONS. c.uueiiiiiiiiiieii ettt e ettt e ee et et e ettt e e e eeeeeeeeiieees 147
10.5.3.1 General OPEratiOnS. . ..uuiieueiiieeiiiiiii it i it eeee ettt ettt 147
10.5.3.2 CONSUIUCTOTS . teutttiieiiiitteet ittt ettt ettt ettt ettt ettt ettt ettt et eeieeeeeeeiieeeeeeenns 150
10.5.3.3 DIEStIUCTOIS oo iitttiiiiiittieiiee ettt ettt ettt ettt et e e e eeeeeeeeeenns 152
10.5.4 RECEPIIOMS 1viiieueiiiiueiiieeiieeeii ettt e ettt ettt ettt e ettt e ettt e eeeeeeeeeeeeteeeeeteeeeenteeeeeeeeeiteeeeieeeeineeeas 153

11 Standard Model Library 157
T 0 O VI VICW aettiiiiiiiieeiiieeeeee oottt oo ettt et ettt et e ettt ettt e et et e et ettt eeeiea e eeeeitteeeeeiieees 157
11.2 ActionLanguage Profile. iiiieuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiii oo 157
11.3 PrimitiVe Ty DES . ciiiieeiiiiiiiiiiie ettt ettt ettt ee e e eeieeen 158
11.3.1 PrimitiveTyPes PACKAGE. . .oooovviiiiiiiiiiiiiiiiiiiiii ittt 158
11.3.2 NAUTAL TYPC. ittt ittt ettt e e ettt 158
11.3.3 Bt StINE Ty D€t iiuiiiieiiiiiiieiiie ettt ettt ettt ettt ettt ettt ettt ettt et e e et e et e et eeeeeeereeiiteeeas 158
11.4 Primitive BERAVIOTS, oieuiiiieiiiiiiiiiiiiieiieiiieeeie ettt et et eeee et ettt et e et e ettt e e e e e 159
11.4.1 PrimitiveBehaviors PaCKa@e. ...oooeeuueiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiiie et 159
11.4.2 BOOlean FUNCHONS. c.uuvviiiiiiiiiiiiiiiieieiiii it e ettt eeeeeeeeeeeeeiteeeeeeeeeeeeeeaes 159
11.4.3 INte@er FUNCHIONS . coieeutiiiiiiiiiiiiiiiiiieiiieee oottt e ettt et eeeeeeeeeeeeeeeeeiteeeeeeeieeeeeeaes 160
11.4.4 Real FUNCHIONS. cuuiiiiiiiiiiiiiiiieiiiiiieiiie oottt ettt eet e e eeeeeeeeeeieeeeeeeeieieeeeeaes 161
11.4.5 String FUNCHIONS. ..euviiiitiiiiiii ittt eee et e et eeee e eeneeeenee 161
11.4.6 UnlimitedNatural FUNCHONS. . .ccuuiiiieiiiiiiiiiiiiiii it 162
11.4.7 Bit String FUNCHIOMNS. c.vvviieiiiiiiiiiitiiiieiii e eieiieeeeiieeeiee e e et eeeeeeeeteeeeeeeeeeeeeeeeeeeeteeeeeeeeieeeeieeeeiteeeaiieeens 162
11.4.8 SeqUENCE FUNCHONS. c.vviiiiiiiieeiiiiiiiiiiiii ettt e e eeee e et e e ettt e eeeeeeeeeeeiteeeeieeeeeeeeeeiteeeenes 165
11.5 Basic INput and OULDUL. c...uueiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeee oottt e ettt 168
11.6 COllection FUNCHIONS. couueviiiiiiieiiiiii ittt oo eeee et ee et e e et eeeeeeeeeieeeeeeeeieeeeeeeeieees 169
11.7 COllECtioN ClASSES. couuueiiiiiiieiiiiiiiiiiieii oottt ettt eee et e ettt e ettt e e et ettt e e e 170
11.7.1 CollectionClasses PaCKAZE. . .ciiieuviiiiiiiiiiiiiiiiiiiiiieeiei oottt 170
11,72 BaAG T ittt e e ineeeenns 174
11.7.3 COlECHONCT ™ osiiiiiiiiiiii ettt ettt e et e et e ettt 174
11,74 DeQUES T ittt ettt e ettt e ettt ettt eeieieeeeeeanns 177
D175 BV ittt ettt ettt et e ettt e et eeeeiiaaeene 178
L1706 TASET ™ ettt ettt ettt ettt e et e et et e e e e eeiaens 178
11.7.7 Map<KeV, ValUe ™. . .oiiiiiieiiiiiiiiiiiiiiieiii oottt e et eeeeiees 181
11.7.8 OrderedS et . ittt 183
11,7, QUEUCK T . ettt ettt et e et e ettt et taeeeeeeees 186
L1700 St ittt e ettt eeitaeeenes 187
12 Common Abstract Syntax 189
T2, 1 O VETVICW ittt ettt ettt ettt ettt e ettt eete et e ettt eeeee e e ettt e eettee e et e et eeeeteeeet et eeitteeeiteeeeteeeeees 189
12.2 ClaSS DESCIIPIIONS 1eeiiutiiiieiiiieeiiiieii e et et eee et eeee ettt e eee et et e et eeeteeeeeeeeeeeeeeeeeeeeeeteeeenteeeeeeeeeeeeeeenteeeeieeeeeeeeeas 190
12.2.1 ASSTZNEAS OUICE . cuuuviiiiiiiieiiiiiiiieiii oottt e ettt e e ettt e e et e e et e e e e 190
12.2.2 DocumentedEISMENT . ..uuvviiiiiiiiiiiiiiiiiiiiiiiieiiii e 191
12.2.3 ElemMENtRETOIONCE. c.uuiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeieiee oottt 192
12.2.4 External ElementREfereNCe . ooouuuuiiiiiiieiiiiiiiiiiiiiiiiiiiii i 192
Action Language for Foundational UML (ALF), v1.1 iii

12.2.5 Internal ElementR eferenCe. . uuuuueiiuiiiiiiiiiieiiiiiii i 192

12.2.6 SYNtAXEICIMCNT. 0eeeutiiiitiiiiiiit ittt ettt ettt ettt ee e 193
13 Expressions Abstract Syntax 195
131 OVOIVICW ettt ettt ettt ettt e e ettt ettt et eeeeeens 195
13.2 ClaSS DESCIIPTIONS. 1eeeuteieettt ittt ettt ettt ettt ettt ettt ettt ettt eie e 202
13.2.1 ArithmetiCEXPIESSION. 1ouuieiieiiiiitii ittt 202
13.2.2 ASSIgNMENtE X DI€SSTON . uiiiiiieiiiiiiiiiieiiii ittt ee e 204
13.2.3 BehaviorInvocation E X PreSSION c..ueeustiisteisteesie et eette ettt e ettt et eet et eete et e et e e e e e 207
13.2.4 BiNary E XD @S IO, cuueeueeeesteetteete ettt e ettt et ettt et et e et et e et e et e et e et e et e et e et eet et et e et e et e e e 208
13.2.5 BitString@Unary EXPreSSION. ceuueeiueiiestiiei it et e ettt ettt ettt ettt ettt ee e 209
13.2.6 B0OleanLiteral EXPIeSSION. couuuiiesiiittiitieeti e ittt ettt ettt ettt ettt ettt 210
13.2.7 B00leanUnary EXPreSSION . c...ueiuuetiieieeiite ettt ettt ettt 210
13.2.8 CaStEXPIC@SSION. ..ueiitiiiiettiee ittt ettt ettt ettt ettt eee e 211
13.2.9 ClasSEXtENtEXPIESSION. ..eeiiutiiiiittiiiieie ittt ettt eee et ee et 211
13.2.10 ClassificatiON EXPIeSSION. ..eeieuuiiiiiiiiiiieiei ettt 212
13.2.11 CollectOrTterate E X PIE@SSION cuveeesiiesieeseeetie ettt ettt ettt ettt e et eet e et eeteeeseeete et eeieeiseeeneae 213
13.2.12 Conditional Log@ical EXPreSSION . . eeuteeuesisiietteieitt e et ete ettt eet ettt ettt eee e et eete et eeseeieeeieeieeeaeeens 213
13.2.13 Conditional TeStEXPIeSSION. c..viiusiieetiitiiitieiti ettt ettt et e eetee e e 214
13.2.14 EQUAlitY EXPIESSTON . cueeiutiittieiiietee ettt ettt ettt ettt 215
13.2. 15 EXPI@SSION. ceuteeeiuit ettt ettt ettt e e 216
13.2.16 EXtENtOTEXPIESSION. c.ueiiitiieiitii ittt ettt ettt ettt ettt ettt ee e 218
13.2.17 FeaturelnvocatioN EXPIeSSION. c...eiieueiiiiiiiiiitiiiiiiiiiiie ettt 218
13.2.18 FeatureLeftHANASIAC.oouveiiiniiiiiiiiiiiii it 219
13.2.19 FeatureR e OreNCe. euiieiiisiiiiiei ettt ettt ie e eeneens 220
13.2.20 FOorAOTEXiStSOTONE E X PIe@SSTON. cuvtesiietiietteetteete ettt ettt e et ete e e ee e et e eeeeeeeeeteeeteeieeeeeeseenen 220
13.2.21 IncrementOrDecremMent EXPIrESSTON ..ueuuiisiietiiitiietie ittt ettt e eee e eeeeeeene, 221
13.2.22 InstanceCreatiONE X PIrESSION. ..euuiiestieiiietieete ettt ettt ettt ettt ee ettt et e e et ee e e 222
13.2.23 INVOCAtIONEXPICSSTON . .ueiieiieitiiiiee ettt ettt ettt ettt 223
13.2.24 1S0]latiON E X PICSSION e .ueiiitiieieitte ettt ettt ettt ettt eeee e 226
13.2.25 ISUNIQUEEXPIESSION. c..eiiitiiiiiiiiiiiei ettt ettt e et eeeeeeee e 226
13.2.26 LeftHANASTAC. .o.uoiiuiiieiiiiiiiiiiii it 227
13.2.27 LinkOperation EXDreSSION . .eeusteesitesieetit it ettt ee ettt et e e et e et et e e et eteeeie e 227
13.2.28 Literal E X PreSSION . cuee ettt iestetee ettt ettt ettt e et eet e et et e et eee e et e eet e et e et e et eet e et enteeteenns 228
13.2.29 LO@ICAIEXPIESSTION. 1euiiiuitisieiet ettt ettt ettt ettt e et et ettt ettt et et ee et et e eeeeaeeenne 229
13.2.30 NAMEBINAING. ...viiiuiiitiiiiiiiei ittt ettt ettt ettt e ee e 230
13.2.31 NamMEAEXPIESSION. o uueieitiiiiiteeiiee ettt ettt ettt ettt ettt ettt e 230
13.2.32 Named TemplateBinding. . .o..eeieueieiiiiiieiii ittt 231
13.2.33 NAMEATUPIC. ueiiiiiiiiiiiiiiiiiii ettt 231
13.2.34 NaAMEEXPI@SSION. .o uvieiiiiiiietiii ittt ettt 232
13.2.35 NamelLeftHaNASide. ..oeuuiieuiiiiiiiiiiiiiiii i 233
13.2.36 Natural Literal E X PreSSION . ceueeiestiesieiett et ettt ettt ettt e et eet e et eet e et ee e eeseeeeeeeteeiseeieenns 234
13.2.37 NullC0aleSCINGE X PIESSTION . 1euuiesiiisiitee ittt ee ettt ettt ettt e ettt ettt et e et e e et eeaee e eeeeennie 235
13.2.38 NumericUNary EXPIE@SSIONeeuuiiiueiitiiitiiiit et e ittt ettt et e ettt e e e e eeee e 235
13.2.39 OutputNAMEAEXPIeSSION. . eeeuuiiiiieie ittt ettt ettt ettt ettt 236
13.2.40 Positional Template Binding.cooueeiiuiiiiiiiiiiiiiiiiii et 237
13.2.41 POSTHONAITUPIC. ettt 237
13.2.42 PropertyACCeSS EXPIESSION . ..eeiueiiieueiiiiii ittt 237
13.2.43 QUAlifIedNAIMC. oeuiieiiitiiiie ettt e et iae e 238
13.2.44 RealLiteral EXPreSSION. ceuseeetsesieetiteteeet ettt e ettt et eet ettt et et e ettt et eet e et ei e ettt eteeete e 240
13.2.45 RelatioNalE X PIe@SSION, c..eiviiiusiietiiite ettt ettt ettt ettt ettt e e 240
13.2.46 SelectOrRe]eCtEXPIESSION . .eeuuiitiiitiietie ittt ettt ettt e e eet e e e eeeeaeeenn 241
13.2.47 SequenceACCESS EXPIeSSION . c.uuuiiiteieiitiieietie ittt 242
13.2.48 SequenceConstructioN EXPIeSSTION. ..eeuuieiesiiiitiieiie e e ettt ettt ettt 243
13.2.49 SeqUeNCEEICMENTS. . .eiiuuiiiiiiiiiiii i, 244
13.2.50 SequenceExXpanSion EXPreSSION. c..ueiiuuiiieieiieii ittt 244
13.2.51 SequenCeEXPIeSSIONIASt c.uueesiieeititieetit ettt ettt ettt 245

Action Language for Foundational UML (ALF), v1.1

13.2.52 SequenceOperatiONEXPIreSSION e iuuutiieeeiiiieie i it e it ee ettt ettt eee ettt 246
13.2.53 SeqQUENCERANGE. ..uvvviiiiiiiiiiiiiiiiiiii ettt e et e e eee i 247
13.2.54 SequenceR eductioN EXDIeSSION . .. iiueiiiieeiiiieiiiietiiiiiiiieeiie e eeeee e ettt e ettt e ettt eie e e 248
13.2.55 SHiftEXPIESSION. teuuttiiiiiiieiiiiii ittt ettt ettt e e et eeie et e e i e e e i 249
13.2.56 Stringliteral EXPIESSION . c.uvueiiiiiieeeiiiiiieiiiiie ettt ettt eeeeee ettt ettt ettt et eeeeieeeeeeanns 250
13.2.57 SuperInvocation EXPreSSION . cuiiieeeeiiiiiiiiiiiii ittt eieiieeeeeans 250
13.2.58 TemplateBinding. . oouueeiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeieee ettt eeeeeeeeeeans 251
13.2.59 TemplateParameterSubSttUtIONecuviiiieiiiiiiiiiiiiiiiii ettt 251
13.2.60 ThiSEXPIr@SSION. 1eeuuiiiiseiiiteiiiii ettt ettt ettt ettt 252
132,60 TUDLC ittt ettt e ettt et e et eee e e e e e 252
13.2.62 UNATY EXDIESSION . .uuiiieeiiieiiiiitiiiieieeeeiieeee e et e e et ettt ettt ettt e ettt eeeeeeeeeeeeteeeeeeeeeeeteeeieeeeeiteeeeieeeeineea 253
13.2.63 UnboundedLiteral E X PreSSION . cuuuiiiiiieeeiiiiiiiiiiiiii it eeeee ettt 254
14 Statements Abstract Syntax 255
TA.1 OVEIVIEW ettt oot oottt ettt et et et ettt e et ettt et e eeete e ettt e e e e e e eeiaeeees 255
14.2 ClaSS DESCITIPIIONS. ceuuuetiiiiiieeiiiiiiiiieee oottt ettt ettt ettt ettt ettt ettt e e e eeeeieee e e e 259
14.2.1 ACCEPIBIOCK cuuviiiitiiiieiiiiiii ittt 259
14.2.2 ACCePESIAtOMICIIE. o\ uvueeiieitiieeiiiie ettt ettt 260
14.2.3 ANNOUAION. .eiiittiiiiiiiiiiiieii ettt ettt ettt ettt e ettt et e ettt ettt ettt ettt et e et e e et e e eiaeeeieeas 261
14.2.4 BlOCK ettt ettt ettt ettt ettt ettt et e eee e e et e e eaeeeeenes 261
14.2.5 BreakStatemENt . oo ueeeiiiiiiiiiiiiiiiiiiiiieiii ettt ettt et e e e e i 263
14.2.6 ClasSifyStatemMIENt. . e i ieeeeeiiiiiiiiiiiieeiiiie ettt e et e e 263
14.2.7 CONCUITENECTAUSES . oeviiiieeiiiiiiiieiiiii oot e oot e ettt eeeeee et eeeeeeeeeeeeeeeeeeeieeeeeeeeieeees 264
14.2.8 DOStALCIMICIIE. 1o ei ettt ettt ettt et ettt ettt ettt et e et et e e e et e e e tieeeees 265
14.2.9 EMPtyStatemMIent. . oeeieeieeeeiiiiiiiie ittt eeeeeeeen 266
14.2.10 EXPreSSiONStAt@IMENT . ..eeiuueeiisiiiiei e i i iee et e ettt ettt e e 266
14.2.11 FOIStAteMENT. couuueiiiiiiiiiiiiiiiiiiiiiiiiieeeiee ettt ettt ettt oo ettt ettt e ettt e e eeieenn 266
14.2.12 TESTAtEIMENE. cuviiiieiiiiieiiiiieiii ettt e ettt e ettt ettt eee et et ee ettt eet et eee e e et e e e eeeeeeieeea 268
14.2.13 InLANeStateMIENT . eiieeeiiiiiiiiiiiii ittt et ee e 269
14.2.14 LocalNameDeclaration StatemeNt.uieeeuveeiiiiieiieiiiiieiiiiii et eeeeeeeee e 269
14.2.15 L.oopVariableDefInitiON . couuueieiiieeeeiiiiiiiiiiiiiiiiiiiei oottt eeeieeeeeeans 270
14.2.16 NONFINAICIAUSE . .oiiiieeiiiiiiiiiiiiiiiieiiiieeeiiieeeeeeeee oottt eeeeee e e et e e 272
14.2.17 QualifiedNAMELAST. ...oouiiiiiiiiiiiiiiiii i 273
14.2.18 RetUINStAtOMENT. cuvveviieeiiiiiieiiiiiee it ieie ettt ettt ettt eeenes 273
14.2.19 StAt@IMIEINE . eeeiueeiiiiiiiiiiiiiie ittt ettt ettt et et eeeeeaaeeene 273
14.2.20 SWItCHCTAUSE . ceevviiiieiiiiieiiiieiiieeii ettt ettt e ettt eeeeeee e e ettt e eeeeeeeeeeeiee e et eeeeeeiieeens 274
14.2.21 SWitChStAteMIENT. uuiiiiiiiiiiiiiiiiii ittt e i 275
14.2.22 WhileStatemIENt . eeiiiieeiiiiiiiiiiiiii ittt ettt eeiaeeenen 277
15 Units Abstract Syntax 279
L5 1 OVOIVIEW ettt e et e ettt et oottt e ettt e et ettt et et e et e e e e e e eeeei e 279
15.2 ClasS DESCIIPTIONS. 1oeeuviiiiteiiieeiiiiie ittt ettt et e et e et e et e e ettt eeae et eee e e ettt e e et e e ettt ettt iieeeeeaeea 281
15.2.1 ActiveClasSDefINItION. ceuuveiiriiiiiiiiiiii ittt 281
15.2.2 ACtIVItYD @ TNTtION . 0eiittiiiieiiiieiiiiiiiiiii ettt ettt e ettt ettt et et e e eeiee e 282
15.2.3 ASSOCIAtiOND EFINTEION. c.vviiieeiiiieiiiiiiiiieeiii ettt ettt et eeee et ettt e e 283
15.2.4 ClaSSD e INItION. cuuvviiiiiiiiiiiiiiiiiii ettt ettt ettt e e e e e e 283
15.2.5 ClasSifierDefInItiON. oiiiieeeiiiiiiiiiiii ettt ee e 284
15.2.6 ClassifierTemplateParameter. cooouuiiieuiiiiiiiiiiiiiiiiiiiiiiieiiiiii e 284
15.2.7 DataTyPeD e INItION . c.uvviiiiiiieiiiiiiiiiiiii ittt eeeieeeeens 285
15.2.8 ElementImpOrtREfEreNCE. ...vviiiueiiiieeiiiiiiiiiiiiiiiiiiiiiiieii e 286
15.2.9 EnumerationDefinitioN, c..eeeuueiiiuiiiiiiiiiiii i 286
15.2.10 EnumerationLiteralNAME. c.o..oiieiiiiiiiiiiiiiiiiiiieiiieieiieeie et 286
15.2.11 FOrmalParamiEler . o e euiiieiiiiieeiiiiiiieiiieieei oottt ettt eetee e et eeett e ettt e et e it ee e e iieeens 287
15.2.12 IMPOItEAMEIMIDET . uuviiiiiiiiiiiiiiiiiiiiieeeeei ettt eeieeeeenns 287
15.2.13 IMPOItR @FOICNCE ittt ittt 288
L5214 IMIEIMIDET ettt ee et eeeeeaeeeeenns 288
15.2.15 NameSpaCeD e INItION . .eeeuuuuiiiiiiiiiiiiiiiiiiiii ittt eeieee e 290
Action Language for Foundational UML (ALF), v1.1 v

15.2.16 OperatioNDefINItiON. c.uueiiesieiiiii ittt 291

15.2.17 PaCKAGED EfINTtION. 1iuviiiieiiiiiiiiiiiiii ittt ettt ettt e ettt et ee ettt e e e e e 293
15.2.18 PackagelmpPOrtR EFeIeNCE. cuuviieiiiiieiiiiiiiiieiiiiiiie ettt 293
15.2.19 PropertyD e initioN, cuueeeiieeeeiiiiiiiiiiiiiieiiie ettt ettt e e ieeeeeeaaes 294
15.2.20 ReCeptioND @fIMitiON . uuvieiiieiieiiiiiiiieiiiiiiieiiiiee ettt ettt ettt ee e e e e 295
15.2.21 SignalDefTInitiON. coiieeeeiiiiiiieiiiiii ittt ettt ee e 295
15.2.22 SignalReceptioND efTNItION. uiiiiueuiiiiiiiiiiiiiiiiiiiiieeeiiiee ettt 296
15.2.23 StereotyPEANNOTAtION, .eeiuuiiiieeiiiiii it i ittt 296
15.2.24 Ta@@eAVAIUC. ...ooiuiiiiiiiiiiiiiiii i 297
15.2.25 Ta@@edVaAlUETASt. . eiiuiiiiiiiiiiiiiiiiiiiiii ettt ettt ettt e ettt e et eee et e e e e e ieeens 298
15.2.26 TypedElementD efTnitioN. .ou.uiiieeiieieiiiieiiiiii et s e e et e e e eeeee it eeeeeeeee e 298
15.2.27 UNitDefINIION. oiieiiiiiiiiiiiiiiiiiiiiiii ettt e ettt e et e e ee i 299

16 Common Mapping. 301
TO.1 GONETALL . euiiiiiiiiiiiiiiiiieiiii oottt ettt et e e eeeeienees 301
16.2 SYNtAX BIEIMENTS. uviiiiiiieiiiiiiiiiiiiiii ittt ettt eeee ettt ettt ettt et eeeieeeeeeinees 301
16.3 Documented EIEMENTS.....eiiuiiiiuiiiiiiiiiiiii ittt 301
16.4 Element ReferenCeS . .uuuiiuiiiiiuiiiiiiiiiiiiiiiiii it 301
16.5 ASSTENEA SOUICES . .ouviiiiuiiiiieiiiiiiiieiie oottt eeee et ettt eee et e ettt e ettt e eeeeeeteee ettt eeeteeeeteeeeieeeeeeeeeeneens 301
17 Expressions Mapping 303
1701 GOMETAL . euiiiiiiiiiiiiii ettt et et eeee ettt e ee et et eeeteeeeeienees 303
17.2 QUAlIfIEd NAIMIES . c.uviiiieiiiiiiiieiiiieeiee oottt e eeee et et ettt e et e ettt eee e e i 303
17.3 Literal EXPIESSIONS . coiiiuuuiiiiiiiieiiiiii it et e oottt e ettt et ettt et ee ettt et et e et et et e et eeeeeieeeeeeienees 303
17.4 NAME EXPIESSTONS . ceuueiiiiiiiieeiiiiiiieiii oottt ettt et e e ettt e e et et e et e eeeeeeeeeeeeee e et e eeeiieeen 303
17.5 thiS EXPI@SSIONS uueiiueeiiiesiiiieei ettt ettt ettt ettt ettt e ettt ettt eeenees 303
17.6 Property AcCeSS EXPIreSSIONS . .uuiiiiuuiiiieiiiiieii i ettt ettt 304
17.7 INVOCAtION EXPIESSIONS . cuvviiettiiiieiiiiitiieiiiiieiie e e eei et eeee ettt eeeeeetee e ettt e et e eeteeeeeeeeieeeeeeeeeeeteeeeeeeeeieeeeeeteeeeeneens 304
178 TUDIES . ettt ettt ettt e ettt eet ettt ettt ettt e e it eeeeeeiiteeeas 304
17.9 Behavior Invocation EXPreSSIONS. ..uuuiiiieeueiiiiiieiiiiiiiieiiiiii oottt eeeeeeenn 305
17.10 Feature InvoCation EXPIreSSIONS. ..uuiiiiieuiiiiiiiiiiiiiiiiiieiiiiieieiee ettt e et ettt et eeeeeeeeeeeeeeeeeiieeeeeeenns 305
17.11 Super Invocation EXPIeSSIONS . .uuuiiiieriiiiiiieiiiiii ittt eeeeeeeee et eeeeeeeeeeeeieeeeeeeeeeeeeeiieees 306
17.12 Instance Creation EXPreSSIONS . c.uuuuiiiiieiiiiiiiieiiiii ettt ettt e et ettt eeeieeeeeans 306
17.13 Link Operation EXPreSSIONSuuiiuuiiiieiiiiiiieiitiiiiiii i ieeie e eee et eeee et ee et e e et e et e iieeeiiaeee 307
17.14 Class EXtent EXPIeSSIONS. ...uuiiiiuiiiieiiiiieiiiiiei e it e ettt eee ettt ee e ettt e e eeeeeeeeeeeneeeeeneee 307
17.15 Sequence Construction EXPIeSSIONuiiuuiiiieiiiieiiiiiiiieiiiietiiieeieieeieeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeieeeeieeeeeeeeeeieeeeeneess 307
17.16 Sequence ACCESS EXPIrESSIONS . c.uuiiieuiiiieiiiiitiiiieeiiieii ettt et e eeee e ettt e et e et e e et eeee e e e e eeeeeeeeeeneen 308
17.17 Sequence Operation EXPreSSIONS . . iieuuuuiiiiieiieiiiiieieiiieii i eeee et e et ettt eeeeeeeeeeeeeeeeeeeeeiieeeeeeienees 308
17.18 Sequence Reduction EXPIeSSION. cuuuuiiiiiieueiiiiiiiieiiiiiiiiiiiieeieiiee et eeeeee ettt eeeeeee et et eeeieee e 308
17.19 Sequence EXPanSion EXPreSSIONS. uuuuiiiiieueiiiiiiiiiiiiiiieeiiiieeeeiieee oottt 309
17.20 Increment and Decrement EXPreSSIONS . c.uuuuuiiiieeeeiiiiiiiiiiiiiieiiiiiieeiieieeeeieeeeeeeeeeee e 310
17.21 UNAry EXPIESSIONS. toiiuueiiiiueiiiitiiiieie i et ettt e ettt ettt ettt et et e ettt ee et eeee et e eeneeeeeeeeeeeeenaeeeeaeeeinee 310
17.22 BiNAry EXPIeSSION. ..eiiuueiiiiuiiiiisiiiiitie e it e it e ettt ettt ettt et ete e e et ettt et et et et eee e eee e e et ieneee 311
17.23 Conditional-TeSt EXPIeSSIONS. .iiuuiiiitiiiieiiiieiiiiiiiiiitiiiiiee e eeetieeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeieeeeiieeeanes 313
17.24 ASSIGNMENt EXPIESSTONS . uviiiutiiiieiiiiiiiiieii ittt e e ettt eei ettt et et e eeee e e ettt eeeeeeeeeeeieeeeeeeeeeteeeeieeeeiieeeeans 314
18 Statements Mapping. 317
D81 GOMETAL ieuiiiiiiiiiiiiiiii ittt et ettt ettt e et eeeeeeeeeeienees 317
18.2 TN-11N€ StAt@IMIEINES. .eeuviiiiiiiiiiiiiiiiiiiiie ittt e et e 317
18.3 BIOCK Stat@MIEIES. couuuiiiiiiiiiiiiiiiiiiiie ittt ettt e ettt e e e 317
18.4 EMPLY StatemMIENES. .oeieuuveieiiiiiiiiiiiiiiiteie ettt ettt ettt eeenes 317
18.5 Local Name Definition StatemeNtS.ccueiieiuiiiiiiiiiiiiiiiiie ittt 317
18.6 EXPreSSiON STALEIMENES . c.uviiieiiiitiiiieiiiiieiieiiiieeiieeetieeeeieeeeieeeeeeeeeeeeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeteeeeeeen 318
18,7 Af STALEIMEINES. Leeuviiiieiiiieeiii ittt ettt ettt ettt ettt ettt e et e ettt ettt et e e eeiieeea 318
18.8 SWITCH StATEIMENES. uuiiiiieeiiiiiiiiiiiiii i ittt ettt et ettt ettt ettt ettt e et eeeieeeeeeinees 318
18.9 While Stat@MIEINES. couuueiiiiiiiiiiiiiii ittt ettt ettt eeeeee et e eeieeeeeeeans 318
18.10 AO StAtEIMIEIIES. ceeeutiiieeiiiiiiiiiii ettt ettt e et ee e eaeeeeeans 319
1811 {01 StAtEIMIEIIES . eeueiiiiiiiiiiiiiii ettt ettt ettt eeiieeeeens 320

Vi

Action Language for Foundational UML (ALF), v1.1

18.12 break Stat@MENTS.ueiiuiiiiieiiiiiie ittt ettt 320

18.13 1etUIN StAtEIMIENTS. c.uvviiiiiiiiiiiiiiittii ittt ettt ettt ettt ettt e et eeeeeeeeee 321
18.14 ACCEPt StALEIMENES. ..uuiiiiiitiiiiii ittt ettt ettt ettt ettt ettt e et eeeeeeeeens 321
18.15 ClasSify StAtEIMENTS. uuiiiiiieeiiiiiiiiiiiiii ittt ettt ettt ettt e e 321
19 Units Mapping 323
191 GOMETAL . euiiiiiiiiiiiiiiieiiei oottt ettt e e et eeeeeeieeeeeieees 323
19.2 NameSpace DefTINItiONS . coouuuviiiiiiiiiiiiiiiiiiiiieiiiee ettt eeeeeeeeans 323
19.3 Packa@e DefInitiONS. . oeuueiiiesiiiiiiiiiiiiiiiii ittt 323
19.4 ClasSifier DefINItiONS . oouuuieiiiiiiiiiiiiiiiiiii oottt eeeeeiaes 323
19.5 ClasS DEfTNTtIONS . cecuviiiieiiiieeiiiiitiiieiie e eeie e e ettt ettt et e ee e e ettt eeeee e e et eeet et eeit e e ettt ettt et e eeeeeiereeas 324
19.6 Active Class DefINItiONS. ..uvieeriiieeeiiiieiiieiiieeiii ettt ettt e et eeeeeeee e et e et eee et e eereeenens 324
19.7 Data TyPe DefinitionS . ceeeeueeiiiiiieiiiiiiiiiiiiiii ittt et ettt ettt ettt e ettt eeiee e eieeeeeeans 324
19.8 ASSOCIAtION DEfTNIIONS. cuuviiiiiiiiiiiiiiiieiiiiii ittt ettt et ettt ettt et e eeeeeeeienees 325
19.9 Enumeration DefInitionS. cuueiiieuuiiiiiiiieiiiiiiieiiiiii ettt e e 325
19.10 Signal (and Signal Reception) DefinitionS...cceuueiiiiiieuiiiiiiiiiiiiiiiiiiiiiieeeiieieeeeeieee e 325
19.11 ACtiVity DefInitionNS. . eieeeiiieeiiiiiiiiiiiii i ettt 325
19.12 Typed Element DefinitionS.eiieueeiiiiiiiieiiiiiiiiiiii it eeee et eeaeeeeeeeiieeenns 326
19.13 FOrmal PaAramIEteIS. . i uiiiieiiiiiiiiieiiiieiie et ettt ettt e et eet e eeeeeeeeeeeeeeeeeteeeeeeeeeeieeeeteeeeteeeeeteeeieeen 326
19.14 Property DefInitionS. uiueuuiiiiiiieeiiiiieiiieiieieii ettt ettt ettt ettt ettt et e et eeeeeeees 326
19.15 Operation DefTINItiONS. c.uueieiiiieeiiiiiiieiiii ittt et e e eieee e e 326
19.16 Reception DefINitiONS, cuueiieeeeeeiiiiieeeiiii ittt ee ettt et eeeee ettt ettt e e eeieeeeeeeieees 327

A2 State MACINGS. ..eiiuiiiiiuiiiiiiii ittt 329
A.3 COMPOSIE STUCHUTE. ..oiiuueiiieiiiiiiiiiei ettt ettt et ettt e et e eeeeeeeeeeaeeeeneee 332
Annex B: Extended Examples 335
Bl QUICKSOIT ACHIVITY Leiitiiiiieiiiiiiiiiiiiiietiieeiie et e e eeei e e ettt eeet ettt eeeeeeeee e e et eeeetteeeeteeeeeeeeeteeeeeteeeeeeeeeeteeeeieeeeeneess 335
B.1.1 Quicksort Functional Implementation.e.eeeiiiiieeeiiiieiiiiiiiiiiiieiiieieiiie e 335
B.1.2 Quicksort “In Place” IMplementation..oouuieeeiiieeiiiieiiiiiiiiieeiiiieieieeiieeeiie e eeeeeeeeeeeeeeeeeeeeeeieeeeeeenn 338
B.2 OnNline BOOKSOIE. couuuiiiiiiiiiiiiiiiiiiiiiiiiieiiii oottt 339
B.2.1 Graphical Model fOr Ordering . cuuuuiiiiiieeiiiiiiiiiiiiiiiiiiiiiieiiiieeeeieieeeeeeee et eeeeieeeeeeeeieeeeeeeieees 339
B.2.2 Alf Representation of Entry BehaViOrS. ... covvvieuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeee e 341
B.2.2.1 Activity EstabliShCUStOMET ... oiuuiiiiiiiiiiiiiiiiiiiii et 342
B.2.2.2 Activity ProCeSSCRAIZE. . o.uiiiiiiiiiiiiiiiiiiiiiiieiiieiieeeiieeeieeeieeeeee ettt 343
B.2.2.3 Activity DeCHNECRArG. . ocuviiiieiiiiiiiiiiiiiieiiiieiieeiie ettt 344
B.2.2.4 Activity PaCKANASIID . .eiiiiiiiiiiiiiiiiiiiiiieeiiiiieeeei et 344
B.2.2.5 Activity NOtIfVOTDEIVEIY. ceuuuiiiiiiiiiiiiiiiiiiiiiiiieiiiiieeiiie oottt eieeeeeeeeeeeeeenns 344

B.2.3 Alf Representation of the Ordering MoOdel.......ooiieeuuiiiiiiiiiiiiiiiiiiiiiiieiiiiiieiiieeeeeieeeeeeeeeeeeeeeeeeeeeeee 344
B.2.3.1 PACKAGE O @I, ettt ettt et ettt et et e e e e e e e et e e e e ettt ettt eeeeeeeeeaeaaaaaainnnes 344
B.2.3.2 Class OUder .. cuuuiiiiuiiiiiiiiiiiiiiiiiiiiiiii oot 345

B.3 Property ManagemMent SEIVICE. .. iuuuiiiueiiieeiiieieiiei e ieee ettt ettt et e e ettt ettt e eeeeenns 347
B.3.1 The Property Management MOAEl......ooouuiieiiiiiiiiiiiiiiiiiiiieiiiiiiieeie e 347
B.3.2 DAt MOAELuuiiiuiiiiiuiiiiiiiiiiiii ittt et ettt et 348
B.3.3 MeSSAZE MOAELeiiiiiiueiiiiiiiiiiiiiiiiiiiiiieeeeeie ettt e e e 350
B.3.3.1 REQUEST M ESSAZES . uuviiiiiiiueeiiiiiiiiiiiiiiieiiee oottt e et eeieeenn 350
B.3.3.2 RePIY IMESSAGES . ieiuueiiiiiiiieiiiiiiiieiiie oottt 352

B.3.4 Service MOAELuuuuiiiiieeiiiiiiiiiiiiiiiiiiiiieeeeiii oottt e e 352
B.3.5 Property Management Service MethOdS. . ..ovuiieeuviiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiiie e 354
B3 5.] PrO PO Y i ieuiiiiiiiiiiiii ittt 354
B.3.5.2 TAeNtifier FACIOIY . coouuiiieiiiiiiiiiiiiiiiiiiiieii ittt eeeee et e eeeeeeeeeeeeeeeeeeeeneens 355
B.3.5.3 Property Management Service Implementation........oo.vveeeeiiieeiiiieiiiieiiiieiiiieiieeiiieeeiieeeieeeieeeieeeeieeenns 355

B.4 Alf Standard Library Collection Classes Implementation.o.ueeiiieeeeeeiiiiiieeiiiiiiiiiiiiiiieiiieeeeeieieeeeeieieeeeeieeeeenes 362
B.4.1 INtrOdUCHION. cuuviiiiiiiiiiiiiiiiiii ittt ettt eeeeeeeeeeeenns 362
B.4.2 CollectionClasses: :TMPL . cc.ueiiiiiiiiiiiiiiiiiiiiii ittt 362
B.4.3 CollectionClasses:: Impl::CollectionImpl . ccc.ueeiiiiiiiiiiiiiiiiiiiiiiieiiieieeiieeeeeeeee e 362

Action Language for Foundational UML (ALF), v1.1 vii

B.4.4 CollectionClasses:: Impl::OrderedCollectionImpl........eiieeieiieiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeeeeeeeieeeieeeeeeeee 364

B.4.5 CollectionClasses: : TMIPLiiS et uuiiieiiiiiiiiiieiiiiiii ittt e et e et eeeeeeeeee ettt e 365
B.4.6 CollectionClasses: :-ITmpli:OrderedSet. .. i ueuiiiiiiiiiiiiiiiiiiiiiiiieiiieiiieeiieeeie e eeieeeeeeeenes 367
B.4.7 CollectionClasses: - ImpliiBag. . ooiiieueiiiiiiiiiiiiiiiiiiiiiiieiieieeeeee e 370
B.4.8 CollectionClasses: :TmPlii it . uueeiiieeeeiiiiiieiiiiiiiiiiiiiiiieeeiieieeeeeeiee ettt 371
B.4.9 CollectionClasses: - ImpliiQUEUE. ..ouuuiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeieee et 374
B.4.10 CollectionClasses: . ImMpPliiDeQUE. cuuuiiiiiiieiiiiiiiiiiiiiiiiiiiiieeeeiiei e 376
B.4.11 CollectionClasses: :TmMpPLiiMAD. ..ccuuiiiiiuiiiiiiiiiiiiiiiiei ettt eeee et 378
Annex C: Consolidated LL. Grammar 381
Col TNTOAUCTION. tuttiiiiiiiieiiiieii ettt ettt e ettt et e ettt eeeeeee et ettt ee et eete e e ettt e ettt ettt e it eeeneeeeenes 381
C.2 LeXiCAl ANALYZET . cutiiiiiiiiiiiiiiii oottt ettt ettt et et e et e et e et e eeireeeenens 381
ORI 71 ¢ 1= TR T T TR T T T TR 385

viii

Action Language for Foundational UML (ALF), v1.1

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and reusable
enterprise applications in distributed, heterogeneous environments. Membership includes Information Technology vendors,
end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); and
industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http:/www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. Specifications are available
from this URL:

hitp.://www.omg.org/spec

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
CORBA/IIOP
Data Distribution Services
Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
UML, MOF, CWM, XMI
UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
CORBAServices
CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Action Language for Foundational UML (ALF), v1.1

http://www.omg.org/

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, may
be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Ave
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp-/www.iso.org

X Action Language for Foundational UML (ALF), v1.1

http://www.iso.org/

1 Scope

The Action Language for Foundational UML (or “Alf”) is a textual surface representation for UML modeling elements. The
execution semantics for Alf are given by mapping the Alf concrete syntax to the abstract syntax of the standard Foundational
Subset for Executable UML Models (known as “Foundational UML” or “fUML”). The result of executing an Alf input text is
thus given by the semantics of the f{UML model to which it is mapped, as defined in the fUML specification.

A primary goal of an action language is to act as the surface notation for specifying executable behaviors within a wider
model that is primarily represented using the usual graphical notations of UML. For example, this might include methods on
the operations of classes or transition effect behaviors on state machines.

However, Alf also provides an extended notation that may be used to represent structural modeling elements. Therefore, it is
possible to represent a UML model entirely using Alf, though Alf syntax only directly covers the limited subset of UML
structural modeling available in the fUML subset.

Key guiding principles in the design of Alf include the following:

e Alf has a largely C-legacy (“Java like”) syntax, since that is most familiar to the community that programs detailed
behaviors. Nevertheless, Alf allows UML textual syntax when it exists (e.g., colon syntax for typing, double colon syntax
for name qualification, etc.).

* Alf does not require graphical models to change in order to accommodate use of the action language (e.g., special
characters are allowed in names, arbitrary names are allowed for constructors, etc.). Further, while Alf maps to the f{UML
subset in order to provide its execution semantics, it is usable in context of models not limited to the f{UML subset.

e Alf provides a naming system that is based on UML namespaces for referencing elements outside of an activity but also
provides for the consistent use of local names to reference flows of values within an activity.

* Alfuses an implicit type system that allows but does not require the explicit declaration of typing within an activity,
always providing for static type checking, based at least on typing declared in the structural model elements.

* Alf has the expressivity of OCL in the use and manipulation of sequences of values. These sequence expressions are
fully executable in terms of f{UML expansion regions, allowing the simple and natural specification of highly concurrent
computations.

* While the primary goal of Alf is to be an action language, Alf also provides concrete syntax for structural modeling,
largely within the bounds of the f{UML subset.

2 Conformance

2.1 Overview

There are two main aspects of conformance to the Alf standard:
* Syntactic Conformance. Alf input text must conform syntactically to one of the levels defined below in 2.2.

* Semantic Conformance. A conforming modeling tool must process syntactically conforming Alf text in one of the ways
defined below in 2.3.

In addition, 2.4 defines two further mandatory conformance points.

2.2 Syntactic Conformance

Clause 6 discusses the overall requirements for processing of Alf input text. For the purposes of the present discussion of
syntactic conformance, “syntactic processing” includes lexical analysis, as specified in Clause 7, the parsing of the various
Alf features specified in Clauses 8 through 10 and the static semantic analysis of Alf abstract syntax trees specified in Clauses
12 through 15.

There are three levels of syntactic conformance, depending on whether syntactic processing must be supported for all features
specified in Clauses 8 through 10, or only some subset of them.

Action Language for Foundational UML (ALF), v1.1 1

1. Minimum Conformance. Conformance at this level requires the ability to process a subset of the syntax defined in
Clauses 8 and 9, but none of the syntax defined in Clause 10. The exact subset that must be supported is identified in
each of the syntactic grammar specifications in Clauses 8 and 9. The intent of Minimum Conformance is to provide a
subset of Alf that is usable for writing textual action language snippets within a larger graphical UML model and that
includes only the capabilities available in a traditional, procedural programming language.

2. Full Conformance. Conformance at this level requires the ability to process all the syntax defined in Clauses 8 and 9, but
none of the syntax defined in Clause 10. At Full Conformance, Alf provides a complete action language for representing
behavior within a structural model represented in a typical UML modeling environment outside of Alf (see 6.2).

3. Extended Conformance. Conformance level requires the ability to process all the syntax defined in Clauses 8, 9 and 10.
This includes not only the action language capabilities of Full Conformance, but also the structural modeling capabilities
defined in Clause 10.

2.3 Semantic Conformance

The execution semantics for Alf are described informally in Clauses 8 through 10 and specified by a formal mapping to
fUML in Clauses 16 through 19. A conforming execution tool must implement the specified semantics for the syntactic
subset of Alf to which the tool conforms.

The execution semantics for all Alf constructs are formally specified via their mapping to f{UML (see 6.7) and the execution
of the resulting fUML model per the semantics of the f{UML Specification. However, a conforming modeling tool does not
need to actually perform this mapping in order to execute Alf input text. Indeed, there are three ways in which the tool may
implement the specified Alf execution semantics.

1. Interpretive Execution. The modeling tool directly interprets and executes the Alf input text.

2. Compilative Execution. The modeling tool compiles the Alf text to a UML model conforming to the f{UML subset (at
level L3) and executes that per the semantics specified in the fUML Specification, perhaps in the context of the
execution of a larger model that may not conform to the f{UML subset.

NOTE. The compiled model resulting from the Alf text does not have to be the same as that resulting from the standard
mapping to f{UML defined in the Alf specification (though it must have an equivalent effect—see below), but it must be
conformant to the f{UML subset and thus executable by a f{UML-conforming execution tool.

3. Translational Execution. The modeling tool translates the Alf text, as well as any surrounding larger UML model as
appropriate, into some executable form on a non-UML target platform, and executes the translation on that platform.

In all cases, the portion of the execution corresponding to an Alf input text must have the equivalent effect to mapping that
text to fUML per the Alf specification and executing the resulting model per the semantics specified in the f{UML
Specification. For the purposes of semantic conformance as defined here, this means that:

* The effect of executing the Alf text within any larger containing model is per the equivalent f{UML semantics.

* Any visible effect produced by executing the Alf text within the target execution environment is per the equivalent f{UML
semantics (where, for the purposes of fUML semantics, the execution environment is as defined in Clause 2 of the f{UML
Specification).

2.4 Additional Conformance Points
There are two additional mandatory conformance points for this standard:
1. Template Semantics. Every conformant modeling tool must conform to the template semantics specified in 6.3.

2. Library Implementation. Every conformant modeling tool must provide an implementation of the Alf Standard Modeling
Library, conforming to the specification given in Clause 11.

2 Action Language for Foundational UML (ALF), v1.1

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification.

* OMG Unified Modeling Language (OMG UML), Infrastructure, Version 2.4.1
(http://www.omg.org/spec/UML/2.4.1/Infrastructure) — Referenced in the following as “UML Infrastructure”

* OMG Unified Modeling Language (OMG UML) Superstructure, Version 2.4.1
(http://www.omg.org/spec/UML/2.4.1/Superstructure) — Referenced in the following as “UML Superstructure”

* Semantics of a Foundational Subset for Executable UML Models (fUML), Version 1.
(http://www.omg.org/spec/FUML/1.3) — Referenced in the following as “fUML Specification”

* Object Constraint Language, Version 2.2 (http:/www.omg.org/spec/OCL/2.2) — Referenced in the following as “OCL
Specification”

4 Terms and Definitions

Execution Semantics

For the purposes of this specification, the behavioral semantics of UML constructs that specify operational action over time,
describing or constraining allowable behavior in the domain being modeled. (From the fUML Specification.)

Execution Tool

Any tool that is capable of executing any valid UML model that is based on the foundational subset and expressed as an
instantiation of the UML 2.0 abstract syntax metamodel. This may involve direct interpretation of UML models and/or
generation of equivalent computer programs from the models through some kind of automated transformations. Such a tool
may also itself be concurrent and distributed. (From the fUML Specification.)

Foundational Subset

The subset of UML to which execution semantics are given in order to provide a foundation for ultimately defining the
execution semantics of the rest of UML. (From the fUML Specification.)

Modeling Environment

A user environment provided by a modeling tool that allows for the creation and modification of a UML model. In a
modeling tool that is an execution tool, the modeling environment may also allow for direct execution of the model.

Modeling Tool

Any tool that allows for the creation and management of UML models. A modeling tool that allows those models to be
executed is also an execution tool.

5 Symbols

There are no symbols or abbreviated terms necessary for the understanding of this specification.

Action Language for Foundational UML (ALF), v1.1

http://www.omg.org/spec/OCL/2.2
http://www.omg.org/spec/FUML/1.3
http://www.omg.org/spec/FUML/1.3
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/UML/2.4.1/Infrastructure

This page intentionally left blank

Action Language for Foundational UML (ALF), v1.1

6 Overview

6.1 General

An Alf input text is a concrete representation for UML model elements in the Foundational UML (fUML) abstract syntax
subset (see f{UML Specification, Clause 7). Such an input text may be part of a wider UML model only parts of which are
represented in Alf, or it may be the representation of an entire model in its own right. In either case, this specification defines
how concrete Alf input text is processed into an abstract syntax representation of UML model elements.

6.2 Integration with UML Models

The UML Superstructure specification defines the standard graphical and textual notations used to express a UML model. In
this context, Alf can be used as an alternative textual notation to represent portions of the overall model. The following are
the ways in which Alf may be so used:

* Asdescribed in 8.1, an Alf expression may be used any place a UML value specification is allowed. This may be done
either by including the Alf text as the body of a UML opaque expression or the Alf text may be compiled into an
equivalent UML activity to act as the specification of such an expression. In addition, there are special syntactic forms
for instance creation and sequence construction expressions that do not require the explicit annotation of redundant type
information in Alf expressions that are used to specify the default values for properties or parameters.

* Asdescribed in 9.1, a sequence of Alf statements may be used in two ways:

1. To define the behavior of a UML action within an activity or interaction model. The Alf text may be included as the
body of a UML opaque action or it may be compiled into an equivalent UML structured activity node (which is a
kind of action).

2. To define the behavior of a complete UML behavior. The Alf text may be included as the body of a UML opaque
behavior or it may be compiled into an equivalent UML activity (which is a kind of behavior).

* Asdescribed in 10.1, an Alf model unit may be used to represent the model of a classifier or package that is intended to
be individually referenced as a named element. Such a model unit may represent an entire UML model (at least within
the limits of the f{UML subset) or it may represent a model element (such as a class or standalone activity) intended to be
used within some larger model.

Since an Alf text can be processed into a UML abstract syntax representation, a portion of a model represented in Alf can
always be integrated into a larger model on that basis (as noted above), regardless of the surface representation of any portion
of the model. Nevertheless, even when such compilation is done, it will generally still be desirable to also store the original
Alf text in the model, since it would not otherwise be possible to exactly reproduce that text (with user formatting, etc.) from
the model representation. This is done by attaching a comment to the top-level element resulting from the processing of an
Alf model unit with the Alf text for the unit as the body of the comment and the applied stereotype
«TextualRepresentation» with tagged value {language = "Alf"}. This stereotype is from the standard
ActionLanguage profile defined in 11.2.

6.3 Templates

Templates, defined in 17.5 of the UML Superstructure, are not included in the f{UML subset. Nevertheless, Alf text may be
used as snippets within the context of a wider model that is a template. Since template parameters are tied to parameterable
elements that are used as regular model elements within the context of the template model (see UML Superstructure, 17.5.1),
Alf text may refer to these elements in the usual way.

However, templates are particularly useful for modeling parameterized types, and they are, in fact, used in this way in the
CollectionClasses model in the Alf Standard Model Library (see 11.7). But Alf text that uses types that are instantiations
of such templates still needs to be mapped to fUML in order to provide its formal semantics. This requires a way to define the
semantics of template binding in terms of constructs available in the f{UML subset.

According to the UML Superstructure specification (17.5.2 TemplateableElement, under Semantics), “The semantics of a
[template] binding relationship is equivalent to the model elements that would result from copying the contents of the

Action Language for Foundational UML (ALF), v1.1 5

template into the bound element, replacing any elements exposed as a template parameter with the corresponding element(s)
specified as actual parameters in this binding.” This section also states that “In a canonical model a bound element does not

explicitly contain the model elements implied by expanding the templates it binds to, since those expansions are regarded as
derived.” However, by actually carrying out the expansion, one can obtain an equivalent model that does not explicitly refer
to the original template or the binding of its parameters. (This is analogous to the way other forms of derivation in the UML
abstract syntax model are handled in f{UML—see fUML Specification, 8.1.)

In order to make the explicit copy semantics of template binding more precise, an equivalent bound element may be
constructed for any element with a template binding by the following steps:

1. Copy the template associated with the template signature that is the target of the template binding. For the present
purposes, a copy of a model element is an instance of the same metaclass as the original model element that has the same
values as the original element for all non-composite properties (owned attributes and association ends) and copies (in the
same sense) of the values from the original element for all composite properties.

2. If the copy specializes any elements that are templates, then redirect the generalization relationships to equivalent bound
elements for the general elements, using the same template binding. If the copy is an operation that has an associated
method that is also a template, then replace that method with an equivalent bound element using the same template
binding.

NOTE. The UML Superstructure does not address the issue of methods of template operations. However, it is necessary
for the method of a template operation to also be a template, presumably with the same template parameters as the
operation. In particular, operation template parameters are typically used to parameterize the types of operation
parameters, but the method of an operation does not directly reference the parameters of the operation that specifies it.
Rather, the method has its own parameter list, which must match that of the operation (see UML Superstructure, 13.3.2).
The types of the method parameters would thus need to be separately templated to match the template parameterization
of the operation.

3. For each element owned directly or indirectly by the copy, replace any reference to the parametered element of a
template parameter of the copy with a reference to the actual element associated with the parameter in the template
binding (if any). If an actual element has a template binding itself, then reference the equivalent bound element.

4. Remove all template parameters that are referenced in the template binding from the template signature of the copy. If
this would remove all template parameters from the template signature, then remove the template signature entirely.

The syntax for template binding in Alf is defined in 8.2. Only a limited set of template bindings may be so notated in Alf.
Specifically:

* The binding must specify an actual element for every template parameter of the template.
* The element being bound must not have template parameters of its own.

Thus, the equivalent bound element (as defined above) for a template binding notated in Alf will always be a directly usable
non-template element. However, in this context, it is important that two identical template bindings be considered to result in
the same element. Otherwise, every template binding would lead to a separate instantiation of the template, even if the
bindings were equivalent, which would have undesirable consequences.

For example, a set of integers may be notated in Alf as Set<Integer>, using the standard template collection class Set and
the standard primitive type Integer. If each occurrence in a model of the Alf text “Set<Integer>" resulted in a different
equivalent bound element, then an object created using one such occurrence would not be type compatible with, say, a formal
parameter of an operation whose type is given by another such occurrence. Clearly this is not desirable.

Therefore, the template bindings within a model must be replaced as a whole using the following steps:

1. Partition the set of all elements with template bindings in the model into disjoint subsets of elements with identical
bindings. Two template bindings are considered identical if they have the same set of parameter substitutions. Two
parameter substitutions are considered to be the same if they reference the same formal parameter and actual element.

NOTE. The sameness of parameter substitutions is determined by the elements referenced, regardless of the names that
may be used to reference those elements in the Alf text for a template binding. That is, the use of unqualified names,
qualified names or aliases is irrelevant to the determination of whether two template bindings are identical, so long as
corresponding names resolve to the same element.

6 Action Language for Foundational UML (ALF), v1.1

2. For each subset, create a single equivalent bound element (as defined above), starting with any one member of the
subset.

3. Replace any reference to any element in the model with a template binding with a reference to the equivalent bound
element for its subset.

In order to simplify the identification of equivalent bound elements after the above substitutions are carried out, Alf defines a
standard naming convention for such elements, constructed as follows:

1. Take the fully qualified name of each actual element in the template binding and replace all ““: :” separators with “$”
characters. If the actual element is itself a template binding, then use the name of the equivalent bound element. If the
actual element is empty (null), then use “any” as the name of the actual element. (While the Alf syntax for template
bindings given in 8.2 does not actually allow any to be used as a template argument, such an argument can result from
the rules for the implicit binding for a template behavior as given in 8.3.9)

w9

2. Concatenate the modified names, separated by
underscores).

(one underscore), and prepended and postpended with " (two

3. Concatenate “$$”, the name of the target template of the template binding and the argument name list from 2 to produce
the standard name of the equivalent bound element.

For example, the standard name for the equivalent bound element for Set<Integer> is
$$Set UMLSAuxiliaryConstructs$PrimitiveTypesSInteger

Note that the qualified name for an element is determined by its owning namespace. Therefore, even though the name
“Integer” resolves in Alfto “Alf::Library::PrimitiveTypes:: Integer”, this element is just an import of
“UML: :AuxiliaryTypes::PrimitiveTypes:: Integer” (see 11.3), and it is the latter qualified name that is used.

Since the initial copy of the template model element also copies the reference to the namespace of the original template, the
equivalent bound element is considered to be added to that namespace. A modeling environment must disallow any user-
created element in a namespace with template elements with a name that would conflict with a standard equivalent bound
element name created as defined above.

NOTE. The concept of equivalent bound elements defined above is intended to provide a specification of the semantics of
template instantiation compatible with execution semantics that are defined only on the fUML subset. It is not required that a
conforming implementation actually physically generate equivalent bound elements in order to execute Alf text, particularly
if that implementation semantically conforms through interpretive or translational execution (see 2.3). However, an
implementation that conforms through compilative execution must produce a UML model conforming to the fUML subset, in
which case the implementation would, in fact, need to replace templates and bindings with equivalent elements as described
here (or similar elements with an equivalent effect, as discussed in 2.3).

6.4 Lexical Structure

The lexical structure of Alf defines how the string of characters in an Alf input text is divided into a set of input elements.
Such input elements can be categorized as whitespace, comments, or tokens.

Lexical analysis is the process of converting an Alf input text into a corresponding stream of input elements. After lexical
analysis, whitespace and comments are discarded and only tokens are retained for the subsequent step of parsing. Lexical
analysis for Alf is thus essentially the same as is done for the processing of any typical textual programming language.

The Alf lexical structure is specified by a lexical grammar in which characters are terminal elements and the input elements
resulting from lexical analysis are non-terminal elements. The lexical grammar is defined using an Extended Backus-Naur
Form (EBNF) notation, whose conventions are given in Table 6.1.

Action Language for Foundational UML (ALF), v1.1 7

Table 6.1 EBNF Notation Conventions

Terminal element "terminal"

Non-terminal element NonterminalElement
Sequential elements Elementl Element?2
Alternative elements Elementl | Element2
Optional element (zero or one) [Element]

Repeated element (zero or more) { Element }

Production definition NonterminalElement = ..

* The escape sequences given in Table 7.1 are also used to represent the corresponding special characters within terminal
elements in the EBNF notation.

6.5 Concrete Syntax

The concrete syntax of Alf defines how lexical tokens are grouped into an abstract syntax tree. Parsing is the process of
constructing an abstract syntax tree from the tokens produced by the lexical analysis of an Alf text. The parsing of an Alf
input text is thus essentially the same as is done for the processing of any typical textual programming language.

The Alf concrete syntax is specified by a syntactic grammar whose definition is also based on the EBNF notation given in
Table 6.1. However, elements of the productions in the syntactic grammar are further annotated to indicate how an abstract
syntax tree is to be constructed during parsing. The EBNF specification of Alf syntax provides the basis for the context-free
parsing of an Alf input text. Context-dependent constraints are then enforced on the abstract syntax representation.

As described further below in 6.6, the abstract syntax for Alf is specified as a UML class model. A production in the syntactic
grammar results in the synthesis of an instance of a class in the abstract syntax. The production definition defines a name for
the instance being synthesized, which is used in the body of the production, and declares the class of the instance.

For example, the production

LocalNameDeclarationStatement (s: LocalNameDeclarationStatement)
= NameDeclaration(s) "=" InitializationExpression (s.expression)

n.mn
’

declares that it synthesizes an object called s of class LocalNameDeclarationStatement. Note the name of the class of
the synthesized object is often the same as the non-terminal defined by the production, as in this example, but this is not
always the case.

Annotations are parenthesized in the body of a production. There are several forms of annotation, as shown in Table 6.2. For
example, the body of the production given above may be read as follows: a LocalNameDeclarationStatement consists
of a NameDeclaration (which is parsed into the object s), followed by “=", followed by an
InitializationExpression (the abstract syntax representation of which is assigned to the expression attribute of

[T

object s), followed by a «;

8 Action Language for Foundational UML (ALF), v1.1

Table 6.2 Abstract Syntax Synthesis Notation

Non-terminal object NonterminalElement (x) The object x is constrained to be the same as the
constraint object synthesized for the immediately preceding
non-terminal element.

Non-terminal property | NonterminalElement (x.p) The object synthesized for the immediately
constraint preceding non-terminal element is added to the list
of values of property p of object x. If the non-
terminal element is a lexical token, then the string
image of the token is added to the property.

Terminal string "terminal" (x) The synthesized “object” x, which must have the
constraint primitive type String, is constrained to have the
string image of the immediately preceding terminal
element as it’s value.

Terminal property "terminal" (x.p) The string image of the immediately preceding
constraint terminal element is added to the list of values of
property p of object x.

General constraint (expr) The OCL constraint expression expr must be true.

If an annotation appears in an alternative or optional element group, then it only applies if the content of that group actually
applies during parsing. If an annotation appears in a repeating group, then it applies during each repeated application of the
content of that group.

For example, the following is the production for the non-terminal NameDeclaration used in the body of the production for
LocalNameDeclarationStatement above.

NameDeclaration(s: LocalNameDeclarationStatement)
= "let" Name (s.name) ":" TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)]
| TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)] Name (s.name)

According to this production, a NameDeclaration may have one of two alternative forms:

* The terminal element “1et”, followed by a Name (a lexical token whose string image is assigned to the name property of
object s), followed by a “:”, followed by a TypeName (whose value is assigned to s . typeName), optionally followed by
aMultiplicityIndicator (ifthereisaMultiplicityIndicator,then s.hasMultiplicity mustbe true).

* A TypeName (whose value is assigned to s . typeName) optionally followed by a MultiplicityIndicator (if there is
aMultiplicityIndicator,then s.hasMultiplicity must be true), followed by a Name (whose string image is
assigned to s.name).

Finally, consider the production

ColonQualifiedName (g: QualifiedName)
= Name (g.name) "::" { Name(g.name) "::" } Name (gq.name)

In this case, the first name is assigned to the property g.name, and then subsequent names, if any, are appended as additional
values of that same property. Clearly, for this to be valid, the property QualifiedName: : name must have a multiplicity
upper bound of *.

Technically, the Alf concrete syntax is specified (as described above) using a simplified form of an attributive grammar. Each
production has a single synthesized attribute. In an attributive grammar, the values for synthesized attributes are passed
upwards in the parse tree. The Alf concrete grammar does not include any inherited attributes, however. Inherited attributes
are passed downwards in the parse tree in order to enforce context-sensitive constraints. For Alf, such constraints are instead
specified on the abstract syntax representation after parsing.

Action Language for Foundational UML (ALF), v1.1 9

6.6 Abstract Syntax

The abstract syntax for Alf is a UML class model of the tree of objects synthesized from parsing an Alf text (as described
above in 6.5). The Alf concrete syntax is context free and parsing based on this syntax results in a strictly hierarchical parse
tree. The synthesized abstract syntax tree is an abstraction of the complete parse tree—for example, punctuation symbols are
not included in the abstract syntax tree—but it is still a hierarchical tree structure.

SyntaxElement

AN

DocumentedElement |Qua|ifiedName| | Expression| | Tuple | | LeftHandSide |

| NameBinding | | FeatureReference | | NamedExpression | Expressions

| TemplateBinding| |TemplateParameterSubstitution| | SequenceElements |

+documentation : String [*]
FAS

| Statement | |Block | |NonFinaICIause | |SwitchCIause| AcceptBlock
Statements
|Annotation | |ConcurrentCIauses | | LoopVariableDefinition | |QualifiedNameList |
|UnitDefinition| | Member | |ImportReference | |StereotypeAnnotation| |TaggedVaIue| |TaggedVaIueList| Units

Figure 6.1 Top-Level Syntax Element Classes

The nodes of an abstract syntax tree are objects known as syntax elements. Every syntax element class descends from the root
abstract class SyntaxElement. Figure 6.1 shows this root class and its top-level descendents. Note that certain of the classes
shown in Figure 6.1 are subclasses of the intermediate DocumentedElement class. These classes represent elements that may
be annotated with documentation comments (see 7.5.3) that are preserved in the ultimate fUML model, as opposed to lexical
comments (see 7.5.2), which are not so preserved.

While the abstract syntax tree synthesized from parsing an Alf text is strictly hierarchical, there are important non-
hierarchical relationships and constraints between Alf elements that may be determined solely from static analysis of the
abstract syntax tree. Such static semantic analysis is also common in the processing of a typical programming language,
particularly for resolving names and type checking. However, the analysis for Alf is somewhat different than for the typical
case, since it is used to gather additional information required for mapping to fUML, rather than generating machine code as
in the case of a programming language.

6.7 Mapping to Foundational UML

The final step in the processing of an Alf input text is the mapping of the abstract syntax tree for the text, completed with
derived property values from static semantic analysis, to a representation in terms of the f{UML abstract syntax; that is, as
interrelated instances of the abstract syntax metaclasses specified in Clause 7 of the f{UML Specification. The f{UML abstract
syntax representation can be built via a generally depth-first traversal of the Alf abstract syntax tree, with the static semantic
information providing non-hierarchical relationships across the tree structure.

10 Action Language for Foundational UML (ALF), v1.1

Concurrency

Most mainstream programming languages are based on an inherently sequential model of computation. Statements are
executed sequentially, argument expressions are evaluated in lexical order, etc. In many cases, however, such specifically
fined-grained sequential execution (especially in expressions) is entirely inessential to the computation being carried out and
unnecessarily restricts the options for how the computation can be implemented. This has become a problem, for example, in
implementing such languages in a way that takes advantage of the increasing amount of parallelism available in mainstream
hardware platforms.

On the other hand, the execution semantics for activities in f{UML are inherently concurrent. In general, the semantics of
UML activities place no restriction on the concurrent execution of nodes within the activity, other than that imposed by the
explicit object and control flows between those nodes, and the Alf mapping to fUML takes advantage of this concurrency in
many places, particularly in the mapping of expressions. For example, the argument expressions in an operation invocation or
an arithmetic expression are evaluated concurrently, rather than sequentially.

However, as noted in fUML Specification, 8.5.2.1 (under the Threading Model heading), the concurrency in the fUML
semantics “does not require the implementation of actual parallelism in a conforming execution tool. It simply means that
such parallelism is allowed and that the execution semantics provide no further restriction on the serialization of execution
across concurrent [computations].”

Correspondingly, any place in the description of the Alf semantics that computations are specified to be concurrent, this
should be understood to simply mean that there is no requirement that they be carried out in any particular sequential order. If
desired, though, a conformant tool may still carry out the computations completely sequentially, in any desired order. Or it
may actually carry out some or all of the computations in parallel, either virtually (e.g., in separate threads) or physically (on
separate processors).

6.8 Organization of the Specification
This Alf specification document is organized into five parts.

The first part comprises the initial clauses, through Clause 6. These clauses contain introductory material and an overview of
how the Alf language is defined.

The second part contains a complete description of the Alf language. Clause 7 defines the lexical structure for Alf, which
specifies how lexical analysis is to be carried out for an Alf input text. Clauses 8 through 10 provide the core description of
Alf constructs in the syntactic areas of expressions, statements and units. Within these clauses, the for each construct formally
defines its concrete syntax and the synthesis of the abstract syntax from that. Each also includes examples of the use of the
construct and an informal description of the semantics of the construct. Clause 11 defines a standard model library that must
be provided with any Alf implementation. This library includes the fUML Foundational Model Library (see Clause 9 of the
fUML Specification) plus additional primitive types and primitive behaviors. It also includes a set of collection classes and
the profile used in attaching Alf text to the models to which that text was mapped.

The third part provides the complete definition of the abstract syntax of Alf, including the formal specification of the static
semantics for Alf in terms of additional derived properties and constraints. Each of the four clauses in this part correspond to
a package in the top-level decomposition of the Alf abstract syntax model.

The fourth part gives the formal mapping of the abstract syntax, as annotated during static semantic analysis, to the f{UML
subset of the UML abstract syntax. The four clauses in this part also correspond to the abstract syntax packages.

The fifth part comprises the annexes, all of which are informative, not normative. Annex A discusses the integration of Alf
execution semantics with the non-fUML execution semantics of state machine and composite structure models. Annex B
provides a number of extended examples of the use of Alf. Annex C provides a grammar for all of Alf, in a form better suited
to automated processing than the productions used in the main body of the specification, which are intended for clarity of
presentation rather than processing.

6.9 Acknowledgments
The following people from the various submitting organizations contributed to this specification:
* Ed Seidewitz, Model Driven Solutions

* Kim Letkeman, IBM

Action Language for Foundational UML (ALF), v1.1 1

* Stephen Mellor, Mentor Graphics
e Manfred Koethe, 88 Solutions
e Nerijus Jankevicius, No Magic

We would also like to acknowledge Doug Tolbert, CSC, for his thorough review of the specification as the head of the
Evaluation Working Group.

12 Action Language for Foundational UML (ALF), v1.1

7 Lexical Structure

7.1 General

Lexically, an Alf input text can be considered to be a sequence of input elements. This clause describes the structure of these
input elements. After lexical analysis, the text can then be interpreted as a sequence of fokens that are then parsed according
to the Alf syntax, as defined in Clauses 8 through 10.

7.2 Line Terminators

The input text can be divided up into lines separated by line terminators. A line terminator may be a single character (such as
a line feed) or a sequence of characters (such as a carriage return/line feed combination). This specification does not require
any specific encoding for a line terminator, but any encoding used must be consistent throughout any specific input text. Any
characters in the input text that are not a part of line terminators are referred to as input characters.

Grammar

LineTerminator
_ vv\nn
InputCharacter
= any character other than LineTerminator

7.3 Input Elements and Tokens

An input element can be white space, a lexical comment or a token. Tokens include documentation comments, names,
reserved words, literals, punctuation and operators. After white space and lexical comments are removed, the sequence of
tokens is interpreted according to the Alf syntax.

Grammar

InputText
= InputElement { InputElement }
InputElement
= WhiteSpace
| LexicalComment
| Token
Token = DocumentationComment
| Name
| ReservedWord
| Literal
| Punctuation
| Operator

Cross References

1. WhiteSpace see 7.4
2. LexicalComment see 7.5.2
3. DocumentationComment see 7.5.3
4. Name see 7.6
5. ReservedWord see 7.7
6. Literal see 7.8
7. Punctuation see 7.9
8. Operator see 7.10

Action Language for Foundational UML (ALF), v1.1 13

7.4 White Space

A white space character is a space, tab, form feed or line terminator. Any contiguous sequence of white space characters can
be used to separate tokens that would otherwise be considered to be part of a single token. It is otherwise ignored.

There are two cases in which the line terminator is not syntactically considered to be white space. A list of annotations for a
statement begins with the token “//@” and must end in a line terminator (see 9.2). And the heading for an in-line statement
begins with the token “/+*@” and must end in a line terminator (see 9.3).

Grammar

WhiteSpace
o " " ‘ "\tll | ll\f"
| LineTerminator

Cross References

1. LineTerminator see 7.2
7.5 Comments

7.5.1 General

Comments are used to annotate other elements of the input text. They have no computable semantics, but simply provide
information useful to a human reader of the text. There are three kinds of comments:

1. An end-of-line comment includes all the text from the initial characters “//” to the end of the line, except that “//@”
begins a statement annotation rather than a comment (see 9.2).

2. An in-line comment includes all the text from the initial characters “/*” to the final characters “* /7, except that “/**”
begins a documentation comment rather than a lexical comment (see below) and ““/*@” begins an inline code block (see
9.2).

3. A documentation comment includes all the text from the initial characters “/**” to the final characters “*/”. The comment
text is the text between the initial characters “/**” and the final characters “*/”.

The first two kinds of comments are together known as lexical comments.

7.5.2 Lexical Comments

Lexical comments are not considered tokens. Therefore they are stripped from the input text and not parsed as part of the Alf
syntax. The comment symbols and all comment text are ignored. However, a comment cannot occur within a name (see 7.6)
or a string literal (see 7.8.5).

Examples
// This is an end-of-line comment and will be ignored.

/* This is an in-line comment and will be ignored. */

Grammar
LexicalComment

= EndOfLineComment

| InLineComment
EndOfLineComment

= "//" [NotAt { InputCharacter }] LineTerminator
NotAt = InputCharacter but not "@"
InLineComment

= "/*" [NotStarNotAt CommentText] "*/"
CommentText

= { NotStar } [StarCommentText]
StarCommentText

= "*" [NotStarNotSlash CommentText]

14 Action Language for Foundational UML (ALF), v1.1

NotStar
= InputCharacter but not "*"
| LineTerminator

NotStarNotAt
= InputCharacter but not "*" or "@"
| LineTerminator

NotStarNotSlash
= InputCharacter but not "*" or "/"
| LineTerminator

Cross References
1. InputCharacter see 7.2

2. LineTerminator see 7.2

7.5.3 Documentation Comments

Unlike lexical comments, documentation comments are lexically processed as tokens and can therefore be included as
syntactic elements. The intent is for documentation comments to be mapped to UML comment elements, containing the
comment text, that are actually included as part of the target model. Note that line terminators are allowed within
documentation comments.

Examples

/** This is documentation text to be included in the model. */

Grammar

DocumentationComment
= "/**" CommentText "*/"

Cross References

1. CommentText see 7.5.2

7.6 Names

The name of a named element denotes the element without reference to the namespace of which it is a member (if any). A
name may contain any character. However, names that have the form of identifiers may be represented more simply.

The initial character of an identifier must be one of a lowercase letter, an uppercase letter or an underscore. The remaining
characters of an identifier are allowed to be any character allowed as an initial character plus any digit. However, a reserved
word may not be used as a name, even though it has the form of an identifier (see 7.7). The Boolean literals t rue and
false also have the form of identifiers, but they are considered lexically to be primitive literals rather than names (see
7.8.2).

An unrestricted name, on the other hand, is represented as a non-empty sequence of characters surrounded by single quotes.
The characters within the single quotes may not include non-printable characters (including backspace, tab and newline).
However, these characters may be included as part of the name itself through use of an escape sequence. In addition, the
single quote character or the backslash character may only be included by using an escape sequence.

An escape sequence is a sequence of two text characters starting with the backslash as an escape character, which actually
denotes only a single character (except for the newline escape sequence, which represents however many characters is
necessary to represent an end of line in a specific implementation—see 7.2). Table 7.1 shows the meaning of the allowed
escape sequences.

Action Language for Foundational UML (ALF), v1.1 15

Table 7.1 Escape Sequences

Escape Sequence Meaning
\' Single Quote
\" Double Quote
\b Backspace
\f Form Feed
\t Tab
\n Line Terminator
AN\ Backslash

It is an error to follow a backslash in an unrestricted name with any other character than allowed in one of the escape
sequences above.

Two names are the same if and only if they are composed of the same characters in the same sequence. In particular the case
of alphabetic characters is significant (both in identifiers and unrestricted names).

However, an implementation is permitted to consider two names to be conflicting even if they are not the same, but every
implementation must observe at least the following rules:

e Two different identifiers are never conflicting.

* The corresponding identifier for an unrestricted name is the identifier that results from prepending the name with an
underscore and then removing all non-alphanumeric characters from the name other than underscore (_) and dollar sign
(). If the corresponding identifiers for two unrestricted names are different, then the original names do not conflict.

NOTE. The above implementation freedom for name conflicts is intended to make the handling of names simpler for
implementations that map Alf text to a target language in which all names must follow the grammar of identifiers. The
prepended underscore in a corresponding identifier assures that the result is a legal identifier even if the result would
otherwise begin with a number or be empty. Dollar signs are included in corresponding identifiers because they are used in
the standard names for equivalent bound elements—see 6.3.

Examples
customer
nextOrder

vy

'orders in cart'
'On/0ff Switch'

Grammar

Name = Identifier

| UnrestrictedName
Identifier

= IdentifierChars but not a ReservedWord or BooleanLiteral
IdentifierChars

= IdentifierlLetter { IdentifierLetterOrDigit }
IdentifierLetterOrDigit

= IdentifierLetter
| Digit
IdentifierLetter
o " a " . " Z " ["A" . AL Z AL [AL AL
Digit = "O" ;
| NonzeroDigit
NonzeroDigit
o " 1 " . " 9 "

16 Action Language for Foundational UML (ALF), v1.1

UnrestrictedName
= "'" NameCharacter { NameCharacter } "'"
NameCharacter
= InputCharacter but not "'" or "\\"
| EscapeSequence
EscapeSequence
= "\\" EscapedCharacter
EscapedCharacter
R B A S L S B L B L AN

Cross References

1. InputCharacter see 7.2

7.7 Reserved Words

A reserved word is a token that has the lexical structure of an identifier but is not allowed to actually be used as an identifier

(see 7.6).
Grammar
ReservedWord
= "abstract" | "accept" | "active" | "activity" | "allInstances" | "any" | "as"
| "assoc" | "break" | "case" | "class" | "classify" | "clearAssoc" | "compose"
| "createLink" | "datatype" | "default" | "destroyLink" | "do" | "else" | "enum"
| "for"™ | "from" | "hastype" | "if" | "import"™ | "in" | "inout" | "instanceof"
| "namespace" | "new" | "nonunique" | "null" | "or" | "ordered" | "out" | "package"
| "private" | "protected" | "public" | "receive" | "redefines" | "reduce" | "return"
| "sequence" | "specializes" | "super" | "signal" | "switch" | "this" | "to" |

7.8 Primitive Literals

7.8.1 General

A primitive literal is used to represent the value of a primitive type. Note that an enumeration literal is not actually denoted as

a literal in a lexical sense, but rather by its name as a named element (see also 8.3.3 on name expressions).

Grammar

PrimitiveLiteral
= BooleanLiteral
| NaturallLiteral
| UnboundedValueliteral
| StringLiteral

Cross References

1. BooleanLiteral see 7.8.2
2. NaturalLiteral see 7.8.3
3. UnboundedValueLiteral see 7.8.4
4. StringLiteral see 7.8.5
5

7.8.2 Boolean Literals

A Boolean literal represents a literal Boolean model element, with the primitive type Boolean. The literal “true” represents

an element with the value true, while the literal “false” represents an element with the value false.

Action Language for Foundational UML (ALF), v1.1

Grammar

BooleanLiteral
= "true" | "false"

7.8.3 Natural Literals

A natural literal represents a natural number—that is, a non-negative integer. The sets of values of the primitive types
Integer and UnlimitedNatural both have the natural numbers as a subset. A natural literal may thus be used to represent
values of either of these types.

NOTE. An effective literal for negative values of type Integer can be obtained by applying the unary numeric negation
operator (see 8.5.4) to a natural literal. The unbounded value of type UnlimitedNatural has its own literal (see 7.8.4).

The Alf standard model library PrimitiveTypes package includes the type Natural that is a specialization of both
Integer and UnlimitedNatural (see 11.3.2), and natural literals are considered to inherently have this type. However,
since UML does not provide any literal specification metamodel representation for Natural, any time a natural literal is
used, it must be possible to determine from context whether it is an integer or an unlimited natural value that is actually
required, so the proper metamodel representation can be chosen when the literal is mapped to fUML. If this cannot be
determined implicitly, then an explicit cast (see 8.5.5) to type Integer or type UnlimitedNatural must be used.

A natural literal may be expressed in decimal (base 10), binary (base 2), octal (base 8) or hexadecimal (base 16). A decimal
literal consists of either the single character “0”, representing the integer 0, or a digit from “1” to “9” optionally followed by
one or more digits from “0” to “9”, representing a positive integer. A binary literal consists of the prefix “0b” or “0B”
followed by one or more of the binary digits “0” or “1”. A hexadecimal literal consists of the prefix “0x” or “0x” followed by
one or more hexadecimal digits. Hexadecimal digits with values 10 through 15 are represented by the letters “a” through “£”
or “A” through “F”, respectively (case is not significant). An octal literal consists of the digit “0” followed by one or more
digits from “0” to “7”. Underscores may be inserted between digits but are ignored in determining the value of the literal.

Subclause 9.3.2 of the fUML Specification allows a conforming implementation to limit the supported values for Integer
and UnlimitedNatural types to a finite set. An Alf implementation may also adopt such a limitation, in which case it may
reject any natural literal representing a value outside the supported set.

Examples

1234

0

0b1010111000010000
0B0100 1010 0101 1011
0xAE10

0X4a_ 5b

057410

0 045 133

Grammar

NaturallLiteral

= DecimallLiteral

| BinaryLiteral

| HexLiteral

| Octalliteral
DecimallLiteral

= nQn

| NonzeroDigit { [" "] Digit }
BinaryLiteral

= BinaryPrefix BinaryDigit { [" "] BinaryDigit }
BinaryPrefix

= "Q" "b"

["Oo" "B"

18 Action Language for Foundational UML (ALF), v1.1

BinaryDigit

= "Q" | "iv
HexLiteral

= HexPrefix HexDigit { ["_ "] HexDigit }
HexPrefix

= "Q" "x"

["o"™ "xX"
HexDigit

= Digit

| "a" .. "f"

| A" L "E"
OctallLiteral

= "0" [" "] OctalDigit { [" "] OctalbDigit }
OctalDigit

= "Qo" .. """

Cross References
1. NonzeroDigit see 7.6
2. Digit see 7.6

7.8.4 Unbounded Value Literals

An unbounded value literal represents a literal unlimited natural model element for the value unbounded of the primitive type
UnlimitedNatural. Other unlimited natural values are represented as natural literals (see 7.8.3).

Grammar

UnboundedValuelLiteral

— nxn

7.8.5 String Literals

A string literal represents a literal string model element, with the primitive type String. The string value of the element is
given as a sequence of characters, with escape characters resolving to their meaning as given in 7.6, surrounded by double
quote characters (which are not included as part of the string value). The empty string is represented by a pair of double quote
characters with no other characters intervening between them.

Examples

"This is a string."

"This is a string with a quote character (\") in it."
"This is a string with a new line (\n) in it."
Grammar

StringLiteral
= "\"" { StringCharacter } "\""
StringCharacter
= InputCharacter but not "\"" or "\\"
| EscapeSequence

Cross References
1. InputCharacter see 7.3

2. EscapeSequence see 7.6

7.8.6 Real Literals

A real literal represents a real number, with the primitive type Real. A real literal consists of a decimal (base 10) whole-
number part, optionally followed by a decimal point and a decimal fraction part, optionally followed by an exponent (power
of 10) part. If a real literal includes an exponent, then the decimal point is optional; otherwise it is required (even if not
followed by a fraction part). An exponent part is indicated by the letter “e” or “E”, followed by an optionally signed integer.

Action Language for Foundational UML (ALF), v1.1 19

Underscores may be inserted between digits in the whole-number, fraction or exponent parts, but are ignored in determining
the value of the literal.

Subclause 9.3.3 of the fUML Specification allows a conforming implementation to limit the range of the supported values for

type Real. An Alf implementation may also adopt such a limitation, in which case it may reject any real literal representing a

value outside the supported range. The fUML Specification also allows a conforming implementation to only support a
restricted value set for type Real. An Alf implementation may also adopt such a limitation, in which case it may map the

value of a real literal to the closest value supported within the implemented value set. Finally, the fUML Specification allows
a conforming implementation to include additional special values that are instances of the Real type but are not numeric
values (such as infinite values and “not a number” values used in some floating-point implementations). Alf does not provide
real literal representations for such values.

Examples

3.14

0.0
1234.

.0625

o

E3

314e+1

NN O

.314
E-10

6.022 140 9e+23

0.1E1_000

Grammar

Realliteral
= [DecimalNumeral] "." DecimalNumeral [ExponentPart]
| DecimalNumeral ExponentPart

DecimalNumeral
= Digit { ["™ "™] Digit }

ExponentPart
= ExponentIndicator [Sign] DecimalNumeral

ExponentIndicator
= Heﬂ ‘ HEH

Sign = "4" | "-»

Cross References
1. Digit see 7.6

7.9 Punctuation

The tokens below are considered to be punctuation.

NOTE. Some tokens below are made up of two symbols that may themselves individually be tokens. Nevertheless, the two-
symbol token is not considered a combination of the individual symbol tokens. For example, “: :” is considered a single
token, not a combination of two ““:” tokens. Input characters are grouped from left to right to form the longest possible
sequence of characters to be grouped into a single token. Thus “a: : : b” would analyzed into four tokens: “a”, “: :”, “:” and

“b”
Grammar

Punctuation

- n (ll | ll) n | "{" | "}" | " [ll | "] " | wmen non L nen

I " " | e .omn I n=yn | nosn

20 Action Language for Foundational UML (ALF), v1.1

7.10 Operators

The tokens below are considered to be operators.

Grammar

Operator
P nmn_mn | ll>ll ‘ "<" | " ! " ‘ m"w.on | n ?ll ‘ "@"
‘ mw__mn | H<:ll ‘ " >:H | n ! =" ‘ " && n | n ‘ | " ‘ " ++ n
‘ "+" | n_n ‘ mxn | " / " ‘ " &" | " ‘ " ‘ nmAn
‘ ny=n | w__m ‘ Wi _—n | H/:ll ‘ " &:H | " ‘:ll ‘ nwA_mn
‘ "<<ll | ll>>" ‘ ">>>" ‘ "<<:" ‘ ">>:" ‘ ">>>:ll

Action Language for Foundational UML (ALF), v1.1

21

22

This page intentionally left blank

Action Language for Foundational UML (ALF), v1.1

8 Expressions

8.1 Overview

An expression is a behavioral unit that evaluates to a (possibly empty) collection of values. Expressions may also have side
effects, such as changing the value of an attribute of an object.

The full conformance level includes all kinds of expressions specified in this clause. However, the minimum conformance
level only requires a subset of the full expression syntax. Therefore, in each of the concrete syntax grammar productions
given in the subclauses of this clause, some portion of the production may be italicized. Only the italicized portions apply at
the minimum conformance level. Unitalicized portions may be ignored for minimum conformance. (See also 2.2 on the
definition of syntactic conformance.)

This subclause describes the top-level syntax and semantics for expressions. The next level categorization of expressions
syntactically is into conditional-test expressions (see 8.7) and assignment expressions (see 8.8). However, in the subclauses
following this subclause, expressions are described in a traditional “bottom up” fashion, starting with the simplest forms of
expressions and working back up to conditional-test and assignment expressions.

Syntax

Expression(e: Expression)
= ConditionalExpression (e)
| AssignmentExpression (e)

SyntaxElement

|

Expression

Figure 8.1 Base Abstract Syntax for Expressions

Cross References

1. Syntax Element see 6.6
2. ConditionalExpression see 8.7
3. AssignmentExpression see 8.8
Semantics

Integration with UML

An Alf expression can be inserted into a UML model using an opaque expression (UML Specification, 7.3.35) in which the
unprocessed text of the Alf expression is used as the body of the opaque expression and the corresponding language string is
"al£". Opaque expressions are kinds of value specifications (UML Specification, 7.3.54). Thus, an Alf expression may be
used in a UML model any place that a value specification is allowed.

In addition, a special form of initialization expression may be for instance creation and sequence construction expressions
acting as the specification of default values of properties or parameters. In such initialization expressions, an explicit
description of the type of the expression does not need to be included, as is the case for normal instance creation and
sequence construction expressions, since this can be inferred from the declared type of the property or parameter. (Instance
creation expressions are described in 8.3.12 and sequence construction expressions are described in 8.3.15. The use of their
special forms in initialization descriptions within Alf is discussed for local name declaration statements in 9.6 and for
property initialization in 10.5.2.)

Action Language for Foundational UML (ALF), v1.1 23

The execution semantics of an Alf expression are given formally by the mapping to UML activity graphs given in the
following subclauses. An Alf expression can therefore always be compiled to a part or all of a UML activity model (which
does not necessarily need to be the same as the formal mapping, but must have an equivalent effect to it—see 2.3). If the
expression appears as part of a statement, then the compilation of the expression will be part of the compilation of the
statement (see Clause 9). Otherwise, the compilation of the expression may be inserted as an activity that is the associated
behavior of a corresponding opaque expression (see UML Superstructure 13.3.21) that is constructed as follows:

* Asingle return parameter of the type of the Alf expression.

* The activity nodes and edges resulting from the compilation of the Alf expression (semantically equivalent to the formal
mapping as specified in the following subclauses).

* A single activity parameter node associated with the return parameter, which becomes the target of an outgoing object
flow from the result source element from the mapping of the Alf expression (see the definition of “result source element”
given under Mapping below).

Indeed, the semantics of an opaque expression that only includes unprocessed Alf text in its body may be considered
equivalent to an opaque expression with an associated behavior constructed strictly according to the formal fUML mapping
for the Alf expression.

NOTE. Opaque expressions are not included at all in fUML, so the execution of such an expression, even one with a
behavior conformant to the Alf subset, is still not fully defined within by the f{UML standard.

An expression either has a statically determined #ype or can be statically determined to be untyped. All values resulting from
evaluation of the expression will be of the type of the expression, if it has one. If the expression is untyped, then the result
values may have any type. For simplicity of terminology in this clause, an untyped expression will be referred to as having
“type any”.

An expression also has a statically determined multiplicity. The number of values resulting from the evaluation of the
expression will be no smaller than the multiplicity lower bound and no higher than the multiplicity upper bound (or
unbounded if the upper bound is the unbounded value “*”).

Local Names and Assigned Sources

The evaluation of an expression may depend on the values assigned to local names used in the expression. Local names are
used in Alf to denote intermediate values in computations within a statement sequence (see 9.1). Alf is designed so, on the
surface, local names can be assigned and reassigned in a similar way to variables in more traditional programming languages.
However, the underlying fUML metamodel for actions and activities is fundamentally based on data flow, not on an implicit
underlying store of variables. Therefore, the assignments of and references to local names in an Alf input text need to be
mapped to appropriate object flow edges from the mapping of the appropriate assignment to the mapping of the reference that
requires that assigned value.

Carrying out this mapping requires an analysis of the set of local names that are statically known to have assigned values
during the execution of any Alf statement. The assigned source for a local name is the syntax element that, when executed,
will provide the actual assigned value for that local name. If the assigned source for a local name is known, then a reference
to the assigned value of that local name can be mapped to an object flow from the mapping of the assigned source. (See also
the discussion of local names relative to statements in Clause 9.)

Since a local name may also be defined or reassigned within an expression, one can refer to the assignments (i.e., the
statically determined assigned sources) for local names both before and after the evaluation of an expression. Most kinds of
expressions do not actually themselves change the assigned source of a name. An assignment expression (see 8.8) is, of
course, the main kind of expression that changes the assigned source for a name. However, invocation expressions (see 8.3.7)
may assign names via out and inout parameters. Increment and decrement expressions also act as assignments (see 8.4).

Other than the kinds of expressions listed above, the only way that an assigned source may change in an expression is if it
contains one of the above kinds of expression, directly or indirectly, as a subexpression. Unless otherwise stated, it can be
assumed that the assigned source of a name before any subexpression of an expression is the same as the assigned source

before the expression.

Further, in general, it is only legal to assign a name in at most one subexpression of any expression. Therefore, unless
otherwise stated, the assigned source for a name after an expression is the same as after any subexpression. Specific
assignment rules for various kinds of expressions are described in their respective subclauses.

24 Action Language for Foundational UML (ALF), v1.1

NOTE. The above rule allows most subexpressions to be evaluated concurrently.

8.2 Qualified Names

A name is used to identify a UML named element (see UML Superstructure, 7.3.34), which may or may not be a member of
one or more namespaces (see UML Superstructure, 7.3.35). A named element that is not a member of any namespace is
referred to as a local name, and the scope within which it can be referenced is limited. In contrast, a named element that is a
member of a namespace may be referenced from outside the namespace in which it is defined (depending on its visibility —
see UML Superstructure, 7.3.56) and, if defined in a package (see UML Superstructure, 7.3.38), may be imported into
another namespace (see UML Superstructure, subclauses 7.3.15 and 7.3.40).

A namespace is itself a named element. A qualified name is one that includes both the unqualified name of a named element
as well as the name of a namespace of which the named element is a member. The name of the namespace may or may not
itself be qualified. A local name is never qualified.

A qualified name has the form of a list of the names of namespaces followed by the unqualified name of the named element.
Syntactically, the names in the list are separated by the either the symbol ““: :”” or the symbol ““.”

NOTE. The UML Superstructure specifies the symbol “: :” as the separator used in qualified names. However, it is also

common in other languages to use “.” in qualified names, so Alf allows either. Only one or the other must be used
throughout a single qualified name, though.

If any individual name listed in a qualified name is for a femplate (see 6.3 on templates), then a template binding may be
optionally provided with that name. A template binding lists the qualified names of argument elements to be substituted for

w9

each of the formal template parameters in the template, surrounded by the angle brackets “<” and “>”.

The fully qualified name of a named element is either its unqualified name, if it is not owned by a namespace, or else its name
qualified with the fully qualified name of its owning namespace.

Examples

customer

Ordering::0rder::customer
Ordering.Order.customer
FoundationalModelLibrary: :BasicInputOutput
FoundationalModelLibrary.BasicInputOutput
Set<Integer>

Map<K=>String, V=>Entry>

Map<String, Entry>.KeySet

List< List<String> >

CollectionClasses: :Set<Integer>::add
Syntax

TypeName (q: QualifiedName)
= QualifiedName (q)
["any"
QualifiedName (q: QualifiedName)
= ColonQualifiedName (q)
| DotQualifiedName (q)
| UnqualifiedName (q)
PotentiallyAmbiguousQualifiedName (q: QualifiedName)
= ColonQualifiedName (q)
| DotQualifiedName (q) (g.isAmbiguous=true)
| UnqualifiedName (q)
ColonQualifiedName (g: QualifiedName)
= NameBinding (qg.nameBinding) "::" { NameBinding(g.nameBinding) "::" }
NameBinding (q.nameBinding)

Action Language for Foundational UML (ALF), v1.1 25

DotQualifiedName (g: QualifiedName)
= NameBinding (qg.nameBinding)) "." { NameBinding(qg.nameBinding) "." }
NameBinding (q.nameBinding)
UnqualifiedName (q: QualifiedName)
= NameBinding (gq.nameBinding)
NameBinding (n: NameBinding)
= Name (n.name) [TemplateBinding(n.binding)]
TemplateBinding (b: TemplateBinding)
= PositionalTemplateBinding (b)
| NamedTemplateBinding (b)
PositionalTemplateBinding (b: PositionalTemplateBinding)
= "<" QualifiedName (b.argumentName)
{ "," QualifiedName (b.argumentName) } ">"
NamedTemplateBinding (b: NamedTemplateBinding)
= "<" TemplateParameterSubstitution (b.substitution)
{ "," TemplateParameterSubstitution (b.substitution) } ">"
TemplateParameterSubstitution(s: TemplateParameterSubstitution)
= Name (s.parameterName) "=>" QualifiedName (s.argumentName)

NOTE. Named template binding notation is not available at the minimum conformance level (see 2.2).

SyntaxElement

QualifiedName +nameBinding | NameBinding

+isAmbiguous:‘BooIean ='false 0.1 {ordered} +name : String

+argumentName |1 1.*7 +argumentName 0.1

9 9 +binding |01
TemplateBinding

7AN
0.1
PositionalTemplateBinding NamedTemplateBinding

0.1

+substitution | 1..*

TemplateParameterSubstitution

0.1 +parameterName : String

Figure 8.2 Abstract Syntax of Qualified Names
Cross References

1. Syntax Element see 6.6
2. Name see 7.6
Disambiguation

It is ambiguous whether a syntactic element of the form n,.n,. .. .n, where the n, are name bindings and m > 2, should be
parsed as a qualified name or a feature reference (see 8.3.6) when the element is used in the following contexts.

* AsanExpression (NameExpression, 8.3.3, versus PropertyAccessExpression, 8.3.6)

26 Action Language for Foundational UML (ALF), v1.1

* Asan InvocationTarget (BehaviorInvocationTarget, 8.3.9, versus FeatureInvocationTarget, 8.3.10)
* AsaleftHandSide (QualifiedName versus FeatureReference, see 8.8)

In these cases, the element is initially parsed as a qualified name with i sAmbiguous=true. It is then disambiguated as
follows:

e Ifn,.n,. .. .n,, resolves to a namespace, then the original element should be considered a qualified name.

* Else, the original element should be considered a feature reference, with name n,, and target expression determined by the
disambiguation (if necessary) of n,.n,. .. .n,..

Semantics

Element naming and namespaces do not have executable semantics and are therefore not addressed in the f{UML
Specification. Nevertheless, the use of named elements is particularly important in Alf, since, in a textual notation, model
elements are primarily referenced by name. Such named references must be resolved into actual abstract syntax element
references when the Alf text is mapped into a fUML model.

The semantics of names, namespaces and visibility are defined in detail in the UML Superstructure, particularly in subclauses
7.3.35 Namespace, 7.3.56 VisibilityKind, 7.3.15 Elementlmport and 7.3.40 PackageImport. Depending on the context in
which it is used (as defined in subsequent subclauses), a name may either be part of the definition of a named element or it
may denote a reference to a named element defined elsewhere.

Current Scope

The current scope for the resolution of a reference to a name is the specific innermost namespace in which that named
reference lexically appears.

A name is said to be visible in the current scope if a named element with the given name is a member of the current scope
namespace or is visible in the namespace immediately enclosing the current scope (if any). Such an element may be
referenced using an unqualified name.

Otherwise the first name listed in a qualified name must be visible as an unqualified name in the current scope in which the
qualified name occurs. Each succeeding name must be the name of a visible member of the preceding namespace.

Type Names

A type constrains the values represented by a typed element (see UML Superstructure, 7.3.52). Any value in UML is an
instance of some classifier, so a type is always given by naming a classifier, which constrains the typed element to instances
of that classifier. If the named classifier is a femplate (see 6.3 on templates), then an argument type must be given for each
parameter of the template. The association of a classifier template with its arguments is known as a type binding.

A type name may be either a qualified name or the keyword any. If a type name is a qualified name, then this name must
resolve to a classifier, which constrains a typed element to represent the values that are instances of that classifier. The
keyword any is used to indicate that a typed element is actually untyped, that is, that there are no constraints on the values it
may represent.

Type Conformance

One classifier conforms to another if the two classifiers are equivalent or if any direct generalization of the first classifier
conforms to the second classifier. For the purpose of conformance, two classifiers are considered equivalent if they are the
same or if they both have template bindings for equivalent templates with equivalent arguments for all template parameters
(for non-classifier template parameters, the arguments must be identical).

NOTE. Type conformance as defined in UML Superstructure, 7.3.8, does not include the above rule for equivalence of
classifiers with template bindings. This additional rule follows from the substitution semantics used in Alf for template
bindings, such that classifiers with equivalent bindings are considered to have the same equivalent bound element after
substitution of actual parameters (see 6.3).

Template Bindings

If a qualified name resolves to a template—that is, an element with template parameters—then a template binding may be
appended to the qualified name. Such a binding names an argument element to be substituted for each template parameter.
Such a qualified name with a template binding may itself be used as the qualification part of a larger qualified name.

Action Language for Foundational UML (ALF), v1.1 27

The argument elements in a template binding may not themselves be templates. Each argument must be compatible with the
corresponding template parameter. In general, a template parameter may represent any kind of packageable element, any kind
of connectable element or an operation, and a compatible argument for a template parameter must be an element of the same
kind. In addition, the following special compatibility rules must hold for specific kinds of elements:

* Classifier. A classifier template parameter may have constraining classifiers. A classifier template parameter with no
constraining classifiers may be substituted with any classifier. A template parameter with constraining classifiers must be
substituted with an argument that conforms to a// of the constraining classifiers (see the definition of type compatibility
above).

* Value Specification. An argument is compatible with a value specification template parameter if it is a value specification
whose type conforms to the type of the value specification represented by the template parameter.

* Operation. An argument is compatible with an operation template parameter if it is an operation with the same number of
parameters, in the same order, with the same types as the operation represented by the template parameter.

* Connectable Element. An argument is compatible with a connectable element template parameter if it is the same kind of
connectable element with the same type as the connectable element represented by the template parameter.

NOTE. Templates are specified in 17.5 of the UML Superstructure. Specifically:

e C(lassifiers as parameterable elements are described in UML Superstructure, 17.5.7, and classifier template parameters
are described in 17.5.8. The above rule for compatibility presumes that allowSubstitutable=false for all classifier
template parameters with constraining classifiers.

* Value specifications as parameterable elements are described in UML Superstructure, 17.5.20, including the
compatibility rule given above.

e Operations as parameterable elements are described in UML Superstructure, 17.5.15, and operation template parameters
are described in 17.5.16. However, even though 17.5.16 mentions “additional semantics related to the compatibility of
actual and formal operation parameters”, no such additional semantics are actually provided in 17.5.15. Nevertheless, the
compatibility rule given above for operations given above is necessary to ensure that the substitution of an argument for
an operation template parameter leaves the model well formed.

* Connectable elements as parameterable elements are described UML Superstructure, 17.5.17, but this subclause does not
specify any special compatibility rule for connectable elements. However, the compatibility rule given above for
connectable elements is necessary in general to ensure that the substitution of an argument for a connectable element
template parameter leaves the model well formed. UML Superstructure, 17.5.19, also describes specifically properties as
parameterable elements, giving a compatibility rule of type conformance that is looser than the rule for connectable
elements given above. However, since a property could be used within the body of a template as both a value and the
target of an assignment, simple type conformance is not enough to ensure well-formedness on substitution. Instead, the
arguments for template parameters representing properties (which are, in the end, kinds of connectable elements) are
required in Alf to follow the general connectable element compatibility rule given above.

Either positional or named notation may be used for template arguments. If positional notation is used, then the template
arguments are matched to corresponding template parameters in order, and arguments must be provided for all template
parameters. If named notation is used, then each template parameter must be named in exactly one template parameter
substitution, but the order of the substitutions is irrelevant.

For example, the standard library class Set has a single template parameter T. The following are all legal bindings for this
template, assuming that Task names a classifier.

Set<Integer>
Set<Task>

Set<Set<Integer> >

NOTE. The space between the right angle brackets at the end of the last example above are necessary in order for it to parse
correctly. If there was no space, then the symbol “>>" would be recognized as a right shift operator, not two angle brackets
(see 7.9 on the lexical analysis of multi-character symbols).

The standard library class Map has two template parameters, Key and vValue. The following are all equivalent bindings for
this template.

28 Action Language for Foundational UML (ALF), v1.1

Map<String, Definition>
Map<Key=>String, Value=>Definition>

Map<Value=>Definition, Key=>String>
8.3 Primary Expressions

8.3.1 Overview

Primary expressions include the simplest kinds of expressions, from which more complicated kinds are constructed.
Parenthesized expressions are also considered primary expressions. The categorization into primary expressions is purely a
concept of the concrete syntax, with no additional abstract syntax or mapping specification beyond that given for the various
kinds of expressions so categorized.

Syntax

PrimaryExpression (e: Expression)
= NameExpression (e)
| NonNamePrimaryExpression (e)
NonNamePrimaryExpression (e: Expression)
= LiteralExpression(e)
| ThisExpression (e)
| ParenthesizedExpression (e)
| PropertyAccessExpression (e)
| InvocationExpression (e)
| InstanceCreationExpression (e)
| LinkOperationExpression (e)
| ClassExtentExpression (e)
| SequenceConstructionExpression (e)
| SequenceAccessExpression (e)
| SequenceOperationExpression (e)
| SequenceReductionExpression (e)
| SequenceExpansionExpression (e)

Cross References

1. LiteralExpression see 8.3.2
2. NameExpression see 8.3.3
3. ThisExpression see 8.3.4
4. ParenthesizedExpression see 8.3.5
5. PropertyAccessExpression see 8.3.6
6. InvocationExpression see 8.3.7
7. InstanceCreationExpression see 8.3.12
8. LinkOperationExpression see 8.3.13
9. ClassExtentExpression see 8.3.14
10. SequenceConstructionExpression see 8.3.15
11. SequenceAccessExpression see 8.3.16
12. SequenceOperationExpression see 8.3.17
13. SequenceReductionExpression see 8.3.18
14. SequenceExpansionExpression see 8.3.19
Semantics

See the discussion of semantics for each kind of expression in subsequent subclauses.

Action Language for Foundational UML (ALF), v1.1 29

8.3.2 Literal Expressions

A literal expression comprises a single primitive literal (see 7.8). (Note that enumeration literals are not denoted using literal
expression but, rather, using name expressions—see 8.3.3.)

Syntax

LiteralExpression(e: LiteralExpression)
= BooleanLiteralExpression (e)
| NaturalLiteralExpression (e)
| UnboundedLiteralExpression(e)
| StringLiteralExpression(e)

BooleanLiteralExpression (e: BooleanLiteralExpression)
= BooleanLiteral (e.image)
NaturalLiteralExpression (e: NaturalLiteralExpression)
= NaturalLiteral (e.image)
UnboundedLiteralExpression (e: UnboundedLiteralExpression)
= UnboundedValueLiteral
StringLiteralExpression(e: StringLiteralExpression)
= StringLiteral (e.image)

Expression
AN
LiteralExpression
AN
BooleanLiteralExpression UnboundedLiteralExpression RealLiteralExpression
+image : String +image : String
NaturalLiteralExpression StringLiteralExpression
+image : String +image : String

Figure 8.3 Abstract Syntax of Literal Expressions

Cross References

1. BooleanLiteral see 7.8.2
2. NaturalLiteral see 7.8.3
3. UnboundedValueLiteral see 7.8.4
4. StringLiteral see 7.8.5
5

6. Expression see 8.1
Semantics

A literal expression evaluates to the single primitive value denoted by its primitive literal.

30 Action Language for Foundational UML (ALF), v1.1

The type of a literal expression is the primitive type corresponding to the kind of primitive literal it comprises. Its multiplicity
is always [1..1].

8.3.3 Name Expressions

A name expression evaluates to the values denoted by a name.

Syntax

NameExpression (e: NameExpression)
= PotentiallyAmbiguousQualifiedName (e.name)

Expression

|

NameExpression

0.1
+name |1

QualifiedName

Figure 8.4 Abstract Syntax for Name Expressions

Cross References

1. Expression see 8.1
2. QualifiedName see 8.2
3. PotentiallyAmbiguousQualifiedName see 8.2

NOTE. see 8.2 for rules on the disambiguation of a qualified name with the dot notation used as a name expression versus a
property access expression.

Semantics

The given name for a name expression must either resolve to an enumeration literal name or to a parameter or local name
with an assigned source before the name expression. However, a name with a @parallel annotation as its assigned source
may not be used as a name expression (as discussed in 9.12).

A local name is never qualified.

A parameter name may only be used if the name expression appears within the body of a behavior with parameters (see UML
Superstructure, 13.3.2). The parameter name may be qualified by the name of the behavior or, if the behavior is the method of
an operation, by the name of the operation. But this is never required since the names of the parameters of a behavior are
always in the current scope of the definition of the behavior.

A name expression is evaluated as follows:
* Local Name. The values of a local name are those given by its assigned source.

* Parameter Name. The values of a parameter name are those given by its assigned source. For an in or inout parameter,
this will initially be the value assigned to the parameter when the enclosing behavior began execution. However, an
inout parameter may be reassigned, in which case its assigned source will change (see 8.8). An out parameter is always
given a value only by explicit assignment (see 8.8).

e Fnumeration Literal Name. The value of an enumeration literal name is the named enumeration literal.

The type and multiplicity of a name expression are the same as its name, determined as given below:

Action Language for Foundational UML (ALF), v1.1 31

Local Name. by its (see 8.8).

Enumeration Literal. The type is the corresponding enumeration and the multiplicity is [1..1].

8.3.4 this Expressions

A this expression consists of the keyword this. It evaluates to a reference to the context value for the context in which the
this expression occurs.

Syntax

ThisExpression(e: ThisExpression)

= "this"

Expression

ThisExpression

Figure 8.5 Abstract Syntax of this Expressions

Cross References

1.

Expression see 8.1

Semantics

The static type of a this expression is the statically determined context classifier for the context in which the this
expression occurs. The context classifier is determined as follows:

If the expression appears in a method, classifier behavior or property default value, the context classifier is the classifier
that owns the method, classifier behavior or property.

If the expression appears in a behavior (other than a classifier behavior) that is owned by another behavior, then the
context classifier is the context of the owning behavior. (For example, if a state machine is acting as a classifier behavior,
then its context classifier is the classifier that owns it, and this is also the context classifier for all effect, entry, exit and
do behaviors within it.)

Otherwise the context classifier is the behavior containing the this expression.

NOTE. The derivation of the context property of a behavior is defined in 13.3.2 of the UML Superstructure.

The context value to which a this expression evaluates is determined as follows:

32

For the method of a behavioral feature (see UML Superstructure, 13.3.3) other than a constructor, the context value is the
value on which the behavioral feature was invoked.

For a constructor (see UML Superstructure, 9.3.1) or property default value (see UML Superstructure, 7.3.44), the
context object is the newly constructed value.

For a classifier behavior (see UML Superstructure, 13.3.4), the context value is the instance of the active class for which
the behavior is executing.

For a behavior owned by another behavior (such as an entry action on a state machine), the context value is the context
value of the invoking instance owning behavior.

Otherwise, the context value is the behavior instance being executed.

Action Language for Foundational UML (ALF), v1.1

Note that the dynamic type of the context value returned by a this expression may actually be a subclass of the static type of
the this expression.

The multiplicity of a this expressionis [1..1].

8.3.5 Parenthesized Expressions
A parenthesized expression is a contained expression surrounded by parentheses.

Syntax

ParenthesizedExpression (e: Expression)
= "(" Expression(e) ")"

NOTE. A parenthesized expression has the abstract syntax of its contained expression.
Semantics

A parenthesized expression is evaluated by evaluating the contained expression and results in the values of the contained
expression. The use of parenthesizes only effects order of evaluation, not how the contained expression is evaluated.

The type and multiplicity of a parenthesized expression are the same as the contained expression.

8.3.6 Property Access Expressions

A property access expression is used to access the value of a property of instances of a classifier. It is denoted by feature
reference, which consists of a target primary expression (see 8.3.1) and the name of a property of the type of the target
expression.

Examples
poleValue.im
this.node
members.name

jack.house

Concrete Syntax

PropertyAccessExpression (e: PropertyAccessExpression)
= FeatureReference (e.featureReference)
FeatureReference (f: FeatureReference)
= FeatureTargetExpression (f.expression) ".'" NameBinding (f.nameBinding)
FeatureTargetExpression (e: Expression)
= NameTargetExpression (e)
| NonNamePrimaryExpression (e)
NameTargetExpression (e: NameExpression)
= ColonQualifiedName (e.name)

NOTE. see 8.2 for rules on the disambiguation of a qualified name using the dot notation to a property access expression.
Such a potentially ambiguous expression is always initially parsed as a qualified name. This is why a NameTargetExpression
is not allowed to be a DotQualifiedName or an UnqualifiedName, since, along with the dot notation for the feature reference,
this should initially be parsed as a potentially ambiguous qualified name rather than a feature reference.

Action Language for Foundational UML (ALF), v1.1 33

+expression
1

Expression

PropertyAccessExpression

0.1
+featureReference |1

FeatureReference

0.1

0.1

+nameBinding |1

NameBinding

Figure 8.6 Abstract Syntax of Property Access Expressions

Cross References

1. Name see 7.6
2. Expression see 8.1
3. ColonQualifiedName see 8.2
4. NameBinding see 8.2
5. NonNamePrimaryExpression see 8.3.1
Semantics

The target expression in a property access expression may not be untyped nor may its type be a primitive type or
enumeration. The identified property name must denote either:

* A structural feature (owned or inherited) of the type of the target expression.

* The name of an association end of a binary association, the opposite end of which is typed by the type of the target
expression.

If the identified property is a template, then a template binding must be provided with arguments for all its template
parameters.

For it to be legal to use the name of an association end in a property access expression, there must be exactly one binary
association visible in the current scope that meets the above criterion and the given name must not also be the name of a
structural feature of the type of the target expression.

If the target expression has multiplicity [1. .11, then result of the collection expression will always be a single instance. This
is known as a single instance property access. If the target expression has multiplicity other than [1..1], then the property
access expression is known as a sequence property access. Such an expression is equivalent to a collect expression (see
8.3.21) as described below under Sequence Property Access.

The type of a property access expression is the same as the type of the named property. The multiplicity upper and lower
bounds of the property access expression are equal to the product of the upper and lower bounds, respectively, of the named
property and the target expression.

A property access expression is evaluated by first evaluating the target expression, which results in a sequence of instances.
The result of the property access expression is then a sequence containing the union of the values of the named property for
each of the target instances.

34 Action Language for Foundational UML (ALF), v1.1

Single Instance Property Access

In the case of a single instance property access expression, the target expression will always evaluate to exactly one instance.
If the property name is for a structural feature, then the resulting values of the property access expression are the values of
that structural feature for the given instance.

A property access expression may also be used to access the values of an opposite association end of a binary association in
which the instance participates. In this case, the resulting values are the values of named end of all links of the association for
which the value of the opposite end is the given instance.

As an example of an association end access, consider the following association (represented in Alf notation—see 10.4.5).

assoc Owns {
owner: Person;
house: House[*];

}

If the association Owns is in the current scope (that is, visible without qualification), and jack is a Person, then the
expression

jack.house

is equivalent to the association read expression (see 8.3.9)
Owns: :house (owner => jack)

Sequence Property Access

A sequence property access expression of the form primary. name is equivalent to a collect expression (see 8.3.21) of the
form

primary -> collect x (x.name)

NOTE. It is not an error for the result of the target expression in a property access expression to be empty. In this case, the
property access expression evaluates to an empty sequence.

8.3.7 Invocation Expressions

An invocation expression is used to invoke a behavior, either directly by name or indirectly by calling an operation or sending
a signal. An invocation expression consists of a target, which may be a behavior name, a behavioral feature reference or a
super reference, and a tuple, which provides actual arguments for any parameters of the invoked behavior or behavioral
feature.

Syntax

InvocationExpression (e: InvocationExpression)
= InvocationTarget (e) Tuple(e.tuple)
InvocationTarget (e: InvocationExpression)
= BehaviorInvocationTarget (e)
| FeatureInvocationTarget (e)
| SuperInvocationTarget (e)

Expression

InvocationExpression L;invocation *uple .{ Tuple
] 1 1

Figure 8.7 Abstract Syntax of Invocation Expressions
Cross References

1. Expression see 8.1

Action Language for Foundational UML (ALF), v1.1 35

2. Tuple see 8.3.8
3. BehaviorInvocationTarget see 8.3.9
4. FeaturelnvocationTarget see 8.3.10
5. SuperlnvocationTarget see 8.3.11
Semantics

For each type of invocation expression, the target potentially specifies a set of parameters for which actual arguments need to
be provided in the invocation. For in parameters, the argument is a value that is assigned to the corresponding parameter. For
inout and out parameters, the argument must be an expression of the form that is legal on the left hand side of an
assignment (see 8.8 on assignments).

An invocation expression may assign to names that are used as arguments for out or inout parameters. This is discussed as
part of the semantics for tuples (see 8.3.8). The assigned source for a name after the invocation expression is the same as the
assigned source after the tuple.

For a synchronous behavior or operation call, if the invoked behavior has a return parameter, then the values on that
parameter at the completion of the invocation provide the result of the invocation expression. Otherwise the invocation
expression produces no result values.

Specific semantics for each kind of invocation expression are further discussed in subclauses 8.3.9 to 8.3.11.

8.3.8 Tuples

A tuple is a list of expressions used to provide the arguments for an invocation. There are two kinds of tuples, positional
tuples and named tuples. In a positional tuple, the arguments are matched to the parameters in order, by position. A named
tuple, on the other hand, includes an explicit identification of the name of the parameter corresponding to each argument.

NOTE. The sequence operation expression notation is not available at the minimum conformance level (see 2.2).
Syntax

Tuple (t: Tuple)

= PositionalTuple (t)

| NamedTuple (t)
PositionalTuple(t: PositionalTuple)

= "(" [TupleExpressionList(t)] ")"
TupleExpressionList (t: PositionalTuple)

= Expression (t.expression) { "," Expression(t.expression) }
NamedTuple (t: NamedTuple)

= " (" NamedExpression (t.namedExpression)

{ "," NamedExpression (t.namedExpression) } ")"

NamedExpression (n: NamedExpression)

= Name (n.name) "=>" Expression(n.expression)

36 Action Language for Foundational UML (ALF), v1.1

SyntaxElement

T

InvocationExpression gnvocatlon *uple Tuple
1 1 \;

+namedExpression i
PositionalTuple NamedTuple P NamedExpression
0.1 * +name : String
{ordered}
0.1 0.1 0.1
+index
+expression | EXpression
* +expression
{ordered} 7
Figure 8.8 Abstract Syntax of Tuples
Cross References
1. Name see 7.6
2. Expression see 8.1
3. InvocationExpression see 8.3.7

Semantics

A tuple is evaluated by evaluating each of its constituent expressions concurrently. For arguments of in and inout
parameters, the argument expression is fully evaluated to a value. For arguments of out parameters, the constituent parts of
the argument expression are evaluated as if for the left hand side of an assignment (see 8.8).

NOTE. Since the argument expressions in a tuple are evaluated concurrently, they should not have side effects that influence
each other’s evaluation.

Arguments

In a positional tuple, each argument expression corresponds, in order, to a parameter for the invocation in which the tuple is
used.

In a named tuple, the argument names must be parameter names for the invocation in which the tuple is used. The arguments
may appear in any order, but a parameter name may appear at most once in the tuple, and every non-optional parameter (i.e.,
having multiplicity lower bound greater than zero) of a target must be named in the invocation of that target.

A tuple may have fewer argument expressions than parameters. For a positional tuple, the unmatched parameters are those
sequentially after the ones matched by the given argument expressions. For a named tuple, the unmatched parameters are
those that are not named. An unmatched parameter must have mode out or have a multiplicity lower bound of 0.

For example, consider an activity with the following signature:
activity A(in x: Integer, in y: Boolean[0..1])
The following is then an invocation of this activity with a positional tuple:

A(l, true)

Action Language for Foundational UML (ALF), v1.1 37

In this case, the argument 1 corresponds to the parameter x and the argument t rue corresponds to the parameter y. This is
equivalent to the invocation with the named tuple:

A(x=>1, y=>true)
However, with a named tuple, the order of the arguments may be changed:
A(y=>true, x=>1)

Further, since the parameter y is optional (multiplicity lower bound of 0), no argument needs to be provided for it at all in the
named tuple notation. For example, the following invocation using a named tuple:

A (x=>1)

is equivalent to the following invocation using a position tuple:
A (1)

which is in turn equivalent to:

A(1, null)

Assignment

Tuples with arguments corresponding to inout or out parameters act as assignments. The expressions corresponding to such
parameters must have the form of the left hand side of an assignment (see 8.8), that is, either a local name or an attribute
reference, possibly indexed. The assigned source for a name after the argument expression is determined as for the left hand
side of an assignment, with the parameter as its assigned expression.

An argument expression for an inout parameter must also meet the static semantics of a name expression (see 8.3.3) or
property access expression (see 8.3.6), if it is not index, or a sequence access expression (see 8.3.16), if it is indexed, but the
argument expression for an out parameter does not. Thus, a local name used as the argument for an out parameter does not
have to have an assigned source before the tuple, and a local name without a previous assigned source is considered to be
newly defined with the same type and multiplicity as the out parameter.

A name may be assigned in at most one argument expression of a tuple. If there is one such argument expression, then the
assigned source for the name after the tuple is the assigned source for the name after that argument expression. Otherwise the
assigned source after the tuple is the same as before the tuple.

The result of an assignment to a name in one argument expression will not be used in other argument expressions. New local
names defined in one argument expression cannot be used in another.

NOTE. This rule allows the argument expressions in a tuple to be evaluated concurrently.

8.3.9 Behavior Invocation Expressions

The simplest kind of invocation expression is the direct invocation of a behavior. In a behavior invocation expression, the
target is given as the (qualified) name of the behavior to be invoked.

The same syntax may also be used with the qualified behavior of an association end as the target. In this case, the argument
expressions in the tuple give the values for each of the other ends of the association. The result of the expression is a
sequence of values of the target end for all links of the association that have the given values for the other ends.

Examples

Behavior Invocation

ComputeInterest (amount)

Start (monitor => systemMonitor)
including<Integer> (Integer[]{1,2,3}, 4)
Association Read

Roster::player (team=>t, season=>y)
Roster.player (t,vy)

Owns: :house (jack)

38 Action Language for Foundational UML (ALF), v1.1

Syntax

BehaviorInvocationTarget (e: BehaviorInvocationExpression)
= PotentiallyAmbiguousQualifiedName (e.target)

InvocationExpression

T

BehaviorlnvocationExpression

0.1
+target |1

QualifiedName

Figure 8.9 Abstract Syntax for Behavior Invocation Expressions

Cross References

1. QualifiedName see 8.2
2. PotentiallyAmbiguousQualifiedName see 8.2
3. InvocationExpression see 8.3.7

NOTE. See 8.2 for rules on the disambiguation of a qualified name with the dot notation initially parsed as a behavior
invocation target to a feature invocation target.

Semantics

A behavior invocation expression is evaluated by first evaluating the argument tuple (see 8.3.8). The completion of the
evaluation then depends on whether the target name resolves to a behavior or an association end. The given target name must
identify either a visible behavior or an association end within the current scope of the behavior invocation expression. The
target cannot be a template, though it may be a binding of a template behavior or association end (see 8.2).

Behavior Invocation

If the target is a behavior, then arguments are matched with parameters of the behavior as described in 8.3.8. Normally, each
argument expression of the invocation must be statically compatible with the corresponding parameter. That is:

* For an in parameter, the argument expression must be assignable to the parameter (see 8.8 for the definition of
assignability).

* For an out parameter, the parameter must be assignable to the argument expression.
* For an inout parameter, the argument expression and the parameter must be assignable to each other.

If the target behavior is not a template or it is the binding of template with arguments for all template parameters, then the
above compatibility conditions can be checked directly based on the behavior signature. However, the target behavior is also
allowed to be a template, as long as all unbound template parameters are classifier template parameters. In this case, the types
to be used as arguments for the template parameters are inferred from the types of the argument expressions as follow:

* For each classifier template parameter, the argument type is the effective common ancestor of the types of all the
argument expressions corresponding to the in and inout parameters of the template behavior that have the classifier
template parameter as their type, if such an effective common ancestor exists (see 8.7 for the definition of effective
common ancestor). If a relevant parameter has a multiplicity upper bound greater than 1 and the type of an argument
expression is a collection class (see 11.7), then the type of the result of the toSequence operation of that collection class
should be used, rather than the type of the argument expression itself.

Action Language for Foundational UML (ALF), v1.1 39

e Ifthere are no in or inout parameters that have a classifier template parameter as their type, or there is no effective
common ancestor of the relevant argument expression types, then the argument type for that classifier template
parameter is any.

The target of the behavior invocation is then considered to be an implicit binding of the behavior template, using the inferred
argument types for each template parameter. If a classifier template parameter has constraining classifiers, the corresponding
inferred argument must meet these constraints (see 8.2 on template binding with classifier constraints), or the invocation is
illegal. If the implicit binding is legal, the static compatibility of the argument expressions for the invocation can then be
checked in the normal way against the signature of this implicit binding. The invocation is illegal if the compatibility checks
fail.

For example, the including function from the standard library CollectionFunctions package (see 11.6) has the
signature

including<T>(in seq: T[] sequence, in element: T):
T[] sequence

The invocation

including (Integer([]{1,2,3}, 4)

is then equivalent to

including<Integer> (Integer[]{1,2,3}, 4)

Since the literal 4 has type Natural (see 7.8.3) and the effective common ancestor of Integer and Natural is Integer
(since Integer generalizes Natural—see 11.3.2). The result is a sequence of Integer values.

NOTE. The above rule for argument type inference does not attempt to account for behavior parameters that may have types
that are template bindings using the behavior template parameters as arguments (for example, bindings of collection class
with a behavior template parameter as an argument). This greatly simplifies the inference rule and is adequate in most cases.
In particular, the fact that the standard collection functions in Alf can use the UML notion of multiplicity rather than
collection classes in the typing of parameters reduces the need for a more complicated inference rule in cases involving
sequences and collections.

When a behavior invocation expression is evaluated, the values resulting from the evaluation of each input argument
expression are assigned to the appropriate in and inout parameter and the behavior is invoked. Once the behavior
completes execution, the result values for each inout and out parameter are assigned to their corresponding output
arguments. (Note that these assignments may involve implicit conversions, as discussed in 8.8.)

If the named behavior has a return parameter, then the behavior invocation expression evaluates to the value of that
parameter. The type and multiplicity of the behavior invocation expression are the same as for the return parameter.

If the named behavior does not have a return parameter, then it evaluates to the null (empty) collection. It is untyped with
multiplicity [0..0].

Indexing

The primitive behaviors listed in Table 8.1, from the Se ceFunctions (see 11.4.7) and CollectionFunctions (see
11.6) library packages, all have index parameters used to indicate a position in an input sequence. Normally, indexing in Alf
(and UML) is from a starting value of 1 for the first position. However, if a behavior invocation expression for one of the
behaviors listed in Table 8.1 is contained, directly or indirectly, within a statement to which the annotation @indexFrom0
applies (see 9.2), then the index argument is adjusted so that indexing is from 0.

40 Action Language for Foundational UML (ALF), v1.1

\ Table 8.1 Library Primitive Behaviors with index Parameters

| | SequenceFunctions | CollectionFunctions
At at
IncludeAt includeAt
InsertAt insertAt
IncludeAllAt includeAllAt
ExcludeAt excludeAt

|

|

|

|

|

‘ ReplacingAt replacingAt
|

|

|

|

addat
addAll1At
removeAt
replaceAt
‘ For example, given the sequence
| 2 = Integer[1{10, 20, 30, 40}

the behavior invocation expression at (seg=>a, index=>3) would normally evaluate to 30, because that is the third
element in the sequence. However, within the scope of an @indexFrom0 annotation, the same expression would evaluate to
40, because that is the element at index 3 when indexing starts at 0.

Further, within the scope of an @indexFrom0 annotation, the value returned from invocations of the

SequenceFunctions: :IndexOf and CollectionFunctions: :indexOf library functions is adjusted to return a 0-based
rather than a 1-based index. For example, using the sequence from above, the behavior invocation expression indexOf (a,
30) would normally evaluate to 3. However, within the scope of an @indexFrom0 annotation, the same expression would
evaluate to 2.

| Association Read

When an association end name is used in a behavior invocation expression, the association end may be thought of as a
function from the values of the other association ends to the values on the target association. Arguments are matched to the
ends of the association other than the target end. For the purposes of this matching, the non-target association ends are treated
as if they were in parameters. Each argument expression must be statically compatible with the type of the corresponding
association end, as described above.

The expression evaluates to all values of the target end of the links of the association whose other ends have the values given
as arguments. The type and multiplicity of the invocation expression are the same as the type and multiplicity of the target
association end.

For example, given the association

assoc Roster {

public team: Team[*];
public season: Year[*];
public player: Player[*];

}

the expression
Roster::player (team=>t, season=>y)
or, equivalently,

Roster.player(t,vy)

evaluates to the collection of players who played on team t in year y.

Action Language for Foundational UML (ALF), v1.1 41

The behavior invocation expression notation for reading an association can be used for associations with any number of ends.
This is in contrast to the property access expression notation (see 8.3.6), which can only be used to read binary associations.
Of course, the behavior invocation form may also be used to read binary associations. So, for example, the expression

Owns: :house (jack)
is equivalent to

jack.house

8.3.10 Feature Invocation Expressions

A feature invocation expression has a feature reference as its target. The referenced feature consists of a primary expression
(see 8.3.1) and the name of either an operation or a reception owned by the type of the primary expression. If the named
feature is an operation, then the feature invocation expression denotes a call to that operation. If the feature is a reception,
then the feature invocation expression denotes sending an instance of the signal corresponding to the reception.

Examples

group.activate (nodes, edges)

actuator.Initialize (monitorRef => systemMonitor)
Syntax

FeatureInvocationTarget (e: FeaturelInvocationExpression)
= FeatureReference (e.target)
‘ "this"

InvocationExpression

FeaturelnvocationExpression

0.1

+target|0..1

FeatureReference

Figure 8.10 Abstract Syntax of Feature Invocation Expressions
Cross References

1. FeatureReference see 8.3.6

2. InvocationExpression see 8.3.7

NOTE. see 8.2 for rules on the disambiguation of a qualified name with the dot notation initially parsed as a behavior
invocation target to a feature invocation target.

Semantics

If a feature invocation expression has a target feature reference, the primary expression in the feature reference must not be
untyped. The named feature must denote either a visible operation or a visible reception of type of the primary expression,
known as the target type. An operation call is distinguished from a signal send by whether the named feature is an operation
or a reception. If the named feature is a template operation, then a template binding must be provided with arguments for all
its template parameters. The primary expression in the feature reference is evaluated before the invocation argument
expressions and names assigned in the primary expression are available in the argument expressions.

42 Action Language for Foundational UML (ALF), v1.1

If the feature invocation target is the single keyword “this”, the invocation expression must appear in the definition of the
method of a constructor operation; that is, an operation with the standard stereotype «Create» (see UML Superstructure,
9.3.1). The name of the invoked operation is then implicitly taken to be the name of the owning classifier of the operation and
the target type is taken to be that classifier.

Operation Call

If the named feature is an operation, then determining which operation to actually call is complicated by the possibility of
operation overloading. The determination is made in the following steps:

1. Identify all concrete operations of the target type with the given name. If there is not at least one such operation, then the
feature invocation expression is illegal.

2. From the set determined in Step 1, select the operations for which the tuple is statically compatible with the operation
parameters, as defined for a behavior invocation (see 8.3.9). Due to the assignability rules, there may be more than one.
If there is not at least one, then the feature invocation expression is illegal.

3. From the set determined in Step 2, select the most specific operations. One operation is more specific than another if it
has fewer parameters or if it has the same number of parameters and

o Each of its in parameters is assignable to the corresponding parameter of the other operation, in order (see 8.8 for
the definition of assignability).

o Each of the out or return parameters of the other operation is assignable to its corresponding parameter, in order.

NOTE. Any corresponding inout parameters of operations remaining after Step 2 that have matching arguments will
necessarily be assignable to each other.

An operation in a set is most specific if there is no other operation in the set that is more specific than it.

If there is a single operation remaining after the above steps, this is the operation to be called.

If the operation is a constructor, then the invocation expression is an alternative constructor invocation. Such an invocation is
illegal unless it occurs in an expression statement (see 9.7) as the first statement in the definition for the method of a
constructor operation. If the feature invocation target is the single keyword “this”, then the identified operation with the
same name as the target type must be a constructor, or the expression is illegal.

If there are no operations left after the above steps, the feature invocation expression is illegal, with one exception. If the
operation name is “destroy” and the tuple is empty, then the feature invocation expression is legal and considered to be an
implicit object destruction expression.

NOTE. The identifier “destroy” is not reserved and it is possible for a class to have an explicit parameterless operation
called “destroy”. By convention, any such operation should be a destructor, in which case it can be considered to be an
explicit override of the implicit object destruction behavior.

If the feature invocation expression is for an operation with a return parameter, then the type of the feature invocation
expression is the same as for the return parameter. For a single instance feature invocation, the multiplicity is also the same.
For a collection feature invocation, the multiplicity is determined as for the corresponding collect expression (see 8.3.21),
as described under Sequence Feature Invocation below.

If a feature invocation expression is for an operation without a return parameter, then it is untyped with multiplicity
[0..0].

Signal Send

If the named feature is a reception, then arguments are matched with attributes of the associated signal as described in 8.3.8,
with the attributes being considered as parameters. Each argument expression must be assignable to the corresponding
attributes (see 8.8 for the definition of assignability), the attributes being effectively considered as in parameters.

A feature invocation expression for a signal send is untyped with multiplicity [0..0].

Action Language for Foundational UML (ALF), v1.1 43

Single Instance Feature Invocation

A feature invocation expression is evaluated by first evaluating the primary expression, which results in a sequence of
instances. The denoted invocation is then carried out on each element of the sequence.

If the primary expression of the feature reference for a feature invocation expression has multiplicity [1. .17, then the
invocation expression is a single instance feature invocation. Otherwise it is a sequence feature invocation. An alternative
constructor invocation must always be a single instance feature invocation.

For a single instance feature invocation, the result of the primary expression will always be a single instance. In this case, if
the named feature is an operation, the invocation is a call to the named operation on the given instance. The tuple is evaluated
to provide arguments for the operation parameters. The call is polymorphic, so, if the dynamic type of the instance has an
operation that redefines the named operation (directly or indirectly), it is the redefined operation that is called.

If the operation is a destructor (i.e., it has the standard stereotype «Destroy»), then it is called just as a normal operation.
However, after the completion of the call to the destructor, the target instance is destroyed, except if the target instance is the
same as the current context object, in which case the destructor is called, but the instance is not destroyed.

If the expression is an implicit object destruction expression, then evaluation of the expression simply results in the target
instance being destroyed, except, as above, if the target instance is the same as the current context object, in which case the
object destruction expression has no effect.

If the named feature is a reception, the invocation is a sending of an instance of the signal associated with the reception. The
tuple is evaluated to provide values for the attributes of the signal. Each signal attribute is treated as effectively an in
parameter for the purposes of the invocation.

Sequence Feature Invocation

A sequence feature invocation expression of the form primary.name tuple is equivalent to a sequence expansion
expression (see 8.3.21) of the form

primary -> collect x (x.name tuple)

NOTE. This means that the argument expressions in the tuple for the feature invocation are re-evaluated for the invocation
on each instance in the sequence. It is not an error for the result of the primary expression in a feature invocation expression
to be empty. In this case, no invocations occur and the tuple is never evaluated.

8.3.11 Super Invocation Expressions

A super invocation expression is used to invoke an operation of a superclass of the current context class. It is syntactically
similar to a feature invocation expression (see 8.3.10), but with the keyword super used as the target. Unlike a feature
invocation expression, however, a super invocation expression may name a superclass operation by a qualified name, if this is
necessary in order to disambiguate operations with the same name from different superclasses.

Examples

super.run ()

super.initialize (startValue)
super.Person: :setName (name)
Syntax

SuperInvocationTarget (e: SuperInvocationExpression)
= "super" ["." QualifiedName (e.target)]

44 Action Language for Foundational UML (ALF), v1.1

InvocationExpression

SuperinvocationExpression

0.1
+target|0..1

QualifiedName

Figure 8.11 Abstract Syntax for Super Invocation Expressions

Cross References

1. QualifiedName see 8.2
2. InvocationExpression see 8.3.7
Semantics

If the super invocation target includes a qualified name with a qualification, then this qualification must resolve to one of the
superclasses of the current context class, and the invoked operation must come from this superclass. If the given name is not
qualified, then the invoked operation may come from any of the superclasses of the context class.

If the super invocation target is the single keyword “super” (with no qualified name), the invocation expression must appear
in the definition of the method of a constructor operation; that is, an operation with the standard stereotype «Create» (see
UML Superstructure, 9.3.1). The name of the invoked operation is then implicitly taken to be the name of the owning
classifier of the operation, which must have a single superclass, from which the invoked operation is to come.

The operation to be called is determined using the following steps:

1. Identify all the concrete operations with the given name that are members of the relevant superclass or superclasses (as
discussed above). If there is not at least one such operation, then the super invocation expression is illegal.

2. From the set determined in Step 1, select the operations for which the tuple is statically compatible with the operation
parameters, as defined for a behavior invocation (see 8.3.9). Due to the assignability rules, there may be more than one.
If there is not at least one, then the super invocation expression is illegal.

3. From the set determined in Step 2, select the most specific operations, as defined in Step 3 of the determination of the
operation for a feature invocation expression (see 8.3.10). If there is a single operation remaining, this is the operation to
be called. Otherwise, the super invocation expression is illegal.

If the identified operation is a constructor, then the invocation expression is a super constructor invocation. Such an
invocation is illegal unless it occurs in an expression statement (see 9.7) at the start of the definition for the method of a
constructor operation such that any statements preceding it are also super constructor invocations. If the super invocation
target is the single keyword “super”, then the identified operation must be a constructor, or the expression is illegal.

If the identified operation is a destructor (i.e., it has the standard stereotype «Destroy»), then the super invocation
expression must itself appear within the method of a destructor operation.

When a super invocation expression is evaluated, its tuple is first evaluated to provide arguments for the operation
parameters. The method of the named superclass operation is then called on the current context object. Note that the call is
not polymorphic—the statically determined superclass method behavior is always directly invoked.

If the super invocation expression has a return parameter, then the type and multiplicity of the super invocation expression
is the same as for the return parameter. If the operation does not have a return parameter, then the super invocation
expression is untyped with multiplicity [0..0].

Action Language for Foundational UML (ALF), v1.1 45

8.3.12 Instance Creation Expressions

An instance creation expression is used to create a new instance of a class or data type. In either case, an instance creation
expression consists of the keyword new followed by a (possibly qualified) name and a tuple.

Examples

Object Creation

new Employee (id, name)

new Employee::transferred(employeeInfo)
new Set<Integer>(Integer([]{1,2,3})

Data Value Creation

new Position(1,2)

new Position (x=>1, y=>2)

Syntax

InstanceCreationExpression(e: InstanceCreationExpression)
= "new" QualifiedName (e.constructor) Tuple(e.tuple)

InvocationExpression

InstanceCreationExpression

0.1
+constructor (0..1

QualifiedName

Figure 8.12 Abstract Syntax of Instance Creation Expressions

Cross References

1. QualifiedName see 8.2
2. InvocationExpression see 8.3.7
3. Tuple see 8.3.8
Semantics

Since an instance creation expression involves the invocation of a constructor operation, it is possible for it to assign to
names used as arguments for out or inout parameters, as for a regular invocation expression (see 8.3.7). The name given in
an instance creation expression must resolve to a class, data type or a constructor operation. If the name given in an instance
creation expression denotes both a class and a data type, then the expression is illegal. If the qualified name denotes a data
type, but not a class, then the instance creation expression is a data value creation expression. Otherwise it is an object
creation expression.

The element named in an instance creation expression may not be a template, though it may be a binding of a template with
arguments given for all template parameters.

Object Creation Expression

If the name in an instance creation expression denotes a constructor operation or a class, then the expression creates an
object. If the name is for a constructor, then the newly created object is an instance of the class that owns the constructor.
Otherwise, the object is an instance of the explicitly named class.

46 Action Language for Foundational UML (ALF), v1.1

If the name denotes neither a class nor a data type, then it must denote a constructor (see UML Superstructure, 9.3.1), which
is determined using the following steps:

1. Identify all the constructors with the given name. Due to overloading there may be more than one. If there is not at least
one, then the object creation expression is illegal.

2. From the set determined in Step 1, select the constructors for which the tuple is statically compatible with the constructor
parameters, as defined for a behavior invocation (see 8.3.9). Due to the assignability rules, there may be more than one.
If there is not at least one, then the object creation expression is illegal.

3. From the set determined in Step 2, select the most specific constructors, as defined in Step 3 of the determination of the
operation for a feature invocation expression (see 8.3.10). If there is a single constructor remaining, this is the
constructor to be called. Otherwise, the object creation expression is illegal.

NOTE. A constructor is always required to have a single return type that is the same as the class being constructed (see UML
Superstructure, subclauses 9.3.1).

If the name denotes a class, then the constructor to be used is determined as above, except that, in the first step, constructors
are identified that are owned members of the named class with the same name as the class. Further, if no constructor is found,
then the object creation expression is considered to be constructorless. However, a constructorless instance create expression
may not have any arguments and is only legal if the named class has no constructor operations (see 10.5.3.2).

The class of the object being created must not be abstract, unless all of the following conditions hold:
* The object creation expression is not constructorless.
* The namespace that owns the class of the constructor also owns a package with the name Impl.
* The Impl package contains a class with the same name as the class of the constructor.

* The Tmp1 class has a constructor that redefines the constructor (which implies that the Impl class must be a direct or
indirect subclass of the class of the constructor).

If these conditions hold, then the identified Tmp1 class constructor is used instead of the original abstract class constructor,
and the object that is created is actually an instance of the Imp1 class.

NOTE. The above mechanism is intended to allow for the definition of abstract classes in model libraries that may be
directly referenced by user models and constructed as if they were concrete. Different execution tools may provide different
actual concrete implementations of the library classes in the nested Impl package of the model library without changing the
library classes actually referenced in user models. In particular, the Alf standard model library CollectionClass package
uses this mechanism (see 11.7).

If an object creation expression is not constructorless, then, in addition to creating an object, evaluation of the expression
calls the identified constructor on the newly created object. If a constructor is explicitly named in the expression, then that is
the constructor that is called. For example, the expression

new Employee::transferred(employeeInfo)

creates an object of the class Employee and calls the constructor transferred on that object with the argument
employeelInfo.

If the object creation expression names a class, then the constructor called is one with the same name as the class. Thus, the
expression

new Employee (id, name)
is equivalent to
new Employee::Employee (id, name)

If an object creation expression is constructorless, then evaluation of the expression still results in the creation of a new
object of the named class, but no constructor operation is called. However, if any attributes of the class have default value
expressions (see UML Superstructure, 7.3.44), then these are evaluated to give the initial values of the corresponding
attributes. Such initialization has the semantics of an assignment of the expression to the attribute (see 8.8). Attributes are
initialized in the order in which they are defined in the class.

Action Language for Foundational UML (ALF), v1.1 47

Finally, if the class of the object being created is active, then the classifier behavior for that class is automatically started once

the object is created and after any constructor call completes. In addition. each classifier behavior of a direct or indirect active
superclass is also started. unless that classifier behavior is redefined in another superclass or the class of the object being
created.

NOTE. While UML allows for the redefinition of behaviors (see UML Superstructure, 13.3.2), this is not included in the
fUML subset (see fUML Specification, 7.3.2.1). Nevertheless, Alf notation may be used to create an instance of a class with a
classifier behavior that redefines the classifier behavior of its superclass. For example, such redefinition is common when
state machines are used as classifier behaviors. The intent is that the behavior specified in the redefined behavior is
automatically included in the redefining behavior, which only specifies incremental and compatible extensions to the
redefined behavior. Therefore, it would be redundant in this case to start both the redefined and redefining behaviors. Only
the redefining behavior should be started.

‘ The type of an object creation expression is the class that owns the constructor (which is the named class, if it is named
explicitly) and the multiplicity is [1..1].

Data Value Creation Expression

If the name in an instance creation expression denotes a data type, then the expression creates a data value. In this case, the
tuple is used to specify values for the attributes of the data value. If a named tuple is used, then the names must correspond to
the names of the attributes of the data type. The identified data type must not be abstract.

Arguments are matched with attributes of the named data type as described in 8.3.8, with the attributes being considered as
in parameters. Each argument expression must be assignable to the corresponding attribute (see 8.8 for the definition of
assignability).

For example, consider the data type

datatype Position {
public x: Integer;
public y: Integer;
}

All the following data value expressions create equivalent data values of this type:
new Position(1l,2)

new Position (x=>1, y=>2)

new Position(y=>2, x=>1)

The type of a data value creation expression is the named data value and the multiplicity is [1..1].

8.3.13 Link Operation Expressions

A link operation expression is used to create or destroy instances of a named association, known as /inks. A link operation
expression has a similar syntax to an invocation expression, consisting of a farget association name, a link operation name
and a tuple of actual arguments for the link operation.

Examples

Owns.createlLink (jack, newHouse)

Owns.createlLink (owner=>jack, house=>newHouse)
Owns.createlLink (owner=>jack, house[l]=>newHouse)
Owns.destroyLink (owner=>jack, house=>newHouse)

Owns.clearAssoc (jack)

48 Action Language for Foundational UML (ALF), v1.1

Syntax

LinkOperationExpression (e: LinkOperationExpression)
= QualifiedName (e.associationName) "." LinkOperation (e.operation)
LinkOperationTuple (e.tuple)
LinkOperation (op: String)
= "createLink" (op)
| "destroyLink" (op)
| "clearAssoc" (op)
LinkOperationTuple (t: Tuple)
= PositionalTuple (t)
| IndexedNamedTuple (t)
IndexedNamedTuple (t: NamedTuple)
= "(" IndexedNamedExpression (t.expressions)
{ "," IndexedNamedExpression (t.expressions) } ")"
IndexedNamedExpression (n: NamedExpression)
= Name (n.name) [Index(n.index)] "=>" Expression (n.expression)
Index (e: Expression)
= "[" Expression(e) "]"

InvocationExpression

LinkOperationExpression

+operation : String

0.1

+associationName | 1

QualifiedName

Figure 8.13 Abstract Syntax of Link Operation Expressions

Cross References

1. Name see 7.6
2. Expression see 8.1

3. QualifiedName see 8.2
4. InvocationExpression see 8.3.7
5. PositionalTuple see 8.3.8
6. NamedTuple see 8.3.8
7. NamedExpression see 8.3.8
Semantics

The target of a link operation expression is a qualified name that must resolve to an association. The expression must name
one of the link operations in Table 8.2 (note that link operation names are reserved words). These operations are used to
create or destroy links of the named association.

Action Language for Foundational UML (ALF), v1.1

49

Table 8.2 Link Operations

Operation Description
A.createlink(el,e2..) Create a link of association A with end values e1, e2, ... Association A must
not be abstract.
A.destroyLink(el,e2,..) Destroy a link of association A with end values e1, e2, ...
A.clearAssoc (e) Destroy all links of association A with at least one end value e.

Argument expressions in the tuples for a link operation other than clearaAssoc are matched to the association ends of the
named association, where the ends are treated as if they were in parameters (see 8.3.8). Indexes are only allowed on the
names for ordered association ends. The expression in an index must have a tvpe that conforms to the type
UnlimitedNatural and a multiplicity upper bound of 1.

The link operation clearAssoc must have a positional tuple with a single argument.
A link operation expression is untyped with multiplicity [0..0].

For example, given the association

assoc Owns {
owner: Person;
house: House[*];

}
the expression
Owns.createlLink (jack, newHouse)

creates a link with the given end values (note that the order of the arguments corresponds to the order of the association ends
in the association definition). This link can then be destroyed using the expression

Owns.destroyLink (jack, newHouse)

Named tuple notation may also be used:

Owns.createlink (owner=>jack, house=>newHouse)
and

Owns.destroyLink (owner=>jack, house=>newHouse)
in which case the order of the arguments is immaterial.

If an association end is ordered, then the position of a link for the end can be indicated using an index. For example, if the
association above was modified so that the house end is ordered, then the expression

Owns.createlLink (owner=>jack, house[l]=>newHouse)

inserts the newHouse at the beginning of the list of houses for jack. If an index is not given for an ordered end, then the
default is *, which indicates adding at the end.

Normally, indexing in Alf (as in UML) is from 1. However, if a link operation expression is contained, directly or indirectly,
within a statement to which the annotation @indexFrom0 applies (see 9.2), then indexing is from 0. Thus, if the example
given above where in the scope of an @indexFrom0 annotation, then newHouse would be inserted at the second position in
the list of houses for jack, rather than at the beginning, because an index of 1 indicates the second position when indexing
starts at 0.

Finally, there is an additional link operation, clearAssoc, which may only be used with associations. It destroys all links of
the named association that have at least one end with a given value. Thus, the expression

Owns.clearAssoc (jack)
destroys all links between jack and any house.

NOTE. For a binary association (such as the example Owns used above), links may also be effectively created and destroyed
using property access notation, as if association ends were properties of their opposite types. Thus the expression
add (jack.house, newHouse) (or jack.house->add (newHouse)) can be used to create an Owns link,

50 Action Language for Foundational UML (ALF), v1.1

remove (jack.house, newHouse) (Or jack.house->remove (newHouse)) to destroy it and jack.house = null to
clear the association. (see 8.3.6 on property access expressions and 8.3.6 on sequence operation expressions.)

8.3.14 Class Extent Expressions

A class extent expression returns a sequence of the objects in the extent of a named class.

Examples

Customers.allInstances ()

Syntax

ClassExtentExpression (e: ClassExtentExpression)
= QualifiedName (e.type) "." "allInstances" " (" ")"
Expression

|

ClassExtentExpression

0..1
+className |1

QualifiedName

Figure 8.14 Abstract Syntax for Class Extent Expressions

Cross References

1. Expression see 8.1
2. QualifiedName see 8.2
Semantics

The name given in a class extent expression must denote a class. A class extent expression evaluates to a sequence (in an
arbitrary order) of the objects in the extent of the named class. The extent of a class is the set of objects that currently exist at
the specific execution locus at which the class extent expression is evaluated.

NOTE. The concept of an execution locus is defined in the fUML Specification, 8.2. The correspondence of the actual
execution environment to one or more fUML loci is specific to the execution tool.

The type of a class extent expression is the named class, and its multiplicity is [0..*].

8.3.15 Sequence Construction Expressions

A sequence construction expression is used to group values into a sequence of a specific type. The most direct form of a
sequence construction expression is a list of expressions enclosed in braces and preceded by a specification of the desired
type with the multiplicity indicator “[]”. There is also a special notation for the case of a sequence of consecutive integers.

A sequence construction expression may also be used to create an instance of a collection class (see 11.7) initialized from the
given sequence of values. This form has the same syntax as above, except that the specified type must be a collection class
and no multiplicity indicator is included.

A sequence construction expression may optionally start with the keyword new, analogously to the syntax of an instance
creation expression (see 8.3.12).

Examples
Integer([] {1, 3, 45, 2, 3}

Action Language for Foundational UML (ALF), v1.1 51

Set<Integer>{1, 3, 45, 2, 3}

new String[]{"apple","orange", "strawberry", }

new List< List<String> >{{"apple","orange"}, {"strawberry", "raspberry"}}
Integer[]{1l..6+4}

null

Syntax

SequenceConstructionExpression (e: SequenceConstructionExpression)
= NullExpression (e.hasMultiplicity=true)
| SequenceElementsExpression (e)
NullExpression
= "null"
SequenceElementsExpression (e: SequenceConstructionExpression)
= ["new"] SequenceElementsTypePart (e)
"{" SequenceElements (e.elements) "} "
SequenceElementsTypePart (e: SequenceConstructionExpression)
= TypeName (e. typeName)
[MultiplicityIndicator (e.hasMultiplicity=true)]
MultiplicityIndicator
= "[" "] "
SequenceElements (se: SequenceElements)
= SequenceElementList (se)
| SequenceRange (se)
SequenceElementList (sel: SequenceExpressionList)
= [SequenceElement (sel.element) { "," SequenceElement (sel.element) }
[", "]]
SequenceElement (e: Expression)
= Expression (e)
| SequencelInitializationExpression (e)
SequencelnitializationExpression (e: SequenceConstructionExpression)
= ["new"] "{" SequenceElements (e.elements) "}"
SequenceRange (sr: SequenceRange)
= Expression (sr.rangeLower) ".." Expression(sr.rangeUpper)

52 Action Language for Foundational UML (ALF), v1.1

+rangelLower

Expression

+rangeUpper
1

+element

{ordered}

SequenceConstructionExpression

SequenceElements |.+e|ements
] 0.1 0.1 +hasMultiplicity : Boolean = false

0.1
+typeName |0..1

0.1

QualifiedName

SequenceExpressionList

0.1 SequenceRange

0.1

Figure 8.15 Abstract Syntax of Sequence Construction Expressions

Cross References

1. Expression see 8.1
2. TypeName see 8.2
3. ExpressionList see 8.3.8
Semantics

Type Part

A sequence construction expression begins with a type part that that consists of a type name (see 8.2) and an optional
multiplicity indicator “11”.

If a multiplicity indicator is included, the type name may be either a qualified name or the keyword any. If it is a qualified
name, then this name must resolve to a classifier, which is the type of the sequence construction expression. The qualified
name must not resolve to a template, though it may be the binding of a template classifier.

If a multiplicity indicator is not included, then the type name must be the qualified name of a collection class

(see
11.7). In this case, the sequence construction expression has the collection class as its type.
Sequence Elements

The type part of a sequence construction expression is followed by a specification of the elements of a sequence. This may be
given either as a sequence element list or a sequence range.

A sequence element list is an explicit list of expressions. Each expression in the list must have a multiplicity upper bound of
no more than 1. The multiplicity lower and upper bounds of the sequence element list are given by the sum of the multiplicity
lower and upper bounds of each of the expressions in the list. A sequence element list is evaluated by evaluating each
expression in the list, in order, each of which will return at most one value. The result of the sequence element list is the
sequence of values returned, in order.

A sequence range has the form Exprl. .Expr2, where both expressions are of type Integer and
have a multiplicity upper bound of 1. A sequence range denotes all integers from the value of the first expression up to and

Action Language for Foundational UML (ALF), v1.1 53

including the value of the second expression. Note that the two expressions in a sequence range are evaluated concurrently.
For example, the sequence range {1..6+4} is equivalent to the sequence element list {1, 2, 3, 4, 5, 6, 7, 8, 9,
10}. The multiplicity of the sequence range is [0..*].

If the type part of the sequence construction expression has a multiplicity indicator, then the result of the expression is the
result of evaluating the sequence element specification for the expression. If the expression has a sequence element list, and
the type name in the type part is not any, then the type of each expression in the list must either conform to the given type or
be convertible to it by bit string conversion on type conformance

conversion).

Collection Object Creation

If the type part of the sequence construction expression does not have a multiplicity indicator, then the expression is
equivalent to an instance creation expression (see 8.3.12) with a constructor for the given collection class and the
sequence elements used as the constructor argument. The result of the expression is a single collection object, so its
multiplicity is [1..1].

For example, the sequence construction expression
Set<Integer>{1l, 2, 3, 4}

is equivalent to the instance creation
expression

new Set<Integer>(Integer[]{1l, 2, 3, 4})

When used to construct a collection object, it is possible that the elements of a sequence element list are themselves
collections. In this case, the type parts of the nested sequence construction expressions may be omitted, since their types may
be inferred from the element type of the collection class being constructed.

For example, the sequence construction expression

List< Set<Integer> >{{1}, {2,3}, {4,5,6}}

is equivalent to

List< Set<Integer> >{Set<Integer>{l}, Set<Integer>{2,3}, Set<Integer>{4,5,6}}
which is in turn equivalent to the following nested instance creation expression:

new List< Set<Integer> > (Set<Integer>[] {
new Set<Integer>(1l),
new Set<Integer>(Integer([]{2,3}),
new Set<Integer>(Integer[]{4,5,6})

1)

Note that this nesting of sequence construction expressions only applies to the case of the construction of a collection object.
Sequences of values are themselves flat in Alf. Thus, the following expression is not legal:

Integer[]{{1}, {2,3}, {4,5,6}} // Illegall!
Empty Sequences

The list of element expressions in a sequence construction expression may be empty. However, the static type of an empty
sequence is still as specified in the expression. Thus, Integer[]{} is an empty sequence of integers while String[]{} is
an empty sequence of strings. An empty sequence has multiplicity [0..0].

The keyword null is equivalent to any [] { }, that is, an untyped empty sequence.

8.3.16 Sequence Access Expressions

A sequence access expression is used to obtain a specific element of an expression. It contains two subexpressions, a primary
expression and an index expression (within brackets).

Examples

this.getTypes () [1]

54 Action Language for Foundational UML (ALF), v1.1

Syntax

SequenceAccessExpression (e: SequenceAccessExpression)
= PrimaryExpression(e.primary) Index(e.index)

+prima +
P v Expression index
1 1
£\

SequenceAccessExpression
0.1 0.1

Figure 8.16 Abstract Syntax of Sequence Access Expressions

Cross References

1. Expression see 8.1

2. PrimaryExpression see 8.3.1
3. Index see 8.3.13
Semantics

The two subexpressions of a sequence access expression are evaluated concurrently. The index expression must evaluate to a
single integer value that indicates the element of the collection to which the collection access expression evaluates.

Indexing is from 1. unless the sequence access expression is contained, directly or indirectly, within a statement to which the
annotation @indexFrom0 applies (see 9.2). in which case indexing is from 0. If the index value is less than 1 (0, if indexing
is from 0) or greater than the size of the collection (size of the collection minus 1, if indexing is from 0), then the expression
returns no value.

For example, given the sequence
a = Integer[]{10, 20, 30, 40}
the sequence access expression a [3] normally evaluates to 30. However. if the expression is within the scope of an

@indexFrom0 annotation, then it evaluates to 40, because that element is at index 3 when indexing starts at 0Nete-that-

=)

If the index value is less than 1 or greater than the size of the collection, then the expression returns no value.

The type of a sequence access expression is the same as the type of its primary expression. Its multiplicity is [0..1].

8.3.17 Sequence Operation Expressions

A sequence operation expression is an alternative notation for applying a behavior as an operation on a sequence of values.
When the target of a normal operation invocation expression evaluates to a sequence of values, the operation is invoked on
each object in the sequence (see 8.3.10). A sequence operation expression, on the other hand, can be used to invoke in an
operation-like way a behavior that is intended to operate on a sequence as a whole.

Similarly to an operation invocation expression, a sequence operation expression consists of a primary expression, an
operation name and a tuple. However, the primary expression and the operation name are separated by the symbol “->
rather than the “.” used for a normal operation invocation. (The symbol “->" can be thought of as indicating the “flow” of a
sequence of values into the sequence operation.)

EE)

NOTE. The sequence operation expression notation is not available at the minimum conformance level (see 2.2).

Examples
selectedCustomers->notEmpty ()

memberList->includes (possibleMember)

Action Language for Foundational UML (ALF), v1.1 55

memberList->including (newMember)
products->removeAll (rejects)

Syntax

SequenceOperationExpression (e: SequenceOperationExpression)
= ExtentOrExpression(e.primary) "->" QualifiedName (e.operation)
Tuple (e.tuple)
ExtentOrExpression(e: ExtentOrExpression)
= QualifiedName (e.name)
| NonNamePrimaryExpression (e.nonNameExpression)

InvocationExpression Expression

+nonNameExpression |0..1

0.1
SequenceOperationExpression .MJ ExtentOrExpression
0.1 1 |
0..1
0.1
+operation |0..1
QualifiedName e "2
0.1

Figure 8.17 Abstract Syntax for Sequence Operation Expressions

Cross References

1. Expression see 8.1

2. QualifiedName see 8.2
3. NonNamePrimaryExpression see 8.3.1
4. InvocationExpression see 8.3.7
5. Tuple see 8.3.8
Semantics

Sequence Operation Invocation

The “operation” name in a sequence operation expression does not actually name an operation. Instead, it must resolve to the
name of a behavior with at least one parameter. The first parameter of this behavior must have direction in or inout and a
multiplicity of [0. .*]. The primary expression of the link operation expression must be assignable to this parameter (see 8.8
for the definition of assignability).

The tuple of a sequence operation expression contains arguments for any parameters of the named behavior other than the
first. Argument matching and compatibility is as required for a behavior invocation (see 8.3.9).

While a sequence operation expression is intended to look notationally similar to an operation invocation, it is actually
executed equivalently to a behavior invocation expression (see 8.3.9). Specifically, the target primary expression and any
argument expressions in the tuple are all evaluated concurrently. The named behavior is then invoked on the resulting
arguments as for a behavior invocation.

For example, suppose a is a sequence. Then the sequence operation expression
a->including (x)
is equivalent to the following behavior invocation expression for the library behavior including:

including(a, x)

56 Action Language for Foundational UML (ALF), v1.1

Both of these expression evaluate to a sequence with all the elements of a and the additional element x at the end.

By contrast, suppose that a is a sequence of objects of the same class, which has an operation called including. Then, the
operation call

a.including (x)

results in including (x) being called on each member of the sequence a.

“In-Place” Sequence Operations

If the first parameter of the behavior has direction inout, then the primary expression for the sequence operation expression
is restricted to the syntax and static semantic constraints of the left-hand side of an assignment (see 8.8). If the primary
expression is a local name or parameter name, then the assigned source for that name after the sequence operation expression
is the sequence operation expression itself. If the primary expression is an attribute reference with a local name or parameter
name and has a type that is a structured data type, then the assigned source for that name after the sequence operation
expression is the sequence operation expression itself.

The Alf standard CollectionFunctions package (see 11.6) contains a number of behaviors that operate on sequences. The
majority of these have an in direction for their target sequence parameter and produce a result via a return parameter.
However, certain of them have an inout direction for their sequence parameter, with the effect of updating a sequence “in
place”.

For example,

a->add (2)

is equivalent to

add(a, 2)

which results in the same effective behavior as
a = a->including(2)

Clearly, in this case, the target primary expression must have the form of the left hand side of an assignment (see 8.8). Note

@ _ 9

that if the target primary expression is a local name (such as “a” in the example above), then, by the usual semantics of
inout parameters, such an “in place” sequence operation expression is considered to be a re-assignment of that local name
(see 8.3.8 on assignments and inout parameters).

Sequence Operations on Collections

The assignability rule for collection conversion (see 8.8) leads to special behavior in the case in which the type of the initial
primary expression is a collection class (see 11.7) and its multiplicity upper bound is no greater than 1 (and as long as the
initial parameter is an in parameter). In this case, the operation toSequence is first called on the collection object resulting
from evaluating the primary expression, and the sequence operation is then performed on the resulting sequence.

For example, suppose customerList has the type List<Customer>. Then the expression
customerList->size ()

is equivalent to

size (customerlList)

Since the argument type for the CollectionFunctions: : size has multiplicity [*], this is equivalent to
size (customerList.toSequence())

which gives the number of elements in the collection. Note that this gives the same result as a regular call on the size
operation provided by a collection object:

customerList.size ()

Action Language for Foundational UML (ALF), v1.1 57

Sequence Operations on Extents

There is also a special notation option for sequence operation expressions in which the initial primary expression may be
replaced with the name of a class to implicitly denote the collection that is the current extent of that class. If the primary
expression of a sequence operation expression is a class name, then it is considered to be equivalent to a class extent
expression for the named class (see 8.3.14). However, if there is a local name or parameter name in the current extent with
the same name as the class name, then the primary expression is considered a name expression for the given name (see 8.3.3)
rather than a class extent expression.

For example, the expression
Customer->size ()

is equivalent to
Customer.allInstances ()—->size ()
or

size (Customer.allInstances())

which all evaluate to the number of objects currently in the extent of the Customer class (where
Customer.allInstances () is a class extent expression—see 8.3.14).

8.3.18 Sequence Reduction Expressions

A sequence reduction expression is used to reduce a sequence of values to a single value by combining the elements of the
sequence using a binary operator. A sequence reduction expression has a similar syntax to a sequence operation expression
(see 8.3.17) in that it starts with a primary expression followed by the “flow” symbol “->”. This is then followed by the
keyword “reduce” and the qualified name of a behavior that acts as the binary operator over elements of the sequence.

As for sequence operation expressions (see 8.3.17), sequence reduction expressions also allow the special notation in which a
class name is used as a shorthand for a class extent expression.

NOTE. The sequence reduction expression notation is not available at the minimum conformance level (see 2.2).

Examples
subtotals->reduce '+'

rotationMatrices->reduce ordered MatMult

Syntax
ReductionExpression(e: ReductionExpression)
= ExtentOrExpression(e.primary) "->" "reduce"
["ordered" (e.isOrdered=true)] QualifiedName (e.behavior)
Expression
SequenceReductionExpression +primary -
a P a|ExtentOrExpressmn
+isOrdered : Boolean = false 0.1 1
0.1

+behaviorName |1

QualifiedName

Figure 8.18 Abstract Syntax for Sequence Reduction Expressions

58 Action Language for Foundational UML (ALF), v1.1

Cross References

1. Expression see 8.1

2. QualifiedName see 8.2

3. ExtentOrExpression see 8.3.17
Semantics

The qualified name in a sequence reduction expression must denote a behavior with two in parameters and a return
parameter and no other parameters. The parameters must all have the same type as the primary expression and multiplicity
[1..1]. The identified behavior must not be a template, though it may be a binding of a template behavior (see 8.2)

The named behavior is invoked repeatedly on pairs of values resulting from the evaluation of a target primary expression.
Each time it is invoked, it produces one output that replaces the two input elements in an intermediate version of the
sequence. This repeats until the sequence is reduced to a single value.

For example, the expression
Integer([]{1l, 2, 3} -> reduce '+'

evaluates to 6—the same as 1+2+3 (see also 8.3.15 on the sequence construction expression notation used in the primary
expression above).

Normally, the order in which the behavior of a sequence reduction expression is applied to pairs of values is indeterminate.
This will not affect the result of the expression if the behavior is commutative and associative. For example, in the above
example using addition may be evaluated as 1+2+3 or 1+3+2 or 2+3+1, or in any other order, and the result is always 6.

However, if the reducing behavior is not commutative and associative, or has side effects, then the order in which elements
are selected from the sequence will affect the result of the expression. In this case, an ordered reduction may be used by
adding the keyword “ordered”, so the reducing behavior will be applied to adjacent pairs according to the collection order.
The result of each invocation of the behavior replaces the two values taken as input at the same position in the order as the
original two values.

For example, matrix multiplication is not commutative. The expression

Matrix[]{A, B, C} -> reduce ordered MatMult

will be deterministically be evaluated as MatMult (MatMult (A, B),C), not in any other order.

A sequence reduction expression has the same type as its argument expression and multiplicity [1..1].

Even though a sequence reduction expression is not equivalent to a behavior invocation, a collection object may be directly
acted on in such an expression analogously to how it may be acted on in a sequence operation expression (see 8.3.17). The
operation toSequence is called on the collection object, and the reduction is applied to the result of that operation.

For example, if vector has the type List<Integer>, then the sequence reduction expression
vector -> reduce '+'

is equivalent to

vector.toSequence () -> reduce '+'

Also as for sequence operation expressions (see 8.3.17), sequence reduction expressions allow the special notation in which a
class name is used as a shorthand for a class extent expression.

8.3.19 Sequence Expansion Expressions

A sequence expansion expression is used to specify a computation that operates on all the elements of a sequence. Such an
operation is said to expand the collection. In all cases except the iterate operation, this expansion is parallel, in the sense
that the computations on each sequence element are carried out concurrently.

A sequence expansion expression has a similar syntax to a sequence operation expression (see 8.3.17), except that, in addition
to giving the name of the expansion operation, the expression also gives a name for an expansion variable. This expansion
variable is used to hold the value of each element in the sequence during the expansion computation.

Action Language for Foundational UML (ALF), v1.1 59

NOTE. The sequence expansion expression notation is not available at the minimum conformance level (see 2.2).

Syntax

SequenceExpansionExpression(e: SequenceExpansionExpression)
= ExtentOrExpression(e.primary) "->" ExpansionOperation (e)
Name (e.variable) " (" Expression(e.argument) ")"

Expansio

nOperation (e: SequenceExpansionExpression)
SelectOrRejectOperation (e)

ForAllOrExistsOrOneOperation (e)

| CollectOrIterateOperation (e)
\
\

IsUniqueOperation (e)

+argument

Expression

SequenceExpansionExpression

+operation : String
0.1 +variable : String

0..1
+primary |1

ExtentOrExpression

Figure 8.19 Abstract Syntax of Sequence Expansion Expressions

Cross References

1. Name see 7.6

2. Expression see 8.1

3. QualifiedName see 8.2

4. ExtentOrExpression see 8.3.17
5. SelectionOrRejectOperation see 8.3.20
6. CollectOrlterateOperation see 8.3.21
7. ForAllOrExistsOrOneOperation see 8.3.22
8. IsUniqueOperation see 8.3.23
Semantics

The operation name in a sequence expansion expression must be one of the reserved keywords listed in Table 8.3.

Table 8.3 Sequence Expansion Operations

Operation Description
select Select a sub-sequence of elements for which a condition is true.
reject Select a sub-sequence of elements for which a condition is false.
collect Concurrently apply a computation on each element of a sequence.
iterate Sequentially apply a computation to each element of a sequence.
forall Test if a condition is true for all elements of a sequence.
exists Test if a condition is true for at least one element of a sequence.
one Test if a condition is true for exactly one element of a sequence
isUnique Test if a computation has a different value for every element of a sequence.

60

Action Language for Foundational UML (ALF), v1.1

Assignments made in the primary expression of a sequence expansion expression are available within its argument
expression. In addition, the expansion variable is available as a local name within the argument expression, with the same
type as the primary expression and multiplicity [1..1]. Its name must not conflict with any already assigned local name. Its
assigned source is the sequence expansion expression itself.

For example, in the expression

c->select x (x>1)

“select” is the expansion operation name and “x” is the expansion variable name.

An expansion variable may not be reassigned within the argument expression of a sequence expansion expression, and it is
considered unassigned after the sequence expansion expression. Further, while the argument expression may reference local
names defined outside that expression, it may not reassign such local names. New local names may be defined and referenced
within the argument expression, but all such names are considered unassigned after the sequence expansion expression.

NOTE. The above rule is necessary, since, if the sequence being expanded is empty, the argument expression will never be
evaluated and names assigned within it would have no value on their assigned source. The rule also allows sequence
expansion expressions to be mapped to expansion regions, which are not allowed to have outgoing flows or output pins in
fUML (see fUML Specification, 7.4.54.2.2).

Even though a sequence expansion expression is not equivalent to a behavior invocation, a collection object may be directly
acted on in such an expression analogously to how it may be acted on in a sequence operation expression (see 8.3.17). The
operation toSequence is called on the collection object, and the expansion is applied to the result of that operation.

For example, if customerList has the type List<Customer>, then the sequence expansion expression
customerList->select ¢ (c.name == customerName)

is equivalent to

Customer.toSequence () ->select ¢ (c.name == customerName)

Also as in a sequence operation expression (see 8.3.17), a sequence expansion expression allows the special notation in
which the initial primary expression may be replaced with the name of a class to implicitly denote the the current extent of
that class. Thus, the expression

Customer->select ¢ (c.name == customerName)

is equivalent to

Customer.alllInstances ()->select ¢ (c.name == customerName)
(where Customer.allInstances () is a class extent expression—see 8.3.14).

Specific semantics for each kind of sequence expansion operation are further discussed in subsequent subclauses.

8.3.20 select and reject Expressions

The select and reject operations are used in a sequence expansion expression (see 8.3.19) to specify a selection of
elements from a sequence. The select operation is used to select elements that meet a given condition, while the reject
operation is used to select those that do not meet a condition.

NOTE. The sequence expansion expression notation is not available at the minimum conformance level (see 2.2).
Examples

employees->select e (e.age>50)

employees->reject e (e.isMarried)

Syntax

SelectOrRejectOperation(e: SelectOrRejectExpression)
= "select" (e.operation)
| "reject" (e.operation)

Action Language for Foundational UML (ALF), v1.1 61

SequenceExpansionExpression

SelectOrRejectExpression

Figure 8.20 Abstract Syntax for select and reject Expressions
Cross References

1. SequenceExpansionExpression see 8.3.19

Semantics

A sequence expansion expression with a select or reject expression must have an argument expression with
type Boolean and a multiplicity upper bound of 1. The sequence expansion expression has the same type and
multiplicity upper bound as its primary expression and a multiplicity lower bound of 0.

The select operation specifies a subset of a sequence. Each element for which the argument expression evaluates to true is
included in the result sequence.

For example, the following expression selects all employees greater than 50 years old:
employees->select e (e.age>50)

The reject operation is similar to select, except that elements for which the argument expression evaluates to false are
included in the result sequence. The reject operation is thus equivalent to a select operation with the argument
expression negated.

For example, the following expression selects all employees who are not married:

employees->reject e (e.isMarried)

8.3.21 collect and iterate Expressions

The collect and iterate operations are used in a sequence expansion expression (see 8.3.19) to specify a sequence that is
derived from some other sequence, but which may contain different elements than the original sequence. This computation is
carried out concurrently in the case of the collect operation, but sequentially in the case of the i terate operation.

Examples

employees->collect e (e.birthDate)
processSteps->iterate step (step.execute())
Syntax

CollectOrIterateOperation(e: CollectOrIterateExpression)
= "collect" (e.operation)
| "iterate" (e.operation)

SequenceExpansionExpression

CollectOrlterateExpression

Figure 8.21 Abstract Syntax of collect and iterate expressions

62 Action Language for Foundational UML (ALF), v1.1

Cross References
1. SequenceExpansionExpression see 8.3.19
Semantics

A sequence expansion expression with a collect or iterate operation may have an argument expression of any type. The
sequence expansion expression has the same type as its argument expression and a multiplicity determined by multiplying the
corresponding lower and upper bounds of the collection and argument expressions (where the product of the unbounded
value * with anything is considered to be *).

The result of a collect or iterate operation is the sequence of the results of evaluating the argument expression for each
element of the input sequence.

For example, the following expression results in the sequence of birth dates of all employees:
employees->collect e (e.birthDate)

Note that, when the argument expression is a property access expression, the collect operation is the same as a property
access expression directly on the input sequence (see 8.3.6). Thus, the above example is equivalent to the simpler expression

employees.birthDate

An iterate operation has the same behavior as a collect operation, except that the argument expression is evaluated
sequentially for all elements of the input sequence, in order, rather than concurrently, as is the case for collect. This can be
useful when the argument expression potentially has side effects.

For example, in the evaluation of the expression
processSteps->iterate step (step.execute())

the execution of the process steps will occur sequentially, and the execution of each step will take place in the context
resulting from the completion of the previous step. As for collect, any results returned from the execute operation
invocations will be collected into a result sequence.

8.3.22 forall, exists and one Expressions

The foraAll, exists and one operations are used in a sequence expansion expression (see 8.3.19) to test a Boolean
argument expression on the elements of a sequence. The forAll operation tests that the condition holds for all elements, the
exists operation that it holds for at least one element and the one operation that it holds for exactly one element.

Examples

employees->forAll e (e.age<=65)

employees->exists e (e.firstName=="Jack")
employees->one e (e.title=="President")
Syntax

ForAl1lOrExistsOrOneOperation(e: ForAllOrExistsOrOneExpression)
= "forAll" (e.operation)
| "exists" (e.operation)
| "one" (e.operation)

SequenceExpansionExpression

ForAllIOrExistsOrOneExpression

Figure 8.22 Abstract Syntax for forAll, exists and one Expressions

Action Language for Foundational UML (ALF), v1.1 63

Cross References
1. SequenceExpansionExpression see 8.3.19
Semantics

A sequence expansion expression with a forA11, exists or one operation must have an argument expression with
type Boolean and a multiplicity upper bound of 1. The sequence expansion expression has type Boolean
and multiplicity [1..1].

The result of a foral1 operation is true of the argument expression evaluates to true for all elements of the input sequence
and false otherwise.

For example, the following expression evaluates to true if every employee is no older than 65:
employees->forAll e (e.age<=65)

The result of an exists operation is true if the argument expression evaluates to true for at least one element of the input
sequence.

For example, the following expression evaluates to true if at least one employee has the first name "Jack™":
employees->exists e (e.firstName=="Jack")

The result of a one operation is true if the argument expression evaluates to true for exactly one element of the input
sequence.

For example, the following expression evaluates to true if there is exactly one employee with the title "President™:

employees->one e (e.title=="President")

8.3.23 isunique Expression

The isUnique operation is used in a sequence expansion expression (see 8.3.19) to test whether an expression evaluates to a
different value for every element of a collection.

Examples
employees->isUnique e (e.employeeldentificationNumber)
Syntax

IsUniqueOperation(e: IsUniqueExpression)
= "isUnique" (e.operation)

SequenceExpansionExpression

IsUniqueExpression

Figure 8.23 Abstract Syntax for isUnique Expressions
Cross References

1. SequenceExpansionExpression see 8.3.19
Semantics

A sequence expansion expression with an i sUnique operation must have a single argument expression with a multiplicity
upper bound of 1. The sequence expansion expression has type Boolean and multiplicity [1..1].

The result of an isUnique operation is true if the argument expression evaluates to a different value for every element of the
input collection.

64 Action Language for Foundational UML (ALF), v1.1

For example, the following expression evaluates to true if every employee has a unique employee identification number:

employees->isUnique e (e.employeeldentificationNumber)

8.4 Increment and Decrement Expressions

An increment expression is one that uses the increment operator ++. A decrement expression is one that uses the decrement
operator —-. Either of these operators may be used in either a prefix form, in which the operator appears before the operand
expression, or a postfix form, in which the operator appears after the operand expression.

Examples
Postfix Form
count++
size--
total [i]++
Prefix Form
++count

--numberWaiting[queueIndex]

Syntax

IncrementOrDecrementExpression (e: IncrementOrDecrementExpression)

= PostfixExpression(e)

| PrefixExpression(e) (e.isPrefix=true)
PostfixExpression(e: IncrementOrDecrementExpression)

= LeftHandSide (e.operand) AffixOperator (e.operator)
PrefixExpression(e: IncrementOrDecrementExpression)

= AffixOperator (e.operator) LeftHandSide (e.operand)
AffixOperator (op: String)

= "++" (op) | m__nmn (op)

Expression

IncrementOrDecrementExpression

+isPrefix : Boolean = false
+operator : String

0.1

+operand |1

LeftHandSide

Figure 8.24 Increment and Decrement Expressions

Cross References

1. Expression see 8.1
2. LeftHandSide see 8.8
Semantics

The operand expression for an increment or decrement expression must conform to the syntax and static semantics for the left
\ hand side of an assignment (see 8.8). It must have type Integer and multiplicity upper bound of 1.

Action Language for Foundational UML (ALF), v1.1 65

The increment or decrement expression has type Integer, the same multiplicity lower bound as its operand expression and a
multiplicity upper bound of 1.

The effect of an increment or decrement expression is to increment (++) or decrement (--) the value of its operand and then
reassigns the result to the operand. If the operator is used as a postfix, then the value of the expression is the value of its
operand before it is reassigned. If the operator is used as a prefix, the value of the expression is the values of its operand afier
it is reassigned.

For example, if the local name a has the value 5, then both a++ and ++a assign the value 6 to a. However the value of the
expression a++ itself is 5, while the value of ++a is 6.

8.5 Unary Expressions

8.5.1 Overview

A unary expression is an expression with a single operand expression and an operator that performs some action on the values
produced by the operand. Unary operators include numeric unary operators, Boolean negation and isolation. Cast
expressions, which filter a sequence of values based on type, are also considered unary expressions in terms of concrete
syntax, even though their “operator” is given by a type name, not a fixed symbol.

The static and execution semantics of each kind of unary expression are discussed further in subsequent subclauses.

Syntax

UnaryExpression(e: Expression)
= PrimaryExpression (e)
| IncrementOrDecrementExpression (e)
| BooleanUnaryExpression (e)
| BitStringUnaryExpression (e)
| NumericUnaryExpression (e)
| CastExpression(e)
| IsolationExpression (e)

Expression

UnaryExpression

0.1 +operator : String

Figure 8.25 Base Abstract Syntax for Unary Expressions

Cross References

1. Expression see 8.1

2. PrimaryExpression see 8.3.1
3. IncrementOrDecrementExpression see 8.4

4. BooleanUnaryExpression see 8.5.2
5. NumericUnaryExpression see 8.5.4
6. CastExpression see 8.5.5
7. IsolationExpression see 8.5.6

66 Action Language for Foundational UML (ALF), v1.1

8.5.2 Boolean Unary Expressions

A Boolean unary expression is a unary expression whose operator acts on and produces Boolean values. The only Boolean

unary operator is the negation operator !.
Examples

!isActive

'this.running

Syntax

BooleanUnaryExpression (e: BooleanUnaryExpression)
= "!"(e.operator) UnaryExpression (e.operand)

UnaryExpression

BooleanUnaryExpression

Figure 8.26 Abstract Syntax of Boolean Unary Expressions
Cross References

1. UnaryExpression see 8.5.1
Semantics

A Boolean unary expression must have an operand expression with
The Boolean unary expression has type Boolean

The functionality of the Boolean negation operator is the same as an application of the Alf library
BooleanFunctions::'!"' function (see 11.4.2) with the operand expression as its argument. If the operand is true, the
result is false. If the operand is false, the result is true.

8.5.3 Bitstring Unary Expressions

A BitString unary expression is a unary expression whose operator acts on a bit string (or an integer convertible to a bit
string) and produces a bit string. The only BitString unary operator is the bit-wise complement operator ~.

Examples
~registerContext
~memory.getByte (address)
Syntax

BitStringUnaryExpression (e: BitStringUnaryExpression)
= "~"(e.operator) UnaryExpression (e.operand)

Action Language for Foundational UML (ALF), v1.1

67

UnaryExpression

BitStringUnaryExpression

Figure 8.27 Abstract Syntax of BitString Unary Expressions

Semantics
A Bitstring unary expression must have an operand expression with BitString or
Integer and The BitString unary expression has type BitString

. If the operand is an integer, then it is first converted to a bit string by applying the
library BitStringFunctions: : ToBitString function (see 11.4.7).

The functionality of the BitString bit-wise complement operator is the same as an application of the Alf library
BitStringFunctions::'~" function (see 11.4.7) with the operand expression as its argument. The result is a bit string that
has a bit set (value 1) in each bit position in which the operand bit string had its bit unset (value 0) and a bit unset (value 0) in
each bit position in which the operand bit string had its bit set (value 1).

8.5.4 Numeric Unary Expressions

A numeric unary expression is a unary expression that acts on and produces numeric values. The numeric unary operators are
+and -.

Examples

+1234

-42

+(a*b)
-absoluteValue
Syntax

NumericUnaryExpression (e: NumericUnaryExpression)

= NumericUnaryOperator (e.operator) UnaryExpression (e.operand)
NumericUnaryOperator (op: String)

= "+ ”n (Op) ‘ m_nmn (Op)

UnaryExpression

NumericUnaryExpression

Figure 8.28 Abstract Syntax of Numeric Unary Expressions
Cross References

1. UnaryExpression see 8.5.1

68 Action Language for Foundational UML (ALF), v1.1

Semantics

A numeric unary expression must have an operand expression with
and a multiplicity upper bound of 1. A numeric unary expression has type Integer
the same multiplicity lower bound as its operand expression
and a multiplicity upper bound of 1.

The unary plus operator does not change its operand value, while the unary minus operator negates it. The unary minus
operator has the same functionality as application of the Alf library IntegerFunctions: :Neg function (see 11.4.3),

with the
operand expression as the argument.

NOTE. While the unary plus operator does not have any mathematical effect on its operand, it can be used as a way to
effectively denote an Integer literal value. For example the literal “1234” has the type Natural (see 7.8.3) and could be
either an Integer or an UnlimitedNatural value. However the expression “+1234” is unambiguously an Integer.

8.5.5 Cast Expressions

A cast expression is used to filter the values of its operand expression to those of a given type. The type is named within
parentheses and prefixes the operand expression as an effective unary operator.

Examples

(fUML: :Syntax::Activity) this.getTypes ()
(Person) invoice.payingParty

(any) this

Syntax

CastExpression(e: CastExpression)

= "(" TypeName (e.typeName) ")" NonNumericUnaryExpression (e.operand)
NonNumericUnaryExpression (e: Expression)

= PrimaryExpression (e)

| PostfixExpression(e)

| BooleanUnaryExpression (e)

| BitStringUnaryExpression (e)

| CastExpression (e)

| IsolationExpression (e)

+operand | Expression

CastExpression

0.1

0.1
+typeName | 0..1

QualifiedName

Figure 8.29 Abstract Syntax of Cast Expressions
Cross References

1. Expression see 8.1
2. TypeName see 8.2
3. QualifiedName see 8.2

Action Language for Foundational UML (ALF), v1.1 69

4. PrimaryExpression see 8.3.1
5. TypeName see 8.3.15
6. PostfixExpression see 8.4

7. BooleanUnaryExpression see 8.5.2
8. IsolationExpression see 8.5.6
Semantics

Unless the type name in a cast expression is the keyword any, the cast expression has the given type (see also 8.2 on type
names). If the type name is any, then the cast expression is untyped. If the type name is a qualified name, then it must resolve
to a classifier, which must not be a template, though it may be a binding of a template classifier.

A cast expression is evaluated by first evaluating its operand expression, producing a sequence of values. Any values of the
operand expression whose dynamic type does not conform to the type of the cast expression are filtered out, so that all result
values of the cast expression are of the given type. If the cast expression is untyped, then no values are filtered out.

For example, the cast expression
(Integer)anyl[] {1, "banana", 2}
evaluates to

Integer[]{1,2}

NOTE--The library type Natural is a subtype of Integer and UnlimitedNatural. This means that natural literals of type
Natural (see 7.8.3) can be cast to Integer or UnlimitedNatural. Thus, (Integer) 2 is the Integer value 2, while
(UnlimitedNatural) 2 isthe UnlimitedNatural value 2.

In addition, for the purpose of a cast expression, any non-negative Integer value is considered to conform to the type
UnlimitedNatural, and vice versa. Integer values are converted to UnlimitedNatural values using the Alf library
IntegerFunctions::ToUnlimitedNatural function (see 11.4.3). UnlimitedNatural values are converted to
Integer values using the Alf library UnlimitedNaturalFunctions: :ToInteger function (see 11.4.6).

For example, the cast expression

(Integer)UnlimitedNatural[]{1,2,*}

evaluates to

Integer[1{1,2}

and the cast expression
(UnlimitedNatural) Integer[]1{-1,0,1}

evaluates to

UnlimitedNatural[1{0,1}

Further, any Integer value is considered to conform to the type BitString and vice versa. Integer values are converted
to BitString values using the Alf library BitStringFunctions: :ToBitString function and BitString values are
converted to Integer values using the BitStringFunctions: :ToInteger function (see 11.4.6).

Finally, any Integer value is also considered to conform to the type Real and vice versa. Integer values are converted to
Real values using the Alf library IntegerFunctions: :ToReal function (see 11.4.2) and Real values are converted to
Integer values using the RealFunctions: :ToInteger function (see 11.4.3).

The multiplicity lower bound of a cast expression is 0, unless one of the following conditions hold, in which case the
multiplicity lower bound is the same as that of its operand expression.

¢ The cast expression is untyped.

e The type of the cast expression is Integer and the type of its operand expression is BitString or Real.

¢ The type of the cast expression is BitString or Real and the type of its operand expression is Integer.

70 Action Language for Foundational UML (ALF), v1.1

The multiplicity bound of a cast expression is same as that of operand
expression.

8.5.6 Isolation Expressions

An isolation expression is a unary expression with the isolation operator $.

NOTE. The isolation expression notation is not available at the minimum conformance level (see 2.2).
Examples

Sthis.monitor.getActiveSensor () .getReading ()

Syntax

IsolationExpression(e: IsolationExpression)
= "$" (e.operator) UnaryExpression (e.operand)

UnaryExpression

IsolationExpression

Figure 8.30 Abstract Syntax of Isolation Expressions
Cross References

1. UnaryExpression see 8.5.1
Semantics

The isolation operator indicates that its operand expression should be evaluated in isolation, similarly to the use of the
@isolated annotation for a statement (see 9.2). That is, during the evaluation of the operand expression, no object accessed
as part of the evaluation of the expression or as the result of a synchronous invocation from the expression may be modified
by any action that is not executed as part of the operand expression or as the result of a synchronous invocation from that
expression.

An isolation expression has the type and multiplicity of its operand expression.

8.6 Binary Expressions

8.6.1 Overview

A binary expression is an expression with two operand expressions and an operator that performs some action on the values
produced by the operands. Binary operators include arithmetic, relational, equality, logical and conditional logical operators.
Classification expressions, which test if a value has a certain type, are also syntactically similar to binary expressions, except
that one of the “operands” of a classification expression is actually a type name.

Syntax

See the concrete syntax for each kind of binary expression in subsequent subclauses.

Action Language for Foundational UML (ALF), v1.1 71

+operand1 - +operand2
1 A 1

BinaryExpression

0.1 +operator : String 0.1

Figure 8.31 Base Abstract Syntax for Binary Expressions
Semantics

Except in the case of conditional logical expressions (see 8.6.8), the operand expressions of a binary expression are evaluated
concurrently and then the operator is applied to their results. Because of the concurrent evaluation of the operands, it is not
legal to assign the same local name in both operand expressions.

The semantics of each kind of binary expression are discussed further in subsequent subclauses.

8.6.2 Arithmetic Expressions

An arithmetic expression is a binary expression with an arithmetic operator. Arithmetic operators include the multiplicative
operators are *, / and % and the additive operators + and -. The multiplicative operators all have a higher precedence than
the additive operators. All arithmetic operators are syntactically left-associative (they group from left to right).

Examples

amount * interestRate

duration / timeStep

length % unit

initialPosition + positionChange
basePrice - discount

Syntax

UnaryOrMultiplicativeExpression (e: Expression)
= UnaryExpression (e)
| MultiplicativeExpression (e)
MultiplicativeExpression(e: ArithmeticExpression)
= UnaryOrMultiplicativeExpression (e.operandl)
MultiplicativeOperator (e.operator) UnaryExpression (e.operandZ2)
MultiplicativeOperator (op: String)
= mxn (Op) ["/" (Op) ["%" (Op)
UnaryOrArithmeticExpression (e: Expression)
= UnaryOrMultiplicativeExpression (e)
| AdditiveExpression (e)
AdditiveExpression (e: ArithmeticExpression)
= UnaryOrArithmeticExpression (e.operandl)
AdditiveOperator (e.operator)
UnaryOrMultiplicativeExpression (e.operand?2)
AdditiveOperator (op: String)
= myn (Op) [m_nm (Op)

72 Action Language for Foundational UML (ALF), v1.1

BinaryExpression

ArithmeticExpression

Figure 8.32 Abstract Syntax of Arithmetic Expressions

Cross References

1. UnaryExpression see 8.5.1
2. BinaryExpression see 8.6.1
Semantics

The operand expressions for an arithmetic operator other than + or » must be of a type that conforms to type Integer or
Realeype—tnteges The operand expressions for the + operator must either both have types that conform to be-eftype
Integer or Real or both have types that conform to type String. The operand expressions for the $ operator must both
beth-be of types that conform to type Integereype—St=ing. In all cases, the operand expressions must have a multiplicity
upper bound of 1.

The functionality of the arithmetic operators is equivalent to the application of the similarly named primitive functions from
the library IntegerFunctions package (see 11.4.3). Realfunctions package (see 11.4.4) -or StringFunctions
package (see 11.4.5), depending on the type of the operand expressions, with the two operand expressions as arguments. [f
one of the operand expressions is of type Real and the other is of type Integer, then the primitive function from the
RealFunctions package is used, with real conversion performed on the Tnteger operand (see 8.8).

The * operator denotes multiplication, the / operator denotes division and the % operator denotes remainder. The + operator
denotes either addition or string concatenation. The — operator denotes subtraction.

An arithmetic expression has the same type as its operands and a multiplicity upper bound of 1. Its multiplicity lower bound
is 0 if'its operator is / or if the lower bound if either operand expression is 0 and 1 otherwise.

NOTE. A division by zero results in no value, so a division operation has a multiplicity lower bound of 0.

8.6.3 Shift Expressions

A shift expression is a binary expression with a shift operator. The shift operators are left shift <<, signed right shift >> and
unsigned right shift >>>. They have a lower precedence than any of the arithmetic operators. They are syntactically left-
associative (they group left to right). The first operand of a shift operator must be a bit string (or an integer convertible to a
bit string) and the second operand then specifies the number of bit positions that bit string is to be shifted.

Examples

bitmask << wordLength
wordContent >> offset
(value&0xF0) >>> 8
Syntax

ArithmeticOrShiftExpression(e: Expression)
= UnaryOrArithmeticExpression (e)
| ShiftExpression(e)
ShiftExpression(e: ShiftExpression)
= ArithmeticOrShiftExpression (e.operandl) ShiftOperator (e.operator)
UnaryOrArithmeticExpression (e.operand?2)

Action Language for Foundational UML (ALF), v1.1 73

ShiftOperator (op: String)
= "<<" (Op) | ">>" (Op) ‘ ">>>" (Op)

BinaryExpression

ShiftExpression

Figure 8.33 Abstract Syntax of Shift Expressions

Cross References

1. BinaryExpression see 8.6.1

2. UnaryOrArithmeticExpression see 8.6.2

Semantics

The first operand expression of a shift expression must have the type BitString or Integer. The
second operand expression must have the type Integer. The operand expressions must each have

The shift operators are used to perform bit shifts on bit strings. If the first operand is an integer, then it is first converted to a
bit string by applying the library BitStringFunctions:: ToBitString function (see 11.4.7). High-order bits in a bit
string are considered to be on the left, while low-order bits are on the right.

The functionality of the shift operators is equivalent to the application of the similarly named primitive functions from the
library BitStringFunctions package (see 11.4.7) with the two operand expressions as arguments.

The value of b<<n is b left-shifted n positions. Since the bit string length is fixed, the left n bits of b are lost. The right n bits
of the resulting value are zero.

The value of b>>n is b right-shifted n positions. Since the bit string length is fixed, the right n bits of b are lost. The left n
bits of the resulting value are set the same as the rightmost (highest bit position) bit of b. If b is the twos-complement
representation of an integer (e.g., if it was converted from an integer value), then this corresponds to sign-extension of the
original value.

The value of b>>>n is the same as for b>>n, except that the left n bits of the resulting value are zero (zero-extension instead
of sign-extension).

A shift expression has type BitString and

8.6.4 Relational Expressions

A relational expression is a binary expression with a relational operator. The relational operators are <, >, <= and >=. They
have a lower precedence than any of the arithmetic or shift operators. The relational operators are not associative, and it is not
legal to use more than one in an expression without parentheses. For example, a<b<c is not syntactically legal, though

(a<b) <c and a< (b<c) are. (But, even with parentheses, these expressions are not actually useful, since the parenthesized
expression has type Boolean, which is not legal as an argument to the outer < operator.)

NOTE. The restriction on associative relational expressions avoids a syntactic ambiguity with the syntax for the invocation
of a template behavior with an explicit binding. For example, the expression A (C) can be unambiguously parsed as an
invocation of the behavior A, since the “>” cannot legally be parsed as a relational greater than operator.

Examples
sensorReading > threshold

size < maxSize

74 Action Language for Foundational UML (ALF), v1.1

size >= minSize
count <= limit

Syntax

ShiftOrRelationalExpression (e: Expression)
= ArithmeticOrShiftExpression (e)
| RelationalExpression (e)
RelationalExpression(e: RelationalExpression)
= ArithmeticOrShiftExpression (e.operandl)
RelationalOperator (e.operator)
ArithmeticOrShiftExpression (e.operand?2)
RelationalOperator (op: String)
e "<" (op) I ">" (op) I "<=" (Op) | ">=" (op)

BinaryExpression

RelationalExpression

Figure 8.34 Abstract Syntax of Relational Expressions

Cross References

1. BinaryExpression see 8.6.1

2. ArithmeticOrShiftExpression see 8.6.3

Semantics

The operand expressions for a comparison operator must bolh ha\ e a type that conforms to type Natural, Intege

or both have a type that conforms to type Natural or UnlimitedNatural. That ishave-the-type-Tateger
Upttebrediacural-of- Narwea - Hewever, it 1S not allowed to have one operand expression be Integer or Real and the

other be UnlimitedNatural. The operand expressions must each have a multiplicity upper bound of 1.

The relational operators are used to compare the values of two numbers. The number being compared may be either integers .
reals -or unlimited naturals, but it is not legal to directly compare an integer or real to an unlimited natural number.

Thus, the expression
3 < *

is legal (and evaluates to true), since the natural literal 3 is automatically cast to UnlimitedNatural in this context.
However, the expression

+3 < *

is not legal, because the literal +3 has type Integer. A cast expression (see 8.5.5) must be used in order to directly compare
an integer value to an unlimited natural value; for example,

(UnlimitedNatural) (+3) < *
evaluates to true.

The functionality of the relational operators is equivalent to the application of the similarly named primitive functions from
the library IntegerFunctions package (see 11.4.3). RealFunctions package (see 11.4.4) -or UnlimitedFunctions
package (see 11.4.6), depending on the type of the operand expressions, with the two operand expressions as arguments. [f
one of the operand expressions is of type Real and the other is of type Integer, then the primitive function from the
RealFunctions package is used, with real conversion (see 8.8) performed on the Integer operand.

Action Language for Foundational UML (ALF), v1.1 75

NOTE. The Alf Standard Model Library comparison functions are based on the comparison functions available in the f{UML
Foundation Model Library. The Foundation Model Library does not provide comparison operators for the primitive type
String.

A comparison expression has type Boolean and a multiplicity upper bound of 1. Its multiplicity lower bound is 0 if the lower
bound if either operand expression is 0 and 1 otherwise.

8.6.5 Classification Expressions

A classification expression is an expression with a single operand expression followed by one of the classification operators
instanceof or hastype. A classification expression is used to determine whether the result of its operand expression has a
certain type, which is given as a qualified name after the classification operator.

Examples

action instanceof ActionActivation
'signal' hastype SignalArrival
Syntax

RelationalOrClassificationExpression(e: Expression)
= ArithmeticOrRelationalExpression (e)
| ClassificationExpression (e)
ClassificationExpression(e: ClassificationExpression)
= ArithmeticOrRelationalExpression (e.operand)
ClassificationOperator (e.operator)
QualifiedName (e.typeName)
ClassificationOperator (op: String)
= "instanceof" (op) | "hastype'" (op)

UnaryExpression

ClassificationExpression

0.1

+typeName 1

QualifiedName

Figure 8.35 Abstract Syntax of Classification Expressions

NOTE. The concrete syntax for classification expressions, in terms of form and precedence, is similar to that of a normal
binary expression, except that one of the “operands” is a type rather than a second expression. However, since only one
operand is actually an expression, in the abstract syntax a classification expression is treated as a kind of unary expression.

Cross References

1. QualifiedName see 8.2
2. UnaryExpression see 8.5.1
3. ArithmeticOrRelationalExpression see 8.6.4
Semantics

The qualified name in a classification expression must resolve to a classifier. The classifier must not be a template, though it
may be the binding of a template classifier (see 8.2).

76 Action Language for Foundational UML (ALF), v1.1

The operand expression must have multiplicity [1..17. 3 - A classification expression has type
Boolean_and multiplicity [1..1]—thesame—muttiplicity lower bound as—itsoperand expression—and

mulEeiolicetitu uover bound of 1

Sy —apPPteE

The instanceof operator checks if the dynamic type of its operand conforms to the given type—that is, whether the
argument type is the same as or a direct or indirect subclass of the given type. The hastype operator, on the other hand,
checks if the dynamic type of its argument is the same as the given type.

8.6.6 Equality Expressions

An equality expression is a binary expression with one of the equality operators == (equal to) or ! = (not equal to). The
equality operators are analogous to the relational operators, except for their lower precedence. They are syntactically left-
associative (they group left to right), so a==b==c parses as (a==b) ==c. However, the result type of a==b is Boolean, so if
c is not Boolean, the expression will always be false. Thus, a==b==c does not test whether a, b and c are all equal.

Examples
errorCount==
nextRecord!=endRecord

list.next==null

Syntax

ClassificationOrEqualityExpression(e: Expression)
= RelationalOrClassificationExpression (e)
| EqualityExpression (e)
EqualityExpression (e: BinaryExpression)
= ClassificationOrEqualityExpression (e.operandl)
EqualityOperator (e.operator)
RelationalOrClassificationExpression (e.operand?2)
EqualityOperator (op: String)
- n__n (Op) | mp=nm (Op)
EqualityOrAndExpression (e: Expression)
= ClassificationOrEqualityExpression (e)
| AndExpression (e)

BinaryExpression

EqualityExpression

Figure 8.36 Abstract Syntax of Equality Expressions

Cross References

1. BinaryExpression see 8.6.1
2. RelationalOrClassificationExpression see 8.6.5
Semantics

For primitive types, the equality operators test whether two values of the same type are the same value. A value of a primitive
type is never equal to a value of any other type. However., if one operand expression is of type Integer and the other is of
type Real, then real conversion (see 8.8) is performed on the ITnteger operand and the resulting real value is used for the
comparison. Thus, 1 == 1.0, for example, evaluates to true.

NOTE. Since String is a primitive type in UML, not a class, strings may be tested for equality of value using the regular
equality operators.

Action Language for Foundational UML (ALF), v1.1 77

For structured data types, the equality operators test whether two values of the same type have equal values for each
corresponding attribute. A value of one structured data type is never equal to a value of any other type. Note also that the
participation of a value in association links does not affect its equality to other values.

For classes, the equality operators test whether the argument values are references to the same object, that is, they test object
identity.

Further, if one of the arguments to an equality operator is empty (that is, it is the empty sequence), then it is considered to be
equal to another empty value, but unequal to any non-empty value. Thus, a==nul1 is true if and only if isEmpty (a).

An operand expression for an equality operator must have a multiplicity upper bound of 1. An equality expression has type
Boolean and multiplicity [1..1].

8.6.7 Logical Expressions

A logical expression is a binary expression with one of the logical operators, including the and operator &, the exclusive or
operator ~ and the inclusive or operator |. These operators may also be used to perform bit-wise logical operations on bit
strings (or integers convertible to bit strings). The logical operators have different precedence, with & having the highest
precedence and | having the lowest precedence. They all have lower precedence than the equality operators.They are
syntactically left-associative (group left-to-right) and commutative (if their argument expressions have no side effects).

Examples
sensorOff | sensorError
i > min & 1 < max | unlimited

bitString ”~ mask

registerContent & 0x00FF

Syntax

EqualityOrAndExpression (e: Expression)
= ClassificationOrEqualityExpression (e)
| AndExpression (e)
AndExpression (e: LogicalExpression)
= EqualityOrAndExpression (e.operandl) "&"(e.operator)
ClassificationOrEqualityExpression (e.operand?Z)
AndOrExclusiveOrExpression (e: Expression)
= EqualityOrAndExpression (e)
| ExclusiveOrExpression (e)
ExclusiveOrExpression (e: LogicalExpression)
= AndOrExclusiveOrExpression (e.operandl) """ (e.operator)
EqualityOrAndExpression (e.operand?2)
ExclusiveOrOrInclusiveOrExpression (e: Expression)
= AndOrExclusiveOrExpression (e)
| InclusiveOrExpression (e)
InclusiveOrExpression (e: LogicalExpression)
= ExclusiveOrOrInclusiveOrExpression (e.operandl) "|" (e.operator)
AndOrExclusiveOrExpression (e.operand?2)

BinaryExpression

LogicalExpression

Figure 8.37 Abstract Syntax of Logical Expressions

78 Action Language for Foundational UML (ALF), v1.1

Cross References

1. BinaryExpression see 8.6.1

2. ClassificationOrEqualityExpression see 8.6.6

Semantics

The operand expressions for a logical operator must Boolean, BitString or
Integer. However, if one of the operands is Boolean, then the other must also be Boolean. The operand expressions must
each have . Any operand that is an integer is converted to a bit

string by applying the library BitStringFunctions: :ToBitString function (see 11.4.7).

The functionality of the logical operators is equivalent to the application of the similarly named primitive functions from the
library BooleanFunctions package (see 11.4.2), if the operands have type Boolean, or BitStringFunctions package
(see 11.4.7), with the two operand expressions as arguments.

For Boolean operands, the logical operators perform the indicated logical operation and produce a Boolean result:
* For ¢, the result value is true if both argument values are true; otherwise, the result is false.
* For ~, the result value is true if the argument values are different; otherwise, the result is false.
* For |, the result value is false if both argument values are false; otherwise, the result is true.

For BitString or Integer operands, the logical operators perform the indicated logical operation, as above, bit-wise on
corresponding bits of the operands and produce a BitString result. For the purpose of carrying out bit-wise logical
operations, a bit that is set (value of 1) is considered to be “true” while a bit that is unset (value of 0) is considered to be
“false”.

A logical expression has the same type as its operand expressions and

8.6.8 Conditional Logical Expressions

A conditional logical expression is a binary expression using one of the conditional logical operators s s (conditional-and)
and | | (conditional-or). The operators are similar to the logical operators & and |, except that the evaluation of their second
operand expression is conditioned on the result of evaluating the first expression. In the case of the & operator, the second
operand is evaluated only if the value of the first operand is true. In the case of the | | operator, the second operand is
evaluated only if the value of the first operand is false.

Examples

index > 0 && value[index] < limit
index == || value[index] >= limit
Syntax

InclusiveOrOrConditionalAndExpression (e: Expression)
= ExclusiveOrOrInclusiveOrExpression (e)
| ConditionalAndExpression(e)
ConditionalAndExpression (e: ConditionallogicalExpression)
= InclusiveOrOrConditionalAndExpression (e.operandl) "&&" (e.operator)
ExclusiveOrOrInclusiveOrExpression (e.operandZ2)
ConditionalAndOrConditionalOrExpression (e: Expression)
= InclusiveOrOrConditionalAndExpression (e)
| ConditionalOrExpression(e)
ConditionalOrExpression(e: ConditionallLogicalExpression)
= ConditionalAndOrConditionalOrExpression (e.operandl) "||" (e.operator)
InclusiveOrOrConditionalAndExpression (e.operand?2)

Action Language for Foundational UML (ALF), v1.1 79

BinaryExpression

ConditionalLogicalExpression

Figure 8.38 Abstract Syntax of Conditional Logical Expressions

Cross References

1. BinaryExpression see 8.6.1
2. ExclusiveOrOrInclusiveOrExpression see 8.6.7
Semantics

An expression with a conditional-and operator is evaluated by first evaluating its first operand expression. If the first operand
expression evaluates to true, then the second operand expression is evaluated, and its value is the value for the conditional-
and expression. If the first operand expression evaluates to false, however, the conditional-and expression evaluates to false
without ever evaluating its second operand expression.

An expression with a conditional-or operator is evaluated by first evaluating its first operand expression. If the first operand
expression evaluates to false, then the second operand expression is evaluated, and its value is the value for the conditional-or
expression. If the first operand expression evaluates to true, however, the conditional-or expression evaluates to true without
ever evaluating its second operand expression.

Since, if the second operand expression is evaluated at all, it is always evaluated after the first, a conditional logical operator
expression is fully associative, even in the presence of side effects. That is, not only does an expression of the form (expri
&& expr2) && expr3produce the same result as exprl &«& (expr2 && expr3),the subexpression expri, including
any side effects, will always be evaluated before expr2, and expr2 before expr3. Similarly, an expression of the form
(exprl || expr2) || expr3producesthe same resultas exprl || (expr2 || expr3), with the subexpression
exprl always evaluated before expr2, and expr2 before expr3. Note that this is not guaranteed for the logical operators &
and |, for which the operand expressions are evaluated concurrently.

The operand expressmns to a conditional logical expression must be of a type that conforms to type £#pe-Boolean and have
multiplicity [1} fkml{mhe&yﬂmﬁe%betmére& A condltlonal loglcal expressmn has type Boolean and nulllphcny

rand PSR T on—3 Ial na1 i
e PresSSTHoR—= e WS

=

Assignments made in the first operand expression of a conditional logical expression are available in the second operand
expression, if it is evaluated. The multiplicity and type of local and parameter names reference in the second operand
expression are adjusted based on the first operand expression evaluating to true, for a conditional-and expression, or false, for
a conditional-or expression (see 8.7 on local name multiplicity and type adjustment).

Local names that are defined in either the first or the second operand expression are also available after the conditional

logical expression. If a name is defined in the second operand expression, and that expression is not evaluated, then the name

is defined but empty after the evaluation of the conditional logical expression.

8.6.9 Null-Coalescing Expressions

A null-coalescing expression is a binary expression using the null-coalescing operator 2 2. The second operand expression of
a null-coalescing expression is evaluated if the first operand expression does not produce a value (that is, it evaluates to
null). The null-coalescing operator has a higher precedence than any other binary operator and it is syntactically right-

80 Action Language for Foundational UML (ALF), v1.1

associative (it groups right-to-left), so an expression of the form a??b?22c is equivalent to a?? (b2 2c) and will evaluate to
the first of the values of a, b or ¢ that is not null. orto null ifall of a, b and c are null.

Examples

this.getSelectedDirectory () ?? this.defaultDirectory

Customer->select ¢ (c.email == email) ?? new Customer (email)

list[2] 2?2 1ist[1]

WritelLine (content ?2? "null");

Syntax

ConditionallogicalOrNullCoalescingExpression(e: Expression)
= ConditionalAndOrConditionalOrExpression (e)
| NullCoalescingExpression (e)
NullCoalescingExpression(e: NullCoalescingExpression)
= ConditionalAndOrConditionalOrExpression (e.operandl) "??" (e.operator)
ConditionallogicalOrNullCoalescingExpression (e.operand?)

BinaryExpression

NullCoalescingExpression

Figure 8.39 - Abstract Syntax of Null-Coalescing Expressions

Cross References

1. BinaryExpression see 8.6.1
2. ConditionalAndOrConditional OrExpression see 8.6.8
Semantics

A null-coalescing expression is evaluated by first evaluating its first operand expression. If this expression produces at least
one value, then these values are the result of the null-coalescing expression. If the evaluation of the first operand expression
produces no values (i.e, it is equal to nul1), then the second operand expression is evaluated and its result is the result of the

null-coalescing expression.

0..0), then the type of the null-coalescing expression is the same as the type of the other operand expression. Otherwise, the

type of a null-coalescing is the effective common ancestor (see 8.8) of the types of'its operand expressions, if that exists, and
it is untyped if no effective common ancestor exists.

The multiplicity lower bound of a null-coalescing expression is the same as that of'its first operand expression, if that is not
0; otherwise it is 1, if the multiplicity lower bound of the second operand expression is not 0; otherwise it is 0. The
multiplicity upper bound of the null-coalescing expression is the maximum of the multiplicity upper bounds of its two
operand expressions.

Assignments made in the first operand expression of a null-coalescing expression are available in the second operand
expression, if it is evaluated. Local names that are defined in the either the first or second operand expression are also

available after the null-coalescing expression. If a name is defined in the second operand expression, and that expression is
not evaluated, then the name is defined but empty after the evaluation of the null-coalescing expression.

NOTE. A null-coalescing expression of the form operandl 22 operand?2is equivalent to a conditional-test expression

(see 8.7) of the form

(temp = operandl) != null? temp: operand2

Action Language for Foundational UML (ALF), v1.1 81

where temp is some local name not otherwise used. Notice, in particular, that the first operand expression is only evaluated
once, with the result of that evaluation being used both for the test against null and for the result of the overall expression, if
it is not null.

8.7 Conditional-Test Expressions

A conditional-test expression uses the Boolean value of one expression to determine which of two other expressions should
be evaluated. The conditional-test operator thus has three operands. The ? symbol appears between the first and second
operand expressions and : appears between the second and third expressions. The conditional-test operator is syntactically
right-associative (it groups right-to-left), so that an expression of the form a?b:c?d:e is equivalent to a?b: (c?d:e).

Examples
isNormalOps? readPrimarySensor (): readBackupSensor ()
Syntax

ConditionalExpression (e: Expression)

e e D (e)

Conditi [Logicall alescing.
| ConditionalTestExpression(e)
ConditionalTestExpression(e: ConditionalTestExpression)

ConditionalLogicalQ
operandl) "?"
Expression (e.operand2) ":" ConditionalExpression (e.operand3)

+operand1
1
+operand2

1
+operand3

Expression

1| ConditionalTestExpression

olele

Figure 8.40 Abstract Syntax of Conditional-Test Expressions
Cross References
1. Expression

2. Conditionall ogicalOrNullCoalescingExpression

Semantics

A conditional test is evaluated by first evaluating the first operand expression. If this expression evaluates to true, then the
second operand expression is evaluated, providing the values for the conditional-test expression. If the first operand
expression evaluates to false, then the third operand expression is evaluated, providing the values for the conditional-test
expression.

The first operand expression for a conditional-test operator must be of a type that conforms to type #ype-Boolean and have
multiplicity [1. .1] a—multiplicity upper bound—-of 1.

The type of a conditional-test operator expression is the effective common ancestor (see below) of the types of its second and
third operand expressions, if one exists. If none exists, then the conditional-test operator expression is untyped.

82 Action Language for Foundational UML (ALF), v1.1

The multiplicity lower bound of a conditional-test operator expression is zero if the multiplicity lower bound of its first
operand expression is zero and the minimum of the multiplicity lower bounds of its second and third operand expressions
otherwise. Its multiplicity upper bound is the maximum of the multiplicity upper bounds of its second and third operand
expressions.

Local names assigned in the first operand expression of a conditional-test expression may be used in the second and third
operand expressions. The multiplicity and type of local and parameter names in the second operand expression are adjusted
based on the first operand expression evaluating to true (see below on local name multiplicity and type adjustment).
Similarly, the multiplicity and type of local and parameter names in the second operand expression are adjusted based on the
first operand expression.

Any local names that are newly defined in any of the operand expressions of a conditional-test expression are also available
after the conditional-test expression. If such a name is defined in one of the second or third operand expressions, but not the
other, and the operand expression in which it is defined is not evaluated, then that name is defined but empty after the
evaluation of the conditional- test expression.

Effective common ancestor

A common ancestor for a set of classifiers is a classifier that is either equal to or a generalization (directly or indirectly) of all
the classifiers in the given set.

A most specialized common ancestor is a common ancestor for which there is no other common ancestor, for the same given
set of classifiers, that is a specialization (directly or indirectly) of the most specialized common ancestor. Due to multiple
generalization, it is possible for a set of classifiers to have more than one most specialized common ancestor.

If a set of classifiers has a single most specialized common ancestor, then this is the effective common ancestor for the set.
Otherwise, the effective common ancestor of the set of most specialized common ancestors (if any) is also the effective
common ancestor of the original set of classifiers. Note that some sets of classifiers have no effective common ancestor.

Local name and multiplicity adjustment

The assigned source information for a local or parameter name may be adjusted if it is known to be null, non-null or of a
certain type if a given Boolean expression is considered to be true or false (depending on the context), as follows:

¢ If the name is known to be nul1, its multiplicity lower bound is adjusted to 0.

e Ifthe name is known to be non-null, its multiplicity lower bound is adjusted to 1.

¢ If the name is known to be of a certain type, its known subtype is set to that type (this will always be a subtype of the
original implicitly or explicitly declared type of the name).

Whether a local or parameter name is known null, non-null or of a certain type is determined as given below.

The relevant names of an expression E are defined as follows:

e If £is a name expression (see 8.3.3) consisting of a single local or parameter name, then that is the single relevant name

for E.

¢ If £is an assignment expression (see 8.8), then its relevant names include all the relevant names of its right-hand side,
and, if its left-hand side is a local or parameter name, then that name is included, too.

¢ If £is a parenthesized expression (see 8.3.5). then its relevant names are all those of its contained expression.

e Otherwise, E has no relevant names.

For a Boolean expression of one of the following forms, all the relevant names of the contained expression £ are known to be
null if the containing expression evaluates to true or known to be non-null if the containing expression evaluates to false.

¢ A behavior invocation expression (see 8.3.9) of the form IsEmpty (E) or isEmpty (E).

* A sequence operation expression (see 8.3.17) of the form E->TsEmpty () or E->isEmpty ().

e An equality expression (see 8.6.6) of the form E == null.

Action Language for Foundational UML (ALF), v1.1 83

null if the contamlmz expression evaluates to false or kn(m n to be non-null 1fthe containing expression evaluates to true.

* A behavior invocation expression (see 8.3.9) of the form NotEmpty (E) or notEmpty (E).

* A sequence operation expression (see 8.3.17) of the form E->NotEmpty () Or E->notEmpty ().

* An equality expression (see 8.6.6) of the form E '= null.

In the above, TsEmpty and NotEmpty are primitive behaviors from the library package SequenceFunctions (see 11.4.8)
and isEmpty and notEmpty are primitive behaviors from the library package CollectionFunctions (see 11.6). These
primitive behaviors may also be referenced via qualified names or import aliases, as appropriate in the context of the
containing expression.

For a classification expression (see 8.6.5) ofthe E instanceof TorE hastype T, all the relevant names of the contained
expression E are known to have tvpe T if the containing expression evaluates to true.

If a conditional-and expression (see 8.6.8) of the form E1 «& E2 evaluates to frue, then any relevant name of £1 is known to
be null, non-null or of a certain type, if this can determined as given above assuming E1 evaluates to true, and similarly for

E2. 1If a conditional-or expression (see 8.6.8) of the form £1 | | E2 evaluates to false, then any relevant name of £1 is known

to be null, non-null or of a certain type, if this can determined as given above assuming £71 evaluates to false, and similarly
for E2.

For expressions other than one of the forms given above, no determination is made on whether any names referenced in the
expression are null, non-null or of a certain type.

8.8 Assignment Expressions

An assignment expression is used to assign a value to a local name, output parameter or attribute. There are nine assignment
operators. A simple assignment is one made using the simple assignment operator =. A compound assignment uses one of the
eight other operators, which compound a binary operator with an assignment.

An assignment operator has two operand expressions. The first is known as the lefi-hand side and has a form restricted to
representing a local name, an output parameter or a (possibly indexed) attribute. The left-hand side denotes the target to be
assigned by the assignment expression. The second operand expression is known as the right-hand side. The right-hand side
expression evaluates to the value or values that are assigned to the target designated by the left-hand side.

All assignment operators are syntactically right-associative (they group right-to-left). Thus, an expression of the form a=b=c
is equivalent to a= (b=c), which assigns the value of ¢ to b and then assigns the value of b to a.

Examples
customer = new Customer () // Local name assignment
customer[i] = new Customer () // Indexed local name assignment

reply = this.createReply(request,result) // Output parameter assignment

customer.email = checkout.customerEmail // Attribute assignment
customer.address[i] = newAddress // Indexed attribute assignment
X += 4 // Compound assignment

filename += ".doc" // Compound assignment

Syntax

AssignmentExpression (e: AssignmentExpression)
= LeftHandSide (e.leftHandSide) AssignmentOperator (e.operator)
Expression (e.rightHandSide)
LeftHandSide (1lhs: LeftHandSide)
= NameLeftHandSide (1hs) [Index(lhs.index)]
| FeatureLeftHandSide (lhs) [Index(lhs.index)]
| "(" LeftHandSide (l1hs) ")"
NameLeftHandSide (1hs: NameLeftHandSide)
= PotentiallyAmbiguousQualifiedName (lhs.target)

84 Action Language for Foundational UML (ALF), v1.1

FeatureLeftHandSide (1hs: FeatureLeftHandSide)
= FeatureReference (lhs.feature)
AssignmentOperator (op: String)
- n_n (Op) | "y—n (Op) ‘ nm__—mn (Op) | mx_—n (Op) ‘ mo—n (Op) | H/:" (Op) ‘
"&=" (op) | "‘ =" (Op) ‘ nmAa_n (op) | "<<=" (op) | ">>=" (op) | ">>>=" (Op)

+index - +rightHandSide
Expression ,
0..1

AssignmentExpression

+operator : String 0.1

0.1
+leftHandSidey 1
LeftHandSide

I

FeatureLeftHandSide NamelLeftHandSide

0.1

0.1 0.1
+feature | 1 +target | 1
FeatureReference QualifiedName

Figure 8.41 Abstract Syntax for Assignment Expressions

Cross References

1. Expression see 8.1

2. QualifiedName see 8.2

3. FeatureReference see 8.3.6
4. Index see 8.3.13

NOTE. See 8.2 for rules on the disambiguation of a qualified name with the dot notation versus a feature reference used as a
left-hand side.

Semantics
Left-Hand Side
The left-hand side of an assignment expression may be one of the following:

* Local name. The assigned source of the local name before the assignment expression must not be a loop variable
definition (see 9.12), a @parallel annotation (see 9.12) or a sequence expansion expression (see 8.3.19).

* Qutput parameter name. The named parameter must have mode out or inout. A parameter name may be qualified with
the name of the behavior or operation that owns it, though this is not required. The identified parameter must not be a
template. The assignment expression must appear within the definition of the behavior that owns the parameter or the
method of the operation that owns the parameter.

* Property reference. A property reference is a feature reference that names a property of the type of its primary
expression. As for a property access expression (see 8.3.6), the identified property may be either a structural feature or an
association end, but must not be a template. The primary expression of the property reference must have a multiplicity
upper bound of 1.

Action Language for Foundational UML (ALF), v1.1 85

‘ A left-hand side may also include an index. An index expression must have a type that conforms to type Integer and a
multiplicity upper bound no greater than 1. An index is only allowed on a local or parameter name if the name has been
previously assigned and on a property reference if the named property is ordered.

The type of the left-hand side is determined as given below:

* Local Name. Determined by its first assignment. If this is the first assignment of the local name, then the type of the left-
hand side is the type of the right-hand side expression.

* Parameter Name. As declared for the named parameter.

* Property Reference. As given for the named property.

If the left-hand side has an index, then the multiplicity of the left-hand side is [0+. .1]. Otherwise, the multiplicity of the
left-hand side is determined as given for its type above. If this is the first assignment of the local name, then the multiplicity
lower bound for the new local name is 0: if the multiplicity lowertpper bound of the right-hand side is 0 and | otherwise:ef
the-asstenment-ts——then the mult1p11c1ty upper bound of the new local name is 1 if the multiplicity upper bound of the right-
hand side is 1 and * otherwise.;

Assignability

The right-hand side of an assignment must be assignable to the left-hand side. In general, this means that the right-hand side
is statically compatible in type and multiplicity with the left-hand side, either directly or after the application of a conversion.

A right-hand side is assignable to a left-hand side if any of the following conditions hold:

1. Conformance. The left-hand is untyped or the right-hand side has a type that conforms to the type of the left-hand side
(see 8.2 for the definition of type conformance). If the multiplicity lower bound of the left-hand side is greater than 0
and the left-hand side is not a local name, then the multiplicity lower bound of the right-hand side cannot be 0. If the
multiplicity upper bound of the left-hand side is less than or equal to 1, then the multiplicity upper bound of the right-
hand side cannot be greater than that of the left-hand side._

2. Null Conversion. The right-hand side is untyped with a multiplicity of [0..0] (i.e., guaranteed to be nul1l) and the left-
hand side has a multiplicity lower bound of 0 (regardless of type).

3. Collection Conversion. The type of the right-hand side is a collection class (see 11.7), the right-hand side has a
multiplicity upper bound of 1 and the type and multiplicity of the result of applying the toSequence operation to the
right-hand side would be assignable to the left-hand side. The assigned value is the result of implicitly calling the
toSequence operation on the result of evaluating the right-hand side expression.

4. Bit String Conversion. The type of the right-hand side conforms to Integer, and the type of the left-hand side is
BitString. If the multiplicity upper bound of the left-hand side is less than or equal to 1, then the multiplicity upper
bound of the right-hand side cannot be greater than that of the left-hand side. The assigned value is the result of
implicitly invoking the standard library BitStringFunctions: :ToBitString function (see 11.4.7) on each of the
values in the result of evaluating the right-hand side expression. Note that both collection conversion and bit string
conversion may apply. In this case, bit string conversion is applied after collection conversion.

5. Rm/ Conversion. The type of the right-hand side conforms to Integer, and the type of the left-hand side conforms to
. If the multiplicity upper bound of the left-hand side is less than or equal to 1. then the multiplicity upper bound of
1he riuhl—hand side cannot be greater than that of the left-hand side. The assigned value is the result of implicitly
invoking the standard IntegerFunctions: : ToReal function (see 11.4.3) on each of the values in the result of
evaluating the right-hand side expression. Note that hoth collection conversion and real conversion may apply. In this
case, real conversion is applied after collection conversion.

The concept of assignability is defined here for assignments, but it can actually be applied between any two typed elements
with multiplicity. It is used in this way to define the required compatibility between formal parameters and arguments in the
tuples of an invocation expression (see 8.3.9). When assignability is used in this general way, the term “left-hand side” used
here in its definition should be read as “the target element” and the term “right-hand side” should be read as “the source
element”.

Simple Assignment

A simple assignment has the form 1hs = expr. The right-hand side expression of a simple assignment must be assignable
to the left-hand side, as defined above.

86 Action Language for Foundational UML (ALF), v1.1

When a simple assignment expression is evaluated, the right-hand side expression is evaluated first. If the left-hand side
contains an index expression, this is evaluated affer the right-hand side expression. The result of the right-hand side
expression is then assigned to the left-hand side, as described below (possibly after conversion as discussed above).

If the left-hand side does not have an index expression, then the assignment proceeds as follows:

e Local name. If the local name already exists, then it is assigned a new value. with its static assigned source considered to
have a the type of the right-hand side expression as its known subtype (see also the discussion of local name multiplicity
and type adjustment in 8.7). Otherwise, the assignment expression acts as the definition of a new local name with the
type of the right-hand side expression. In either case. the multiplicity for the local name after the assignment is
determined based on the multiplicity of the right-hand side expression, as described above for when the local name is
being newly defined.

NOTE. It is not required to declare a local name before its first assignment. A first assignment can be used to implicitly
define a new local name. However, if a local name is defined using a local name declaration statement (see 9.6), that is
considered to be its first assignment.

e Qutput parameter name. A new value is assigned to the named parameter, with its static assigned source considered to
have a the type of the right-hand side expression as its known subtype (see also the discussion of local name multiplicity
and type adjustment in 8.7). Note that any previously assigned value is effectively overwritten. That is, at the completion
of the execution of a behavior, output parameters are given their last assigned value. The multiplicity of the new assigned
source for the parameter is determined based on the multiplicity of the right-hand side expression in the same way as for
a local name (note that this may be different than the multiplicity of the left-hand side containing the parameter, which
will be the same as the declared multiplicity of the parameter).

=)

\ * Property reference. A new value is assigned to the named property of the referenced object or structured data value.

If the property reference has a primary expression that is a local name or parameter name and has a type that is a
structured data type, then the assignment to the property reference effectively assigns a new data value to that local or
parameter name, with the given property updated.

If the left-hand side includes an index, then only the value at the index position is overwritten by the right-hand side value.
However, if the right-hand side value is an empty collection, then the former value at the index position is removed without
being replaced by a new value. Indexing is from 1. unless the assignment expression is contained. directly or indirectly.
within a statement to which the annotation @indexFrom0 applies (see 9.2). in which case indexing is from 0.

NOTE. Since null represents the empty collection, not a value itself, an expression of the form x.a[2] = null will
remove the second value of the collection x. a, not assign some “null” value to it.

A simple assignment expression has the type and multiplicity of its right-hand side expression.

As noted earlier for a property reference left-hand side, an assignment expression may also be used to update a binary
association in which an instance participates via reference to the opposite association end. In this case, the effect of the
assignment is equivalent to an appropriate link operation (see 8.3.13).

As an example of an association end update, consider the following association (represented in Alf notation—see 10.4.5).

assoc Owns {
owner: Person;
house: House[*];

}

If the association Owns is in the current scope (that is, visible without qualification), and newHouse is a House, then the
expression

newHouse.owner = jack;
is equivalent to the link operation
Owns.createLink (owner => jack, house => newHouse)

The result value of an assignment expression is the value of the right-hand side. Thus, the expression

Action Language for Foundational UML (ALF), v1.1 87

‘ WriteLine (a =)

\ assigns to a and then writes the value “x3”. Note that this should not be confused with the named tuple notation, such
as
WriteLine (value =>)

w_»

which uses the “=>"" symbol, rather than
Compound Assignment

A compound assignment has the form 1hs op= expr, where op is any arithmetic (sees 8.6.1) or logical (see 8.6.7) operator.
It is equivalent to 1hs = 1hs op expr (except that, if 1hs contains an index expression, it is only evaluated once).

In a compound assignment expression, if the left-hand side is a name (qualified or unqualified), it must also satisfy the
semantics of a name expression (see 8.3.3). If the left-hand side is a feature reference, then it must also satisfy the static
semantics of a property access expression (see 8.3.6). If the left-hand side has an index, then, in addition to the requirements
for its name or feature reference, the left-hand side overall must also satisfy the semantics of a sequence access expression
(see 8.3.16).

Both the left-hand side and the right-hand side must have multiplicity upper bounds of 1 and must have
consistent with the arithmetic or logical operator used in the compound assignment operator (sees 8.6.1 or 8.6.7,
respectively)

88 Action Language for Foundational UML (ALF), v1.1

9 Statements

9.1 Overview

Statements are segments of behavior that are executed for their effect and do not have values. They are the primary units of
sequencing and control in the Alf representation of behavior. This clause defines the kinds of statement allowed in Alf.

The full conformance level includes all kinds of statements specified in this clause. However, the minimum conformance

level only requires a subset of the full statement syntax. Therefore, in each of the concrete syntax grammar productions given

in the subclauses of this clause, some portion of the production may be italicized. Only the italicized portions apply at the
minimum conformance level. Unitalicized portions may be ignored for minimum conformance. (See also 2.2 on the

definition of syntactic conformance.)

A statement sequence is an Alf text consisting of a list of statements juxtaposed in a linear order. Such statement sequences
may be attached to UML models in order to specify behaviors. A block is a delineation of a statement sequence for use as a

component of a larger syntactic construct.
Examples

{
'activity' = (Activity) (this.types([1]);
group = new ActivityNodeActivationGroup() ;
group.activityExecution = this;
this.activationGroup = group;

group.activation('activity'.node, 'activity'.edge);

}
Syntax

Block (b: Block)
= "{" StatementSequence (b) "} "
StatementSequence (b: Block)

= { DocumentedStatement (b.statement) }

DocumentedStatement (s: Statement)

= [DocumentationComment (s.documentation)] Statement (s)

Statement (s: Statement)
= AnnotatedStatement (s)
| InLineStatement (s)
| BlockStatement (s)
| EmptyStatement (s)
| LocalNameDeclarationStatement (s)
| ExpressionStatement (s)
| IfStatement(s)
| SwitchStatement (s)
| WhileStatement (s)
| DoStatement (s)
| ForStatement (s)

| BreakStatement (s)

| ReturnStatement (s)

| AcceptStatement (s)

| ClassifyStatement (s)

Action Language for Foundational UML (ALF), v1.1

89

DocumentedElement

SyntaxElement

+documentation : String [*]

Block +statement;.| Statement

0.1 {ordered} [+/islsolated : Boolean

Figure 9.1 Base Abstract Syntax for Statements and Blocks

Cross References

1. SyntaxElement see 6.6
2. DocumentedElement see 6.6
3. DocumentationComment see 7.5.3
4. AnnotatedStatement see 9.2
5. InLineStatement see 9.3
6. BlockStatement see 9.4
7. EmptyStatement see 9.5
8. LocalNameDeclarationStatement see 9.6
9. ExpressionStatement see 9.7
10. IfStatement see 9.8
11. SwitchStatement see 9.9
12. WhileStatement see 9.10
13. DoStatement see 9.11
14. ForStatement see 9.12
15. BreakStatement see 9.13
16. ReturnStatement see 9.14
17. AcceptStatement see 9.15
18. ClassifyStatement see 9.16
Semantics

Unless otherwise annotated (see 9.3), all the statements in a statement sequence are executed sequentially in order. See also
the discussion for each kind of statement in the following subclauses.

Integration with UML

An Alf statement sequence can be inserted into a UML model using an opaque behavior (UML Superstructure, 13.3.20) in
which the unprocessed text of the Alf statement sequence is used as the body of the opaque behavior and the corresponding
language string is "A1£". Opaque behaviors may be used in a UML model any place that a behavior is allowed.

An Alf statement sequence can also be inserted into a UML activity using an opaque action (UML Superstructure, 11.3.26) in
which the unprocessed text of the Alf statement sequence is used as the body of the opaque action and the corresponding
language string is "A1£". The input and output pins of such an action must all be named. The input pins are considered to be
the assigned sources (see 8.1) for their names within the statement sequence. The names of the output pins may be assigned
within the statement sequence, and their assigned sources at the end of the statement sequence provide the values for the

90 Action Language for Foundational UML (ALF), v1.1

corresponding output pins. The names of other visible model elements (qualified as necessary) may also be used as usual
within the statement sequence (see 8.3.3 on name expressions).

The execution semantics of Alf statements are given formally by the mapping to UML activity graphs given in the following
subclauses. An Alf statement sequence can therefore always be compiled to a part or all of a UML activity model (which does
not necessarily need to be the same as the formal mapping, but must have an equivalent effect to it—see 2.3).

Indeed, the semantics of an opaque behavior that only includes unprocessed Alf text in its body may be considered equivalent
to an activity with the same parameters as the opaque behavior, containing the activity nodes and edges mapped from the
body of the opaque behavior. The semantics of an opaque action that only includes unprocessed Alf text in its body may be
considered equivalent to a structured activity node with the same input and output pins as the opaque action, containing the
activity nodes and edges mapped from the body of the opaque behavior.

Local Names

Local names (see 8.1) are used in Alf to denote intermediate values in computations within a statement sequence. The scope
of such from the point at which defined lexically to the end of the
statement sequence,
9.8,9.9
). Alf does not provide hierarchical scoping of local names defined in nested blocks.

The assignments of and references to local names in an Alf input text need to be mapped to appropriate object flow edges
from the mapping of the appropriate assignment to the mapping of the reference that requires that assigned value. The
assigned source for a local name is the Alf element that, when executed, will provide the actual assigned value for that local
name. If the assigned source for a local name is known, then a reference to the assigned value of that local name can be
mapped to an object flow from the mapping of the assigned source.

Since local names can be reassigned in Alf (see 8.8 on assignment expressions), the assigned source for any given local name
can be different at different points in a statement sequence. In order to carry out the above mapping, it must always be
possible to determine at most one assigned source for any local name at any point in the text. The general rule is that the
latest assignment “lexically previous” to a reference to a local name is used as the assigned source for that reference.
However, some care must be given to carefully defining this term when assignments are allowed within control structures
such as conditional and looping statements.

The static semantic rules for local names provide the necessary formalization for determining assigned sources. As with other
static semantic rules, these rules are applied by traversing the abstract syntax tree of a statement sequence. At each point in
this traversal, the rules determine the set of local names with assigned sources. A name that has no assigned source is known
as an unassigned name.

When the analysis reaches a specific node in the abstract syntax tree representing a certain kind of Alf construct, a local name
with an assigned source is said to have that source before the construct in question. If the name is unassigned, then it is said
to be unassigned before the construct. The assignment rules then determine what the assigned source for the name is after that
construct, continuing the traversal to the next node in the parse tree. The rules may also place restrictions on what
assignments are allowed, in order that the analysis may be carried out.

NOTE. The assignment rules for statements often refer to the rules for assigned values before and after the evaluation of
expressions within the statement. These rules are given for each kind of expression in the subclauses of Clause 8.

The assigned source for a name before the first statement of a statement sequence is the same as the assigned source before
the statement sequence. The assigned source for a name before each statement other than the first is the assigned source after
the previous statement (as determined by the rules of the following subclauses for each kind of statement). The assigned
source for a name after a statement sequence is the same as the assigned source after the last statement of the sequence.

Note that a block in Alf is basically just a syntactic delineation of a sequence of statements and does not introduce new
semantics as such. In particular, a block does not introduce a lexically nested scope for local names. That is, local names with
assigned sources lexically previous to and visible from the statement sequence of a block cannot be redefined in the block (as
with a local name declaration statement—see 9.6), though they can generally be reassigned unless there is some specific rule
otherwise (such as the special rules for reassignment of local names in a parallel for statement—see 9.12).

Action Language for Foundational UML (ALF), v1.1 91

9.2 Annotated Statements

Certain statements may have annotations that effect the execution of the statement. An annotation has the form of an
identifier preceded by a “@” character. Note that the identifiers for annotations are not reserved words, but only a limited set
of predefined annotation identifiers can be used (see Table 9.1).

A set of annotations for a statement are listed on one or more lines preceding the statement. Each of these lines has a similar
form to an end-of-line lexical comment (see 7.5). This syntax reflects the fact that an annotation is essentially a directive used
in the mapping of the annotated statement, not an executable construct in its own right. An annotation may place restrictions
on the allowed form of the statement being annotated, but that statement is still always legal even if the annotation is
removed.

Examples

//@isolated

{
temperature = temperatureSensor.read();
pressure = pressureSensor.read();

ActuateControl (temperature, pressure);

}
Syntax

AnnotatedStatement (s: Statement)
= "//@" Annotation(s.annotation) { "@" Annotation (s.annotation) }
["//" { InputCharacter }] LineTerminator
Statement (s)
Annotation (a: Annotation)
= Identifier(a.identifier)
["(" Name (a.argument) { "," Name (a.argument) ")"]

Statement

0.1

+annotation [*

Annotation

+identifier : String
+argument : String [*]

Figure 9.2 Abstract Syntax of Annotations

Cross References

1. LineTerminator see 7.2
2. InputCharacter see 7.2
3. Identifier see 7.6
4. Statement see 9.1

NOTE. The lexical element LineTerminator is used as a syntactic non-terminal element in the production for
AnnotatedStatement above and must not be ignored as white space in this case (see also 7.4). Even though the initial
“//@” token has a form similar to the start of an end-of-line comment (see 7.5), annotations must specifically follow the
syntax shown above. However, a list of annotations may be followed by a “//”, the characters after which are ignored, giving
the same effect as having an end-of-line comment at the end of the annotation line.

92 Action Language for Foundational UML (ALF), v1.1

Semantics
Annotations

Even though syntactically any statement may be annotated, specific annotations may only be used with the specific
statements to which they apply. Table 9.1 lists all allowable annotations and the statements to which they apply. The
@isolated, @indexFrom0 and @indexFroml annotations apply to all statements (other than empty and break statements)
and their effect is described below. The effect of each of the other annotations effeet-ef atton-is-deserd i

appliesbelow.

Table 9.1 Allowable Annotations

Annotation Applicable Statement Allows Arguments?

Any statement other than an empty

No
statement or break.

isolated

e . Any statement other than an empty No
lnaexrromyu R
I — statement or break.

o Any statement other than an empty
indexFroml | No
- statement or break.

determinatee | if (see9.8)

e switch (see 9.9) No
if (see 9.8)

assured switch (see 9.9) No
block (see 9.3) No

parallel
for (see 9.12) Yes

Since the syntax allows an annotated statement to itself be annotated, annotations may be spread across multiple lines
preceding a single “base” statement. For the purposes of determining applicability, per Table 9.1, of a further annotation of an
annotated statement, the annotated statement is to be considered to be of the same kind as its base statement. However, no
annotation may be applied more than once to the same base statement.

Arguments

The syntax for annotations allows for an optional list of names to be given as arguments of the annotation. Currently, only the
@parallel annotation on a for statement allows such argument (see 9.12 for rules related to names used as such
arguments).

Isolation

The annotation @isolated may be used with any statement other than the empty or break statements, indicating that the
statement is executed in isolation. That is, during the execution of the statement, no object accessed as part of the execution
of the statement or as the result of a synchronous invocation from the statement may be modified by any action that is not
executed as part of the statement or as the result of a synchronous invocation from the statement.

The semantics of isolation is discussed in 8.5.42.1 of the fUML specification.
NOTE. The unary operator $ can also be used to denote isolation at the expression level (see 8.5.6).

Indexing from 0 and 1

The annotation @indexFrom0 may be used with any statement other than the empty or break statements to indicate that, in
expressions within that statement, indexing of the positions of elements in a sequence will start from 0 for the first element
rather than the default, which is indexing from 1. This annotation effects behavior invocation expressions and sequence
operation expressions for certain library functions (see 8.3.9 and 8.3.17), link operation expressions with indexed arguments
(see 8.3.17). sequence access expressions (see 8.3.16) and indexed left-hand sides (see 8.8).

Action Language for Foundational UML (ALF), v1.1 93

The scope of an @indexFrom0 annotation includes any expressions contained directly in the annotated statement, as well as

any statements nested. directly or indirectly, in the annotated statement, unless a nested statement has the annotation

@indexFroml applied. The annotation @indexFroml has the converse effect to @indexFrom0, restoring the default of

indexing from 1 for all contained expressions and nested statements, other than nested statements that have the annotation

@indexFrom0 explicitly applied.

NOTE. In UML., the indexing of the positions of elements in a sequence always starts with 1 for the first element, so this is

also the default for Alf. However, in other languages with a syntax similar to Alf's, indexing is usually from O for the first

element. The @RindexFrom0 annotation is provided to ease the adaption of existing code from such languages into Alf text.

However, use of indexing from 1 is generally preferred. since this is consistent with standard UML modeling semantics.

9.3 In-line Statements

An in-line statement allows code in a language other than Alf to be inserted in-line as an Alf statement. The actual
interpretation and execution of such inline code is implementation dependent. Typically, such code would be passed directly
to a target implementation platform, but the details are not defined in the Alf standard. While syntactically a statement, an in-
line statement has a form similar to an in-line lexical comment, to indicate that the in-line code is not included in normal Alf

language processing.

The language used for the in-line code is identified by a name. There is no standard list of language names, but the following
names are recommended to promote potential interoperability for commonly embedded language fragments.

* Java

e C

* 'CH+!
o 'Cct!

Example

/*@inline ('C++")
*data = this;
controller->initiate();

*/
Syntax

// Native code

InLineStatement (s: InLineStatement)
= InLineHeader (s) CommentText (s.code) "*/"
InLineHeader (s: InLineStatement)
= "/*@" "inline" " (" Name (s.language) ")"
["//" { InputCharacter }] LineTerminator

Statement

InLineStatement

+language : String
+code : String

Figure 9.3 Abstract Syntax of In-Line Statements

Cross References
see 7.2
see 7.2

1. LineTerminator

2. InputCharacter

94

Action Language for Foundational UML (ALF), v1.1

3. CommentText see 7.5.2
4, Name see 7.6

NOTE. The lexical element LineTerminator is used as a syntactic non-terminal element in the production for
InLineHeader above and must not be ignored as white space in this case (see also 7.4). Even though the initial “/*@” token
has a form similar to the start of an in-line comment (see 7.5), an in-line statement header must specifically follow the syntax
shown above. However, the in1ine annotation may be followed by a ““//”, the characters after which are ignored to the end
of line, giving the same effect as having an end-of-line comment on the header line. Comments may also be used in the body
code of an in-line statement, as allowed by the specific language in which that code is written. However, since the comment
delimiter “*/” is used to end an in-line statement, comment syntax using this delimiter cannot be used within the in-line
statement.

Semantics
The execution semantics for an in-line statement are implementation specific.

Any relationship of code within an in-line statement to named elements outside of the in-line statement is also
implementation specific.

9.4 Block Statements

A block (see 9.1) may itself be executed as a statement.

Examples

{ index = this.getIndex(); this.list[index] = this.update (index); }
The example below represents the activity graph shown in Figure 9.4.

//@parallel
{
'activity' = (Activity) (this.types[1]); // Segment 1

{ // Segment 2
group = new ActivityNodeActivationGroup() ;
group.activityExecution = this;

}

{ // Segment 3
this.activationGroup = group;
group.activation('activity'.node, 'activity'.edge);

}

Action Language for Foundational UML (ALF), v1.1 95

«structured»
Segment 1

4 :stactu_red: N
as Activity |

constructor

{[Add activationGroup J

—— activity |
«] |/
r T stuctreds Vo structwed» B
Segment 2 [Segment 3
{____?straztur_ed»____—l |
| [
| Create ActivityNodeActivationGroup T
| | | 4 «structured»
| [|
| | Read Self
|
| [Call ActivityNodeActivationGroup] [| []
| [
[
l)

S ——

«sfructured»

(«structured»

[Add activityExecution j

Read Self

\
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
/

Figure 9.4 Sample Activity Diagram
Syntax

BlockStatement (s: Statement)
= Block (s.block)

96 Action Language for Foundational UML (ALF), v1.1

Statement

T

BlockStatement

0.1
+block | 1

Figure 9.5 Abstract Syntax for Block Statements

Cross References

1. Statement see 9.1
2. Block see 9.1
Semantics

Sequential Execution

The execution of a block statement consists simply in the execution of the block (see 9.1). Unless the block statement has a
@parallel annotation (see below), this means that the statements in the block are executed sequentially in order.

Local names assigned before a block statement may be reassigned within the constituent block of the statement. Further, new
local names may be defined within the block. Such new local names are available outside the block after completion of
execution of the block statement, with the values they held at the completion of execution of the block. Thus, blocks do not
introduce lexically nested scopes for defining local names in Alf.

Parallel Execution

A block statement may have a @parallel annotation. In this case, the statements in the block are all executed concurrently.
All the statements of a parallel block are enabled to start executing when the block is executed and the block does not
complete execution until all statements complete their execution (that is, there is an implicit join of the concurrent executions
of the statements).

If a block statement has a @parallel annotation, any name assigned in one statement of the block may not be further
assigned in any subsequent statement in the same block.

NOTE. The above rule allows a name assigned in one statement in a parallel block to be used in a subsequent statement, but
not reassigned. This allows data dependencies between otherwise parallel executions of these statements. However, such
dependencies are somewhat restricted, since a newly defined name is still only visible in lexically following statements, as
for a sequential block. This restriction prevents the possibility of a block statement being invalidated simply by removing a
@parallel annotation from it.

For example, in the block

//@parallel
{
a = F(l);
b =G(2);

}

the invocations of the behaviors F and G will execute concurrently with no dependencies between them. The block as a whole
completes execution only after both invocations are complete.

However, there may be data dependencies between the statements in a parallel block. For example, the statements in the
block

//@parallel
{

Action Language for Foundational UML (ALF), v1.1 97

a = F(1);
b =G(a);
}

will execute sequentially, despite the @parallel annotation, because the invocation of G cannot proceed until a value is
available for a.

In order to prevent data conflicts, it is illegal to assign the same name in more than one statement in a parallel block. Thus,
the block

//@parallel

{
a=1;
a = F(a); // Illegal!
b = G(2);

}
is illegal, since the name a is reassigned in the second statement. However, the following block is legal:

//@parallel
{
{

}
b = G(2);
}

This is because the block now consists of just two statements, the first of which happens to be a (sequential) block statement.
Only the first of these actually assigns a value to the name a. The value of a after the first statement in the parallel block, and
hence after the parallel block as a whole, is the value given to it (sequentially) by the second assignment.

9.5 Empty Statements
An empty statement does nothing.

Syntax

EmptyStatement (s: EmptyStatement)

- nm.n
= 7

Statement

|

EmptyStatement

Figure 9.6 Abstract Syntax of Empty Statements
Cross References

1. Statement see 9.1
Semantics

Any empty statement has no effect when it is executed.

9.6 Local Name Declaration Statements

A local name declaration is used to define a local name, declare its type and provide an initial value for it. The local name
declaration statement has two forms. In the first form, the local name being defined precedes the type name:

98 Action Language for Foundational UML (ALF), v1.1

let interest : CurrencyAmount = this.principal * this.rate * period;
In the second form, the type name precedes the local name:

CurrencyAmount interest = this.principal * this.rate * period;
The two forms are completely equivalent. In both cases, the local name is assigned the result of evaluating the expression.

NOTE. The first form of local name declaration is consistent with the usual UML notation for declaring the type of a name.
The second form is consistent with the form of declarations in many common programming languages and also emphasizes
the essential semantics of the statement as an assignment with an added type constraint.

Examples

let currentOffer : Offer = this.offers[1];

let origin : Point = new(0,0);

CurrencyAmount interest = this.principal * this.rate * period;

let inactiveMembers : Member[] = members -> select member (!member.active):;
RealProperty[] realProperties = (RealProperty)assets;

IntegerlList list = {1, 2, 3};

Set<RealProperty> fixedAssets = new { land, home, condominium };

Syntax

LocalNameDeclarationStatement (s: LocalNameDeclarationStatement)
= NameDeclaration(s) "=" InitializationExpression(s.expression) ";"
InitializationExpression(e: Expression)
= Expression(e)
| SequencelInitializationExpression (e)
| InstanceInitializationExpression (e)
InstancelInitializationExpression (e: InstanceCreationExpression)
= "new'" Tuple(e.tuple)
NameDeclaration (s: LocalNameDeclarationStatement)
= "let" Name (s.name) ":" TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)]
| TypeName (s.typeName)
[MultiplicityIndicator (s.hasMultiplicity=true)] Name (s.name)

Statement

LocalNameDeclarationStatement

+expression .
+name : String o1 7 Expression

+hasMultiplicity : Boolean = false

0.1
+typeName |0..1

QualifiedName

Figure 9.7 Abstract Syntax of Local Name Declaration Statements
Cross References
1. Name see 7.6

2. Expression see 8.1

Action Language for Foundational UML (ALF), v1.1 99

3. QualifiedName see 8.2

4. TypeName see 8.2

5. InstanceCreationExpression see 8.3.12
6. SequencelnitializationExpression see 8.3.15
7. MultiplicityIndicator see 8.3.15
8. Statement see 9.1
Semantics

The local name in a local name declaration statement must be unassigned before the statement and before the expression in
the statement. It must remain unassigned after the expression. The assigned source for the name after the local name
declaration statement is the statement itself.

Typing
The new local name has the type given by the type name in the statement (see 8.2 on type names).
. If the multiplicity

indicator “[1” is specified with the type, then the multiplicity of the local name is
itis and the multiplicity upper bound of the assigned expression must not be greater than 1.

Alf does not require that a local name be explicitly declared before its first use. If not explicitly declared, the type of the local
name is determined by its first assignment (see 8.8). However, if the type is explicitly declared, it may be more general than
the type of the initially assigned expression, allowing a wider range of values in later assignments.

For example, the following is legal:

let v: Vehicle = new Car();
v = new Truck();

presuming that Car and Truck are both subclasses of vehicle. However, the following would not be legal:

v = new Car();
v = new Truck(); // Type error!

because the initial assignment would determine the type of v as being Car, which is not compatible with Truck.
A similar effect to the legal assignment above can be achieved using a type cast (see 8.5.5):

v = (Vehicle)new Car();
v = new Truck(); // Legal

Even though the initial value assigned to v here is a Car, the type of the expression “ (Vehicle)new Car ()”is Vehicle,
due to the cast. Therefore, the initial assignment determines the type of v as being Vehicle, so the second assignment is
legal.

However, there is an important semantic difference. Type casts in Alf filter values that cannot be cast, so that
v = (Vehicle)new House();

is legal and will assign null to v. On the other hand, the following is not legal:

let v: Vehicle = new House(); // Type error!

since the class House does not statically conform to the declared type vehicle.

Initialization Expressions

Since a local name declaration statement already includes an explicit declaration of the type of a new name, it is possible to
use simplified forms for sequence construction expressions (see 8.3.15) and instance creation expressions (see 8.3.12) used as
initialization expressions in local name declaration statements. In these simplified forms, the explicit type part usually
included in the expressions may be omitted, with the type declared as part of the statement being used instead.

For example, in the statement

100 Action Language for Foundational UML (ALF), v1.1

let fixedAssets: RealProperty[] = { land, home, condominium };

the type part normally required for a sequence construction expression has been omitted. The statement is equivalent to one
in which the type part for the sequence construction expression is the same as the type declared for the new local name:

let fixedAssets: RealProperty[] = RealProperty([]{ land, home, condominium };
This simplified form may also be used when initializing collection objects. Thus, the statement

let fixedAssets: Set<RealProperty> = { land, home, condominium };

is equivalent to

let fixedAssets: Set<RealProperty> =
Set<RealProperty>{ land, home, condominium };

Similarly, in the statement
let origin : Point = new(0,0);

the explicit constructor description has been omitted from the instance creation expression, leaving only the keyword new and
the tuple. The statement is equivalent to one in which the instance creation expression is explicitly for the type declared for
the new local name:

let origin : Point = new Point (0,0);

NOTE. The initialization expression short hands can also be used in Alf expressions representing default values, either as
integrated with a non-Alf representation of a property or parameter (see 8.1) or as the initializer for the definition of an
attribute in Alf (see 10.5.2).

9.7 Expression Statements

An expression statement simply consists of an expression (see Clause 8) followed by a semicolon.
Examples

currentOffer = this.offers[1];

monitor.SignalAlarm(sensorId);

this.interest = this.principal * this.rate * period;

Syntax

ExpressionStatement (s: ExpressionStatement)

= Expression(s.expression) ";"

Statement

T

ExpressionStatement

0.1

+expression | 1

Expression

Figure 9.8 Abstract Syntax of Expression Statements
Cross References
1. Expression see 8.1

2. Statement see 9.1

Action Language for Foundational UML (ALF), v1.1 101

Semantics

An expression statement is executed by evaluating the expression (see Clause 8). If the expression produces one or more
values, these are discarded.

The values assigned to any local names within an expression statement (e.g., via an assignment expression—see 8.8) may be
accessed after the execution of the statement by using the local names in name expressions (see 8.3.3).

9.8 if Statements

An i £ statement allows for the conditional execution of one of a set of blocks of statements. The conditional blocks are
organized into sequential sets of concurrent clauses. Each clause in a concurrent set includes a conditional expression (which
must be of type Boolean) and a block to execute if that condition is true. An if statement may also
optionally have a final clause with a block to execute if no other conditions are true.

NOTE. The notation for concurrent clauses is not available at the minimum conformance level (see 2.2).

Examples

if (reading > threshold) ({
monitor.raiseAlarm(sensorId) ;

}

//@determinate Rassured

if (reading <= safelLimit) {
condition = normal; }

or 1f (reading > safelimit && reading <= criticallLimit) {
condition = alert; }

or 1f (reading > criticallLimit) {
condition = critical; }

Syntax

IfStatement (s: IfStatement

= "if" SequentialClauses(s) [FinalClause(s.finalClause)]
SequentialClauses (s: IfStatement)

= ConcurrentClauses (s.nonFinalClauses)

{ "else" "if" ConcurrentClauses(s.nonFinalClauses) }

ConcurrentClauses (c: ConcurrentClauses)

= NonFinalClause (c.clause) { "or" "if" NonFinalClause(c.clause) }
NonFinalClause (c: NonFinalClause)

= "(" Expression(c.expression) ")" Block(c.block)
FinalClause (b: Block)

= "else" Block (b)

102 Action Language for Foundational UML (ALF), v1.1

Statement

IfStatement

0.1

1

+nonFinalClauses | 1.* {ordered}

ConcurrentClauses

1

+clause [1..* 0.1 | +finalClause
NonFinalClause +bod W
0.1 1
0.1

+condition| 1

Expression

Figure 9.9 Abstract Syntax of if Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
3. Block see 9.1
Semantics

Each set of concurrent clauses is executed in sequence until a condition evaluates to true. Within each set, all the conditional
expressions are evaluated in parallel. If any condition evaluates to true, then the associated block may be executed. If more
than one condition evaluates to true, then one associated block is chosen non-deterministically to execute. If no conditions
evaluate to true, execution proceeds with the next set of concurrent clauses.

Sequential Clauses

In its simplest form, an i £ statement has a single condition which determines whether or not a single block is executed. For
example, in

if (reading > threshold) {
monitor.raiseAlarm(sensorId);

}
the invocation is executed only if the condition reading > threshold is true. A final clause may be added, as in

if (reading > threshold) {
monitor.raiseAlarm(sensorId);

}
else {
monitor.logReading (sensorId, reading);

}

In this case, the 1ogReading operation is called if reading > threshold is false.

Action Language for Foundational UML (ALF), v1.1 103

An i f statement may also have a list of conditional clauses that are tested sequentially. For example,

if (reading <= safelimit) {
condition = normal;

}

else if (reading <= criticallimit) {
condition = alert;

}
else {
condition = critical;

}
Concurrent Clauses

Clauses beginning with or instead of else are tested concurrently rather than sequentially. For example,

if (reading <= safelLimit) {
condition = normal;

}
or if (reading > safelimit && reading <= criticallimit) {
condition = alert;

}
or 1f (reading > criticallLimit) {
condition = critical;

}

Note that the second condition has the added test reading > safelLimit, since the first condition will no longer be
evaluated sequentially before the second. If this addition had not been made, then, if, in fact, reading <= safeLimit was
true, both of the first two conditions could be true, and either of the associated blocks might actually execute (but only one
would).

Sequential and conditional clauses can also be mixed, but sets of contiguous concurrent clauses are always sequenced
together. Thus, in

if (reading <= safelimit) {
condition = normal; }

else if (reading > safelimit && reading <= criticallimit} {
condition = alert; }

or if (reading > criticallimit && reading < errorLimit) {
condition = critical; }

else {
condition = error; }

if the first condition is false, then both the next two conditions are evaluated concurrently. If both these conditions are also
false, then the final clause is executed.

Annotations

The annotations Gassured and @determinate may be used with an i f statement (see also 9.2 on annotations). The
annotation @assured indicates that at least one condition in the i f statement will always evaluate to true. The annotation
@determinate indicates that at most one condition will evaluate to true. The annotations may be used together, which
indicates that exactly one condition will always evaluate to true.

Names

New local names may not be defined in conditional expressions, since these may not always be evaluated, but existing local
names may be reassigned. However, the same name may not be assigned in more than one conditional expression within the
same concurrent set of clauses, because these expressions are evaluated concurrently, so assignments of the same name in
more than one of them could potentially conflict. Assignments made in the conditional expression of a non-final clause are
available in the block of that clause.

New local names may be defined in the clause blocks of an i £ statement
defined in after
the i f statement is the effective common ancestor (see the definition in 8.7) of the of the name in each clause

with a multiplicity lower bound that is the minimum of the lower bound for the name in each clause and a

104 Action Language for Foundational UML (ALF), v1.1

multiplicity upper bound that is the maximum of the upper bound for the name in each clause. If the name is not defined in
every clause of the i £ statement, then it is considered to have multiplicity lower and upper bounds of O for the purposes of
the above bounds determination. If the clause of the i f statement that is executed does not define a name that is defined in a
different clause, then that name is defined but empty after the execution of the i f statement.

The multiplicity and typing of local and parameter names referenced in the block of a clause of an i f statement are adjusted
based on the conditional expression of the clause evaluating to true (see 8.7 on local name multiplicity and type adjustment).
In addition, the multiplicity and typing are similarly adjusted based on the conditional expressions of all the preceding
clauses in the if statement evaluating to false.

' 9.9 switch Statements

A switch statement executes one of several blocks depending on the value of an expression. The body of the switch
statement consists of a list of clauses, each of which consists of a set of case labels and a block. Each of the case labels
contains an expression that must evaluate to a single value of a type that conforms to the type of the switch expression (see
8.2 for the definition of type conformance). In addition, a switch statement may have a final clause with the label default.

Examples

switch (month) {
case 1: case 3: case 5: case 7: case 8: case 10: case 12:
numDays = 31;
case 4: case 6: case 9: case 11:
numDays = 30;

case 2:
if (((year % 4 == 0) && !(year % 100 == 0))
|| (year % 400 == 0)) {
numDays = 29;
}
else {
numDays = 28;
}
default:
WriteLine ("Invalid month.");
numbDays = 0;
}
Syntax

SwitchStatement (s: SwitchStatement)
= "switch" " (" Expression(s.expression) ")"
"{r { SwitchClause (s.nonDefaultClause) }
[SwitchDefaultClause (s.defaultClause)] "} "
SwitchClause(s: SwitchClause)
= SwitchCase (s.case) { SwitchCase(s.case) }
NonEmptyStatementSequence (s.block)
SwitchCase (e: Expression)
= "case" Expression(e) ":"
SwitchDefaultClause (b: Block)
= "default" ":" NonEmptyStatementSequence (b)
NonEmptyStatementSequence (b: Block)
= DocumentedStatement (b.statement) { DocumentedStatement (b.statement) }

Action Language for Foundational UML (ALF), v1.1 105

Statement

SwitchStatement

0..1
1
+expression |1 +nonDefaultClause | * +defaultClause [0..1
Expression ‘case SwitchClause *block
1.* 0.1

Figure 9.10 Abstract Syntax of switch Statements

Cross References

1. Expression see 8.1
2. DocumentedStatement see 9.1
Semantics

Switch Execution

When a switch statement is executed, first the switch expression is evaluated and then all the case expressions are evaluated
concurrently. The switch expressions and all case expressions must have a multiplicity upper bound no greater than 1. If the
result of any case expression equals the result of the switch expression, then the associated statement sequence is enabled for
execution. If more than one statement sequence is enabled, then one of them is non-deterministically selected for execution.

If no case expressions have a result equal to the result of the switch expression, and there is a default clause, then the
statement sequence associated with the default clause is executed. Since all the case expressions must be checked before a
default clause can execute, the execution of the default clause always happens sequentially after the completion (and failure)
of all case tests.

If no case expressions have a result equal to the result of the switch expression, and there is not a default clause, then the
switch statement has no further effect.

“Equality” of values is evaluated as for an equality operator (see 8.6.6).

NOTE. Case expressions are evaluated concurrently, not sequentially, and execution does not “fall through” from one switch
clause to the next, as it does in traditional C switch statements. This means that it is not necessary to place a break
statement at the end of a switch clause to avoid execution continuing with the next clause. However, placing a break at the
end of the clause anyway will not harm the overall execution of the switch statement. (See also 9.13 on break statements.)

Annotations

The annotations Gassured and @determinate may be used with a switch statement (see also 9.2 on annotations). The
annotation @assured indicates that the result of at least one clause in the switch statement will always be executed. The
annotation @determinate indicates that at most one clause will execute. The annotations may be used together, which
indicates that exactly one clause will always execute.

Names

New local names may not be defined in case expression, but existing local names may be reassigned. However, the same
name may not be assigned in more than one case expression because these expressions are evaluated concurrently, so
assignments of the same name in more than one of them could potentially conflict. Assignments made in the case expressions
of a switch clause are available in the statement sequence of that clause.

New local names may be defined in the statement sequences of a switch statement

after the switch statement is the effective common ancestor (see the definition in 8.7) of the

106 Action Language for Foundational UML (ALF), v1.1

typetypes of the name in each clause in which it is defined ;-with a multiplicity lower bound that is the minimum of the lower
bound for the name in each clause and a multiplicity upper bound that is the maximum of the upper bound for the name in
each clause_ If the name is not defined in every clause of the switch statement, then it is considered to have multiplicity
lower and upper bounds of 0 for the purposes of the above bounds determination. If the clause of the switch statement that
is executed does not define a name that is defined in a different clause, then that name is defined but empty after the
execution of the switch statement.

9.10 while Statements

A while statement executes an expression and a block until the value of the expression is false.
. S or ,‘Hd PAEEELE H'P “.i{‘” ”Pp o 3()‘|Hd ef -

Examples

while ((last = this.list->size()) > 0) {
this.list[last].cleanUp();
this.list->remove (last);

}

while (file.hasMore()) {
nextRecord = file.readNext ()
if (nextRecord!=null) {
checksum = ComputeChecksum (checksum, nextRecord);

}
Syntax

WhileStatement (s: WhileStatement)
= "while" " (" Expression(s.condition) ")" Block (s.body)

Statement

WhileStatement *condition Expression
0.1 1

0.1
+body | 1

Figure 9.11 Abstract Syntax of while Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
3. Block see 9.1
Semantics

When a while statement is executed, its expression is evaluated. If the expression evaluates to false, the execution of the
while statement is complete. Otherwise, its block is executed, and then the entire while statement is executed again,
beginning with re-evaluating the expression.

The condition expression of a while statement must have a type that conforms to type Boolean and a multiplicity of

1..17.

Action Language for Foundational UML (ALF), v1.1 107

Names

Local names defined within the condition expression of a while statement are available within the body block of the while
statement, with the value as computed on each iteration of the loop. They are also available after completion of execution of
the while statement, with the values assigned as of the last evaluation of the while condition expression.

Local names defined within the body block of a while statement may be used within that block. They are also available after
the completion of execution of the while statement, with values assigned as of the last iteration of the loop. If the loop has
no iterations and the body block is not executed then names dehned in that block are del‘med but ethV after the execution
of the while statement. 3 > S1S-Beet >

&mﬁmhfedﬂﬁhem*m{emeﬁ%éee%ne%ﬁeetﬁﬁ%eé%

Local names defined before a while statement may be reassigned within the while statement. After completion of execution
of the while statement, they have the values assigned as of the last evaluation of the while statement.

The multiplicity and typing of local and parameter names in the body block of a while statement are adjusted based on the
condition expression of the while statement evaluating to true (see 8.7 on local name multiplicity and type adjustment). The
multiplicity and typing of local and parameter names after the while statement are adjusted based on the condition
expression evaluating to false.

9.11 do Statements

The do statement executes a block and an expression repeatedly until the value of the expression is false.-Fhe-expression-
Arsthavetype-boolean-and-amultiphetty-upper-bound-of
Examples

do {
line = file.readNext () ;
WriteLine (line);

} while (line != endMarker);

do {
reading = sensor.getNextReading() ;
Record (reading) ;

} while (!reading.isFinal());

Syntax

DoStatement (s: DoStatement)
= "do" Block (s.body) "while" " (" Expression(s.condition) ")" ";"

Statement

DoStatement *condition Expression
0..1 1

0.1
+body |1

Figure 9.12 Abstract Syntax of do Statements

Cross References
1. Expression see 8.1

2. Statement see 9.1

108 Action Language for Foundational UML (ALF), v1.1

3. Block see 9.1
Semantics

When a do statement is executed, its block is executed first. Then its expression is evaluated. If the result of the expression is
true, then the entire do statement is executed again. If the result of the expression is false, the execution of the do statement is
complete.

~an and a multiplicity of [1..

The condition expression of a do statement must have a type that conforms to type Bo

Names

Local names defined before a do statement may be reassigned within the do statement and new local names may be defined
within the do statement, in either the condition expression or the block. Local names defined within the condition expression
are not available within the body block, but they are available after completion of the do statement, with values assigned as
of the last evaluation of the do condition expression.

Local names defined within the body block of a do statement are available within the condition expression of the do
statement, with the value as computed on each iteration of the loop. They are also available after completion of execution of
the do statement, with the values assigned as of the last evaluation of the do condition expression.

Local names defined before a do statement may be reassigned within the do statement. After completion of execution of the
do statement, they have the values assigned as of the last evaluation of the do statement.

The multiplicity and typing of local and parameter names after a do statement are adjusted based on the condition expression
of the do statement evaluating to false (see 8.7 on local name multiplicity and type adjustment).

9.12 for Statements

The for statement executes a block repeatedly while assigning a loop variable to successive values of a sequence.
Examples

for (member in memberList) {
names->add (member.name) ;
addresses->add (member.address) ;

}

for (sensor in sensors) {
if ((reading = sensor.reading())->isEmpty()) {
break;
}
if (reading > noiselLimit) {
readings->add (reading) ;
}
}
for (i in 1..recordCount) {
processRecord (1) ;

}

//@parallel

for (ActivityEdgelInstance outgoingEdge: this.outgoingEdges) {
outgoingEdge.sendOffer (tokens) ;

}

// Fast Fourier Transformation computation
//@parallel (Sn_Even, Sn_0dd)
for (lower in S Lower, upper in S Upper, root in V) {
//@parallel
{
Sn_Even -> add(lower+upper) ;
Sn 0dd -> add((lower-upper) *root);
}

Action Language for Foundational UML (ALF), v1.1 109

Syntax

ForStatement (s: ForStatement)
= "for" " (" ForControl(s) ")" Block(s.body)
ForControl (s: ForStatement)
= LoopVariableDefinition (s.variableDefinition)
{ "," LoopVariableDefinition(s.variableDefinition) }
LoopVariableDefinition (v: LoopVariableDefinition)
= Name (v.variable) "in" Expression (v.expressionl)
[".." Expression(v.expression2)]
| TypeName (v.typeName) Name (v.variable) ":"
Expression (v.expressionl) (typelIsInferred=rfalse)

SyntaxElement Statement

|

LoopVariableDefinition +variableDefinition
+variable : String ForStatement
+typelsinferred : Boolean = true | 1..* {ordered}
0.1 0.1 0.1 +forStatement | 0..1
+typeName |0..1 +expression1] 1 0..1] +expression2 +body 1

QualifiedName Expression W

Figure 9.13 Abstract Syntax of for Statements

Cross Reference

1. Name see 7.6
2. Expression see 8.1
3. QualifiedName see 8.2
4. Statement see 9.1
5. Block see 9.1
Semantics

Loop Variables

A for statement defines one or more loop variables that are given successive values from sequences during the execution of
the loop. A loop variable definition in a for statement is thus the assigned source for the loop variable name so defined
within the for statement. The name of a loop variable must be unassigned before the for statement, may not be otherwise
assigned within the for statement, and is considered unassigned after the for statement.

There are two forms for a loop variable definition.

In the first form, the type of the loop variable is given implicitly by the expression from whose result the loop variable takes
values. For example, suppose that the name memberList has the type Member and a multiplicity of [0..*] in the statement

for (member in memberList) {
names->add (member.name) ;
addresses->add (member.address) ;

}

The loop variable member is then implicitly given the type Member, the same type as that of the name expression
memberList

110 Action Language for Foundational UML (ALF), v1.1

However, collection conversion may be performed on the expression in a loop variable definition. That is, if the type of the
expression is a collection class (see 11.7) and the multiplicity upper bound of the expression is no greater than 1, then the
operation toSequence is implicitly called on the expression to produce the sequence of values for the loop variable. The
loop variable is then the type of the result of the toSequence call (i.e., the element type of the collection). Thus, the example
above would still be legal if the type of memberList was, e.g., List<Member>.

In the second form, the type of the loop variable is declared explicitly. For example, the following statement is semantically
equivalent to the example given above:

for (Member member: memberList) ({
names->add (member.name) ;
addresses->add (member.address) ;

}

In this form, the declared type of the loop variable normally must conform to the type of the expression (see 8.2 for the
definition of type conformance). However, if collection conversion applies to the expression, then the declared type must
conform to the element type of the collection.

NOTE. The second form of loop variable definition has a similar syntax to that used in a “for each” statement in Java.

A loop variable definition of the form var in expril..expr2isashorthand for var in Integer[]{exprl..expr2}
(see 8.3.15 on ranges in sequence construction expressions). In this case, both expressions must have

type Integer and a multiplicity upper bound of 1. A loop variable so defined takes on sequential integer values in each loop
iteration, beginning with the value given by expr1 and ending with the value given by expr2. If the second value is less than
the first, then the for loop execution completes with no iterations.

Iterative Execution

When a for statement is executed, the expressions in its loop variable definitions are evaluated sequentially. If the result for
the first variable is a sequence of at least one value, and the for statement has no while condition expression, then the block
of the for statement is executed once for each value in the sequence. On each such execution, the local names of the loop
variables within the block have corresponding values from the sequences resulting from the evaluation of the expressions in
their definitions.

Note that the sequences for all the loop variables in a specific execution of a for statement should have the same size.
However, if this is not true, it is the sequence for the first variable that controls the execution. If another variable has a
sequence of a larger size than the first variable, then the additional values will be ignored. If it has a sequence of a smaller
size, then the variable will be empty on iterations after all values in its sequence have been used. For this reason, the first loop
variable has the multiplicity [1..1], while any other loop variables are given the multiplicity [0..1].

NOTE. At the minimum conformance level (see 2.2), a for statement is allowed to have only one loop variable.

By default, the executions of the body block of a for statement occur in sequential iterations. Values are taken from the
sequence for each loop variable in order.

Since a loop variable expression is only evaluated once, any local names defined in it have the values assigned during that
evaluation for all executions of the body block of the for statement, unless reassigned within that block.

Local names defined within the body block of a for statement are prohibited from being accessed outside the for statement,
since they could be uninitialized if the for statement does not execute its body. Local names defined within an expression in
a loop variable definition are available after completion of execution of the for statement.

Parallel Execution

If a for statement is preceded by a @parallel annotation (see 9.2), then the executions of the body block of the for
statement occur concurrently rather than sequentially.

A @parallel annotation may include a list of names. Each such name must be already assigned before the body of the for
statement, with a multiplicity . They may then be used within the body block of the for
statement to collect values across the concurrent executions of that block (any prior assigned values are lost). As such, these
names may only appear within the for statement as the target argument (i.e., argument to the first parameter) for the add
function from the Alf CollectionsFunctions library package (see 11.6).

For example, consider the following piece of a Fast Fourier Transform (FFT) computation, using an iterative for statement.

Action Language for Foundational UML (ALF), v1.1 11

Sn Even = Integer([]{};
Sn_0dd = Integer[]{};

for (lower in S Lower, upper in S Upper, root in V) {
Sn _Even -> add(lower+upper) ;
Sn 0dd -> add((lower-upper) *root);

}

This is computationally correct, but it forces sequential execution of what is essentially a parallel algorithm. This can be
corrected by inserting appropriate @parallel annotations:

Sn _Even = Integer([]({};
Sn_0dd = Integer[]{};

//@parallel (Sn_Even, Sn_0dd)
for (lower in S Lower, upper in S Upper, root in V) {
//@parallel
{
Sn _Even -> add(lower+upper);
Sn_0dd -> add((lower-upper) *root);
}
}

The listing of the names Sn_Even and Sn_0dd in the @parallel annotation is required so that the add operation
invocations continue to be permitted within the for statement.

NOTE. The normal behavior invocation notation (see 8.3.9) may also be used for the add function instead of the sequence
operation notation (see 8.3.17). For example “Sn_Even->add (lower+upper) ; ” may instead be written “add (Sn_Even,
lower+upper) ; ”. The behavior invocation notation is available at the minimum conformance level, while the sequence
operation notation is not available until the full conformance level (see also 2.2 on syntactic conformance levels).

If, after the loop variable definitions of a parallel for statement, a name has an assigned source, then it must have the same
assigned source after the block of the for statement. Other than for names defined in the @parallel annotation of the for
statement, the assigned source for such names is the same after the for statement as before it. Any names defined in the
@parallel annotation have the for statement itself as their assigned source after the for statement.

Unlike the case of an iterative for statement, names defined before a parallel for statement may not be reassigned within the
statement, unless they are listed in the @parallel annotation for the statement. As in the iterative case, any names defined
within the body of a parallel for statement are not available outside of the for statement.

9.13 break Statements

A break statement completes execution of an enclosing switch, while, do or for statement.

Syntax
BreakStatement (s: BreakStatement)
= "break n ",. "
Statement
BreakStatement

Figure 9.14 Abstract Syntax of break Statements
Cross References

1. Statement see 9.1

112 Action Language for Foundational UML (ALF), v1.1

Semantics

A break statement may only be used directly or indirectly within the body of a switch, while, do or for statement (sees
9.9,9.10, 9.11 and 9.12, respectively), except that the innermost enclosing such statement must not be a for statement with a
@parallel annotation. When a break statement is executed, it transfers control to the innermost enclosing switch, while,
do or for statement, which then immediately completes normally.

9.14 return Statements

If an activity has a return parameter, then a return statement may be used to provide a value for that parameter and
terminate execution of the activity.

Examples

return item;

return list[index];

return x * factorial (x-1);
Syntax

ReturnStatement (s: ReturnStatement)
= "return" [Expression(s.expression)] ";"

Statement

ReturnStatement

0.1

+expression | 0..1

Expression

Figure 9.15 Abstract Syntax of return Statements

Cross References

1. Expression see 8.1
2. Statement see 9.1
Semantics

A return statement is used to terminate the execution of the enclosing behavior. If the enclosing behavior has a return
parameter, then the return statement must have an expression that is assignable to the return parameter (see 8.8 for the
definition of assignability). Otherwise, it must not have an expression.

When a return statement is executed, , if it has an expression, that expression is evaluated, and the resulting values (if any)
are assigned to the return parameter. The execution of the enclosing behavior then immediately terminates.

9.15 accept Statements

An accept statement is used to accept the receipt of one or more types of signals.

NOTE. accept statements are not available at the minimum conformance level (see 2.2).

Action Language for Foundational UML (ALF), v1.1 113

Examples
accept (sig: SignalNewArrival, SignalTermination);

accept (arrival: SignalNewArrival) {
WriteLine (arrival.name) ;

terminate = false;

} or accept (SignalTermination) {
terminate = true;

}

Syntax

AcceptStatement (s: AcceptStatement)

= SimpleAcceptStatement (s)

| CompoundAcceptStatement (s)
SimpleAcceptStatement (s: AcceptStatement)

= AcceptClause(s.acceptBlock) ";"
CompoundAcceptStatement (s: AcceptStatement)

= AcceptBlock(s.acceptBlock) { "or" AcceptBlock(s.acceptBlock) }

AcceptBlock(a: AcceptBlock)
= AcceptClause(a) Block(a.block)
AcceptClause(a: AcceptBlock)

= "accept" " (" [Name(a.name) ":"] QualifiedNamelList (a.signalNames)

") "

QualifiedNameList (gList: QualifiedNameList)

= QualifiedName (gList.name) { "," QualifiedName (gList.name) }

Statement

AcceptStatement

1

+acceptBlock | 1..*

AcceptBlock +block »IE
+name : String [0..1]] 0.1 0.1

0.1

+signalNames| 1

QualifiedNameList thame JQualifiedName
01 1.7

SyntaxElement

Figure 9.16 Abstract Syntax of accept Statements

Cross References

1. Name see 7.6
2. Expression see 8.1
3. QualifiedNameList see 8.2
114

Action Language for Foundational UML (ALF), v1.1

4. Statement see 9.1
5. Block see 9.1
Semantics

An accept statement can only be used within the definition of an active behavior or the classifier behavior of an active class.
All listed qualified names in an accept clause of an accept statement must resolve to signals for which the enclosing
behavior has a reception. These signals must not be templates, though they can be the bindings of template signals (see 8.2).
No signal may be named in more than one accept clause of an accept statement.

Simple accept Statements
In its simplest form, an accept statement simply identifies a signal by name:
accept (SignalNewArrival);

When this statement is executed, the thread of execution it is on is suspended, waiting for the receipt of an instance of the
signal SignalNewArrival. When such a receipt later triggers the accept statement, it completes its execution, and further
execution on its thread can continue.

An accept statement can also optionally include the definition of a local name that is used to hold an accepted signal
instance:

accept (arrival: SignalNewArrival);
WritelLine (arrival.name) ;

A local name so defined has the signal as its type. It must be unassigned before the accept statement.

A single accept statement can list multiple signals, any one of which may trigger it. If the accept statement includes a local
name, then this local name will hold whichever signal instance is actually received. The type of such a local name is the
effective common ancestor of the listed signals (as defined in 8.7), if one exists, and is untyped otherwise.

For example:

accept (sig: SignalNewArrival, SignalTermination);
if (sig instanceof SignalNewArrival) {
WriteLine (((SignalNewArrival)sig) .name) ;
terminate = false;
} else {
terminate = true;

}
Compound accept Statements

In the example above, which of multiple signals was actually received is determined by testing the type of the instance
received. This is such a typical pattern that Alf provides a compound version of the accept statement that allows the explicit
specification of separate clauses for the receipt of different signals. Each clause is triggered on a specific set of signals and, if
any one of them is received, an associated block is executed, after which execution of the accept statement is complete.

For example, the above example can be rewritten as follows using a compound accept statement:

accept (arrival: SignalNewArrival) {
WriteLine (arrival.name) ;
terminate = false;

} or accept (SignalTermination) {
terminate = true;

}

For a compound accept statement, a local named defined in an accept clause (such as arrival in the example above) is
available only in the body of that clause and is considered unassigned after the accept statement. New local names may be
defined within the accept statement (such as terminate in the example above). After the accept statement, such a new
Iocal name has a type that is the effective common ancestor (see the definition in 8.7) of the type ;butontyifthesamenames
aF ey =k-of the name in each accept clause in which it is defined with a multiplicity lower b()und that is the
minimum of the 10\\ er bound for the name in each clause and a multiplicity upper bound ae< St :
' >-that is the maximum of the upper bound for the name in each leusa If the name
deﬁned in every clause of the accept statement, then it is considered to have

is not

Action Language for Foundational UML (ALF), v1.1 115

multiplicity lower and upper bounds of 0 for the purposes&-F-ofits e s of the above bounds

determination. If the clause of the accept statement that is executed does not define a name that is defined in a different

clause, then that name is defined but empty after the execution of the accept statementaceept-sts ; Xctsls—

A Age e

J

9.16 classify Statements

A classify statement is used to dynamically reclassify an already existing object. The statement identifies an already
existing object and the classes from which and/or to which the identified object is to be reclassified.

NOTE. classify statements are not available at the minimum conformance level (see 2.2).

Examples

classify principal from * to Administrator;

classify principal from Administrator;

classify monitor from InActiveMonitor to ActiveMonitor;

classify this
from Pending, Overdue
to Resolved, InProcess;

Syntax

ClassifyStatement (s: ClassifyStatement)
= "classify" Expression(s.expression) ClassificationClause(s) ";"
ClassificationClause(s: ClassifyStatement)
= ClassificationFromClause (s.fromList)
[ClassificationToClause(s.toList) |
| [ReclassifyAllClause (s.isReclassifyAll=true)]
ClassificationToClause (s.tolList)
ClassificationFromClause (gList: QualifiedNameList)
= "from" QualifiedNameList (gList)
ClassificationToClause (gList: QualifiedNameList)
= "to" QualifiedNameList (gList)
ReclassifyAllClause (gList: QualifiedNameList)

= "from" mwek
Statement
Classifystatement +expression EXpression
+isReclassifyAll : Boolean = false 0.1 1
0.1 0.1

+fromList [0..1 0..1 | +toList

QualifiedNameList

Figure 9.17 Abstract Syntax of classify Statements

Cross Reference

1. Expression see 8.1
2. Statement see 9.1
3. QualifiedNameList see 9.15

116 Action Language for Foundational UML (ALF), v1.1

Semantics

The target expression in a classify statement must have a class as its static type. All qualified names listed in the from or
to lists must resolve to classes. All the classes in the from and to lists must be subclasses of the static type of the target
expression and none of them may have a common superclass that is a subclass of the static type of the target expression (that
is, they must be disjoint subclasses).

NOTE. The restriction on reclassification to be only between disjoint subclasses allows type safety to be maintained if all
potentially reclassifiable objects are only referenced via their superclass interface. However, it is still possible to downcast
such an object to a subclass, and type safety may be violated if that subclass is later removed from the object via some other
reference.

The target expression of a classify statement must evaluate to a single object. When the classi fy statement completes
execution, the object is no longer classified by the classes in the from list (unless they are also in the to list) and is classified
by all the classes in the to list.

CCy

If the from list is given as “*”, then all the current classes of the identified object are removed and replaced with the classes
in the to list. In this case, the to list must not be empty.

Neither destructor nor constructor operations are called during reclassification, and any initializers on attributes of classes in
the to list are not evaluated. All new attributes are initialized as empty, even if this violates their declared multiplicity._
However, if any of the classes on the to list are active classes with classifier behaviors, then these behaviors are started for
the target object (except that any such behavior that is already running from the previous classification is not restarted but
simply continues to run).

Action Language for Foundational UML (ALF), v1.1 117

This page intentionally left blank

118 Action Language for Foundational UML (ALF), v1.1

10 Units

10.1 Overview

Alf adds the concept of a unit to the basic UML concepts of namespaces and packages. A unit is a namespace defined using
Alf notation that is not itself textually contained in any other Alf namespace definition.

This clause describes how structural models (largely within the f{UML subset) can be represented textually as Alf units. This
includes the notation for defining the kinds of classifiers included in the f{UML subset (see 10.4) and for defining packages to
group the definition of other elements (see 10.3). Subclause 10.5 discusses the representation of various kinds of features of
classifiers.

The structural modeling constructs defined in this clause are only included at the extended compliance level of Alf (see 2.2 on
the definition of syntactic conformance).

Units are lexically independent (though semantically related) segments of Alf text that provide a level of granularity similar
to typical programming language text files. A unit may also have subunits that define namespaces that are owned (directly or
indirectly) by the unit but whose Alf definition is given by a unit that is textually separate from the base unit. Inclusion in the
base unit is indicated using a stub declaration in the base unit and a namespace declaration in the definition of the subunit.

Since an Alf unit can be processed into a UML abstract syntax representation, a portion of a model represented in Alf can
always be integrated into a larger model on that basis, regardless of the surface representation of any portion of the model.

Examples
private import ProductSpecification::Product; // Element import
private import EE OnlineCustomer as OL_Customer; // Element import with alias
private import DomainDataTypes::*; // Package import
package Ordering // Unit definition
{

class Order; // Stub declaration
}
namespace Ordering; // Namespace declaration
public import Customer; // Public element import
/** Order class of the Ordering subsystem. */ // Documentation comment
class Order { // Subunit definition
}
Qapply (DataProfile) // Profile application
@Entity (tableName=>"CustomerTable") // Stereotype annotation

class Customer {

}
Syntax

UnitDefinition(u: UnitDefinition)
= [NamespaceDeclaration (u.namespaceName)]
{ ImportDeclaration (u.import) }
[DocumentationComment (u.documentation)]
{ StereotypeAnnotation(u.definition.annotation) }
NamespaceDefinition(u.definition)
NamespaceDeclaration(g: QualifiedName)
= "namespace" QualifiedName(qg) ";"
ImportDeclaration(i: ImportReference)
= ImportVisibilityIndicator(i.visibility) "import"

ImportReference (i) ";"
ImportVisibilityIndicator (v: String)
= "public" (v) | "private" (v)

Action Language for Foundational UML (ALF), v1.1 119

ImportReference (i: ImportReference)
= ElementImportReference (1)
| PackageImportReference (1)
ElementImportReference (i: ElementImportReference)
= QualifiedName (i.referentName)
AliasDefinition(n: String)
= "as" Name (n)
PackageImportReference (i:
= ColonQualifiedName (i.referentName)
| DotQualifiedName (i.referentName) "." "*"
| UnqualifiedName (i.referentName)
| UnqualifiedName (i.referentName)
StereotypeAnnotation(s: StereotypeAnnotation)

PackageImportReference)

we.on

LA L L RO 1]

LI L I P 1]

= "@" QualifiedName (s.stereotypeName) [" (" TaggedValues(s)

TaggedValues (s: StereotypeAnnotation)
= QualifiedNameList (s.names)
| TaggedValuelist (s.taggedValues)
TaggedValuelist (t: TaggedValuelist)
= TaggedValue (t.taggedValue)
TaggedValue (t: TaggedValue)
= Name (t.name) "=>" LiteralValue (t)
LiteralValue (t: TaggedValue)
BooleanlLiteral (t.value)
[NumericUnaryOperator (t.operator) |

"k

[AliasDefinition(i.alias)]

ll)ll]

{ "," TaggedValue (t.taggedValue) }

Naturalliteral (t.value)

Iiteralilalaiac ~
HHeeFratrvattt S ggeeiaTrge

s TPaggedVatue)
R L s S e e N

| [NumericUnaryOperator (t.operator)]
| UnboundedValueLiteral (t.value)

| StringLiteral (t.value)

120

Realliteral Natuwratiiterat (t.value)

Action Language for Foundational UML (ALF), v1.1

DocumentedElement

QualifiedName

+alias : String [0..1]

+documentation : String [*] Member 01
FrnamespaceName UnitDefinition Zunit +deﬁnition.(NamespaceDefinition
0.1 0.1 0.1
1| +referentName +unit § 1
SyntaxElement
lﬁ « | tannotation
+import |*
H
ImportReference 0.1 |stereotypeAnnotation | 0.1
0.1 +visibility : String
2 0.1
| 0..1¥+taggedVaIues 0..1] +names
ElementimportReference PackagelmportReference TaggedValueList QualifiedNamelList
+taggedValue |* 1 +stereotypeName
® e

Figure 10.1 Abstract Syntax of Unit Definitions

Cross References

1.

Y X RN kWD

—_ = = e e
wm A W NN = O

TaggedValue

+name : String
+value : String

+operator : String [0..1]

QualifiedName

DocumentedElement see 6.6
DocumentationComment see 7.5.3
Name see 7.6
BooleanLiteral see 7.8.2
NaturalLiteral see 7.8.3
UnboundedValueLiteral see 7.8.4
StringLiteral see 7.8.5
QualifiedName see 8.2

. ColonQualifiedName see 8.2

. DotQualifiedName see 8.2

. UnqualifiedName see 8.2

. NumericUnaryOperator see 8.5.4

. QualifiedNameList see 9.15

. NamespaceDefinition see 10.2

Action Language for Foundational UML (ALF), v1.1

121

16. Member see 10.2
Semantics
Subunits

Each kind of namespace definition (as given in subsequent subclauses) includes the specification of a name for the
namespace, which, for a unit definition, becomes the name of the unit. If the unit definition has a namespace declaration, then
the unit is an owned member of that namespace. If the declared namespace is contained itself in an Alf unit, then the unit
definition is for a subunit and the declared namespace must have a stub declaration for the subunit. A namespace is always
denoted in a namespace declaration by its fully qualified name (as defined in 8.2).

For example, the following definition for the package Ordering has a stub declaration for the class Order.

package Ordering {
class Order; // Stub declaration

}

The subunit defining class Order must then have a corresponding namespace declaration indicating that it is completing a
stub in the namespace Ordering.

namespace Ordering; // Namespace declaration
class Order { // Subunit definition

}
(See the subclause for each kind of namespace definition for further discussion of stub declarations.)
Model Units

An Alf model unit is an Alf unit that is not a subunit of any other Alf unit. It may be used to represent the model of a classifier
or package that is intended to be individually referenced as a named element.

A model unit is not required to have a namespace declaration. But, if it does have such a declaration, then, by definition, the
referenced namespace will not be represented using Alf. If it does not have a namespace declaration, then which namespace it
is placed in, if any, is tool specific.

A model unit may represent an entire UML model (at least within the limits of the f{UML subset) or it may represent a model
element (such as a class or standalone activity) intended to be used within some larger model. The Alf specification does not
define how such an Alf unit is created within a specific modeling environment or how it is attached to some larger model
within the environment. It does, however, place requirements on the modeling environment to allow references from within
Alf units to named elements defined in namespaces outside of those units (see 10.2).

Import Declarations

An import declaration specifies a UML import dependency (see UML Superstructure, subclauses 7.3.15 and 7.3.39). Such a
declaration may specify an element import or a package import, and it may be public or private. Alf notation only provides
for import declarations on namespaces defined as units. The import declarations for a unit are placed after the namespace
declaration (if any) and before any stereotype annotations and the body of the definition for the unit. The qualified name
given in an import declaration must be a fully qualified name (as defined in 8.2).

For an element import reference:
* The name must resolve to a packageable element with either an empty or public visibility.

* The visibility of the named element within the scope of the unit definition is as specified in the UML Superstructure,
7.3.15, ElementImport.

For a package import reference:
* The name must resolve to a package with either an empty or public visibility.

* The visibility of the named element within the scope of the unit definition is as specified in the UML Superstructure,
7.3.39, Packagelmport.

For example, the following is a private element import declaration.

122 Action Language for Foundational UML (ALF), v1.1

private import ProductSpecification::Product; // Element import
package Ordering { // Namespace definition

}

This declaration specifies that the element with the qualified name ProductSpecification: :Product be included as a
member of the namespace Ordering. Since this is a private import, the element is imported as a private member and is not
visible outside Ordering. On the other hand, a public import such as

public import ProductSpecification::Product; // Public element import
package Ordering { // Namespace definition

}

specifies that the element be imported as a public member of Ordering. In this case, the qualified name
Ordering: : Product refers to the same element as ProductSpecification: :Product.

An element may also be imported with an alias. For example:

public import ProductSpecification::Product as Prod; // Import with alias
package Ordering { // Namespace definition

}

In this case, within the Ordering namespace, the unqualified name for ProductSpecification: :Product is Prod, not
product. Further, since the import is public, outside Ordering the qualified name Ordering: : Prod can be used to refer to
the same element as ProductSpecification: :Product.

A package import declaration may be used to import all the elements of a package. For example, the following declaration:

private import ProductSpecification::*; // Package import
package Ordering { // Namespace definition

}

specifies that all the elements of the package ProductSpecification should be imported into the namespace Ordering
as private members. This is equivalent to giving a private element import declaration for each of the elements in
ProductSpecification. As with an element import declaration, a package import may also be public. However, aliases
cannot be defined with a package import.

NOTE. The UML semantics of importing an element is simply that it becomes a member of the importing namespace. A
namespace is not required to have an import dependency in order to reference an external element from within the
namespace. In Alf, importing an element means the name of the imported element is in the current scope within the importing
namespace and can, therefore, be used without qualification (see 8.2). However, it is always possible to refer to an element
using its fully qualified name (if such exists) without having to import the element.

Unless it is stereotyped as a «ModelLibrary», an Alf model unit has an implicit, private package import for each of the sub-
packages of the A1f: : Library package (see 11.1). These packages must therefore be available in the modeling
environment for any Alf unit. (Note that it is unnecessary for subunits to have such implicit imports, since they will have
visibility to the imports on the enclosing model unit.)

The standard «ModelLibrary» stereotype can be applied to a package to indicate that it “contains model elements that are
intended to be reused by other packages” (see UML Superstructure, Annex C). This stereotype can be applied to a package
represented in Alf using a @ModelLibrary annotation (see below). A model-unit package so annotated does not have the
implicit imports for the StandardModelLibrary packages and must import these explicitly if they are needed.

NOTE. This rule is to allow for the minimization of dependencies of model library packages represented in Alf on other
packages that they may not need. It also allows for the possibility of representing the StandardModelLibrary as a model
library package in Alf without requiring it to implicitly, circularly import subpackages of itself.

Stereotype Annotations

A stereotype annotation specifies the application of a stereotype to a unit. Such annotations are listed immediately before the
namespace definition for the unit. In general, the qualified name in a stereotype application must resolve to a stereotype in a

Action Language for Foundational UML (ALF), v1.1 123

profile applied to some (directly or indirectly) enclosing package. The unit must be of a syntactic type that corresponds to the
metaclass extended by the identified stereotype. Any stereotype may be applied at most once to a unit.

NOTE. Profiles and stereotypes are not included in the f{UML subset. However, allowing stereotype application in Alf
provides an extensible annotation mechanism based on profiles. Modeling tools may use such annotations to implement
profile-specific mappings of Alf text to the strict f{UML subset for execution. Note, however, that Alf does not provide a
textual notation for the definition of profiles, only their application.

The stereotype name does not need to be qualified if there is only one applied profile with a stereotype of the given name
(except for the special cases given in able 10.1 and discussed further below). Otherwise the stereotype must be fully qualified
with the name of the profile. However, the UML superstructure standard profiles (see UML Superstructure, Annex C) are
considered to be implicitly applied, and stereotypes from these profiles can always be used without explicit qualification of
their names. Thus, any stereotype with a name that conflicts with the name of a standard stereotype must always be fully
qualified.

A stereotype annotation may optionally be followed by a list of fagged values. There are two forms for such a list.

The first form has a syntax similar to that of a named tuple (see 8.3.8), with a value associated with each attribute of the
stereotype. Optional attributes (multiplicity lower bound of 0) may be omitted. This Alf syntax only allows for tagged values
of a primitive type and only one value per attribute. Therefore, this form of annotation can only be used for stereotypes with
attributes that have one of the standard primitive types (Boolean, String, Integer or UnlimitedNatural)anda
multiplicity lower bound of at most 1.

The second form of tagged value list is a list of qualified names. In this case, the stereotype must have a single attribute
whose type is a metaclass from the UML abstract syntax. The listed names must be fully qualified and resolve in model scope
for the unit to model elements consistent with the required metaclass for the stereotype (see 10.2 for the definition of model
scope).

Alf also uses the annotation syntax for a limited number of cases other than strict stereotype application, as shown in Table
10.1. In the case that there are visible stereotypes with the same name as these special case annotations, then the unqualified
names always denote the special cases, not the stereotypes. To apply the stereotypes, they must be qualified with the name of
the profile in which they are defined, whether or not that would otherwise be necessary.

Table 10.1 Non-Stereotype Annotations

Annotation Applies To Description
Capply Package Definition Apply the profiles denoted by the qualified names p, ..., p,. The names
(P17 s Pn) must resolve to profiles.
@Gprimitive Data Type Definition or | If applied to a data type, indicates that the data type is to be registered as
Activity Definition a primitive data type. The data type may not have any attributes.

If applied to an activity, indicates that the activity is instead to be
mapped as a primitive behavior. How the implementation of this
primitive behavior is actually defined is implementation specific.

Definitions marked as primitive may not be templates or stubs.

@external NamespaceDefinition Must be applied to a stub declaration. Indicates that the stub is to be
(file=>"...") completed by a subunit implementation external to the normal UML/AIf
modeling environment. How this implementation is attached to the UML
model and what specific kinds of namespaces can be annotated as
external are tool-specific. However, the £ile tag can optionally be used
to give a file reference for the subunit implementation.

The first special case shown in Table 10.1 is for denoting the application of a profile. For cases other than the standard UML
profiles, such a profile application annotation for the profile must appear before the stereotypes for the profile are used in
stereotype annotations. Once a profile is applied to a unit, however, it is also available without further application to all
subunits of that unit.

124 Action Language for Foundational UML (ALF), v1.1

10.2 Namespaces

A namespace is a UML element used to provide the definition context for a set of named elements known as the owned
members of the namespace. A package is a UML construct whose primary function is simply as a namespace for defining
other elements (see 10.3). However, a classifier (class, structured data type, enumeration, association, signal or activity) also
acts as a namespace for various sub-elements defined within it (see 10.4). Generally, each kind of namespace has specific
restrictions on the kinds of named elements that can be owned members, as reflected in the Alf notation for them described in
subsequent subclauses.

In UML, an operation is also considered to be a namespace for its parameters, and it can be used as such in the qualified
name for those parameters (see 8.2). However, an operation can only be defined textually within the context of a class (sees
10.4.2 and 10.5.3). Therefore, the definition of an operation in Alf is not considered to syntactically be a namespace
definition, in the same sense that package and classifier definitions are. In particular, an operation definition cannot be used
as a unit (though an activity acting as the method for an operation can be used as a subunit completing an operation stub
declaration—see 10.4.8).

Since a namespace is a named element, it may itself be an owned member of an enclosing namespace. In addition to its
owned members, the members of a namespace include the members of any enclosing namespace (unless Zidden by an owned
member with the same name). A namespace may also have members that are imported from other packages.

Syntax

NamespaceDefinition (d: NamespaceDefinition)
= PackageDefinition (d)
| ClassifierDefinition (d)
VisibilityIndicator (v: String)
= ImportVisibilityIndicator (v)
| "protected" (v)

NOTE. The actual definition of specific kinds of named elements allowed in various kinds of namespaces is given in the
following subclauses. However, the syntax and semantics of visibility are discussed here, because they are largely common
across the different kinds of named element definitions.

DocumentedElement

+documentation : String [*]

|

Member

+ownedMember ; i
OWNEdNISMPET o +name : String .M.| StereotypeAnnotation
+visibility : String [0..1] 0.1 R

ordered
{ } +isStub : Boolean = false

marme%.{ NamespaceDefinition

Figure 10.2 Abstract Syntax of Namespace Definitions

Cross References

1. DocumentedElement see 6.6

2. ImportVisibilityIndicator see 10.1
3. StereotypeAnnotation see 10.1
4. PackageDefinition see 10.3

Action Language for Foundational UML (ALF), v1.1 125

5. ClassifierDefinition see 104
Semantics
Members

Each kind of namespace definition contains constituent definitions for owned members of the namespace. The members of a
namespace must be distinguishable as specified in the UML Superstructure, 7.3.34, Namespace. However, in any case that
the UML Superstructure considers two names to be distinguishable if they are different, an Alf implementation may instead
impose the stronger requirement that the names not be conflicting, in the sense defined in 7.6 (of the Alf specification).

Model Scope

All owned members of an Alf namespace must be represented in Alf. However, Alf text may occur in the context of a larger
UML model, not all of which is represented in Alf. In such a case, it is possible from within the Alf text to refer by name to
named elements defined in the wider model context. For any Alf namespace, the model scope is the innermost namespace
enclosing the Alf namespace that is not itself represented in Alf, if any. If there is no such namespace, then the Alf unit has an
empty model scope.

Whether a name is visible in the model scope is expected to be determined using the usual UML Superstructure rules. At the
very least, the names of all members of the model scope namespace should be visible. However, the management of
namespaces at the model scope and any enclosing namespaces above that is the responsibility of the modeling environment
and not otherwise defined in the Alf specification.

UML does not in general require that a named element be a member of a namespace or that there be only one hierarchy of
namespaces. However, in order to be referenced in an Alf text, any model element external to that text must be nameable by a
qualified name beginning with a name visible in the model scope.

Visibility

The visibility of a name outside the scope of the namespace owning the named element can be controlled by placing a

visibility indicator on the definition of the named element: one of “public”, “private” or “protected”. A named element
definition with no visibility indicator is considered to have package visibility.

The visibility of a named element outside its defining scope is as defined in the UML Superstructure, 7.3.55, VisibilityKind.

10.3 Packages

A package is a namespace whose sole function is to group its member elements, which must be packageable elements. In Alf,
the supported kinds of packageable element definitions are just the namespace definitions for packages and the various kinds
of classifiers (see 10.4). Note also that only packageable elements may be imported into other namespaces (see 10.1).

A packageable element may be fully defined within the textual body of a package definition. Alternatively, a stub declaration
may be given for the element, which includes only the element name and visibility (and, for an activity, its signature). The
full definition of the element is then given in a subunit definition (see 10.1).

Examples
package Ordering // Base unit
{
public assoc Selects // Nested namespace
{
public cart: ShoppingCart[0..*];
public selectedProducts: Product[l..*];
public selectionInfo: ProductSelection;
}
public active class ShoppingCart; // Stub declaration

public abstract active class Order;
public class ProductSelection;

126 Action Language for Foundational UML (ALF), v1.1

Syntax

PackageDeclaration (d: PackageDefinition)
= "package" Name (d.name)
PackageDefinition (d: PackageDefinition)
= PackageDeclaration(d) "{" { PackagedElement (d.ownedMember) } "}"
PackagedElement (m: Member)
= [DocumentationComment (m.documentation)]
{ StereotypeAnnotation (m.annotation) }
ImportVisibilityIndicator (m.visibility) PackagedElementDefinition (m)
PackagedElementDefinition (m: Member)
= NamespaceDefinition (m)
| NamespaceStubDeclaration (m)
NamespaceStubDeclaration (m: Member)
= PackageStubDeclaration (m)
| ClassifierStubDeclaration (m)
PackageStubDeclaration (m: Member)
= PackageDeclaration(m) ";" (m.isStub=true)

NamespaceDefinition

PackageDefinition

Figure 10.3 Abstract Syntax of Package Definitions

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6
3. StereotypeAnnotation see 10.1
4. NamespaceDefinition see 10.2
5. ImportVisibilityIndicator see 10.2
6. ClassifierStubDeclaration see 10.4
Semantics

The package being defined is the current scope for all packaged element definitions within it.

Stereotype annotations apply to the element defined by the following packaged element definition. Such annotations have the
same semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing package, rather than in model scope. If the package element
definition is a stub declaration, then the annotation for a stereotype may be applied either to the stub declaration or the
subunit definition, but not both.

See also the discussion of the semantics for namespaces in general in 10.2.

10.4 Classifiers

10.4.1 Overview

A classifier specifies a classification of instances according to their features. Classifiers may participate in generalization
relationships, which can result in its feature elements being inherited. Alf supports the following kinds of classifier: classes
(including active classes), structured data types, enumerations, associations, signals and activities. This subclause specifies
how each kind of classifier may be defined in Alf.

Action Language for Foundational UML (ALF), v1.1 127

Syntax

ClassifierDefinition(d: ClassifierDefinition)
= ClassDefinition (d)
| ActiveClassDefinition (d)
| DataTypeDefinition (d)
| EnumerationDefinition (d)
| AssociationDefinition (d)
| SignalDefinition (d)
| ActivityDefinition (d)
ClassifierDeclaration(d: ClassifierDefinition)
= ClassDeclaration (d)
| ActiveClassDeclaration (d)
| DataTypeDeclaration (d)
| EnumerationDeclaration (d)
| AssociationDeclaration (d)
| SignalDeclaration (d)
| ActivityDeclaration (d)
ClassifierStubDeclaration(d: ClassifierDefinition)
= ClassifierDeclaration(d) ";" (d.isStub=true)
ClassifierSignature(d: ClassifierDefinition)
= Name (d.name) [TemplateParameters(d)]
[SpecializationClause (d.specialization)]
TemplateParameters (d: ClassifierDefinition)
= "<" ClassifierTemplateParameter (d.ownedMember)
{ "," ClassifierTemplateParameter (d.ownedMember) } ">"
ClassifierTemplateParameter (p: ClassifierTemplateParameter)
= [DocumentationComment (p.documentation)] Name (p.name)
[TemplateParameterConstraint (p.specialization)]
(p.visibility="private" and p.isAbstract=true)
TemplateParameterConstraint (qList: QualifiedNamelList)
= "specializes" QualifiedName (gqList.name)
SpecializationClause (gList: QualifiedNameList)
= "specializes" QualifiedNamelList (gList)

NamespaceDefinition
ClassifierDefinition +specialization QualifiedNameList
+isAbstract: Boolean =false | 0..1 0.1

ClassifierTemplateParameter

Figure 10.4 Abstract Syntax of Classifier Definitions

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. QualifiedNameList see 9.15
4. NamespaceDefinition see 10.2
5. ClassDefinition see 10.4.2
6. ClassDeclaration see 10.4.2

128 Action Language for Foundational UML (ALF), v1.1

7. ActiveClassDefinition see 10.4.3

8. ActiveClassDeclaration see 10.4.3
9. DataTypeDefinition see 10.4.4
10. DataTypeDeclaration see 10.4.4
11. AssociationDefinition see 10.4.5
12. AssociationDeclaration see 10.4.5
13. EnumerationDefinition see 10.4.6
14. EnumerationDeclaration see 10.4.6
15. SignalDefinition see 10.4.7
16. SignalDeclaration see 10.4.7
17. ActivityDefinition see 10.4.8
18. ActivityDeclaration see 10.4.8
Semantics

As a namespace, a classifier includes definitions of features as elements. The detailed semantics for each kind of classifier are
described in following sections of this subclause.

The semantics of classifiers are primarily static. However, a classifier provides the specification for creating instances that
have execution semantics, as noted in the following sections of this subclause.

Specialization

In general, a classifier may specialize other classifiers of the same kind. That is, classes may specialize classes, data types
may specialize data types, etc. If a classifier specializes one or more other classifiers, then the names of the classes it
specializes are listed in a specialization clause following the keyword “specializes”.

If a classifier listed in a specialization clause is a template (see below), then it must have a template binding giving arguments
for all template parameters (see 8.2). Alf does not provide a notation for specializing an uninstantiated template classifier.

A classifier inherits non-private members from the classifiers it specializes. The visibility of inherited members from the
classifiers named in the specialization part is as specified in the UML Superstructure, 7.3.8, Classifier. Further, when used as
a type, a classifier conforms to any classifier that it specializes (see 8.2 for the full definition of type conformance).

Any additional rules related to specialization of specific kinds of classifiers are discussed in the following subclauses on each
kind of classifier.

Template Parameters

Alf provides general notation for the binding of the parameters of the various kinds of templates allowed by UML (see 8.2).
Also also provides a notation for defining templates, but only for template classifiers whose template parameters are for
classifiers. The primary motivation for including this capability in Alf is to allow for the definition of parameterized types,
such as those defined in the Alf standard library package CollectionClasses (see 11.7), and parameterized behaviors
(which are kinds of classes in UML), such as those defined in the Alf standard library package CollectionFunctions (see
11.6).

A classifier template parameter may optionally be constrained, such that any valid argument for the parameter must conform
to a given classifier. If a parameter is so constrained, then the constraining classifier is named in a specialization clause for
that parameter.

For example, a template class with the signature Sorter<T>, then T could be bound to any classifier for T. However, if the
signature was Sorter<T specializes Comparable>,then T could only be legally bound to a class that was a subclass
(directly or indirectly) of the class Comparable.

NOTE. Classifier templates are specified in the UML Superstructure, 17.5.7, with classifier template parameters described in
17.5.8. For classifier template parameters mapped from Alf, the allowSubstitutable property is always false.

Action Language for Foundational UML (ALF), v1.1 129

Within the body of the definition of a classifier with template parameters, the parameters may be used as types. If a parameter
is not constrained, then it is treated as if it was a data type with no attributes or operations. If the parameter is constrained,
then it is considered to be the same kind of classifier as its constraining classifiers and to specialize the constraining classifier.
Template parameters are always considered to be abstract classifiers that may not be directly instantiated, since any parameter
could be substituted with an actual argument that is abstract. Template parameters are not visible outside of the classifier
definition.

NOTE. The allowance for substituting a classifier template parameter without a constraining classifier with a classifier of
any kind, regardless of the kind of parameterable element the template has, is a semantic variation point given in UML
Superstructure, 17.5.7. This allowance is necessary in order to provide for parameterized types that may be instantiated with
any kind of argument type. The notational default for an unconstrained classifier template parameter is specified in UML
Superstructure, 17.5.8, to be that it is considered to have a parameterable element that is a class. However, presuming,
instead, that it is an abstract data type, as given above, prevents it from being used in places that require a class, which would
result in an ill-formed model if the parameter was substituted with a type other than a class. There are no instances in the Alf
notation in which an abstract data type (with no attributes or operations) may be used, but some other kind of classifier could
not be used in the same place.

When the template classifier is instantiated and its parameters are bound, the result is effectively an equivalent bound element
in which all of the template parameters have been replaced with the arguments to which they are bound (see 6.3 on the copy
semantics of templates). A template parameter without a constraining classifier may actually be bound to an argument that is
any kind of classifier, not just a class, as long as this would not make the equivalent bound element ill formed. A template
parameter with a constraining classifier must be bound to an argument classifier that conforms to the constraining classifier.

10.4.2 Classes

A class is a classifier whose instances are objects. The features of a class may include properties (see 10.5.2) and operations
(see 10.5.3). (An active class may also have receptions as features—see 10.4.3.)

Examples

abstract class Selection { // BAbstract class
public abstract getSelectionValue () : Money;
// BAbstract operation definition

}

class ProductSelection // Concrete subclass
specializes Selection {

private quantity: Count; // Attribute definition
private unitPriceOfSelection: Money;

public select // Operation stub declaration
(in cart: Cart, in product: Product, in quantity: Count);

public getQuantity(): Count { // Concrete operation definition
return self.quantity;

}

public getUnitPriceOfSelection(): Money {
return self.unitPriceOfSelection;

}

/** The total value is given by the // Documentation comment
quantity times the unit price. */
public getSelectionValue(): Money { // Redefined operation

return self.getQuantity * self.getUnitPriceOfSelection;
}

130 Action Language for Foundational UML (ALF), v1.1

abstract class Collection<T>{ .. }
class MapToString<T> specializes Map<Entry=>T, Value=>String> { }
class Sorter<T specializes Comparable> {

private list: List<T>;
@Create public Sorter () { }
@Create public Sorter(list: List<T>);

public append(elements: List<T>);
public sort();

public getList(): List<T>;

public clear();

}

Syntax
ClassDeclaration(d: ClassDefinition)

= ["abstract" (d.isAbstract=true)] "class" ClassifierSignature (d)
ClassDefinition(d: ClassDefinition)

= ClassDeclaration(d) "{" { ClassMember (d.ownedMember) } "}"

ClassMember (m: Member)
= [DocumentationComment (m.documentation)]
{ StereotypeAnnotation (m.annotation) }
[VisibilityIndicator (m.visibility)] ClassMemberDefinition (m)
ClassMemberDefinition (m: Member)
= ClassifierDefinition (m)
| ClassifierStubDeclaration (m)
| FeatureDefinition (m)
| FeatureStubDeclaration (m)

ClassifierDefinition

ClassDefinition

Figure 10.5 Abstract Syntax of Class Definitions

Cross References

1. DocumentationComment see 7.5.3
2. StereotypeAnnotation see 10.1
3. Visibilitylndicator see 10.2
4. ClassifierDefinition see 10.4.1
5. ClassifierStubDeclaration see 10.4.1
6. ClassifierSignature see 10.4.1
7. FeatureDefinition see 10.5.1
8. FeatureStubDeclaration see 10.5.1

Action Language for Foundational UML (ALF), v1.1 131

Semantics

If the class definition is a subunit definition, then the definition of the namespace owning the class must include a class stub
declaration for the class.

Class Members
The class being defined is the current scope for all class member definitions within it.
The properties of a class define attributes that may take on values of the appropriate type in objects of the class.

The operations of a class may be invoked on objects of the class using invocation expressions (see 8.3.10). The method for an
operation (as representable in Alf) is an activity that provides the behavior for the operation. The method definition for an
operation may either be included in the class definition, or the class definition may include a stub declaration for the
operation, which is then completed in a subunit (see 10.1). Note that a subunit that completes an operation stub declaration
must be an activity (see 10.4.8).

A class is a namespace (see 10.2), and all its features are namespace members. A class may also define nested classifiers as
namespace members. For purposes of naming, such classifier definitions are identical to definitions made within a package
(see 10.3). However, as members of the classifier namespace, they have visibility of private members of the classifier that
would not be visible outside the classifier.

For example, activities are kinds of classifiers (see 10.4.8) and can, therefore, have definitions nested inside a class.

class Singleton {
@Create private Singleton () {}

public activity getSingleton(): Singleton {
instance = Singleton.allInstances();
if (instance -> isEmpty()) {
instance = new Singleton();

}

return instance([l];

}
}

In the above example, the activity getSingleton is nested in the class Singleton. Because of this, it has visibility to the
private constructor for Singleton, which is not visible outside of the class.

Any member definition of a class may be preceded by a documentation comment (see 7.5.3) that is attached to the element
being defined.

A member definition may also have one or more stereotype annotations applied to it. Such annotations have the same
semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing class, rather than in model scope. If the class member
definition is a stub declaration, then the annotation for a stereotype may be applied either to the stub declaration or the
subunit definition, but not both.

Class Specialization

A class may specialize one or more other classes, in which case it inkerits members from the classes it specializes (its
superclasses). Each of the names in the specialization part of a class definition must resolve to a class. The visibility of
inherited members from the classes named in the specialization part is as specified in the UML Superstructure, 7.3.8,
Classifier.

All non-private members of superclasses are inheritable, except for operations redefined in the subclass (see 10.5.3).
However, all members of a namespace must be distinguishable. 1t is therefore not legal to define a class to inherit members
that are not distinguishable.

By default, two named elements are distinguishable if they are either different kinds of elements (e.g., a property as opposed
to an operation) or they have different names. However, operations with the same name may be distinguished if they have
different signatures (see 10.5.3). Such operations are said to be overloaded.

132 Action Language for Foundational UML (ALF), v1.1

NOTE. Alf does not allow the redefinition of any kinds of class members other than operations, because this is the only kind
of redefinition allowed in the f{UML subset (see fUML Specification, 7.2.2). The constraint on distinguishability of
namespace members is given in 7.3.34 of the UML Superstructure. The default definition for distinguishability of named
elements is given in 7.3.33 of the UML Superstructure. The rule for the distinguishability for operations is that defined for all
behavioral features in 7.3.5 of the UML Superstructure. Note that there is no special rule for activities, so all activities in a
given namespace must have different names, regardless of their signature (that is, activities cannot be overloaded).

A subclass inherits non-private nested classes from its superclasses as well as features. Thus, a subclass of the Singleton
class given in the example above will inherit the public activity getSingleton, but not the private constructor.

NOTE. The general rules for inheritance of members are defined for all classifiers in 7.3.8 of the UML Superstructure. The
exclusion of redefined members is given for classes in 7.3.7 of the UML Superstructure.

A class may be defined to be abstract. An abstract class cannot be instantiated, but it can be used as a superclass of other
classes. Only abstract classes may have abstract operations (see 10.5.3), whether these operations are directly owned by the
class or inherited. A class that is not abstract is known as a concrete class.

Class Instantiation

An object is created as an instance of a class using an instance creation expression (see 8.3.12). An object has referential
value semantics (see f{UML Specification, 8.3.2). That is, the equality of objects is based on their identity, not on the values of
their properties (see also 8.6.6 on the semantics of equality).

10.4.3 Active Classes

An active class is one whose instances (active objects) have independent threads of control. The independent behavior of an
active class is specified by its classifier behavior. When a contrast is necessary, a class that is non-active may be referred to
as a passive class.

An active class may have attributes, operations and nested classifiers, just like a passive class (see 10.4.2). However, only an
active class may have receptions (see 10.5.4) as features and only active objects may receive signals.

NOTE. An activity is a kind of class in UML, but activities are never explicitly declared as active in Alf. Instead, activities
used as operation methods are always mapped as not active, while standalone activities are always mapped as active (sees
10.4.8 and 19.10).

Examples

active class Order { // An active class
public dateOrderPlaced: Date; // Attribute definitions
public totalValue: Money;
public deliveryAddress: MailingAddress;
public contactPhone: TelephoneNumber;
public receive CheckOut; // Reception definitions

public receive SubmitCharge;

public receive PaymentDeclined;
public receive PaymentApproved;
public receive OrderDelivered;

} do Order Behavior // Classifier behavior stub

Action Language for Foundational UML (ALF), v1.1 133

abstract active class ProcessQueue { // Abstract active class
private busy: Boolean = false;

public receive signal Wait { // Signal reception definitions
public process: Process;
}

public receive signal Release {}

protected abstract enqueue (in process: Process); // Abstract operations
protected abstract dequeue(): Process;

protected abstract processesWaiting(): Boolean;
} do { // In-line classifier behavior
while (true) {
accept (sig: Wait) { // Accept statement for signals

if (this.busy) {
this.enqueue (sig.process) ;

} else {
sig.process.resume () ;

}

} or accept (Release) {

if (this.processesWaiting()) {
this.dequeue () .resume () ;

} else {
this.busy = false;

}

active class ProcessQueuelImpl // Concrete active subclass
specializes ProcessQueue {

private waitingProcesses: Process[*] ordered;

private enqueue (in process: Process); // Concrete operation redefinitions
private dequeue(): Process;
private processesWaiting(): Boolean;

} // No additional behavior
Syntax

ActiveClassDeclaration(d: ActiveClassDefinition)
= ["abstract" (d.isAbstract=true)] "active" "class"
ClassifierSignature (d)
ActiveClassDefinition (d: ActiveClassDefinition)
= ActiveClassDeclaration(d) "{" { ActiveClassMember (d.ownedMember) }
"}" ["do" BehaviorClause(d.classifierBehavior)
(d.classifierBehavior.visibility="private")
(d.ownedMember->includes (d.classifierBehavior))]
BehaviorClause (a: ActivityDefinition)
= Block (a.body)
| Name (a.name) (a.isStub=true)
ActiveClassMember (m: Member)
= [DocumentationComment (m.documentation)]
{ StereotypeAnnotation (m.annotation) }
[VisibilityIndicator (m.visibility)] ActiveClassMemberDefinition (m)
ActiveClassMemberDefinition (m: Member)
= ClassMemberDefinition (m)
| ActiveFeatureDefinition (m)
| ActiveFeatureStubDeclaration (m)

134 Action Language for Foundational UML (ALF), v1.1

ClassDefinition
yA

ActiveClassDefinition

0.1

+classifierBehavior § 0.1

ActivityDefinition

Figure 10.6 Abstract Syntax for Active Class Definitions

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. Block see 9.1

4. StereotypeAnnotation see 10.1
5. VisibilityIndicator see 10.2
6. ClassifierSignature see 10.4.1
7. ClassDefinition see 10.4.2
8. ClassMemberDefinition see 10.4.2
9. ActivityDefinition see 10.4.8
10. ActiveFeatureDefinition see 10.5.1
11. ActiveStubDeclaration see 10.5.1
Semantics

See also the discussion of the general semantics of classes in 10.4.2.

The classifier behavior of an active class is specified as an activity that is a private owned behavior of the class. This activity
may be named in the definition of the active class, in which case the activity must be separately defined as a subunit of the
active class with the given activity name. Alternatively, the activity may be specified with a block (see 9.1) directly attached
to the active class definition. (Note that in neither case may the activity have parameters.)

An active class may specialize other classes, including passive classes, with the normal inheritance rules (see 10.4.2).
However, a passive class may not specialize an active class.

Since the classifier behavior is always private, it is not inherited by subclasses. However, an instance of an active class with
active superclasses will have the behavior specified for all its superclasses, as well as any behavior specified for the subclass.
The classifier behavior for an active class may only accept signals for which the class has a reception, either directly or
inherited from a superclass (see also 10.5.4 on receptions).

An active class may be abstract (see also 10.4.2), in which case it cannot be instantiated, but it can be used as the superclass
of other active classes.

Active Class Instantiation

An active object is created like any other object using an instance creation expression. However, when an active object is
created, its classifier behavior is automatically started (see 8.3.12).

Action Language for Foundational UML (ALF), v1.1 135

10.4.4 Data Types

In Alf, the unqualified term data type is always used to refer to a structured data type, not an enumeration or primitive type.
The instances of such a data type are known as data values. The features of a data type must be properties (see 10.5.2).

Examples

datatype Complex {
public re: Real;
public im: Real;

}
Syntax

DataTypeDeclaration(d: DataTypeDefinition)
= ["abstract" (d.isAbstract=true)] "datatype" ClassifierSignature (d)
DataTypeDefinition (d: DataTypeDefinition)
= DataTypeDeclaration(d) "{" { StructuredMember (d.ownedMember) } "}"
StructuredMember (m: Member)
= [DocumentationComment (m.documentations]
{ StereotypeAnnotation (m.annotations) } ["public" (m.visibility)]
PropertyDefinition (m)

ClassifierDefinition

DataTypeDefinition

Figure 10.7 Abstract Syntax of Data Type Definitions
Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. StereotypeAnnotation see 10.1
4. ClassifierDefinition see 10.4.1
5. ClassifierSignature see 10.4.1
6. PropertyDefinition see 10.5.2
Semantics

If the data type definition is a subunit definition, then the definition of the namespace owning the data type must include a
data type stub declaration for the data type.

Data Type Members

The data type being defined is the current scope for all property definitions within it. As for a class (see 10.4.2), the properties
of a data type define attributes that may take on values of the appropriate type in instances of the data type.

NOTE. Alf does not allow private or protected visibility to be specified for data type attributes. Since operations and nested
classifiers are not allowed on data types, there would be no way to access data type attributes that are private or protected.
Both public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations have the same
semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing data type, rather than in model scope.

136 Action Language for Foundational UML (ALF), v1.1

Data Type Specialization

A data type may specialize one or more other data types, in which case it inherits attributes from the data types it specializes
(its supertypes). Each of the names in the specialization part of a data type must resolve to a data type. The visibility of
inherited members from the data types named in the specialization part is as specified in the UML Superstructure, 7.3.8,
Classifier.

All non-private attributes of the supertypes are inheritable. However, all attributes of a data type, whether owned or inherited,
must have unique names. It is therefore not legal to define a data type to inherit attributes with the same name as each other
or any defined in the subtype.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML Superstructure. The
default definition for distinguishability of named elements is given in 7.3.33 of the UML Superstructure.

A data type may be defined to be abstract. An abstract data type cannot be instantiated, but it can be used as a supertype of
other data types.

Data Type Instantiation

Like an object, a data value is created as an instance of a data type using an instance creation expression (see 8.3.12).
However, unlike objects, the data values do not have independent identity and two data values of the same type are
considered equal if the values of their corresponding attributes are equal (see also 8.6.6 on the semantics of equality).

10.4.5 Associations

An association is a classifier that specifies a semantic relationship that may exist between two or more instances. The
instances of an association are known as links. The features of an association must all be properties (see 10.5.2).

Examples
assoc Selection {
public cart: ShoppingCart[0..*]; // Association end definitions
public selectedProduct: Product[l..*];
public selectionInfo: ProductSelection;
}
Syntax
AssociationDeclaration(d: AssociationDefinition)
= ["abstract" (d.isAbstract=true)] "assoc" ClassifierSignature (d)
AssociationDefinition(d: AssociationDefinition)
= AssociationDeclaration(d) "{" StructuredMember (d.ownedMember)

StructuredMember (d.ownedMember) { StructuredMember (d.ownedMember) }
" } "

NOTE. An association must have at least two association ends.

ClassifierDefinition

AssociationDefinition

Figure 10.8 Abstract Syntax of Association Definitions

Cross References

1. ClassifierDefinition see 10.4.1
2. ClassifierSignature see 10.4.1
3. StructuredMember see 10.4.4

Action Language for Foundational UML (ALF), v1.1 137

Semantics

If the association definition is a subunit definition, then the definition of the namespace owning the association must include
an association stub declaration for the association.

Association Ends

The association being defined is the current scope for all property definitions within it. The properties of an association are
the association ends whose values are the instances being related by a specific instance of the association.

NOTE. Per the fUML subset, association ends, as structural features, are always owned by their association (see f{UML
Specification, 7.2.2). Alf does not allow private or protected visibility to be specified for association ends, because there
would be no way to access them. Public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations have the same
semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing association, rather than in model scope.

If an association definition contains an association end that is a composed property, then it must have exactly two association
ends.

NOTE. The UML Superstructure, 7.3.3, requires that a composition association be binary.
Association Specialization

An association may specialize one or more other associations, in which case it inherits association ends from the associations
it specializes (its superassociations). Each of the names in the specialization part of an association must resolve to an
association. The visibility of inherited association ends from the associations named in the specialization part is as specified
in the UML Superstructure, 7.3.8, Classifier.

All non-private association ends of superassociations are inheritable. However, all association ends of an association, whether
owned or inherited, must have unique names. It is therefore not legal to define an association to inherit association ends with
the same name as each other or any defined in the subassociation.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML Superstructure. The
default definition for distinguishability of named elements is given in 7.3.33 of the UML Superstructure.

An association may be defined to be abstract. An abstract association cannot be instantiated, but it can be used as a
superassociation of other associations.

Association Instantiation

Links are created and destroyed as instances of an association using the createLink and destroyLink link operations (see
8.3.13). Links are not themselves values. However, the properties of the links of an association may be queried using an
association read expression (which has the form of a behavior invocation—see 8.3.9) or a property access expression (for a
binary association—see 8.3.6).

10.4.6 Enumerations
An enumeration is a classifier whose allowed instances are a specified set of enumeration literals.

Examples

enum TrafficLightColor { RED, YELLOW, GREEN }

Syntax

EnumerationDeclaration(d: EnumerationDefinition)
= "enum" Name (d.name) [SpecializationClause(d.specialization)]
EnumerationDefinition(d: EnumerationDefinition)
= EnumerationDeclaration(d) "{" EnumerationLiteralName (d.ownedElement)
{ "," EnumerationLiteralName (d.ownedElement) } "}"
EnumerationLiteralName (m: EnumerationLiteralName)
= [DocumentationComment (m.documentation)]
Name (m.name) (m.visibility="public")

138 Action Language for Foundational UML (ALF), v1.1

NOTE. Enumerations cannot have template parameters, since there would not be any way to use them within the
enumeration definition.

ClassifierDefinition Member

EnumerationDefinition EnumerationLiteralName

Figure 10.9 Abstract Syntax of Enumeration Definitions and Enumeration Literal Names

Cross References

1. DocumentationComment see 7.5.3
2. Name see 7.6

3. Member see 10.2
4. ClassifierDefinition see 10.4.1
5. SpecializationClause see 10.4.2
Semantics

If the enumeration definition is a subunit definition, then the definition of the namespace owning the enumeration must
include an enumeration stub declaration for the enumeration.

Enumeration Literals

The enumeration being defined is the current scope for all enumeration literal names defined within it. Enumeration literals
are the only members allowed for an enumeration.

NOTE. Alf assumes public visibility for all enumeration literals.
Enumerations are not actually instantiated, but, rather, their enumeration literals are simply referenced by name (see 8.3.3).
Enumeration Specialization

An enumeration may specialize one or more other enumerations, in which case it inherits enumeration literals from the
enumerations it specializes (its supertypes). Each of the names in the specialization part of an enumeration must resolve to an
enumeration. The visibility of inherited members from the enumerations named in the specialization part is as specified in the
UML Superstructure, 7.3.8, Classifier.

All enumeration literals of the supertypes are inheritable. However, all enumeration literals of an enumeration, whether
owned or inherited, must have unique names. It is therefore not legal to define an enumeration to inherit members with the
same name as each other or any defined in the subtype.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML Superstructure. The
default definition for distinguishability of named elements is given in 7.3.33 of the UML Superstructure. Since an
enumeration is not actively instantiated, there is no reason to be able to define one as abstract.

10.4.7 Signals

A signal is a classifier whose instances may be sent asynchronously (see 8.3.10) to an active object (see also 10.4.3). The
ability for an object to receive a certain signal is specified using a reception declaration in the class of the object (see 10.5.4).
The features of a signal must all be properties (see 10.5.2).

Examples

signal SubmitCharge {
public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

Action Language for Foundational UML (ALF), v1.1 139

public cardExpirationDate: MonthYear;
public cardholderName: PersonalName;

}
Syntax

SignalDeclaration(d: SignalDefinition)

= ["abstract" (d.isAbstract=true)] "signal" ClassifierSignature (d)
SignalDefinition(d: SignalDefinition)

= SignalDeclaration(d) "{" { StructuredMember (d.ownedMember) } "}"

ClassifierDefinition

SignalDefinition

Figure 10.10 Abstract Syntax of Signal Definitions

Cross References

1. ClassifierDefinition see 10.4.1
2. ClassifierSignature see 10.4.1
3. StructuredMember see 10.4.4
Semantics

If the signal definition is a subunit definition, then the definition of the namespace owning the signal must include a signal
stub declaration (or signal reception stub declaration—see 10.5.4) for the signal.

Signal Attributes

The signal being defined is the current scope for all property definitions within it. The properties of a signal are the attributes
of the signal whose values in an instance of the signal are data that is transmitted by sending the signal.

NOTE. Alf does not allow private or protected visibility to be specified for attributes of a signal, because there would be no
way to access them. Public and package visibility are allowed.

A property definition may also have one or more stereotype annotations applied to it. Such annotations have the same
semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing signal, rather than in model scope.

Signal Specialization

A signal may specialize one or more other signals, in which case it inherits attributes from the signals it specializes (its
supersignals). Each of the names in the specialization part of a signal must resolve to a signal. The visibility of inherited
members from the signals named in the specialization part is as specified in the UML Superstructure, 7.3.8, Classifier.

All non-private attributes of the supersignals are inheritable. However, all attributes of a signal, whether owned or inherited,
must have unique names. It is therefore not legal to define a signal to inherit attributes with the same name as each other or
any defined in the subsignal.

NOTE. The constraint on distinguishability of namespace members is given in 7.3.34 of the UML Superstructure. The
default definition for distinguishability of named elements is given in 7.3.33 of the UML Superstructure.

A signal may be defined to be abstract. An abstract signal cannot itself be sent (see 8.3.10), but it can be used as a supersignal
of other signals.

140 Action Language for Foundational UML (ALF), v1.1

Signal Instantiation

Signals are implicitly instantiated as part of the asynchronous feature invocation of a reception (see 8.3.10). Such instances
may be received using an accept statement (see 9.15). Once received, the attributes of a signal instance (if any) may be
accessed just like the properties of any other kind of instance (see 8.3.6).

10.4.8 Activities

An activity is “the specification of parameterized behavior as the coordinated sequencing of subordinate units whose
individual elements are actions” (UML Superstructure, 12.3.4). It is the fundamental mechanism for behavioral modeling in
Alf.

Activities are namespaces (see 10.2) that may be defined as Alf units (see 10.1). Activities may also be implicitly defined by
the in-line specification of behavior for active classes (see 10.4.3) or operations (see 10.5.3).

In UML, activities are also classes (see UML Superstructure, 12.3.4) and so may have attributes, operations and
specialization. However, for simplicity, Alf does not provide a textual notation for features and specializations on activities.
Instead, an active class may be used to model structural features along with a related behavior (see 10.4.3).

Examples

activity getNodeActivations
(in node: ActivityNode): ActivityNodeActivation[*] {
return this.activations -> select a (a.node == node);

}

activity execute()
{
//@parallel
{
'activity' = (Activity) (this.types[1]);
{
group = new ActivityNodeActivationGroup() ;
group.activityExecution = this;
}
{
this.activationGroup = group;
group.activate ('activity'.node, 'activity'.edge);

}
}

activity Order Behavior() {
accept (checkout: Checkout);
this.establishCustomer (checkout) ;

do {

accept (chargeSubmission: SubmitCharge);
this.processCharge (chargeSubmission) ;

accept (PaymentDeclined) {
declined = true;
this.declineCharge() ;

} or accept (PaymentApproved) {
declined = false;
}
} while (declined);
this.packAndShip () ;

accept (OrderDelivery);
this.notifyOfDelivery () ;

Action Language for Foundational UML (ALF), v1.1 141

Syntax

ActivityDeclaration(d: ActivityDefinition)
= "activity" Name (d.name) [TemplateParameters(d)] FormalParameters (d)
[ReturnParameter (d.ownedMember)]
ActivityDefinition(d: ActivityDefinition)
= ActivityDeclaration(d) Block (d.body)
FormalParameters (d: NamespaceDefinition)
= "(" [FormalParameterList(d)] ")"
FormalParameterList (d: NamespaceDefinition)
= FormalParameter (d.ownedMember) { "," FormalParameter (d.ownedMember) }
FormalParameter (p: FormalParameter)
= [DocumentationComment (p.documentations)]
{ StereotypeAnnotation (p.annotations) }
ParameterDirection (p.direction) Name (p.name) ":"
TypePart (p)
ParameterDirection(dir: String)
= "in" (dir) | "out"(dir) | "inout" (dir)
ReturnParameter (p: FormalParameter)
= ":" TypePart (p) (p.direction="return")

ClassifierDefinition TypedElementDefinition

ActivityDefinition FormalParameter

+direction : String

Figure 10.11 Abstract Syntax of Activity Definitions and Formal Parameters

Cross References

1. Block see 9.1

2. ClassifierDefinition see 10.4.1
3. TypePart see 10.5.2
4. TypedElementDefinition see 10.5.2
Semantics

Formal Parameters

The definition of an activity includes the names and types of any in, out and inout parameters, as well as, optionally, the
type of a single return parameter. The activity acts as the namespace for its parameters (but parameters are not packageable
elements and, therefore, cannot be imported; see 10.3). Return parameters cannot be named in Alf. The type part of a formal
parameter definition statically specifies the type and multiplicity of the formal parameter in the same way as for a property
(see 10.5.2).

A formal parameter may also have one or more stereotype annotations applied to it. Such annotations have the same
semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing activity, rather than in model scope.

142 Action Language for Foundational UML (ALF), v1.1

Activities as Units

An activity definition can either be a model unit in itself or a subunit of another Alf unit. As a subunit, an activity definition
may complete a stub declaration for an activity as a nested classifier (see 10.4.2), as the classifier behavior of an active class
(see 10.4.3) or as the method of an operation (see 10.5.3).

An activity definition that completes a classifier behavior declaration may not be a template and may not have any
parameters. An activity definition that completes an operation also may not be a template but must have formal and return
parameters (if any) that match exactly, in order, the parameters of the operation in direction, name, type and multiplicity. An
activity definition that completes a nested activity stub must also match the parameters of the stub, as for an operation. (The
type name of a parameter of an activity does not need to lexically match exactly that of the corresponding operation
parameter, but the activity parameter type name must resolve to the same classifier as the corresponding parameter of the
operation, or the activity and operation parameters must both be untyped.)

Note also that any stereotype annotations made on an activity definition subunit (see 10.1) that completes an operation maps
to a stereotype on the method for that operation, not the operation itself. Stereotype annotations for the operation itself (such
as @Create for a constructor or @Destroy for a destructor) must be made on the operation stub declaration (see 10.4.2).

Local and Parameter Names

An activity can introduce /ocal names for elements within it. Such named elements are nof namespace elements of the
activity. Local names are used in Alf to denote intermediate values in computations within an activity. The scope of such local
names is generally from the point at which they are defined lexically to the end of the containing activity. However, the local
names defined in an activity are never visible outside that activity. (See also the discussion of local names in subclauses 8.1
and 9.1.)

The names of the parameters of an activity are not technically local names, since they are owned namespace members of the
activity. However, they are used within the body of an activity in much the same way as local names. Further, while
parameter names may be qualified with the name of the activity, this is not required, meaning that they are generally written
as unqualified names, again much like local names.

An in parameter may be referenced by name within the body of an activity (see 8.3.3), but it cannot be reassigned. It is
treated similarly to a local name whose assigned source is always given by its input value at the start of the execution of an
activity.

Both out and inout parameters, on the other hand, may be referenced and assigned (see 8.8) within the body of an activity.
An out parameter is initially unassigned, while an inout parameter is initially assigned its input value at the start of the
execution of an activity. The values returned for these parameters by the activity are from their final assigned sources.

Activity Execution

An activity may be executed as the classifier behavior of an active class (see 10.4.3), as an operation method (see 10.5.3) or
as a stand-alone behavior in its own right. A classifier behavior is automatically started asynchronously when an instance of
the class that owns it is created (see 8.3.12). A stand-alone activity can also be started asynchronously by instantiating it as a
class, as long as it does not have parameters (see 8.3.12), or it can be called synchronously using a behavior invocation (see

8.3.9). An operation method can only be called synchronously (see 8.3.10).

However it is invoked, an activity is then executed by executing the block given in its definition (see 9.1). That is, each of the
statements in the block are executed sequentially in order, and the activity terminates once the last statement in the block
completes execution

Action Language for Foundational UML (ALF), v1.1 143

10.5 Features

10.5.1 Overview

A feature declares a behavioral or structural characteristic of the instances of a classifier. A structural characteristic is
declared using a property (see 10.5.2). A behavioral characteristic is declared using an operation (see 10.5.3) or (for an active

class) a reception (see 10.5.4).

Syntax

FeatureDefinition (m: Member)

= AttributeDefinition (m)

| OperationDefinition (m)
FeatureStubDeclaration (m: Member)

= OperationStubDeclaration (m)
ActiveFeatureDefinition (m: Member)

= ReceptionDefinition (m)

| SignalReceptionDefinition (m)
ActiveFeatureStubDeclaration (m: Member)

= SignalReceptionStubDeclaration (m)

Cross References

1. Member see 10.2

2. AttributeDefinition see 10.5.2
3. OperationDefinition see 10.5.3
4. OperationStubDeclaration see 10.5.3
5. ConstructorDefinition see 10.5.3.2
6. ConstructorStubDeclaration see 10.5.3.2
7. DestructorDefinition see 10.5.3.3
8. DestructorStubDeclaration see 10.5.3.3
9. ReceptionDefinition see 10.5.4
10. SignalReceptionDefinition see 10.5.4
11. SignalReceptionStubDeclaration see 10.5.4

Semantics

See the discussion of the semantics of each kind of feature in subsequent subclauses.

10.5.2 Properties

A property is a structural feature of a classifier. The attributes of classes, data types and signals are properties, as are the

association ends of an association.

Example

amount: Money = 0;

products: Product [1l..*] ordered;

wheels: compose Wheel [2..4];

position: Point = new(0,0);

colors: Set<Color> = { Color::red, Color::blue,
Syntax

PropertyDefinition(d: PropertyDefinition)
= PropertyDeclaration(d) ";"

144

Color::green };

Action Language for Foundational UML (ALF), v1.1

AttributeDefinition (d:
AttributelInitializer (e:
PropertyDeclaration (d:
TypePart (d:

Multiplicity(d:

PropertyDefinition)

= PropertyDeclaration(d) [AttributeInitializer(d.initializer)]

= Name (d.name) ":"

[

Expression)
InitializationExpression (e)
PropertyDefinition)

"compose" (d.isComposite=true)] TypePart (d)

TypedElementDefinition)

= TypeName (d.typeName) [Multiplicity(d)]

TypedElementDefinition)

= MultiplicityRange(d) [OrderingAndUniqueness (d)]
OrderingAndUniqueness (d: TypedElementDefinition)

= "ordered" (d.isOrdered=true) ["nonunique" (d.isNonunigque=true)
| "nonunique" (d.isNonunique=true) ["ordered" (d.isOrdered=true)
| "sequence" (d.isOrdered=true and d.isNonunique=true)

MultiplicityRange (d: TypedElementDefinition)

= MultiplicityIndicator (d.upperBound="*")

| "["™ [DecimalLiteral (d.lowerBound) ".."]
UnlimitedNaturallLiteral (d.upperBound) "]"

UnlimitedNaturalLiteral (v:

= DecimallLiteral (v)

String)

| UnboundedValueLiteral (v)

Member

TypedElementDefinition

+lowerBound : String [0..1]
+upperBound : String ="1"
+isOrdered : Boolean = false
+isNonunique : Boolean = false

+HypeName | qualifiedName
0.1 0

PropertyDefinition

+isComposite : Boolean = false

0..1

+initializer | 0..1

Expression

Figure 10.12 Abstract Syntax of Property Definitions

Cross References

1.

A AT S

Name

NaturalLiteral
UnboundedValueLiteral
Expression
QualifiedName
TypeName

InitializationExpression

see 7.6
see 7.8.3
see 7.8.4
see 8.1
see 8.2
see 8.2
see 9.6

Action Language for Foundational UML (ALF), v1.1

’

]
]

145

8. Member see 10.2

Semantics

Property Definition

The classifier that owns a property provides the current scope for naming in the property definition.

The property definition statically specifies the type and multiplicity associated with the property name. If the property type is
given by a qualified name, then this name must resolve to a classifier. This classifier may not be a template, though it may be
the binding of a template classifier with arguments provided for all template parameters.

Alternatively, a property may by untyped. An untyped property is indicated by using the keyword any in place of a classifier
name.

The type of a property restricts the values that may be held by the property to instances of the given type. If the property is
untyped, there are no restrictions on the value the property may hold.

The multiplicity of a property specifies the upper and lower bounds of the cardinality of values a property may have in any
one instance of its owning classifier. If no multiplicity is specified for a property, the default multiplicity is [1..1].Ifonly a
single bound is specified, then this is considered to be both the upper and lower bound, except in the case of a multiplicity
specified as [*], which is equivalent to [0. . *]. A multiplicity specification of [] (that is, brackets with no explicit bounds)
is also considered equivalent to [0..*].

By default, a property with a multiplicity upper bound greater than 1 is considered to be unordered and non-unique. However,
this default may be overridden by using the keywords ordered and/or nonunique in the property definition.

The Alf notation for properties is thus similar to the usual notation used in UML diagrams. For example, the property
definition

items: Item [0..*] ordered nonunique;

declares a property that can hold zero or more objects of type Item in an ordered sequence. If the multiplicity is [0. . *],
then a shorter form can also be used in which the range 0. . * is implicit:

items: Item[] ordered nonunique;

In addition, the single keyword “sequence” may be used in place of the combination of the two keywords “ordered” and
“nonunique”. Thus, the following is also equivalent to the declarations above:

items: Item[] sequence;
Composition

If a property definition includes the keyword “compose”, then it is considered to be a composition of the values it holds. This
has semantic implications when an instance of the owning classifier of the property is destroyed (see 10.5.3.3).

For example, consider the class

class C {
public a: A = new A();
public b: compose B = new B();

}

When an instance of class C is destroyed, the object it holds for attribute b will also be automatically destroyed, but the object
it holds for attribute a will not.

Composition properties can also be included in association definitions. For example:

assoc R {
public c: C;
public d: compose D;

}

Note that (per UML Superstructure, 7.3.3) the composition annotation is on the part end of the composite association. That is,
in the above association, c is the composite while d is the part. Thus, when an instance of class C is destroyed, if there is a
link of association R with that object at one end, then that link and the instance of D at the other end will also be destroyed.

146 Action Language for Foundational UML (ALF), v1.1

NOTE. Alf provides no notation for shared aggregation, since this has no semantic effect. However, properties specified
outside of Alf notation with aggregation=shared are treated the same way as properties with aggregation=none.

Attribute Initialization

The attributes of a class are properties (see 10.4.2). However, unlike the case of other property definitions, Alf provides a
notation for the initializer of an attribute, which is an expression that is evaluated every time the class containing the attribute
is instantiated, with the result being assigned to the attribute. The enclosing class is the current scope for names in the
expression. The evaluation of initializers is carried out as part of the execution of the creation of a newly instantiated object
(see 8.3.12 on the creation of objects and 10.5.3.2 on constructors).

NOTE. The fUML subset does not include default values for properties (see fUML Specification, 7.2.2). However, the
evaluation of attribute initializer expressions in Alf are mapped as part of the constructor for the enclosing class that owns the
attribute, which can be executed within the f{UML subset. The attribute initializers themselves do not need to be referenced
during model execution.

Instance creation (see 8.3.12) and sequence construction (see 8.3.15) expressions use as initializers may be written in the
shorthand initialization expression form, as for a local name declaration statement (see 9.6). For example, the attribute
definition

position: Point = new(0,0);

is equivalent to
position: Point = new Point (0,0);
and the attribute definition

colors: Set<Color> = { Color::red, Color::blue, Color::green };

is equivalent to

colors: Set<Color> = Set<Color>{ Color::red, Color::blue, Color::green };

10.5.3 Operations
10.5.3.1

An operation is a behavioral feature of a class that provides the specification for invoking an associated method behavior.
Only classes may have operations as features. An operation is called on an instance of a class that has it as a feature using an
invocation expression (see 8.3.10).

Examples

// BAbstract operation
abstract select(in cart: Cart, in product: Product, in quantity: Count);

// In-line definition

select (in cart: Cart, in product: Product, in quantity: Count) {
Selects.createlink (cart, product, this);
this.quantity = quantity;
this.unitPriceOfSelection = product.getUnitPrice();

}

// Stub declaration
unitPrice () : Money redefines Selection::getUnitPriceOfSelection;

Syntax

OperationDeclaration(d: OperationDefinition)
= ["abstract" (d.isAbstract=true)] Name (d.name)
FormalParameters (d.ownedMember) [ReturnParameter (d.ownedMember)]
[RedefinitionClause (d.redefinition)]
OperationDefinition(d: OperationDefinition)
= OperationDeclaration(d) Block (d.body)
OperationStubDeclaration(d: OperationDefinition)
= OperationDeclaration(d) ";" (d.isStub=)

Action Language for Foundational UML (ALF), v1.1 147

RedefinitionClause (qList: QualifiedNameList)
= "redefines" QualifiedNamelList (gList)

NamespaceDefinition
OperationDefinition +body [Block
+isAbstract : Boolean =false | .1 0.1
0.1

+redefinition |0..1

QualifiedNamelList

Figure 10.13 Abstract Syntax of Operation Definitions

Cross References

1. Name see 7.6

2. Block see 9.1

3. QualifiedNameList see 9.15
4. NamespaceDefinition see 10.2
5. FormalParameters see 10.4.8
6. ReturnParameter see 10.4.8
7. TypePart see 10.5.2
Semantics

Operation Signature

The definition of an operation includes the names and types of any in, out and inout parameters, as well as, optionally, the
type of a single return parameter. The operation acts as the namespace for its parameters (but parameters are not packageable
elements and, therefore, cannot be imported; see 10.3). Return parameters cannot be named in Alf. The type part of a formal
parameter definition statically specifies the type and multiplicity of the formal parameter in the same way as for a property
(see 10.5.2).

The signature is the list of types of the parameters of an operation, in the order of the parameters. If an operation has a return
parameter, it is always listed after any other parameters. The directions (in, out, inout, return) of the parameters are not
considered part of the operation signature.

A formal parameter may also have one or more stereotype annotations applied to it. Such annotations have the same
semantics as annotations made on a unit definition (see 10.1), except that the qualified names do not need to be fully
qualified and are resolved in the current scope of the enclosing activity, rather than in model scope.

Operation Distinguishability

Two operations are considered distinguishable within the same namespace if they have different names or different
signatures. It is illegal to define two indistinguishable operations within the same class.

For example:

class C {
f (in x: Integer): Integer;
f (in x: Boolean): Integer; // Legal, different parameter type.
f (in x: Integer): Boolean; // Legal, different return type.

148 Action Language for Foundational UML (ALF), v1.1

f (out x: Integer): Integer; // Illegal! Parameter types are the same.

}

The first three operations above are distinguishable, even though they have the same name. They are said to be overloaded.
The last operation, however, has the same signature as the first one, and is therefore illegal in the same class.

NOTE. The rule for distinguishability of operations is defined in general for behavioral features in 7.3.5 of the UML
Superstructure. The requirement for distinguishability of namespace members is given in 7.3.34 of the UML Superstructure.

Operation Redefinition

It is also illegal to inherit an operation that is not distinguishable from all other owned and inherited operations of a class (see
also 10.4.2). However, an operation from a superclass that is redefined in a subclass is not considered to be inherited into the
subclass. It is therefore legal for the redefining operation to have the same name and signature as the operation it redefines.

In Alf, if an operation is defined in a subclass that is indistinguishable from an operation that would otherwise be inherited
from a superclass, then the subclass operation is instead considered to redefine the superclass operation. If there are multiple
indistinguishable operations inheritable from different superclasses, then the redefining operation is considered to redefine
them all.

It is also possible to explicitly specify an operation redefinition. In this case, the name of the redefining operation may be
different than the name of the redefined operation. Each qualified name in the redefinition clause in the declaration of the
redefining operation must resolve to a visible operation of a superclass that is consistent with the redefining operation being
declared, as specified in UML Superstructure, 7.3.36, Operation.

For example, in the following class definitions:

class A { p(in x: Integer); }

class B (p(in x: Integer); }

class C specializes A,B { p(in x: Integer); }
the final class definition is equivalent to

class C specializes A,B {
p(in x: Integer) redefines A::p, B::p;
}

Note that, in this case, it would be illegal to redefine only one of A: :p and B: : p with an indistinguishable operation, since
then the other superclass operation would still be inherited and would conflict with the redefining operation in C.

In the case of the explicit definition, it would also be possible to give the operation in C a different name:

class C specializes A,B {
renamed (in x: Integer) redefines A::p, B::p;

}

Note that, in this case, the operations A: :p and B: : p are still not inherited by c—c has no operation called p. On the other
hand, in

class C specializes A,B {
renamed (in x: Integer) redefines A::p;

}

only A: :p is redefined in C, as renamed, and B: : p is, therefore, still inherited. But there is no name conflict, and C will have
both an operation called renamed and an inherited operation called p.

NOTE. The rule for consistency between redefined and redefining operations is given in 7.3.36 of the UML Superstructure.
The general UML rule is that the types of the redefining operation must conform to the types of the redefined operation.
Unfortunately, this does not take into account the directions of the parameters. Alf requires that the redefining operation have
parameters with the same types and directions as the redefined operation.

Operation Method

An operation is called using an invocation expression (see 8.3.10). The behavior of an operation is given by its method.

Action Language for Foundational UML (ALF), v1.1 149

The method for an operation is specified as an activity that is a private owned behavior of the class (note that the method
visibility is separate from the operation visibility). The operation may have a stub declaration, in which case its method must
be separately defined as an activity subunit of the class owning the operation. Alternatively, the method may be specified
using a block (see 9.1) in-line with the operation definition. The names of parameters defined in the operation declaration are
visible (as local names) within all constituent parts of the block in this case.

The method of a redefining operation in a subclass overrides the methods of the operations it redefines. That is, when any of
the redefined superclass operations are invoked on an instance of the subclass, it is the overriding method in the subclass that
is executed, not the superclass method (see 8.3.10).

An abstract operation does not have a method. However, such an operation may be redefined in a subclass by a concrete
operation with a method. Only abstract classes may have abstract operations (see 10.4.2). A concrete class that has
superclasses with abstract operations must redefine all those operations to be concrete.

10.5.3.2 Constructors

A constructor is an operation, specially identified using the @Create stereotype annotation (see 10.1), and used to initialize a
newly created object. The constructor to be used for this purpose is given in the instance creation expression that creates the
object (see 8.3.12).

NOTE. Constructor operations are discussed in the UML Superstructure specification primarily in the context of composite
structure (see UML Superstructure, 9.3.1). However, the «Create» stereotype is generally available to annotate a constructor
operation (see UML Superstructure, C.1). An Alf constructor maps to an operation with this stereotype. Strictly, the use of
this stereotype is outside the f{UML subset. However, the stereotype is only used to signal that the annotated operation may be
used in an instance creation expression. The actual mapping for an instance creation expression results in a create object
action with a regular operation call on the constructor, which may be executed within the f{UML subset (see 8.3.12).

Examples
@Create public Table(in rows: Integer, in columns: Integer);

@Create
public ProductSelection
(in cart: Cart, in product: Product, in quantity: Count);

@Create

private registered() {
Repository::get () .register (this);

}

Semantics
Default Constructors

Every class represented in Alf notation (see 10.4.2) is always mapped as having at least one constructor. If no constructor is
explicitly defined for the class, then the class is assumed to have a default constructor. The name of the default constructor is
the same as the name of the class.

NOTE. This means that the instantiation of a class defined using Alf textual notation is never “constructorless” as defined in
8.3.12.

The behavior of the default constructor is to initialize any attributes owned by the class of a newly created object that have
initializers in their definition (see 10.5.2). Such initialization has the semantics of an assignment of the expression to the
attribute (see 8.8). Attributes are initialized in the order in which they are defined in the class.

Note that an attribute initializer expression may refer to attributes within the same class, including the attribute being
initialized. This means that the attribute being initialized and attributes defined later than the attribute being initialized may
be used before they are themselves initialized. Such uninitialized attributes will be empty, which may violate the multiplicity
lower bounds given in their definitions.

For example, consider the following class definition.

150 Action Language for Foundational UML (ALF), v1.1

class Initialization {
public a: Integer = this.b -> size();
public b: Integer = 1;

}

An object created with the expression new Initialization () has a with value 0 (since b has not been initialized yet) and
b with value 1.

Explicit Constructors

An explicit constructor definition has the same syntax as a regular operation definition, with the stereotype annotation
@Create. An explicit constructor may have the name of its class, like a default constructor. However, it may also have a
different name than that of its class, in which case the constructor is explicitly identified by name when used in an instance
creation expression (see 8.3.12).

If a class has an explicit constructor definition, then the default constructor is no longer available, even if the defined
constructor has a different name than the default constructor.

A constructor may also have parameters, but no return type is explicitly given. Implicitly, every constructor has the class it is
constructing as its return type. This implicit return type is included in the signature for the constructor.

A class may have more than one constructor, any of which may be used in an instance creation expression for objects of the
class.

As operations, non-private constructors are inheritable and the usual distinguishability rules apply (see 10.5.3). Note that
constructors from different classes are always distinguishable, though, because at least their return types will be different.

Unlike a normal operation, a constructor may not be redefined in a subclass. Only a constructor directly owned by a class
may be used in an instance creation expression for an instance of the class (see 8.3.12).

When an object is initialized using an explicit constructor, the default constructor attribute initialization behavior (as
described above) is always performed before the explicit constructor behavior. For example, suppose the above example were
modified as shown below.

class Initialization {
public a: Integer;
public b: Integer = 1;

@Create public Initialization() {
this.a = this.b -> size();
}
}

The creation expression new Initialization () now results in an object having a with value 1, since attribute b is
initialized before the body of the constructor is executed.

The body of a constructor may contain an alternative constructor invocation for another constructor in the same class or
super constructor invocations for constructors in immediate superclasses. The syntax for such invocations is the same as a
normal operation invocation (sees 8.3.10 and 8.3.11). In addition, only within a constructor body, the symbol “this” may be
used as an alternative constructor invocation target, with the same meaning as invoking a constructor with the same name as
the class. If the class has exactly one superclass, then the symbol “super” may also be used as a super constructor invocation
target, with the same meaning as invoking a constructor on the superclass with the same name as the superclass.

For example, the following class definition contains an explicit invocation of one of its own constructors and one from its
superclass.

class B specializes A {
@Create public B(in x: Integer) {
super.A(x);

}
@Create public B() {

this.B(x);
}

Action Language for Foundational UML (ALF), v1.1 151

Using the special invocation syntax allowed in constructors, this could also be written as follows.

class B specializes A {
@Create public B(in x: Integer) {
super (x) ;

}

@Create public B() {
this (x);
}
}

An alternative constructor invocation may only occur as the first statement of the body of a constructor (as specified in the
static semantics for feature invocation expressions in 8.3.10). Super constructor invocations must all occur at the beginning of
the body of a constructor, with no other statements preceding them, and no more than one invocation for each superclass (as
specified in the static semantics for super invocation expressions in 8.3.11).

In the absence of explicit constructor invocations at the start of a constructor body (and also in the case of the default
constructor behavior), a super constructor invocation is made implicitly for each immediate superclass, in the order the
superclasses appear in the specializes list of the class containing the constructor, before executing any statements in the
constructor body. If the constructor body begins with explicit superclass constructor invocations for some but not all
superclasses of the class containing the constructor, then super constructor invocations are made implicitly for all remaining
superclass, before executing any statements in the constructor body.

If a class has multiple superclasses, then it is possible that these superclasses may themselves have one or more common
ancestor classes (this is sometimes referred to as “diamond inheritance”). In this case, the above rules may result in the same
constructor of a common ancestor class being called more than once or more than one constructor from the same common
ancestor class being called. However, once a constructor from a class is called on an object, that object is considered to be
initialized for that class. If another call is made, either explicitly or implicitly, on an object using any constructor from a class
for which the object is already initialized, then that constructor has no further effect: no default initialization is carried out, no
implicit super constructor calls are made and the body of the constructor is not executed.

10.5.3.3 Destructors

A destructor is an operation, specially identified using the @Destroy stereotype annotation (see 10.1), used to clean up an
object that is to be destroyed. A call to a destructor not only invokes the destructor’s behavior, but also results in the actual
destruction of the object (see the semantics of destructor invocation under subclauses 8.3.10 and 8.3.11).

NOTE. The UML Superstructure specification defines the «Destroy» stereotype to annotate a destructor operation (see
C.1). An Alf destructor maps to an operation with this stereotype. Strictly, the use of this stereotype is outside the f{UML
subset. However, the stereotype is only used to signal that the annotated operation may be used in an instance destruction
expression. The actual mapping for an instance destruction expression results in a regular operation call on the destructor,
which may be executed within the fUML subset, followed by a destroy object action (sees 8.3.10 and 8.3.11).

Examples
@Destroy public ProductSelection();

@Destroy

private unregister () {
Repository::get () .unregister (this);
super.destroy () ;

}
Semantics
Default Destructors

Every class represented in Alf notation (see 10.4.2) is always mapped as having at least one destructor. If no destructor is
explicitly defined for the class, then the class is assumed to have a default constructor. The name of the default destructor is
“destroy”.

NOTE. This means that a call to the default destructor destroy is always an explicit destructor call, not an implicit
destructor invocation as defined in 8.3.10.

152 Action Language for Foundational UML (ALF), v1.1

The behavior of the default destructor is to first call the destructor destroy () (i.e., with no arguments) on any immediate
superclasses (if such exists), in the order in which those superclasses are given in the specializes list for the class of the
object being destroyed. The destroy () destructor (if it exists) is then called on any object that is the value of a composite
attribute or on the opposite end of a composite association. Destructors are called on attributes in the order in which they are
defined in the class of the object being destroyed. The order in which destructors are called on objects related by composite
association is not specified.

Explicit Destructors

An explicit destructor definition has the same syntax as a regular operation definition, with the stereotype @Destroy. The
name of the destructor may then be used in an invocation expression to destroy an object of the class (see 8.3.10).

If a class has an explicit destructor definition, then the default destructor is no longer available, even if the defined destructor
has a different name than destroy.

A destructor may also have parameters, but may not have a return parameter.

A class may have more than one destructor, any of which may be used in an instance destruction expression for objects of the
class.

As operations, non-private destructors are inheritable and the usual distinguishability rules apply (see 10.5.3). If a class has a
destructor named destroy, with no arguments (either implicitly as the default destructor or explicitly), then a similar
destructor named destroy with no arguments in a subclass implicitly redefines the superclass destructor. Otherwise, a
destructor may not be explicitly redefined in a subclass. Only a destructor directly owned by a class may be used in an
invocation expression used to destroy an instance of the class (see 8.3.10).

When an object is destroyed using an explicit destructor, the default destructor behavior is not performed, so any desired calls
to superclass or composite part destructors must be made explicitly.

The body of a destructor may contain explicit invocations of other destructors in the same class (targeted to “this”) ora
superclass (targeted to “super”). However, such invocations act just like normal operation calls and do not cause the
destruction of the object. An object is not actually destroyed until the completion of the original destructor invocation (sees
8.3.10 and 8.3.11).

For example, the following class definition contains an explicit invocation of one of its own destructors and of a destructor
from its superclass.

class D specializes C {
@Destroy public destroy() {
super.destroy () ;

}

@Destroy public cancel (in reason: String) {
WriteLine (reason) ;
this.destroy();
}
}

If d is an instance of D, then the expression d.cancel ("Example") will result in the destruction of d only after the
completion of the invocation of cancel ("Example"), not by any of the intermediate destructor calls.

10.5.4 Receptions

A reception is a behavioral feature of an active class that declares that instances of the class are prepared to react to the
receipt of a specific signal. Only active classes may have receptions as features. Normally, the signal is defined separately
and referenced by name in the reception declaration. As a convenience, Alf also allows the definition of the signal and a
declaration of a reception of it to be combined into a signal reception definition.

Examples
receive Checkout;

receive signal SubmitCharge {
public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

Action Language for Foundational UML (ALF), v1.1 153

public cardExpirationDate: MonthYear;
public cardholderName: PersonalName;

}
Syntax

ReceptionDefinition(d: ReceptionDefinition)
= "receive" QualifiedName (d.signalName) ";"
(d.name=d.signal.nameBinding->last () .name))
SignalReceptionDeclaration(d: SignalReceptionDefinition)
= "receive" "signal" Name (d.name)
[SpecializationClause (d.specialization)]
SignalReceptionDefinition(d: SignalReceptionDefinition)
= SignalReceptionDeclaration(d) "{"
{ StructuredMember (d.ownedMember) } "}"
SignalReceptionStubDeclaration(d: SignalReceptionDefinition)
= SignalReceptionDeclaration(d) ";" (d.isStub=true)

Member

SignalDefinition

ReceptionDefinition

0.1
SignalReceptionDefinition

+signalName | 1

QualifiedName

Figure 10.14 Abstract Syntax of Reception Definitions and Signal Reception Definitions

Cross References

1. Name see 7.6

2. QualifiedName see 8.2

3. Member see 10.2
4. SpecializationClause see 10.4.2
5. StructuredMember see 10.4.4
6. SignalDefinition see 10.4.7
Semantics

The owning classifier definition of a reception definition or a signal reception definition must be for an active class. An
invocation of a reception on an instance of the owning active class results in a sending of the specified signal to that instance
(see 8.3.10).

Reception Definitions
The name in a reception definition must be the visible name of a signal.

The reception is given the same name as the base name of the signal without any qualification. Since receptions must be
distinguished by name, this means that no active class may have more than one reception (inherited or owned) for a signal
with a given name.

NOTE. The general requirement for distinguishability of namespace members is given in 7.3.34 of the UML Superstructure.
This is not overridden in 13.2.23 of the UML Superstructure on receptions.

154 Action Language for Foundational UML (ALF), v1.1

Signal Reception Definitions

A signal reception definition defines both a reception as an owned feature of the active class and a signal as a nested classifier
of the owning class of the reception. The static semantics for a signal definition (see 10.4.7) thus also apply to a signal
reception definition. However, a signal reception definition may not have template parameters.

For example, the following active class definition:

active class Order {

receive signal SubmitCharge {

public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

public cardExpirationDate: MonthYear;

public cardholderName: PersonalName;

}
is equivalent to:

active class Order {
receive SubmitCharge;

signal SubmitCharge {

public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

public cardExpirationDate: MonthYear;

public cardholderName: PersonalName;

}

Note that, even though the reception and the signal have the same name, there is no distinguishability conflict, because
receptions and signals are separate syntactic types. The name Order: : SubmitCharge in this example can thus refer to
either the reception or the signal, depending on context.

Action Language for Foundational UML (ALF), v1.1 155

This page intentionally left blank

156 Action Language for Foundational UML (ALF), v1.1

11 Standard Model Library

11.1 Overview

Every modeling environment using Alf must also make available a set of models known as the Alf Standard Model Library.
This library consists of the profile ActionLanguage and the model library package Al1f::Library. The Alf: :Library
package contains the subpackages shown in Figure 11.1.

NOTE. The ActionLanguage profile is not nested within A1f: : Library because it may also be useful outside the context
| of Alf.

|
PrimitiveTypes _ .
{uri=http:/;Awww.omg.org/spec/Primitive Types/20110701} FoundationalModelLibrary::
BasiclnputOutput

I
«import» | «import»
I

7 ™
|
|
|

[] [] 1

PrimitiveTypes «import» PrimitiveBehaviors BasiclnputOutput
6

[]]

CollectionFunctions CollectionClasses

Figure 11.1 Alf Standard Model Library Subpackages

The ActionLanguage profile is described in 11.2. The subpackages of A1£: : Library are then described in subsequent
subclauses.

11.2 ActionLanguage Profile

The ActionLanguage profile contains the single stereotype shown in Figure 11.2. When applied to a comment, this
stereotype indicates that the body of the comment is the textual representation of the element to which the comment is
attached, potentially including the representation of other modeling elements contained in the element to which the comment
is attached (see 6.2). The language attribute gives the name of the language in which the comment body text is written, using
the same naming conventions as for the language attribute of an opaque behavior.

Action Language for Foundational UML (ALF), v1.1 157

«Metaclass»
Comment

«stereotype»
TextualRepresentation

+language : String

Figure 11.2 Stereotype TextualRepresentation
11.3 Primitive Types

11.3.1

The fUML Foundational Model Library imports the PrimitiveTypes package from the UML Infrastructure (see f{UML
Specification, Clause 9). Since the Alf Standard Model Library builds on the primitive behaviors defined in the fUML
Foundational Model Library (see 11.4 below), the A1f: :Library: :PrimitiveTypes package also imports the UML
PrimitiveTypes package, as shown in Figure 11.1 (see also UML Infrastructure, 13.1). This makes the UML primitive
types Integer, Boolean, String and UnlimitedNatural availableinthe A1f: :Library: :PrimitiveTypes
namespace. In addition to the imported types, the Alf PrimitiveTypes package also includes Natural and BitString
types, as described in the remainder of this subclause.

To be recognized as primitive types in an f{UML execution environment, the types defined in the
Alf::Library::PrimitiveTypes package (including imported types) must be registered with any execution locus at
which they are to be used (see fUML Specification, 8.2.1).

NOTE. While the Real primitive type defined in UML 2.4.1 is imported into the Alf PrimitiveTypes package, Alf does
not currently provide operations or primitive behaviors to support this type. It is expected that such support will be provided
in a subsequent version of Alf.

11.3.2 Natural Type

As shown in Figure 11.3, the primitive type Natural specializes both Integer and UnlimitedNatural. Natural literals
have the type Natural unless they can be determined statically to be of type Integer or UnlimitedNatural from their
context of use (see 7.8.3).

«primitive» «primitive»
Integer UnlimitedNatural

N4

«primitive»
Natural

Figure 11.3 Primitive Type Natural

11.3.3 Bit String Type

The primitive type BitString represents values that are uninterpreted sequences of bits, each of which has either be set (bit
value of 1) or unset (bit value of 0). Alf does not provide direct literals for bit strings, but the standard
BitStringFunctions package provides functions for converting integers to bit strings and vice versa.

158 Action Language for Foundational UML (ALF), v1.1

The length of a bit string is the number of bits in the string. For any conforming implementation, all bit strings must have the
same length, but this length may differ between implementations. However, if an implementation limits supported integer
values to a finite set (as permitted in 9.2 of the fUML Specification), the implemented bit string length must be at least long
enough to represent the conversion from every supported integer value (positive or negative). If an implementation does not
limit supported integer values, then the implemented bit string length must not be smaller than 32.

11.4 Primitive Behaviors

11.4.1

As shown in Figure 11.4, the A1f: :Library: :PrimitiveBehaviors package has subpackages corresponding to each of
the subpackages in the fUML standard FoundationalModelLibrary:: PrimitiveBehaviors package (see f{UML
Specification, 9.3) except for the ListFunctions package. Each of these primitive behavior packages imports the primitive
functions from the corresponding fUML package, renaming certain functions with aliases so that they have names consistent
with the corresponding operators used in the Alf expression syntax. In addition, the Alf PrimitiveBehaviors package also

‘ includes the BitStringFunctions and SequenceFunctions packages.

FoundationalModelLibrary::PrimitiveBehaviors:: FoundationalModelLibrary::PrimitiveBehaviors::
IntegerFunctions StringFunctions
N N
1 N [
FoundationalModelLibrary::PrimitiveBehaviors:: | | | FoundationalModelLibrary::PrimitiveBehaviors:: | | FoundationalModelLibrary::PrimitiveBehaviors::
BooleanFunctions | RealFunctions | UnlimitedNaturalFunctions
N | N | N
I«import» | «<import» I«import» | <import» I«import»
| | | | |
1 1 1!] ! —
BooleanFunctions IntegerFunctions RealFunctions StringFunctions UnlimitedNaturalFunctions
BitStringFunctions SequenceFunctions

| Figure 11.4 Primitive Behavior Packages

To be usable in an fUML execution environment, implementations of all of the function behaviors in each of the subpackages
ofthe Alf: :Library::PrimitiveBehaviors package (including imported behaviors) must be registered with any
execution locus at which they are to be used (see f{UML Specification, 8.2.1). These implementations must conform to the
specifications for the behaviors they implement, as given in f{UML Specification, 9.2, or in this subclause, as appropriate.

11.4.2 Boolean Functions

The Alf::Library::PrimitiveBehaviors: :BooleanFunctions package imports all the behaviors contained in the
fUML FoundationalModelLibrary::PrimitiveBehaviors:: BooleanFunctions package. Table 11.1 lists these
functions with their Alf aliases, along with their corresponding f{UML name. The formal specification for these functions is
given in 9.3.1 of the f{UML Specification.

Action Language for Foundational UML (ALF), v1.1 159

Table 11.1 Boolean Functions

Function Signature fUML Name Description
'"|'"(in x: Boolean, in y: Boolean): Or Tnmifeﬁherxoryisnue
Boolean
'“'"(in x: Boolean, in y: Boolean): Xor True if either x or y is true, but not both.
Boolean
'6¢' (in x: Boolean, in y: Boolean): And True if both x and y are true.
Boolean
"!1'"(in x: Boolean): Boolean Not True if x is false.
Implies Implies True if x is false, or if x is true and vy is true.
(in x: Boolean, in y: Boolean):
Boolean
ToString(in x: Boolean): String ToString Converts x to a String value.
ToBoolean (in x: String): ToBoolean Converts x to a Boolean value.

Boolean[0..1]

11.4.3 Integer Functions

The Alf::Library::PrimitiveBehaviors::IntegerFunctions package imports all the behaviors contained in the
fUML FoundationalModelLibrary::PrimitiveBehaviors::—IntegerFunctions package. Table 11.2 lists these
functions with their Alf aliases, along with their corresponding fUML name. The formal specification for these functions is

given in 9.3.2 of the f{UML Specification.

The package also includes the additional ToNatural
from the f{UML IntegerFunctions package.

decimal string representation (and also allows a sign)

Table 11.2 Integer Functions

, in addition to the functions imported

function converts a string representation of a natural
(unsigned) number in any of the forms given in 7.8.3, as opposed to the ToInteger function which only converts from a

Function Signature fUML Name Description

Neg (in x: Integer): Integer Neg The negative value of x

Abs (in x: Integer): Integer Abs The absolute value of x

"+'(in x: Integer, in y: Integer): + The value of the addition of x and y.
Integer

'-'(in x: Integer, in y: Integer): - The value of the subtraction of x and y.
Integer

'"*'(in x: Integer, in y: Integer): * The value of the multiplication of x and y.
Integer

'/'"(in x: Integer, in y: Integer): Div The number of times that y fits completely
Integer[0..1] within x

'$'(in x: Integer, in y: Integer): Mod The result is x modulo y.
Integer

Max (in x: Integer, in y: Integer): Max The maximum of x and y.
Integer

Min (in x: Integer, in y: Integer): Min The minimum of x and y.
Integer

'<'(in x: Integer, in y: Integer): < True if x is less than y.
Boolean

'>'(in x: Integer, in y: Integer): > True if x is greater than y.
Boolean

'<='(in x: Integer, in y: Integer): <= True if x is less than or equal to y.
Boolean

'>='(in x: Integer, in y: Integer): >= True if x is greater than or equal to y.
Boolean

ToString (in x: Integer): String ToString Converts x to a String value.

160

Action Language for Foundational UML (ALF), v1.

Table 11.2 Integer Functions

Function Signature fUML Name Description

ToUnlimitedNatural ToUnlimited | Converts x to an UnlimitedNatural value.
(in x: Integer): Natural
UnlimitedNatural[0..1]

ToInteger (in x: String): ToInteger Converts x to an Integer value.
Integer[0..1]

ToNatural (in x: String): Converts x to an Integer value, where x is any
Integer(0..1] legal representation of a natural literal.

\ ToReal (in x: Integer): Real Converts x to a Real value.

| 11.4.4 Real Functions

The Alf::Library::PrimitiveBehaviors: :RealFunctions package imports all behaviors contained in the fUML
FoundationalModelLibrary::PrimitiveBehaviors: :RealFunctions package. Table 11.3 lists these functions with
their Alf aliases, along with their corresponding fUML name. The formal specifications for these functions is given in 9.3.3
of the fUML Specification.

| Table 11.3 Real Functions

| Function Signature fUML Name Description

Neg (in x: Real): Real Neg The negative value of x.

Abs (in x: Real): Real Abs The absolute value of x.

'+'(dn x: Real, in y: Real): Real * The value of the addition of x and vy.

'-'(in x: Real, in y: Real): Real - The value of the subtraction of x and v.

'*'(in x: Real, in y: Real): Real = The value of the multiplication of x and y.

'/'(in x: Real, in y: Real) L The value of the division of x and y.
Real[0..1

Max (in x: Real, in Real) : Real Max The maximum of x and y.

Min(in x: Real, in y: Real): Real Min The minimum of x and v.

'<'(in x: Real, in y: Real): < True if x is less than v.
Boolean

'>'(in x: Real, in y: Real): > True if x is greater than y.
Boolean

'<='(in x: Real, in y: Real): <= True if x is less than or equal to y.
Boolean

'>='(in x: Real, in y: Real): >= True if x is greater than or equal to y.
Boolean

Floor(in x: Real): Integer[0..1] Floor The largest integer that is less than or equal to x.

Round (in x: Real): Integer[0..1] Round The integer that is closest to x. (When there are

two such integers, the largest one.)

ToString(in x: Real): String ToString Converts x to a String value.

ToInteger (in x: Real): TolInteger Converts x to an Integer value.
Integer[0..1]

ToReal (in x: String): Real[0..1] ToReal Converts X to a Real value

| 11.4.5 String Functions

The A1f::Library::PrimitiveBehaviors::StringFunctions package imports all the behaviors contained in the

fUML FoundationalModelLibrary::PrimitiveBehaviors:: StringFunctions package. Table 11.4 lists these

functions with their Alf aliases, along with their corresponding f{UML name. The formal specification for these functions is
\ given in 9.3.42 of the fUML Specification.

Table 11.4 String Functions

Function Signature fUML Name Description
'+'(in x: String, in y: String): Concat The concatenation of x and y.
String
Size(in x: String): Integer Size The number of characters in x.

Action Language for Foundational UML (ALF), v1.1 161

Table 11.4 String Functions

Function Signature

fUML Name

Description

Substring
(in x: String,
in lower: Integer,
in upper: Integer):
String[0..1]

Substring

The substring of x starting at character number
lower, up to and including character number
upper. Character numbers run from 1 to

Size (x).

11.4.6 UnlimitedNatural Functions

The Alf::Library::PrimitiveBehaviors::UnlimitedNaturalFunctions package imports all the behaviors
contained in the f{UML FoundationalModelLibrary:: PrimitiveBehaviors::UnlimitedNaturalFunctions
package. Table 11.5 lists these functions with their Alf aliases, along with their corresponding fUML name. The formal

\ specification for these functions is given in 9.3.

Table 11.5 UnlimitedNatural Functions

of the f{UML Specification.

Function Signature

fUML Name

Description

Max
(in x: UnlimitedNatural,
in y: UnlimitedNatural) :
UnlimitedNatural

Max

The maximum of x and y.

Min
(in x: UnlimitedNatural,
in y: UnlimitedNatural) :
UnlimitedNatural

Min

The minimum of x and y.

l<l
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
Boolean

True if x is less than y.

l>l
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
Boolean

True if x is greater than y.

Te=1"
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
Boolean

True if x is less than or equal to y.

L
(in x: UnlimitedNatural,
in y: UnlimitedNatural):
Boolean

True if x is greater than or equal to y.

ToString (in x: UnlimitedNatural) :
String

ToString

Converts x to a String value.

ToInteger
(in x: UnlimitedNatural) :
Integer[0..1]

ToInteger

Converts x to an Integer value.

ToUnlimitedNatural (in x: String):
UnlimitedNatural[0..1]

ToUnlimited
Natural

Converts x to an UnlimitedNatural value.

11.4.7 Bit String Functions

The Alf::Library::PrimitiveBehaviors::BitStringFunctions package contains a set of functions used to
manipulate bit strings. Table 11.6 lists a basic set of functions included in the package for constructing and accessing bit
strings. Table 11.7 lists functions corresponding to bit-wise operations for which there is a binary operator syntax.

162

Action Language for Foundational UML (ALF), v1.

Table 11.6 Basic BitString Functions

Function Signature Description
IsSet (in b: BitString, n: Integer): True if the n-th bit of b is set. Bits are numbered from zero
Boolean starting with the rightmost bit position. If n is greater than or

equal to the length of the bit string, then the result for the
leftmost bit is returned.

BitLength () : Integer The implemented bit string length.

ToBitString(in n: Integer): BitString The bit string representation of n.

ToInteger (in b: BitString): Integer The integer represented by the bit string b.
ToHexString(in b: BitString): String The string representation of b as a hexadecimal numeral.
ToOctalString(in b: BitString): String The string representation of b as an octal numeral.

There are no literals for bit strings, so the only way to construct a bit string is by using the function toBitString. This
function takes an integer value and returns a bit string consisting of the twos-complement binary representation of that value,
with the low-order bit being the rightmost bit (bit position 0). If an implementation supports arbitrary integer values, and the
twos-complement representation of an integer value is longer than the bit string length for that implementation, then the
result of toBitString consists of the low-order bits of the representation, truncated at the implemented bit string length.

Note that, in most cases, it is not necessary to call toBitString explicitly, because such a call is automatically inserted as a
result of implicit bit string conversion of an integer value (see 8.8). The function tolnteger performs the inverse conversion
from a bit string to an integer value.

Alf provides special operator syntax for unary and binary bit-wise and shift functions on bit strings (sees 8.5.3, 8.6.7 and
Error: Reference source not found). This operator syntax is a shorthand for the invocation of the correspondingly named
function behaviors given in Table 11.7. The required behavior of each of these functions is specified as a post-condition on its
result, written in the Object Constraint Language (OCL), Version 2.2 (see the OCL Specification). The standard OCL notation
is extended to allow calls to the functions isSet and length defined in Table 11.6.

Table 11.7 Bit-wise Operator Functions

Function Signature Description
'"~'(in b: BitString): BitString The bit-wise complement of b.
Post:
Sequence{0..BitLength()-1}->
forAll (1 |

IsSet (result,i)= not IsSet (b,1i)
)

'&' (in bl: BitString, in b2: BitString): The bit-wise “and” of b1 and b2.
BitString
Post:
Sequence{0..BitLength()-1}->
forAll (1 |

isSet (result,i) =
isSet (bl,i) and isSet(b2,1i)
)

'"“'(in bl: BitString, in b2: BitString): The bit-wise “exclusive or” of b1 and b2.
BitString
Post:
Sequence{0..BitLength()-1}->
forAll (i |

IsSet (result,i) =
IsSet(bl,i) xor IsSet (b2,1i)

Action Language for Foundational UML (ALF), v1.1 163

Table 11.7 Bit-wise Operator Functions

Function Signature

Description

BitString

'"|"(in bl: BitString, in b2: BitString):

The bit-wise “inclusive or” of bl and b2.

Post:
Sequence{0..BitLength()-1}->
forAll (i |
IsSet (result, i)
IsSet(bl,i) or IsSet(b2,1i)
)

'<<'(in b: BitString, in n: Integer):
BitString

The bit string b shifted n places to the left.

Post:
if n <= 0 then result = Db
else
Sequence{0..BitLength()-1}->
forAll (i |
if 1 < n then
not IsSet (result,i)
else
IsSet (result,i) =
IsSet (b,i-n)
endif
)
endif

'>>'"(in b: BitString, in n: Integer):
BitString

The bit string b shifted n places to the right with “sign
extension” of the leftmost bit.

Post:
if n <= 0 then result = Db
else
Sequence{0..BitLength()-1}->
forAll (i |
if i < BitLength()-n then
IsSet (result,i) =
IsSet (b, i+n)
else
IsSet (result,i) =
IsSet (b,BitLength()-1)
endif
)
endif
'>>>'(in b: BitString, in n: Integer): The bit string b shifted n places to the right.
BitString
Post:
if n <= 0 then result = Db
else
Sequence{0..BitLength()-1}->
forAll (1 |
if 1 < BitLength()-n then
IsSet (result,i) =
IsSet (b, i+n)
else
not IsSet (result,i)
endif
)
endif
164 Action Language for Foundational UML (ALF), v1.1

11.4.8 Sequence Functions

The Alf::Library::PrimitiveBehaviors: :SequenceFunctions package contains a set of functions used to
manipulate sequences of values. Table 11.8 lists function behaviors that are included in the SequenceFunctions package.
The required behavior of each function is specified as a post-condition on its result, written in the Object Constraint
Language (OCL), Version 2.2 (see the OCL Specification). In some cases, a pre-condition is also specified for a function. In
this case, if the pre-condition is violated, then the function completes execution, but produces no output value. The result
parameters for such functions are specified to have multiplicity 0..1 to allow for this.

Note that all the functions in Table 11.8 take a sequence as an in parameter and return some result based on that sequence.
Since these functions are intended to apply to sequences of any type of value, the function parameters for such sequences and
their elements are untyped. This, however, means that, using the normal typing rules, any type information on an input
sequence to one of these functions is lost when the function is used, which can be inconvenient.

For example, suppose integerList is a sequence of type Integer and consider the application of the Including function
to it to define an extended list. Unfortunately, the following is illegal:

let extendedList: Integer([] = Including(integerList, 1); // Type error!

Since the result of the call to including is untyped, it is not assignable to extendedList, which has type Integer. Instead, an
explicit cast must be used:

let extendedList: Integer[] = (Integer)Including(integerList, 1); // Legal

To avoid having to do this, the template function behaviors in the CollectionFunctions package (see 11.6) should
generally be used in preference to the primitive behaviors defined in the SequenceFunctions package. Note, however, that
these template functions are actually defined in terms of the primitive sequence functions, since only non-template primitive
behavior implementations can be registered with the f{UML execution locus.

Table 11.8 Sequence Functions

Function Signature

Description

Size

(in seq: any[*] sequence):

Integer

The number of elements in seq.

Post: result = seg->size()

Includes

(in seq: any[*] sequence,

in element:
Boolean

any) :

True if element is an element of seq, false otherwise.

Post: result = seg->includes (element)

Excludes

(in seq: any[*] sequence,

in element:
Boolean

any) :

True if element is not an element of seq, false otherwise.

Post: result = seg->excludes (element)

Count

(in seq: any[*] sequence,

in element:

any) :

The number of times that element occurs in seq.

Post: result = seg->count (element)
Integer
IsEmpty True if seq is empty.
(in seq: any[*] sequence):
Boolean Post: result = seg->isEmpty ()
NotEmpty True if seq is not empty.

(in seq: any[*] sequence):

Boolean

Post: result = seg->notEmpty ()

IncludesAll

(in segl: any[*] sequence,
in seg2: any[*] sequence) :

Boolean

True if seql contains all the elements of seg2, false
otherwise.

Post: result = segl->includesAll (seg2)

ExcludesAll

(in segl: any[*] sequence,
in seg2: any[*] sequence) :

Boolean

True if c1 contains none of the elements of seq2, false
otherwise.

Post: result = segl->excludesAll (seqg2)

Action Language for Foundational UML (ALF), v1.1

165

Table 11.8 Sequence Functions

Function Signature

Description

Equals
(in seqgl: any[*] sequence,
in seg2: any[*] sequence):
Boolean

True if seql contains the same elements as seq?2 in the same
order.

Post: result = (segl=seg2)

At
(in seqg: any[*] sequence,
in index: Integer):
any[0..1]

The index-th element of seq.

Pre: index>=1 and index<=seg->size ()
Post: result = seg->at (index)

IndexOf
(in seq: anyl[*],
in element: any):
Integer[0..1]

The index of element in seq.

Pre: seg->includes (element)
Post: seg->indexOf (element)

First
(in seq: any[*] sequence):
any[0..1]

The first element of seq.

Pre: c->notEmpty ()
Post: result = seg->first()

Last
(in seq: any[*] sequence):
any[0..1]

The last element of seq.

Pre: seg->notEmpty ()
Post: result = seg->last()

Union
(in seqgl: any[*] sequence,
in seg2: any[*] sequence):
any[*] sequence

The sequence consisting of all elements of seql followed by
all elements of seq2.

Post: result = segl->union (seg2)

Intersection
(in seqgl: any[*] sequence,
in seg2: any[*] sequence):
any[*] sequence

The sequence consisting of all elements of segl that are also
in seq2.

Post: result = seqgl->iterate(
e; s = Sequence{} |
if seg2->excludes(e) then s
else s->append(e) endif)

Difference
(in seqgl: any[*] sequence,

in seg2: any[*] sequence):

any[*] sequence

The sequence consisting of all the elements of seql not in
seq2.

Post: result = seqgl->iterate(
e; s = Sequence{} |
if seg2->includes(e) then s
else s->append(e) endif)

Including
(in seq: any[*] sequence,
in element: any):
any[*]sequence

The sequence consisting of all elements of seq followed by
element.

Post: result = seg->including(element)

IncludeAt
(in seq: any[*] sequence,
in index: Integer,
in element: any):
any[*] seqguence

The sequence consisting of seq with element inserted at
position index.

Post: result =
if index>=1 and index<=seqg->size()+1
then
seg->insertAt (index,element)
else
seq
endif

166

Action Language for Foundational UML (ALF), v1.1

Table 11.8 Sequence Functions

Function Signature

Description

InsertAt

(in seq: any[*] sequence,
in index: Integer,
in element: any):
any[*]sequence

The sequence consisting of seq with element inserted at
position index. (This is the same as _includeAt. _insertAt is
included for consistency with the similar OCL operation on
sequences.)

Post: result =
if index>=1 and index<=seg->size()+1
then
seg->insertAt (index,element)
else
seq
endif

IncludeAllAt

(in segl: any[*] sequence,
in index: Integer,
in seg2: any[*] sequence:
any[*] sequence

The sequence consisting of seql with all elements of seqg2
inserted at position index.

Post: result =
if index>=1 and index<=seg->size()+1
then
seql->subSequence (1, index-1)->
union (seqg2) ->
union (segl->subsequence (index,
seqgl->size()))
else
seq
endif

Excluding

(in seqg: any[*] sequence,

in element:

any) :

any[*] sequence

The sequence consisting of all elements of seq apart from all
occurrences of element.

Post: result = seg->iterate(
e; s = Sequence{} |
if e=element then s
else s->append(e) endif)

ExcludingOne

(in seq: any[*] sequence,

in element:

any) :

any[*] sequence

The sequence consisting of seq with the first occurrence of
element (if any) removed.

Post: result =

if seg->includes (element) then
let index = seg->indexOf (element)
in
seg->subSequence (1, index-1) ->
union (seqgq->
subSequence (index+1, seg->size()))

else
seq

endif

ExcludeAt

(in seq: any[*] sequence,
in index: Integer):
any[*] sequence

The sequence consisting of seq with the i ndex-th element
removed.

Post: result =

if index>=1 and index<=c->size then
seg->subSequence (1, index-1) ->
union (seg->
subSequence (index+1, segq->size()))

else
seq

endif

Action Language for Foundational UML (ALF), v1.1

167

Table 11.8 Sequence Functions

Function Signature

Description

Replacing
(in seq: any[*] sequence,
in element: any,
in newElement: any) :
any[*] sequence

The sequence consisting of seq with all occurrences of
element replaced with newElement.

Post: result->size() = seg->size() and
Sequence{l..seqg->size () }->forAll (i |
result->at (i) =
if seg->at (i) = element then
newElement
else
seg->at (1)
endif

ReplacingOne
(in seq: any[*] sequence,
in element: any,
in newElement: any):
any[*] sequence

The sequence consisting of seq with the first occurrence of
element (if any) replaced with newElement.

Post: result =

if seg->excludes(element) then seq

else
let index=seg->indexOf (element) in
seg->subSequence (1, index-1) ->
union (seqgq->

subSequence (index, seg->size()))
endif

ReplacingAt
(in seq: any[*] sequence,
in index: Integer,
in element: any):
any[*] sequence

The sequence consisting of seq with the element at position
index replaced with the given element.

Pre: index>=1 and index<=seqg->size ()
Post: result =
seg->subSequence (1, index-1) ->
union (seg->
subSequence (index, seg->size()))

Subsequence
(in seqg: any[*] sequence,
in lower: Integer,
in upper: Integer):
any[*] sequence

The sub-sequence of seq consisting of the elements at position
lower up to and including position upper. If upper is larger
than the size of seq, then it is treated as if it was equal to the
size.

Pre: lower<=upper
Post: result =
seg->subSequence (lower.max (1),
upper.min (segq->size()))

ToOrderedSet
(in seqg: any[*] sequence):
any[*] ordered

The sequence seq with all duplicates removed.

Post:
result = seg->asOrderedSet ()

11.5 Basic Input and Output

As shown in Figure 11.1, the A1f: :Library: :BasicInputOutput package imports the fUML standard
FoundationalModelLibrary: :BasicInputOutput package (see fUML Specification, 9.5). This makes the f{UML input-
output classes available via the A1f: :Library: :BasicInputOutput namespace. In addition, the
FoundationalModelLibrary: :BasicInputOutput package imports the FoundationalModelLibrary: :Common
package, so the common classes from that package are also available via the A1f: :Library: :BasicInputOutput

namespace.

168

Action Language for Foundational UML (ALF), v1.1

11.6 Collection Functions

The Alf::Library::CollectionFunctions package contains template versions of the sequence functions defined in the
Alf::Library::PrimitiveBehaviors::SequenceFunctions package. Each collection function has a single template
parameter, the type of values in the sequence be operated on. The type inference rule for the invocation of template behaviors
(see 8.3.9) then allows these behaviors to be invoked without having to explicitly notate the binding of their template
parameter.

For example, if integerList is a sequence of type Integer, then the statement

let extendedList: Integer[] = including(integerList, 1);

is equivalent to

let extendedList: Integer[] = including<Integer>(integerList, 1);

Since the result type of including<Integer> is Integer, the right-hand side of this statement is assignable to the left-
hand side without the need for an explicit cast.

Each of the functions defined in the SequenceFunctions package has a template version defined as an activity in the
CollectionFunctions package. The body of this activity simply calls the corresponding primitive function and returns the
result of that call, cast to the appropriate result type. For example, the including function may be defined as follows as an
Alf unit (see 10.4.8 on activity definitions):

namespace Alf::Library::CollectionFunctions;

activity including<T>(in seq: T[*] sequence, in element: T):
T[*] sequence

{

return (T)PrimitiveBehaviors::SequenceFunctions::Including(seq, element);

}
Other functions are defined similarly.

NOTE. According to the copy semantics for templates (see 6.3), a call to a bound template activity, such as
including<Integer>, has the semantics of a call to an effective bound element constructed from a copy of the template
activity with each occurrence of the template parameter T replaced by the actual argument type. However, once static analysis
is complete, a call to such a bound activity will have a semantically equivalent effect (in the sense defined in 2.3) to a direct
call to the corresponding sequence function, without even a need for any cast (since the definitions of the sequence functions
guarantee that their results have the expected dynamic type, even if the statically declared type is any). Therefore, a
compliant compilative implementation may, if desired, produce a target f{UML model that replaces calls to bound collection
functions with direct calls to the corresponding sequence functions.

All the primitive sequence functions take a sequence as an in parameter and return some result based on that sequence (see
11.4.8) and, therefore, so do the corresponding collection functions. The collection functions may also take collection objects
(see 11.7) as inputs because of the collection conversion rule for assignability (see 8.8). This is particularly useful when using
a collection as the source in the sequence operation notation (see 8.3.17). The returned result, however, is always a sequence,
though this may be used to construct a new collection object.

The CollectionFunctions package also includes a number of additional activities that take a sequence as an inout
parameter and make changes to that sequence “in place”. Table 11.9 lists these behaviors. The bodies of these in-place
behaviors are defined to be an Alf assignment expression, generally involving one of the base set of collection functions. For
example, the full definition of the add function, as an Alf unit, is

namespace Alf::Library::CollectionFunctions;

activity add<T>(inout seq: T[*] sequence, in element: T):
T[*] sequence

{

return seq = including(seq,element) ;

}

The in-place functions cannot be used with collection objects, since the inout parameter cannot be assigned back to the
collection object. However, all collection classes have regular operations that correspond to the functionality of the “in place”
functions (see 11.7). The in-place collection functions are intended to provide similar functionality for sequences to that
provided by the similarly named operations on collection objects.

Action Language for Foundational UML (ALF), v1.1 169

Table 11.9 Collection “In-Place” Behaviors

Activity Signature

Description

add<T>
(inout seqg: T[*] ordered,
in element: T):
T[*] sequence

Append element to the end of seq.

seq = including (seq,element)

addAll<T>
(inout seqgl: T[*] sequence,
in seqg2: T[*] sequence):
T[*] sequence

Append all elements of seq2 to seqgl.

segl = union (seql, seqg2)

addAt<T>
(inout seqg: T[*] sequence,
in index: Integer,
in element: T):
T[*] sequence

Insert element at position index of seq.

seq = includeAt (seq, index,element)

addAl1At<T>
(inout seqgl: T[*] sequence,
in index: Integer,
in seqg2: T[*] sequence):
T[*] sequence

Insert all elements of seq2 into seql at position index.

seq = includeAllAt (seq,index,element)

remove<T>
(inout seqg: T[*] sequence,

in element: T): T[*] sequence

Remove all occurrences of element from seq.

seq = excluding (seq,element)

removeAll<T>
(inout seqg: T[*] sequence,

T[*] sequence

in in seqg2 : T[*] sequence):

Remove all elements of seq2 from seql.

seql = difference (seql,seq2)

removeOne<T>
(inout seqg: T[*] sequence,

in element: T): T[*] sequence

Remove the first occurrence of element (if any) from seq.

seq = excludingOne (seq,element)

removeAt<T>
(inout seqg: T[*] sequence,
in index: Integer):
T[*] sequence

Remove the element at position index from segq.

seq = excludeAt (seq, index)

replace<T>
(inout seqg: T[*] sequence,
in element: T,
in newElement: T):
T[*] sequence

Replace all occurrences of element in seq with
newElement.

seq = replacing(seq,element,newElement)

replaceOne<T>
(inout seqg: T[*] sequence,
in element: T,
in newElement: T):
T[*] sequence

Replace the first occurrence of element in seq (if any)
with newElement.

seq = replacingOne (seq,element, newElement)

replaceAt<T>
(inout seqg: T[*] sequence,
in index: Integer,
in element: T):
T[*] sequence

Replace the element at position index in seq with the given
element.

seq = replacingAt (seq, index,element)

clear<T>
(inout seq: T[*])

Clear all elements of seq.

seq = null

11.7 Collection Classes

11,71

\ The Alf::Library::CollectionClasses package contains a set of template classes (see 6.3 on the semantics of
templates) related to collections. These provide the ability to create and manipulate collections in a manner familiar from

170

Action Language for Foundational UML (ALF), v1.

object-oriented programming languages. They may be used instead of or in conjunction with the basic use of UML sequences
and functions to handle collections. Figure 11.5 is a class diagram of the contents of the CollectionClasses package.

In many places in Alf, collection objects may be used in the same way as a basic UML sequence of values. For example, the
Alf assignability rules provide for collection conversion in which a collection object is automatically converted to a sequence
via an implicit call to its toSequence () operation (see 8.8). In the main body of the specification, a collection object is any
object whose type is a collection class. A collection class is any class that has a constructor of the same name with a single in

parameter that is a sequence and an operation called toSequence that returns a sequence of the same type as the constructor
input (known as the collection class's sequence tvpe) and no other parameters. A defined-to-be-a-template binding of any of
the public template classes contained in the CollectionClasses package (other than the Collection superclass)
conforms to this definition of collection class. However, it is allowable for a modeler to define other collection classes
meeting the above definition, possibly, but not necessarily, as subclasses of template bindings of standard collection classeser

J S

Note that all the classes shown in Figure 11.5 are abstract, but that they all also define constructor operations. Using the
mechanism described in 8.3.12, the concrete implementations for these classes are defined in a packaged named Impl nested
in the CollectionClasses package, as shown in Figure 11.6. With this mechanism, user models can reference and use the
standard abstract classes as if they were concrete, and specific execution tools can define different implementations for these
classes without affecting the classes actually referenced by user models.

A conformant implementation of the CollectionClasses package is not allowed to alter the definition of the classes
shown in Figure 11.5. Rather, such an implementation must implement each of the Imp1 classes shown in Figure 11.6. This
may be done either by providing external library implementations for the classes, through a mechanism specific to the
execution tool, or by extending the model shown in Figure 11.6 by providing a f{UML-conformant method for each of the
public operations of the classes. In doing the latter, a conformant implementation is also allowed to:

* Replace public owned operations with inherited operations of the same signature.

* Add additional features and other members to the classes, as long as their visibility is private or protected, as well
as additional private members to the Tmp1 package.

B.4 gives a sample non-normative implementation of the CollectionClasses: : Impl package as an Alf unit. The
following subclauses describe each of the abstract template classes shown in Figure 11.5.

Action Language for Foundational UML (ALF), v1.1 171

T I_Key

- —— = Ivalue l
Collection — — ==
Map
+add()
+addAll() «Create»+Map()
+clear() «Destroy»+destroy()
+count() +clear()
+equals() +entries()
+excludes() +ex;:(l)udesAll()
+excludesAll() +ge
sincludes () «dataType» +keys()
+includesAll() Entry gl *includesAll)
+HsEmpty() +key : Key +includesKey ()
+notEmpty() +value - Value +includes Value()
+remove() N +HsEmpty()
7] +removeAll() N +notEmpty()
7 |+removeOne() N +put()
winds 7~ +replace() «bind» *outAll()
<T->T> +replaceOne() <T->T> +remove()
- s +retainAll() N +removeAll)
s +size() +size()
s +toSequence() N +oSequence()
v _ N +values()
Y N«bind» N
| <T->T> \
Collection<T> Collection<T> Collection<T>
: IT IT : IT
U | —_ —_—— —_ —_
Set Bag Queue
«Create»+Set() «Create»+Bag() «Create»+Queue()
«Destroy»+destroy() «Destroy»+destroy() «Destroy»+destroy()
+add() +add() +add()
+addAll() +addAll() +addAll()
+count() +equals() +addLast()
+equals() ™ +equals()
7N «Bind» «bind» :i’;ﬁg "
<T->T> Vi
| <T->T> . T +removeAll()
Set<T> Bag<T> +removeOne()
+removeFirst()
+removeFirstOne()
+replace()
+replaceOne()
trofai
& T | & T retainAll()
_ — = = — N«bind»
OrderedSet List | <T>T>
«Create»+OrderedSet() «Createx»+List()
«Destroy»+destroy() «Destroy»+destroy() Queve<T>
+add() +add()
+addAll() +addAll()
+addAlIAt() +addAllAt()
+addAt() +addAt() - - —
+at() +at() & IT
+equals() +equals() s
+irst() +irst() Deque
+index Of() +index Of{() «Create»+Deque()
+ast() +ast() «Destroy»+destroy()
+remove() +remove() +addFirst()
+removeAll() +removeAll() +ast()
+removeOne() +removeOne() +removel ast()
+removeAl() +removeAt() +removel astOne()
+replace() +replace()
+replaceAt() +replaceOne()
+replaceOne() +replaceAt()
+retainAll() +retainAll()
+subOrderedSet() +subList()

Figure 11.5 Collection Classes

172 Action Language for Foundational UML (ALF), v1.1

-1

T - 1

N])] —
Set Bag OrderedSet
«pmna» /|\ «bma» /I\ «pma»
| <T->T> | <T->T> | <T->T>
Set<T> Bag<T> OrderedSet<T>
- — — —- — - 4 —- - — —
& T] & T & T
Set Bag OrderedSet
«Create»+Set() «Create»+Bag() «Create»+OrderedSet()
«Destroy»+destroy() «Destroy»+destroy() «Destroy»+destroy()
+add() +add() +add()
+addAll() +addAll() +addAll()
+clear() +clear() +addAllAt()
+count() +count() +addAt()
+equals() +equals() +at()
+excludes() +excludes() +clear()
+excludesAll() +excludesAll() +count()
+includes() +includes() +equals()
+includesAll() +includesAll() +excludes()
+isEmpty() +isEmpty() +excludesAll()
+notEmpty() +notEmpty() +Hirst()
+remove() +remove() +includes()
+removeAll() +removeAll() +includesAll()
+removeOne() +removeOne() +indexOf()
+replace() +replace() +isEmpty()
+replaceOne() +replaceOne() +last()
+retainAll() +retainAll() +notEmpty()
+size() +size() +remove()
+toSequence() +toSequence() +removeAll()
+removeAt()
- — — 4 - — — +removeOne()
| T | T +replace()
_ = = - - — d +replaceAt()
Queue Deque +replaceOne()
+retainAll()
N - +size()
| Z:)'IT:'TB | ZEI)'IT')I; +subOrderedSet()
+toSequence()
Queue<T> Deque<T> =
Key
IValue
Map
T -IJ 1T] «bind»
Queue Deque
«Create»+Queue() «Create»+Deque() Map<Key,Value>
«Destroy»+destroy() «Destroy»+destroy()
+add() +add()
+addAll() +addAll()
+addLast() +clear() r— — —
+clear() +addFirst() Key
+count() +addLast() & Ivalue
+equals() +count()
+excludes() +equals() Map
+excludesAll() +excludes() «Create»+Map()
+includes() +excludesAll() «Destroy»+destroy()
+includesAll() +includes() +clear()
+isEmpty() +includesAll() +entries()
+notEmpty () +isEmpty() +excludesAll()
+remove() +ast() +get()
+removeAll() +notEmpty() +keys()
+removeFirst() +remove() +includesAll()
+removeFirstOne() +removeAll() +includesKey()
+removeOne() +removeFirst() +includesValue()
+replace() +removeFirstOne() +isEmpty()
+replaceOne() +removeLast() +notEmpty()
+retainAll() +removelLastOne() +put()
+size() +removeOne() +pUtAll()
+toSequence() +replace() +remove()
+replaceOne() +removeAll()
+retainAll() +size()
+size() +toSequence()
+toSequence() +values()

Figure 11.6 Collection Class Implementations

Action Language for Foundational UML (ALF), v1.1

|
]

—

List
«pImIna»

I <T->T>

List<T>

I:) JT

List

«Createx»+List()
«Destroy»+destroy()
+add()
+addAll()
+addAllAt()
+addAt()

+at()

+clear()
+count()
+equals()
+excludes()
+excludesAll()
+irst()
+includes()
+includesAll()
+indexOf()
+isEmpty()
+ast()
+notEmpty()
+remove()
+removeAll()
+removeAt()
+removeOne()
+replace()
+replaceAt()
+replaceOne()
+retainAll()
+size()
+subList()
+toSequence()

| <Key->Key, Value->Value>

1
d

- - — 1

_l

173

11.7.2 Bag<T>

Concrete unordered, non-unique collection. Supports duplicate entries.
Generalizations

* Collection<T>
Operations

[1] add (in element : T) : Boolean
Insert the given element into this bag. Always returns true.

post: self.toSequence()->asBag() = self@pre.toSequence()->asBag()->including(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this bag. Return true if the given sequence is not empty.

post: self.toSequence()->asBag() = self@pre.toSequence()->asBag()->union(seq->asBag())

[3]Bag (in seq : T [0..*] sequence) : Bag<T>
Construct a bag and add all elements in the given sequence.

post: result.toSequence()->asBag() = seq->asBag()

[4] destroy ()
Destroy this bag.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this bag is equal to the given sequence considered as a bag.

post: result = (self@pre.toSequence()->asBag() = seq->asBag())

11.7.3 Collection<T>

An abstract collection of elements of a specified type <T>. Various concrete subclasses support ordered and unordered
collections, with and without duplicates allowed.

Generalizations

None

Operations

[1] add (in element : T) : Boolean
Insert the given element into this collection. Return true if a new element is actually inserted.

post: result = self.size() > self@pre.size() and
result implies self.count(element) = self@pre.count(element)+1

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this collection. Returns true if this collection increased in size.

post: result = self.size() > self@pre.size() and
self.includesAll(seq)

174 Action Language for Foundational UML (ALF), v1.1

[3] clear ()
Remove all elements from this collection.

post: result = self.isEmpty()

[4] count (in element : T') : Integer {query}
Return the number of elements in this collection that match a specified element.

post: result = self.toSequence()->count(element)

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this collection is equal to the given sequence.

post: result implies self.includesAll(seq)

[6] excludes (in element : T) : Boolean {query}
Return true if this collection does not contain the given element.

post: result = self.toSequence()->excludes(element)

[7] excludesAll (in seq : T [0..*] sequence) : Boolean {query}
Return true if all elements in the given sequence are not in this collection.

post: result = self.toSequence()->excludesAll(seq)

[8] includes (in element : T) : Boolean {query}
Return true if this collection contains the given element.

post: result = self.toSequence()->includes(element)

[9] includesAll (in seq : T [0..*] sequence) : Boolean {query}
Return true if all elements in the given sequence are also in this collection.

post: result = self.toSequence()->includesAll(seq)

[10] isEmpty () : Boolean {query}
Return true if this collection contains no elements.

post: result = self.toSequence()->isEmpty()

[11] notEmpty () : Boolean {query}
Return true if this collection contains at least one element.

post: result = self.toSequence()->notEmpty()

[12] remove (in element : T) : Integer

Remove all occurrences of the given element from this collection and return the count of elements removed removed.

post: result = self@pre.count(element) and
self.size() = self@pre.size() - result and
self@pre.toSequence()->forAll(e | self.count(e) =
if e = element then 0
else self@pre.count(e) endif)

Action Language for Foundational UML (ALF), v1.1

175

[13] removeAll (in seq : T [0..*] sequence) : Boolean

Remove all occurrences of all elements in the given sequence from this collection. Return true if the size of this collection
changes.

post: result = self.size() < self@pre.size() and
self.toSequence()->asSet() = self@pre.toSequence()->asSet() - seq->asSet() and
self.toSequence()->forAll(e | self.count(e) = self@pre.count(e))

[14] removeOne (in element : T) : Boolean

Remove one occurrence of the given element from this collection and return true if an occurrence of element was removed. If
the collection is ordered, the first element will be removed.

post: result = self@pre.includes(element) and
self.size() = self@pre.size() - (if result then 1 else 0) endif and
self@pre.toSequence()->forAll(e | self.count(e) =
if result and e = element then self@pre.count(e)-1
else self@pre.count(e) endif)

[15] replace (in element : T, in newElement : T') : Integer
Replace all occurrences of the given element with a new element and return the count of replaced elements.

post: result = if element<>newElement then self@pre.count(element) else 0 endif and
self.size() = self@pre.size() and
self.toSequence()->forAll(e | self.count(e) =
if e = newElement then self@pre.count(e)+result
else self@pre.count(e) endif)

[16] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with newElement and return true if an element was replaced. If the collection is
ordered, this will be the first occurrence.

post: result = (self@pre.includes(element) and element<>newElement) and
self.size() = self@pre.size() and
self.toSequence()->forAll(e | self.count(e) =
if result and e = element then self@pre.count(e)-1
else if result and e = newElement then self@pre.count(e)+1
else self@pre.count(e) endif endif)

[17] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this collection that are NOT in the given sequence. Return true if the size of this
collection changes.

post: result = self.size() < self@pre.size() and
self.toSequence()->asBag() = self@pre.toSequence()->asBag()->intersection(seq->asSet())

[18] size () : Integer {query}
Return the number of elements contained in this collection.

post: result = self@pre.toSequence()->size()

[19] toSequence () : T [0..*] sequence {query}

Return a sequence (UML ordered, non-unique collection) containing the elements of this collection. If the specific kind of
collection orders its elements, then the returned sequence will have this order. Otherwise the order of the elements in the

176 Action Language for Foundational UML (ALF), v1.1

returned sequence is arbitrary. (The requirements on the returned sequence from this operation are specified implicitly by the
required behavior of the mutating operations on the various Collection subclasses.)

11.7.4 Deque<T>

Double-Ended Queue (pronounced "deck"). Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by
position. Insertion and removal can occur at the front or the back of a deque. Can operate as FIFO (in at back, out at front).
Can operate as Stack (in at front/back, out at front/back).

Generalizations

¢ Queue<T>
Operations

[1] addFirst (in element : T) : Boolean
Add element into this deque at the front. Always returns true.

post: result = true and
self.toSequence() = self@pre.toSequence()->prepend(element)

[2] Deque (in seq : T [0..*] sequence) : Deque<T>
Construct a deque and add the elements in the given sequence.

post: self.toSequence() = seq

[3] destroy ()
Destroy this deque.

[4]last () : T[0..1] {query}
Return, but do not remove, the element at the back of the queue, if one exists.

pre: self.notEmpty()
post: result = self.toSequence()->last()

[5] removeLast () : T [0..1]
Remove and return the element at the back of the deque if one exists.

pre: self.notEmpty()
post: result = self@pre.toSequence()->last() and
self.toSequence() = self@pre.toSequence->subSequence(1,self@pre.size()-1)

[6] removeLastOne (in element : T) : T [0..1]

Remove and return the last occurrence of the given element in this deque. If this deque is empty or the element is not found
in this queue, return nothing.

pre: self.includes(element)
post: result = element and

let revSeq = self@pre.toSequence()->reverse() in

let index = revSeq.indexOf{element) in

self.toSequence() = revSeq->subSequence(1,index-1)->union(revSeq->subSequence(index+1,revSeq->size()))-
>reverse()

Action Language for Foundational UML (ALF), v1.1 177

11.7.5 Entry
An association of value to key. Note that entries are data values that are always passed by copy. Changing an entry returned
outside of a map will NOT effect the association within the map.
Generalizations
None
Attributes

* key:Key

The key for this association, used for lookup
e value : Value

An optional value for this association

11.7.6 List<T>

Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by position in list.

Generalizations

¢ Bag<T>
Operations

[1] add (in element : T') : Boolean
Append the given element into this list at the end. Always returns true.

post: self.toSequence() = self@pre.toSequence()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Append all elements in the given sequence onto the end of this list. Return true if the given collection is not empty.

post: self.toSequence() = self@pre.toSequence()->union(seq)

[3] addAllAt (in index : Integer, in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this list at the given position index. Return true if the given collection is not
empty.

pre: index >= 1 and index <= self.size()+1
post: result = self.size() > self@pre.size() and
self.toSequence() = Sequence{1..seq->size() }->iterate(i; s = self@pre.toSequence() | s->insertAt(index+i-1, sequence-

>at(i))

[4] addAt (in index : Integer, in element : T) : Boolean

Insert an element into this list at the given position index. Always return true.
pre: index > 1 and index <= self.size()+1

post: result = true and

self.toSequence() = self@pre.toSequence()->insertAt(index,element)

[5] at (in index : Integer) : T [0..1] {query}
Return the element at the given position index or nothing if there is no element at the given position.

pre: index > 0 and index <= self.size()

178 Action Language for Foundational UML (ALF), v1.1

post: result = self@pre.toSequence()->at(index)

[6] destroy ()
Destroy this list

[7] equals (in seq : T [0..*] sequence) : Boolean {query}

Return true if the content of this list is equal to the given sequence.
post: result = (self@pre.toSequence() = seq)

[8] first () : T [0..1] {query}
Returns the first element in this list, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[9] indexOf (in element : T) : Integer [0..1] {query}

Return the position of the first occurrence of the given element in this list or nothing if the element is not included in this
collection.

pre: self.includes(element)
post: result = self@pre.toSequence() -> indexOf(element)

[10]last () : T[0..1] {query}
Returns the last element in this list, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[11] List (in seq : T [0..*] sequence) : List<T>

Construct a list and add all elements in the given sequence
post: result.toSequence() = seq

[12] remove (in element : T) : Integer
Remove all occurrences of the given element from this list and return the count of elements removed.

post: self.toSequence() = self@pre.toSequence()->excluding(element)

[13] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given sequence from this list. Return true if the size of this list changes.

post: self.toSequence()
= seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[14] removeAt (in index : Integer) : T [0..1]

Remove the element at the given position index and shift all trailing elements left by one position. Return the removed
element, or nothing if the index is out of bounds.

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
let preSeq = self@pre.toSequence() in
self.toSequence() = preSeq->subSequence(1, index-1)->union(preSeq->subSequence(index+1, self@pre.size()))

Action Language for Foundational UML (ALF), v1.1 179

[15] removeOne (in element : T) : Boolean

Remove first occurrence of the given element from this list and return true if an occurrence of element was removed.

post: self.toSequence() =
let preSeq = self@pre.toSequence() in
if result then
let index = self@pre.indexOf(element) in
self.toSequence() = preSeq->subSequence(1, index-1)->
union(preSeq->subSequence(index+1, self@pre.size()))
else preSeq endif

[16] replace (in element : T, in newElement : T) : Integer
Replace all occurrences of the given element with a new element and return the count of replaced elements.

post: Sequence{1..self size() }->forAll(i | self.at(i) =
if self@pre.at(i) = element then newElement
else self@pre.at(i) endif)

[17] replaceAt (in index : Integer, in element : T) : T [0..1]

Replace the element at the given position index with the given new element. Return the replaced element, or nothing if the
index is out of bounds

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
let preSeq = self@pre.toSequence() in
self.toSequence() = preSeq->subSequence(1, index-1)->append(newElement)->union(preSeq->subSequence(index+1,

self@pre.size()))

[18] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with newElement and return true if an element was replaced.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
if result and 1 = self@pre.indexOf(element) then newElement
else self@pre.at(i) endif)

[19] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this list that are NOT in the given collection. Return true if the size of this collection
changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; a = self@pre.toSequence() | seq-
>excluding(element))

[20] subList (in fromIndex : Integer, in tolndex : Integer) : List<T> {query}

Return a new list containing all elements of this list from the lower position index up to and including the upper position
index.

post: if lower < 1 or upper > self.size() then
result.toSequence()->empty()
else
result.toSequence() = self.toSequence()->subSequence(lower,upper)
endif

180 Action Language for Foundational UML (ALF), v1.1

11.7.7 Map<Key, Value>

Dictionary of key and value pairs called "entries". Concrete unordered, unique (by key) collection.

Generalizations
None
Operations

[1] clear ()
Remove all entries in this map.

post: self.isEmpty()

[2] destroy ()
Destroy this map.

[3] entries () : Set<Entry> {query}
Return a set of copies of the entries in this map.

post: result.equals(self.toSequence())

[4] excludesAll (in entries : Entry [0..*]) : Boolean {query}
Returns true if this map contains none of the given entries.

post: result = self.toSequence()->excludesAll(entries)

[5] get (in key : Key) : Value [0..1] {query}

Returns the value associated with the given key, or nothing if there is no entry in this map with its key equal to key.

pre: self.keys().toSequence()->includes(key)
post: result = self.toSequence()->select(e | e.key = key).value

[6] includesAll (in entries : Entry [0..*]) : Boolean {query}
Returns true if this map contains all of the given entries.

post: result = self.entries().includesAll(entries)

[7] includesKey (in key : Key) : Boolean {query}

Return true if this map contains an entry with its key equal to the given key.

post: result = self.keys().includes(key)

[8] includesValue (in value : Value [0..1]) : Boolean {query}
Return true if an entry in this map has its value equal to value.

post: result = self.toSequence()->exists(e | e.value = value)

[9] isEmpty () : Boolean {query}

Return true if this map contains no entries.

post: result = self.toSequence()->isEmpty()

Action Language for Foundational UML (ALF), v1.1

181

[10] keys () : Set<Key> {query}
Return a set of copies of the keys in this map.

post: result.equals(self.toSequence().key)

[11] Map (in entries : Entry [0..*]) : Map<Key, Value>

Construct a map and add the given entries. No two entries may have the same key.

pre: entries->isUnique(key)
post: result.toSequence()->asSet() = sequence->asSet()

[12] notEmpty () : Boolean {query}
Return true if this map contains at least one entry.

post: result = self.toSequence()->notEmpty()

[13] put (in key : Key, in value : Value [0..1]) : Value [0..1]

Associate a value with a key, creating a new entry if necessary. Return the previously associated value, or nothing if this is a
new entry.

post: result = self@pre.get(key) and
self.toSequence().key->asSet() = self@pre.toSequence().key->asSet()->including(key) and
self.toSequence()->isUnique(key) and
self.keys().toSequence()->forAll(k | self.get(k) =
if e key = key then value else self@pre.get(k))

[14] putAll (in entries : Entry [0..*])

Add all the given entries to this map. Any entry with a key already present in this map replaces the previous entry in this map.
No two of the given entries may have the same key.

pre: entries->isUnique(key)
post: self.toSequence().key->asSet() = self@pre.toSequence().key->asSet()->union(entries->asSet()) and
self.toSequence()->isUnique(key) and
self.keys().toSequence()->forAll(k | self.get(k) =
if entries.key->includes(k) then entries->select(key=k)
else self@pre.get(k))

[15] remove (in key : Key) : Value [0..1]
Remove any association of a value to the given key. Return the value previously associated with the key, or nothing if there
was no previous entry for the key

pre: self.includesKey(key)
post: result = self@pre.get(key) and
self.toSequence()->isUnique(key) and
self.toSequence()->asSet() = self@pre.toSequence()->reject(e | e.key = key)->asSet()

[16] removeAll (in keys : Key [0..*])
Remove all associations of a value to any of the given keys.

post: self.toSequence()->isUnique(key) and
self.toSequence()->asSet() = self@pre.toSequence()->reject(e | keys->includes(e.key))->asSet()

182 Action Language for Foundational UML (ALF), v1.1

[17] size () : Integer {query}
Returns the number of entries in this map.

post: result = self.toSequence()->size()

[18] toSequence () : Entry [0..*] sequence {query}

Return a sequence (UML ordered, non-unique collection) containing copies all entries in this map. The order is arbitrary.
(The requirements on the returned sequence from this operation are specified implicitly by the required behavior of the
mutating operations of the Map class.)

[19] values () : Bag<Value> {query}

Return a bag of copies of the values in this map. (A bag is returned, since a single value may be associated with more than
one entry in the map.)

post: result.equals(self.toSequence().value)

11.7.8 OrderedSet<T>

Concrete ordered, unique collection. Does not support duplicate entries. Ordered by position.
Generalizations

* Set<T>
Operations

[1] add (in element : T') : Boolean
Append the given element into this ordered set at the end. Return true if a new element is actually inserted.

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Append all elements in the given sequence onto the end of this ordered set. Returns true if this collection increased in size.

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->union(seq->asOrderedSet())

[3] addAllAt (in index : Integer, in seq : T [0..*] sequence) : Boolean

Insert all elements in the given sequence into this ordered set at the given position index. Returns true if the size of the
ordered set increases (that is, if at least some of the inserted elements were not duplicates of elements already in the set).

pre: index >= 1 and index <= self.size()+1
post: result = self.size() > self@pre.size() and

self.toSequence()->asOrderedSet() = Sequence{1..seq->size() } ->iterate(i; set = self@pre.toSequence()-
>asOrderedSet() | set->insertAt(index+i-1, seq->at(i))

[4] addAt (in index : Integer, in element : T) : Boolean
Insert an element into this ordered set at the given position index. Return true if the element was actually added to the set.
pre: index > 1 and index <= self.size()+1
post: result = (self.size() = self@pre.size() + 1) and
self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->insertAt(index,element)

[5] at (in index : Integer) : T [0..1] {query}

Return the element at the given position index or nothing if there is no element at the given position.

pre: index > 0 and index <= self.size()

Action Language for Foundational UML (ALF), v1.1 183

post: result = self@pre.toSequence()->at(index)

[6] destroy ()
Destroy this ordered set.

[7] equals (in seq : T [0..*] sequence) : Boolean {query}

Return true if the content of this ordered set is equal to the given sequence considered as an ordered set.

post: result = (self@pre.toSequence()->asOrderedSet() = seq->asOrderedSet())

[8] first () : T [0..1] {query}
Returns the first element in this ordered set, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->first()

[9] indexOf (in element : T) : Integer [0..1] {query}

Return the position of the first occurrence of the given element in this ordered set or nothing if the element is not included in
this collection.

pre: self.includes(element)
post: result = self@pre.toSequence() -> indexOf(element)

[10]last () : T[0..1] {query}
Returns the last element in this ordered set, if one exists

pre: self.notEmpty()
post: result = self@pre.toSequence()->last()

[11] OrderedSet (in seq : T [0..*] sequence) : OrderedSet<T>

Constructs an ordered set and adds all elements in the given sequence, in order.
post: result.toSequence()->asOrderedSet() = seq->asOrderedSet()

[12] remove (in element : T) : Integer

Remove all occurrences of the given element from this ordered set and return the count of elements removed. (For an ordered
set, this has the same effect as removeOne, since duplicates are not allowed.)

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->excluding(element)

[13] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given sequence from this ordered set. Return true if the size of this ordered set changes.

post: self.toSequence() = seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[14] removeAt (in index : Integer) : T [0..1]

Remove the element at the given position index and shift all trailing elements left by one position. Return the removed
element, or nothing if the index is out of bounds.

pre: index > 0 and index <= self.size()

post: result = self@pre.at(index) and
self.toSequence() = self@pre.toSequence()->excluding(result)

184 Action Language for Foundational UML (ALF), v1.1

[15] removeOne (in element : T) : Boolean

Remove one occurrence of the given element from this ordered set and return true if an occurrence of element was removed.
(For an ordered set, this has the same effect as remove, since duplicates are not allowed.)

post: self.toSequence()->asOrderedSet() = self@pre.toSequence()->asOrderedSet()->excluding(element)

[16] replace (in element : T, in newElement : T) : Integer

Replace all occurrences of the given element with newElement and return the count of replaced elements. (For an ordered set,
this has the same effect as replaceOne, since duplicates are not allowed.)

post: self.toSequence() = if result then
self@pre.toSequence()->excluding(element)->insertAt(newElement, self@pre.indexOf(element))
else
self@pre.toSequence()
endif

[17] replaceAt (in index : Integer, in newElement : T) : T [0..1]

Replace the element at the given position index with the given new element. Return the replaced element, or nothing is the
index is out of bounds

pre: index > 0 and index <= self.size()
post: result = self@pre.at(index) and
self.toSequence() = self@pre.toSequence()->excluding(result)->insertAt(index,newElement)

[18] replaceOne (in element : T, in newElement : T) : Boolean

Replace one occurrence of the given element with newElement and return true if an element was replaced. (For an ordered
set, this has the same effect as replace, since duplicates are not allowed.)

post: self.toSequence() = if result then
self@pre.toSequence()->excluding(element)->insertAt(newElement, self@pre.indexOf(element))
else
self@pre.toSequence()
endif

[19] retainAll (in seq : T [0..*] sequence) : Boolean
Remove all instances of all elements in this ordered set that are NOT in the given sequence. Return true if the size of this
collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; s = self@pre.toSequence() | s-
>excluding(element))

[20] subOrderedSet (in lower : Integer, in upper : Integer) : OrderedSet<T> {query}

Return a new ordered set containing all elements of this ordered set from the lower position index up to and including the
upper position index.

post: if lower < 1 or upper > self.size() then
result.toSequence()->empty()
else
result.toSequence() = self.toSequence()->subSequence(lower,upper)
endif

Action Language for Foundational UML (ALF), v1.1 185

11.7.9 Queue<T>

First In First Out Queue. Concrete ordered, nonunique collection. Supports duplicate entries. Ordered by position.
Considering the queue as a sequence, insertion occurs at the back of the queue, removal at the front.

Generalizations
e Collection<T>
Operations

[1] add (in element : T) : Boolean
Add the given element into this queue at the back. Always returns true.

post: self.toSequence() = self@pre.toSequence()->append(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Add all elements in the given sequence to this queue at the back. Return true if the given collection is not empty.

post: self.toSequence() = self@pre.toSequence()->union(seq)

[3] addLast (in element : T) : Boolean
Add the given element into this queue at the back. Always returns true. (This is the same functionality as the add operation.)

post: result = true and
self.toSequence() = self@pre.toSequence()->append(element)

[4] destroy ()
Destroys this queue.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}
Return true if the content of this queue is equal to the given sequence.

post: result = self@pre.toSequence() = seq

[6] first () : T [0..1] {query}
Return, but do not remove, the element at the front of the queue, if one exists.

pre: self.notEmpty()
post: result = self.toSequence()->first()

[7] Queue (in seq : T [0..*] sequence) : Queue<T>

Construct a queue and add all elements in the given sequence.
post: result.toSequence() = seq

[8] remove (in element : T) : Integer

Remove all occurrences of the given element from this queue and return the count of elements removed.
post: self.toSequence() = self@pre.toSequence()->excluding(element)

[9] removeAll (in seq : T [0..*] sequence) : Boolean
Remove all elements in the given collection from this queue. Return true if the size of this queue changes.

post: self.toSequence()

186 Action Language for Foundational UML (ALF), v1.1

= seq->iterate(element; s = self@pre.toSequence() | s->excluding(element))

[10] removeFirst () : T [0..1]
Remove and return the element at the front of the queue if one exists.

pre: self.notEmpty()
post: result = self@pre.toSequence()->first() and
self.toSequence()->self@pre.toSequence()->subSequence(2,self@pre.size())

[11] removeFirstOne (in element : T[1]) : T [0..1]

Remove and return the first occurrence of the given element in this queue. If this queue is empty or the element is not found
in this queue, return nothing.

pre: self.includes(element)
post: result = element and
let preSeq = self@pre.toSequence() in
let index = preSeq.indexOf(element) in
self.toSequence() = preSeq->subSequence(1,index-1)->union(preSeq->subSequence(index+1,preSeq->size()))

[12] removeOne (in element : T) : Boolean
Remove the first occurrence of the given element from this queue and return true if an occurrence of element was removed.

post: self.toSequence() =
let preSeq = self@pre.toSequence() in
if result then
let index = self@pre.indexOf(element) in
self.toSequence() = preSeq->subSequence(1, index-1)->
union(preSeq->subSequence(index+1, self@pre.size()))
else preSeq endif

[13] replace (in element : T, in newElement : T) : Integer
Replace all occurrences of the given element with a new element and return the count of replaced elements.

post: Sequence{1..self.size()}->forAll(i | self.at(i) =
if self@pre.at(i) = element then newElement
else self@pre.at(i) endif)

[14] replaceOne (in element : T, in newElement : T) : Boolean
Replace one occurrence of the given element with newElement and return true if an element was replaced.
post: Sequence{1..self.size()}->forAll(i | self.at(i) =

if result and 1 = self@pre.indexOf(element) then newElement

else self@pre.at(i) endif)

[15] retainAll (in seq : T') : Boolean
Remove all instances of all elements in this queue that are NOT in the given collection. Return true if the size of this
collection changes.

post: self.toSequence() = (self@pre.toSequence()->asSet() - seq->asSet())->iterate(element; s = self@pre.toSequence() | s-
>excluding(element))

11.7.10 Set<T>

A concrete unordered, unique collection. Does not support duplicate entries.

Action Language for Foundational UML (ALF), v1.1 187

Generalizations
e Collection<T>
Operations

[1] add (in element : T') : Boolean
Insert the given element into this set. Return true if a new element is actually inserted.

post: self.toSequence()->asSet() = self@pre.toSequence()->asSet()->including(element)

[2] addAll (in seq : T [0..*] sequence) : Boolean
Insert all elements in the given sequence into this set. Returns true if this collection increased in size.

post: self.toSequence()->asSet() = self@pre.toSequence()->asSet()->union(seq->asSet())

[3] count (in element : T') : Integer {query}

The number of elements in this set that match a specified element.
post: result = if self@pre.includes(element) then 1 else 0 endif

[4] destroy ()
Destroy this set.

[5] equals (in seq : T [0..*] sequence) : Boolean {query}

Return true if the content of this set is equal to the given sequence considered as a set.
post: result = (self@pre.toSequence()->asSet() = seq->asSet())

[6] Set (in seq : T [0..*] sequence) : Set<T>
Construct a set and add all elements in the given sequence.

post: result.toSequence()->asSet() = seq->asSet()

188 Action Language for Foundational UML (ALF), v1.1

12 Common Abstract Syntax

12.1 Overview

Parsing an Alf text synthesizes an abstract syntax tree (see 6.5). Static semantic analysis then adds associated with the syntax
elements in the abstract syntax tree (see 6.6). Such information is formally specified using derived attributes and associations
in the UML abstract syntax model. Thus, a syntax element class will generally have two kinds of properties: synthesized
properties, whose values are determined during parsing, and derived properties, whose values are determined during static
semantic analysis. The specification for each derived property includes a constraint that defines its derivation.

In addition, the specification of a syntax class includes various constraints that must be checked during the course of static
semantics analysis. If any of these constraints are violated, then the input text is not legal and must be rejected. The
specification of the class may also include helper operations that can be used in both the class constraints and property
derivations.

Clauses 8, 9 and 10 described the synthesized abstract syntax for Alf expressions, statements and units. This clause extends
that abstract syntax model to include the derived properties and constraints that specify the static semantics of Alf. Clauses 16
through 19 then specify the mapping from the Alf abstract syntax, after static semantic analysis, to the f{UML subset of the
UML abstract syntax.

The UML model of the Alf abstract syntax is contained within the package A1f: : Syntax. It comprises four subpackages:
Common, Expressions, Statements and Units. The content of each of these packages is described in this and the
following three clauses.

The Alf::Syntax: :Common package contains the root abstract classes SyntaxElement and DocumentedElement. It also
contains common ElementReference and AssignedSource classes that are used throughout the rest of the abstract syntax
model. Element reference and assigned source objects are not themselves syntax elements but, rather, represent certain
relevant information determined during the static semantic analysis of an abstract syntax tree and associated with elements of
that tree.

The mapping of common elements to UML is given in Clause 16.
Element References

As discussed in subclauses 8.2 and 10.2, a name resolves to the model element that it names. If this model element is defined
outside the context of the Alf text in which the reference to its name appears, then the resolution is straightforward. However,
the situation is more complicated if the element being referenced is defined within the same Alf text as the reference itself.
This is because the name must be resolved during static semantic analysis, but, at that point, the Alf representation of the
element being referenced has not yet been mapped to UML.

In order to handle this in a general way, the Alf abstract syntax uses a generic concept of element reference. Such a reference
may be an external element reference, meaning that it is a reference to a model element defined in the UML model external
to the Alf text. Or it may be an internal element reference, meaning that it is a reference to the syntax element in the Alf text
which will ultimately be mapped to the desired model element. The necessary properties of a referenced element required for
static semantic analysis may be obtained from either an external or internal element reference.

Assigned Sources

As discussed in subclauses 8.1 and 9.1, the assigned source for a local name is the statically determined syntax element that,
when executed, will provide the actual assigned value for that local name. If the assigned source for a local name is known,
then a reference to the assigned value of that local name can be mapped to an object flow from the mapping of the assigned
source.

During static semantic analysis, it is necessary to know what names have assigned sources before and after each expression
node and each statement node within the abstract syntax tree. Information on the assigned source includes not only the source
element itself, but also the

multiplicity of the value produced by that source.

Action Language for Foundational UML (ALF), v1.1 189

SyntaxElement

DocumentedElement

+documentation : String [*]

Figure 12.1 Syntax Elements

ElementReference
ExternalElementReference InternalElementReference
+e|ement‘1 +element| 1
«Metaclass» Syntax::Common::
Element SyntaxElement

Figure 12.2 Element References

+source

1 ElementReference

*

AssignedSource

+name : String

+upper : UnlimitedNatural *type
+lower : Integer 0.1 0.1
+subtype
.|
* 0..1

+/knownType
.|

* 0.1
Figure 12.3 Assigned Sources
12.2 Class Descriptions
12.2.1 AssignedSource

An assignment of a source element that gives the value of a local name
defined type (if any) and multiplicity of the name.

190

, along with a record of the

Action Language for Foundational UML (ALF), v1.1

Generalizations
None

Synthesized Properties
* lower : Integer

The multiplicity lower bound for the name.

* name : String
The local name for which this is the assigned source.

* source : ElementReferenceSyataxElement

A reference to the element that is to be the source for the assigned value of the given local name.

e subtype : ElementReference [0..1]

A reference to the element that gives the best known type for the latest assignment to the local name (if any). This
will always be a subtype of the type of the assigned source.

type : ElementReference [0..1]
A reference to the element that gives the type for the local name (if any). as originally declared or assigned.

* upper : UnlimitedNatural
The multiplicity upper bound for the local name.

Derived Properties
e knownType : ElementReference [0..1]

A reference to the element that represents the best known type for the local name.

None

Constraints
[1] assignedSourceKnownTypeDerivation

If the subtype of an assigned source is empty, then its known type is the same as its type. Otherwise, its known type is the
same as its subtype.
None

Helper Operations
None

12.2.2 DocumentedElement
A syntax element that has documentation comments associated with it.

Generalizations
e SyntaxElement

Synthesized Properties
* documentation : String [*]

The documentation text to be associated with a syntax element. Each string is intended to be mapped to the body of
a comment element in the target UML model.

Derived Properties
None

Constraints

Action Language for Foundational UML (ALF), v1.1 191

None

Helper Operations
None

12.2.3 ElementReference

A reference to a model element, either directly or via its Alf abstract syntax representation. (NOTE: The definitions of all the
helper operations of ElementReference are specific to its subclasses.)

Generalizations
None

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.4 ExternalElementReference
A direct reference to a UML model element.

Generalizations
¢ ElementReference

Synthesized Properties
* clement : Element

The referenced model element.

Derived Properties
None

Constraints
None

Helper Operations
None

12.2.5 InternalElementReference
A direct reference to a UML model element.

Generalizations
¢ ElementReference

Synthesized Properties
* clement : SyntaxElement

The Alf syntax element that represents the referenced model element.

Derived Properties

192 Action Language for Foundational UML (ALF), v1.1

None

Constraints
None

Helper Operations
None

12.2.6 SyntaxElement

A syntax element synthesized in an abstract syntax tree, along with any additional information determined during static
semantic analysis.

Generalizations
None

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 193

This page intentionally left blank

194 Action Language for Foundational UML (ALF), v1.1

13 Expressions Abstract Syntax

13.1 Overview

The A1f::Syntax: :Expressions package contains the abstract syntax model for expressions. The syntax and semantics

of expressions are discussed in Clause 8. Their mapping to UML is given in Clause 17.

SyntaxElement
pAN
Expression NameBinding +binding
+/upper : UnlimitedNatural +name : String 0.1 0.1 TemplateBinding
+/lower : Integer h b 7~
= = = +nameBinding | * 1 +/unqualifiedName
{ordered}
+/type | 0.1
ElementReference PositionalTemplateBinding
+/referent
. . 0.1 0.1
+/assignmentBefore | * * | +/assignmentAfter |. " *
AssignedSource 0.1 QualifiedName . NamedTemplateBinding
0.1 |+isAmbiguous : Boolean = false jg¢——
+/qualification | */PathName : String +argumentName 0.1
+/isFeatureReference : Boolean

Figure 13.1 Expressions and Qualified Names

Action Language for Foundational UML (ALF), v1.1

+/templateName |0..1 0.1 Y0..1

+/disambiguation | 0..1

1| +argumentName

+substitution

N

*

TemplateParameterSubstitution

0.1

+parameterName : String

FeatureReference

195

Expression

AN
LiteralExpression
AN
BooleanLiteralExpression UnboundedLiteralExpression ReallLiteralExpression
+image : String +image : String
NaturalLiteralExpression StringLiteralExpression
+image : String +image : String
Figure 13.2 Literal Expressions
- +expression
Expression
+/propertyAccess
ThisExpression —|NameExpression [o _1 0.1 'lPropertyAccessExpression
* *

A
+/enumerationLiteral |0-1 1 | +/feature

+fassignment|0..1 +name |1 ElementReference | +/referent

AssignedSource QualifiedName

0.1

w1 i+featureReference

NameBinding *tnameBinding FeatureReference
1 0..1 l 0.1

SyntaxElement

Figure 13.3 Basic Primary Expressions

196 Action Language for Foundational UML (ALF), v1.1

Tuple

Expression

+nonNameExpression

0.1
+/expression

—

FeatureReference |y./fature

+target|0..1

0.1

. 3 +/referent
+uple +invocation InvocationExpression o] ElementReference
1 1 +/isBehavior : Boolean "
+/isAssociationEnd : Boolean +/boundReferent
+/isOperation : Boolean 0.1
+/isDestructor : Boolean "
0.1 * +/isimplicit : Boolean +/parameter
+/isSignal : Boolean " {ordeted)

T

FeaturelnvocationExpression

SuperinvocationExpression

InstanceCreationExpression

0.1

+/isConstructorless : Boolean
+/isObjectCreation : Boolean

0.1

0.1

LeftHandSide

+/leftHandSide

BehaviorinvocationExpression

LinkOperationExpression

SequenceOperationExpression

0.1

+operation : String
+/isCreation : Boolean
+/isClear : Boolean

+/isCollectionConversion : Boolean

+/isBitStringConversion : Boolean

0..1

+associationName | 1

0.1

+primary,

0.1
1

Figure 13.4 Invocation Expressions

+construttor ExtentOrExpression o1
QualifiedName | 0-1)
+target . 01
01 +operation .
*arget gﬁ1ame 0.1
! 0.1

Action Language for Foundational UML (ALF), v1.1

197

0.1

+/input

0.1

Tuple

+tuple

+invocation - z
InvocationExpression

1

NamedTuple

0..1
{ordered}

*

NamedExpression

+namedExpression

+index

PositionalTuple

+name : String

+/isCollectionConversion : Boolean

+/isBitStringConversion : Boolean

+/isRealConversion : Boolean

|

+/°Utpi‘t OutputNamedExpression

0.1
+/leftHandSide [1

LeftHandSide

Figure 13.5 Tuples

198

0.1

0.1

+expression

0.1

1

0.1

{ordered}
+expression

Expression

Action Language for Foundational UML (ALF), v1.1

+rangelower

+argument

1 Expression
+rangeUpper +index
1 1
+element +primary
{ordered}
0.1 A

ClassExtentExpression

SequenceAccessExpression

0.1

SequenceExpansionExpression

*

1 l+/variabIeSource

AssignedSource

0.1
SequenceConstructionExpression SequenceReductionExpression
+hasMultiplicity : Boolean = false +isOrdered : Boolean = false +operation : String
+variable : String
0.1 0.1 0.1 0.1
0.1
+elements |0..1 +/referent¥1
SequenceElements ElementReference
+/upper : UnlimitedNatural
+/lower : Integer
T 1| +behaviorName
1 . .
0.1 +classNama® QualifiedName | *Primaryy 1 +pr|mary.1
) +typeName ’TE.xtentOrExpression
SequenceExpressionList 0.1
0.1 SequenceRange
0.1

Figure 13.6 Sequence Expressions

SequenceExpansionExpression

i

SelectOrRejectExpression

ForAllOrExistsOrOneExpression

IsUniqueExpression

CollectOrlterateExpression

Figure 13.7 Sequence Expansion Expressions

Action Language for Foundational UML (ALF), v1.1

199

+/expression

Expression

IncrementOrDecrementExpression +heature ElementReference
+isPrefix : Boolean = false 0.1
+operator : String)

* |+/isFeature : Boolean +/<'=‘~°’S'9mnen'f/,|AssignedSource
+/isindexed : Boolean * 0..1
+/isDataValueUpdate : Boolean

0..1

+operand |1

LeftHandSide

Figure 13.8 Increment and Decrement Expressions

+operan§i Expression

UnaryExpression |
Tiis pagemientionally left blank
+operator : éin%g

]

NumericUnaryExpression || | BooleanUnaryExpression || |IsolationExpression

0.1

BitStringUnaryExpression ClassificationExpression

+/isBitStringConversion : Boolean | |+/isDirect : Boolean

Figure 13.9 Unary Expressions

200 Action Language for Foundational UML (ALF), v1.1

+operand1 - +operand2
1 1
A

BinaryExpression

0..1 +operator : String 0.1

ArithmeticExpression RelationalExpression EqualityExpression NullCoalescingExpression
+/isConcatenation : Boolean +/isUnlimitedNatural : Boolean +/isNegated : Boolean
+/isReal : Boolean +/isReal : Boolean +/isRealConversion1 : Boolean
+/isRealConversion1 : Boolean || | +/isRealConversion1 : Boolean +/isRealConversion2 : Boolean
+/isRealConversion2 : Boolean || |+/isRealConversion2 : Boolean

ShiftExpression LogicalExpression ConditionalLogicalExpression

+/isBitStringConversion : Boolean | |+/isBitWise : Boolean
+/isBitStringConversion1 : Boolean
+/isBitStringConversion2 : Boolean

Figure 13.10 Binary Expressions

- +operand1
Expression y
+operand ; +operand2
1 1
+operand3
1
0.1 0.1 [0..1
CastExpression ConditionalTestExpression
0.1
0..1

+typeName | 0..1

QualifiedName

Figure 13.11 Cast and Conditional-Test Expressions

Action Language for Foundational UML (ALF), v1.1 201

+index

+rightHandSide

Expression
0.1

+/expression

1

+/assignmentAfter

0.1
AssignmentExpression +eature ElementReference
+operator : String 0.1
0.1 | +/isindexed : Boolean
+/isArithmetic : Boolean +/assi ¢
01 +/isDefinition : Boolean assignmen AssignedSource
h +/isSimple : Boolean * 0..1
+/!sFeature :Boolean +/assignmentBefore| * *
+/isDataValueUpdate : Boolean
+/isCollectionConversion : Boolean
+/isBitStringConversion : Boolean
+/isRealConversion : Boolean
0.1
+leftHandSide | 1
LeftHandSide *
0.1 +/referent : ElementReference [0..1] [*
+/type : ElementReference [0..1]
+/lower : Integer
+/upper : UnlimitedNatural
FeatureLeftHandSide NameleftHandSide
0..1 0.1
+feature | 1 +target| 1
FeatureReference QualifiedName

Figure 13.12 Assignment Expressions
13.2 Class Descriptions

13.2.1 ArithmeticExpression

A binary expression with an arithmetic operator.

Generalizations

BinaryExpression

Synthesized Properties

Action Language for Foundational UML (ALF), v1.1

Derived Properties
¢ isConcatenation : Boolean

Whether this is a string concatenation expression.

e isReal : Boolean
Whether this is a real arithmetic expression.

e isRealConversionl : Boolean
Whether Real conversion is required on the first operand of this expression.

e isRealConversion2 : Boolean
Whether Real conversion is required on the second operand of this expression.

Constraints
[1] arithmeticExpressionlsConcatenationDerivation

An arithmetic expression is a string concatenation expression if its type is String.

[2] arithmeticExpressionIsRealConversion1Derivation

PHarthmeticExpressionbowcerDervation
Real conversion is required if the type of an arithmetic expression is a type that conforms to type Real and the first operand
expression has a type that conforms to type Integer.

3] arithmeticExpressionlsRealConversion2Derivation

Real conversion is required if the type of an arithmetic expression is a type that conforms to type Real and the second
operand expression has a type that conforms to type Integer.

4] arithmeticExpressionIsRealDerivation

4 arid oE onTvpeDerivati

An The-type-ef-an-arithmetic expression is a real computation if its type conforms to type Real.the-same-as-the-type-ofits-
eperands:

5] arithmeticExpressionLowerDerivation
5 arit oD onl Derivati

ok ol isliod beundofL

An arithmetic expression has a multiplicity lower bound of 0 if its operator is / or if the lower bound if either operand
expression is 0 and 1 otherwise.

[6] arithmeticExpressionOperandMultiplicity
The operand expressions of an arithmetic expressions must both have multiplicity upper bounds of 1.

7] arithmeticExpressionOperand Types

The operands of an arithmetic expression must both have types that conform to type Integer or Real, unless the operator is +
or %. 1f the operator is +, then both operands may also have types that conform to type String. If the operator is %, then both
operands must have types that conform to type Integer.

Action Language for Foundational UML (ALF), v1.1 203

[8] arithmeticExpressionTypeDerivation

If both operands of an arithmetic expression operator are of a type that conforms to type Integer, then the type of the
expression is Integer. If one operand is of a type that conforms to type Real and the other Integer or both are of a type that
conforms to type Real, then the type of the expression is Real. If both operands are of a type that conforms to type String,
then the type of the expression is String. Otherwise the expression has no type.

[9] arithmeticExpressionUpperDerivation

An arithmetic expression has a multiplicity upper bound of 1.

Helper Operations
[1] minLowerBound() : Integer

The minimum lower bound is 0 for operands of arithmetic expressions other than concatenations (this allows for the
propagation of a null returned from a division by zero in an operand).

None

13.2.2 AssignmentExpression
An expression used to assign a value to a local name, parameter or property.

Generalizations
e Expression

Synthesized Properties
e leftHandSide : LeftHandSide

The left-hand side of the assignment, to which a value is to be assigned.

e operator : String
The image of the assignment operator used in the expression.

* rightHandSide : Expression
The right-hand side expression of the assignment, which produces the value being assigned.

Derived Properties
e assignment : AssignedSource [0..1]

If the left-hand side is a name, then the new assigned source for that name.

e expression : Expression [0..1]

If this is a compound assignment, then the effective expression used to obtain the original value of the left-hand side
to be updated.

e feature : ElementReference [0..1]
If the left-hand side is a feature, then the referent for that feature.

e isArithmetic : Boolean
If this is a compound assignment, whether the compound assignment operator is arithmetic or not.

e isBitStringConversion : Boolean
Whether BitString conversion is required for this assignment.

e isCollectionConversion : Boolean
Whether collection conversion is required for this assignment.

e isDataValueUpdate : Boolean

204 Action Language for Foundational UML (ALF), v1.1

Whether this assignment updates an attribute of a data value held in a local name or parameter.

e isDefinition : Boolean
Whether this assignment is the definition of a new local name or not.

e isFeature : Boolean
Whether the left-hand side is a feature or not.

e isIndexed : Boolean
If the left-hand side is a feature, whether it has an index or not.

e isRealConversion : Boolean
Whether Real conversion is required for this assignment.

e isSimple : Boolean
Whether this is a simple assignment or not.

Constraints

[1] assignmentExpressionAssignmentDerivation

The new assigned source for an assignment to a local name is the assignment expression (including a data value update). If
the assignment is a definition, then the type is given by the right-side. otherwise the type is the same as for the previous
assigned source for the local name. The multiplicity lower-haned-side;-the-multiplieity-upper bound is 04 if the lowerapper
bound of the right--hand side is 0+ and otherwise 1.* and the mult1pl1c1ty M}(—)’Wﬂ bound is 1 if the upper bound of the
right-hand side is 1 and * otherwise, except that: if 6- as-the left-hand side is a data-value

update, and-the multiplicity is alse-the same as for the previous assmnmcnt dnd %heﬂleﬁ-hzﬂ%d—ﬂd&lfthe left-hand side is
indexed (but not a data-value update). the multiplicity is [0..*]. If the assignment expression does not require any
conversions, then the subtype of the assignment is the type of the right-hand side expression: otherwise notindexed;-and-is*-
it is nullindexed.

[2] assignmentExpressionAssignmentsBefore

The assigned source of a name before the right-hand side expression of an assignment expression is the same as the assigned
source before the assignment expression. The assigned source of a name before the left-hand side is the assigned source after
the right-hand side expression.

[3] assignmentExpressionCompoundAssignmentMultiplicityConformance

For a compound assignment, both the left-hand and right-hand sides must have a multiplicity upper bound of 1.

[4] assignmentExpressionCompoundAssignmentTypeConformance

For a compound assignment, if the operator is an arithmetic operator, then either the left-hand side and the right-hand side
both have types that conform to type Integer, the left-hand side has a type that conforms to type Real and the right-hand side
has a type that conforms to type Integer or Real. or type-tntegerorthey both have types that conform to type String and the
operator is +. If the operator is a logical operator, then either the left-hand side and the right-hand side both have types that
conform to type Boolean or Bit String or the left-hand side has a type that conforms to type #ype-Bit String and the right-hand
side has a type that conforms to type type-Integer. If the operator is a shift operator, then the left-hand side must have a tvpe
that conforms to type type-Bit String and the right-hand side must have a tvpe that conforms to type Integer.

[5] assignmentExpressionDataValueUpdateLegality

If an assignment expression has a feature with a primary expression whose type is a data type, then the assignment expression
must be a data value update.

[6] assignmentExpressionExpressionDerivation

Action Language for Foundational UML (ALF), v1.1 205

For a compound assignment, the effective expression is the left-hand side treated as a name expression, property access
expression or sequence access expression, as appropriate for evaluation to obtain the original value to be updated.

[7] assignmentExpressionFeatureDerivation

If the left-hand side of an assignment expression is a feature, then the feature of the assignment is the referent of the left-hand
side.

[8] assignmentExpressionlsArithmeticDerivation

An assignment expression is an arithmetic assignment if its operator is a compound assignment operator for an arithmetic
operation.

[9] assignmentExpressionlsBitStringConversionDerivation

An assignment requires BitString conversion if the type of the left-hand side is BitString and either the type of the right-hand
side is Integer or collection conversion is required and the type of the right-hand side is a collection class whose
sequenceargumment type is Integer.

[10] assignmentExpressionIsCollectionConversionDerivation

An assignment requires collection conversion if the type of the right-hand side is a collection class and its multiplicity upper
bound is 1, and the type of the left-hand side is not a collection class.

[11] assignmentExpressionlsDataValueUpdateDerivation

An assignment expression is a data value update if its left hand side is an attribute of a data value held in a local name or
parameter.

[12] assignmentExpressionlsDefinitionDerivation
An assignment expression is a definition if it is a simple assignment and its left hand side is a local name for which there is

no assignment before the expression.

[13] assignmentExpressionlsFeatureDerivation

The left hand side of an assignment expression is a feature if it is a feature left-hand side or a name left-hand side for a name
that disambiguates to a featurckind-efFeaturelefiHandSide.

[14] assignmentExpressionlsIndexedDerivation
The left hand side of an assignment expression is indexed if it has an index.

[15] assignmentExpressionlsRealConversionDerivation

An assignment requires Real conversion if the type of the left-hand side is a type that conforms to type Real and either the
type of the right-hand side is a type that conforms to type Integer or collection conversion is required and the type of the
right-hand side is a collection class whose sequence type is a type that conforms to type Integer.

[16+5] assignmentExpressionlsSimpleDerivation

n_n

An assignment expression is a simple assignment if the assignment operator is

[17+6] assignmentExpressionLowerDerivation

A simple assignment expression has the same multiplicity lower bound as its right-hand side expression. A compound
assignment expression has the same multiplicity as its left-hand side.

[18+7] assignmentExpressionSimpleAssignmentMultiplicityConformance

If the left-hand side of a simple assignment is not a local name and the multiplicity lower bound of the left-hand side is
greater than 0, then the multiplicity lower bound of the right-hand side cannot be 0. If the left-hand side is not a new local
name and the multiplicity upper bound of the left-hand side is less than or equal to 1, then the multiplicity upper bound of the
right-hand side cannot be greater than that of the left-hand side.

206 Action Language for Foundational UML (ALF), v1.1

‘ [1948] assignmentExpressionSimpleAssignmentTypeConformance

If the left-hand side of a simple assignment is not a new local name, and the right-hand side is not null, then cither the left-
hand side must eitherbe untyped or the right-hand side expression must have a type that conforms to the type of the leftricht-

hand side-expression.

[2049] assignmentExpressionTypeDerivation

A simple assignment expression has the same type as its right-hand side expression. A compound assignment expression has
the same type as its left-hand side.

[2120] assignmentExpressionUpperDerivation
An assignment expression has the same multiplicity upper bound as its right-hand side expression.

Helper Operations
[1] adjustMultiplicity(assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the left-hand side is not indexed and is not a feature reference, then the assigned name is considered be known null if the
condition is true, or known non-null if the condition is false. The right-hand side is then also checked for known nulls or non-
nulls.

[2] adjustType(_assignments : AssignedSource [*], subtype : ElementReference) : AssignedSource [*]

If the left-hand side is not indexed and is not a feature reference, then the assigned name is considered to have the given
subtype. The type of the right-hand side is then also adjusted as appropriate.

[3] declaredType() : ElementReference

If an assignment expression is a simple assignment, then its declared type is the declared type of the right-hand side
expression. Otherwise it is the type of the assignment expression.

[4+] updateAssignments () : AssignedSource [*]

The assignments after an assignment expression are the assignments after the left-hand side, updated by the assignment from
the assignment statement, if any.

13.2.3 BehaviorinvocationExpression
An invocation of a behavior referenced by name.

Generalizations
* InvocationExpression

Synthesized Properties
e target : QualifiedName

The qualified name of the behavior to be invoked.

Derived Properties
None

Constraints
[1] behaviorInvocationExpressionAlternativeConstructor

The referent may only be a constructor (as a result of the target disambiguating to a feature reference) if this behavior
invocation expression is the expression of an expression statement that is the first statement in the definition for the method
of a constructor operation.

[2] behaviorInvocationExpressionArgumentCompatibility

If the target qualified name does not disambiguate to a feature reference, then each input argument expression must be
assignable to its corresponding parameter and each output argument expression must be assignable from its corresponding
parameter. (Note that this implies that the type of an argument expression for an inout parameter must be the same as the type

Action Language for Foundational UML (ALF), v1.1 207

of that parameter.)

[3] behaviorIlnvocationExpressionFeatureDerivation

If the target qualified name disambiguates to a feature reference, then the feature of a behavior invocation expression is that
feature reference.

[4] behaviorInvocationExpressionReferentConstraint

If the target qualified name does not disambiguate to a feature reference, then it must resolve to a behavior or an association
end. and. if it is a template behavior. then the implicit binding of this template must be legal. Otherwise it must resolve to a
single feature referent according to the overloading resolution rules, unless it is an implicit destructor call (in which case it
has no referent).

[5] behaviorInvocationExpressionReferentDerivation

If the target of a behavior invocation expression resolves to a behavior, then the referent of the expression is that behavior. If
the target disambiguates to a feature reference, then the reference is the operation or signal being invoked. Otherwise, if the
target resolves to a property that is an association end, then the referent is that property.

Helper Operations
[1] adjustAssignments(assignments : AssignedSource [*]. condition : Boolean) : AssignedSource [*]

If the invoked behavior is CollectionFunctions::isEmpty or SequenceFunctions::IsEmpty, then check the argument expression

for known nulls and non-nulls using the given truth condition. If the invoked behavior is CollectionFunctions::notEmpty or
SequenceFunctions::NotEmpty. then check the argument expression for known nulls and non-nulls using the negation of the
given truth condition.

None

13.2.4 BinaryExpression

An expression consisting of an operator acting on two operand expressions.

Generalizations
e Expression

Synthesized Properties
e operandl : Expression

The expression giving the first operand.

e operand2 : Expression
The expression giving the second operand.

e operator : String
The symbol representing the operator.

Derived Properties
None

Constraints

[1] binaryExpressionOperandAssignments

The assignments in the operand expressions of a binary expression must be valid (as determined by the validateAssignments
helper operation).

[2] binaryExpressionOperandMultiplicity

The operands of a binary expression must both have a multiplicity lowerspper bound no less than that given by the
minLowerBound helper operation. The operands of a binary expression must both have a multiplicity upper bound no greater

208 Action Language for Foundational UML (ALF), v1.1

than that given by the maxUpperBound helper operationgres

Helper Operations

[1] minl owerBound() : Integer
By default, the minimum allowed lower bound for an operand of a binary expression is 1.
[2] maxUpperBound() : UnlimitedNatural

By default, the maximum allowed upper bound for an operand of a binary expression is 1.

o

HSP A retHments () . BB@ ean
=

[32] updateAssignments () : AssignedSource [*]

The assignments after a binary expression include all the assignments before the expression that are not reassigned in either
operand expression, plus the new assignments from each of the operand expressions.

[43] validateAssignments () : Boolean

In general the assignments before the operand expressions of a binary expression are the same as those before the binary
expression and, if an assignment for a name is changed in one operand expression, then the assignment for that name may not
change in the other operand expression. (This is overridden for conditional logical expressions.)

13.2.5 BitStringUnaryExpression

Generalizations
e UnaryExpression

Synthesized Properties
None

Derived Properties
* isBitStringConversion : Boolean

Whether BitString conversion is required on the operand expression.

Constraints

[1] bitStringUnaryExpressionlsBitStringConversionDerivation

BitString conversion is required if the operand expression of a BitString unary expression has a type that conforms to type
Integer.

[2] bitStringUnaryExpressionLowerDerivation

A BitString unary expression has a multiplicity lower bound of 1.

[3] bitStringUnaryExpressionOperand

The operand expression of a BitString unary expression must have a type that conforms to type type-BitString or Integer and

multiplicity lower and upper boundsa-muttipheity-upperbound of 1.

[4] bitStringUnaryExpressionTypeDerivation
A BitString unary expression has type BitString.

[5] bitStringUnaryExpressionUpperDerivation
A BitString unary expression has a multiplicity upper bound of 1.

Action Language for Foundational UML (ALF), v1.1 209

Helper Operations
None

13.2.6 BooleanLiteralExpression
An expression that comprises a Boolean literal.

Generalizations
e LiteralExpression

Synthesized Properties
* image : String
The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] booleanLiteralExpressionTypeDerivation

The type of a boolean literal expression is Boolean.

Helper Operations
None

13.2.7 BooleanUnaryExpression

A unary expression with a Boolean operator.

Generalizations
e UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] booleanUnaryExpressionLowerDerivation

A Boolean unary expression has the same multiplicity lower bound as its operand expression.

[2] booleanUnaryExpressionOperand

The operand expression of a Boolean unary expression must have type Boolean and a multiplicity
upper bound of 1.

[3] booleanUnaryExpressionTypeDerivation
A Boolean unary expression has type Boolean.

[4] booleanUnaryExpressionUpperDerivation

A Boolean unary expression has a multiplicity upper bound of 1.

Helper Operations

210 Action Language for Foundational UML (ALF), v1.1

‘ None

13.2.8 CastExpression

An expression used to filter values by type.

Generalizations
e Expression

Synthesized Properties
e operand : Expression
The operand expression of the cast expression.

e typeName : QualifiedName [0..1]

The named type of the cast expression (if any)

Derived Properties
None

Constraints
[1] castExpressionAssignmentsBefore

The assignments before the operand of a cast expression are the same as those before the cast expression.

[2] castExpressionLowerDerivation

If the type of a cast expression is empty. or its type conforms to Integer and the type of its operand expression conforms to
BitString or Real, or its type conforms to BitString or Real and its operand's type conforms to Integer, or its operand's type
conforms to its type. then the multiplicity lower bound of the cast expression is the same as that of its operand expression.
Otherwise it is 0.

[3] castExpressionTypeDerivation

The type of a cast expression is the referent of the given type name (if there is one).

[4] castExpressionTypeResolution
If the cast expression has a type name, then it must resolve to a non-template classifier.

[5] castExpressionUpperDerivation
A cast expression has a multiplicity upper bound that is the same as the upper bound of its operand expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after a cast expression are the same as those after its operand expression.

13.2.9 ClassExtentExpression
An expression used to obtain the objects in the extent of a class.

Generalizations
* Expression

Synthesized Properties
e className : QualifiedName

The name of the class whose extent is to be obtained.
Derived Properties

Action Language for Foundational UML (ALF), v1.1 211

None

Constraints
[1] classExtentExpressionExtentType

The given type name must resolve to a non-template class.

[2] classExtentExpressionLowerDerivation
The multiplicity lower bound of a class extent expression is 0.

[3] classExtentExpressionTypeDerivation
The type of a class extent expression is the given class.

[4] classExtentExpressionUpperDerivation

The multiplicity upper bound of a class expression is *.

Helper Operations
None

13.2.10 ClassificationExpression
An expression used to test the dynamic type of its operand.

Generalizations
e UnaryExpression

Synthesized Properties
* typeName : QualifiedName
The name of the type that the operand is to be tested against.

Derived Properties
e isDirect : Boolean

Whether the test is for the operand to have the given type directly or to only conform to the given type.

e referent : ElementReference
Whether the test is for the operand to have the given type directly or to only conform to the given type.

Constraints
[1] classificationExpressionlsDirectDerivation

A classification expression is direct if its operator is "hastype".

[2] classificationExpressionLowerDerivation

A classification expression has a multiplicity lower bound of 1.

[3] classificationExpressionOperand

The operand expression of a classification expression must have multiplicity lower and upper bounds of 1.

[4] classificationExpressionReferentDerivation
The referent of a classification expression is the classifier to which the type name resolves.

212 Action Language for Foundational UML (ALF), v1.1

[5] classificationExpressionTypeDerivation
A classification expression has type Boolean.

[6] classificationExpressionTypeName

The type name in a classification expression must resolve to a non-template classifier.

[7] classificationExpressionUpperDerivation
A classification expression has a multiplicity upper bound of 1.

Helper Operations

13.2.11 CollectOrlterateExpression

A sequence expansion expression with a collect or iterate operation.

Generalizations
* SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] collectOrlterateExpressionLowerDerivation

A collect or iterate expression has a multiplicity lower bound that is the product of the bounds of its primary and argument
expressions.

[2] collectOrlterateExpressionTypeDerivation
A collect or iterate expression has the same type as its argument expression.

[3] collectOrlterateExpressionUpperDerivation

A collect or iterate expression has a multiplicity upper bound that is the product of the bounds of its primary and argument
expressions.

Helper Operations

None

13.2.12 ConditionalLogicalExpression

A binary expression with a conditional logical expression, for which the evaluation of the second operand expression is
conditioned on the result of evaluating the first operand expression.

Generalizations
* BinaryExpression

Synthesized Properties
None

Action Language for Foundational UML (ALF), v1.1 213

Derived Properties
None

Constraints

[1] conditionallogicalExpressionLowerDerivation

A conditional logfcal expfessien has a multiplicity lower bound of |

[2] conditionalLogicalExpressionOperands

The operands of a conditional logical expression must have a type that conforms to type Boolean.

t3] conditionalLogicalExpressionTypeDerivation
A conditional logical expression has type Boolean.

[4] conditionall ogicalExpressionUpperDerivation

A conditional logical expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

If a name has the same assigned source after the second operand expression as before it, then that is its assigned source after
the cond1t10na1 loglcal expressmn Otherwise 11% a%smned source after the eondluonal logical expression is H-aname-is-

¢ t o5 -COHS GRE after-the conditional logical expression.
the second operand express1on but assi gmd after

itself. If a name is unassigncd before 5 :
it, then it has a multiplicity lower bound of 0 after -
the conditional logical expression-itself.

[2] validateAssignments () : Boolean

The assignments before the first operand expression of a conditional logical expression are the same as those before the
conditional logical expression. The assignments before the second operand expression are the same as those after the first
operand expression, adjusted for known nulls and non-nulls based on the first operand expression being true, for a
conditional-and expression, or false, for a conditional-or expression.

13.2.13 ConditionalTestExpression

An expression that uses the value of one operand expression to condition the evaluation of one of two other operand
expressions.

Generalizations
* Expression

Synthesized Properties
e operand] : Expression
The first operand expression, which provides the condition to be tested.

e operand2 : Expression
The second operand expression, to be evaluated if the condition is true.

e operand3 : Expression

214 Action Language for Foundational UML (ALF), v1.1

The third operand expression, to be evaluated if the condition is false.

Derived Properties
None

Constraints

[12] conditional TestExpressionAssignmentsBefore

The assignments before the first operand expression of a conditional-test expression are the same as those before the
conditional-test expression. The assignments before the second and third operand expressions are the same as those after the
first operand expression.

[22] conditional TestExpressionCondition

The first operand expression of a conditional-test expression must be of a type that conforms to type tpe-Boolean and have
multiplicity lower and upper boundsa-multiplieity-upperbound of 1.

[34] conditional TestExpressionLowerDerivation

The multiplicity lower bound of a conditional-test operator expression is the minimum of the multiplicity lower bounds of its
second and third operand expressions.

[45] conditional TestExpressionTypeDerivation

The type of a conditional-test operator expression is the effective common ancestor (if one exists) of the types of its second
and third operand expressions.

[56] conditional TestExpressionUpperDerivation

The multiplicity upper bound of a conditional-test operator expression is the maximum of the multiplicity upper bounds of its
second and third operand expressions.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

Returns unchanged all assignments for local names that are not reassigned in either the second or third operand expressions.

Any local names that have different assignments after the second and third operand expressions are adjusted to have the
conditional-test expression as their assigned source. If such a local name is defined in one operand expression but not the
other, then it is adjusted to have multiplicity lower bound of 0 after the conditional test expression. If a local name has a new
assignment after each of the second and third expressions, then, after the conditional-test expression, it has a type that is the
effective common ancestor of its type after the second and third operand expressions, adjusted for known null and non-null
names from the first operand expression being true, for the second operand expression, or false, for the third operand
expression, a multiplicity lower bound that is the minimum of the lower bounds after the second and third operand
expressions and a multiplicity upper bound that is the maximum of the upper bounds after the second and third expressions.

13.2.14 EqualityExpression

A binary expression that tests the equality of its operands.

Generalizations
e BinaryExpression

Action Language for Foundational UML (ALF), v1.1 215

Synthesized Properties
None

Derived Properties
* isNegated : Boolean

Whether the test is for being not equal.

¢ isRealConversionl : Boolean
Whether Real conversion is required on the first operand of this expression.

¢ isRealConversion2 : Boolean
Whether Real conversion is required on the second operand of this expression.

Constraints
[1] equalityExpressionlsNegatedDerivation

n=n

An equality expression is negated if its operator is

2] arithmeticExpressionlsRealConversion [Derivation

An equality expression requires Real conversion if the first operand is of type Integer and the second is of type Real.

[3] arithmeticExpressionIsRealConversion2Derivation
An equality expression requires Real conversion if the first operand is of type Real and the second is of type Integer.

[32] equalityExpressionLowerDerivation
An equality expression has a multiplicity lower bound of 1.

[42] equalityExpressionTypeDerivation
An equality expression has type Boolean.

[54] equalityExpressionUpperDerivation
An equality expression has a multiplicity upper bound of 1.

Helper Operations

If the one operand expression has multiplicity 0..0, then check the other operand expression for known nulls and non-nulls,
using the exclusive-or of the given truth condition and whether the equality expression is negated or not.

[2] minLowerBoundH-neNuHArguments () : IntegerBoolean
The minimum lower bound is 0 for operands of equality expressions.

13.2.15 Expression

A model of the common properties derived for any Alf expression.
NOTE: The derivations for all properties of Expression except AssignmentsAfter are specific to its various subclasses.

Generalizations
e SyntaxElement

Synthesized Properties
None

216 Action Language for Foundational UML (ALF), v1.1

Derived Properties
* assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this expression. This includes not only any
assignments made within the expression, but also any assignments that are unchanged from before the expression.

* assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this expression.

* lower : Integer
The statically determined lower bound of the multiplicity of this expression.

* type : ElementReference [0..1]
A reference to the element that specifies the statically determined type for this expression (if any).

e upper : UnlimitedNatural
The statically determined upper bound of the multiplicity of this expression.

Constraints
[1] expressionAssignmentA fterDerivation

The assignments after an expression are given by the result of the updateAssignments helper operation.

[2] expressionUniqueAssignments
No name may be assigned more than once before or after an expression.

Helper Operations
[1] adjustAssignments (_assignments : AssignedSource [*]. condition : Boolean) : AssignedSource [*]

Retums the g LIVGH assignments, adjusted for known nulls known non- -nulls and best known tVDes based on the given truth

behavior anOCEIthI’L sequence operation and classification expressions that may be used to form checks for null and non-null
values and type classification.)

[2] adjustMultiplicity (assignments : AssignedSource [*]. condition : Boolean) : AssignedSource [*]

Returns the given assignments. adjusted for known nulls and non-nulls, based on the given truth condition. By default, no
changes are made. (This operation is overridden for name and assignment expressions that may be used to provide the names
that are checked for being null or non-null.)

classification.)

4] declaredType () : ElementReference

Return the type of the expression, based on the originally declared types of names in the expression. By default, this is the
expression type.

[5+] updateAssignments () : AssignedSource [*]

Returns the assignments from before this expression updated for any assignments made in the expression. By default, this is
the same set as the assignments before the expression. This operation is redefined only in subclasses of Expression for kinds
of expressions that make assignments.

Action Language for Foundational UML (ALF), v1.1 217

13.2.16 ExtentOrExpression

The target of a sequence operation, reduction or expansion expression, which may be either a primary expression or a class
name denoting the class extent.

Generalizations
None

Synthesized Properties
* name : QualifiedName [0..1]

If the target is a qualified name, then that name, before it is disambiguated into either a name expression or a class
name.

* nonNameExpression : Expression [0..1]
The target primary expression, if it is not a qualified name.

Derived Properties
* expression : Expression

The effective expression for the target.

Constraints
[1] extentOrExpressionExpressionDerivation

The effective expression for the target is the parsed primary expression, if the target is not a qualified name, a name
expression, if the target is a qualified name other than a class name, or a class extent expression, if the target is the qualified
name of a class.

Helper Operations
None

13.2.17 FeaturelnvocationExpression
An invocation of a feature referenced on a sequence of instances.

Generalizations
e InvocationExpression

Synthesized Properties
e target : FeatureReference [0..1]

A feature reference to the target feature to be invoked.

Derived Properties
None

Constraints
[1] featurelnvocationExpressionAlternativeConstructor

An alternative constructor invocation may only occur in an expression statement as the first statement in the definition for the
method of a constructor operation.

[2] featurelnvocationExpressionFeatureDerivation

If a feature invocation expression has an explicit target, then that is its feature. Otherwise, it is an alternative constructor call
with its feature determined implicitly.

[3] featurelnvocationExpressionlmplicitAlternativeConstructor
If there is no target feature expression, then the implicit feature with the same name as the target type must be a constructor.

218 Action Language for Foundational UML (ALF), v1.1

[4] featurelnvocationExpressionReferentDerivation

If a feature invocation expression is an implicit object destruction, it has no referent. Otherwise, its referent is the operation or
signal being invoked.

[5] featurelnvocationExpressionReferentExists

If a feature invocation expression is not an implicit destructor call, then it must be possible to determine a single valid
referent for it according to the overloading resolution rules.

Helper Operations
None

13.2.18 FeatureLeftHandSide
A left-hand side that is a property reference.

Generalizations
e LeftHandSide

Synthesized Properties
e feature : FeatureReference

The structural feature being assigned.

Derived Properties
None

Constraints
[1] featureLeftHandSideAssignmentA fterDerivation

The assignments after a feature left-hand side are the assignments after the expression of the feature reference or, if there is
an index, those after the index expression.

[2] featureLeftHandSideAssignmentBeforeDerivation

The assignments before the expression of the feature reference of a feature left-hand side are the assignments before the
feature left-hand side.

[3] featureLeftHandSideAssignmentsBefore

If a feature left-hand side has an index, then the assignments before the index expression are the assignments after the
expression of the feature reference.

[4] featureLeftHandSideFeatureExpression
The expression of the feature reference of a feature left-hand side must have a multiplicity upper bound of 1.

[5] featureLeftHandSideIndexedFeature

If a feature left-hand side has an index, then the referent of the feature must be ordered and non-unique.

[6] featureLeftHandSideLowerDerivation
If a feature left-hand side is indexed, then its lower bound is 0+. Otherwise, its lower bound is that of its referent.

[7] featureLeftHandSideReferentConstraint

The feature of a feature-left hand side must have a single referent that is a structural feature.

[8] featureLeftHandSideReferentDerivation
The referent of a feature left-hand side is the structural feature to which the feature reference of the left-hand side resolves.

[9] featureLeftHandSideTypeDerivation

Action Language for Foundational UML (ALF), v1.1 219

The type of a feature left-hand side is the type of its referent.

[10] featureLeftHandSideUpperDerivation

If a feature left-hand side is indexed, then its upper bound is 1. Otherwise, its upper bound is that of its referent.

Helper Operations
None

13.2.19 FeatureReference

A reference to a structural or behavioral feature of the type of its target expression or a binary association end the opposite
end of which is typed by the type of its target expression.

Generalizations
e SyntaxFlement

Synthesized Properties
* expression : Expression

The target expression.

* nameBinding : NameBinding
The name of the feature.

Derived Properties
e referent : ElementReference [*]

The features referenced by this feature reference.

Constraints
[1] featureReferenceReferentDerivation

The features referenced by a feature reference include the features of the type of the target expression and the association
ends of any binary associations whose opposite ends are typed by the type of the target expression.

[2] featureReferenceTargetType
The target expression of the feature reference may not be untyped, nor may it have a primitive or enumeration type.

Helper Operations
None

13.2.20 ForAllOrExistsOrOneExpression

A sequence expansion expression with a forAll, exists or one operation.

Generalizations
* SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] forAllOrExistsOrOneExpressionArgument

220 Action Language for Foundational UML (ALF), v1.1

‘ The argument of a forAll, exists or one expression must have type Boolean and a multiplicity upper
bound of 1.

[2] forAllIOrExistsOrOneExpressionLowerDerivation
A forAll, exists or one expression has a multiplicity lower bound of 1.

[3] forAllOrExistsOrOneExpressionTypeDerivation
A forAll, exists or one expression has the type Boolean.

[4] forAllOrExistsOrOneExpressionUpperDerivation
A forAll, exists or one expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.21 IncrementOrDecrementExpression

A unary expression with either an increment or decrement operator.

Generalizations
* Expression

Synthesized Properties

e isPrefix : Boolean = false

Whether the operator is being used as a prefix or a postfix.

e operand : LeftHandSide

The operand, which must have the form of an assignment left-hand side.

Derived Properties
e assignment : AssignedSource [0..1]
If the operand is a name, then the new assigned source for that name.

* expression : Expression

The effective expression used to obtain the original value of the operand to be updated.

e feature : ElementReference [0..1]
If the operand is a feature, then the referent for that feature.

e isDataValueUpdate : Boolean

Whether this expression updates an attribute of a data value held in a local name or parameter.

e isFeature : Boolean

Whether the operand is a feature or not.

e isIndexed : Boolean
If the operand is a feature, whether it has an index or not.

Constraints
[1] incrementOrDecrementExpressionAssignmentDerivation

Action Language for Foundational UML (ALF), v1.1 221

If the operand of an increment or decrement expression is a name, then the assignment for the expression is a new assigned
source for the name with the expression as the source.

[2] incrementOrDecrementExpressionAssignmentsBefore

The assignments before the operand of an increment or decrement expression are the same as those before the increment or
decrement expression.

[3] incrementOrDecrementExpressionExpressionDerivation

The effective expression for the operand of an increment or decrement expression is the operand treated as a name
expression, property access expression or sequence access expression, as appropriate for evaluation to obtain the original
value to be updated.

[4] incrementOrDecrementExpressionFeatureDerivation

If the operand of an increment or decrement expression is a feature, then the referent for the operand.

[5] incrementOrDecrementExpressionlsDataValueUpdateDerivation

An increment or decrement expression is a data value update if its operand is an attribute of a data value held in a local name
or parameter.

[6] incrementOrDecrementExpressionlsFeatureDerivation

An increment or decrement expression has a feature as its operand if the operand is a feature left-hand side or a name left-
hand side for a name that disambiguates to a featureki >

[7] incrementOrDecrementExpressionlsindexedDerivation
An increment or decrement expression is indexed if its operand is indexed.

[8] incrementOrDecrementExpressionLowerDerivation

An increment or decrement expression has the same multiplicity lower bound as its operand expression.

[9] incrementOrDecrementExpressionOperand

The operand expression must have a type that conforms to type Integer or Real and a multiplicity upper bound of 1

[10] incrementOrDecrementExpressionTypeDerivation

If the operand of an increment or decrement expression is of a type that conforms to type Integer or Real, then the type of the

expression is Integer or Real, respectively. Otherwise the expression has no type.

[11] incrementOrDecrementExpressionUpperDerivation
An increment or decrement expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after an increment and decrement expression include all those after its operand expression. Further, if the
operand expression, considered as a left hand side, is a local name, then this is reassigned.

13.2.22 InstanceCreationExpression

An expression used to create a new instance of a class or data type.

Generalizations

222 Action Language for Foundational UML (ALF), v1.1

* InvocationExpression

Synthesized Properties
e constructor : QualifiedName

The name of the class constructor operation to be invoked or the name of a class or data type.

Derived Properties
e isConstructorless : Boolean

Whether this is a constructorless object creation expression.

* isObjectCreation : Boolean

Whether this is an object creation expression or a data value creation expression.

Constraints
[1] instanceCreationExpressionConstructor

The constructor name must resolve to a constructor operation (that is compatible with the tuple argument expressions), a class
or a data type, but not both a class and a data type.

[2] instanceCreationExpressionConstructorlessLegality

If the expression is constructorless, then its tuple must be empty and the referent class must not have any owned operations
that are constructors.

[3] instanceCreationExpressionDataTypeCompatibility

If an instance creation expression is a data value creation (not an object creation), then the tuple argument expressions are
matched with the attributes of the named type.

[4] instanceCreationExpressionFeatureDerivation

There is no feature for an instance creation expression.

[5] instanceCreationExpressionlsConstructorlessDerivation
An instance creation expression is constructorless if its referent is a class.

[6] instanceCreationExpressionlsObjectCreationDerivation

An instance creation expression is an object creation if its referent is not a data type.

[7] instanceCreationExpressionReferent

If the referent of an instance creation expression is an operation, then the class of that operation must not be abstract.
Otherwise, the referent is a class or data type, which must not be abstract.

[8] instanceCreationExpressionReferentDerivation

The referent of an instance creation expression is normally the constructor operation, class or data type to which the
constructor name resolves. However, if the referent is an operation whose class is abstract or is a class that is itself abstract,
and there is an associated Impl class constructor, then the referent is the Impl class constructor.

Helper Operations
[1] parameterElements () : ElementReference [*]

Returns the parameters of a constructor operation or the attributes of a data type, or an empty set for a constructorless
instance creation.

13.2.23 InvocationExpression
An expression denoting the invocation of a behavior or operation, or the sending of a signal.

Action Language for Foundational UML (ALF), v1.1 223

Generalizations

Expression

Synthesized Properties

tuple : Tuple
The tuple for the invocation expression.

Derived Properties

boundReferent : ElementReference [0..1]

[f the referent of the invocation expression is a template behavior, then the implicit bound element for the referent

otherwise the same as the referent.

feature : FeatureReference [0..1]

For an invocation of a feature, the reference to that feature. This property is set for a feature invocation expression or
for an expression initially parsed as a behavior invocation expression that disambiguates to a feature invocation

expression.

isAssociationEnd : Boolean

Whether this is an association read or not.

isBehavior : Boolean

Whether this is a behavior invocation or not.

isDestructor : Boolean

If this is an operation call, whether the operation is a destructor.

isImplicit : Boolean
Whether this is an implicit object destruction.

isOperation : Boolean
Whether this is an operation call or not.

isSignal : Boolean
Whether this is a signal send or not.

parameter : ElementReference [*]

Element references to the parameters of the referent, in order.

referent : ElementReference [0..1]

The behavior, operation or signal being invoked. The derivation of this property is specific to each kind of

invocation expression.

Constraints
[1] invocationExpressionAssignmentAfter

[f the invocation is a sequence feature invocation, then the assignments after the tuple of the invocation expression must be

the same as the assignments before.

[2] invocationExpressionAssignmentsBefore

The assignments before the target expression of the feature reference of an invocation expression (if any) are the same as the
assignments before the invocation expression.

[3] invocationExpressionBoundReferentDerivation

224

Action Language for Foundational UML (ALF), v1.1

[f the referent of an invocation expression is a template behavior, then the bound referent is the implicit template binding of
this template; otherwise it is the same as the referent. For an implicit template binding, the type arguments of for the template
are inferred from the types of the arguments for in and inout parameters of the template behavior. If the resulting implicit
template binding would not be a legal binding of the template behavior, then the invocation expression has no bound referent.

[42] invocationExpressionlsAssociationEndDerivation

An invocation expression is an association end read if its referent is an association end.

[53] invocationExpressionlsBehaviorDerivation
An invocation expression is a behavior invocation if its referent is a behavior.

[64] invocationExpressionlsDestructorDerivation

An invocation expression is a destructor call either implicitly or if it is an explicit operation call to a destructor operation.

[85] invocationExpressionlsImplicitDerivation
An invocation expression is an implicit object destruction if it has a feature with the name "destroy" and no explicit referents.

[76] invocationExpressionlsOperationDerivation

An invocation expression is an operation call if its referent is an operation.

[97] invocationExpressionlsSignalDerivation

An invocation expression is a signal send if its referent is a signal.

[108] invocationExpressionLowerDerivation

If the referent of an invocationExpression is an operation or behavior with a return parameter, then the lower bound of the
expression is that of the return parameter. If the referent is a classifier, then the lower bound is 1. If the referent is a property,
then the lower bound is that of the property. Otherwise the lower bound is 0.

[119] invocationExpressionParameterDerivation
The parameters of an invocation expression are given by the result of the parameterElements helper operation.

[12] invocationExpressionTemplateParameters

[f the referent of the invocation expression is a template, then all of its template parameters must be classifier template
parameters. Note: This allows for the possibility that the referent is not an Alf unit, in which case it could have non-classifier
template parameters.

[1348] invocationExpressionTypeDerivation

If the (bound) referent of an invocationExpression is an operation or behavior with a return parameter, then the type of the
expression is that of the return parameter (if any). If the referent is a classifier, then the type is the referent. If the referent is a
property, then the type is that of the property. Otherwise the expression has no type.

[14+] invocationExpressionUpperDerivation

If the referent of an invocationExpression is an operation or behavior with a return parameter, then the upper bound of the
expression is that of the return parameter. If the referent is a classifier, then the upper bound is 1. If the referent is a property,
then the upper bound is that of the property. Otherwise the upper bound is 0.

Helper Operations
[1] parameterElements () : ElementReference [*] {ordered}

Returns references to the elements that act as the parameters of the referent. If the referent is a behavior or operation, these
are the owned parameters, in order. If the (bound) referent is an association end, then the parameters are the other association
ends of the association of the referent end, which are treated as if they were in parameters. Otherwise (by default), they are
any properties of the referent (e.g., signal attributes), which are treated as if they were in parameters. (This is defined as a

Action Language for Foundational UML (ALF), v1.1 225

helper operation, so that it can be overridden by subclasses of InvocationExpression, if necessary.)

[2] updateAssignments () : AssignedSource [*]

The assignments after an invocation expression are the same as those after the tuple of the expression.

13.2.24 IsolationExpression
An expression used to evaluate its operand expression in isolation.

Generalizations
* UnaryExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] isolationExpressionLowerDerivation

An isolation expression has the multiplicity lower bound of its operand expression.

[2] isolationExpressionTypeDerivation

An isolation expression has the type of its operand expression.

[3] isolationExpressionUpperDerivation
An isolation expression has the multiplicity upper bound of its operand expression.

Helper Operations
None

13.2.25 IsUniqueExpression

A sequence expansion expression with a isUnique.

Generalizations
* SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] isUniqueExpressionExpressionArgument

The argument of an isUnique expression must have a multiplicity upper bound of 1.

[2] isUniqueExpressionLowerDerivation
An isUnique expression has a multiplicity lower bound of 1.

[3] isUniqueExpressionTypeDerivation
An isUnique expression has the type Boolean.

[4] isUniqueExpressionUpperDerivation

226 Action Language for Foundational UML (ALF), v1.1

An isUnique expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.26 LeftHandSide

The left-hand side of an assignment expression.
NOTE: The derivations for the derived properties of LeftHandSide are specific to its various subclasses.

Generalizations
* SyntaxElement

Synthesized Properties
* index : Expression [0..1]
An optional expression that evaluates to an index into the values of an ordered sequence.

Derived Properties
* assignmentAfter : AssignedSource [*]

The assignments after the left-hand side.

* assignmentBefore : AssignedSource [*]

e lower : Integer
The statically determined lower bound of the multiplicity of this left-hand side.

e referent : ElementReference [0..1]

A reference to the assignable element denoted by this left-hand side, if one exists (i.e., the left-hand side is not for
the first assignment of a local name).

* type : ElementReference [0..1]
A reference to the element that specifies the statically determined type of this left-hand side (if any).

* upper : UnlimitedNatural
The statically determined upper bound of the multiplicity of this left-hand side.

Constraints
[1] leftHandSideIndexExpression

If a left-hand side has an index, then the index expression must have a multiplicity upper bound no greater than 1.

Helper Operations
None

13.2.27 LinkOperationExpression

An expression used to create or destroy the links of an association.

Generalizations
e InvocationExpression

Synthesized Properties
e associationName : QualifiedName

The qualified name of the association whose links are being acted on.

Action Language for Foundational UML (ALF), v1.1 227

e operation : String
The name of the link operation.

Derived Properties
e isClear : Boolean

Whether the operation is clearing the association.

e isCreation : Boolean

Whether the operation is for link creation.

Constraints
[1] linkOperationExpressionArgumentCompatibility

Each argument expression must be assignable to its corresponding expression.

[2] linkOperationExpressionAssociationReference

The qualified name of a link operation expression must resolve to a single association.

[3] linkOperationExpressionFeatureDerivation
There is no feature for a link operation expression.

[4] linkOperationExpressionlsClearDerivation

A link operation expression is for clearing an association if the operation is "clearAssoc".

[5] linkOperationExpressionlsCreationDerivation
A link operation expression is for link creation if its operation is "createLink".

[6] linkOperationExpressionReferentDerivation
The referent for a link operation expression is the named association.

Helper Operations
[1] parameterElements () : ElementReference [*]

For a clear association operation, returns a single, typeless parameter. Otherwise, returns the ends of the named association.

13.2.28 LiteralExpression

An expression that comprises a primitive literal.

Generalizations
e Expression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] literalExpressionLowerDerivation

The multiplicity lower bound of a literal expression is always 1.

[2] literalExpressionUpperDerivation
The multiplicity upper bound of a literal expression is always 1.

Helper Operations

228 Action Language for Foundational UML (ALF), v1.1

None

13.2.29 LogicalExpression

A binary expression with a logical operator.

Generalizations
e BinaryExpression

Synthesized Properties
None

Derived Properties
e isBitStringConversion] : Boolean

Whether the first operand expression requires BitString conversion.

e isBitStringConversion2 : Boolean
Whether the second operand expression requires BitString conversion.

¢ isBitWise : Boolean

Whether this is a bit-wise logical operation on bit strings.

Constraints
[1] logicalExpressionlsBitStringConversion1Derivation

BitString conversion is required if the first operand expression of a logical expression has type
Integer.

[2] logicalExpressionlsBitStringConversion2Derivation

BitString conversion is required if the second operand expression of a logical expression has type
Integer.

[3] logicalExpressionlsBitWiseDerivation
A logical expression is bit-wise if the type of its first operand is not Boolean.

[4] logicalExpressionLowerDerivation

[5] logicalExpressionOperands

The operands of a logical expression must have type Boolean, Integer or BitString. However, if one of
the operands is Boolean, then the other must also be Boolean.

[6] logicalExpressionTypeDerivation
A logical expression has type Boolean if it is not bit-wise and type BitString if it is bit-wise.

[7] logicalExpressionUpperDerivation
A logical expression has a multiplicity upper bound of 1.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 229

13.2.30 NameBinding

An unqualified name, optionally with a template binding.

Generalizations
¢ SyntaxElement

Synthesized Properties
* binding : TemplateBinding [0..1]
The template binding to be used, if the name denotes a template.

* name : String

An unqualified name. For names that appeared as unrestricted names in the input text, the string value here excludes
the surrounding single quote characters and has any escape sequences resolved to the denoted special characters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.31 NamedExpression

A pairing of a parameter name and an argument expression in a tuple.

Generalizations
e SyntaxElement

Synthesized Properties
e expression : Expression

The argument expression.

* index : Expression [0..1]

An expression whose value gives an index into an ordered parameter. (This is only used in link operation
expressions.)

* name : String

The parameter name.

Derived Properties
* isBitStringConversion : Boolean

Whether the argument expression requires bit string conversion.

¢ isCollectionConversion : Boolean

Whether the argument expression requires collection conversion.

Constraints
[1] namedExpressionlsBitStringConversionDerivation

230 Action Language for Foundational UML (ALF), v1.1

Bit string conversion is required if the type of the type of the corresponding parameter is BitString, or a collection class
, and the type of the argument expression is not BitString.

[2] namedExpressionlsCollectionConversionDerivation

Collection conversion is required if the type of the corresponding parameter is a collection class and the type of the argument
expression is not.

Helper Operations
None

13.2.32 NamedTemplateBinding

A template binding in which the arguments are matched to formal template parameters by name.

Generalizations
* TemplateBinding

Synthesized Properties
e substitution : TemplateParameterSubstitution [1..*]
The substitutions of arguments for template parameters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.33 NamedTuple

A tuple in which the arguments are matched to parameters by name.

Generalizations
e Tuple

Synthesized Properties
e namedExpression : NamedExpression [*]

The argument expressions for this tuple paired with the corresponding parameter names.

Derived Properties
None

Constraints
[1] namedTupleArgumentNames

The name of a named expression of a named tuple must be the name of a parameter of the invocation the tuple is for. No two
named expressions may have the same name.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 231

13.2.34 NameExpression

An expression that comprises a name reference.

Generalizations
e Expression

Synthesized Properties
* name : QualifiedName

The qualified name referenced in this expression. (For a local name, this will actually have no qualification.)

Derived Properties
* assignment : AssignedSource [0..1]
The assigned source for the referenced name, if the name is a local or parameter name.

e enumerationLiteral : ElementReference [0..1]

The identified enumeration literal, if the referenced name is for an enumeration literal.

* propertyAccess : PropertyAccessExpression [0..1]
The equivalent property access expression, if the referenced name disambiguates to a feature reference.

Constraints

[1] nameExpressionAssignmentDerivation

If the name in a name expression is a local name or parameter name for an out parameter, then its assignment is its assigned
source before the expression. If the name is a parameter name for an in or inout parameter, then its assignment is its
assigned source before the expression, if it has one, and, otherwise, it is a new assignment whose source is the named
parameter and whose type and multiplicity are those of the parameter.

[2] nameExpressionEnumerationLiteralDerivation

If the name in a name expression resolves to an enumeration literal name, then that is the enumeration literal for the
expression.

[3] nameExpressionLowerDerivation
The multiplicity lower bound of a name expression is determined by its name.

[4] nameExpressionProperty AccessDerivation

If the name in a name expression disambiguates to a feature reference, then the equivalent property access expression has the
disambiguation of the name as its feature. The assignments before the property access expression are the same as those before
the name expression.

[5] nameExpressionResolution

If the name referenced by this expression is not a disambiguated feature reference or a local or parameter name, then it must
resolve to exactly one enumeration literal.

[6] nameExpressionTypeDerivation

The type of a name expression is determined by its name. If the name is a local name or parameter with an assignment, then
the type of the name expression is the best known type of that assignment. If the name is an enumeration literal, then the type
of the name expression is the corresponding enumeration. If the name disambiguates to a feature reference, then the type of
the name expression is the type of the equivalent property access expression.

[7] nameExpressionUpperDerivation

232 Action Language for Foundational UML (ALF), v1.1

The multiplicity upper bound of a name expression is determined by its name.

Helper Operations
[1] adjustMultiplicity(assignments : AssignedSource [*]. condition : Boolean) : AssignedSource [*]

[f the name does not disambiguate to a feature reference. then it is considered known null if the condition is true and known
non-null if the condition is false.

[2] adjustType(assignments : AssignedSource [*], subtype : ElementReference) : AssignedSource [*]

If the name does not disambiguate to a feature reference. then it is considered to have the given subtype.

[3] declaredType() : ElementReference

If a name expression has a derived assignment, then its declared type is the type of that assienment. Otherwise it is the same
as the type of the expression.

[4+] updateAssignments () : AssignedSource [*]

If propertyAccess is not empty (i.e., if the referenced name disambiguates to a feature reference), then return the assignments
after the propertyAccess expression. Otherwise, return the result of the superclass updateAssignments operation.

13.2.35 NameLeftHandSide
A left-hand side that is a name.

Generalizations
e [eftHandSide

Synthesized Properties
* target : QualifiedName

The name that is the target of the assignment.

Derived Properties
None

Constraints
[1] nameLeftHandSideAssignmentAfterDerivation

If a name left-hand side has an index, then the assignments after the left-hand side are the same as the assignments after the
index. If the left-hand side has no index, but its target disambiguates to a feature reference, then the assignments after the left-
hand side are the assignments after the feature expression. Otherwise the assignments after the left-hand side are the same as
the assignments before the left-hand side.

[2] nameLeftHandSideAssignmentsBefore

If the target of a name left-hand side disambiguates to a feature reference, then the assignments before the expression of the
feature reference are the assignments before the left-hand side. If a name left-hand side has an index, then the target must
either disambiguate to a feature reference or already have an assigned source, and the assignments before the index
expression are the assignments before the left-hand side or, if the target disambiguates to a feature reference, the assignments
after the expression of the feature reference.

[3] namel eftHandSideFeatureExpression
[f the target of a name left-hand side disambiguates to a feature reference, then the expression of the feature reference must
have a multiplicity upper bound of 1.

[4] nameLeftHandSideIndexedFeature

If the target of a name left-hand side disambiguates to a feature reference, and the left-hand side has an index, then the
referent of the feature reference must be ordered and non-unique.

Action Language for Foundational UML (ALF), v1.1 233

\ [54] nameLeftHandSideLowerDerivation

\ If a name left-hand side is indexed, then its lower bound is 0+. Otherwise, if the left-hand side is for a local name with an
assignment, than its lower bound is that of the assignment, else, if it has a referent, then its lower bound is that of the referent.

\ [65] nameLeftHandSideNontemplateTarget
The target of a name left-hand side must not have a template binding.

\ [76] nameLeftHandSideReferentDerivation

If the target of a name left-hand side disambiguates to a structural feature, then the referent of the left-hand side is that
feature. If the target resolves to a parameter, then the referent is that parameter. If the target resolves to a local name, then the
referent is the assigned source for that local name, if it has one.

‘ [87] nameLeftHandSideTargetAssignment

The target of a name left hand side may not already have an assigned source that is a loop variable definition, an annotation, a
sequence expansion expression or a parameter that is an in parameter.

[9¢] nameLeftHandSideTargetResolution

If the target of a name left-hand side is qualified, then, if it does not disambiguate to a feature, it must have a referent that is a
parameter of an operation or behavior that is the current scope the left-hand is in, and, if it does disambiguate to a feature, it
must have a single referent that is a structural feature.

[109] nameLeftHandSideTypeDerivation

If a name left-hand side is for a local name with an assignment, then its type is that of that assignment. Otherwise, if the left-
hand side has a referent, then its type is the type of that referent.

[] nameLeftHandSideUpperDerivation

If a name left-hand side is indexed, then its upper bound is 1. Otherwise, if the left-hand side is for a local name with an
assignment, than its upper bound is that of the assignment, else, if it has a referent, then its upper bound is that of the referent.

Helper Operations
None

13.2.36 NaturalLiteralExpression

An expression that comprises a natural literal.

Generalizations
* LiteralExpression

Synthesized Properties
* image : String
The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] naturalLiteralExpressionTypeDerivation

The type of a natural literal is the Alf library type Natural.
NOTE: If the context of a natural literal expression unambiguously requires either an Integer or an UnlimitedNatural value,

then the result of the literal expression is implicitly downcast to the required type. If the context is ambiguous, however, than
an explicit cast to Integer or UnlimitedNatural must be used.

234 Action Language for Foundational UML (ALF), v1.1

Helper Operations
None

13.2.37 NullCoalescingExpression

An expression that evaluates to the result of its first operand expression, unless that result is null and it has a second operand
expression, in which case it evaluates to the result of its second operand expression.

Generalizations

e BinaryExpression

Synthesized Properties

None

Derived Properties

None
Constraints

1] nullCoalescingExpressionAssignmentsBefore

The assignments before the first operand expression of a null-coalescing expression are the same as those before the null-
coalescing expression. The assignments before the second operand expression are the same as those after the first operand
expression.

2] nullCoalescingExpressionLowerDerivation

The multiplicity lower bound of a null-coalescing expression is the multiplicity lower bound of its first greater than 0;
otherwise it is 1. if the multiplicity lower bound of its second operand expression is greater than 0; otherwise, it is 0.

3] nullCoalescingExpressionTypeDerivation

If one of the operand expressions of a null-coalescing expression is identically null (untyped with multiplicity 0..0), then the

type of the null-coalescing expression is the same as the type of the other operand expressions. Otherwise, the type of a null-
coalescing expression is the effective common ancestor of the types of its operands, if one exists. and empty. if it does not.

4] nullCoalescingExpressionUpperDerivation

The multiplicity upper bound of a null-coalescing expression is the maximum of the multiplicity upper bounds of its
operands.

Helper Operations
1] minL.owerBound() : Integer
The minimum lower bound of an operand of a null-coalescing expression is 0.

[2] maxUpperBound() : UnlimitedNatural

The maximum upper bound of an operand of a null-coalescing expression is * (unbounded).

3] updateAssignments() : AssignedSource [*

If a name has the same assigned source after the second operand expression of a null-coalescing expression as before it, that
is its assigned source after the null-coalescing expression. Otherwise, its assigned source after the null-coalescing expression

is the null-coalescing expression. If a name is unassigned before the second operand expression but assigned after it, then it
has a multiplicity lower bound of 0 after the null-coalescing expression.

13.2.38 NumericUnaryExpression
A unary expression with a numeric operator.

Generalizations
* UnaryExpression

Action Language for Foundational UML (ALF), v1.1 235

Synthesized Properties
None

Derived Properties
None

Constraints
[1] numericUnaryExpressionLowerDerivation

A numeric unary expression has the same multiplicity lower bound as its operand expression.

[2] numericUnaryExpressionOperand

The operand expression must have a type that conforms to type Integer or Real and a multiplicity upper bound of 1.

[3] numericUnaryExpressionTypeDerivation
If the operand of a numeric unary expression is of a type that conforms to type Integer, then the expression is Integer. Of the
operand is of a type that conforms to type Real, then the type of the expression is Real. Otherwise it has no type.

[4] numericUnaryExpressionUpperDerivation
A numeric unary expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.39 OutputNamedExpression

A named argument expression for an output parameter.

Generalizations
e NamedExpression

Synthesized Properties
None

Derived Properties
e leftHandSide : LeftHandSide

The argument expression considered as an assignment left-hand side.

Constraints
[1] outputNamedExpressionForm

The argument for an output parameter must be either be null, a name expression, a property access expression, or a sequence
access expression whose primary expression is a name expression or a property access expression.

[2] outputNamedExpressionLeftHandSideDerivation

The equivalent left-hand side for an output named expression depends on the kind of expression. If the expression is a name
expression with no disambiguation, then the left-hand side is a name left-hand side with the name from the name expression.
If the expression is a name expression that disambiguates to a feature reference, then the left-hand side is a feature left-hand
side for that feature reference. If the expression is a property access expression, then the left-hand side is a feature left-hand
side for the feature reference of the property access expression. If the expression is a sequence access expression, then the
left-hand side is a name left-hand side or feature left-hand side, as above, depending on whether the primary expression of the

236 Action Language for Foundational UML (ALF), v1.1

sequence access expression is a name expression or property access expression, and an index given by the index expression
of the sequence access expression. Otherwise the left-hand side is empty.

Helper Operations
None

13.2.40 PositionalTemplateBinding

A template binding in which the arguments are matched to formal template parameters in order by position.

Generalizations
e TemplateBinding

Synthesized Properties
e argumentName : QualifiedName [1..*]
The arguments for this template binding, to be matched by position to the template parameters.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.41 PositionalTuple

A tuple in which the arguments are matched to parameters in order by position.

Generalizations
e Tuple

Synthesized Properties
* expression : Expression [*]
The argument expressions for this tuple, to be matched by position to the invocation parameters.

Derived Properties
None

Constraints
[1] positional TupleArguments

A positional tuple must not have more arguments than the invocation it is for has parameters.

Helper Operations
None

13.2.42 PropertyAccessExpression

An expression comprising a reference to a structural feature.

Generalizations
* Expression

Action Language for Foundational UML (ALF), v1.1 237

Synthesized Properties
e featureReference : FeatureReference

A reference to a structural feature.

Derived Properties
e feature : ElementReference

The referenced structural feature.

Constraints
[1] property AccessExpressionAssignmentsBefore

The assignments before the expression of the feature reference of a property access expression are the same as before the
property access expression.

[2] property AccessExpressionFeatureDerivation
The feature of a property access expression is the structural feature to which its feature reference resolves.

[3] propertyAccessExpressionFeatureResolution
The feature reference for a property access expression must resolve to a single structural feature.

[4] propertyAccessExpressionLowerDerivation

The multiplicity lower bound of a property access expression is given by the product of the multiplicity lower bounds of the
referenced feature and the target expression.

[5] property AccessExpressionTypeDerivation
The type of a property access expression is the type of the referenced feature.

[6] propertyAccessExpressionUpperDerivation

The multiplicity upper bound of a property access expression is given by the product of the multiplicity upper bounds of the
referenced feature and the target expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after a property access expression are the same as those after the target expression of its feature reference.

13.2.43 QualifiedName

The representation of a qualified name as a sequence of individual simple names.

Generalizations
e SyntaxElement

Synthesized Properties
* isAmbiguous : Boolean = false

Whether this qualified name is ambiguous.

* nameBinding : NameBinding [*]
The sequence of individual name bindings in this qualified name.

Derived Properties
e disambiguation : FeatureReference [0..1]

The disambiguation into a feature reference of a syntactic element initially parsed as a qualified name.

e isFeatureReference : Boolean

238 Action Language for Foundational UML (ALF), v1.1

Indicates whether this qualified name has been disambiguated to a feature reference.

e pathName : String
The complete path name for the qualified name, with individual name bindings separated by "::" punctuation.

e qualification : QualifiedName [0..1]
The qualified name corresponding to the qualification part of this qualified name, if any.

* referent : ElementReference [*]

The possible referents to which this qualified name may resolve. (Note that the UML rules for namespaces in
general allow a namespace to contain elements of different kinds with the same name.) If the qualified name is for a
template instantiation, then the referent is the equivalent bound element.

* templateName : QualifiedName [0..1]

If this qualified name is for a template binding, then the name of the template for which this qualified name is a
binding.

* unqualifiedName : NameBinding
The rightmost individual name binding in the qualified name, without the qualification.

Constraints
[1] qualifiedNameDisambiguationDerivation

If a qualified name is not ambiguous or it has a qualification that resolves to a namespace, then it is has no disambiguation.
Otherwise, its disambiguation is a feature reference with a name given by the unqualified name of the qualified name and a
target expression determined by the disambiguation of the qualification of the qualified name.

[2] qualifiedNamelsFeatureReferenceDerivation

A qualified name is a feature reference is its disambiguation is not empty.

[3] qualifiedNameLocalName

If a qualified name is a local name, then the reference must be within the same local scope as the definition of the named
element.

[4] qualifiedNameNonLocalUnqualifiedName
If a qualified name is an unqualified, non-local name, then it must be visible in the current scope of the use of the name.

[5] qualifiedNamePathNameDerivation

The path name for a qualified name consists of the string representation of each of the name bindings, separated by "::"
punctuation. The string representation of a name binding is its name followed by the representation of its template binding, if
it has one. The string representation of a positional template binding consists of an ordered list of the path names of its
argument qualified names separated by commas, all surrounded by the angle brackets "<" and ">". The string representation
of a named template binding consists of an ordered list of its template parameter substitutions, each consisting of the formal
parameter name followed by "=>" followed by the path name of the argument qualified name, separated by commas, all
surrounded by the angle brackets "<" and ">".

[6] qualifiedNameQualificationDerivation

The qualification of a qualified name is a empty if the qualified name has only one name binding. Otherwise it is the
qualified name consisting of all the name bindings of the original qualified name except for the last one. The qualification of
a qualified name is considered ambiguous if the qualified name is ambiguous and has more than two name bindings.

[7] qualifiedNameQualifiedResolution

Action Language for Foundational UML (ALF), v1.1 239

If a qualified name has a qualification, then its unqualified name must name an element of the namespace named by the
qualification, where the first name in the qualification must name an element of the current scope.

[8] qualifiedNameReferentDerivation

The referents of a qualified name are the elements to which the name may resolve in the current scope, according to the UML
rules for namespaces and named elements.

[9] qualifiedNameTemplateBinding

If the unqualified name of a qualified name has a template binding, then the template name must resolve to a template. The
template binding must have an argument name for each of the template parameters and each argument name must resolve to a
classifier. If the template parameter has constraining classifiers, then the referent of the corresponding argument name must
conform to all those constraining classifiers.

[10] qualifiedNameTemplateNameDerivation

If the last name binding in a qualified name has a template binding, then the template name is a qualified name with the same
template bindings as the original qualified name, but with the template binding removed on the last name binding.

[11] qualifiedNameUnqualifiedNameDerivation
The unqualified name of a qualified name is the last name binding.

Helper Operations
None

13.2.44 ReallLiteralExpression

An expression that comprises a real literal.

Generalizations
e LiteralExpression

Svynthesized Properties

image : String

The textual image of the literal token for this expression.

Derived Properties
None

Constraints
[1] realLiteralExpressionTypeDerivation

The type of a real literal expression is the Alf library type Real.

Helper Operations
None

13.2.45 RelationalExpression
A binary expression with a relational operator.

Generalizations
* BinaryExpression

Synthesized Properties
None

Derived Properties
e isReal : Boolean

240 Action Language for Foundational UML (ALF), v1.1

Whether this is a Real comparison.

e isRealConversionl : Boolean

Whether Real conversion is required on the first operand of this expression.

e isRealConversion2 : Boolean

Whether Real conversion is required on the second operand of this expression.

e isUnlimitedNatural : Boolean
Whether this is an UnlimitedNatural comparison.

Constraints
1] relationExpressionlsRealConversion1Derivation

A relational expression requires Real conversion if it is a Real comparison and its first operand is of a type that conforms to
type Integer.

[2] relationExpressionlsRealConversion2Derivation

A relational expression requires Real conversion if it is a Real comparison and its second operand is of a type that conforms

to type Integer.

3 1clatlonExplcssmnl%Rcachrlva‘[lon

[4+] relational ExpressionlsUnlimitedNaturalDerivation
A relational expression is an UnlimitedNatural comparison if either one of its operands has type UnlimitedNatural.

[52] relational ExpressionLowerDerivation

A relational expression has a multiplicity lower bound of 0 if the lower bound if either operand expression is 0 and 1
otherwise.

[62] relational ExpressionOperand Types

The operand expressions for a comparison operator must both be of a type that conforms to type Natural Integet or Real, or
both be of types that conform to type Natural orh

[74] relational ExpressionTypeDerivation
The type of a relational expression is Boolean.

[85] relational ExpressionUpperDerivation
A relational expression has a multiplicity upper bound of 1.

Helper Operations

1] minl owerBound () : Integer

The minimum lower bound is 0 for operands of relational expressions (this allows for the propagation of a null returned from
an arithmetic expression used as an operand).

SleEe

13.2.46 SelectOrRejectExpression

A sequence expansion expression with a select or reject operation.

Action Language for Foundational UML (ALF), v1.1 241

Generalizations
* SequenceExpansionExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] selectOrRejectExpressionArgument

The argument of a select or reject expression must have type Boolean and a multiplicity upper bound
of 1.

[2] selectOrRejectExpressionLowerDerivation
A select or reject expression has a multiplicity lower bound of 0.

[3] selectOrRejectExpressionTypeDerivation
A select or reject expression has the same type as its primary expression.

[4] selectOrRejectExpressionUpperDerivation

Helper Operations
None

13.2.47 SequenceAccessExpression
An expression used to access a specific element of a sequence.

Generalizations
e Expression

Synthesized Properties
* index : Expression
The expression whose value is the index of the element being accessed in the sequence.

e primary : Expression
The expression whose value is the sequence being accessed.

Derived Properties
None

Constraints
[1] sequenceAccessExpressionlndexMultiplicity

The multiplicity upper bound of the index of a sequence access expression must be 1.

[2] sequenceAccessExpressionlndexType
The type of the index of a sequence access expression must be Integer.

[3] sequenceAccessExpressionLowerDerivation

242 Action Language for Foundational UML (ALF), v1.1

The multiplicity lower bound of a sequence access expression is 0.

[4] sequenceAccessExpressionTypeDerivation

The type of a sequence access expression is the same as the type of its primary expression.

[5] sequenceAccessExpressionUpperDerivation
The multiplicity upper bound of a sequence access expression is 1.

Helper Operations
None

13.2.48 SequenceConstructionExpression

An expression used to construct a sequence of values.

Generalizations
e Expression

Synthesized Properties
e clements : SequenceElements [0..1]
The specification of the elements in the sequence.

e hasMultiplicity : Boolean = false
Whether the sequence construction expression has a multiplicity indicator.

e typeName : QualifiedName [0..1]

The name of the type of the elements in the sequence.

Derived Properties
None

Constraints

[1] sequenceConstructionExpressionAssignmentsBefore

If the elements of a sequence construction expression are given by a sequence expression list, then the assignments before the
first expression in the list are the same as the assignments before the sequence construction expression, and the assignments
before each subsequent expression are the assignments after the previous expression. If the elements are given by a sequence
range, the assignments before both expressions in the range are the same as the assignments before the sequence construction
expression.

[2] sequenceConstructionExpressionElementType

If the elements of a sequence construction expression are given by a sequence range, then the expression must have

Integer. If the elements are given by a sequence element list, and the sequence construction
expression has a non-empty type, then each expression in the list must have a type that either conforms to the type of the
sequence construction expression or is convertible to it by bit string conversion.

[3] sequenceConstructionExpressionLowerDerivation

If a sequence construction expression has multiplicity, then its multiplicity lower bound is given by its elements, if this is not
empty, and zero otherwise. If a sequence construction expression does not have multiplicity, then its multiplicity lower bound
is one.

[4] sequenceConstructionExpressionType

If the type name of a sequence construction expression is not empty, then it must resolve to a non-template classifier. If the
expression does not have multiplicity, then

Action Language for Foundational UML (ALF), v1.1 243

a collection class.

[5] sequenceConstructionExpressionTypeDerivation

If the type name of a sequence construction expression is not empty, then the type of the expression is the classifier to which
the type name resolves.

[6] sequenceConstructionExpressionUpperDerivation

If a sequence construction expression has multiplicity, then its multiplicity upper bound is given by its elements, if this is not
empty, and zero otherwise. If a sequence construction expression does not have multiplicity, then its multiplicity upper bound
is one.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

If the elements of the sequence construction expression are given by a sequence expression list, then return the assignments
after the last expression in the list (if the list is empty, then return the assignments before the sequence construction
expression). If the elements are given by a sequence range, then return the union of the assignments after each of the
expressions in the range.

13.2.49 SequenceElements

A specification of the elements of a sequence.

Generalizations
e SyntaxElement

Synthesized Properties
None

Derived Properties
* lower : Integer

The multiplicity lower bound of the elements of the sequence. The derivation for this property is given in the
subclasses of SequenceElements.

e upper : UnlimitedNatural

The multiplicity upper bound of the elements of the sequence. The derivation for this property is given in the
subclasses of SequenceElements.

Constraints
None

Helper Operations
None

13.2.50 SequenceExpansionExpression
An expression used to carry out one of a predefined set of operations over each of the elements in a sequence.

Generalizations

e Expression

Synthesized Properties
e argument : Expression
The argument expression. The exact form required for this expression depends on which expansion operation is
being carried out.

244 Action Language for Foundational UML (ALF), v1.1

e operation : String
The name of the operation to be carried out.

e primary : ExtentOrExpression
The class name or primary expression that evaluates to the sequence to be acted on.

e variable : String
The name of the expansion variable available as a local name within the argument expression.

Derived Properties
e variableSource : AssignedSource

The assigned source for the expansion variable within the argument expression. The source is actually the sequence
expansion expression itself.

Constraints

[1] sequenceExpansionExpressionAssignmentsAfterArgument

The assignments after the argument expression of a sequence expansion expression must be the same as the assignments
before the argument expression.

[2] sequenceExpansionExpressionAssignmentsBefore Argument

The assignments before the argument expression of a sequence expansion expression include those after the primary
expression plus one for the expansion variable.

[3] sequenceExpansionExpressionAssignmentsBeforePrimary

The assignments before the primary expression of a sequence expansion expression are the same as the assignments before
the sequence expansion expression.

[4] sequenceExpansionExpressionVariableName
The expansion variable name may not conflict with any name already assigned after the primary expression.

[5] sequenceExpansionExpressionVariableSourceDerivation

The assigned source for the expansion variable of a sequence expansion expression is the expression itself. The type for the
assignment is the type of the primary expression of the sequence expansion expression and the multiplicity lower and upper
bounds are 1.

Helper Operations

[1] updateAssignments () : AssignedSource [*]
The assignments after a sequence expansion expression are the same as after its primary expression.

13.2.51 SequenceExpressionList

A specification of the elements of a sequence using a list of expressions.

Generalizations
e SequenceElements

Synthesized Properties
* clement : Expression [*]
The list of expressions whose values determine the elements of the sequence.

Derived Properties
None

Action Language for Foundational UML (ALF), v1.1 245

Constraints
[1] sequenceExpressionListLowerDerivation

The multiplicity lower bound of the elements of a sequence expression list is given by the sum of the lower bounds of each of
the expressions in the list.

[2] sequenceExpressionListUpperDerivation

The multiplicity upper bound of the elements of a sequence expression list is given by the sum of the upper bounds of each of
the expressions in the list. If any of the expressions in the list have an unbounded upper bound, then the sequence expression
list also has an unbounded upper bound.

Helper Operations
None

13.2.52 SequenceOperationExpression
An expression used to invoke a behavior as if it was an operation on a target sequence as a whole.

Generalizations
* InvocationExpression

Synthesized Properties
e operation : QualifiedName [0..1]

The qualified name of the behavior being invoked.

e primary : ExtentOrExpression
The expression or class name whose value is gives the sequence to be operated on.

Derived Properties
e isBitStringConversion : Boolean

Whether type primary expression requires BitString conversion.

¢ isCollectionConversion : Boolean

Whether the primary expression requires collection conversion.

* leftHandSide : LeftHandSide [0..1]

The effective left-hand side corresponding to the primary expression, if the sequence operation is “in place” (that is,
has a first parameter with direction inout).

Constraints
[1] sequenceOperationExpressionArgumentCompatibility

The type of an input argument expression of a sequence operation parameter must be assignable to its corresponding
parameter. The type of an output parameter must be assignable to its corresponding argument expression. (Note that this
implies that the type of an argument expression for an inout parameter must be the same as the type of that parameter.)

[2] sequenceOperationExpressionAssignmentsAfter

A local name that is assigned in the primary expression of a sequence operation expression may not be assigned in any
expression in the tuple of the sequence operation expression.

[3] sequenceOperationExpressionAssignmentsBefore

The assignments before the primary expression of a sequence operation expression are the same as the assignments before the
sequence operation expression.

[4] sequenceOperationExpressionFeatureDerivation

246 Action Language for Foundational UML (ALF), v1.1

There is no feature for a sequence operation expression.

[5] sequenceOperationExpressionlsBitStringConversionDerivation

BitString conversion is required if type of the first parameter of the referent of a sequence operation expression is BitString
and either the type of its primary expression is Integer or collection conversion is required and the type of its primary
expression is a collection class whose sequenceargument type is Integer.

[6] sequenceOperationExpressionlsCollectionConversionDerivation

Collection conversion is required if the type of the primary expression of a sequence operation expression is a collection class
and the multiplicity upper bound of the primary expression is 1.

[7] sequenceOperationExpressionLeftHandSideDerivation

If the operation of a sequence operation expression has a first parameter whose direction is inout, then the effective left-hand
side for the expression is constructed as follows: If the primary is a name expression, then the left-hand side is a name left-
hand side with the name from the name expression as its target. If the primary is a property access expression, then the left-
hand side is a feature left hand side with the feature reference from the property access expression as its feature. If the
primary is a sequence access expression whose primary is a name expression or a property access expression, then the left-
hand side is constructed from the primary of the sequence access expression as given previously and the index of the
sequence access expression becomes the index of the left-hand side.

[8] sequenceOperationExpressionOperationReferent

There must be a single behavior that is a resolution of the operation qualified name of a sequence operation expression with a
least one parameter, whose first parameter has direction in or inout, has multiplicity [0..*] and to which the target primary
expression is assignable. If any resolution of the operation name is a template behavior, then the implicit template binding of
that behavior, if legal. is used to check the assignability of the target primary expression.

[9] sequenceOperationExpressionReferentDerivation
The referent for a sequence operation expression is the behavior named by the operation for the expression.

[10] sequenceOperationExpressionTargetCompatibility

If the first parameter of the referent has direction inout, then the parameter type must have the same type as the primary
expression, the primary expression must have the form of a left-hand side and, if the equivalent left-hand side is for a local
name, that name must already exist. The first parameter must be assignable to the effective left-hand side.

Helper Operations
[1] adjustAssignments(_assignments : AssignedSource [*], condition : Boolean) : AssignedSource [*]

If the invoked behavior is CollectionFunctions::isEmpty or SequenceFunctions::IsEmpty, then check the primary expression
for known nulls and non-nulls using the given truth condition. If the invoked behavior is CollectionFunctions::notEmpty or
SequenceFunctions::NotEmpty. then check the primary expression for known nulls and non-nulls using the negation of the
given truth condition.

[2+] parameterElements () : ElementReference [*]

Returns the list of parameter elements from the superclass operation, with the first parameter removed (since the argument for
the first parameter is given by the primary expression of a sequence operation expression, not in its tuple).

[32] updateAssignments () : AssignedSource [*]

The assignments after a sequence operation expression include those made in the primary expression and those made in the
tuple and, for an "in place" operation (one whose first parameter is inout), that made by the sequence operation expression
itself.

13.2.53 SequenceRange

A specification of the elements of a sequence as a range of integers.

Action Language for Foundational UML (ALF), v1.1 247

Generalizations
* SequenceElements

Synthesized Properties
* rangeLower : Expression

The expression whose value gives the lower bound for the range.

* rangeUpper : Expression
The expression whose value gives the upper bound for the range.

Derived Properties
None

Constraints
[1] sequenceRangeAssignments

A local name may be defined or reassigned in at most one of the expressions of a sequence range.

[2] sequenceRangeExpressionMultiplicity
Both expression in a sequence range must have a multiplicity upper bound of 1.

[3] sequenceRangeLowerDerivation
The multiplicity lower bound of a sequence range is 0.

[4] sequenceRangeUpperDerivation

The multiplicity upper bound of a sequence range is * (since it is not possible, in general, to statically determine a more
constrained upper bound).

Helper Operations
None

13.2.54 SequenceReductionExpression
An expression used to reduce a sequence of values effectively by inserting a binary operation between the values.

Generalizations
e Expression

Synthesized Properties
* behaviorName : QualifiedName

The name of the behavior to be used as the reducer.

e isOrdered : Boolean = false

Whether this is an ordered reduction or not.

e primary : ExtentOrExpression
The target class name or primary expression for the reduction.

Derived Properties
e referent : ElementReference

A reference to the behavior to be used as the reducer.

248 Action Language for Foundational UML (ALF), v1.1

Constraints
[1] sequenceReductionExpressionAssignmentsBefore

The assignments before the target expression of a sequence reduction expression are the same as the assignments before the

sequence reduction expression.

[2] sequenceReductionExpressionBehavior

The behavior name in a sequence reduction expression must denote a behavior.

[3] sequenceReductionExpressionBehaviorParameters

The referent behavior must have two in parameters, a return parameter and no other parameters. The parameters must all have

the same type as the argument expression and multiplicity [1..1].

[4] sequenceReductionExpressionLowerDerivation

A sequence reduction expression has a multiplicity lower bound of 1.

[5] sequenceReductionExpressionReferentDerivation

The referent for a sequence reduction expression is the behavior denoted by the behavior name of the expression.

[6] sequenceReductionExpressionTypeDerivation

A sequence reduction expression has the same type as its primary expression.

[7] sequenceReductionExpressionUpperDerivation
A sequence reduction expression has a multiplicity upper bound of 1.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

The assignments after a sequence reduction expression are the same as after its primary expression.

13.2.55 ShiftExpression

Generalizations
* BinaryExpression

Synthesized Properties
None

Derived Properties
e isBitStringConversion : Boolean

Whether the first operand expression requires BitString conversion.

Constraints
[1] shiftExpressionlsBitStringConversionDerivation

BitString conversion is required if the first operand expression of a shift expression has

[2] shiftExpressionLowerDerivation

[3] shiftExpressionOperands

Action Language for Foundational UML (ALF), v1.1

type Integer.

249

The first operand expression of a shift expression must have the type BitString or Integer. The second
operand expression must have the type Integer.

[4] shiftExpressionTypeDerivation
A shift expression has type BitString.

[5] shiftExpressionUpperDerivation
A shift expression has a multiplicity upper bound of 1.

Helper Operations
None

13.2.56 StringLiteralExpression

An expression that comprises a String literal.

Generalizations
e LiteralExpression

Synthesized Properties
* image : String
The textual image of the literal token for this expression, with quote characters removed and escaped sequences
resolved to the denoted special character.

Derived Properties
None

Constraints
[1] stringLiteralExpressionTypeDerivation

The type of a string literal expression is String.

Helper Operations
None

13.2.57 SuperinvocationExpression
An invocation expression used to invoke an operation of a superclass.

Generalizations
* InvocationExpression

Synthesized Properties
e target : QualifiedName [0..1]

The name of the operation to be invoked, optionally qualified with the name of the appropriate superclass.

Derived Properties
None

Constraints
[1] superInvocationExpressionConstructorCall

If the referent is the method of a constructor operation, the super invocation expression must occur in an expression statement
at the start of the definition for the method of a constructor operation, such that any statements preceding it are also super
constructor invocations.

[2] superInvocationExpressionDestructorCall

250 Action Language for Foundational UML (ALF), v1.1

If the referent is the method of a destructor operation, the super invocation expression must occur in an within the method of

a destructor operation.

[3] superInvocationExpressionFeatureDerivation
There is no feature for a super invocation.

[4] superInvocationExpressionlmplicitTarget

If the target is empty, the super invocation expression must occur within the method of an operation of a class with a single

superclass and the referent must be the method of a constructor operation of that superclass.

[5] superInvocationExpressionOperation

It must be possible to identify a single valid operation denoted by the target of a super invocation expression that satisfies the

overloading resolution rules.

[6] superInvocationExpressionQualification

If the target has a qualification, then this must resolve to one of the superclasses of the current context class.

[7] superInvocationExpressionReferentDerivation

The referent of a super invocation expression is the method behavior of the operation identified using the overloading

resolution rules.

Helper Operations
None

13.2.58 TemplateBinding

A list of type names used to provide arguments for the parameters of a template.

Generalizations
e SyntaxElement

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.59 TemplateParameterSubstitution

A specification of the substitution of an argument type name for a template parameter.

Generalizations
e SyntaxFlement

Synthesized Properties
e argumentName : QualifiedName
The name of the argument type.

e parameterName : String

Action Language for Foundational UML (ALF), v1.1

251

The name of the template parameter.

Derived Properties
None

Constraints
None

Helper Operations
None

13.2.60 ThisExpression

An expression comprising the keyword “this”.

Generalizations
* Expression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] thisExpressionLowerDerivation

The multiplicity lower bound of a this expression is always 1.

[2] thisExpressionTypeDerivation

The static type of a this expression is the statically determined context classifier for the context in which the this expression
occurs.

[3] thisExpressionUpperDerivation
The multiplicity upper bound of a this expression is always 1.

Helper Operations
None

13.2.61 Tuple

A list of expressions used to provide the arguments for an invocation.

Generalizations
e SyntaxElement

Synthesized Properties
e invocation : InvocationExpression

The invocation expression of which this tuple is a part.

Derived Properties
* input : NamedExpression [*]

The argument expressions from this tuple, matched to the input parameters (direction in and inout) of the invocation.
An empty sequence construction expression is included for any input parameter that is not explicitly matched in the
tuple.

252 Action Language for Foundational UML (ALF), v1.1

e output : OutputNamedExpression [*]
The argument expressions from this tuple, matched to the output parameters (direction inout and out) of the
invocation. An empty sequence construction expression is included for any output parameter that is not explicitly
matched in the tuple.

Constraints
[1] tupleAssignmentsAfter

A name may be assigned in at most one argument expression of a tuple.

[2] tupleAssignmentsBefore

The assignments before each expression in a tuple are the same as the assignments before the tuple, except in the case of a
name expression that defines a new local name, in which case the assigned source for the new name is included in the
assignments before the name expression. (Note that the assigned source for a new name is included before the name
expression so that the nameExpressionResolution constraint is not violated.) The assignments before the tuple are the same as
the assignments after the feature reference of the invocation of the tuple, if the invocation has one, or otherwise the
assignments before the invocation.

[3] tuplelnputDerivation

A tuple has the same number of inputs as its invocation has input parameters. For each input parameter, the tuple has a
corresponding input with the same name as the parameter and an expression that is the matching argument from the tuple, or
an empty sequence construction expression if there is no matching argument.

[4] tupleNullInputs
An input parameter may only have a null argument if it has a multiplicity lower bound of 0.

[5] tupleOutputDerivation

A tuple has the same number of outputs as its invocation has output parameters. For each output parameter, the tuple has a
corresponding output with the same name as the parameter and an expression that is the matching argument from the tuple, or
an empty sequence construction expression if there is no matching argument.

[6] tupleOutputs

An output parameter may only have a null argument if it is an out parameter.

Helper Operations
None

13.2.62 UnaryExpression

An expression consisting of an operator acting on a single operand expression.

Generalizations
* Expression

Synthesized Properties
e operand : Expression
The expression giving the operand.

e operator : String
The symbol representing the operator.

Derived Properties
None

Action Language for Foundational UML (ALF), v1.1 253

Constraints
[1] unaryExpressionAssignmentsBefore

The assignments before the operand of a unary expression are the same as those before the unary expression.

Helper Operations
[1] updateAssignments () : AssignedSource [*]

By default, the assignments after a unary expression are the same as those after its operand expression.

13.2.63 UnboundedLiteralExpression

An expression that comprises an unbounded value literal.

Generalizations
e LiteralExpression

Synthesized Properties
None

Derived Properties
None

Constraints
[1] unboundedLiteralExpressionTypeDerivation

The type of an unbounded literal expression is UnlimitedNatural.

Helper Operations
None

254

Action Language for Foundational UML (ALF), v1.1

14 Statements Abstract Syntax

14.1 Overview

The Alf::Syntax::Statement package contains the abstract syntax model for statements. The syntax and semantics of
statements are discussed in Clause 9. Their mapping to UML is given in Clause 18.

SyntaxElement
pAN

Block

+statement

0.1 {ordered} *

+/assignmentBefore.

+/assignmentBefore AssignedSource

DocumentedElement

+documentation : String [*]

+/enclosingStatement

Statement

*

+/islsolated : Boolean
+/isindexFromO : Boolean

+/assignmentAfter

*

Figure 14.1 Statements and Blocks

Action Language for Foundational UML (ALF), v1.1

+annotation
0.1 *

+/assignmentAfter

Annotation

+identifier : String
+argument : String [*]

255

Statement | */target
1

BlockStatement
EmptyStatement ExpressionStatement BreakStatement
+/isParallel : Boolean
0..1 0..1
+block | 1 InLineStatement LocalNameDeclarationStatement
+language : String +name : String
W +code : String +hasMultiplicity : Boolean = false
0.1 0.1
—{ReturnStatement +typeName [0..1
0.1 QualifiedName
+expression |0..1
1 | +expression

Expression
+expression

1

+ behavic1>r ElementReference).<+étyr1)e

Figure 14.2 Simple Statements

256 Action Language for Foundational UML (ALF), v1.1

Statement

I

IfStatement SwitchStatement
+/isAssured : Boolean +/isAssured : Boolean
+fisDeterminate : Boolean| 0..1 0.1 +fisDeterminate : Boolean

1
1 0.1
+nonFinalClauses |1..* {ordered} +nonDefaultClause |, *
ConcurrentClauses SwitchClause
1
0..1]0..1
+/assignmentBefore | * +clause [1.* +finalClause[0..1 0..1| +defaultClause
AssignedSource NonFinalClause +b°d1 Block |. *block
0.1 1
0.1
+conditio
+case
Expression 1
+expression

Figure 14.3 Conditional Statements

Action Language for Foundational UML (ALF), v1.1 257

Statement

+condition |1

Expression

+condition

Figure 14.4 Loop Statements

258

~
WhileStatement DoStatement ForStatement
0.1 +fisParallel : Boolean
0.1 0.1 0.1
+body | 1 0.1]0.1
+body +body

SyntaxElement

+variableDefinition | 1..* {ordered} T

+expression1

1 0..1

+expression2

LoopVariableDefinition

+variable : String
+typelsinferred : Boolean = true

0.1 0.1 +/isCollectionConversion : Boolean

+/isFirst : Boolean

*typeName QualifiedName
0 0.1

*ype T ElementReference
* 0.1

* *

+/assignmentBefore | * * |, +/assignmentAfter

AssignedSource

Action Language for Foundational UML (ALF), v1.1

Statement Expression
pAN
1] +expression
| 0.1
AcceptStatement ClassifyStatement

*

+/isSimple : Boolean

+isReclassifyAll : Boolean = false

1

+acceptBlock | 1..*

+/behavior |1 +/fromClass

0.1

+block .
Block 0.1 0.1 AcceptBlock */signal ElementReference
+name : String [0..1] 1.* +/toClass
0.1
+signalNames |1
+fromList
QualifiedNamelList 01
SyntaxElement K— +olList
0.1
0.1
+name [1..*

QualifiedName

Figure 14.5 accept and classify Statements

14.2 Class Descriptions

14.2.1 AcceptBlock

A block of an accept statement that accepts one or more signals.

Generalizations
* SyntaxElement

Synthesized Properties
e block : Block [0..1]

The body of the accept block, executed if one of the named signals is received.

e name : String [0..1]
The local name to which an accepted signal instance will be assigned.

e signalNames : QualifiedNameList
A list of names of the signals accepted by this accept block.

Derived Properties
e signal : ElementReference [1..*]

The signals denoted by the signal names of the accept block.

Action Language for Foundational UML (ALF), v1.1

0.1

259

Constraints
[1] acceptBlockSignalDerivation

The signals of an accept block are the referents of the signal names of the accept block.

[2] acceptBlockSignalNames
All signal names in an accept block must resolve to signals.

Helper Operations
None

14.2.2 AcceptStatement

A statement used to accept the receipt of instances of one or more signals.

Generalizations
e Statement

Synthesized Properties
* acceptBlock : AcceptBlock [1..*]

One or more blocks for accepting alternate groups of signals.

Derived Properties
e behavior : ElementReference

The behavior containing the accept statement.

e isSimple : Boolean

Whether the accept statement is simple or not.

Constraints
[1] acceptStatementAssignmentsAfter

If a name is assigned in any block of an accept statement, then the assigned source of the name after the accept statement is
the accept statement itself.

[2] acceptStatementAssignmentsBefore
The assignments before any block of an accept statement are the assignments before the accept statement.

[3] acceptStatementCompoundAcceptLocalName

For a compound accept statement, a local name defined in an accept block has the accept block as its assigned source before
the block associated with the accept block. The type of the local name is the effective common ancestor of the specified
signals for that accept clause, if one exists, and it is untyped otherwise. However, the local name is considered unassigned
after the accept statement.

[4] acceptStatementContext
An accept statement can only be used within the definition of an active behavior or the classifier behavior of an active class.

[5] acceptStatementEnclosedStatements

The enclosing statement for all statements in the blocks of all accept blocks of an accept statement is the accept statement.

[6] acceptStatementIsSimpleDerivation
An accept statement is simple if it has exactly one accept block and that accept block does not have a block.

[7] acceptStatementNames
Any name defined in an accept block of an accept statement must be unassigned before the accept statement.

260 Action Language for Foundational UML (ALF), v1.1

[8] acceptStatementNewAssignments

Any name that is unassigned before an accept statement and is assigned in one or more blocks of the accept statement, has,
after the accept statement, a type that is is the effective common ancestor of the types of the name in each block in which it is
defined. with a multiplicity lower bound that is the minimum of the lower bound for the name in each block (where it is
considered to have multiplicity lower bound of zero for blocks in which it is not defined), and a multiplicity upper bound that
is the maximum for the name in each block in which it is defined.

[9] acceptStatementSignals

The containing behavior of an accept statement must have receptions for all signals from all accept blocks of the accept
statement. No signal may be referenced in more than one accept block of an accept statement.

[10] acceptStatementSimpleAcceptLocalName

A local name specified in the accept block of a simple accept statement has the accept statement as its assigned source after
the accept statement. The type of the local name is the effective common ancestor of the specified signals, if one exists, and it
is untyped otherwise.

Helper Operations
[1] hasReturnValue() : Boolean

An accept statement has a return value if all of its accept clauses have return values.

None

14.2.3 Annotation

An identified modification to the behavior of an annotated statement.

Generalizations
e SyntaxElement

Synthesized Properties
* argument : String [*]
If permitted by the annotation, an optional list of local names relevant to the annotation.

e identifier : String
The name of the annotation.

Derived Properties
None

Constraints
None

Helper Operations
None

14.2.4 Block

A grouped sequence of statements.

Generalizations
e SyntaxFlement

Synthesized Properties

Action Language for Foundational UML (ALF), v1.1 261

e statement : Statement [*]

The ordered sequence of statements in the block.

Derived Properties
e assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this block. This includes not only any assignments
made within the block, but also any assignments that are unchanged from before the block.

e assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this block.

Constraints
[1] blockAssignmentAfterDerivation

If a block is not empty, then the assignments after the block are the same as the assignments after the last statement of the
block. Otherwise they are the same as the assignments before the block.

[2] blockAssignmentsBefore
The assignments before the first statement of a block are the same as the assignments before the block.

[3] blockAssignmentsBeforeStatements

The assignments before each statement in a block other than the first are the same as the assignments after the previous
statement.

Helper Operations

BlockStatement
A statement that executes a block.

Generalizations
e Statement

Synthesized Properties
e block : Block

The block to be executed.

Derived Properties
e isParallel : Boolean

Whether the statements in the block of this block statement should be executed concurrently.

Constraints
[1] blockStatementAssignmentsA fter

The assignments after a block statement are the same as the assignments after the block of the block statement.

[2] blockStatementAssignmentsBefore
The assignments before the block of a block statement are the same as the assignments before the block statement.

[3] blockStatementEnclosedStatements
The enclosing statement for all the statements in the block of a block statement is the block statement.

[4] blockStatementIsParallelDerivation

262 Action Language for Foundational UML (ALF), v1.1

A block statement is parallel if it has a @parallel annotation.

[5] blockStatementParallel Assignments

In a parallel block statement, any name assigned in one statement of the block may not be further assigned in any subsequent

statement in the same block.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @jisolated annotation, a block statement may have a @parallel annotation. It may not have any arguments.

14.2.5 BreakStatement

A statement that causes the termination of execution of an immediately enclosing block.

Generalizations
e Statement

Synthesized Properties
None

Derived Properties
e target: Statement

The enclosing statement that is terminated by this break statement.

Constraints
[1] breakStatementNonparallel Target

The target of a break statement may not have a @parallel annotation.

[2] breakStatementTargetDerivation

The target of a break statement is the innermost switch, while, do or for statement enclosing the break statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

A break statement may not have any annotations.

14.2.6 ClassifyStatement

A statement that changes the classification of an object.

Generalizations
e Statement

Synthesized Properties
* expression : Expression
The expression to be evaluated to obtain the object to be reclassified.

e fromList : QualifiedNameList [0..1]

A list of names of classes to be removed as types of the object.

* isReclassifyAll : Boolean = false

Action Language for Foundational UML (ALF), v1.1

263

Whether this classify statement reclassifies all types of the target object.

e toList : QualifiedNamelList [0..1]
A list of names of classes to be added as types of the object.

Derived Properties
e fromClass : ElementReference [*]

The classes denoted by the names in the from list.

e toClass : ElementReference [*]
The classes denoted by the names in the to list.

Constraints

[1] classifyStatementAssignmentsA fter

The assignments after a classify statement are the same as the assignments after its expression.

[2] classifyStatementAssignmentsBefore
The assignments before the expression of a classify statement are the same as the assignments before the statement.

[3] classifyStatementClasses

All the from and to classes of a classify statement must be subclasses of the type of the target expression and none of
them may have a common superclass that is a subclass of the type of the target expression (that is, they must be
disjoint subclasses).

[4] classifyStatementClassNames
All qualified names listed in the from or to lists of a classify statement must resolve to classes.

[5] classifyStatementExpression
The expression in a classify statement must have a class as its type and multiplicity upper bound of 1.

[6] classifyStatementFromClassDerivation
The from classes of a classify statement are the class referents of the qualified names in the from list for the statement.

[7] classifyStatementToClassDerivation

The to classes of a classify statement are the class referents of the qualified names in the to list for the statement.

Helper Operations
None

14.2.7 ConcurrentClauses
A grouping of non-final conditional clauses to be tested concurrently.

Generalizations
e SyntaxFlement

Synthesized Properties
e clause : NonFinalClause [1..*]

The conditional clauses in the group.

Derived Properties

264 Action Language for Foundational UML (ALF), v1.1

None

Constraints
[1] concurrentClausesAssignmentsBefore

The assignments before the condition of each of the clauses in a set of concurrent clauses are the same as the assignments
before the concurrent clauses.

[2] concurrentClausesConditionAssignments

The same name may not be assigned in more than one conditional expression within the same concurrent set of clauses.

Helper Operations
None

14.2.8 DoStatement

A looping statement for which the continuation condition is first tested after the first iteration.

Generalizations
e Statement

Synthesized Properties
* body : Block

The sequence of statements to be iteratively executed.

e condition : Expression
The expression to be evaluated to determine whether to continue looping.

Derived Properties
None

Constraints
[1] doStatementAssignmentsA fter

If the assigned source for a name after the condition expression is different than before the do statement, then the assigned
source of the name after the do statement is the do statement. Otherwise it is the same as before the do statement. The
assignments after the do statement are adjusted for known null and non-null names and type classifications due to the
condition expression being false.

[2] doStatementAssignmentsBefore

The assignments before the block of a do statement are the same as the assignments before the do statement. except that any
local names with a multiplicity lower bound of 0 after the condition expression are adjusted to also have a multiplicity lower
bound of 0 before the block.. The assignments before the condition expression of a do statement are the same assignments
after the block.

[3] doStatementCondition

The condition expression of a do statement must have a type that conforms to type Boolean and multiplicity [1..1]¢ype-

Boolean fin - ”P |€|1J’ B b3 ad £ .

[4] doStatementEnclosedStatements
The enclosing statement for all statements in the body of a do statement are the do statement.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 265

14.2.9 EmptyStatement

A statement that has no affect when executed.

Generalizations
e Statement

Synthesized Properties
None

Derived Properties
None

Constraints
[1] emptyStatementAssignmentsAfter

The assignments after an empty statement are the same as the assignments before the statement.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

An empty statement may not have any annotations.

14.2.10 ExpressionStatement

A statement that evaluates an expression when executed.

Generalizations
e Statement

Synthesized Properties
* expression : Expression

The expression to be evaluated.

Derived Properties
None

Constraints
[1] expressionStatementAssignmentsA fter

The assignments after an expression statement are the same as the assignments after its expression.

[2] expressionStatementAssignmentsBefore
The assignments before the expression of an expression statement are the same as the assignments before the statement.

Helper Operations
None

14.2.11 ForStatement

A looping statement that gives successive values to one or more loop variables on each iteration.

Generalizations
e Statement

Synthesized Properties
* body : Block

The sequence of statements to be iteratively executed.

266 Action Language for Foundational UML (ALF), v1.1

e variableDefinition : LoopVariableDefinition [1..*]
A list of definitions of one or more loop variables.

Derived Properties
e isParallel : Boolean

Whether the for statement is parallel.

Constraints
[1] forStatementAssignmentsAfter

The loop variables are unassigned after a for statement. Other than the loop variables, if the assigned source for a name after
the body of a for statement is the same as after the for variable definitions, then the assigned source for the name after the for
statement is the same as after the for variable definitions. If
after the body of the for statement
after the variable definitions
, then the assigned source after the for statement is the for statement itself.

[2] forStatementAssignmentsBefore

The assignments before a loop variable definition in a for statement are the same as before the for statement. The
assignments before the body of the statement include all the assignments before the statement plus any new assignments from
the loop variable definitions, except that, if the statement is parallel, the assigned sources of any names given in @parallel
annotations are changed to be the for statement itself.

[3] forStatementEnclosedStatements
The enclosing statement for all statements in the body of a for statement are the for statement.

[4] forStatementlsParallelDerivation
A for statement is parallel if it has a @parallel annotation.

[5] forStatementLoop Variables

The assigned sources for loop variables after the body of a for statement must be the for statement (the same as before the
body).

[6] forStatementParallel AnnotationNames

A (@parallel annotation of a for statement may include a list of names. Each such name must be already assigned after the
loop variable definitions of the for statement, with a multiplicity These names may only be
used within the body of the for statement as the first argument-te for the CollectionFunctions::add behavior.

[7] forStatementParallel AssignmentsAfter

If, after the loop variable definitions of a parallel for statement, a name has an assigned source, then it must have the same
assigned source after the block of the for statement. Other than for names defined in the @parallel annotation of the for
statement, the assigned source for such names is the same after the for statement as before it. Any names defined in the
(@parallel annotation have the for statement itself as their assigned source after the for statement. Other than names given in
the @parallel annotation, if a name is unassigned after the loop variable definitions, then it is considered unassigned after the
for statement, even if it is assigned in the block of the for statement.

[8] forStatementVariableDefinitions

The isFirst attribute of the first loop variable definition for a for statement is true while the isFirst attribute if false for any
other definitions.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @jisolated annotation, a for statement may have a @parallel annotation.

Action Language for Foundational UML (ALF), v1.1 267

14.2.12 IfStatement

A conditional statement that executes (at most) one of a set of clauses based on boolean conditions.

Generalizations
e Statement

Synthesized Properties
e finalClause : Block [0..1]

A sequence of statements to be executed if no other clause has a successful condition.

* nonFinalClauses : ConcurrentClauses [1..*]
A list of groupings of concurrent clauses that are to be checked sequentially for a successful condition.

Derived Properties
e isAssured : Boolean

Whether at least one condition in the if statement is assured to evaluate to true.

¢ isDeterminate : Boolean
Whether at most one condition in the if statement will ever to evaluate to true.

Constraints

[1] ifStatementAssignmentsA fter

Am/ name that is unassigned before an if statement and is dssmned in one or more clauses ofthc if statemcnt has, after Han-
3 ; 5 3 3 3 : : ; sty ore-the if

statement. a type that is is the effective common ance\tor ot the types ot the name in each clause in W thh it is defined. For a

name that ha@ an asswned source B 5 ; ; 5 5

after any eﬁeclause of anﬁ&e if statement lhal is dll elenl than
before that elause then the assmned source ¢ sueh-names-after the if
statement is the if statement. ef se-with a multlphclty lower
bound that is the minimum of the lower bound for the name in each clause and a multiplicity upper bound that is the
maximum for the name in each clause (where the name is considered to have multiplicity [0..0] for clauses in which it is not
detmed and umhanoed multmhutv for an lmpllc1t tmal elauxe unless %%ﬂfﬂﬂ%ﬂ%ﬁ—hﬁs—&ﬂ—&s&gﬁed—s@%%ﬁﬁet—aﬂ%

; atter-the if statement is assured)the-
ifstatement. Otherwise, the assigned source of a name after the if statement is the same as before the if statement.

[2] ifStatementAssignmentsBefore

The assignments before cach al-the-non-final clauseelauses of an if statement are the same as the assignments before the if
statement, adjusted for known nulls and non-nulls and type classifications due to the failure of the conditions in all previous
sets of concurrent clauses. If the statement has a final clause, then the assignments before that clause are also the same as the
assignments before the if statement. adjusted for the failure of the conditions of all previous clauses.

[3] ifStatementEnclosedStatements

The enclosing statement of all the statements in the bodies of all non-final clauses and in the final clause (if any) of an if
statement is the if statement.

[4] ifStatementIsAssuredDerivation
An if statement is assured if it has an @assured annotation.

[5] ifStatementIsDeterminateDerivation
An if statement is determinate if it has an @determinate annotation.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

268 Action Language for Foundational UML (ALF), v1.1

In addition to an @isolated annotation, an if statement may have @assured and @determinate annotations. They may not

have arguments.

14.2.13 InLineStatement

A statement that executes code in a language other than Alf.

Generalizations
e Statement

Synthesized Properties
* code: String

The in-line code to be executed.

* language : String
The name of the language in which the code is written.

Derived Properties
None

Constraints
[1] inLineStatementAssignmentsA fter

The assignments after an in-line statement are the same as the assignments before the statement.

Helper Operations
None

14.2.14 LocalNameDeclarationStatement

A statement that declares the type of a local name and assigns it an initial value.

Generalizations
e Statement

Synthesized Properties
e expression : Expression

The expression to be evaluated to provide the initial value to be assigned to the local name.

* hasMultiplicity : Boolean = false

Whether the local name is to have a multiplicity upper bound of * rather than 1.

* name : String
The local name being declared.

* typeName : QualifiedName [0..1]
The declared type of the local name.

Derived Properties
* type : ElementReference [0..1]

The type declared for the given local name.

Action Language for Foundational UML (ALF), v1.1

269

Constraints
[1] localNameDeclarationStatementAssignmentsA fter

The assignments after a local name declaration statement are the assignments after the expression of the statement plus a new
assignment for the local name defined by the statement. The assigned source for the local name is the local name declaration
statement. The local name has the type denoted by the type name if this is not empty and is untyped otherwise. The
multiplicity lower bound of the local name is 0 if the expression has a lower bound of 0. otherwise it is 1. If the statement has
multiplicity, -then the multiplicity upper bound of the local name is *{6-}, otherwise it is 1{6-H.

[2] localNameDeclarationStatementAssignmentsBefore

The assignments before the expression of a local name declaration statement are the same as the assignments before the
statement.

[3] localNameDeclarationStatementExpressionMultiplicity

If a local name declaration statement does not have multiplicity, then the multiplicity of upper bound of the assigned
expression must not be greater than 1.

[4] localNameDeclarationStatementExpressionType

If the expression of a local name declaration statement is an instance creation expression with no constructor, and the type of
the statement is a class or (structured) data type, then the referent of the expression is the type of the statement. If the
expression of a local name declaration statement is a sequence construction expression with no type name, but with non-
empty elements, then the type of the expression is the type of the statement and the expression has multiplicity if and only if
the statement does.

[54] localNameDeclarationStatementLocalName

The local name in a local name declaration statement must be unassigned before the statement and before the expression in
the statement. It must remain unassigned after the expression.

[65] localNameDeclarationStatementType

If the type name in a local name declaration statement is not empty, then it must resolve to a non-template classifier and the
expression must be assignable to that classifier.

[76] localNameDeclarationStatementTypeDerivation

The type of a local name declaration statement with a type name is the single classifier referent of the type name. Otherwise
the type is empty.

Helper Operations
None

14.2.15 LoopVariableDefinition

The definition of a loop variable in a for statement.

Generalizations
* SyntaxFlement

Synthesized Properties
* expressionl : Expression

If there is only one expression, then this expression is evaluated to produce a sequence of values to be assigned to
the loop variable on successive iterations. Otherwise it is evaluated to provide the first value of a range of values to
be assigned to the loop variable.

e expression2 : Expression [0..1]
The expression to be evaluated to give the second value in a range of values to be assigned to the loop variable.

270 Action Language for Foundational UML (ALF), v1.1

* typelsinferred : Boolean = true
Whether the type of the variable is inferred or declared explicitly.

NOTE: This flag is necessary to because a variable that is explicitly declared to have type "any" will have an empty
typeName, just like a variable whose type is to be inferred, but, in the former case, the type is actually intended to be
empty, not inferred.

* typeName : QualifiedName [0..1]
The declared type of the loop variable.

e variable : String
The name of the loop variable.

Derived Properties
* assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this loop variable definition. This includes not only
any assignments made within the statement, but also any assignments that are unchanged from before the statement.

* assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this loop variable definition.

¢ isCollectionConversion : Boolean

Whether collection conversion is required.

e isFirst : Boolean

Whether this definition is the first in the list of definitions in the enclosing for statement.

e type : ElementReference [0..1]
The declared or inferred type of the loop variable.

Constraints
[1] loopVariableDefinitionAssignmentAfterDerivation

The assignments after a loop variable definition include the assignments after the expression (or expressions) of the definition
plus a new assigned source for the loop variable itself. The assigned source for the loop variable is the loop variable
definition. The multiplicity upper bound for the variable is 1. The multiplicity lower bound is 1 if the loop variable definition
is the first in a for statement and 0 otherwise. If collection conversion is not required, then the variable has the inferred or
declared type from the definition. If collection conversion is required, then the variable has the type of the
collection class.

[2] loopVariableDefinitionAssignmentsBefore
The assignments before the expressions of a loop variable definition are the assignments before the loop variable definition.

[3] loopVariableDefinitionDeclared Type

If the type of a loop variable definition is not inferred, then the first expression of the definition must have a type that
conforms to the declared type.

[4] loop VariableDefinitionIsCollectionConversionDerivation

Collection conversion is required for a loop variable definition if the type for the definition is a collection
class and the multiplicity upper bound of the first expression is no greater than 1.

[5] loopVariableDefinitionRangeExpressions

Action Language for Foundational UML (ALF), v1.1 271

If a loop variable definition has two expressions, then both expressions must have type Integer and a multiplicity upper bound
of 1, and no name may be newly assigned or reassigned in more than one of the expressions.

[6] loopVariableDefinitionTypeDerivation

If the type of a loop variable is not inferred, then the variable has the type denoted by the type name, if it is not empty, and is
untyped otherwise. If the type is inferred, them the variable has the same as the type of the expression in its definition.

[7] loopVariableDefinitionTypeName
If a loop variable definition has a type name, then this name must resolve to a non-template classifier.

[8] loop VariableDefinitionVariable

The variable name given in a loop variable definition must be unassigned after the expression or expressions in the definition.

Helper Operations
None

14.2.16 NonFinalClause

A clause of an if statement with a conditional expression and a sequence of statements that may be executed if the condition
is true.

Generalizations
e SyntaxFlement

Synthesized Properties
* body : Block

The sequence of statements that may be executed if the condition evaluates to true.

e condition : Expression
The expression that is evaluated to determine whether the clause body may be executed.

Derived Properties
None

Constraints
[1] nonFinalClauseAssignmentsBeforeBody

The assignments before the body of a non-final clause are the assignments after the condition

[2] nonFinalClauseConditionLocalNames

If a name is unassigned before the condition expression of a non-final clause, then it must be unassigned after that expression
(i.e., new local names may not be defined in the condition).

[3] nonFinalClauseConditionType

The condition of a non-final clause must have

Helper Operations
[1] assignmentsAfter () : AssignedSource [*]

The assignments after a non-final clause are the assignments after the block of the clause.

[2] assignmentsBefore () : AssignedSource [*]
The assignments before a non-final clause are the assignments before the condition of the clause.

272 Action Language for Foundational UML (ALF), v1.1

14.2.17 QualifiedNamelList

A group of qualified names.

Generalizations
¢ SyntaxElement

Synthesized Properties
* name : QualifiedName [1..*]

The names in the group.

Derived Properties
None

Constraints
None

Helper Operations
None

14.2.18 ReturnStatement

A statement that provides a value for the return parameter of an activity.

Generalizations
e Statement

Synthesized Properties
e expression : Expression [0..1]

The expression to be evaluated to provide the returned value.

Derived Properties
e behavior : ElementReference

A reference to the enclosing behavior for this return statement.

Constraints
[1] returnStatementAssignmentsA fter

The assignments after a return statement are the same as the assignments after the expression of the return statement.

[2] returnStatementAssignmentsBefore

The assignments before the expression of a return statement are the same as the assignments before the statement.

[3] returnStatementContext

If the behavior containing the return statement has a return parameter, then the return statement must have an expression, and

the expression must be assignable to that return parameter.

Helper Operations

14.2.19 Statement

A model of an Alf statement.

Generalizations

Action Language for Foundational UML (ALF), v1.1

273

e DocumentedElement

Synthesized Properties
* annotation : Annotation [*]

The annotations applied to this statement.

Derived Properties
* assignmentAfter : AssignedSource [*]

The assigned sources for local names available lexically after this statement. This includes not only any assignments
made within the statement, but also any assignments that are unchanged from before the statement.

e assignmentBefore : AssignedSource [*]
The assigned sources for local names available lexically before this statement.

* enclosingStatement : Statement [0..1]
The statement immediately enclosing this statement, if any.

e isIndexFromO : Boolean

Whether indexing should be from 0 within this statement.

e islsolated : Boolean
Whether this statement should be executed in isolation.

Constraints
[1] statementAnnotationsAllowed

All the annotations of a statement must be allowed, as given by the annotationAllowed operation for the statement.

[2] statementIsIndexFromODerivation

A statement has indexing from 0 if it has an @indexFromO annotation, or it is contained in a statement with indexing from 0
and it does not have an @indexFrom| annotation applied.

[32] statementIsIsolatedDerivation
A statement is isolated if it has an @jisolated annotation.

[43] statementUniqueAssignments

No name may be assigned more than once before or after a statement.

Helper Operations

[1] annotationAllowed (in annotation : Annotation) : Boolean

Returns true if the given annotatlon 1s allowed for thls kind of statement. By default, only (@isolated. (@indexFrom0 and
@indexFrom1 annotations ares ated- ¢ is allowed, with no arguments. This operation is redefined only in
subclasses of Statement for kinds of statements that allow different annotations than this default.

[2] hasReturnValue() : Boolean

Returns true if this statement is assured to generate a return value. By default, a statement does not have a return value.

14.2.20 SwitchClause

A clause in a switch statement with a set of cases and a sequence of statements that may be executed if one of the cases
matches the switch value.

Generalizations

274 Action Language for Foundational UML (ALF), v1.1

e SyntaxFlement

Synthesized Properties
e block : Block

The sequence of statements that may be executed if one of the cases matches the switch value.

e case : Expression [1..*¥]
The expressions to be evaluated to provide values to test against the switch value.

Derived Properties
None

Constraints
[1] switchClauseAssignmentsBefore

The assignments before any case expression of a switch clause are the same as the assignments before
the clause. The assignments before the block of a switch clause are the assignments after all case expressions.

[2] switchClauseCaseLocalNames

If a name is unassigned before a switch clause, then it must be unassigned after all case expressions of the clause (i.e., new
local names may not be defined in case expressions).

[3] switchClauseCases
All the case expressions of a switch clause must have a multiplicity no greater than 1.

Helper Operations
[1] assignmentsAfter () : AssignedSource [*]

The assignments after a switch clause are the assignments after the block of the switch clause.

[2] assignmentsBefore () : AssignedSource [*]
The assignments before a switch clause are the assignments before any case expression of the clause.

14.2.21 SwitchStatement

A statement that executes (at most) one of a set of statement sequences based on matching a switch value to a set of test
cases.

Generalizations
e Statement

Synthesized Properties
e defaultClause : Block [0..1]

A sequence of statements to be executed if no switch clause case matches the switch value.

* expression : Expression
The expression to be evaluated to provide the switch value.

e nonDefaultClause : SwitchClause [*]

The set of switch clauses whose cases are to be tested against the switch value.

Derived Properties
e isAssured : Boolean

Whether at least one case in the switch statement is assured to match.

e isDeterminate : Boolean

Action Language for Foundational UML (ALF), v1.1 275

Whether at most one case in the if statement will ever to match.

Constraints
[1] switchStatementAssignments

Any name that is unassigned before a switch statement and is assigned in one or more clauses of the switch statement, has
after the switch statement, a type that is is the effective common ancestor of the types of the name in each clause in which it
is defined.

[2] switchStatementAssignmentsAfter

If a name has an assigned source after any clause of a switch statement that is different than before that clause (including
newly defined names), -the assigned source after the switch statement is the switch statement. with a multiplicity lower bound
that is the minimum of the lower bound for the name in each clause and a multiplicity upper bound that is the maximum for
the name in each clause (where the name is considered to have multiplicity [0..0] for clauses in which it is not defined and

unchanged multiplicity for an implicit default clause, unless the switch statement is assured). Otherwise, the assigned source

of a name after the switch statement is the same as before the switch statement.

[3] switchStatementAssignmentsBefore

The assignments before all clauses of a switch statement are the same as the assignments after the expression of the switch
statement.

[4] switchStatementCaseAssignments

The same local name may not be assigned in more than one case expression in a switch statement.

[5] switchStatementEnclosedStatements
A switch statement is the enclosing statement for the statements in all of its switch clauses.

[6] switchStatementExpression
A switch statement expression must have a multiplicity no greater than 1.

[7] switchStatementIsAssuredDerivation
A switch statement is assured if it has an @assured annotation.

[8] switchStatementIsDeterminateDerivation
A switch statement is determinate if it has a (@determinate annotation.

Helper Operations
[1] annotationAllowed (in annotation : Annotation) : Boolean

In addition to an @isolated annotation, a switch statement may have @assured and @determinate annotations. They may not
have arguments.

2] hasReturnValue() : Boolean

A switch statement has a return value if the blocks of all its clauses have return values, and it either has a default clause or is
assured.

276 Action Language for Foundational UML (ALF), v1.1

| 14.2.22 WhileStatement

A looping statement for which the continuation condition is first tested before the first iteration.

Generalizations
e Statement

Synthesized Properties
* body : Block

The sequence of statements to be iteratively executed.

* condition : Expression
The expression to be evaluated to determine whether to continue looping.

Derived Properties

None

Constraints

[1] whileStatementAssignmentsA fter

If the « S-asste assigned source for athe name after the block of a while statement is

different than before the while slalemenlb}eek then the assigned source of the name after the while statement is the while
statement. Otherwise it is the same as before the while statementbloek. If a name is unassigned before the block of a while
statement and assigned after the block, then it has multiplicity lower bound of 0 is-unassigred-after the while statement.
Otherwise, the assignments after the while slalamcm are adlustcd for known null and non-null names and type classifications
due to the condition expression being false; -85S atter >

[2] whileStatementAssignmentsBefore

The assignments before the condition expression of a while statement are the same as the assignments before the while
statement, except that any local names with a multiplicity lower bound of 0 after the block are adjusted to also have a
multiplicity lower bound of 0 before the condition expression. The assignments before the block of the while statement are
the same as the assignments after the condition expression. adjusted for known null and non-null names and type
classifications due to the condition expression being true.

[3] whileStatementCondition
The condition expression of a while statement must have a type that conforms to type Boolean and multiplicity [1..1|##pe-

[4] whileStatementEnclosedStatements
The enclosing statement for all statements in the body of a while statement are the while statement.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 277

This page intentionally left blank

278 Action Language for Foundational UML (ALF), v1.1

15 Units Abstract Syntax

15.1 Overview

The A1f::Syntax: :Units package contains the abstract syntax model for units. The syntax and semantics of statements
‘ are discussed in Clause 10. Their mapping to UML is given in Clause 19.

1

DocumentedElement

+documentation : String [*]

0.1

+visibility : String

|

ElementimportReference

+alias : String [0..1]

PackagelmportReference

TaggedValue

pAN
QualifiedName FfnamespaceName UnitDefinition unit +deﬁn|t|o:1 NamespaceDefinition
0.1 0.1 +/isModelLibrary : Boolean 0.1
+referentName * 0.1 *
*unit § 1 +/subunit|0..1 N
) R NS
ElementReference SyntaxElement Member
4 0.1 |tname :String
+/referent|0..1 T +visibility : String [0..1]
; * +isStub : Boolean = false
+import | +/isFeature : Boolean = false
ImportReference +/isPrimitive : Boolean

+/isExternal : Boolean

0.1 i

ImportedMember

*

+referentl1

ElementReference

*| +annotation
®

+name : String
+value : String
+operator : String [0..1]

+taggedValue |*

*

StereotypeAnnotation

0.1

0.1

0..1| +taggedValues

0.1

1 l +stereotypeName

QualifiedName

TaggedValuelList

| Figure 15.1 Unit and Namespace Definitions

Action Language for Foundational UML (ALF), v1.1

0..1] +names
'

QualifiedNamelList

279

NamespaceDefinition

T +/specia|izationReferent.| ElementReference

PackageDefinition ClassifierDefinition +specialization '| QualifiedNameList
+isAbstract : Boolean =false | 0..1 0..1
ClassDefinition AssociationDefinition SignalDefinition
AN
DataTypeDefinition EnumerationDefinition ClassifierTemplateParameter
ActiveClassDefinition [__*classifierBehavior ,,|ActivityDefinition SignalReceptionDefinition
0.1 0.1 [

+body| 0.1 0.1} +/effectiveBody

Block

\ Figure 15.2 Package and Classifier Definitions

280 Action Language for Foundational UML (ALF), v1.1

Member

!

TypedElementDefinition

ReceptionDefinition

+/lower : Integer

+lowerBound : String [0..1]
+upperBound : String ="1"
+isOrdered : Boolean = false
+isNonunique : Boolean = false

+/upper : UnlimitedNatural

0..1
+signalName | 1

M QualifiedName
0.1 0.1

*

*lype I ElementReference m
0.1 1

| +/redefinedOperation

FormalParameter

PropertyDefinition

+direction : String

+isComposite : Boolean = false
+/isCollectionConversion : Boolean
+/isBitStringConversion : Boolean

0.1

+initializer | 0..1

Expression

*

EnumerationLiteralName

NamespaceDefinition

OperationDefinition

Figure 15.3 Parameter, Feature and Enumeration Literal Definitions

15.2 Class Descriptions

15.2.1 ActiveClassDefinition

The definition of an active class.

Generalizations
e (ClassDefinition

Synthesized Properties
e classifierBehavior : ActivityDefinition [0..1]

+isAbstract : Boolean = false
+/isConstructor : Boolean *
+/isDestructor : Boolean

0.1

+redefinition | 0..1

QualifiedNamelList

0.1
+body | 0..1
Block |0
+/effectiveBody

The definition of an activity (which may be a stub) to act as the classifier behavior of the active class.

Derived Properties
None

Constraints

[1] activeClassDefinitionClassifierBehavior

If an active class definition is not abstract, then it must have a classifier behavior.

Action Language for Foundational UML (ALF), v1.1

281

Helper Operations
[1] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this active class definition considered as a class definition and the subunit is
for an active class definition.

15.2.2 ActivityDefinition

The definition of an activity, with any formal parameters defined as owned members.

Generalizations
e (lassifierDefinition

Synthesized Properties
* Dbody : Block [0..1]

The sequence of statements that defines the behavior of the activity (empty for a stub).

Derived Properties
e effectiveBody : Block [0..1]
If this activity definition is a stub, then the body of the corresponding subunit.

Slome

Constraints

[1] activityDefinitionEffectiveBodyAssignmentsBefore

The assignments before the effective body of an activity definition include an assignment for each "in" or "inout" formal
parameter of the activity definition, with the formal parameter as the assigned source.

[2] activityDefinitionEffectiveBodyDerivation

If an activity definition is a stub, then its effective body is the body of the corresponding subunit. Otherwise, the effective
body is the same as the body of the activity definition.

[34] activityDefinitionPrimitive

If an activity definition is primitive, then it must have a body that is empty.

[4] activityDefinitionReturn

If an activity definition has a return parameter with a multiplicity lower bound greater than 0. then the effective body of the
activity definition must have a return value.

[52] activityDefinitionSpecialization
An activity definition may not have a specialization list.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, an activity definition allows @primitive annotations and any
stereotype whose metaclass is consistent with Activity.

[2] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this activity definition considered as a classifier definition and the subunit is
for an activity definition. In addition, the subunit definition must have formal parameters that match each of the formal
parameters of the stub definition, in order. Two formal parameters match if they have the same direction, name, multiplicity
bounds, ordering, uniqueness and type reference.

282 Action Language for Foundational UML (ALF), v1.1

15.2.3 AssociationDefinition
The definition of an association, whose members must all be properties.

Generalizations
e (lassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] associationDefinitionSpecializationReferent

The specialization referents of an association definition must all be associations.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, an association definition allows an annotation for any
stereotype whose metaclass is consistent with Association.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either an AssociationDefinition or an imported member whose referent is an
AssociationDefinition or an Association.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this association definition considered as a classifier definition and the
subunit is for an association definition.

15.2.4 ClassDefinition

The definition of a class, whose members may be properties, operations, signals or signal receptions.

Generalizations
e (lassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] classDefinitionAbstractMember

If a class definition is not abstract, then no member operations (owned or inherited) of the class definition may be abstract.

[2] classDefinitionSpecializationReferent

The specialization referents of a class definition must all be classes. A class definition may not have any referents that are
active classes unless this is an active class definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, a class definition allows an annotation for any stereotype
whose metaclass is consistent with Class.

Action Language for Foundational UML (ALF), v1.1 283

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a ClassDefinition or an imported member whose referent is a ClassDefinition or a
Class.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this class definition considered as a classifier definition and the subunit is for
a class definition.

15.2.5 ClassifierDefinition

The definition of a classifier.

Generalizations
* NamespaceDefinition

Synthesized Properties
e isAbstract : Boolean = false

Whether the classifier is abstract or not.

e specialization : QualifiedNameList [0..1]

The names of classifiers specialized by the classifier being defined.

Derived Properties
e specializationReferent : ElementReference [*]

References to the classifiers to which the names in the specialization list resolve.

Constraints
[1] classifierDefinitionInheritedMembers

The members of a classifier definition include non-private members inherited from the classifiers it specializes. The visibility
of inherited members is as specified in the UML Superstructure, 7.3.8.

[2] classifierDefinitionSpecialization

Each name listed in the specialization list for a classifier definition must have a single classifier referent. None of these
referents may be templates.

[3] classifierDefinitionSpecializationReferentDerivation

The specialization referents of a classifier definition are the classifiers denoted by the names in the specialization list for the
classifier definition.

Helper Operations

[1] matchForStub (in unit : UnitDefinition) : Boolean

The namespace definition associated with the given unit definition must be a classifier definition. The subunit classifier
definition may be abstract if and only if the subunit classifier definition is abstract. The subunit classifier definition must have
the same specialization referents as the stub classifier definition. (Note that it is the referents that must match, not the exact
names or the ordering of those names in the specialization list.) The subunit classifier definition must also have a matching
classifier template parameter for each classifier template parameter of the stub classifier definition. Two template parameters
match if they have same names and the same specialization referents.

15.2.6 ClassifierTemplateParameter
The definition of a classifier template parameter, which acts as a classifier within the definition of the template.

Generalizations
e (lassifierDefinition

284 Action Language for Foundational UML (ALF), v1.1

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Annotations are not allowed on classifier template parameters.

[2] isSameKindAs (in member : Member) : Boolean
Return true if the given member is a classifier template parameter.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns false. (Classifier template parameters cannot be stubs.)

15.2.7 DataTypeDefinition

The definition of a data type, whose members must all be properties.

Generalizations
e (lassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] dataTypeDefinitionPrimitive

If a data type is primitive, then it may not have any owned members.

[2] dataTypeDefinitionSpecializationReferent
The specialization referents of a data type definition must all be data types.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, a data type definition allows @primitive annotations plus any
stereotype whose metaclass is consistent with DataType.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a DataTypeDefinition or an imported member whose referent is a
DataTypeDefinition or a DataType.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this data type definition considered as a classifier definition and the subunit
is for a data type definition.

Action Language for Foundational UML (ALF), v1.1 285

15.2.8 ElementimportReference
An import reference to a single element to be imported into a unit.

Generalizations
* ImportReference

Synthesized Properties
e alias : String [0..1]
The alias to be used as the name for the imported element in the importing unit’s namespace.

Derived Properties
None

Constraints
[1] elementImportReferenceReferent

The referent of an element import reference must be a packageable element.

Helper Operations
None

15.2.9 EnumerationDefinition

The definition of an enumeration, whose members must all be enumeration literal names.

Generalizations
e (lassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] enumerationDefinitionSpecializationReferent

The specialization referents of a class definition must all be classes. A class definition may not have any referents that are
active classes unless this is an active class definition.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, an enumeration definition allows an annotation for any
stereotype whose metaclass is consistent with Enumeration.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either an EnumerationDefinition or an imported member whose referent is an
EnumerationDefinition or an Enumeration.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this enumeration definition considered as a classifier definition and the
subunit is for an enumeration definition.

15.2.10 EnumerationLiteralName

The definition of an enumeration literal, as a member of an enumeration definition.

286 Action Language for Foundational UML (ALF), v1.1

Generalizations
e Member

Synthesized Properties
None

Derived Properties
None

Constraints
None

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns false. (Enumeration literal name cannot have annotations.)

15.2.11 FormalParameter

A typed element definition for the formal parameter of an activity or operation.

Generalizations
¢ TypedElementDefinition

Synthesized Properties
e direction : String

An indication of the direction of the parameter being defined.

Derived Properties
None

Constraints

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Parameter.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is a FormalParameter.
15.2.12 ImportedMember

Generalizations
e Member

Synthesized Properties
* referent : ElementReference

Derived Properties
None

Action Language for Foundational UML (ALF), v1.1

287

Constraints
[1] importedMemberlIsFeatureDerivation

An imported element is a feature if its referent is a feature.

[2] importedMemberNotStub
An imported element is not a stub.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns false. (Imported members do not have annotations.)

[2] isSameKindAs (in member : Member) : Boolean

If the given member is not an imported member, then return the result of checking whether the given member is the same
kind as this member. Else, if the element of the referent for this member is an Alf member, then return the result of checking
whether that element is the same kind as the given member. Else, if the element of the referent for the given member is an Alf
member, then return the result of checking whether that element is the same kind as this member. Else, the referents for both
this and the given member are UML elements, so return the result of checking their distinguishability according to the rules
of the UML superstructure.

15.2.13 ImportReference

A reference to an element or package to be imported into a unit.

Generalizations
e SyntaxElement

Synthesized Properties
e referentName : QualifiedName

The name of the element or package to be imported.

e unit : UnitDefinition

The unit that is making this import reference.
e visibility : String

An indication of the visibility of the import.

Derived Properties
* referent : ElementReference [0..1]

A reference to the imported element denoted by the given qualified name.

Constraints
[1] importReferenceReferent

The referent name of an import reference must resolve to a single element with public or empty visibility.

[2] importReferenceReferentDerivation

The referent of an import reference is the element denoted by the referent name.

Helper Operations
None

15.2.14 Member

A model of the common properties of the definition of a member of a namespace in Alf.

288 Action Language for Foundational UML (ALF), v1.1

Generalizations
e DocumentedElement

Synthesized Properties
* annotation : StereotypeAnnotation [*]

The stereotype annotations on this member definition.

e isStub : Boolean = false
Whether this member definition is a stub for a subunit.

* name : String
The name of the member.

* namespace : NamespaceDefinition [0..1]
The namespace definition within which this member definition is nested, if any. (The namespace definitions for units
are not physically nested within another Alf namespace definition.)

e visibility : String [0..1]
An indication of the visibility of the member outside of its namespace.

Derived Properties
e isExternal : Boolean

Whether this member is external or not.

e isFeature : Boolean = false
Whether this member is a feature of a classifier.

* isPrimitive : Boolean
Whether this member is a primitive or not.

e subunit : UnitDefinition [0..1]
The subunit corresponding to the member, if the member is a stub.

Constraints
[1] memberAnnotations

All stereotype annotations for a member must be allowed, as determined using the stereotypeAllowed operation.

[2] memberExternal
If a member is external then it must be a stub.

[3] memberlsExternalDerivation

A member is external if it has an @external derivation.

[4] memberlsPrimitiveDerivation

A member is primitive if it has a @primitive annotation.

[5] memberPrimitive

If a member is primitive, then it may not be a stub and it may not have any owned members that are template parameters.

Action Language for Foundational UML (ALF), v1.1 289

[6] memberStub

If a member is a stub and is not external, then there must be a single subunit with the same qualified name as the stub that
matches the stub, as determined by the matchForStub operation.

[7] memberStubStereotypes

If a member is a stub, then the it must not have any stereotype annotations that are the same as its subunit. Two stereotype
annotations are the same if they are for the same stereotype.

[8] memberSubunitDerivation

If the member is a stub and is not external, then its corresponding subunit is a unit definition with the same fully qualified
name as the stub.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true of the given stereotype annotation is allowed for this kind of element.

[2] isDistinguishableFrom (in member : Member) : Boolean

Returns true if this member is distinguishable from the given member. Two members are distinguishable if their names are
different or the they are of different kinds (as determined by the isSameKindAs operation). However, in any case that the
UML Superstructure considers two names to be distinguishable if they are different, an Alf implementation may instead
impose the stronger requirement that the names not be conflicting.

[3] isSameKindAs (in member : Member) : Boolean
Returns true if this member is of the same kind as the given member.

[4] matchForStub (in unit : UnitDefinition) : Boolean
Returns true of the given unit definition is a legal match for this member as a stub. By default, always returns false.

15.2.15 NamespaceDefinition

A model of the common properties of the definition of a namespace in Alf.

Generalizations
e Member

Synthesized Properties
e ownedMember : Member [*] {ordered}

The definitions of owned members of the namespace.

e unit : UnitDefinition [0..1]
The unit for which this namespace is a definition, if any.

Derived Properties
* member : Member [*]

The owned and imported members of a namespace definition.

Constraints
[1] namespaceDefinitionMemberDerivation

The members of a namespace definition include references to all owned members. Also, if the namespace definition has a
unit with imports, then the members include imported members with referents to all imported elements. The imported
elements and their visibility are determined as given in the UML Superstructure. The name of an imported member is the
name of the imported element or its alias, if one has been given for it. Elements that would be indistinguishable from each
other or from an owned member (as determined by the Member::isDistinguishableFrom operation) are not imported.

290 Action Language for Foundational UML (ALF), v1.1

[2] namespaceDefinitionMemberDistinguishability
The members of a namespace must be distinguishable as determined by the Member::isDistinguishableFrom operation.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is @external.

15.2.16 OperationDefinition

The definition of an operation, with any formal parameters defined as owned members.

Generalizations
* NamespaceDefinition

Synthesized Properties
* body : Block [0..1]

The sequence of statements that defines the behavior of the operation (empty for a stub or abstract operation).

* isAbstract : Boolean = false
Whether the operation being defined is abstract.

e redefinition : QualifiedNameList [0..1]

The names of other operations that are redefined by the operation being defined.

Derived Properties
e effectiveBody : Block [0..1]
If this operation definition is a stub, then the body of the corresponding subunit.

* isConstructor : Boolean
Whether this operation definition is for a constructor.

e isDestructor : Boolean
Whether this operation definition is for a destructor.

* redefinedOperation : ElementReference [*]

Constraints
[1] operationDefinitionAbstractOperation
If an operation definition is abstract, then its body must be empty.

[2] operationDefinitionConstructor

If an operation definition is a constructor, any redefined operation for it must also be a constructor. The body of a constructor
may contain an alternative constructor invocation for another constructor in the same class or super constructor invocations
for constructors in immediate superclasses.

[32] operationDefinitionConstructorDestructor
An operation definition cannot be both a constructor and a destructor.

[42] operationDefinitionDestructor

If an operation definition is a destructor, any redefined operation for it must also be a destructor.

Action Language for Foundational UML (ALF), v1.1 291

[5] operationDefinitionEffectiveBodyAssignmentsBefore

he assignments before the effective body of an operation definition include an assignment for each "in" or "inout" forma
Tt ts before the effective body of t lefinit lud t f h"in" or" t" f]
parameter of the operation definition, with the formal parameter as the assigned source.

[6] operationDefinitionEffectiveBodyDerivation

If an operation definition is a stub, then its effective body is the body of the corresponding subunit. Otherwise, the effective
body is the same as the body of the operation definition.

[74] operationDefinitionIsConstructorDerivation

An operation definition is a constructor if it has a @Create annotation.

[85] operationDefinitionIsDestructorDerivation
An operation definition is a destructor if it has a @Destroy annotation.

[96] operationDefinitionIsFeatureDerivation
An operation definition is a feature.

[107] operationDefinitionNamespace

The namespace for an operation definition must be a class definition.

[118&] operationDefinitionRedefinedOperationDerivation

If an operation definition has a redefinition list, its redefined operations are the referent operations of the names in the
redefinition list for the operation definition. Otherwise, the redefined operations are any operations that would otherwise be
indistinguishable from the operation being defined in this operation definition.

[129] operationDefinitionRedefinedOperations

The redefined operations of an operation definition must have formal parameters that match each of the formal parameters of
this operation definition, in order. Two formal parameters match if they have the same direction, name, multiplicity bounds,
ordering, uniqueness and type reference.

[13+0] operationDefinitionRedefinition

Each name in the redefinition list of an operation definition must have a single referent that is an operation. This operation
must be a non-private operation that is a member of a specialization referent of the class definition of the operation definition.

[14] operationDefinitionReturn

[f an operation definition has a return parameter with a multiplicity lower bound greater than 0. then the effective body of the
operation definition must have a return value.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Operation.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either an OperationDefinition or an imported member whose referent is an
OperationDefinition or an Operation, and the formal parameters of this operation definition match, in order, the parameters of
the other operation definition or operation. In this context, matching means the same name and type (per UML
Superstructure, 7.3.5). A constructor operation without an explicit return parameter is considered to implicitly have a return
parameter, following any other formal parameters, of the same type as the owner of the constructor operation.

[3] matchForStub (in unit : UnitDefinition) : Boolean

The namespace definition associated with the given unit definition must be an activity definition with no template
parameters. In addition, the subunit definition must have formal parameters that match each of the formal parameters of the

292 Action Language for Foundational UML (ALF), v1.1

stub definition, in order. Two formal parameters match if they have the same direction, name, multiplicity bounds, ordering,
uniqueness and type reference If this operation definition is a constructor, then it is considered to have an implicit return
parameter, following any other formal parameters, with the same type as the class of the operation definition and a
multiplicity of 1..1.

15.2.17 PackageDefinition

The definition of a package, all of whose members must be packageable elements.

Generalizations
* NamespaceDefinition

Synthesized Properties
None

Derived Properties
e appliedProfile : Profile [*]

The profiles applied (directly) to this package.

Constraints
[1] packageDefinitionAppliedProfileDerivation

The applied profiles of a package definition are the profiles listed in any @apply annotations on the package.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed on any namespace definition, a package definition allows @apply annotations plus any
stereotype whose metaclass is consistent with Package.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a PackageDefinition or an imported member whose referent is a PackageDefinition
or a Package.

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true of the namespace definition associated with the given unit definition is a package definition.

15.2.18 PackagelmportReference

An import reference to a package all of whose public members are to be imported.

Generalizations
* ImportReference

Synthesized Properties
None

Derived Properties
None

Constraints
[1] packagelmportReferenceReferent

The referent of a package import must be a package.

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 293

15.2.19 PropertyDefinition

A typed element definition for a property (attribute or association end).

Generalizations
e TypedElementDefinition

Synthesized Properties
* initializer : Expression [0..1]

The expression to be evaluated to initialize the property.

* isComposite : Boolean = false
Whether the property being defined has composite aggregation.

Derived Properties
* isBitStringConversion : Boolean

Whether BitString conversion is required for the initialization of this property.

e isCollectionConversion : Boolean
Whether collection conversion is required for the initialization of this property.

Constraints

[1] propertyDefinitionInitializer

If a property definition has an initializer, then the initializer expression must be assignable to the property definition. There
are no assignments before an initializer expression.

[2] propertyDefinitionInitializerType
If the initializer of a property definition is an instance creation expression with no constructor, and the type of the property

definition is a class or (structured) data type. then the referent of the expression is the type of the property definition. If the

initializer of a property definition is a sequence construction expression with no type name, but with non-empty elements
then the type of the expression is the type of the property definition and the expression has multiplicity if and only if the
multiplicity upper bound of the property definition is greater than 1.

[22] propertyDefinitionIsBitStringConversionDerivation
A property definition requires BitString conversion if its type is BitString and the type of its initializer is Integer or a
collection class whose scquenceargument type is Integer.

[43] propertyDefinitionIsCollectionConversionDerivation

A property definition requires collection conversion if its initializer has a collection class as its type and the property
definition does not.

[54] propertyDefinitionIsFeatureDerivation
A property definition is a feature.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Property.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a PropertyDefinition or an imported member whose referent is a PropertyDefinition
or a Property.

294 Action Language for Foundational UML (ALF), v1.1

15.2.20 ReceptionDefinition

The declaration of the ability of an active class to receive a signal.

Generalizations
e Member

Synthesized Properties
* signalName : QualifiedName
The name of the signal to be received.

Derived Properties
* signal : ElementReference

Constraints
[1] receptionDefinitionIsFeatureDerivation

A reception definition is a feature.

[2] receptionDefinitionSignalDerivation
The signal for a reception definition is the signal referent of the signal name for the reception definition.

[3] receptionDefinitionSignalName
The signal name for a reception definition must have a single referent that is a signal. This referent must not be a template.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

Returns true if the annotation is for a stereotype that has a metaclass consistent with Reception.

[2] isSameKindAs (in member : Member) : Boolean

Return true if the given member is either a ReceptionDefinition, a SignalReceptionDefinition or an imported member whose
referent is a ReceptionDefinition, a SignalReceptionDefinition, or a Reception.

15.2.21 SignalDefinition

The definition of a signal, whose members must all be properties.

Generalizations
e (lassifierDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] signalDefinitionSpecializationReferent

The specialization referents of a signal definition must all be signals.

Helper Operations
[1] annotationAllowed (in annotation : StereotypeAnnotation) : Boolean

In addition to the annotations allowed for classifiers in general, a signal definition allows an annotation for any stercotype
whose metaclass is consistent with Signal.

[2] isSameKindAs (in member : Member) : Boolean

Action Language for Foundational UML (ALF), v1.1 295

Return true if the given member is either a SignalDefinition or an imported member whose referent is a SignalDefinition or a
Signal (where signal reception definitions are considered to be kinds of signal definitions).

[3] matchForStub (in unit : UnitDefinition) : Boolean

Returns true if the given unit definition matches this signal definition considered as a classifier definition and the subunit is
for a signal definition.

15.2.22 SignalReceptionDefinition

The definition of both a signal and a reception of that signal as a feature of the containing active class.

Generalizations
* SignalDefinition

Synthesized Properties
None

Derived Properties
None

Constraints
[1] signalReceptionDefinitionIsFeatureDerivation

A signal reception definition is a feature.

Helper Operations
None

15.2.23 StereotypeAnnotation

An annotation of a member definition indicating the application of a stereotype (or one of a small number of special-case
annotations).

Generalizations
* SyntaxElement

Synthesized Properties
* names : QualifiedNameList [0..1]

A set of references to model elements required for the stereotype being applied.

* stereotypeName : QualifiedName
The name of the stereotype being applied.

* taggedValues : TaggedValueList [0..1]
A set of tagged values for the applied stereotype.

Derived Properties
* stereotype : Stereotype [0..1]
The stereotype denoted by the stereotype name.

Constraints
[1] stereotypeAnnotationApply

If the stereotype name of a stereotype annotation is "apply", then it must have a name list and all of the names in the list must
resolve to profiles.

[2] stereotypeAnnotationExternal

296 Action Language for Foundational UML (ALF), v1.1

If the stereotype name of a stereotype annotation is "external", then it may optionally have a single tagged value with the
name "file" and no operator.

[3] stereotypeAnnotationNames

If a stereotype annotation has a stereotype and a list of names, then all the names in the list must resolve to visible model
elements and the stereotype must have a single attribute with a (metaclass) type and multiplicity that are consistent with the
types and number of the elements denoted by the given names.

[4] stereotypeAnnotationPrimitive
If the stereotype name of a stereotype annotation is "primitive", then it may not have tagged values or names.

[5] stereotypeAnnotationStereotypeDerivation

"nn

Unless the stereotype name is "apply", "primitive" or "external" then the stereotype for a stereotype annotation is the
stereotype denoted by the stereotype name.

[6] stereotypeAnnotationStereotypeName

nn

The stereotype name of a stereotype annotation must either be one of "apply", "primitive" or "external”, or it must denote a
single stereotype from a profile applied to an enclosing package. The stereotype name does not need to be qualified if there is
only one applied profile with a stereotype of that name or if the there is a standard UML profile with the name.

[7] stereotypeAnnotationTagged Values

If a stereotype annotation has a stereotype and tagged values, then the each tagged value must have the name of an attribute
of the stereotype and a value that is legally interpretable for the type of that attribute.

Helper Operations
None

15.2.24 TaggedValue

An assignment of a value to an attribute of an applied stereotype.

Generalizations
* SyntaxElement

Synthesized Properties
* name : String

The name of the stereotype attribute to be assigned a value.

e operator : String [0..1]
For a numeric value, an optional unary plus or minus operator.

e value: String
The string image of a literal value to be assigned to the stereotype attribute.

Derived Properties
None

Constraints
None

Helper Operations
None

Action Language for Foundational UML (ALF), v1.1 297

15.2.25 TaggedValueList

A set of tagged values for a stereotype application.

Generalizations
¢ SyntaxElement

Synthesized Properties
* taggedValue : TaggedValue [*]

The tagged values in the set.

Derived Properties
None

Constraints
None

Helper Operations
None

15.2.26 TypedElementDefinition

The common properties of the definitions of typed elements.

Generalizations
e Member

Synthesized Properties
e isNonunique : Boolean = false

Whether the element being defined is non-unique.

e isOrdered : Boolean = false
Whether the element being defined is ordered.

* lowerBound : String [0..1]

The string image of the literal given to specify the lower bound of the multiplicity of the element being defined.

e typeName : QualifiedName [0..1]
The name of the type of the element being defined.

“] ’

e upperBound : String =

The string image of the literal given to specify the upper bound of the multiplicity of the element being defined.

Derived Properties
* lower : Integer

The multiplicity lower bound of the element being defined.

* type : ElementReference [0..1]

* upper : UnlimitedNatural

The multiplicity upper bound of the element being defined.

Constraints
[1] typedElementDefinitionLowerDerivation

298

Action Language for Foundational UML (ALF), v1.1

If the lower bound string image of a typed element definition is not empty, then the integer lower bound is the integer value
of the lower bound string. Otherwise the lower bound is equal to the upper bound, unless the upper bound is unbounded, in
which case the lower bound is 0.

[2] typedElementDefinitionTypeDerivation
The type of a typed element definition is the single classifier referent of the type name.

[3] typedElementDefinitionTypeName
The type name of a typed element definition must have a single classifier referent. This referent may not be a template.

[4] typedElementDefinitionUpperDerivation

The unlimited natural upper bound value is the unlimited natural value of the upper bound string (with "*" representing the
unbounded value).

Helper Operations
None

15.2.27 UnitDefinition

The definition of a namespace as an Alf unit.

Generalizations
e DocumentedElement

Synthesized Properties
e definition : NamespaceDefinition
The definition of the unit as a namespace.

e import : ImportReference [*]
The set of references to imported elements or packages.
* namespaceName : QualifiedName [0..1]

A declaration of the name of the namespace that contains this unit as a subunit.

Derived Properties
* appliedProfile : Profile [*]

The profiles applied to this unit.

* isModelLibrary : Boolean

Whether this unit definition is for a model library or not.

* namespace : ElementReference [0..1]

A reference to the namespace denoted by the declared namespace name for the unit, if any.

Constraints
[1] unitDefinitionAppliedProfileDerivation

The profiles applied to a unit definition include any profiles applied to the containing namespace of the unit definition. If the
unit definition is for a package, then the applied profiles for the unit definition also include the applied profiles for its
associated package definition.

[2] unitDefinitionImplicitimports

Unless the unit definition is a model library, it has private package import references for all the sub-packages of the
Alf::Library package.

[3] unitDefinitionlsModelLibraryDerivation

Action Language for Foundational UML (ALF), v1.1 299

A unit definition is for a model library if its associated namespace definition has a stereotype annotation for the UML
standard stereotype ModelLibrary.

[4] unitDefinitionNamespace

The declared namespace name for a unit definition, if any, must resolve to a UML namespace of an Alf unit definition. If it is
an Alf unit definition, then it must have a stub for this unit definition.

[5] unitDefinitionNamespaceDerivation
If a unit definition has a declared namespace name, then the containing namespace for the unit is the referent for that name.

Helper Operations
None

300 Action Language for Foundational UML (ALF), v1.1

16 Common Mapping
16.1 General

The mapping specification for each syntactic area defines how a specific Alf abstract syntax tree substructure is mapped into
a corresponding part of the fUML abstract syntax representation, in terms of the further subtrees of that structure. This may
be considered as a metamodel to metamodel transformation.

1. The transformation is from the Alf abstract syntax metamodel to the fUML abstract metamodel.

2. The transformation maps the root objects from the Alf abstract syntax representation to UML elements. A well-formed
Alf abstract syntax tree is always rooted in either an expression (see 12.2), a statement sequence (see 13.2) or a unit (see
14.2).

The remainder of this clause defines the mapping of the common elements contained in the A1f: : Syntax: : Common
package (see Clause 12). The following three clauses give mappings for elements in the Expressions, Statements and
Units packages.

16.2 Syntax Elements

1. The root mapping takes an Alf syntax element to a UML element. By default, this mapping is empty, but the mapping is
overridden as appropriate for subclasses of SyntaxElement. In particular, such a mapping definition is provided for
Expression, Block, UnitDefinition and any kind of syntax element that may be the target of an internal element
reference.

16.3 Documented Elements

1. Ifan element includes documentation, then each documentation string maps to a comment element attached to mapping
of the documented element, with the comment body given by the documentation text.

16.4 Element References

During mapping, an element reference is eventually mapped to a direct link to the referenced model element, either as
directly identified by an external element reference or as the model element mapped from the syntax element identified by an
internal element reference.

1. An element reference maps to a UML model element.
2. An external element reference maps to the identified model element.

3. Aninternal element reference maps to model element mapped from its identified syntax element.

16.5 Assigned Sources

An assigned source must ultimately map to an activity node that provides the source for an object flow used to obtain the
assigned value, as determined by the mapping of the source syntax element.

1. The mapping of the local name to an activity node depends on the assigned source syntax element for that local name.

2. An assigned source object is mapped to the appropriate activity node as determined by querying the source syntax
element.

Action Language for Foundational UML (ALF), v1.1 301

This page intentionally left blank

302 Action Language for Foundational UML (ALF), v1.1

17 Expressions Mapping
17.1 General

This clause defines the mapping of Alf expressions to UML. The abstract syntax for Alf expressions is described in Clause
13.

1. An Alf expression that is not contained in any other Alf text is mapped to UML as an activity with one parameter: a
return parameter that gives the result of the expression.

2. Any Alf expression maps to some or all of the nodes and edges in an activity (sometimes called a subgraph of the
activity).

3. The mapping of each kind of expression identifies the result source element in the mapping. This is the activity node to
which an outgoing object flow may be attached in order to obtain the result of the expression. The result values of the
expression correspond to the values of the sequence of object tokens produced on the flow. In some cases (such as when
an expression is used in an expression statement; see 9.6) the result source element may remain unconnected. In this case
the result values of the expression are lost.

17.2 Qualified Names

The formal mapping of a qualified name is given in various contexts of its use in subsequent subclauses. In general:

* When defining a named element, an unqualified name maps to the name of the named element, with the fully qualified
name mapping to the qualified name of the named element.

* When referencing a named element, its (qualified) name maps to a reference to that named element.

17.3 Literal Expressions

1. Aliteral expression maps to a value specification action with the literal mapping to an appropriate literal primitive
element. The result pin of the value specification action is the result source element for the expression.

17.4 Name Expressions

1. A name expression maps to an activity graph depending on the kind of name referenced.

2. A name expression for a local name or parameter name is mapped to an object flow. The source of the object flow is
given by the assigned source for the name before the name expression. The target of the object flow is determined by the
context of the use of the name expression.

The assigned source of the name effectively also acts as the result source element for the expression. Note that, if this
source is never connected (for example, if the name expression is used by itself as an expression statement), there can be
no object flow and the name expression will actually not map to anything (since it will have no effect).

If there is a structured activity node that owns (directly or indirectly) both the source and target of the object flow, then
the most deeply nested such node owns the object flow. Otherwise it is owned by the enclosing activity.

3. A name expression for an enumeration literal name is mapped to a value specification action whose value is given by an
instance literal specifying the given enumeration literal. The result pin of the value specification action is the result
source element for the expression.

4. A name expression for a name that disambiguates to a feature reference is mapped as a property access expression
consisting of that feature reference (see 8.3.6).

17.5 this EXpressions

1. A this expression maps to a read self action. The result pin of the read self action is the result source element for the
expression.

Action Language for Foundational UML (ALF), v1.1 303

17.6 Property Access Expressions

NOTE. The Alf property access expression notation may be used to represent the access to a property (structural feature or
opposite association end) of any kind of classifier other than a primitive type. However, the only kinds of non-primitive
classifiers in the f{UML subset with properties are classes, data types and signals. Therefore, a property access expression can
only be mapped to f{UML if the type of its collection expression is a data type, class or signal, and the semantics of the
expression are formally defined only in this case.

1.
2.

A property access expression is mapped as either a single instance property access or a sequence property access.

A single instance property access expression for an attribute is mapped to a read structural feature action for the named
structural feature. The result source element of the mapping of the target expression is connected by an object flow to the
object input pin of the read structural feature action. The result pin of the action is the result source element for the
property access expression.

A sequence property access expression is mapped as an expansion region similarly to a collect expression (see 17.19).

17.7 Invocation Expressions

1.

An invocation expression is mapped as a behavior invocation or a feature invocation. Subclause 17.8 describes the
mapping for tuples in general. Subclause 17.9 describes the mapping for behavior invocations (which also include a
functional notation for reading associations). Subclause 17.10 describes the mapping for all other kinds of invocations.
Note that, after static semantic analysis, a super invocation is mapped as a behavior invocation (see 17.11).

If the invocation expression is the assigned source for a local name, then it must map to a call action with result output
pins. The actual source for the value of the local name is the fork node connected to the result output pin with that name.

If the invocation maps to a call behavior action or a call operation action with a non-empty list of argument pins and a

result source element that is a result pin corresponding to a return parameter, then the action is wrapped in a structured
activity node with a single output pin and an object flow from the formerly mapped result source element to the output
pin. The structured activity node then becomes the effective action for the mapping and its output pin becomes the new
result source element.

NOTE. Wrapping a call action in a structured activity node as above ensures that the invocation effectively produces a
null token in the case that the call action itself does not actually fire because its input pin multiplicities are not satisfied.

' 17.8 Tuples

1.

304

An empty tuple (i.e., a positional tuple with no argument expressions) is mapped to nothing. A non-empty tuple is
mapped to a structured activity node containing the mapping of each of its argument expressions. There is a control flow
from the structured activity node to the invocation action taking input from the tuple mapping.

For an argument for an in parameter, the argument expression is mapped as usual for an expression. The result source
element of such an expression provides the source for setting the value of the associated parameter, unless conversion is
required. If collection conversion is required, then the result source element of the argument expression is connect by an
object flow to an invocation of the Collection: : toSequence operation (see 11.7.3), and the result of that invocation
provides the source for setting the value of the associated parameter, unless bit string conversion is also require. If bit
string or real conversion is required, then either the result source element of the argument expression or the result of the
toSequence invocation, if collection conversion was required, is connected by an object flow to an invocation of the
BitStringFunctions::toBitString function (see 11.4.7) or IntegerFunctions: :ToReal (see 11.4.3)
respectively. --and the result of that invocation provides the source for setting the value of the associated parameter. [f the
tuple is in a behavior invocation expression or sequence operation expression to which indexing from 0 applies, and the
parameter is an affected index parameter (see 8.3.9), then the mapping of the argument expression is adjusted as for the
index expression of a sequence access expression (see 17.16).

For an argument for an out parameter, the argument expression is mapped as a left hand side of an assignment (see
17.24): an argument that is a local name is mapped as a fork node while an argument that is a feature reference is
mapped as write structural feature value action. The output from the invocation action for the corresponding parameter
provides the assigned value.

Action Language for Foundational UML (ALF), v1.1

4. For an argument for an inout parameter, the argument expression is mapped twice (as given above): once as for an in
parameter, to provide the input value for the parameter, and once as for an out parameter, to provide the target for the
output value.

17.9 Behavior Invocation Expressions

1. A behavior invocation expression whose qualified name disambiguates to a feature reference is mapped as if it were a
feature invocation expression (see 17.10). Otherwise, a behavior invocation expression is mapped as either a behavior
call or an association read.

2. A behavior invocation expression whose qualified name resolves to a behavior maps to a call behavior action for the
named behavior.

If the behavior invocation expression has a non-empty tuple, then the call behavior action is the target of a control flow
whose source is the structured activity node mapped from the tuple.

Each input pin of the call behavior action corresponds to an in or inout parameter of the called behavior. If there is an
argument expression for that parameter in the tuple, then the input pin is the target of an object flow whose source is the
result source element of the argument expression.

Similarly, each output pin of the call behavior action (other than the output pin for a return parameter) corresponds to
an out or inout parameter. If there is an argument expression for that parameter in the tupletype, then the output pin is
the source of an object flow whose target is assigned value input for the argument expression.

NOTE. Call behavior action pins corresponding to unmatched parameters remain unconnected.

If the behavior does not have a return parameter, then the behavior invocation expression has no result source element.
Otherwise, the output pin of the call behavior action corresponding to that parameter is the result source element for the
behavior invocation expression, unless indexing from 0 applies to the behavior invocation expression and the invocation
is of a library function whose return value is affected by this (see 8.3.9), in which case the output pin is connected by an
object flow to an invocation of the ITntegerFunctions::'-" function (see 11.4.3) whose second argument is 1, and
the result of that invocation provides the result source element for the behavior invocation expression.

A behavior invocation expression whose qualified name resolves to an association end maps to a read link action with
end data for the ends of the named association. Except for the end data for the target end, the value input pins for each
end are the target of an object flow from the result source element of the mapping of the corresponding argument
expression. The result output pin of the read link action is the result source element for the association selection.

17.10 Feature Invocation Expressions

1. A feature invocation expression is mapped as either a single instance feature invocation or a sequence feature invocation.
For each kind of invocation, the result source element of the mapping of the feature expression is connected by an object
flow to the appropriate target activity node.

2. Asingle instance feature invocation is mapped as either a non-destructor operation call, an explicit destructor call, an
implicit destructor call or a signal send.

3. A sequence feature invocation is mapped as an expansion region similarly to a collect expression.
Operation Call

4. An operation call (that is not a destructor call) maps to a call operation action for the named operation. The result source
element mapped from the primary expression of the feature invocation expression is connected by an object flow to the
target input pin of the call operation action.

5. The call operation action has argument and result input and output pins corresponding to the parameters of the operation.
These pins are connected to the appropriate mapping of argument and result expressions from the tuple (see 17.8). If the
operation has a return parameter, then the output pin of the call operation action corresponding to that parameter is the
result source element for the feature invocation action. Otherwise it has no result source element.

Action Language for Foundational UML (ALF), v1.1 305

Destructor Call

6.

If an operation call is a destructor call, and the feature invocation expression is not itself within the method of a
destructor, then the call operation action is followed by a destroy object action for the target object with
isDestroyOwnedObjects=true and isDestroyLinks=true. If the feature invocation is within the method of a destructor, the
destroy object action is conditioned on a test that the target object is not the context object.

NOTE. Object destruction is always done with isDestroyOwnedObjects=true and isDestroyLinks=true, because this is
the expected high-level behavior for object destruction.

If an operation call is an implicit object destruction expression, then it is mapped to just a destroy object action, as above,
without any operation call.

Signal Send

8.

A signal send maps to a send signal action for the named signal. The result source element mapped from the target
expression of the feature invocation expression is connected by an object flow to the target input pin of the send signal
action.

The send signal action has argument input pins corresponding to the attributes of the signal. Each argument input pin of
the send signal action is the target of an object flow whose source is the result source element of the argument expression
(if there is one) mapped from the tuple (see 17.8) for the corresponding signal attribute.

A signal send has no result source element.

17.11 Super Invocation Expressions

Once the target operation a super invocation expression is determined, the expression is mapped as a behavior invocation to
the method of that operation (see 17.9).

17.12 Instance Creation Expressions

1.

An instance creation expression maps as an object creation expression or a data value creation expression.

Object Creation Expression

2.

306

An object creation expression maps as either a constructed object creation or a constructorless object creation. If the
class of the object being created is an active class, then the mapping also includes the starting of the behavior of that
object.

If the object creation expression is not constructorless, then the expression maps to a create object action for the class of
the constructor operation. The result of the create object action is used as the target instance for an invocation of the
constructor, mapped as for a feature invocation expression (see 17.10). The result source element of the object creation
expression is the result output pin of the call operation action for the constructor operation.

If the object creation expression is constructorless, then the expression maps to a create object action for the identified
class. If none of the attributes owned or inherited by the class have default values, then the result source element of the
expression is the result output pin of the create object action. Otherwise, the result output pin of the create object action
is connected by an object flow to a control-flow sequenced set of structured activity nodes containing write structural
feature actions for setting the default values of any attributes of the newly create object that have them.

NOTE. It is possible to notate in Alf a constructorless instance creation for any class. However, default values for
attributes are value specifications (see UML Superstructure, 7.3.44), and the only kind of value specifications supported
in fUML are literal specifications and instance values, not general expressions (see f{UML Specification, 7.2.2.1). The
mapping given here will support any kind of value specification as a default value, but the result will not conform to the
fUML subset if the value specifications are outside that subset.

If the class of the object being created is an active class, then a fork node is added to the mapping with an object flow
from the original result source element, and that fork node becomes the new result source element. The fork node is
connected by to the object input start object behavior

. In this case, the entire
mapping is always placed within a structured activity node.

Action Language for Foundational UML (ALF), v1.1

NOTE. Classifier behaviors with parameters are not supported by Alf, nor is the asynchronous starting of an instance of
an activity with parameters. However, it is possible to notate the instantiation of an activity as a class as long as the class
has no parameters, in which case the activity will, in fact, begin asynchronous execution.

Data Value Creation Expression

6. A data value creation expression maps to a value specification action with an instance value for the named data type. If
the tuple for the expression is non-empty, then the value specification action is the target of a control flow whose source
is the structured activity node mapped from the tuple (see 17.8). Further, the result of the value specification action is fed
through a sequence of write structural feature actions with values coming from the result source elements for the
argument expressions.

If the data value creation expression has an empty tuple, then the result source element is the result pin of the value
specification action. Otherwise, the result source element is the result of the sequence of write structural feature actions.

17.13 Link Operation Expressions

1. Alink operation expression for the operation createLink maps to a create link action for the named association with
isReplaceAll=false for all ends. The value input pin of the end creation data for each end of the association is the target
of an object flow from the result source element of the mapping of the corresponding argument expression. If an
association end is ordered, then the insertAt input pin for that end is the target of an object flow from the result source
element of the mapping of the corresponding index expression (which defaults to * if not given explicitly).

2. Alink operation expression for the operation destroyLink maps to a destroy link action for the named association. The
value input pin of the end creation data for each end of the association is the target of an object flow from the result
source element of the mapping of the corresponding argument expression. If an association end is unordered, the
isDestroyDuplicates=true. If an association end is ordered, then isDestroyDuplicates=false and the insertAt input pin for
that end is the target of an object flow from the result source element of the mapping of the corresponding index
expression (which defaults to * if not given explicitly).

3. Alink operation expression for the link operation clearAssoc maps to a clear association action for the named
association. The object input pin of clear association action is the target of an object flow from the result source element
of the mapping of the argument expression.

17.14 Class Extent Expressions

1. A class extent expression maps to a read extent action for the named class. The result output pin of the read extent action
is the result source element for the class extent expression.

17.15 Sequence Construction Expression
Collection Object Creation Expression

1. A sequence construction expression that does not have multiplicity is mapped as an instance creation expression (see
17.12) with a constructor for the collection class given by the type name (see 11.7). The argument expression for the
constructor is mapped as below for a sequence construction expression with multiplicity for the type
of the collection class and the sequence elements from the original expression.

Sequence Element List

2. A sequence construction expression that has multiplicity and a sequence list expression with a non-empty expression list
is mapped to a structured activity node with a single output pin whose type and multiplicity, are as specified for the
expression. The output pin is the result source element for the expression.

Action Language for Foundational UML (ALF), v1.1 307

3. Each element expression is mapped inside the structured activity node, with an object flow from its result source element
to the structured activity node output pin. If

there is more
than one element expression, then the mapping for each element expression is wrapped in its own structured activity
node and they are connected sequentially by control flows.

Sequence Range

4. A sequence construction expression that has multiplicity and a sequence range expression is mapped to a structured
activity node with the range upper and lower expressions mapped inside it. The result source elements of the upper and
lower expressions are connected by object flows to input pins of a loop node in the structured activity node. The loop
node also has a third input pin that has a multiplicity lower bound of 0. The output pin corresponding to this third input
pin is the result source element for the sequence range expression

5. The loop node is iterative, continually incrementing the value in its first loop variable until it reaches the value of its
second loop variable. On each iteration, it appends the value of its first loop variable to the list in its third loop variable,
which, at the end of the iteration, thus contains the desired sequence.

Empty Collections

6. A sequence construction expression that has multiplicity and an empty expression list maps to a value specification
action for a literal null. The result output pin of the value specification has the type given for the sequence list expression
and the multiplicity [1..1]. It is the result source element for the expression.

7. The keyword null is mapped as any []{}.

17.16 Sequence Access Expressions

1. A sequence access expression is mapped to a call to the primitive behavior
Alf::Library::PrimitiveBehaviors::SequenceFunctions: :At (see 11.4.8). The result source element of the
primary expression of the sequence access expression is connected by an object flow to the first argument input pin of
the call behavior action. The result source element of the index expression is connected by an object flow to the second
argument input pin. The result output pin of the call behavior action is the result source element for the sequence access
expression.

17.17 Sequence Operation Expressions

1. A sequence operation expression is mapped as a behavior invocation expression (see 17.9) for the referent behavior, with
the target primary expression as the first behavior argument. The result source element for the sequence operation
expression is that of the behavior invocation expression.

17.18 Sequence Reduction Expression

1. A sequence reduction expression is mapped to a reduce action with the named behavior as the reducer. The collection
input pin is the target of an object flow from the result source element of the mapping of the input expression. The result
output pin of the reduce action is the result source element for the reduction expression.

308 Action Language for Foundational UML (ALF), v1.1

17.19 Sequence Expansion Expressions

1.

4,

A sequence expansion expression maps to an expansion region with a single input expansion node. Except for the
iterate operation, the expansion region has mode=parallel. For the iterate operation, the expansion region has
mode=iterative.

The input expansion node has the same type as the primary expression. It is the target of an object flow from the result
source element of the mapping of the primary expression.

The argument expression is mapped inside the expansion region. The input expansion node is connected by an object
flow to a fork node within the expansion region that acts as the assigned source for references to the expansion variable
within the mapping of the argument expression.

The specific mapping for each kind of sequence expansion operation is further discussed in subsequent subclauses.

select and reject Expressions

5.

A select or reject expression is mapped as a sequence expansion expression (see 17.19). The expansion region from
this mapping has an output expansion node of the same type as the primary expression of the sequence expansion
expression. This node is the result source element for the overall sequence expansion expression.

The result source element of the mapping of the argument expression is the source of the decision input flow for a
decision node inside the expansion region. The decision node also has an incoming object flow from the expansion
variable fork node and an outgoing object flow to the output expansion node. For a select operation, the guard on the
outgoing object flow is true. For a reject operation, it is false.

collect and iterate Expressions

7.

8.

A collect or iterate expression is mapped as a sequence expansion expression (see 17.19). The expansion region
has an output expansion node of the same type as the argument expression. The result source element of the mapping of
the argument expression is connected by an object flow inside the expansion region to the output expansion node.

For an iterate operation, the expansion region has mode=iterative. Otherwise it has the normal mode=parallel.

forAll, exists and one Expressions

9.

10.

11.

A forall expression is mapped the same as a reject expression, except that the output expansion node of the
expansion region is connected by an object flow to a call behavior action for the library isEmpty function. The result
output pin of the call behavior action is the result source element for the foral1 expression.

An exists expression is mapped the same as a select expression, with the addition that, inside the expansion region,
the decision node is not directly connected to the output expansion node but, rather, is connected to a fork node that is
connected both to the output expansion node and to an activity final node. Further, the output expansion node of the
expansion region is connected by an object flow to a call behavior action for the library notEmpty function. The result
output pin of the call behavior action is the result source element for the exists expression.

NOTE. The inclusion of an activity final node within the expansion region is intended to terminate the region as soon as
an element is found for which the Boolean expression is true. (Despite its name, an activity final node within a
structured node such as an expansion region only terminates that structured node.)

A one expression is mapped the same as a select expression, except that the output expansion node of the expansion
region is connected by an object flow to a call behavior action for the library size function. The result output pin of the
call behavior action is then connected by an object flow to the input pin of a test identity action whose other input pin is
connected to a value specification action for the value 1. The result output pin of the test identity action is the result
source element of the one expression.

isUnique Expressions

12.

An isUnique expression is mapped as a collect expression. The expansion output node of the expansion region
mapped from the collect expression is connected by an object flow to a fork not which is then connect by object flows to
an input expansion node and an input pin of another expansion region. The second expansion region is mapped similarly
to a forAll expression, with the condition that the count of each value its sequence is 1. The result source element for
the isUnique expression is the result output pin of the i sEmpty call on the output of the second expansion region.

Action Language for Foundational UML (ALF), v1.1 309

17.20 Increment and Decrement Expressions

1. An increment or decrement expression is mapped to a call behavior action for the + function (for increment) or the -
function (for decrement) from the library package A1f::Library::PrimitiveBehaviors::IntegerFunctions
(see 11.4.3).. The second argument input pin of the call behavior action is connected by an object flow to the result
output pin of a value specification action for the value 1. The result output pin of the call behavior action is connected by
an object flow to a fork node, which acts as the source element when the expression is an assigned source.

2. The operand is mapped first considered as an effective argument expression. If the increment or decrement expression is
a prefix expression, then the result source element of this mapping is connected by an object flow to the first argument
input pin of the call behavior action and the assigned source element is also the result element for the expression. Ifitis a
postfix expression, then the result source element of the operand expression mapping is first connected to a fork node
and then that is connected to the argument input pin, and the fork node is the result source element for the expression.

3. The operand is also mapped as a left-hand side to which is assigned the result of the call behavior action (see 17.24).

4. If the operand has an index, then the index expression is only mapped once. The result source element of the index
expression is connected by an object flow to a fork node, which is used as the source for the index value in the mapping
of the operand expression both as an argument and as the left hand side of the assignment.

17.21 Unary Expressions

Boolean Unary Expressions

1. A Boolean unary expression with a Boolean negation operator is mapped as the equivalent behavior invocation (see
17.9)for the function A1f: :Library:: PrimitiveBehaviors::BooleanFunctions::'!"' (see 11.4.2) on the
operand expression.

BitString Unary Expressions

2. A BitString unary expression with a BitString negation operator is mapped as the equivalent behavior invocation (see
17.9) for the function A1f: :Library:: PrimitiveBehaviors::BitStringFunctions::'~"' (see 11.4.7) on the
operand expression. Note that this includes the possibility of bit string conversion on the operand expression.

Numeric Unary Expressions

3. A numeric unary expression with a plus operator is mapped as its operand expression. A numeric unary expression with a
minus operator is mapped as the equivalent behavior invocation (see 17.9) for the function A1f::Library::
PrimitiveBehaviors::IntegerFunctions

: :Neg (see 11.4.4) on the operand expression.

Cast Expressions

4. If the named type is any or is a supertype of the type of the operand expression, then a cast expression is mapped as its
operand expression, except that, if the result source element is a typed element, it is typed with the type of the cast
expression, rather than the type of the argument expression.

5. Ifthe named type is a classifier, then a cast expression is mapped like a select expression (see 17.19) whose condition
is a read is classified object action for the type of the cast expression (“instanceof” operator).

310 Action Language for Foundational UML (ALF), v1.1

| Table 17.1 Primitive Behaviors Used for Conversions

‘ Conversion

Behavior

Integerto UnlimitedNatural

IntegerFunctions: :ToUnlimitedNatural

UnlimitedNatural to Integer

UnlimitedNaturalFunctions::ToInteger

IntegertoBitString

BitStringFunctions::ToBitString

BitStringto Integer

BitStringFunctions::Tolnteger

Integer to Real

IntegerFunctions: :ToReal

Real to Int

ger

D

RealFunction

(D
]

oInteger

| Isolation Expressions

7. An isolation expression is mapped as a structured activity node with isIsolated=true and the operand expression mapped
inside it. The structured activity node has a single output pin with the type and multiplicity of the operand expression.
The result source element from the mapping of the operand expression is connected inside the structured activity node by
an object flow to the output pin. The result source element for the isolation expression is the output pin of the structure

activity node.

17.22 Binary Expression

Arithmetic Expressions

1. An arithmetic expression is mapped as a behavior invocation (see 17.9) for the corresponding primitive behavior from

the Alf::Library::PrimitiveBehaviors package (see 11.4), as given in Table 17.2. Note that this includes the

possibility of performing real conversion on either operand, as necessary.

| Table 17.2 Primitive Behavior Equivalents for Arithmetic Operators

| Shift Expressions

2. A shift expression is mapped as a behavior invocation (see 17.9) for the corresponding primitive behavior from the
Alf::Library::PrimitiveBehaviors package (see 11.4), as given in Table 17.3. Note that this includes the

possibility of performing bit string conversion on the first operand.

Table 17.3 Primitive Behavior Equivalents for Arithmetic Operators

Action Language for Foundational UML (ALF), v1.1

Operator Integer Behavior Real Behavior String Behavior
(isConcatenation=false, (isReal=true) (isConcatenation=true)
isReal=false)

‘ + IntegerFunctions::"+"' RealFunctions:: StringFunctions::"'+'

‘ - IntegerFunctions::'-" RealFunctions::

‘ IntegerFunctions::'*" RealFunctions::

‘ / [IntegerFunctions::'/" RealFunctions::

‘ IntegerFunctic '3

‘ = ITrtegerfunetion Lt

‘ + ITrtegerFuncetions LA

\ % b e !

\ Pt e e e

‘ Coneastenatrion—*Ffiriial S INEERSWE S o LI

HsCeoncatenation—¢t &) StrinagRPuncetion
‘ - ITrtegerfunetions Lt

31

Operator Behavior

<< BitStringFunctions::'<<'
>> BitStringFunctions::'>>"'
>>> BitStringFunctions::'>>>"

Relational Expressions

3. Arelational expression is mapped as a behavior invocation (see 17.9) for the corresponding primitive behavior from the
Alf::Library::PrimitiveBehaviors package (see 11.4), as given in Table 17.4.

\ Table 17.4 Primitive Behavior Equivalents for Relational Operators

| Logical Expressions

4. Alogical expression is mapped as a behavior invocation (see 17.9) for the corresponding primitive behavior from the
Alf::Library::PrimitiveBehaviors package (see 11.4), as given in Table 17.5. Note that this includes the
possibility of applying bit string conversion to one or both operands, if the operator is bit-wise.

Table 17.5 Primitive Behavior Equivalents for Logical Operators

Operator Boolean Behavior BitString Behavior
(isBitWise=false) (isBitWise=true)
& BooleanFunctions::'&' BooleanFunctions::'&'
~ BooleanFunctions::'"' BooleanFunctions::'"!'
| BooleanFunctions::"'|" BooleanFunctions::'|"'

Classification Expressions

5. Aclassification expression maps to a read is classified object action for the named classifier with. If the classification
operator is instanceof, then isDirect=false. If the operator is hasType, then isDirect=true. The object input pin of the
action is the target of an object flow from the result source element for the mapping of the operand expression. The result
output pin of the action is the result source element for the classification expression.

Equality Expressions

6. An equality expression is mapped to a test identity action. If the expression uses the operator ==, and both operand
expressions have a multiplicity lower bound of 1, then the input pins of the action are the targets of object flows from the

312 Action Language for Foundational UML (ALF), v1.1

9.

result source elements for the mappings of the argument expressions. The output pin of the action is the result source pin
for the equality expression.

If either operand expression has a multiplicity lower bound of 0, then the result of that expression is first tested for being
not empty using the library function A1f: :Library:: PrimitiveBehaviors::SequenceFunctions: :NotEmpty
(see 11.4.8). The test identity action is executed only if both argument expressions are non-empty. Otherwise, the
equality expression is true only if both argument expressions are empty.

NOTE. Despite the extra checks described above, the mapping for an equality expression still always evaluates the
operand expressions exactly once.

If real conversion is required on an operand. then the result source element of the operand expression is connected by an
object flow to an invocation of the IntegerFunctions: :ToReal function (see 11.4.3), and the result of that
invocation is used as the result source for the operand expression in the mapping above.

An equality expression that uses the operator ! = is mapped as above, but the result output pin of the test identity action is
connected by an object flow to the argument input pin of a call behavior action for the library function
Alf::Library::PrimitiveBehaviors:: BooleanFunctions::'!' (see 11.4.2). The result source element is the
result output pin of the call behavior action.

Conditional Logical Expressions

10. A conditional-and expression is mapped like a conditional-test expression (see 17.23) whose first two operand

expressions are the same as those of the conditional-and expression and whose third operand expression is false.

11. A conditional-or operator expression is mapped like a conditional-test expression (see 17.23) whose first and third

operand expressions are the same as the two operand expressions of the conditional-or expression and whose second
operand expression is true.

| Null-Coalescing Expressions

12. A null-coalescing expression is mapped like a conditional-test expression (see 17.23) whose first operand expression is

an invocation of the library function A1f: :Library:: PrimitiveBehaviors::SequenceFunctions:
with an argument that is the assignment of the result of the first operand expression of the null-coalescing expression to a
temporary local name (not otherwise being used), whose second operand expression is a reference to the temporary local
name and whose third operand expression is the second operand expression of the null-coalescing expression.

:NotEmpty._

' 17.23 Conditional-Test Expressions

1.

A conditional-test expression maps to a decision node with an incoming control flow from an initial node. The decision
input flow for the decision node has as its source the result source element from the mapping of the first operand
expression.

The decision node has two outgoing control flows with the guards true and false. The true flow has as its target a
structured activity node that contains the mapping of the second operand expression. The false flow has as its target a
structured activity node that contains the mapping of the third operand expression.

The result source elements from the mapping of the second and third operand expressions are connected by object flows
to a merge node (outside either structured activity node). This merge node is the result source element for the
conditional-test expression.

For any name assigned in either (or both) of the second and third operand expressions, an output pin is added to the
structured activity nodes for both the second and third operand expressions. Within each structured activity node, if the
name is assigned in the corresponding operand expression, then the assigned source for the name after the operand
expression is connected to the output pin. If the name is not assigned in the corresponding operand expression, but has an
assigned source before the operand expression. then an additional structured activity node is added to the mapping of the
operand expression as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the assigned source for the name before the operand expression to the input pin of the
structured activity node.

Action Language for Foundational UML (ALF), v1.1 313

The output pin of the added structured activity node is then connected by an object flow to the output pin corresponding
to the name on the enclosing structured activity node for the argument expression.

Each pair of output pins on the structured activity nodes for the operand expressions corresponding to the same name are
connected by object flows to a merge node
node is the source for the assigned value of the name after the conditional-test expression.

17.24 Assignment Expressions

1. The mapping of an assignment expression depends on whether it is a simple or compound assignment and, if it is a
simple assignment whether it has a name or feature left-hand side and whether or not it has an index.

2. As an assigned source, an assignment expression maps to the result source of the expression.

3. Ifno conversion is required then the result source element of the right-hand side of an assignment expression, as
referenced below, should be considered to the the result source element of the mapping of the right-hand side expression.
If collection conversion is required, then the result source element of the argument expression is connect by an object
flow to an invocation of the Collection: : toSequence operation (see 11.7.3), and the result of that invocation acts as
the result source element for the right-hand side, unless bit string conversion is also require. If bit string conversion is
required, then either the result source element of the argument expression or the result of the toSequence invocation, if
collection conversion was required, is connected by an object flow to an invocation of the
BitStringFunctions::toBitString function (see 11.4.7)

, and the result of that invocation acts as the result source element for the right-hand side.

Simple Assignment: Name Left-Hand Side, without Index

4. If the left-hand side is a name without an index, then a simple assignment maps to a fork node. The result source element
from the mapping of the right-hand side is connected to the fork node by an object flow. The fork node is the result
source element for the assignment expression and also the source for the assigned value for the name.

Simple Assignment: Name Left-Hand Side, with Index

5. If'the left-hand side is a name with an index, then a simple assignment maps to a call behavior action for the library
behavior A1f: :Library: :SequenceFunctions: :ReplaceAt (see 11.4.8). The assigned source for the name from
the left-hand side is connected b an object flow to the seq argument input pin of the call behavior action. The result
source element from the mapping of the right-hand side is connected to the element argument input pin and the result
source element from the mapping of the index expression is connected to the index argument input pin

. The seq output pin of the call behavior action is connected by
an object flow to a fork node, which is the result source element for the assignment expression and also the source for the
assigned value for the name after the expression.

Simple Assignment: Feature Left-Hand Side, without Index

6. If the left-hand side is a property reference but has no index, then the mapping of a simple assignment depends on the
multiplicity upper bound of the right-hand side expression.

7. If the right-hand side expression has a multiplicity upper bound of 0, then the simple assignment maps to a clear
structural feature action for the identified property. If the right-hand side expression is a sequence construction
expression for an empty set, then it is not mapped at all. Otherwise, the right-hand side expression is mapped inside a
structured activity node, with a control flow from the structured activity node to the clear structural feature action. There
is no result source element for the assignment.

8. If the right-hand side expression has a multiplicity upper bound of 1, then the simple assignment maps to an add
structural feature value action for the identified property with isReplaceAll=true. The result source element from the
mapping of the right-hand side expression is connect by an object flow to a fork node that has a further object flow to the
value input pin of the add structural feature value action. The fork node is the result source element for the assignment.

9. Otherwise, the simple assignment maps to a clear structural feature value action for the identified property followed by
an expansion region. The result source element from the mapping of the right-hand side expression is connected by an
object flow to a fork node that has a further object flow to an input expansion node of the expansion region. The
expansion region contains an add structural feature value action for the property with isReplaceAll=false and an

314 Action Language for Foundational UML (ALF), v1.1

incoming object flow from the input expansion node to its value input pin. If the property is ordered, then the insertAt
input pin has an incoming object flow from a value specification action for the unbounded value *. The fork node is the
result source element for the assignment.

Simple Assignment: Feature Left-Hand Side, with Index

10. If the left-hand side has an index, then the mapping of a simple assignment includes a structured activity node containing
the mapping of the index expression
. The further
mapping of the assignment expression then depends on the multiplicity upper bound of the right-hand side expression.

11. If the right-hand side expression has a multiplicity upper bound of 0, then the simple assignment maps to a remove
structural feature value action for the identified property with isRemoveDuplicates=false and an incoming object flow
into its removeAt input pin from the result source element from the mapping of the index expression. If the right-hand
side expression is a sequence construction expression for an empty collection, then it is not mapped at all. Otherwise, the
right-hand side expression is mapped inside a structured activity node, with a control flow from that structured activity
node to the structured activity node containing the mapping of the index expression. There is no result source element for
the assignment.

12. If the right-hand side expression has a multiplicity upper bound of 1, then the simple assignment maps to a remove
structural feature value action for the identified property with isRemoveDuplicates=false followed by an add structural
feature value action with isReplaceAll=false. The result source element of the mapping of the index expression is
connected by an object flow to a fork node, which then has object flows to the removeAt input pin of the remove
structural feature value action and the insertAt input pin of the add structural feature value action. The right-hand side
expression is mapped inside a structured activity node, which is connected by a control flow to the structured activity
node for the index expression. The result source element of the mapping of the right-hand side expression is connected
by an object flow to the value input pin of the add structural feature value action. The fork node is the result source
element for the assignment.

13. If the left-hand side is a data value attribute update, then a fork node is added to the mapping for the assignment
expression to be used as the source element for the assigned value of the name. The fork node is the target of an object
flow whose source is determined as follows.

o If the mapping includes a remove structural feature action, but no add structural feature action, then the result output
pin of the remove structural feature action is used.

o If the mapping includes an add structural feature action not in an expansion region, then the result output pin of the
add structural feature action is used.

o If the mapping has an add structural feature action in an expansion region, then an output expansion node is added to
the expansion region and the result output pin of the add structural feature action is connected to the output
expansion node by an object flow. The output expansion node is then connected by an object flow to a mapping of
the expression ListGet (x, ListSize (x)), where x represents the object flow from the expansion node.

Compound Assignment

14. A compound assignment is mapped like a simple assignment expression for which the assigned value is the result of a
call behavior action for the primitive behavior corresponding to the compound assignment operator. The arguments to the
call behavior action come from the result source elements of the mapping of the effective expression for the left-hand
side and the right-hand side expression. However, if the left-hand side is a property reference, then the primary
expression for the reference and any index expression are only mapped once with their values used both in the mapping
of the effective expression for the left-hand side and the updating of the left-hand side as a structural feature.

Action Language for Foundational UML (ALF), v1.1 315

This page intentionally left blank

316 Action Language for Foundational UML (ALF), v1.1

18 Statements Mapping

18.1 General

This clause defines the mapping of Alf statements to UML. The abstract syntax for Alf statements is described in Clause 14.

1.

Every statement is mapped to a single activity node (which may be a structured activity node with nested structure). The
specific mapping for each kind of statement is described in the following subclauses.

If the static analysis of assignment indicates that a name with an assigned source has a different assigned source after a
statement than before the statement, and the statement maps to a structured activity node (but not a conditional node or a
loop node), then an input pin corresponding to that name is added to the structured activity node. This input pin is the
target of an incoming object flow from the assigned source of the name before the statement. The input pin is also
connected by an outgoing object flow to a fork node contained in the structured activity node. This fork node acts as the
assigned source for the name within the mapping of the statement.

A block maps to the union of the nodes mapped from the statements in it. In addition, unless the block is in a block
statement annotated as being parallel (see 18.3), the node mapped from each statement other than the last has a control
flow targeted to the node mapped from the next statement.

A statement for which @isolated is allowed is always mapped to structured activity node, and annotating it
@isolated results in the islsolated property on this node being true. (Other annotations are discussed with the
description of the statements to which they apply.)

18.2 In-Line Statements

1.

An in-line statement maps to an opaque action with a body given by the code text within the statement with a
corresponding language string given by the language name in the statement. (The language string is given by the actual
name and so does not include the single quotes that appear in the representation of an unrestricted name.)

Depending on the mechanism used by a specific implementation, the opaque action may also have input and/or output
pins with connected object flows for providing data to and from the code executed by the opaque action. However, the
details of such mapping are not defined by the Alf standard.

NOTE. The fUML subset does not include opaque actions, so an activity mapped from Alf including an in-line statement
will not be executable as f{UML. The execution behavior of such an activity is implementation specific.

18.3 Block Statements

1.

A block statement maps to a structured activity node containing all the activity nodes and edges mapped from its block.
If the block statement is not parallel, then the nodes mapped from the statements of the block have control flows between
them enforcing their sequential execution. If the block statement is parallel, then there are no such control flows.

18.4 Empty Statements

1.

An empty statement maps to an empty structured activity node.

NOTE. Mapping an empty statement to something preserves the rule that every statement maps to a single activity node
and allows for the general rule for the mapping of control flow within a statement sequence.

18.5 Local Name Definition Statements

1.

A local name declaration statement is mapped as if it was an expression statement (see 18.6) with an assignment
expression (see 17.24) having the local name as its left-hand side and the expression as its right-hand side.

Action Language for Foundational UML (ALF), v1.1 317

18.6 Expression Statements

1.

An expression statement maps to a structured activity node containing the activity nodes and edges mapped from its
expression (see Clause 17).

18.7 ir Statements

Clauses

1.

An if statement maps to a conditional node. Each i f clause maps to a clause of the conditional node. For a final if
clause, the test part of the clause is a single value specification action for a Boolean literal with value “true”.

2. Each clause specified in a concurrent clause set has as predecessors all clauses specified by the immediately preceding
concurrent clause set (if any) in the sequential clause set for the conditional node. A final clause has as its predecessor all
clauses specified by the immediately preceding concurrent clause set.

3. The isAssured and/or isDetermined properties of the conditional node are set according to whether the if statement is
assured or determined.

Output Pins

4. The conditional node has a result output pin corresponding to each local name that is assigned in any of the i f clauses.

Therefore, each clause of the conditional node also must have a body output pin from within the clause identified for
each result pin of the conditional node. If a

name is assigned within a clause and the assigned source for that name within the clause is a pin
on an action within the body of the clause, then that pin is used as the clause body output pin corresponding to that local
name. Otherwise, a structured activity node is added to the mapping of the clause as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the assigned source for the name after the clause (which may be from inside or outside
the clause) to the input pin of the structured activity node.

The output pin of the structured activity node is then used as the clause body output pin corresponding to the name.

18.8 switch Statements

Clauses

1. A switch statement maps to a structured activity node that contains a conditional node and the mapping for the switch
expression. The switch clauses map to concurrent clauses of the conditional node. Each clause tests whether the result of
the switch expression equals the result of one of the case expressions.

2. A switch default clause is mapped to a conditional node clause with a condition of true and with all other clauses as
predecessor clauses.

3. The isAssured and/or isDetermined properties of the conditional node are set according to whether the switch statement
is assured or determined..

Output Pins

4. The result and clause body output pins of the conditional node are mapped as for an if statement (see 18.7).

18.9 wnhile Statements
Loop Node

1.

318

A while statement maps to a loop node with isTestedFirst=true (see f{UML Specification, 7.4.43). The loop node
contains the activity nodes and edges mapped from both the condition expression (see Clause 17) and the block of the

Action Language for Foundational UML (ALF), v1.1

while statement. All the actions from the mapping of the condition expression constitute the test part of the loop node.
All the actions from the mapping of the block form the body part.

If the result source element from the mapping of the condition expression is an output pin, then this is the decider pin for
the loop node. Otherwise, a structured activity node is added inside the loop node as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the result source element from the mapping of the expression to the input pin of the
structured activity node.

The output pin of the structured activity node is then used as the decider pin.

Loop Variables

3.

Any name that is assigned in the condition expression or block of the while statement is mapped to a loop variable of
the loop node. The loop variable corresponding to a name is used as the assigned source before the condition expression
when mapping the while statement. If the name is assigned before the while statement, then the corresponding loop
variable input pin is the target of an incoming object flow from the assigned source for the name before the while
statement. Otherwise the loop variable input pin is unconnected.

If the assigned source for the name after the block of the while statement is an output pin, then this output pin is
identified as the body output pin corresponding to the loop variable for the name. Otherwise, a structured activity node is
added to the mapping of the body of the loop as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the assigned source for the name after the block to the input pin of the structured
activity node.

The output pin of the structured activity node is then used as the body output pin corresponding to the name.

If the assigned source of a name after a while statement is the statement, then the source for its assigned value is the
result output pin of the loop node corresponding to the loop variable for the name.

18.10 4o Statements
Loop Node

1L

A do statement maps to a loop node with isTestedFirst=false (see f{UML Specification, 7.4.43). The loop node contains
the activity nodes and edges mapped from both the block and the condition expression (see Clause 17) of the do
statement. All the actions from the mapping of the condition expression constitute the test part of the loop node. All the
actions from the mapping of the block form the body part.

If the result source element from the mapping of the condition expression is an output pin, then this is the decider pin for
the loop node. Otherwise, a structured activity node is added inside the loop node as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the result source element from the mapping of the expression to the input pin of the
structured activity node.

The output pin of the structured activity node is then used as the decider pin.

Loop Variables

3.

Any name that is assigned in the condition expression or block of the do statement is mapped to a loop variable of the
loop node. The loop variable corresponding to a name is used as the assigned source before the block when mapping the
do statement. If the name is assigned before the do statement, then the corresponding loop variable input pin is the target
of an incoming object flow from the assigned source for the name before the do statement. Otherwise the loop variable
input pin is unconnected.

Action Language for Foundational UML (ALF), v1.1 319

If the assigned source for the name after the condition expression of the do statement is an output pin, then this output
pin is identified as the body output pin corresponding to the loop variable for the name. Otherwise, a structured activity
node is added to the mapping of the body of the loop as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the assigned source for the name after the block to the input pin of the structured
activity node.

The output pin of the structured activity node is then used as the body output pin corresponding to the name.

If the assigned source of a name after a do statement is the statement, then the source for its assigned value is the result
output pin of the loop node corresponding to the loop variable for the name.

18.11 sor Statements

Iterative for Statements

1.

An iterative for statement is generally mapped to a structured activity node containing the mapping of the loop variable
expressions and either a loop node or an expansion region.

An iterative for statement that does not make within it any re-assignments to names defined outside of it is mapped to
an expansion region with mode=iterative (see f{UML Specification, 7.4.54). The result source element from the mapping
of the loop variable expressions are connected by object flows to input expansion nodes on the expansion region.

Otherwise, an iterative for statement is mapped to a loop node (see fUML Specification, 7.4.42). A for statement of the
form

for (vl in exprl, v2 in expr2,..) { stmts }
is mapped equivalently to

{
listl = (T[]) exprl;
1list2 = (T[]) expr2;

size = listl->size();
i=1;
while (i <= size) {
vl = 1istl[i];
v2 = 1ist2[1i];

stmts
i++;

}

where list, size and i are arbitrary local names not otherwise used in the enclosing activity and T is the type of expri.

Parallel for Statements

4. Anparallel for statement is always mapped to an expansion region, but with mode=parallel. Any name listed in the

@parallel annotation for the statement is mapped to an output expansion node with that name and its assigned type.
This expansion node provides the source element for the assigned value for the name after the for statement.

18.12 vreax Statements

1.

320

A break statement maps to an empty structured activity node with a control flow to an activity final node. The activity
final node is placed in the outermost structured activity node mapped from the target statement of the break statement.

Action Language for Foundational UML (ALF), v1.1

18.13 return Statements

1.

A return statement is mapped to a structured activity node. The structured activity node is connected by a control flow to
an activity final node placed directly at the top level within the activity enclosing the return statement.

If the return statement has an expression, then the mapping for that expression is contained in the structured activity node
for the return statement. The result source element of the mapping of the expression is connected by an object flow to an
output pin of the structured activity node. This output pin is, in turn, connected by an object flow to the output activity
parameter node for the return parameter of the enclosing activity.

18.14 accept Statements

Simple accept Statements

1.

A simple accept statement maps to an accept event action (see f{UML Specification, 7.5.4.2.2+) with triggers for each of
the named signals. If the accept statement defines a local name, then the result output pin of the accept event action is
connected by an object flow to a fork node, which acts as the assigned source for the local name. Otherwise the accept
event action has no result output pin.

Compound accept Statements

2.

A compound accept statement maps to a structured activity node containing an accept action with triggers for each of
the signals mentioned in any of the clauses of the accept statement. The result output pin of the accept event action is
connected by an object flow to a fork node, which is further connected to conditional logic that tests the type of the
received signal.

Each block in a compound accept statement is mapped as a block statement (see 18.3), with a control flow from the
conditional logic mentioned above, corresponding to the appropriate type(s) of signals for that block. The fork node
mentioned above acts as the source for the assigned value of the local name defined in the accept clause for the block, if
any.

For any name assigned within one or more blocks of the accept statement, a corresponding output pin is added to the
structured activity node mapped from the accept statement. This output pin becomes the source for the assigned value
for the name after the accept statement. The assigned source from each block assigning the name is connected by an
object flow to the corresponding output pin. For each block that does not assign the name,

structured activity node is added to the mapping of the block as follows.

o The structured activity node has one input pin and one output pin, with an object flow from the input pin to the
output pin contained within the structured activity node.

o There is an object flow from the assigned source of the name to the input pin of the structured activity node.

o There is an object flow from the output pin of the structured activity node to the corresponding output pin for the
name of the enclosing structured activity node for the accept statement.

18.15 c1assify Statements

1.

A classify statement maps to a structured activity node containing a reclassify object action (see UML Superstructure,
11.3.9 and fUML Specification, 7.5.4.2.54) and the mapping of the target object expression, the result source element of
which is connected by an object flow to the object input pin of the reclassify object action. The from classes for the
classify statement are the old classifiers for the reclassify object action and the to classes are the new classifiers. If
the classify statement is reclassify all, then the reclassify object action has isReplaceAll=true.

Action Language for Foundational UML (ALF), v1.1 321

NOTE. According to the fUML semantics of start object behavior actions (see fUML Specification, 8.6.4.2.10,

8.3.2.2.19, and 8.4.3.2.10). if a classifier behavior is already running for an object, than a start object behavior action for
that classifier behavior has no effect for that object.

322 Action Language for Foundational UML (ALF), v1.1

19 Units Mapping
19.1 General

This clause defines the mapping of Alf units to UML. The abstract syntax for Alf units is described in Clause 15.
Unit Definition

1. A unit definition maps to a specific kind of namespace according to the namespace definition for the unit definition, as
given in the appropriate subsequent subclause. If a namespace declaration is given, the namespace mapped from the unit
is an owned member of the declared namespace. If no namespace declaration is given, then the unit must be a model unit
and what namespace owns it, if any, is not defined by the Alf specification.

2. If the unit is a model unit, then it has empty visibility. Otherwise, the unit visibility is given by the stub declaration for it
in the definition of its owning namespace.

Import Reference

3. An element import reference maps to an element import from the namespace to the named imported element. The
element import visibility is as given by the import visibility indicator. If there is an alias part, then the given unqualified
name becomes the element import alias.

4. A package import reference maps to a package import from the namespace to the named package. The package import
visibility is as given by the import visibility indicator.

Stereotype Annotation

5. A stereotype annotation, other than for the special cases given in Table 10.1, maps formally to the application of the
identified stereotype to the element mapped from the annotated member.. However, an implementation may also use
such stereotypes to specify special implementation-specific semantics for the annotated element, except for the standard
stereotypes «Create» and «Destroy», which are used in the standard Alf mapping for constructors and destructors and
«ModelLibrary», which is used to suppress the inclusion of implicit imports.

19.2 Namespace Definitions

1. A namespace definition maps to a namespace and its owned members, as specified for each kind of namespace definition
in the appropriate subsequent subclause.

2. Avisibility indicator maps to the visibility of the named element mapped from the definition containing the visibility
indicator, with an empty visibility indicator mapping to a visibility kind of “package”.

19.3 Package Definitions

1. A package definition maps to a package. If the package definition is a stub, then it is mapped according to the associated
subunit definition.

2. The applied profiles of a package definition map to profile application relationships from the package to each of the
applied profiles.

3. Each package member is mapped according to its kind. The resulting elements are a packaged elements of the package.

See also the mapping for visibility in 19.2.

19.4 Classifier Definitions

1. A classifier definition (other than a classifier template parameter) maps to a classifier and its features, as specified for
each kind of classifier in the appropriate subsequent subclause. If the classifier definition is a stub, then it is mapped
according to its associated subunit definition.

Action Language for Foundational UML (ALF), v1.1 323

Specialization

2. If the classifier definition has specialization referents, then the classifier being defined has generalization relationships
with each of the referents. If the classifier definition is abstract, then the classifier has isAbstract=true. Otherwise
isAbstract=false.

Template Parameters

3. [Ifaclassifier definition has owned members that are classifier template parameters, then these map classifier template
parameters of the classifier. If a classifier template parameter has a specialization referent, this maps to a constraining
classifier for the parameter.

4. Each template parameter has a corresponding parametered element which is a private member owned by the classifier
being defined with the same name as the template parameter. If the template parameter has a constraining classifier, then
the parametered element is a classifier of the same kind as the constraining classifier and it has a generalization
relationship to the constraining classifier. Otherwise it is a data type. In all cases, the parametered element is abstract.

19.5 Class Definitions

1. A class definition maps to a class with isActive=false. (For active classes, see 19.6).
Class Members

2. A nested classifier definition maps to a classifier as specified in the subclause for the appropriate kind of classifier. If the
nested classifier definition is a stub declaration, then the stub declaration is mapped according to the associated subunit
definition. The resulting classifier is a nested classifier of the class.

3. A property definition maps to an owned attribute of the class as specified in 19.14.

4. An operation definition maps to an owned operation of the class as specified in 19.15.
See also the mapping for visibility in 19.2.

Default Constructors and Destructors

1. Ifaclass definition has no operation definitions that are constructors, a public, concrete owned operation is added to the
class with the same name as the class and no parameters and the standard «Create» stereotype applied. It has a
corresponding method activity that is a private owned behavior of the class with the default behavior described in
10.5.3.2. Within this behavior, initializers for attributes of the class are mapped as sequenced structured activity nodes
containing the mappings of the initializer expressions (see 17.24).

2. If aclass definition has no operation definitions that are destructors, a public, concrete owned operation with the name
“destroy”, no parameters and the standard «Destroy» stereotype applied is added to the class. It has a corresponding
method activity that is a private owned behavior of the class with the default behavior described in 10.5.3.3.

19.6 Active Class Definitions

1. An active class is mapped like a passive class (see 19.4), except an active class has isActive=true and the following
additional rules for mapping the classifier behavior and receptions.

2. If the behavior clause for an active class is a name, then the classifier behavior for the class is the named activity. If the
behavior clause is a block, then the classifier behavior is an activity with the activity nodes and edges mapped from the
block (see 18.1).

3. An active feature definition maps to an owned reception of the class as specified in 19.16. An active feature stub
declaration is mapped according to the associated subunit definition.

19.7 Data Type Definitions

1. A data type definition that is not primitive maps to a data type (that is not an enumeration or a primitive type).

2. A data type definition that is primitive maps to a primitive type. This primitive type is registered as a built-in type with
the execution factory at the execution locus for the unit (see 8.2 of the fUML Specification).

324 Action Language for Foundational UML (ALF), v1.1

Data Type Members
3. A property definition maps to an owned attribute of the data type as specified in 19.14.
See also the mapping for visibility in 19.2.

19.8 Association Definitions
1. An association definition maps to an association.
Association Members

2. A property definition maps to an owned end of the association as specified in 19.14. All ends are navigable owned ends
of the association.

See also the mapping for visibility in 19.2.

19.9 Enumeration Definitions

1. An enumeration definition maps to an enumeration.

2. An enumeration literal name maps to an enumeration literal that is an owned literal of the enumeration and has the given
unqualified name.

19.10 Signal (and Signal Reception) Definitions

1. Asignal definition maps to a signal.

Signal Members

2. A property definition maps to an owned attribute of the signal as specified in 19.14.
See also the mapping for visibility in 19.2.

Signal Reception Definition

3. Asignal reception definition maps to a signal and a reception for the signal. The signal is mapped as if the signal
reception definition was a signal definition and the signal becomes a nested classifier of the class mapped from the class
definition that is the namespace of the signal reception definition. The reception becomes an owned reception of the
same class.

19.11 Activity Definitions

1. An activity definition that is not primitive maps to an activity. If the activity is a classifier behavior, it is mapped as
active (isActive=true). Otherwise, it is mapped as passive (isActive=false). The body of an activity maps as a block (see
18.1).

2. An activity definition that is primitive maps to an opaque behavior. An execution prototype for the opaque behavior is
registered as a primitive behavior with the execution factory at the execution locus for the unit (see 8.2 of the f{UML
Specification). However, how this execution prototype is created is tool specific and not defined in the Alf standard.

Activity Members (Formal Parameters)

3. A formal parameter maps to an owned parameter of the activity (see 19.13). The type and multiplicity of a formal
parameter are mapped as specified in 19.13.

4. Each in and inout parameter of the activity maps to an input activity parameter node for the parameter. Each such node
is connected by an outgoing object flow to a fork node. This fork node acts as the (initial) assigned source for the values
of the parameter within the activity (see also 17.4 on the reference to parameters by name).

5. Each inout, out and return parameter of the activity maps to an output activity parameter node for the parameter. For
each inout and out parameter, the activity includes an object flow from the assigned source, if any, for the parameter
name after the activity block. For the further mapping for return parameters, see the mapping for return statements (in
18.13).

Action Language for Foundational UML (ALF), v1.1 325

NOTE.

Even though activities are classes in UML, Alf does not provide any notation for defining attributes, operations or receptions
for activities. However, in order to allow for the use of Alf representation for activities in larger enclosing models not
represented in Alf, Alf allows activity model units to be active and to have attributes, operations and receptions as features.
But, since, these features cannot be represented in Alf, it is tool specific how these features are attached to the activity.

Alf also does not provide any notation for specifying superclasses for an activity. However, Alf allows a tool to provide
means for specifying the superclasses for an activity (which may be regular classes or activities) otherwise represented as an
Alf model unit. Members are inherited from activity superclasses in the same way as for regular classes (sees 10.4.2 and
10.4.3). But the semantics for inheritance of behavior from activity superclasses is not specified.

19.12 Typed Element Definitions

1. Atyped element definition maps to an element that is both a typed element and a multiplicity element, as given for the
specific kind of typed element definition in the appropriate subsequent subclause.

Typed Element
2. The type of the typed element definition maps to the type of the typed element.
Multiplicity Element

3. The lower attribute of the multiplicity element is a literal integer for the value given by the lower attribute of the typed
element definition.

4. The upper attribute of the multiplicity element is a literal unlimited natural for the value given by the upper attribute of
the typed element definition.

5. The isUnique and isOrdered attributes of the multiplicity element are set according to the isNonUnique (with opposite
sense) and isOrdered attributes of the typed element definition

19.13 Formal Parameters

1. A formal parameter maps to a parameter of an activity or an operation with the given name and direction. Its type and
multiplicity are mapped as given in 19.12.

19.14 Property Definitions

1. A property definition maps to a property with the given name that is a structural feature of the classifier mapped from the

classifier definition that is the namespace of the property definition. Its type and multiplicity are mapped as given in
19.12.

2. If the property definition is composite, then the property has aggregation=composite. Otherwise it has aggregation =
none.

3. An initializer expression is not mapped as part of the property definition, but, rather, as part of the mapping of the
constructor(s) for the owning class (see 19.5).

19.15 Operation Definitions

1. An operation definition maps to an operation with the given name and isAbstract value that is an owned operation of the
class mapped from the class definition that is the namespace of the operation definition.

2. A formal parameter that is a member of an operation definition maps to an owned parameter of the operation (see 19.13).
3. Ifan operation declaration has redefined operations, then the operation has the these redefined operations.

4. If an operation definition has a body, then the operation has an associated activity (owned by the class of the operation)
as its method, with the body mapped as if it was the body of an activity definition for this activity (see 18.1). The activity
has an owned parameter corresponding, in order, to each owned parameter of the operation (see the mapping of formal
parameters, below), with the same name, type, multiplicity and direction as the operation parameter.

326 Action Language for Foundational UML (ALF), v1.1

5. If an operation definition is a stub, then its associated subunit maps to an activity. This activity becomes the method of
the operation mapped from the operation definition.

Constructors

6. If the operation definition is a constructor, then it has an implicit return parameter with the owning class as its type.
Further, the default constructor behavior (as described in 19.5) is included in the mapping of the operation body,
sequentially before the explicit behavior defined for the constructor.

NOTE. If the method of a constructor operation is represented as an Alf statement sequence, but the operation is not itself
represented using Alf textual notation, then the Alf standard does not specify the mapping of any behavior for the operation
than that given in the explicit statement sequence. However, a modeling tool may insert additional behavior at the start of the
constructor method, such as the default constructor behavior described above as part of the mapping of an Alf-represented
constructor.

19.16 Reception Definitions

1. Areception definition maps to a reception with the given name and signal that is an owned reception of the active class
mapped from the active class definition that is the namespace of the reception definition.

Action Language for Foundational UML (ALF), v1.1 327

This page intentionally left blank

328 Action Language for Foundational UML (ALF), v1.1

Annex A: Semantic Integration with State Machines and
Composite Structure

(informative)

A.1 Overview

Subclause 6.2 describes the normative requirements for integrating the use of Alf text into the context of a larger UML
model. In all such cases, the execution semantics of Alf are defined by the mapping of Alf to fUML. However, the UML
models in which Alf may be used will likely often include constructs that are outside the f{UML subset, with execution
semantics as given in the UML Superstructure standard, but not covered by the fUML Specification. Some care must
therefore be taken in understanding the semantic integration of Alf-specified behaviors with the constructs in which those
behaviors are embedded.

This annex suggests how such an integration can be understood for the important cases of state machines (see UML
Superstructure, Clause 15) and composite structure (see UML Superstructure, Clause 9). However, the approaches suggested
here are not normative, both because the issues of this integration go beyond the basic requirements for the standard UML
action language and because the UML Superstructure specification allows some variation in how this integration may be
done. It is expected that normative semantic integration of state machines and composite structure with Alf (and fUML) will
be addressed as a part of future standards that further formalize the execution semantics of those constructs.

A.2 State Machines

State machines are a commonly used mechanism for modeling state-dependent behavior in UML. Clause 15 of the UML
Superstructure defines execution semantics for state machines. However, to be fully executable, it is necessary to also provide
executable specifications for transition guard expressions and effect behaviors and state entry, exit and do-activity behaviors.
One of the principal uses for UML action languages has been to specify such behaviors.

In this regard, it is to be expected that a common use of Alf will be to write the executable specifications of behaviors owned
by state machines. Therefore, even though state machines are not themselves part of the f{UML subset, it is important to
understand how the formal execution semantics of Alf can be integrated with the semantics of state machines as given in
Clause 15 of the UML Superstructure. An approach to such integration is described below for behaviors attached to state
machine transitions and states.

B.2 provides an example of the use of Alf within a state machine model.
Transitions

Subclause 15.3.14 of the UML Superstructure defines the default notation for labeling a transition in a state machine. In the
EBNF format used for Alf (see Table 6.1 in 6.4), this notation is:

Transition =
[Trigger { "," Trigger } ["[" GuardConstraint "]"]
["/" BehaviorExpression]]

Subclause 13.3 of the UML Superstructure defines the textual notation for triggers of the various kinds of events. For the
purposes of integration with Alf, guard constraints and behavior expressions may be defined as follows:

GuardConstraint = Expression
BehaviorExpression = Name | StatementSequence

with Expression as given in 8.1, Name as given in 7.6 and StatementSequence as given in 9.1.

The guard constraint and behavior expression in a transition are semantically mapped to f{UML as follows, with the given
constraints.

* A guard constraint expression must have type Boolean. The Alf expression for a guard constraint is mapped to an
activity with a return parameter of type Boolean and no other parameters (as discussed in 8.1).

Action Language for Foundational UML (ALF), v1.1 329

* Ifabehavior expression is given by a name, then this must be the name of the effect behavior owned by the transition.
The named behavior may be specified by any means supported by the execution tool, in Alf or otherwise.

* [fabehavior expression is given as an Alf statement sequence, then it maps to an activity (see 9.1).
Consistent with UML Superstructure, 15.3.14, the execution of a transition proceeds as follows:

1. If all the source states of the transition are in the active state configuration (or the source of the transition is a choice
point that has been reached), one of the triggers of the transition is satisfied by the event occurrence being dispatched,
and the transition has a guard constraint, then the guard constraint behavior is invoked synchronously. The execution
object for the call is destroyed once the invocation is completed (see fUML Specification, 8.4.2.1, for an overview of
execution objects in fUML). If the transition has a guard constraint that returns false, then the execution of the transition
completes without further effect. Otherwise the transition is enabled to fire.

2. If the transition is enabled, then it may be selected to fire (per the rules of UML Superstructure, 15.3.14). If it is not
selected, then its execution completes without further effect. Otherwise, execution proceeds as described below. (The
description below only involves the execution of the transition behavior itself. For the specification of the effect of the
transition on the state machine state configuration, see UML Superstructure, 15.3.14.)

3. Ifthe transition has an effect behavior, then this behavior is invoked synchronously. The execution object for the
invocation is destroyed once the invocation is completed (see f{UML Specification, 8.4.2.1, for an overview of execution
objects in fUML).

States

A state may optionally have an entry behavior, an exit behavior and/or a do-activity behavior. If a state has one or more of
these behaviors, then this is notated in the internal activities compartment of the graphical symbol for the state as follows (see
UML Superstructure, 15.3.11).

InternalActivity = ActivityLabel "/" BehaviorExpression
ActivityLabel = "entry" | "exit" | "do"

where BehaviorExpression is as given above.

The behavior expression in an internal activity specification is semantically mapped to f{UML as follows, with the given
constraints.

* If a behavior expression is given by a name, then this must be the name of the corresponding internal activity behavior
owned by the state. The named behavior may have no parameters, and it may be specified by any means supported by
the execution tool, in Alf or otherwise.

* Ifabehavior expression is given as an Alf statement sequence, then it maps to an activity with no parameters (see 9.1).
Consistent with UML Superstructure, 15.3.11, the execution of the internal activities of a state proceeds as follows.

1. [Ifa state has an entry behavior, then this behavior is executed whenever the state is entered, before any other action is
taken. The behavior is invoked synchronously and the execution object for the invocation is destroyed once the
invocation is complete (see f{UML Specification, 8.4.2.1, for an overview of execution objects in f{UML).

2. If a state has a do-activity behavior, then this behavior begins executing whenever the state is entered, after the
completion of the execution of the entry behavior (if any). The behavior is invoked asynchronously and it continues to
execute while the state machine is in the state that owns it. When the owning state is exited for any reason, the do-
activity execution object is destroyed (see fUML Specification, 8.4.2.1, for an overview of execution objects in f{UML),
which terminates the execution, if it is still on-going. If the do-activity behavior execution for a state terminates while the
state machine is still in the owning state, and that state has an outgoing completion transition, then the state is exited,
causing the do-activity execution object to be destroyed.

3. If a state has an exit behavior, then this behavior is executed whenever the state is exited, after the destruction of the do-
activity execution object (if any). The behavior is invoked synchronously and the execution object for the invocation is
destroyed once the invocation is complete (see f{UML Specification, 8.4.2.1, for an overview of execution objects in
fUML).

330 Action Language for Foundational UML (ALF), v1.1

Current Event Data

An event occurrence that is dispatched for processing is known as the current event (see UML Superstructure, 13.3.31). If
this is a signal or call event, then there may be data associated with the event occurrence: signal attribute values for a signal
event or operation input parameter values for a call event. It is often necessary that transition and state behaviors to access
such current event data for the event occurrences that trigger them.

There is currently no universally accepted, standard approach in UML for accessing current event data. This means that
usually some tool-specific convention is adopted.

One popular approach is to make some sort of “current event variable” available within action language text, through which
the current event data can be accessed. This works particularly well for signal events, for which such a variable can hold the
signal instance for the current event. It is less well suited for call events, for which there is no specific single value associated
with the call, and some convention is required for individually accessing operation parameters.

Unfortunately, there is no direct support in the UML action metamodel (let alone the fUML subset) for referring to any sort of
current event variable. One related alternative approach is to provide access to current event data through calls to library
functions, which can be invoked using normal call behavior actions. However, since such library functions cannot depend on
specific signals and operations, the data they return had to be untyped, requiring the caller to do careful type testing and
casting on the returned data.

Now, the UML Superstructure specification does actually include a textual notation for specifying the names to be associated
with signal or call events (see the Notation sections of subclauses 13.3.6, 13.3.25, and 15.3.14). This notation is known as an
assignment specification:

CallEvent = Name [" (" AssignmentSpecification ")"]
SignalEvent = Name [" (" AssignmentSpecification ")"]
AssignmentSpecification = AttrSpec ["," AttrSpec]
AttrSpec = Name [":" TypeName]

An assignment specification may be included (but is not required) for a call event for an operation with parameters (other
than a return parameter) or a signal event for a signal with attributes. The stated semantics of an assignment specification
require that the given names be names of attributes of the context classifier for the state machine owning the transition and
that the corresponding current event data are assigned to attributes so named.

However, the abstract syntax for events does not provide any way to capture such assignment specifications. Since UML
semantics is formally defined on the abstract syntax, not any particular concrete syntax, there is no clear way to formalize the
semantics given for the assignment specification notation.

One possible alternative is to use the assignment specification notation, but to treat the notation as specifying parameters with
the given names on the effect behavior for the transition. Then, when that behavior is invoked, the current event data can be
assigned to the behavior input parameters. For call events, the behavior would have parameters corresponding to both the
input and output parameters of the called operation, with output parameters assigned after the behavior completes execution.

For this alternative, the effect behaviors on transitions would have to meet the following constraints.

» [fa transition has more than one trigger or it has a single trigger that is not for a call event or a signal event, then its
effect behavior (if any) may not have any parameters. If a transition has a single trigger for a call event or a signal event,
then it may, but is not required, to have parameters, as given below.

* The effect behavior for a transition with a single trigger for a call event may have parameters that correspond, in order, to
each of the parameters of the called operation. The direction, type and multiplicity of the behavior parameters must be
the same as those of the corresponding operation parameters, but the names may be different.

* The effect behavior for a transition with a single trigger for a signal event may have in parameters that correspond, in
order, to each of the attributes of the received signal. The type and multiplicity of the behavior parameters must be the
same as those of the corresponding signal attributes, but the names may be different.

The assignment specification notation could then be used to show the names (and optionally the types) of the parameters of
the effect behavior of a transition (other than the return parameter for a call event).

The advantage of this approach for Alf semantic integration is that, if an effect behavior with parameters as given above is
specified using Alf, then the named parameters can be accessed as usual as local names within the Alf text (sees 8.3.3 and
8.8), and a return value (as appropriate for a call event) can be given using a return statement (see 9.14). A disadvantage is

Action Language for Foundational UML (ALF), v1.1 331

that these parameters are only available in the single effect behavior corresponding to the call event or signal event trigger.
Input parameter values could be explicitly copied to context classifier attributes in order to make them to be available to, e.g.,
behaviors on downstream segments of a compound transition or on entry or exit behaviors. And there would be no easy way
at all to give values for output or return parameters outside of the original effect behavior.

A.3 Composite Structure

Clause 9 of the UML Superstructure defines the ability for modeling the composite structure of certain kinds of classifiers.
This capability is widely used for modeling the hierarchical structure of large systems and systems of systems. It is also
provides the basis for the structuring and encapsulation mechanisms commonly used with components (see UML
Superstructure, Clause 8).

While neither composite structure nor components are part of the fUML subset, it is to be expected that, in larger models,
executable behaviors will often be nested in some way within a component or other structured classifier. Fortunately, with
certain restrictions, a composite structure model can be understood as an instruction for constructing a specific set of run-time
objects connected by links, which may then be interpreted according to fUML semantics. This integration is described below.

B.3 provides an example of the use of Alf to specify executable behavior within the context of a composite structure model.
Parts and Connectors

A part of a structured classifier is simply a property that is an owned attribute of that classifier with composite aggregation.
When an instance of a structured classifier is created, instances are created to fill the parts of the classifier, consistent with the
multiplicity of those parts. Such instantiation may be specified using an instance model or through an explicit constructor
operation. (See UML Superstructure, 9.3.13.)

The parts of a structured classifier may also act as the end points for connectors. A connector is a “specification of a link that
enables communication between two or more instances” (UML Superstructure, 9.3.6). When an instance of a structured
classifier is created, links are created between instances of parts of the classifier corresponding to any connectors between the
parts, consistent with the multiplicity of the connector ends and of the parts (see UML Superstructure, 9.3.13).

A connector may optionally be typed by an association, in which case the links it specifies are instances of that association.
According to UML Superstructure, 9.3.6, if the type of a connector that is omitted, the type is inferred based on the elements
at the ends of the connector. The links specified by the connector are then instances of this inferred association, which does
not actually appear in the model.

However, f{UML semantics for links require that every link have an explicit association as its type unless it has been
destroyed (see f{UML Specification, 8.3.2.2.11). Therefore, for the purposes of integration with fUML execution, connectors
must always have a modeled association as an explicit type. Further, as required in the fUML subset, every such association
must own all its association ends.

NOTE. A tool does not actually have to require that a user explicitly create such a type for every connector. In fact, connector
type does not even have to be an explicitly modeled association, as long as the tool does not compile Alf text to activity
models and it provides some convention for naming the implicit connector type association (perhaps using the name of the
connector or its ends). However, if Alf text navigating across a connector is compiled to an fUML-conformant activity, then
the type of the connector must be physically in the model, so it can be referenced from appropriate actions in the activity,
though it could be automatically created by the tool rather than having to be explicitly added by the user.

With the above restriction, once an instance of a structured classifier is constructed, its composite structure at run-time is
simply the set of instances assigned to its parts, possibly interconnected by links of explicitly defined associations. While the
fUML semantics do not provide a formal definition of how the construction of such an instance happens relative to the
composite structure of its classifier, the resulting run-time structure is fully within the subset covered by f{UML semantics.
Therefore, Alf may be use to specify behavior related to the structured classifier based solely on modeling capabilities within
the fUML subset, such as classes, attributes and associations.

For example, if a class C has a part a whose type is class A and a part b whose type is class B, with a connector between then
whose type is association R, then the methods of operations of C can access parts a and b as a regular attributes of . Further,
behavior associated with class A can navigate as usual across association R in order to access the opposite instance of class B.
And, for any instance that fills the part C: : a, the opposite end of R is guaranteed by the semantics of composite structures
and connectors to the instance that fills C: : b—even though this is not formalized in f{UML semantics, presumably this will

be the semantics provided by any execution tool that supports UML composite structure.

332 Action Language for Foundational UML (ALF), v1.1

Ports

A port represents an interaction point between an encapsulated classifier and its environment (see UML Superstructure,
9.3.11). The allowed interactions are specified using interfaces—provided interfaces specify requests the environment can
make on instances of the classifier, while required interfaces specify request that instances of the classifier can make on the
environment.

Ports are connectable elements. A connector that connects compatible ports on two internal parts of a structured classifier is
known as an assembly connector. A connector that connects a port on a classifier to a compatible port on an internal part of
that classifier is known as a delegation connector. (See UML Superstructure, 8.3.3, for the definition of assembly versus
delegation connectors. Note that the connector kind is a derived attribute, based on the usage of the connector, not a flag that
has to be set by the modeler.)

In addition, a delegation connector may be used to connect a port on a classifier directly to an internal part of that classifier.
Requests to the provided interfaces of the port are then delegated directly to the internal part. Further, the internal part may
send requests out through the required interfaces of the port.

Integration with fUML execution may be achieved by using fUML-subset capabilities to specify the behavior of an internal
part connected to a port by a delegation connector. For the purposes of this integration, the part must realize all of the
provided interfaces of the port, which must only have features that conform to the f{UML subset. This allows requests
received on the port to be delegated as normal invocations on the behavior of the internal part.

If a port does not have any required interfaces, then the delegation connector for it does not need to be explicitly typed by an
association, since internal parts then have no need to send requests through the connector. However, if the port has one or
more required interfaces, then the delegation connector must be explicitly typed by an association, where the type of the
association end corresponding to the connector end connected to the port is a class that realizes all the required interfaces of
the port. This allows requests sent out through the port to be modeled in the behavior of the internal part as normal
invocations across the association.

NOTE. The specific requirements above should be considered to supersede the informally specified constraints in UML
Superstructure, 9.3.6, on the compatibility of connectable elements at the ends of a connector with each other and with the
types of the ends of the association typing the connector.

Interfaces and interface realization are not actually part of the fUML subset. However, a class that realizes an interface must
itself own features that are compatible with all the features specified as part of the interface. Therefore, once the constraints
of the interface realization are enforced, the realizing class implements within itself the features required by the interface and
the interface realization relationship can then be ignored for the purposes of execution.

At run-time, an instance filling the internal part will be connected by a link (that is an instance of the association typing the
delegation connector) to an instance of a class that realizes the required interfaces of the ports. The internal part instance may
make calls on the opposite object over the link, and vice versa, per regular f{UML semantics. Note that what instance is
actually provided on the opposite end of a delegation link is execution tool specific—for example, it may be the ultimate end
object or it may be an intermediate proxy object—but it must always have a type that realizes all the required interfaces of the
delegated port.

For example, suppose a class has a port with a provided interface P that has an operation x and a required interface R that has
an operation y and that this port is connected to an internal part whose type is class A. Then class 2 must realize interface P
and have an operation that conforms to P: : x. Further, the behavior of class A may navigate across the association typing the
delegation connector in order to call the operation R: :y.

Action Language for Foundational UML (ALF), v1.1 333

This page intentionally left blank

334 Action Language for Foundational UML (ALF), v1.1

Annex B: Extended Examples

(informative)

B.1 Quicksort Activity

This simple example presents the Quicksort algorithm in two forms: a “functional” form (see B.1.1) similar to how the
algorithm might be naturally expressed in a functional programming language and an “in place” form (see B.1.2) that makes
efficient use of memory. The intent is to show the flexibility of the Alf notation in expressing different algorithmic styles
while maintaining a consistent underlying semantic mapping.

For completeness, both forms of the example are notated as complete Alf activity definitions. While such unit definitions are
only available at the extended conformance level, the statement sequences bodies of these definitions could alternatively be
attached to UML model as behavioral snippets, for example by including the Alf text as the body of an opaque behavior (see
9.1). In this case, the functional implementation would conform entirely to the full conformance level and the “in place”
implementation would conform entirely to the minimum conformance level.

B.1.1 Quicksort Functional Implementation

The Quicksort activity noted below highlights the flow-oriented capabilities and concise OCL-like notation available in Alf at
the full conformance level. Figure B.1 shows a graphical representation of this same activity.

activity Quicksort(in list: Integer[0..*] sequence):

Integer[0..*] sequence // See Note 1
{
x = 1list[1]1; // See Notes 2 & 3
if (x == null) { // See Note 4
return null; // See Notes 5 & 6
} else |
listl = list->excludeAt (1); // See Note 7
return Quicksort (listl->select a (a < x))-> // See Note 8
including (x)-=>
union (Quicksort (listl->select b (b >= x)));
_ 1
3 (13 o+ Emaetxz (V) { e Not
x: LS5t Lpt ¢ /—SeeNot
P NN B | Q Naot A d =
retvra pulls et 4
—F
— s g Neot 6 ¢ 7
1 I - m. At (1) o
£ R)
X O3 ~1 £ (] 3 o+ o 1 + L ANAY Q Naot Q
retura Quicksort it + e) < N
3 2] 22 o A
e
] a {2~ = (1 K= o 1 EN N {1 = AW Y W
anten{Ouieksert{iist -1 bk Y
}
Notes

1. Alf allows the use of the usual UML multiplicity notation (see 10.5.2). The keyword “sequence” indicates that the input
list is an ordered sequence of integers that allows repetition of values. _

2. Alfuses the C-like notation of “=" for assignment (and “==" for equality). However, Alf does not require that the types
for local names be explicitly declared (see 9.6). The type for x is determined implicitly here as Integezr, the result type
of the expression being assigned to the name. Alternatively, Alf also allows explicit type declaration, either in the form
“let x: Integer = 1list[1];” orthe C-like form “Integer x = 1ist[1]1;”.

3. Alf provides a familiar index notation for accessing the elements of a sequence (see 8.3.16). Note, however, that
indexing is from 1, not 0. Also, if the index value is either less than 1 or greater than the current size of the sequence, the
result is not an error, but, instead, the sequence index expression evaluates to null. Thus, in the statement “x =
list[1]1;”, x will be assigned the value null if 1ist is empty.

4. AnAlf if statement has a C-like syntax and similar semantics (see 9.8). In addition. because of the test for whether the
local name x is null, it is known to be non-null in the else clause of the i f statement.

Action Language for Foundational UML (ALF), v1.1 335

e N A

As would be expected, a return statement is used in Alf to provide the return value for an activity (see 9.14).
In Alf, “nul1” denotes the empty set (see 8.3.15).

An OCI -like notation can be used for sequence operations (see 8.3.17) such as excludeAt.

11.

336

Alf provides on OCL-like notation for sequenceflow expansion expressions (see 8.3.19). The expression “1ist-
>select a (a < x)”isused to select all elements of list that are less than x. Note that there is no required ordering of
the tests on the elements of list, which may all be carried out concurrently.

There are two major notational differences from OCL. First, the notation for an iterator variable is different. Instead of
the OCL form “select (a | ...=)”,Alfuses “select a (...-)”. Thisavoids ambiguity with the use of ““|” for the
Boolean “or” operator in Java/C syntax. Second, Alf requires that an iterator variable always be given. Java-like
expression syntax is not as rigorously object- oriented as OCL syntax, and, therefore, not as amenable to an implicit form
for the iterator context. By requiring that the iterator variable be explicit, no special form is necessary for the expressions
used within the sequenceeeteetion operation construct. For example, the OCL expression “devices—>

select (oclIsKindOf (Sensor))” is written in the form “devices->select device (device instanceof
Sensor)” in Alf.

Action Language for Foundational UML (ALF), v1.1

(activity Quicksort(list : Integer [0..*]) [Quicksortu

list >I—\

result

-

— — JOEEE — — — — (O - -
/<<parallel /<<paraIIeI)

I
I
I
I
I
I
I
I
\

resu

Figure B.1 Activity Diagram for Quicksort

Action Language for Foundational UML (ALF), v1.1

It

337

B.1.2 Quicksort “In Place” Implementation

The QuicksortInPlace activity notated below highlights the flexibility of Alf to all both a functional or procedural
implementation of the algorithm equally naturally. The procedural notation used in this form is entirely available at the
minimum conformance level and is very similar syntactically to code in C or Java. (The equivalent graphical representation
of this activity is too complicated to easily show here.)

activity QuicksortInPlace
(inout list: Integer[0..*] sequence, // See Note 1
in low: Integer, in high: Integer)

if (low < high) {
1 = low; // See Note 2
h = high;
p = list[high];

do { // See Note 3
while ((1 < h) && (list[l] <= p_== true)) { ———// See Notes 4 & SNete4
1 = 1+1;
}
while

((h > 1) && (list[h] >= p == true)) {
h = h-

1;
}
if (1 < h) {
t = list[1l];
list[1l] = list[h];
list[h] = t;
}
} while (1 < h);

ist[high];
t;

t = list[1l
list[1]

[
list[high]

e~

]
1

QuicksortInPlace(list, low, 1-1);
QuicksortInPlace(list, 1+1, high);

}
Notes

1. Alf allows activity parameters with any of the UML directions, including out and inout (see 10.4.8).

2. Statements within the statement sequence of a block delimited by “{...}” are executed sequentially (see 9.1).
3. AnAlf do..while statement has the familiar C-like syntax and semantics (see 9.11).
4

Alf uses the usual infix notation for arithmetic and relational operations (sees 8.6.1 and 8.6.4). The conditional and
operator “&&” has the C-like semantics of only evaluating its second argument if the first argument is true (see 8.6.8).

5. Ifthe index value in a sequence index expression such as "1ist [1]1" is less than zero or greater than the size of the

indexed sequence, the expression evaluates to null (see 8.3.16). This means that, in the relational expression "1ist [1]
<= p".both 1ist[1] and p may evaluate to null and, therefore, have multiplicity lower bound of 0, and, as a result, so
does the relational expression. However, the operands of the conditional-and operator & & are required to both have
multiplicity lower bound of 1 (i.e.. null values are not allowed), which is why "1ist[1] <= p"is tested for equality to
true in the second operand of the conditional-and expression. If the relational expression happens to evaluate to null,
then this is not equal to true, so the null result is effectively treated as false.

338 Action Language for Foundational UML (ALF), v1.1

' B.2 Online Bookstore

B.2.1 Graphical Model for Ordering

This example is adapted from (a portion of) the Online Bookstore Domain Case Study given in Appendix B of the book
Executable UML: A Foundation for Model Driven Architecture by Stephen J. Mellor and Marc J. Balcer (Addison-Wesley,
2002).

This example will focus only on the 0rdering package for the Online Bookstore. Figure B.2 shows a class diagram for this
package.

ProductSpecifications::
Product

+productID : UniversalProductCode
+/productName : String

+copyright : Year

+unitPrice : Money

+description : String

+website : WebsiteURL

+includes selections of | 1. *

ProductSelection

+quantity : Count
+unitPriceOfSelection : Money
+/selectionValue : Money

+product selection is

R1
1

+selections are added to | 0.

ShoppingCart

+cartlD : arbitrary_id
+/totalValue : Money

+is a purchase of selections in| 1

R2

+selections are purchasedin| 0..1

Order
+orderID : arbitrary_id Customer
+dateOrderPlaced : date 1. R3 0.1 [*email : InternetEmailAddress
+/totalValue : Money - +name : PersonalName
+recipient : PersonalName +places +is placed by [+shippingAddress : MailingAddress
+deliveryAddress : MailingAddress +phone : TelephoneNumber
+contactPhone : TelephoneNumber
+is attempt to pay for | 1 0.1 | +pays for
R4 R5
+payment is attempted by | 0..* 0.1 +is paid for by

CreditCardCharge

+chargelD : arbitrary_id

+accountNumber : BankCardAccountNumber
+cardholderName : PersonalName
+cardExpirationDate : MonthYear
+dateChangeMade : date

+chargeAmount : Money

+approvalCode : BankCardApprovalCode

Figure B.2 Ordering Subsystem Class Diagram

Action Language for Foundational UML (ALF), v1.1 339

As indicated in Figure B.2, each of the classes shown is an active class. This means that each one has a classifier behavior
triggered by a number of signal events. Only the class Order from the Ordering package will be further detailed in this
example. Figure B.3 shows the state machine that is the classifier behavior for class Order.

0. Waiting for
Check Out

CheckOut(checkOutData) / this.checkOutData = checkOutData;

1. Establishing Customer and
Verifying Payment

Lentry | EstablishCustomer J

SubmitCharge(chargeSubmissionData) / this.chargeSubmissionData = chargeSubmissionData;

PaymentDeclined

[!

[2. Submitting Charge] [3. Payment Not Approved

N——1

Lentry / ProcessCharge Lentry / DeclineCharge

1 J

SubmitCharge(chargeSubmissionData) / this.chargeSubmissionData = chargeSubmissionData;

PaymentApproved

[4. Being Packed and Shipped OrderDelivered 5. Delivered to Customer]

[entry/ PackAndShip entry / NotifyOfDelivery J

J \.

Figure B.3 State Machine Classifier Behavior for Class Order

The triggers on the transitions in this state machine are all for signal events. Of the five different signals shown, only
CheckOut and SubmitCharge carry data. For simplicity, each of these signals has a single attribute whose type is a data
type that contains the appropriate data for the signal.

As discussed in A.2, the trigger notation “CheckOut (checkOutData)” is used here to indicate that the effect behavior for
the transition has a single in parameter corresponding to the single attribute of the Checkout signal. As shown in Figure B.3
the effect behavior for the transition assigns the parameter to a correspondingly named attribute of class Order, which can
then be accessed by the entry behavior of the target state. A similar strategy is used for the transitions triggered by the
SubmitCharge signal. (Note that a tool could provide support for automatically generating effect behaviors with such
attribute assignments and then suppressing the behavior from the diagram, thus effectively providing the “assignment
specification” semantics intended in the UML Superstructure, 15.3.14.)

Figure B.4 shows a complete model for class Order, including the (private) attributes checkOutData and
chargeSubmissionData. This model also includes receptions (indicated by the «signalx» keyword) that declare the ability
of Order to receive each of the signals used in the triggers in the state machine shown in Figure B.3. Note that these
receptions have the same names as their respective signals.

340 Action Language for Foundational UML (ALF), v1.1

Order

+orderlD : arbitrary_id

+dateOrderPlaced : date

+/totalValue : Money

+recipient : PersonalName

+deliveryAddress : MailingAddress
+contactPhone : TelephoneNumber
-checkOutData : CheckOutData
-chargeSubmissionData : ChargeSubmissionData

«signal»+CheckOut(data : CheckOutData)

«signal»+PaymentApproved()
«signal»+PaymentDeclined()
«signal»+OrderDelivered()

«signal»+SubmitCharge(data : ChargeSubmissionData)

Figure B.4 Active Class Order

Each of the states shown in Figure B.3 has an entry behavior that is executed whenever the state is entered. The bodies of
these entry behaviors are specified below using Alf notation. The names shown in the entry notation are the names of the

behaviors (see also A.2 on this notation).

B.2.2 AIlf Representation of Entry Behaviors

This subclause includes an Alf representation for each of the entry behaviors identified in Figure B.3. Each behavior is
defined as an Alf unit for an activity that is attached to the appropriate state as its entry behavior.

NOTE. As discussed in 9.1, a modeling tool could also define each of the entry behaviors as opaque behaviors, with the Alf
text for the behavior as the body of the opaque behavior. In this case, the Alf text would only include the statement sequences

from the activity definitions given below, not the full unit definition, which would not require the extended conformance

level notation for units.

Action Language for Foundational UML (ALF), v1.1

341

B.2.2.1 Activity EstablishCustomer

private import TIM;

/x* // See Note 1
Entry action for State 1. Establishing Customer and Verifying Payment
*/
activity EstablishCustomer ()
{
R2.createlLink (// See Note 2
'selections are purchased in' => this,

'is a purchase of selections in' => this.checkOutData.cart

)

// Create a Customer if one does not already exist

// with the given email address

matchingCustomers = Customer -> select c // See Note 3
(c.email == this.checkOutData.customerEmail) ;

if (matchingCustomers->isEmpty()) {

customer = new Customer(); // See Note 4
customer.email = this.checkOutData.customerEmail;

} else {
customer = matchingCustomers[l]; // See Note 5

}

// Use the name, address, etc. to update Customer
// whether new or existing

customer.name = this.checkOutData.customerName;
customer.shippingAddress = this.checkOutData.shippingAddress;
customer.phone = this.checkOutData.customerPhone;

// Link the order to the customer
R3.createlLink (

places => this,

'is placed by' => customer

)

// Set the date order placed to today
this.dateOrderPlaced = TIM: :GetCurrentDate () ;

// Create a credit card charge and submit it
// to the credit card company

this.SubmitCharge (// See Note 6
new ChargeSubmissionData (// See Note 7
accountNumber => this.checkOutData.accountNumber,
billingAddress => this.checkOutData.billingAddress,
cardExpirationDate => this.checkOutData.cardExpirationDate,
cardholderName => this.checkOutData.cardholderName
)
)
}
Notes

1. Text (possibly across multiple lines) bracketed by “/+**” and “* /> denotes a documentation comment that is attached to
the model element in which it appears. On the other hand, text that begins with “//” is a lexical comment that is not
mapped into any model element.

2. Links are instances of associations. The notation “R1.createLink” indicates the creation of a new link of the
association R1, with the following tuple giving the association end data. This maps to a create link action.

342 Action Language for Foundational UML (ALF), v1.1

3. The class name “Customer” here denotes the current extent of that class. In this context, it is a shorthand for the
notation “Customer.allInstances ()”. The select expression then selects the customers with e-mail addresses
matching the one given in the received event.

]

4. There is no constructor operation defined for class Customer, so the notation “new Customer ()” is a “constructorless’
instance creation expression the simply creates a new instance of Customer. Further, since Customer is an active class,
the active behavior of the new instance is also automatically started.

5. Alfuses an array-like notation for indexing ordered collections. In this case, the notation “matchingCustomers[1]”
denotes getting the first element of the list of matching customers. Note that lists are indexed starting at 1.

6. Alf uses the same invocation notation for sending a signal as for calling an operation. Sending a signal is indicated by the
selected feature (“SubmitCharge” in this case) being the name of a reception of the given target object (“this”).

7. The submitCharge signal has a single attribute of type ChargeSubmissionData. Since ChargeSubmissionData is
a data type, an instance expression for it has as its arguments values for each of the attributes of the newly created data
value. Alf allows for a named-parameter notation, used here, in which the names “accountNumber”,
“pbillingAddress”, etc. are interpreted as the names of arguments for constructing the ChargeSubmissionData
value.

B.2.2.2 Activity ProcessCharge

private import Ordering::CreditCardCharge::ChargeData;
/**
Entry behavior for State 2. Submitting Charge
*/
activity ProcessCharge ()
{
// Create a Credit Card Charge and submit it
// to the credit card company
creditCardCharge = new CreditCardCharge() ;
creditCardCharge.MakeCharge (
new ChargeData (

accountNumber => this.chargeSubmissionData.accountNumber,
billingAddress => this.chargeSubmissionData.billingAddress,
cardExpirationDate => this.chargeSubmissionData.cardExpirationDate,
chargeAmount => this.totalValue,

order => this

Action Language for Foundational UML (ALF), v1.1 343

B.2.2.3 Activity DeclineCharge

private import EE OnlineCustomer;

/**

Entry behavior for State 3. Payment Not Approved
*/

activity DeclineCharge ()

{
// Notify the customer that the charge was rejected

customer = this.'is placed by';
EE OnlineCustomer.ChargeDeclined(customerEmail => customer.email);

}

B.2.2.4 Activity PackAndShip

private import EE OnlineCustomer;

private import Shipping::Shipment;

/**

Entry behavior for State 4. Being Packed and Shipped
*/

activity PackAndShip ()

{
// Notify the customer that the charge was approved

// and the order will be shipped
customer = this.'is placed by';
EE OnlineCustomer.ChargeApproved (customerEmail => customer.email);

// Create a shipment to send the order to the customer
shipment = new Shipment () ;
shipment.RequestShipment (order => this);

B.2.2.5 Activity NotifyOfDelivery

private import EE OnlineCustomer;

/**

Entry behavior for State 5. Delivered to Customer
*/

activity NotifyOfDelivery ()

{
// Notify the customer that the Order

// has been delivered
customer = this.'is placed by';
EE OnlineCustomer.OrderReportedDelivered(customerEmail => customer.email);

B.2.3 Alf Representation of the Ordering Model

The previous subclauses describe a typical scenario in which an overall UML model is represented largely graphically, with
various behavioral snippets represented textually in Alf. However, at the extended conformance level, Alf also includes
notation for structural models, such as packages, classes and associations (see Clause 10). This subclause shows how the
models for the package Ordering and the class Order, represented graphically in B.2.1, can alternatively be represented
textually in Alf.

B.2.3.1 Package Ordering

private import EE OnlineCustomer;
private import ProductSpecification::Product;
private import DomainDataTypes::*; // See Note 1

/**

344 Action Language for Foundational UML (ALF), v1.1

Online Bookstore, Ordering Subsystem

*/

package Ordering

{

}

public active class ShoppingCart; // See Note 2
public active class Order;

public active class CreditCardCharge;

public active class Customer;

public active class ProductSelection;

public assoc R1

{
public 'selections are added to': ShoppingCart[0..*]; // See Note 3
public 'includes selections of': Product[l..*];
public 'product selection is': ProductSelection;

}

public assoc R2 {
public 'selections are purchased in': Order[0..1];
public 'is a purchase of selections in': ShoppingCart;

}

public assoc R3 {
public places: Order[l..*];
public 'is placed by': Customer[0..1];
}

public assoc R4 {

public 'is an attempt to pay for': Order;

public 'payment is attempted by': CreditCardCharge[0..*];
}

public assoc R5 {

public 'pays for': Order[0..1];

public 'is paid for by': CreditCardCharge[0..1];
}

Notes

1.

The clause “private import ProductSpecification::Product;” denotes an element import of the Product
class in the ProductSpecification package. Use of “private” indicates a private import—"“public import
ProduceSpecification: :Product;” would indicate a public import. Similarly. “private import
DomainDataTypes: : *;” denotes the (private) package import of the package DomainDataTypes. That is, it is not just
the package DomainDataTypes that is being imported, but all the elements of that package.

2. All the classes in this package have classifier behaviors and are thus active. Only stubs are included in this package
specification, with the full definition of the class written separately. The use of stubs is a general option to allow long
namespace definitions to be split up into multiple files. In contrast to the class definitions, the shorter association
definitions are included in-line in this example.

3. Names do not have to conform to the usual identifier lexical structure. Such general names are enclosed in single quotes,

@y (L]

asin “'selections are added to'”.Note that every character within the quotes is significant in the name
(including spaces, but tabs and line breaks are not allowed).

B.2.3.2 Class Order

namespace Ordering;

/**
Active class for managing an order
*/

active class Order

Action Language for Foundational UML (ALF), v1.1

345

public orderID: arbitrary id;
public dateOrderPlaced: date;

public totalValue: Money;

public recipient: PersonalName;
public deliveryAddress: MailingAddress;
public contactPhone: TelephoneNumber;
private checkOutData: CheckOutDhata;

private chargeSubmissionData:

public datatype CheckOutData
{

ChargeSubmissionData;

public cart: ShoppingCart;

public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

public cardkExpirationDate: MonthYear;

public cardholderName: PersonalName;

public customerEmail: InternetEmailAddress;
public customerName: PersonalName;

public customerPhone: TelephoneNumber;
public shippingAddress: MailingAddress;

}

public datatype ChargeSubmissionData

{

public accountNumber: BankCardAccountNumber;
public billingAddress: MailingAddress;

public cardkExpirationDate: MonthYear;

public cardholderName: PersonalName;

}

public receive

{
public data:

}

public receive

{
public data:

}

signal CheckOut

// See Note

CheckOutData;

signal SubmitCharge

ChargeSubmissionData;

public receive
public receive
public receive

signal PaymentDeclined{}
signal PaymentApproved{}
signal OrderDelivered{}

private EstablishCustomer () ; // See Note 2
private ProcessCharge();
private DeclineCharge () ;
private PackAndShip();
private NotifyOfDelivery();
}
do // See Note 3
{
/** 0. Waiting for Check Out */ // See Note 4
accept (checkOut: CheckOut) ; // See Note 5
this.checkOutData = checkOut.data;
/** 1. Establishing Customer and Verifying Payment */
this.EstablishCustomer () ; // See Note 6
while (true) { // See Note 7
346 Action Language for Foundational UML (ALF), v1.1

accept (chargeSubmission: SubmitCharge);
this.chargeSubmissionData = chargeSubmission.data;

/** 2. Submitting Charge */
this.ProcessCharge() ;

accept (PaymentDeclined) {
/** 3. Payment Not Approved */
this.DeclineCharge() ;

} or accept (PaymentApproved) { // See Note 8
break; // See Note 9

}

/** 4. Being Packed and Shipped */
this.PackAndShip () ;
accept (OrderDelivered);

/** 5. Delivered to Customer */
this.NotifyOfDelivery () ;

}
Notes

1. The notation “receive signal Checkout” indicates the definition of both a signal called Checkout within the
Order namespace and the definition of a reception of that signal as a feature of the Order class. A signal definition
alone would be denoted “signal Checkout{..}”and a definition of a reception for that signal would be “receive
Checkout”. Note that, unlike the graphical UML notation, in Alf the attributes (“parameters”) of the signal would not be
repeated in the reception definition.

2. Rather than standalone activities, the effective “entry behaviors” are now specified as privately owned operations of
class Order. However, other than the different containing namespace, the definitions of the activities that provide the
methods for these operations are exactly the same as given in B.2.2. (Note that fUML semantics ensures that the correct
context object for “this” references is propagated to operations called from the body of a classifier behavior.)

3. The “do” part of an active class definition gives its classifier behavior. Since Alf does not provide a notation for state
machines, the classifier behavior for Order is specified here as an equivalent activity.

4. A documentation comment in this position attaches to the model element mapped from the following statement.

5. The “accept” statement waits for reception of the indicated signal and then continues. The name checkOut is given to
the signal instance that is received.

6. Alf uses the usual object-oriented procedural notation for operation invocation.
7. The while statement provides structured iteration.

8. This is a compound accept statement. The additional “or accept” clause indicates waiting for reception of either a
PaymentDeclined or a PaymentApproved signal. If a PaymentDeclined signal is received, then the statements
associated with that accept clause (“this.DeclineCharge () ;) are executed. If a PaymentAccepted signal is
received, then the statements associated with its accept clause (“break;”) are executed.

9. The break statement terminates the enclosing while loop.
B.3 Property Management Service

B.3.1 The Property Management Model

The following is an example of using Alf to specify the methods for operations within the context of a larger model. This
context is a simplified model for a service-oriented architecture for property management (where the term “property” is used

Action Language for Foundational UML (ALF), v1.1 347

here in the sense of “tangible asset”—e.g., furniture, cars, buildings, etc.). Two points in particular should be kept in mind
while reading this example.

First, a guiding principle for Alf is that use of Alf should place little or no restriction on the larger model in which Alf is used.
For this example, it should be supposed that the graphical model was created before it was decided to use Alf to specify
activities for operation methods, so Alf had no influence on the stylistic choices for the model. For example, the following
modeling capabilities used in the example model go beyond what is often used in software-oriented class models, but are not
precluded by the use of Alf:

* Names with spaces
¢ Data types
* Associations with owned ends

Second, Alf should be usable in the context of models not limited to the f{UML subset. Indeed, this example uses UML
modeling constructs outside that context. Of course, any portion of the model actually specified in Alf is effectively limited to
the f{UML subset, but this should not prevent integration with the larger model. For example, the following UML capabilities
used in the example model are not in the f{UML subset, but are compatible with the use of Alf for the specification of
activities (though they could not actually be represented using Alf’s textual notation for structural models).

e Default values

* Derived values

* Constructors

e Interfaces

* Components

e Ports, Parts and Connectors

(See also the discussion in A.3 on the use of Alf in the context of composite structure models.)

This subclause describes the Property Management model that provides the context for the Alf specification of activities
given in B.3.5. This model has the overall package structure shown in Figure B.5.

Property Management

[]

Data Model Message Model Service Model

£ Properties
[Locations

Figure B.5 Property Management Package Diagram

Each of the three packages under Property Management is discussed in turn in the following subclauses.

B.3.2 Data Model

A data model defines the persistent entities in a domain and the data necessary to describe them. The data maintained on an
entity serves as a record of that entity for service being provided. Clearly, Property is the fundamental entity for which
records are being kept by the Property Management Service.

Figure B.6 gives a simplified data model for property management. Note in general the use of spaces in names. This is
allowed in a UML model and is not uncommon in business-oriented data models not primarily driven by an information
technology style.

348 Action Language for Foundational UML (ALF), v1.1

See Note 2

See Note 1 «dataType»
See Note 3 N Property Acquisition Data
AN
! +acquisition data | +acquisition date : Date

! | +acqusition cost : Currency Amount
Property 0.1

Location

|
n‘ Property Location

+locatiof +property [+identifier : String

+identifier : String

+name : Strin
0.1 « 9

+address : String - +value : Currency Amount [0..1] +disposition data
+/status : Property Status G\‘\‘ «dataType»
See Note 5 h Property Disposition Data

- - 0.1
i T See Note 4 +disposition date : Date
+disposition revenue : Currency Amount

+disposition type : Property Disposition Type

Personal Property Real Property
+serial number : String [0..1] +size : Area [0..1]
«enumeration» «enumeration»
Property Status Property Disposition Type
pending transferred
acquired sold
disposed destroyed

Figure B.6 Property Data Model

Notes

1.

The property class models the record of a specific property. A class is used because a property record has the semantics
of an object, with an identity and attributes that may change over time. However, the property record is also given a
unique domain identifier that is used to externally identify the record.

Property Acquisition Data and Property Disposition Data are considered to be simply composite
attributive data of a property record, without independent identity. They are therefore modeled as data types. The
association ends acquisition data and disposition data are owned by Property and are therefore attributes of
Property.

Unlike Property Acquisition Data and Property Disposition Data, Location is aclass. It is supposed here
that there is a problem domain concept of an identifiable location and that there may be multiple properties at the same
location (note the “*” multiplicity on the property association end). The association Property Location owns both
its association ends.

The Property: : status attribute is derived. The derivation constraint is given in OCL as:

context Property inv property status derivation:
(acquisition data -> isEmpty() implies status = pending) and
(acquisition data -> notEmpty() and disposition data -> isEmpty ()
implies status = acquired) and
(disposition data -> notEmpty() implies status = disposed)

(Note that underscores are used here to fill in the spaces in the names. The OCL Specification does not seem to disallow
spaces in names, but it is not clear how they would parse in the OCL syntax.)

The Property class is abstract with two concrete subclasses for Personal Property (property that is movable, like
vehicles and furniture) and Real Property (property that is immovable, like land and buildings). The attributes of
these subclasses are optional, because their value is not necessarily known until the property is actually acquired (a
property record can be established pending acquisition, in order to generate a property identifier with which to track the
acquisition).

In addition to the data structure shown in Figure B.6, the Property class has two operations. As shown in Figure B.7, one
operation is a constructor and the other handles the computation of the derived value for the status attribute.

Action Language for Foundational UML (ALF), v1.1 349

D

Property See Note 1

«Create»+create property(identifier : String, name : String) g~

+update status() S — AN

See Note 2

Figure B.7 Property Operations

Notes

1.

The stereotype «create» is the standard UML notation used to annotate a constructor operation. Note that there is no
particular naming convention required (e.g., the name of the constructor does not have to be the same as the name of the
class). The Property: :identifier and name attributes are required, so values for these are given as arguments to the
constructor (the setting of the status attribute, which is also required, is discussed below). However, the constructor
operation does not have any return type shown (per the conventions shown in 9.3.1 of the UML Superstructure), though
it has an implicit return type of Property.

The update status operation is used to update the derived status attribute consistent with its derivation constraint
(given earlier). This operation is called by the constructor, but it is also used by the service operations given later.

B.3.3 Message Model

In a service oriented architecture (SOA), a request message is sent to initiate a transaction to carry out the requested action.
Once the transaction for a request has completed, a reply is sent back to the requester indicating the success or failure of the
transaction.

B.3.3.1 Request Messages

The

Property Management Service being discussed here allow the following requests:
Property Record Establishment: Create a property record pending acquisition of the property.

Property Acquisition Notification:Add or update the acquisition data for an existing property record. The
property status must not be disposed.

Property Record Update: Update the attributes of an existing property record not related to acquisition or disposal.
The property status must not be disposed.

Property Disposition Notification:Add or update the disposition data for an existing property record. The
property status must be acquired.

Property Record Deletion: Delete a property record.

Property Record Retrieval: Retrieve a property record given the identifier for the property.

Figure B.8 shows a model of the messages for these requests.

350

Action Language for Foundational UML (ALF), v1.1

«dataType»
Request

See Note 1 '— —

+identifier : Stringg~ —

~|See Note 2

I

«dataType»

Property Record Establishment

Property Record Update

«dataType»
Property Record Deletion

+property name : String

+property type : Property Type

«enumeration»
Property Type

personal
real

+property identifier : String

+property name : String [0..1]

+property value : Currency Amount [0..1]
+property serial number : String [0..1]
+property size : Area [0..1]

+property location identifier : String [0..1]

+property identifier : String

«dataType»
Property Acquisition Notification

+property identifier : String

«dataType»
Property Disposition Notification

«dataType»

Property Record Retrieval

+property identifier : String

+property identifier : String

I +property location identifier : String

See Note 3

+property acquisition data

1

+property disposition data

-

«dataType»
Property Acquisition Data

«dataType»

Property Disposition Data

Figure B.8 Request Message Model

All messages are modeled as data types. Messages are always passed by value, not by reference.

Despite being data types, every message has a sender-assigned identifier. For a request message, the identifier is

Notes
1.
2.
used to correlate reply messages (see below).
3.

For the purposes of this example, the different types of properties are identified in the messages using enumerated
values, rather than by specialization.

Action Language for Foundational UML (ALF), v1.1

351

B.3.3.2 Reply Messages

Replies are also delivered using messages, as modeled below.

«dataType»

Reply A
+identifier : String See Note 1

+request identifier : String

I

«dataType» «dataType»

Property Management Success Reply Error Reply]
+error code : String See Note 4
+error message : String
SeeNote 2| — __
“+propertyy 1

See Note 3

«dataType»
Property Data

——— P «dataType»
+property identifier : Strin . .

+Srogert§ Inamel: StringI ’ +property location Location Data
+property status : Property Status 0..1 | +location identifier : String
+property value : Currency Amount [0..1] +location address : String
+property type : Property Type
+property serial number : String [0..1]
+property size : Area [0..1]

+property acquisition data &£ 0..1 +property disposition data 30..1
«dataType» «dataType»
Property Acquisition Data Property Disposition Data

Figure B.9 Reply Message Model
Notes

1. As with request messages, reply messages are modeled as data types with identifiers. Every reply message also has a
request identifier message that identifies the request message to which the reply correlates.

2. For the purposes of this example, all requests, if successful, reply by returning a copy of the identified property record. In
the case of a record removal, this is a copy of the removed record. (A more realistic model would likely have different
reply messages corresponding to different requests.)

3. Messages cannot contain object references. Therefore, all relevant data from the location object is composed into the
reply message.

4. For the purposes of this example, all requests, if failed, reply by returning a generic Error Reply.

B.3.4 Service Model

The interface for the Property Management Service can now be defined as an interface with operations to deliver each
of the request messages defined above. This interface is provided by a Property Management Service Provider
component that uses a Property Management Service Implementation classto implement the operations on the
service interface.

Figure B.10 shows the Property Management Service interface. For the purposes of this example, each operation has a
simple synchronous request/reply signature. Each operation takes a single in parameter request of a specific request type
and two out parameters. If the request is successful, a success reply is returned in the reply parameter. Otherwise an error
reply is returned in the error parameter.

352 Action Language for Foundational UML (ALF), v1.1

Property Management Service O

+establish(request : Property Record Establishment, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+acquire(request : Property Acquisition Notification, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+update(request : Property Record Update, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+dispose(request : Property Disposition Notification, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+delete(request : Property Record Deletion, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+retreive(request : Property Record Retrieval, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])

Figure B.10 Property Management Service Interface

Figure B.11 shows the composite structure of the Property Management Service Provider component.

«component» =
Property Management Service Provider

Property Management Service

: Property Management Service X " "
_]7 : Property Management Service Implementation - — — — See Note 2

property management service
See Note 1 - Impl to Factory

property identifier factory

: Identifier Factory | - — — — — — — ~ |See Note 3

Figure B.11 Property Management Service Provider Component Composite Structure
Notes

I. The Property Management Service isused to type a port on the Property Management Service Provider,
becoming the single provided interface for the port.

2. The Property Management Service Provider has an internal part that directly implements the service. All
requests through the port are delegated to this implementation.

3. The Property Management Service Provider has another part that is used by the Property Management
Service Implementation asa “factory” for creating unique identifiers to give to property records when they are
established.

Figure B.12 shows a model of the Property Management Service Implementation class.

Action Language for Foundational UML (ALF), v1.1 353

Property Management Service O

L - - - — — _
| See Note 1

Property Management Service Implementation

+establish(request : Property Record Establishment, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+acquire(request : Property Acquisition Notification, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+update(request : Property Record Update, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+dispose(request : Property Disposition Notification, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+delete(request : Property Record Deletion, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
+retreive(request : Property Record Retrieval, out reply : Property Management Success Reply [0..1], out error : Error Reply [0..1])
-create reply(requestld : String, property : Property) : Property Management Success Reply

+property management service | «
Implto Factory ~ ~ |See Note 3

+property identifier factory | 1
Identifier Factory

-next identifier : Integer =0 |- — _—

1see Note 2

+get next identifier() : String

Figure B.12 Property Management Service Implementation Class
Notes

1. The Property Management Service Implementation class realizes the Property Management Service
interface, implementing all its operations. In addition, it adds a private operation used to create reply messages and an
association to the generic Identifier Factory class (which is used to connect it to the Identifier Factory part
within the Property Management Service Provider component, as shown earlier).

2. The 1dentifier Factory has the simple behavior of generating unique identifiers as sequential integers starting from
0.

3. The Impl to Factory association acts as the type of the connector shown in Figure B.11.

B.3.5 Property Management Service Methods

This subclause provides Alf specifications of activities that serve as the methods of all the operations shown on classes in the
previous section.

B.3.5.1 Property
As discussed in B.3.2, the class Property has two operations, create property, which is a constructor, and update

status, which computes the derived value of the status attribute.

create property

namespace 'Property Management'::'Data Model'::Properties::Property;
// See Note 1

/** Create a new property with a given identifier and name */
activity 'create property' (in identifier: String, in name: String) {

this.identifier = identifier;

this.name = name;
this.'update status'();

354 Action Language for Foundational UML (ALF), v1.1

}
Notes

1. The namespace clause here includes the fully qualified name for the Property class, uniquely identifying it within the
model. Note also the use of single quotes to form names with spaces.

update status
namespace 'Property Management'::'Data Model'::Properties: :Property;

/** Update the status of a property consistent with whether it has been
acquired or disposed.

*/
activity 'update status' () {
if (this.'acquisition data' -> isEmpty()) { // See Note 1
this.status = 'Property Status'::pending; // See Note 2
} else if (this.'disposition data' -> isEmpty()) {
this.status = 'Property Status'::acquired;
} else {
this.status = 'Property Status'::disposed;
}
}
Notes

1. The OCL-like notation “this.'acquisition data' -> isEmpty ()” is used to test whether the optional attribute
acquisition data is empty.

2. The enumeration Property Status is visible in the scope of Property (it is in the same package), so it can be used
without import. However, the names of its enumeration literals still need to be qualified.

B.3.5.2 Identifier Factory

The Identifier Factory class has a single operation used to get the next unique identifier.

get next identifier

namespace Identifiers::'Identifier Factory';

/** Generate a unique identifier from the next sequential integer. */
activity 'get next identifier'(): String {
return IntegerFunctions::ToString(this.'next identifier'++); // See Note 1

}
Notes

1. Alfallows the use of the C-style “++” operator. In this case, the value of next identifier is incremented, but the prior
value is returned. That is, the return statement above is mapped as if it were the following equivalent statement sequence:

this. 'next identifier' = (oldValue = this.'next identifier') + 1;
return IntegerFunctions::toString(oldValue);

B.3.5.3 Property Management Service Implementation

The operations in the class Property Management Service Implementation handle each of the service requests
modeled in B.3.3. In addition, the class has one private operation, create reply, which is a utility operation used to
construct a reply message.

Note in particular that fUML semantics requires that objects persist between activity invocations at a specific execution locus,
unless they are explicitly destroyed. The specification of the Property Management Service takes advantage of this by
effectively using the extent of the Property class as a “database” of property records.

Action Language for Foundational UML (ALF), v1.1 355

create reply

namespace 'Property Management'::'Service Model'::

'Property Management Service Implementation';

private import 'Property Management'::'Data Model'::Properties::*;

// See Note 1

private import 'Property Management'::'Message Model'::*;

/** Create a reply message for a given message ID and property object */
activity 'create reply' (in requestId: String, in property: Property):

'Property Management Success Reply' {

propertyData = new 'Property Data' (// See Note 2
'property identifier' => property.identifier,
'property name' => property.name,
'property status' => property.status,
'property acquisition data' => property.'acquisition data',
'property disposition data' => property.'disposition data'
'property type' => property instanceof 'Personal Property'?

'Property Type'::personal:
'Property Type'::real);

if (property.location -> notEmpty()) {
propertyData. 'property location'
= new 'Location Data' (
'location identifier' => property.location.identifier,
'location address' => property.location.address);

}

if (property instanceof 'Personal Property') {
propertyData. 'property serial number'
= (('Personal Property')property).'serial number';
} else {
propertyData. 'property size' = (('Real Property')property).size;
}

return new 'Property Management Success Reply' (

identifier => requestId + "/reply",
'request identifier' => requestld,
property => propertyData);

}

Notes

1. The notation “private import 'Property Management'::'Data Model'::Properties::*” indicates a
package import. That is, all the elements of the package 'Property Management'::'Data Model'::Properties
are visible within the activity create reply.

2. Property Data is a data type, which may only be constructed using a default constructor. The default constructor for a
data type provides arguments for each of the attributes of the data type, which are set here using a named-parameter
notation.

establish

namespace 'Property Management'::'Service Model'::

'Property Management Service Implementation';
private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Establish a new property record. */
activity establish (

in request: 'Property Record Establishment',

356 Action Language for Foundational UML (ALF), v1.1

out reply: 'Property Management Success Reply' [0..1],
out error: 'Error Reply' [0..1]) {

identifier = this.'property identifier factory'.'get next identifier'();
// See Note 1

if (request.'property type' == 'Property Type'::personal) ({
property = new 'Personal Property'::'create property'
(identifier, request.'property name');
// See Note 2
} else {
property = new 'Real Property'::'create property'
(identifier, request.'property name');

}

reply = this.'create reply' (request.identifier, property);

}
Notes

1. The notation “this.'property identifier factory' maps to aread link action for the association from the
Property Management Service Implementation tothe Identifier Factory used to generate property
identifiers.

NOTE. Components and parts are not in the f{UML subset. However, by general UML semantics, it is assumed that,
when the Property Management Service Provider is instantiated, both its parts are also instantiated. The
connection between the parts then results in a link between the Property Management Service Implementation
instance and the Instance Factory instance. It is this link that is read here. (See also the discussion in A.3.)

2. The Property class has the named constructor create property, rather than a default constructor. This is referenced
in the constructor invocation by the qualified name “Property: : 'create property”. Note that if, instead, the
constructor had had the same name as the class, then the constructor could have been referenced simply using the class
name, i.e., “new Property(identifier, request.name)”.

acquire
namespace 'Property Management'::'Service Model'::

'Property Management Service Implementation';
private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Update the acquisition information for an existing property. */
activity acquire (

in request: 'Property Acquisition Notification',
out reply: 'Property Management Success Reply' [0..1],
out error: 'Error Reply' [0..1]) {
property =
Property -> select p (p.identifier == request.'property identifier') [1l];

// See Note 1

PR ol .
SE=EaS S HoT—=7
11

sz 1 .
S g

ifi(broperty -> isEmpty()) {
error = new 'Error Reply' (

identifier => request.identifier + "/error",
'request identifier' => request.identifier,

'error code' => "PAN-001",

'error message' => "Property not found.");

Action Language for Foundational UML (ALF), v1.1 357

}else if (property-status—=— 'Property Status'irdisposed)—f
if (location -> isEmptv()) {
erreor—hnew ' Error Reptyl—

error = new 'Error Reply' (

Heptitier ———regaest—derEi e+ errerts
identifier => request.identifier + "/error",
'request identifier' => request.identifier,

'error code' => "PAN-003",
'error message' => "Location not found.");
}l else |

'Property Location'.create

Link (property,

location) ;

property.'acquisition data' = request.'property acguisition data';
| VRSN S DA -3 AUy e receat 3damtd £ oo
L et L T R
_lerrer—codel // See Note 2=>—
" pAN-GGRN
property. 'update status'();
" vy ool - "D, . + 1 - A o P "oy
[R L e e
e
preperty—lacaguisiTton—<atal— guest—property acgursition—data's
/ (al Ne+ 2
Draounari s LIEEEZW IS + oz V() .
YT G - * 77
_ reply = this.'create reply' (request.identifier, property);
}
Notes
1. The select expression is used to select the elements from a collection that meet the given condition. The type name
“pProperty’” here is used as a shorthand for “Property.allInstances () ”"—that is, the extent of the Property class.
Thus, this expression selects the instance of Property (if any) whose identifier equals that given in the request.
2. This is an assignment to the acquisition data attribute for property.
NOTE. acquisition data is an opposite association end owned by the class Property. The f{UML subset does not
actually include such associations (fUML requires that all ends of associations are owned by the association). However,
since an association end owned by a class is a structural feature, it can be written by an add structural feature value
action. But, per f{UML semantics, no link is actually created—only the structural feature is set.
update
namespace 'Property Management'::'Service Model'::

private import
private import
private import

/** Update the

*/

'Property Management Service Implementation';

'Property Management'
'Property Management'
'Property Management'

::'Data Model'::Properties::*;
::'Data Model'::Locations::Location;
::'Message Model'::*';

attribute data of a property (other than acquisition or
disposition data). Only non-empty values in the update message cause
corresponding attribute updates. Note that none of these updates can
result in a property status change.

activity update (

in request:

'Property Record Update',

out reply: 'Property Management Success Reply' [0..1],
out error: 'Error Reply' [0..1]) {
property = Property -> select p
(p.identifier == request.'property identifier')[1l];
e
ol = a1l 1 .
ropl SRt g
358 Action Language for Foundational UML (ALF), v1.1

if (property -> isEmpty()) {
error = new 'Error Reply' (

identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PRU-001",
'error message' => "Property not found.");
} else if (property.status == 'Property Status'::disposed) {
error = new 'Error Reply' (
identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PRU-002",
'error message' => "Property already disposed.");

} else if ((request.'property serial number' -> notEmpty () &&
property instanceof 'Real Property') ||
(request.'property size' -> notEmpty() &&
property instanceof 'Personal Property')) {

error = new 'Error Reply' (

identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PRU-002",
'error message' => "Wrong property type.");
1 1 B AP PR DU 1 PR SN I PRGOS =R R | NPT i A W o
= i reguest toron tocasion foentitioy e e
| (T 1~ 3ot 1
Loos = + +
| R D e L ey P P il + 2 R N = SR I WA W W ¢
oo tdentsisior Feop: Sleroperty cocation docntisiosligy
rroyry — o~ A~rg Ty DA 1 [
EE o = e £
R P R I - [T P L RS T 1 | IR 1]
sdentiiier Feop: oentiTior— mae
Vo~ £ S dandt 3 Lo r! Yo ERE I PGS I] £
e FaemTifier e —eentiTie,
1 1 = A] — T"DDIT avaleall
—— — =t 7
1 rr m or 1 . nr + 2 n + 1A " AN
¥ T — —ooEThen—n R e
_} else {
if (request.'property location identifier' -> notEmpty()) {
location = Location -> select loc
(loc.identifier == request.'property location identifier');
if (request.'property location identifier' -> notEmpty()) {
T D T FE RPN | — E N M N P R NE NN = 1 E N NN W
—ramerty - Locationtierestelinl(provnerty, Jeocationiy
location = Tocation —-> select loc
(loc.identifier == if+Hrequest.'property location identifier') [1];ramel—
ot Tt ()) [
sotirpti
if (location —> isEmptyv()) {
rounaixrt noam —_ oyl + LIESNECDEN vt noam 1.
TEODET R AT Feop: SleroparTyomans 'y
error = new 'Error Reply' (
identifier => request.identifier + "/erroxr",
R = P, P PO PPN PR | [ooy W W
im e —reronest e e e o
'request identifier' => request.identifier,
nronoxrt 133 = oo + LN o 133 L
TEOBSTE A reciegt tproper zlia s
'error code' => "PRU-003",
'error message' => "TLocation not found.");
return;
} else {
'Property TLocation'.createlink (property, location);
1
1
}
property.name = request.'property name' ?? property.name;
property.value = request.'property value' ?? property.value;
if (property instanceof 'Personal Property') {
LI =R B £ Vot PN ISRy A | Aot Rmet s (VY[
S e S i e e Y

Action Language for Foundational UML (ALF), v1.1 359

Prepertyyprepertyr. 'serial number' =

b

To o
Persenat

request. 'property serial number' ?? property.'

reguest—preperty—serial number';

if (property instanceof 'Real Property'reguest'preoperty—size!l —> notEmptyr) |

1 X
operty+4{'Rea ertyy.size = request. 'property size'

property.size;

reply = this.'create reply' (request.identifier, property);

dispose
namespace 'Property Management'::'Service Model'::

'Property Management Service Implementation';
private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Update the disposition data for an existing property. */
activity dispose (

in request: 'Property Disposition Notification',

out reply: 'Property Management Success Reply' [0..1],

out error: 'Error Reply' [0..1]) {

property = Property -> select p
(p.identifier == request.'property identifier')[1l];

1z —
t

if (property -> isEmpty()) {
error = new 'Error Reply' (

identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PDN-001",
'error message' => "Property not found.");
} else if (property.status == 'Property Status'::pending) {
error = new 'Error Reply' (
identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PDN-002",
'error message' => "Property not yet acquired.");
} else {
property.'disposition data' = request.'property disposition data';

property.'update status'();

reply = this.'create reply' (request.identifier, property);

delete
namespace 'Property Management'::'Service Model'::

'Property Management Service Implementation';
private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Delete an existing property, destroying the record of it. */
activity delete (

360 Action Language for Foundational UML (ALF), v1.1

in request: 'Property Record Deletion',
out reply: 'Property Management Success Reply' [0..1],
out error: 'Error Reply' [0..1]) {

property = Property -> select p

(p.identifier == request.'property identifier')[1l];
rror—=putt
ropts A
if (property -> isEmpty()) {
error = new 'Error Reply' (
identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PRD-001",
'error message' => "Property not found.");
} else {
reply = this.'create reply' (request.identifier, property);
property.destroy () ; // See Note 1

}
Note

1. The expression “property.destroy ()” destroys the object property.

retrieve
namespace 'Property Management'::'Service Model'::

'Property Management Service Implementation';
private import 'Property Management'::'Data Model'::Properties::*;
private import 'Property Management'::'Message Model'::*;

/** Retrieve data on an existing property record. */
activity retrieve (

in request: 'Property Record Retrieval',
out reply: 'Property Management Success Reply' [0..1],
out error: 'Error Reply' [0..1]) {

property = Property -> select p

(p.identifier == request.'property identifier')[1l];
Lror Aot
repty—t
if (property -> isEmpty()) {
error = new 'Error Reply' (
identifier => request.identifier + "/error",
'request identifier' => request.identifier,
'error code' => "PRR-001",
'error message' => "Property not found.");
} else {

reply = this.'create reply' (request.identifier, property);

Action Language for Foundational UML (ALF), v1.1 361

B.4 Alf Standard Library Collection Classes Implementation

B.4.1 Introduction

This example provides a sample implementation for the Alf Standard Library CollectionClasses package in Alf itself. As
discussed in 11.7, implementations for these classes are supplied in the nested CollectionClasses: :Impl package. B.4.2
presents the Alf representation of the CollectionClasses: : Impl package, with the following subclauses giving Alf units
for each of the classes contained in this package.

Note that this is not intended to be an efficient, production implementation of the collection class package. Rather, it is
intended to provide a concrete example of the use of the Imp1 mechanism for the collection classes and to demonstrate that
all the behavior specified for the collection classes can be implemented in Alf using other features.

B.4.2 CollectionClasses::Impl

The CollectionClasses: : Impl package is required to contain the classes shown in Figure 11.6. The Alf implementation
given for the package below also includes two additional classes that are used to factor out common behavior from the
collection classes (other than Map). The package is also marked as a model library, so that it does not automatically import the
Alf standard library itself (see 10.1).

namespace Alf::Library::CollectionClasses;
package Impl {

private abstract class CollectionImpl<T>;
private abstract class OrderedCollectionImpl<T> specializes CollectionImpl<T>;

public class Set<T>

specializes CollectionImpl<T>, CollectionClasses::Set<T>;
public class Bag<T>

specializes CollectionImpl<T>, CollectionClasses: :Bag<T>;

public class OrderedSet<T>

specializes OrderedCollectionImpl<T>, CollectionClasses: :0rderedSet<T>;
public class List<T>

specializes OrderedCollectionImpl<T>, CollectionClasses::List<T>;

public class Queue<T>

specializes CollectionImpl<T>, CollectionClasses::Queue<T>;
public class Deque<T>

specializes Queue<T>, CollectionClasses: :Deque<T>;

public class Map<Key,Value> specializes CollectionClasses: :Map<Key,Value>;

B.4.3 CollectionClasses::Impl::Collectionimpl

The abstract CollectionImpl class provides implementations for the operations (other than toSequence) common to all
collection classes other than Map. The actual collection content is expected to be supplied by the concrete subclasses of
CollectionImpl. The CollectionImpl operation method use abstract methods setContent and toSequence, to be
defined in the subclasses, to set and get this content.

Note that, since the Imp1 package is stereotyped as a model library, the usual importation of standard library packages is
suppressed. Therefore, the CollectionFunctions package must be explicitly imported in order to make the collection
functions usable without qualification. The collection functions are imported privately, as required by the rules of 11.7 for the
implementation of collection classes.

namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;

/*k*

362 Action Language for Foundational UML (ALF), v1.1

The base concrete implementation for all the standard library collection classes.

*/

abstract class CollectionImpl<T> {

@Create protected CollectionImpl (in seqg: T[0..*] sequence)

this.setContent (seq);
}

protected abstract setContent (in seq: T[0..*] sequence);
public abstract toSequence (): T[0..*] sequence;

public add (in element: T): Boolean {
result = this.excludes (element);
this.setContent (this.toSequence () ->including (element));
return result;

}

public addAll (in seqg: T[O0..*] sequence): Boolean {
preSize = this.size();
this.setContent (this.toSequence () ->union (seq));
return this.size() > preSize;

}

public clear () {
this.setContent (null);
}

public count (in element: T): Integer {
return this.toSequence () ->count (element) ;

}

public equals (in seqg: T[O0..*] sequence): Boolean {
return this.toSequence ()->equals (seq);

}

public excludes (in element: T): Boolean {
return this.toSequence () ->excludes (element) ;

}

public excludesAll (in seq: T[0..*] sequence): Boolean ({
return this.toSequence ()->excludesAll (seq);

}

public includes (in element: T): Boolean {
return this.toSequence ()->includes (element) ;

}

public includesAll (in seq: T[O0..*] sequence): Boolean {

return this.toSequence ()->includesAll (seq);
}
public isEmpty (): Boolean {
return this.toSequence ()->isEmpty () ;
}
public notEmpty (): Boolean {
return this.toSequence ()->notEmpty () ;

}

Action Language for Foundational UML (ALF), v1.1

{

363

public remove (in element: T): Integer ({
result = this.count (element);
this.setContent (this.toSequence () ->excluding (element));
return result;

}

public removeAll (in seq: T[0..*] sequence): Boolean {
preSize = this.size();
this.setContent (this.toSequence () ->difference (seq))
return this.size() < preSize;

}

public removeOne (in element: T): Boolean {
result = this.includes (element) ;
this.setContent (this.toSequence () ->excludingOne (element)) ;
return result;

}

public replace (in element: T, in newElement: T): Integer {
result = this.count (element);
this.setContent (this.toSequence () ->replacing (element, newElement));

return result;

}

public replaceOne (in element: T, in newElement: T): Boolean ({
result = this.includes (element) ;
this.setContent (this.toSequence () ->replacingOne (element, newElement)) ;
return result;

}

public retainAll (in seqg: T[0..*] sequence): Boolean {
preSize = this.size();
this.setContent (this.toSequence () ->intersection (seq));
return this.size() < preSize;

}

public size (): Integer {
return this.toSequence()->size();

}

B.4.4 CollectionClasses::Impl::OrderedCollectionimpl

The class OrderedCollectionImpl extends CollectionImpl with implementation of additional operations found in the
ordered collection classes (i.e., OrderedSet and List).

namespace Alf::Library::CollectionClasses::Impl;

private import Alf::Library::CollectionFunctions::*;

/xx

The base concrete implementation for the standard library ordered collection
classes

*/

abstract class OrderedCollectionImpl<T> specializes CollectionImpl<T> {

@Create protected OrderedCollectionImpl (in seqg: T[0..*] sequence) {
super (seq) ;

}

364 Action Language for Foundational UML (ALF), v1.1

public addAllAt (in index: Integer, in seqg: T[0..*] sequence): Boolean {
preSize = this.size();
this.setContent (this.toSequence () ->includeAllAt (index, seq)):;
return this.size() > preSize;

}

public addAt (in index: Integer, in element: T): Boolean {
return this.addAllAt (index, element);
}

public at (in index: Integer): T[O0..1] {
return this.toSequence ()->at (index) ;

}

public first (): T[O0..1] {
return this.at(1l);

}

public indexOf (in element: T) : Integer([0..1] {
return this.toSequence ()->indexOf (element) ;

}

public last (): T[O0..1] {
return this.at(this.size());

}

public removeAt (in index: Integer): T[O0..1] {
result = this.at (index);
this.setContent (this.toSequence () ->excludeAt (index)) ;
return result;

}

public replaceAt (in index: Integer, in element: T): T[O0..1] {
result = this.at (index);
this.setContent (this.toSequence () ->replacingAt (index, element));
return result;

B.4.5 CollectionClasses::Impl::Set

The set class given below implements the abstract CollectionClasses: : Set class. It does this by defining a content
attribute of the appropriate type with unbounded multiplicity. By default, the attribute is unique and unordered—that is, a set.
Operation methods are provided by specializing the CollectionImpl class.

namespace Alf::Library::CollectionClasses::Impl;

private import Alf::Library::CollectionFunctions::*;

/**

The concrete implementation of the standard library template Set class.
*/

class Set<T> specializes CollectionImpl<T>, CollectionClasses::Set<T> ({
private content: T[0..*];

@Create public Set (in seq: T[O0..*] sequence) {
super.CollectionImpl (seq) ;
}

Action Language for Foundational UML (ALF), v1.1 365

@Destroy public destroy () { }

private setContent (in seq: T[0..*] sequence) {
this.content = seqg;

}

public add (in element: T): Boolean {
return super.CollectionImpl<T>::add(element) ;

}

public addAll (in seqg: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::addAll (segq->toOrderedSet())
}

public clear () {
super.CollectionImpl<T>::clear();

}

public count (in element: T): Integer {
return super.CollectionImpl<T>::count (element);

}

public equals (in seqg: T[0..*] sequence): Boolean {
set = seg->toOrderedSet();
return this.size () == set->size() && this.includesAll (set);

}

public excludes (in element: T): Boolean {
return super.CollectionImpl<T>::excludes (element);

}

public excludesAll (in seqg: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::excludesAll (seg->toOrderedSet());
}

public includes (in element: T): Boolean {
return super.CollectionImpl<T>::includes (element);

}

public includesAll (in seq: T[0..*] sequence): Boolean {
return super.CollectionImpl<T>::includesAll (seg->toOrderedSet());
}

public isEmpty (): Boolean {
return super.CollectionImpl<T>::isEmpty();
}

public notEmpty (): Boolean ({
return super.CollectionImpl<T>::notEmpty();
}

public remove (in element: T): Integer
return super.CollectionImpl<T>::remove (element);

}

public removeAll (in seq: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::removeAll (seq);

}

366 Action Language for Foundational UML (ALF), v1.1

public removeOne (in element: T): Boolean {
return super.CollectionImpl<T>::removeOne (element) ;

}

public replace (in element: T, in newElement: T): Integer ({
return super.CollectionImpl<T>::replace(element, newElement);

}

public replaceOne (in element: T, in newElement: T): Boolean {
return super.CollectionImpl<T>::replaceOne (element, newElement) ;

}

public retainAll (in seq: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::retainAll (seq);

}

public size (): Integer {
return super.CollectionImpl<T>::size();
}

public toSequence (): T[O0..*] sequence {

return this.content;

}

B.4.6 CollectionClasses::Impl::OrderedSet

The OrderedsSet class given below implements the abstract CollectionClasses: :OrderedSet class. It does this by
defining a content attribute of the appropriate type with unbounded multiplicity. The attribute is specifically defined to be

ordered and is unique by default—that is, it is an ordered set. Operation methods are provided by specializing the

OrderedCollectionImpl class.

namespace Alf::Library::CollectionClasses::Impl;

private import Alf::Library::CollectionFunctions::*;
/**

The concrete implementation of the standard library template OrderedSet class.

*/
class OrderedSet<T>

specializes OrderedCollectionImpl<T>, CollectionClasses::0rderedSet<T> {

private content: T[0..*] ordered;

@Create public OrderedSet (in seq: T[O0..*] sequence) {
super.OrderedCollectionImpl (segq->toOrderedSet ()) ;
}

@Destroy public destroy () {
}

private setContent (in seq: T[0..*] sequence) {
this.content = seqg;

}

public add (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::add(element) ;

}

public addAt (in index: Integer, in element: T): Boolean {
return super.OrderedCollectionImpl<T>::addAt (index, element);

Action Language for Foundational UML (ALF), v1.1

367

}

public addAll (in seg: T[O0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::addAll (seg->toOrderedSet());
}

public addAllAt (in index: Integer, in seqg: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::addAllAt (index, seg->toOrderedSet());
}

public at (in index: Integer): T[O0..1] {
return super.OrderedCollectionImpl<T>::at (index) ;

}

public clear () {
super.OrderedCollectionImpl<T>::clear();

}

public count (in element: T): Integer {
return super.OrderedCollectionImpl<T>::count (element);

}

public equals (in seqg: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::equals (seg->toOrderedSet());
}

public first (): T[O0..1] {
return super.OrderedCollectionImpl<T>::first();

}

public indexOf (in element: T) : Integer([0..1] {
return super.OrderedCollectionImpl<T>::indexOf (element) ;

}

public last (): T[O..1] {
return super.OrderedCollectionImpl<T>::last();
}

public excludes (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::excludes (element);

}

public excludesAll (in seq: T[O0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::excludesAll (seg->toOrderedSet())
}

public includes (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::includes (element);

}

public includesAll (in seq: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::includesAll (seg->toOrderedSet());
}

public isEmpty (): Boolean {
return super.OrderedCollectionImpl<T>::isEmpty ()

}

public notEmpty (): Boolean ({

368 Action Language for Foundational UML (ALF), v1.1

return super.OrderedCollectionImpl<T>::notEmpty ()
}

public remove (in element: T): Integer {
return super.OrderedCollectionImpl<T>::remove (element);

}

public removeAll (in seq: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::removeAll (seq);

}

public removeAt (in index: Integer): T[O0..1] {
return super.OrderedCollectionImpl<T>::removeAt (index) ;

}

public removeOne (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::removeOne (element) ;

}

public replace (in element: T, in newElement: T): Integer {
return super.OrderedCollectionImpl<T>::replace (element, newElement) ;

}

public replaceAt (in index: Integer, in element: T): T[O0..1] {
result = this.at (index);
if (result->notEmpty()) {
this.remove (result) ;
this.addAt (index, element);
}
return result;

}

public replaceOne (in element: T, in newElement: T): Boolean ({

return super.OrderedCollectionImpl<T>::replaceOne (element, newElement);

}

public retainAll (in seqg: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::retainAll (seq);

}

public size (): Integer {
return super.OrderedCollectionImpl<T>::size();

}

public subOrderedSet (in lower: Integer, in upper: Integer):
CollectionClasses: :0OrderedSet<T> {

return new OrderedSet<T> (this.toSequence () ->subsequence (lower, upper)):

}

public toSequence(): T[0..*] sequence {
return this.content;

}

Action Language for Foundational UML (ALF), v1.1

369

B.4.7 CollectionClasses::Impl::Bag

The Bag class given below implements the abstract CollectionClasses: : Set class. It does this by defining a content
attribute of the appropriate type with unbounded multiplicity. The attribute is specifically defined to be nonunique and is
ordered by default—that is, it is a bag. Operation methods are provided by specializing the CollectionImpl class.

namespace Alf::Library::CollectionClasses::Impl;

private import Alf::Library::CollectionFunctions::*;

/xx

The concrete implementation of the standard library template Bag class.
*/

class Bag<T> specializes CollectionImpl<T>, CollectionClasses: :Bag<T> ({

private content: T[O0..*] nonunique;

@Create public Bag (in seqg: T[O0..*] sequence) {
super.CollectionImpl (seq) ;
}

@Destroy public destroy () { }

private setContent (in seq: T[0..*] sequence) {
this.content = seq;

}

public add (in element: T): Boolean {
return super.CollectionImpl<T>::add(element) ;

}

public addAll (in seqg: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::addAll (seq):;
}

public clear () {
super.CollectionImpl<T>::clear();

}

public count (in element: T): Integer {
return super.CollectionImpl<T>::count (element);

}

public equals (in seqg: T[0..*] sequence): Boolean {
return this.size() == seg->size() && this.includesAll (seq);

}

public excludes (in element: T): Boolean {
return super.CollectionImpl<T>::excludes (element);

}

public excludesAll (in seq: T[0..*] sequence): Boolean ({
return super.CollectionImpl<T>::excludesAll (seq);

}

public includes (in element: T): Boolean {
return super.CollectionImpl<T>::includes (element) ;

}

public includesAll (in seq: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::includesAll (seq);

}

370 Action Language for Foundational UML (ALF), v1.1

public isEmpty (): Boolean {
return super.CollectionImpl<T>::isEmpty();
}

public notEmpty (): Boolean {
return super.CollectionImpl<T>::notEmpty ()
}

public remove (in element: T): Integer
return super.CollectionImpl<T>::remove (element);

}

public removeAll (in seq: T[0..*] sequence): Boolean {
return super.CollectionImpl<T>::removeAll (seq);

}

public removeOne (in element: T): Boolean {
return super.CollectionImpl<T>::removeOne (element) ;

}

public replace (in element: T, in newElement: T): Integer ({
return super.CollectionImpl<T>::replace (element, newElement);

}

public replaceOne (in element: T, in newElement: T): Boolean {
return super.CollectionImpl<T>::replaceOne (element, newElement) ;

}

public retainAll (in seq: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::retainAll (seq);

}

public size(): Integer {
return super.CollectionImpl<T>::size();

}

public toSequence(): T[O0..*] sequence {
return this.content;

}

B.4.8 CollectionClasses::Impl::List

The List class given below implements the abstract CollectionClasses: :List class. It does this by defining a content
attribute of the appropriate type with unbounded multiplicity defined as a sequence—that is, a nonunique, ordered list.
Operation methods are provided by specializing the OrderedCollectionImpl class.

namespace Alf::Library::CollectionClasses::Impl;
private import Alf::Library::CollectionFunctions::*;
/**
The concrete implementation of the standard library template List class.
*/
class List<T>
specializes OrderedCollectionImpl<T>, CollectionClasses::List<T> {

private content: T[0..*] sequence;

@Create public List (in seqg: T[0..*] sequence) {
super.OrderedCollectionImpl (seq) ;

Action Language for Foundational UML (ALF), v1.1 371

}

@Destroy public destroy () {
}

private setContent (in seqg: T[O0..*] sequence) {
this.content = seqg;

}

public add (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::add(element);

}

public addAt (in index: Integer, in element: T): Boolean {
return super.OrderedCollectionImpl<T>::addAt (index, element);

}

public addAll (in seqg: T[O0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::addAll (seq);
}

public addAllAt (in index: Integer, in seqg: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::addAllAt (index, seq);
}

public at (in index: Integer): T[O0..1] {
return super.OrderedCollectionImpl<T>::at (index) ;

}

public clear () {
super.OrderedCollectionImpl<T>::clear();

}

public count (in element: T): Integer ({
return super.OrderedCollectionImpl<T>::count (element);

}

public equals (in seqg: T[0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::equals (seq);

}

public first (): T[O0..1] {
return super.OrderedCollectionImpl<T>::first();

}

public indexOf (in element: T) : Integer([0..1] {
return super.OrderedCollectionImpl<T>::indexOf (element) ;

}

public last (): T[O..1] {
return super.OrderedCollectionImpl<T>::last();

}

public excludes (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::excludes (element);

}

public excludesAll (in seq: T[O0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::excludesAll (seq);

372 Action Language for Foundational UML (ALF), v1.1

}

public includes (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::includes (element);

}

public includesAll (in seq: T[0..*] sequence): Boolean ({
return super.OrderedCollectionImpl<T>::includesAll (seq);

}

public isEmpty (): Boolean {
return super.OrderedCollectionImpl<T>::isEmpty ()
}

public notEmpty (): Boolean {
return super.OrderedCollectionImpl<T>::notEmpty ()
}

public remove (in element: T): Integer
return super.OrderedCollectionImpl<T>::remove (element) ;

}

public removeAll (in seq: T[O0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::removeAll (seq);

}

public removeAt (in index: Integer): T[O0..1] {
return super.OrderedCollectionImpl<T>::removeAt (index) ;

}

public removeOne (in element: T): Boolean {
return super.OrderedCollectionImpl<T>::removeOne (element) ;

}

public replace (in element: T, in newElement: T): Integer {
return super.OrderedCollectionImpl<T>::replace (element, newElement);

}

public replaceAt (in index: Integer, in element: T): T[O0..1] {
return super.OrderedCollectionImpl<T>::replaceAt (index, element);

}

public replaceOne (in element: T, in newElement: T): Boolean ({
return super.OrderedCollectionImpl<T>::replaceOne (element, newElement) ;

}

public retainAll (in seq: T[O0..*] sequence): Boolean {
return super.OrderedCollectionImpl<T>::retainAll (seq);

}

public size (): Integer {
return super.OrderedCollectionImpl<T>::size();

}

public subList (in lower: Integer, in upper: Integer): CollectionClasses::List<T>

return new List<T> (this.toSequence ()->subsequence (lower, upper)):;

}

Action Language for Foundational UML (ALF), v1.1 373

public toSequence(): T[O0..*] sequence {
return this.content;

}

B.4.9 CollectionClasses::Impl::Queue

The List class given below implements the abstract CollectionClasses: :List class. It does this by defining a content
attribute of the appropriate type with unbounded multiplicity defined as a sequence—that is, a nonunique, ordered list.
Operation methods are provided by specializing the CollectionImpl class. Even though a queue is effectively ordered, it
does not provide all the operations defined for other ordered classes and, therefore, does not specialize the
OrderedCollectionImpl class.

namespace Alf::Library::CollectionClasses: :Impl;

private import Alf::Library::CollectionFunctions::*;

/**

The concrete implementation of the standard library template Queue class.
*/

class Queue<T> specializes CollectionImpl<T>, CollectionClasses::Queue<T> {
private content: T[O0..*] sequence;

@Create public Queue (in seq: T[0..*] sequence) {
super.CollectionImpl (seq) ;
}

@Destroy public destroy () {
}

protected setContent (in seqg: T[0..*] sequence) {
this.content = seq;

}

public add (in element: T): Boolean {
return super.CollectionImpl<T>::add(element);

}

public addAll (in seqg: T[O0..*] sequence): Boolean {
return super.CollectionImpl<T>::addAll (seq);
}

public addLast (in element : T): Boolean ({
return this.add(element) ;

}

public clear () {
super.CollectionImpl<T>::clear();

}

public count (in element: T): Integer ({
return super.CollectionImpl<T>::count (element);

}

public equals (in seqg: T[O0..*] sequence): Boolean {
return this.size() == seg->size() && this.includesAll (seq);

}

public excludes (in element: T): Boolean {
return super.CollectionImpl<T>::excludes (element);

374 Action Language for Foundational UML (ALF), v1.1

}

public excludesAll (in seq: TI[O..
return super.CollectionImpl<T>:

}

public first(): T[O0..1] {
return this.toSequence()->first

}

public includes (in element: T):
return super.CollectionImpl<T>:

}

public includesAll (in seqg: T[O..
return super.CollectionImpl<T>:

}

public isEmpty (): Boolean {
return super.CollectionImpl<T>:

}

public notEmpty (): Boolean {
return super.CollectionImpl<T>

}

public remove (in element: T): In
return super.CollectionImpl<T>:

}

public removeAll (in seq: TI[O..
return super.CollectionImpl<T>:

}

*]

*] sequence): Boolean {

:excludesAll (seq) ;

()7

Boolean {
:includes (element) ;

*] sequence): Boolean {

:includesAll (seq) ;

risEmpty () ;

:notEmpty () ;

teger {
:remove (element) ;

sequence) : Boolean {
:removeAll (seq) ;

public removeFirst (): T[O..1] {
result = this.toSequence()->first();
this.setContent (this.toSequence () ->subsequence (2,this.size()));
return result;
}
public removeFirstOne (in element: T): T[O0..1] {
return this.removeOne (element)? element: null;

}

public removeOne (in element: T):
return super.CollectionImpl<T>:

}

public replace (in element: T, in
return super.CollectionImpl<T>:

}

public replaceOne (in element: T,
return super.CollectionImpl<T>:

}

public retainAll (in seqg: TI[O0..*]
return super.CollectionImpl<T>:

}

Action Language for Foundational UML (ALF), v1.1

Boolean {
removeOne (element) ;

newElement: T):
replace (element,

Integer {
newElement) ;

Boolean {
newElement) ;

in newElement: T):
replaceOne (element,

sequence) : Boolean {
retainAll (seq);

375

public size(): Integer {
return super.CollectionImpl<T>::size();

}

public toSequence (): T[O0..*] sequence {
return this.content;

}

B.4.10CollectionClasses::Impl::Deque

The Deque class given below implements the abstract CollectionClasses: : Deque class. It does this by extending the
Queue implementation class with the additional operations defined for a Deque.

namespace Alf::Library::CollectionClasses::Impl;

private import Alf::Library::CollectionFunctions::*;

/**

The concrete implementation of the standard library template Deque class.
*/

class Deque<T> specializes Queue<T>, CollectionClasses: :Deque<T> ({

@Create public Deque (in seq: T[0..*] sequence) {
super.Queue<T>: :Queue (seq) ;

}

@Destroy public destroy () {
super.Queue<T>::destroy () ;

}

@Create private Queue (in seq: TI[0..*] sequence) {
this.Deque (seq) ;
}

public add (in element: T): Boolean {
return super.Queue<T>::add(element) ;

}

public addAll (in seg: T[O0..*] sequence): Boolean {
return super.Queue<T>::addAll (seq);
}

public addFirst (in element: T): Boolean {
this.setContent (this.toSequence () ->includeAt (1, element));
return true;

}

public addLast (in element : T): Boolean {
return this.add(element);

}

public clear () {
super.Queue<T>::clear();

}

public count (in element: T): Integer {
return super.Queue<T>::count (element) ;

}

376 Action Language for Foundational UML (ALF), v1.1

public equals (in seqg: T[O0..*] sequence): Boolean {
return this.size() == seg->size() && this.includesAll (seq);

}

public excludes (in element: T): Boolean {
return super.Queue<T>::excludes (element);

}

public excludesAll (in seq: T[O0..*] sequence): Boolean {
return super.Queue<T>::excludesAll (seq);

}

public first(): T[O0..1] {
return this.toSequence()->first();

}

public includes (in element: T): Boolean {
return super.Queue<T>::includes (element) ;

}

public includesAll (in seq: T[O0..*] sequence): Boolean {
return super.Queue<T>::includesAll (seq);

}

public isEmpty (): Boolean {
return super.Queue<T>::isEmpty ()

}

public last (): T[O..1] {

return this.toSequence ()->last();
}
public notEmpty (): Boolean ({

return super.Queue<T>::notEmpty ()

}

public remove (in element: T): Integer
return super.Queue<T>::remove (element) ;

}

public removeAll (in seq: T[O0..*] sequence): Boolean {
return super.Queue<T>::removeAll (seq);

}

public removeFirst (): T[O0..1] {
result = this.toSequence()->first();
this.setContent (this.toSequence () ->subsequence (2,this.size()));

return result;

}

public removeFirstOne (in element: T): T[O0..1] {
return this.removeOne (element)? element: null;

}

public removelLast (): T[O0..1] {
result = this.last();
this.setContent (this.toSequence () ->subsequence (1, this.size()-1));

return result;

Action Language for Foundational UML (ALF), v1.1 377

public removeLastOne (in element: T): T[O0..1] {
n = this.size();
for (i in 1..n) {
e = this.toSequence()->at(n - 1 + 1);
if (e == element) {
this.setContent (this.toSequence () ->excludeAt (1))
return e;

}

return null;

}

public removeOne (in element: T): Boolean {
return super.Queue<T>::removeOne (element) ;

}

public replace (in element: T, in newElement: T): Integer ({
return super.Queue<T>::replace(element, newElement);

}

public replaceOne (in element: T, in newElement: T): Boolean {
return super.Queue<T>::replaceOne (element, newElement) ;

}

public retainAll (in seq: T[0..*] sequence): Boolean {
return super.Queue<T>::retainAll (seq);

}

public size(): Integer {
return super.Queue<T>::size();

}

public toSequence (): T[O0..*] sequence {
return super.Queue<T>::toSequence () ;

}

B.4.11 CollectionClasses::Impl::Map

The Map class given below implements the abstract CollectionClasses: : List Map. It does this by storing a set of
entries in an attribute. Lookup of entries is implemented in the private indexOf operation.

namespace Alf::Library::CollectionClasses: :Impl;

private import Alf::Library::CollectionFunctions::*;

/**

The concrete implementation of the standard library template Map class.
*/

class Map<Key, Value> specializes CollectionClasses::Map<Key,Value> {

private entries: Entryl[0..*];

@Create public Map (in entries: Entry[0..*]) {
this.putAll (entries);

}

@Destroy public destroy () {
}

378 Action Language for Foundational UML (ALF), v1.1

private indexOf (in key: Key): Integer[0..1] {
return this.entries.key->indexOf (key);

}

public entries (): CollectionClasses::Set<Entry> {
return new Set<Entry>(this.entries);

}

public clear () {
this.entries = null;
}
public excludesAll (in entries: Entry[0..*]): Boolean {

return this.entries->excludesAll (entries);

}

public get (in key: Key): Value[O0..1] {
return this.entries->select e (e.key == key)[1l].value;

}

public includesAll (in entries: Entry[0..*]): Boolean {
return this.entries->includesAll (entries);

}

public includesKey (in key: Key): Boolean {
return this.entries.key->includes (key);

}

public includesValue (in value: Value[0..1]): Boolean {

return this.entries->exists e (e.value == —wetse—inecludes{value);
}
public isEmpty (): Boolean {

return this.entries->isEmpty () ;

}

public keys (): CollectionClasses::Set<Key> {
return new Set<Key>(this.entries.key);

}

public notEmpty (): Boolean {
return this.entries->notEmpty();

}

public put (in key: Key, in value: Value[0..1]): Value[0..1] {
result = this.remove (key);
this.entries->add (new Entry(key,value));
return result;

}

public putAll (in entries: Entry[O0..*]) {
entries->iterate e (this.put(e.key, e.value));

}

public remove (in key: Key): Value[0..1] {
result = this.get (key);
this.entries = this.entries->reject e (e.key == key);
return result;

Action Language for Foundational UML (ALF), v1.1 379

public removeAll (in keys: Key[O0..*]) {
keys->iterate k (this.remove(k));

}

public size (): Integer {
this.entries->size () ;

}

public toSequence (): Entry[0..*] sequence {
return this.entries;

}

public values (): CollectionClasses::Bag<Value> ({
return new Bag<Value> (this.entries.value);

}

380 Action Language for Foundational UML (ALF), v1.1

Annex C: Consolidated LL Grammar

(informative)

C.1 Introduction

The grammar productions presented for Alf in the main body of this document are intended to describe the lexical structure
and syntax of the language in a way that is as clear as possible to a reader of the specification. However, the resulting
grammar is not necessarily appropriate as the basis for automated parsing of the language. The grammar presented in this
annex is equivalent to the normative grammar for Alf, but is specifically intended for use in automated parsing.

NOTE. This grammar has been implemented using JavaCC parser generator (https://javacc.dev.java.net/). The format of the
lexical and syntactic productions in this annex is therefore as required for this tool.

C.2 Lexical Analyzer

The lexical analyzer is defined as a state machine that generates a sequence of tokens that are fed to the parser. The operation
of this state machine is given by the set of productions listed below. Each production has the following form:

* Alist of names of the states in which the production is active. The analyzer begins in the DEFAULT state.
* The action of the production, which is one of the following:

0 SKIP — Any text matched by the production is skipped and not passed to the parser.

o TOKEN — Text matched by the production forms the image of a token that is passed to the parser.

o MORE — Text matched by the production is buffered until the next match of a production with a SKIP or TOKEN
action, at which time all buffered text is either skipped or used in the construction of a token respectively.

* Alist of alternatives, each of which consists of an optional name, a regular expression and an optional target state. If the
regular expression in an alternative matches the input text at the current position, then this text is consumed, the
production action is carried out and the analyzer moves to the target state. If no target state is given, then the analyzer
remains in the same state. If a name is given in a matching alternative and the production action is to produce a token,
then the token is given that name.

Productions are checked in order, so earlier productions have precedence over later productions.

/* WHITE SPACE */

<DEFAULT, IN_ STATEMENT ANNOTATION,IN IN LINE ANNOTATION> SKIP : {
non

I "\t"

| n\fn

}

<DEFAULT> SKIP : {
n\nn

| n\rn

}

/* STATEMENT ANNOTATIONS */
<DEFAULT> TOKEN : {
<SLASH SLASH AT: "//@Q"> : IN STATEMENT ANNOTATION
| <SLASH STAR AT: "/*@"> : IN IN LINE ANNOTATION
}

<IN STATEMENT ANNOTATION> TOKEN : {

Action Language for Foundational UML (ALF), v1.1 381

https://javacc.dev.java.net/

<EOL: (n//n (~["\r1","\r"])*)? ("\D" | n\rn (n\nn)?)> . DEFAULT

<IN IN LINE_ ANNOTATION> SKIP : {
<("//" (~["\n","\r"1)*)? ("\n" | "\r" ("\n")?)> : IN DOCUMENTATION COMMENT
}

/* COMMENTS */

<DEFAULT> SKIP : {
MW/ xRAEM o~ [M/"]> : IN DOCUMENTATION COMMENT

<DEFAULT> MORE : {

"//" : IN _END OF LINE COMMENT
| "/*" : IN IN LINE COMMENT
}

<IN _END OF LINE COMMENT> SKIP : {
<END OF LINE COMMENT: "\n" | "\r" ("\n")?2> : DEFAULT
}

<IN END OF LINE COMMENT> MORE : {
<~[1>
}

<IN IN LINE COMMENT> MORE : f{
<~["*"]>

| "*" : IN IN LINE COMMENT STAR

}

<IN IN LINE COMMENT STAR> MORE : {
<~["/"1> : IN_IN LINE COMMENT
}

<IN IN LINE COMMENT STAR> SKIP : {
<IN LINE COMMENT: "/"> : DEFAULT
}

<IN DOCUMENTATION COMMENT> MORE : {
<i[vv*vv]> -

| "*"™ : IN DOCUMENTATION COMMENT STAR

}

<IN DOCUMENTATION COMMENT STAR> TOKEN : {
<DOCUMENTATION COMMENT: "/"> : DEFAULT
}

<IN DOCUMENTATION COMMENT STAR> MORE : ({
<~["/"]> : IN DOCUMENTATION COMMENT
}

/* RESERVED WORDS */
<DEFAULT, IN STATEMENT ANNOTATION,IN IN LINE ANNOTATION> TOKEN : {

<ABSTRACT: "abstract">
| <ACCEPT: "accept">

382 Action Language for Foundational UML (ALF), v1.1

| <ACTIVE: "active">

| <ACTIVITY: "activity">

| <ALL INSTANCES: "allInstances">
| <ANY: "any">

| <AS: "as">

| <ASSOC: "assoc">

| <BREAK: "break">

| <CASE: "case">

| <CLASS: "class">

| <CLASSIFY: "classify">

| <CLEAR ASSOC: "clearAssoc">
| <COMPOSE: "compose'">

| <CREATE LINK: "createLink">
| <DATATYPE: "datatype">

| <DEFAULT : "default">

| <DESTROY LINK: "destroyLink">
| <DO: "do">

| <ELSE: "else">

| <ENUM: "enum">

| <FOR: "for">

| <FROM: "from">

| <HASTYPE: "hastype">

| <IF: "if">

| <IMPORT: "import'">

| <IN: "in">

| <INOUT: "inout">

| <INSTANCEOF: "instanceof">
| <LET: "let">

| <NAMESPACE: "namespace'">
| <NEW: "new">

| <NONUNIQUE: "nonunique">

| <NULL: "null">

| <OR: "or">

| <ORDERED: "ordered">

| <OUT: "out">

| <PACKAGE: "package">

| <PRIVATE: "private">

| <PROTECTED: "protected">

| <PUBLIC: "public">

| <RECEIVE: "receive">

| <REDEFINES: "redefines">

| <REDUCE: "reduce">

| <RETURN: "return">

| <SEQUENCE: "sequence">

| <SPECIALIZES: "specializes">
| <SUPER: "super">

| <SIGNAL: "signal">

| <SWITCH: "switch">

| <THIS: "this">

| <TO: "to">

| <WHILE: "while">

}

/* NAMES */
<DEFAULT, IN STATEMENT ANNOTATION,IN IN LINE ANNOTATION> TOKEN : ({

<IDENTIFIER: <IDENTIFIER LETTER> (<IDENTIFIER LETTER OR DIGIT>) *>

Action Language for Foundational UML (ALF), v1.1 383

<#IDENTIFIER LETTER OR DIGIT: <IDENTIFIER LETTER> | <DIGIT>>

|

| <#IDENTIFIER LETTER: ["a"-"z","A"-"2"," "]>

| <#DIGIT: "0" | <NONZERO DIGIT>>

| <#NONZERO DIGIT: ["1"-"9"]>

| <UNRESTRICTED NAME: "\'" (<NAME CHARACTER>)+ "\'">

| <#NAME CHARACTER: ~["\'","\\"] | <ESCAPE CHARACTER>>
| <#ESCAPE CHARACTER: "\\" <ESCAPED CHARACTER>>

| <#ESCAPED CHARACTER: ["\'","\"", "Db","£","n","\\"]>

}

/* PRIMITIVE LITERALS */

<DEFAULT, IN_ STATEMENT ANNOTATION,IN IN LINE ANNOTATION> TOKEN : {

<BOOLEAN LITERAL: "true" | "false">
| <BINARY LITERAL: ("Ob" | "OB") <BINARY DIGIT> (("_ ")? <BINARY DIGIT>)*>
| <#BINARY DIGIT: ["O","1"]>
| <HEX_ LITERAL: ("Ox" | "0X") <HEX DIGIT> (("_")? <HEX DIGIT>)*>
| <#HEX DIGIT: <DIGIT> | ["a"-"f","A"-"F"]>
| <OCTAL_LITERAL: "O" (("_")? <OCTAL_DIGIT>)+>
| <#OCTAL DIGIT: ["O"-"7"]>
| <DECIMAL LITERAL: "O" | <NONZERO DIGIT> (("_")? <DIGIT>)*>
| <STRING LITERAL: "\"" (<STRING CHARACTER>)* "\"">
| <#STRING CHARACTER: ~["\"","\\"]>
}

/* PUNCTUATION */

<DEFAULT, IN STATEMENT ANNOTATION,IN IN LINE ANNOTATION> TOKEN : ({
<LPAREN: " (">
<RPAREN: ")">
<LBRACE: "{">
<RBRACE: "}">
<LBRACKET: "[">
<RBRACKET: "]">
<SEMICOLON: ";">
<COMMA: ", ">

<DOT: ".">

<COLON: ":">

<DOUBLE COLON: "::">
<ARROW: "->">

<THICK ARROW: "=>">

|
|
|
|
|
|
|
|
| <DOUBLE_DOT: "..">
|
|
|
|
}

/* OPERATORS */

<DEFAULT, IN STATEMENT ANNOTATION,IN IN LINE ANNOTATION> TOKEN : {
<ASSIGN: "="> B o B

| <GT: ">">

| <LT: "<">

| <BANG: "!">

| <TILDE: "~">

| <HOOK: "?2">
<DOUBLE_HOOK: "?2?2">

| <AT: "@">

| <DOLLAR: "S$">

| <EQ: n_—ny

384 Action Language for Foundational UML (ALF), v1.1

<LE: "<=">
<GE: ">=">
<NE: "!=">
<SC_OR: >
<SC AND: "&&">
<INCR: "++">

<DECR: "--=">
<PLUS: "+">
<MINUS: "-">

|

|

|

|

|

|

|

|

|

| <STAR: "*">

| <SLASH: "/">

| <LOGICAL AND: "g&">
| <LOGICAL OR: "|">
| <XOR: "A~">

| <REM: "$">

| <LSHIFT: "<<">
| <RSHIFT: ">>">

| <URSHIFT: ">>>">

| <PLUSASSIGN: "+=">

| <MINUSASSIGN: "-=">

| <STARASSIGN: "*=">

| <SLASHASSIGN: "/=">

| <ANDASSIGN: "&=">

| <ORASSIGN: "|[=">

| <XORASSIGN: "~=">

| <REMASSIGN: "g=">

| <LSHIFTASSIGN: "<<=">

| <RSHIFTASSIGN: ">>=">

| <URSHIFTASSIGN: ">>>=">
}

C.3 Parser

The syntax grammar given below is an LL grammar, that is, a grammar designed for “top down” parsing (such as recursive
descent). A lookahead of only one token is required for most of the grammar. In all other cases except one, a maximum
lookahead of three tokens is required. The parsing of qualified names with template bindings, however, requires a potentially
unbounded lookahead to distinguish the use of a “<” as an opening bracket of a template binding from its use as a less-than
sign.

As discussed in 8.2, the parsing of a syntactic element with the form of a qualified name using the dot notation may be
ambiguous. In such cases, the grammar below always parses the potentially ambiguous element as a qualified name (using
the non-terminal “PotentiallyAmbiguousQualifiedName”). If such an element is later disambiguated as a feature
reference, this will also generally require reparsing of the expression containing the ambiguous qualified name (e.g., a name
expression becomes a property access expression and a behavior invocation becomes a feature invocation).

Finally, the LL form of the grammar given here is considerably simplified by allowing any unary expression as the left-hand
side of an assignment and any primary expression as the operand of an increment or decrement expression, even though the
required form for a left-hand side is actually more restrictive (see 8.8). This requires that the left-hand side of an assignment
and the operand of an increment or decrement expression be checked after parsing to ensure that it has the form of a name
expression, a property access expression or a sequence access expression whose primary expression is a name expression or a
property access expression. Note that a similar static check needs to be performed anyway on the argument expressions for
inout parameters (see 8.3.8).

NOTE. The grammar as presented below uses a slightly different EBNF notation than in the main text, with (..) » meaning
optional, (..) * meaning zero or more and (. .)+ meaning one or more. Terminal symbols are written in the form
<TOKEN_ NAME>, were TOKEN NAME is the name of a lexical token, as given by a lexical analyzer production above.

Action Language for Foundational UML (ALF), v1.1 385

/***************

* NAMES *
KKK KK KKK KKK KKK K

Name
QualifiedName

PotentiallyAmbiguousQualifiedName

ColonQualifiedName
ColonQualifiedNameCompletion
DotQualifiedName
DotQualifiedNameCompletion
UngqualifiedName

NameBinding

TemplateBinding

PositionalTemplateBinding
NamedTemplateBinding

TemplateParameterSubstitution

/***************

* EXPRESSIONS *

***************/

Expression
NonNameExpression
NameToExpressionCompletion

PrimaryToExpressionCompletion

ExpressionCompletion

/* PRIMARY EXPRESSIONS */

PrimaryExpression

BaseExpression

NameToPrimaryExpression

PrimaryExpressionCompletion

/* LITERAL EXPRESSIONS */

386

<IDENTIFIER> |
UnqualifiedName
(ColonQualifiedNameCompletion

| DotQualifiedNameCompletion
) ?

<UNRESTRICTED NAME>

UngqualifiedName
(ColonQualifiedNameCompletion
| DotQualifiedNameCompletion /* AMBIGUOUS */
)?
UnqualifiedName ColonQualifiedNameCompletion
(<DOUBLE COLON> NameBinding)+
UngqualifiedName DotQualifiedNameCompletion
(<DOT> NameBinding)+
NameBinding
Name (TemplateBinding)?
/* » Unbounded lookahead required here */

<LT> (NamedTemplateBinding
| PositionalTemplateBinding) <GT>
QualifiedName (<COMMA> QualifiedName) *

TemplateParameterSubstitution
(<COMMA> TemplateParameterSubstitution)*
Name <THICK ARROW> QualifiedName

UnaryExpression ExpressionCompletion
NonNameUnaryExpression ExpressionCompletion
(NameToPrimaryExpression)?
PrimaryToExpressionCompletion
PostfixExpressionCompletion
ExpressionCompletion
AssignmentExpressionCompletion
ConditionalExpressionCompletion

(NameOrPrimaryExpression
| BaseExpression
| ParenthesizedExpression)
PrimaryExpressionCompletion
LiteralExpression
ThisExpression
SuperInvocationExpression
InstanceCreationOrSequenceConstructionExpression
SequenceAnyExpression
<DOT> (LinkOperationCompletion

| ClassExtentExpressionCompletion)
SequenceConstructionExpressionCompletion
BehaviorInvocation
(Feature (FeaturelInvocation)?
| SequenceOperationOrReductionOrExpansion

| Index
)*

Action Language for Foundational UML (ALF), v1.1

LiteralExpression = <BOOLEAN LITERAL>
| <DECIMAL LITERAL>
| <BINARY LITERAL>
| <OCTAL LITERAL>

| <HEX LITERAL>

| <STRING LITERAL>
|

<STAR>

/* NAME EXPRESSIONS */
NameOrPrimaryExpression = PotentiallyAmbiguousQualifiedName
(NameToPrimaryExpression)?

/* THIS EXPRESSIONS */
ThisExpression

<THIS> (Tuple)?

/* PARENTHESIZED EXPRESSIONS */
ParenthesizedExpression

<LPAREN> Expression <RPAREN>

/* PROPERTY ACCESS EXPRESSIONS */
Feature

<DOT> NameBinding

/* INVOCATION EXPRESSIONS */

Tuple = <LPAREN>
(NamedTupleExpressionList
| (PositionalTupleExpressionList)?
) <RPAREN>
PositionalTupleExpressionList = Expression

PositionalTupleExpressionListCompletion
PositionalTupleExpressionListCompletion
= (<COMMA> Expression)*
NamedExpression (<COMMA> NamedExpression)*

NamedTupleExpressionList

NamedExpression = Name <THICK ARROW> Expression
BehaviorInvocation = Tuple
FeaturelInvocation = Tuple

SuperInvocationExpression <SUPER> (<DOT> QualifiedName)? Tuple
/* INSTANCE CREATION EXPRESSIONS */
InstanceCreationOrSequenceConstructionExpression
= <NEW> QualifiedName
(SequenceConstructionExpressionCompletion
| Tuple)

/* LINK OPERATION EXPRESSIONS */
LinkOperationCompletion
LinkOperation

LinkOperation LinkOperationTuple
<CREATE LINK>
<DESTROY LINK>
<CLEAR ASSOC>
<LPAREN>
(Name
(Index
(<THICK ARROW>
IndexedNamedExpressionListCompletion
| PrimaryToExpressionCompletion
PositionalTupleExpressionListCompletion

LinkOperationTuple

)
| <THICK ARROW>
IndexedNamedExpressionListCompletion
)
| PositionalTupleExpressionList
) 2 <RPAREN>
IndexedNamedExpressionListCompletion
= Expression
(<COMMA> IndexedNamedExpression)*
IndexedNamedExpression = Name (Index)? <THICK ARROW> Expression

Action Language for Foundational UML (ALF), v1.1 387

/* CLASS EXTENT EXPRESSIONS */
ClassExtentExpressionCompletion
= <ALL INSTANCES> <LPAREN> <RPAREN>

/* SEQUENCE CONSTRUCTION EXPRESSIONS */
SequenceAnyExpression = <ANY>
SequenceConstructionExpressionCompletion
| <NULL>
SequenceConstructionExpressionCompletion
= (MultiplicityIndicator)? <LBRACE>
(SequenceElements)? <RBRACE>
MultiplicityIndicator = <LBRACKET> <RBRACKET>
SequenceElements = Expression (<DOUBLE DOT> Expression
| SequenceElementListCompletion)
| SequenceInitializationExpression
SequenceElementListCompletion
SequenceElementListCompletion = (<COMMA> SequenceElement)* (<COMMA>)?
SequenceElement = Expression
| SequenceInitializationExpression
SequencelInitializationExpression
= (<NEW>)? <LBRACE> SequenceElements <RBRACE>

/* SEQUENCE ACCESS EXPRESSIONS */
Index = <LBRACKET> Expression <RBRACKET>

/* SEQUENCE OPERATION, REDUCTION AND EXPANSION EXPRESSIONS */
SequenceOperationOrReductionOrExpansion
= <ARROW>
(QualifiedName Tuple
| <REDUCE> (<ORDERED>)? QualifiedName
| <IDENTIFIER> Name
<LPAREN> Expression <RPAREN>

)

/* INCREMENT OR DECREMENT EXPRESSIONS */

PostfixExpressionCompletion = PrimaryExpressionCompletion

(PostfixOperation)?
PostfixOperation = AffixOperator
PrefixExpression = AffixOperator PrimaryExpression
AffixOperator = (<INCR> | <DECR>)

/* UNARY EXPRESSIONS */
UnaryExpression PostfixOrCastExpression
NonPostfixNonCastUnaryExpression
NonNamePostfixOrCastExpression
NameOrPrimaryExpression
PostfixExpressionCompletion
NonNamePostfixOrCastExpression

| NonPostfixNonCastUnaryExpression

PostfixOrCastExpression

NonNameUnaryExpression

NonNamePostfixOrCastExpression
= <LPAREN>

(<ANY> <RPAREN> CastCompletion

| PotentiallyAmbiguousQualifiedName
(<RPAREN> CastCompletion
| NameToExpressionCompletion <RPAREN>

PostfixExpressionCompletion

)

| NonNameExpression <RPAREN>
PostfixExpressionCompletion

)

| BaseExpression PostfixExpressionCompletion

388 Action Language for Foundational UML (ALF), v1.1

NonPostfixNonCastUnaryExpression

BooleanNegationExpression
BitStringComplementExpression
NumericUnaryExpression
NumericUnaryOperator
IsolationExpression
CastExpression

CastCompletion

/* ARITHMETIC EXPRESSIONS */
MultiplicativeExpression

PrefixExpression
NumericUnaryExpression
BooleanNegationExpression
BitStringComplementExpression
IsolationExpression

<BANG> UnaryExpression

= <TILDE> UnaryExpression

NumericUnaryOperator UnaryExpression
<PLUS> | <MINUS>
<DOLLAR> UnaryExpression

= <LPAREN> TypeName <RPAREN> CastCompletion

MultiplicativeExpressionCompletion

MultiplicativeOperator
AdditiveExpression
AdditiveExpressionCompletion
AdditiveOperator

/* SHIFT EXPRESSIONS */
ShiftExpression
ShiftExpressionCompletion

ShiftOperator

/* RELATIONAL EXPRESSIONS */
RelationalExpression

RelationalExpressionCompletion

RelationalOperator

/* CLASSIFICATION EXPRESSIONS */
ClassificationExpression

ClassificationExpressionCompletion

ClassificationOperator

/* EQUALITY EXPRESSIONS */
EqualityExpression

EqualityExpressionCompletion
EqualityOperator

/* LOGICAL EXPRESSIONS */
AndExpression

AndExpressionCompletion

ExclusiveOrExpression

(

PostfixOrCastExpression
BooleanNegationExpression
BitStringComplementExpression
IsolationExpression

UnaryExpression
MultiplicativeExpressionCompletion

(MultiplicativeOperator UnaryExpression)*
<STAR> | <SLASH> | <REM>

UnaryExpression AdditiveExpressionCompletion
MultiplicativeExpressionCompletion

(AdditiveOperator MultiplicativeExpression) *
(<PLUS> | <MINUS>)

UnaryExpression ShiftExpressionCompletion
AdditiveExpressionCompletion

(ShiftOperator AdditiveExpression)*
<LSHIFT> | <RSHIFT> | <URSHIFT>

UnaryExpression
RelationalExpressionCompletion

ShiftExpressionCompletion
(RelationalOperator ShiftExpression)?
<LT> | <GT> | <LE> | <GE>

UnaryExpression
ClassificationExpressionCompletion

RelationalExpressionCompletion
ClassificationOperator QualifiedName)?
<INSTANCEOF> | <HASTYPE>

UnaryExpression
ClassificationExpressionCompletion
ClassificationExpressionCompletion

(EqualityOperator ClassificationExpression)*
<EQ> | <NE>

UnaryExpression AndExpressionCompletion
EqualityExpressionCompletion

(<LOGICAL AND> EqualityExpression)*
UnaryExpression
ExclusiveOrExpressionCompletion

Action Language for Foundational UML (ALF), v1.1 389

ExclusiveOrExpressionCompletion
= AndExpressionCompletion
(<XOR> AndExpression)*
InclusiveOrExpression = UnaryExpression
InclusiveOrExpressionCompletion
InclusiveOrExpressionCompletion
= ExclusiveOrExpressionCompletion
(<LOGICAL OR> ExclusiveOrExpression)*

/* CONDITIONAL LOGICAL EXPRESSIONS */
ConditionalAndExpression = UnaryExpression
ConditionalAndExpressionCompletion
ConditionalAndExpressionCompletion
= InclusiveOrExpressionCompletion
(<SC_AND> InclusiveOrExpression)*
ConditionalOrExpression = UnaryExpression
ConditionalOrExpressionCompletion
ConditionalOrExpressionCompletion
= ConditionalAndExpressionCompletion
(<SC_OR> ConditionalAndExpression)*

/* NULL-COALESCING EXPRESSIONS */
NullCoalescingExpression = UnarvExpression
NullCoalescingExpressionCompletion
NullCoalescingExpressionCompletion
= ConditionalOrExpressionCompletion
(_ <DOUBLE HOOK> NullCoalescingExpression)?

/* CONDITIONAL-TEST EXPRESSIONS */

ConditionalExpression = UnaryExpression
ConditionalExpressionCompletion

ConditionalExpressionCompletion

NullCoalescingExpressionCompletioncenditionalorkxpressiont
Fetetier
(<HOOK> Expression <COLON>
ConditionalExpression)?

/* ASSIGNMENT EXPRESSIONS */
AssignmentExpressionCompletion
= AssignmentOperator Expression
AssignmentOperator = <ASSIGN>
| <PLUSASSIGN>
| <MINUSASSIGN>
| <STARASSIGN>
| <SLASHASSIGN>
| <REMASSIGN>
| <ANDASSIGN>
| <ORASSIGN>
| <XORASSIGN>
| <LSHIFTASSIGN>
| <RSHIFTASSIGN>
| <URSHIFTASSIGN>

/**************

* STATEMENTS *

**************/

StatementSequence = (DocumentedStatement)*
DocumentedStatement = (<DOCUMENTATION COMMENT>)? Statement

390 Action Language for Foundational UML (ALF), v1.1

Statement

/* BLOCK */
Block

/* ANNOTATED STATEMENTS */
AnnotatedStatement
Annotations

Annotation

NameList

/* IN-LINE STATEMENTS */
InLineStatement

/* BLOCK STATEMENTS */
BlockStatement

/* EMPTY STATEMENTS */
EmptyStatement

AnnotatedStatement
InLineStatement
BlockStatement

EmptyStatement
LocalNameDeclarationOrExpressionStatement
LocalNameDeclarationStatement
IfStatement

SwitchStatement
WhileStatement

ForStatement

DoStatement

BreakStatement
ReturnStatement
AcceptStatement
ClassifyStatement

<LBRACE> StatementSequence <RBRACE>

<SLASH SLASH AT> Annotations <EOL> Statement
Annotation (<AT> Annotation)*

<IDENTIFIER> (<LPAREN> NameList <RPAREN>)?
Name (<COMMA> Name) *

<SLASH STAR AT> <IDENTIFIER> <LPAREN> Name
<RPAREN> <DOCUMENTATION COMMENT>

Block

<SEMICOLON>

/* LOCAL NAME DECLARATION AND EXPRESSION STATEMENTS */
LocalNameDeclarationOrExpressionStatement

LocalNameDeclarationStatement

PotentiallyAmbiguousQualifiedName

((MultiplicityIndicator)? Name
LocalNameDeclarationStatementCompletion

| NameToExpressionCompletion <SEMICOLON>

)

NonNameExpression <SEMICOLON>

<LET> Name <COLON> TypeName

(MultiplicityIndicator)?

LocalNameDeclarationStatementCompletion

LocalNameDeclarationStatementCompletion

InitializationExpression

InstanceInitializationExpression

/* IF STATEMENTS */
IfStatement
SequentialClauses

ConcurrentClauses
NonFinalClause

FinalClause

/* SWITCH STATEMENTS */

<ASSIGN> InitializationExpression <SEMICOLON>
Expression

SequencelnitializationExpression
InstanceInitializationExpression

<NEW> Tuple
<IF> SequentialClauses (FinalClause)?

ConcurrentClauses
(<ELSE> <IF> ConcurrentClauses)*

= NonFinalClause (<OR> <IF> NonFinalClause)*

<LPAREN> Expression <RPAREN> Block
<ELSE> Block

Action Language for Foundational UML (ALF), v1.1

391

SwitchStatement =

SwitchClause =

SwitchCase =
SwitchDefaultClause =
NonEmptyStatementSequence =

/* WHILE STATEMENTS */
WhileStatement =

/* DO STATEMENTS */
DoStatement =

/* FOR STATEMENTS */
ForStatement =
ForControl =

LoopVariableDefinition =

/* BREAK STATEMENTS */
BreakStatement =

/* RETURN STATEMENTS */
ReturnStatement =

/* ACCEPT STATEMENTS */
AcceptStatement =

SimpleAcceptStatementCompletion
CompoundAcceptStatementCompletion

AcceptBlock =
AcceptClause =

/* CLASSIFY STATEMENTS */
ClassifyStatement =

ClassificationClause =

ClassificationFromClause =
ClassificationToClause =
ReclassifyAllClause =
QualifiedNameList =

/*********

* UNITS *
XK KKK KKK [

UnitDefinition =

StereotypeAnnotations =
StereotypeAnnotation =

392

<SWITCH> <LPAREN> Expression <RPAREN>
<LBRACE> (SwitchClause)*

(SwitchDefaultClause)? <RBRACE>

SwitchCase (SwitchCase)*
NonEmptyStatementSequence

<CASE> Expression <COLON>

<DEFAULT > <COLON> NonEmptyStatementSequence
(DocumentedStatement)+

<WHILE> <LPAREN> Expression <RPAREN> Block

<DO> Block <WHILE> <LPAREN> Expression
<RPAREN> <SEMICOLON>

<FOR> <LPAREN> ForControl <RPAREN> Block
LoopVariableDefinition

(<COMMA> LoopVariableDefinition)*

Name <IN> Expression

(<DOUBLE DOT> Expression)?
QualifiedName Name <COLON> Expression

<BREAK> <SEMICOLON>

<RETURN> (Expression)? <SEMICOLON>

AcceptClause
(SimpleAcceptStatementCompletion
| CompoundAcceptStatementCompletion)

<SEMICOLON>

Block (<OR> AcceptBlock)*
AcceptClause Block

<ACCEPT> <LPAREN> (Name <COLON>)?
QualifiedNameList <RPAREN>

<CLASSIFY> Expression ClassificationClause
<SEMICOLON>

ClassificationFromClause

(ClassificationToClause)°?

(ReclassifyAllClause)?
ClassificationToClause

<FROM> QualifiedNamelList

<TO> QualifiedNameList

<FROM> <STAR>

QualifiedName (<COMMA> QualifiedName) *

(NamespaceDeclaration)?

(ImportDeclaration)*

(<DOCUMENTATION COMMENT>)?
StereotypeAnnotations NamespaceDefinition
(StereotypeAnnotation)*

<AT> QualifiedName

(<LPAREN> TaggedValues <RPAREN>)?

Action Language for Foundational UML (ALF), v1.1

TaggedValues

TaggedValuelist
TaggedValue

NamespaceDeclaration
ImportDeclaration

ImportVisibilityIndicator
ImportReference

AliasDefinition

/* NAMESPACES */
NamespaceDefinition
VisibilityIndicator

/* PACKAGES */
PackageDeclaration
PackageDefinition
PackageDefinitionOrStub

PackageBody
PackagedElement

PackagedElementDefinition

/***************

* CLASSIFIERS *

***************/

ClassifierDefinition

ClassifierDefinitionOrStub

ClassifierSignature

QualifiedNameList
TaggedValuelist
TaggedValue ("," TaggedValue)*
Name <THICK ARROW>
(<BOOLEAN_LITERAL>
| <STRING LITERAL>
| <STAR>
| (<PLUS> | <MINUS>)?
(<DECIMAL_LITERAL>
| <BINARY LITERAL>
| <OCTAL_LITERAL>
| <HEX LITERAL>

)
)
<NAMESPACE> QualifiedName <SEMICOLON>
ImportVisibilityIndicator <IMPORT>
ImportReference <SEMICOLON>
<PUBLIC> | <PRIVATE>
ColonQualifiedName
(<DOUBLE COLON> <STAR>
| AliasDefinition)?
DotQualifiedName
(<DOT> <STAR> | AliasDefinition)?
Name
((<DOUBLE COLON> | <DOT>) <STAR>
| AliasDefinition)?
<AS> Name

PackageDefinition | ClassifierDefinition
ImportVisibilityIndicator | <PROTECTED>

<PACKAGE> Name
PackageDeclaration PackageBody
PackageDeclaration

(<SEMICOLON> | PackageBody)
<LBRACE> (PackagedElement)* <RBRACE>
(<DOCUMENTATION COMMENT>) ?
StereotypeAnnotations
ImportVisibilityIndicator
PackagedElementDefinition
PackageDefinitionOrStub
ClassifierDefinitionOrStub

ClassDefinition
ActiveClassDefinition
DataTypeDefinition
EnumerationDefinition
AssociationDefinition
SignalDefinition
ActivityDefinition
ClassDefinitionOrStub
ActiveClassDefinitionOrStub
DataTypeDefinitionOrStub
EnumerationDefinitionOrStub
AssociationDefinitionOrStub
SignalDefinitionOrStub
ActivityDefinitionOrStub
Name (TemplateParameters)?
(SpecializationClause)?

Action Language for Foundational UML (ALF), v1.1 393

TemplateParameters
ClassifierTemplateParameter
SpecializationClause

/* CLASSES */
ClassDeclaration
ClassDefinition
ClassDefinitionOrStub
ClassBody

ClassMember

ClassMemberDefinition
/* ACTIVE CLASSES */
ActiveClassDeclaration

ActiveClassDefinition
ActiveClassDefinitionOrStub

ActiveClassBody

BehaviorClause
ActiveClassMember

ActiveClassMemberDefinition

/* DATA TYPES */
DataTypeDeclaration

DataTypeDefinition
DataTypeDefinitionOrStub

StructuredBody
StructuredMember

/* ASSOCIATIONS */
AssociationDeclaration
AssociationDefinition
AssociationDefinitionOrStub

/* ENUMERATIONS */
EnumerationDeclaration
EnumerationDefinition
EnumerationDefinitionOrStub

EnumerationBody
EnumerationLiteralName
/* SIGNALS */

SignalDeclaration
SignalDefinition

394

<LT> ClassifierTemplateParameter

(<COMMA> ClassifierTemplateParameter)* <GT>
(<DOCUMENTATION_COMMENT>) ? Name

(<SPECIALIZES> QualifiedName)?
<SPECIALIZES> QualifiedNameList

(<ABSTRACT>)? <CLASS> ClassifierSignature
ClassDeclaration ClassBody

ClassDeclaration (<SEMICOLON> | ClassBody)
<LBRACE> (ClassMember)* <RBRACE>

(<DOCUMENTATION COMMENT>)?
StereotypeAnnotations

(VisibilityIndicator)?
ClassMemberDefinition
ClassifierDefinitionOrStub

| FeatureDefinitionOrStub

(<ABSTRACT>)? <ACTIVE> <CLASS>
ClassifierSignature
ActiveClassDeclaration ActiveClassBody
ActiveClassDeclaration

(<SEMICOLON> | ActiveClassBody)
<LBRACE> (ActiveClassMember)* <RBRACE>
(<DO> BehaviorClause)?

Block | Name

(<DOCUMENTATION COMMENT>)?
StereotypeAnnotations

(VisibilityIndicator)?
ActiveClassMemberDefinition
ClassMemberDefinition
ActiveFeatureDefinitionOrStub

(<ABSTRACT>)? <DATATYPE>
ClassifierSignature

DataTypeDeclaration StructuredBody
DataTypeDeclaration

(<SEMICOLON> | StructuredBody)
<LBRACE> (StructuredMember)* <RBRACE>
(<DOCUMENTATION COMMENT>)?
StereotypeAnnotations (<PUBLIC>)?
PropertyDefinition

(<ABSTRACT>)? <ASSOC> ClassifierSignature
AssociationDeclaration StructuredBody
AssociationDeclaration

(<SEMICOLON> | StructuredBody)

<ENUM> Name (SpecializationClause)?
EnumerationDeclaration EnumerationBody
EnumerationDeclaration

(<SEMICOLON> | EnumerationBody)

<LBRACE> EnumerationLiteralName

(<COMMA> EnumerationLiteralName)* <RBRACE>
(<DOCUMENTATION_COMMENT>) ? Name

(<ABSTRACT>)? <SIGNAL> ClassifierSignature
SignalDeclaration StructuredBody

Action Language for Foundational UML (ALF), v1.1

SignalDefinitionOrStub

/* ACTIVITIES */
ActivityDeclaration

ActivityDefinition
ActivityDefinitionOrStub
FormalParameters
FormalParameterList
FormalParameter

ParameterDirection

/* FEATURES */
FeatureDefinitionOrStub

ActiveFeatureDefinitionOrStub

/* PROPERTIES */
PropertyDefinition
AttributeDefinition

AttributeInitializer
PropertyDeclaration
TypePart

TypeName
Multiplicity

MultiplicityRange
UnlimitedNaturalLiteral

/* OPERATIONS */
OperationDeclaration

OperationDefinitionOrStub
RedefinitionClause

/* RECEPTIONS */
ReceptionDefinition

SignalReceptionDeclaration

SignalReceptionDefinitionOrStub

Action Language for Foundational UML (ALF), v1.1

SignalDeclaration
(<SEMICOLON> | StructuredBody)

<ACTIVITY> Name (TemplateParameters)?
FormalParameters (<COLON> TypePart)?
ActivityDeclaration Block
ActivityDeclaration (<SEMICOLON> | Block)
<LPAREN> (FormalParameterList)? <RPAREN>
FormalParameter (<COMMA> FormalParameter)*
(<DOCUMENTATION COMMENT>) ?
StereotypeAnnotations ParameterDirection Name
<COLON> TypePart

<IN> | <OUT> | <INOUT>

AttributeDefinition
OperationDefinitionOrStub
ReceptionDefinition
SignalReceptionDefinitionOrStub

PropertyDeclaration <SEMICOLON>
PropertyDeclaration (AttributelInitializer)?
<SEMICOLON>

<ASSIGN> InitializationExpression

Name <COLON> (<COMPOSE>)? TypePart

TypeName (Multiplicity)?
(QualifiedName | <ANY>)
<LBRACKET> (MultiplicityRange)? <RBRACKET>

(<ORDERED> (<NONUNIQUE>)?

| <NONUNIQUE> (<ORDERED>)?

| <SEQUENCE>

) ?

(<DECIMAL_LITERAL> <DOUBLE_DOT>) ?
UnlimitedNaturalLiteral
<DECIMAL_LITERAL> | <STAR>

(<ABSTRACT>)? Name FormalParameters

(<COLON> TypePart)? (RedefinitionClause)?
OperationDeclaration (<SEMICOLON> | Block)
<REDEFINES> QualifiedNamelList

<RECEIVE> QualifiedName <SEMICOLON>
<RECEIVE> <SIGNAL> Name
(SpecializationClause)?

SignalReceptionDeclaration
(<SEMICOLON> | StructuredBody)

395

This page intentionally left blank

396 Action Language for Foundational UML (ALF), v1.1

	Preface
	1 Scope
	2 Conformance
	2.1 Overview
	2.2 Syntactic Conformance
	2.3 Semantic Conformance
	2.4 Additional Conformance Points

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Overview
	6.1 General
	6.2 Integration with UML Models
	6.3 Templates
	6.4 Lexical Structure
	6.5 Concrete Syntax
	6.6 Abstract Syntax
	6.7 Mapping to Foundational UML
	6.8 Organization of the Specification
	6.9 Acknowledgments

	7 Lexical Structure
	7.1 General
	7.2 Line Terminators
	7.3 Input Elements and Tokens
	7.4 White Space
	7.5 Comments
	7.5.1 General
	7.5.2 Lexical Comments
	7.5.3 Documentation Comments

	7.6 Names
	7.7 Reserved Words
	7.8 Primitive Literals
	7.8.1 General
	7.8.2 Boolean Literals
	7.8.3 Natural Literals
	7.8.4 Unbounded Value Literals
	7.8.5 String Literals
	7.8.6 Real Literals

	7.9 Punctuation
	7.10 Operators

	8 Expressions
	8.1 Overview
	8.2 Qualified Names
	8.3 Primary Expressions
	8.3.1 Overview
	8.3.2 Literal Expressions
	8.3.3 Name Expressions
	8.3.4 this Expressions
	8.3.5 Parenthesized Expressions
	8.3.6 Property Access Expressions
	8.3.7 Invocation Expressions
	8.3.8 Tuples
	8.3.9 Behavior Invocation Expressions
	8.3.10 Feature Invocation Expressions
	8.3.11 Super Invocation Expressions
	8.3.12 Instance Creation Expressions
	8.3.13 Link Operation Expressions
	8.3.14 Class Extent Expressions
	8.3.15 Sequence Construction Expressions
	8.3.16 Sequence Access Expressions
	8.3.17 Sequence Operation Expressions
	8.3.18 Sequence Reduction Expressions
	8.3.19 Sequence Expansion Expressions
	8.3.20 select and reject Expressions
	8.3.21 collect and iterate Expressions
	8.3.22 forAll, exists and one Expressions
	8.3.23 isUnique Expression

	8.4 Increment and Decrement Expressions
	8.5 Unary Expressions
	8.5.1 Overview
	8.5.2 Boolean Unary Expressions
	8.5.3 BitString Unary Expressions
	8.5.4 Numeric Unary Expressions
	8.5.5 Cast Expressions
	8.5.6 Isolation Expressions

	8.6 Binary Expressions
	8.6.1 Overview
	8.6.2 Arithmetic Expressions
	8.6.3 Shift Expressions
	8.6.4 Relational Expressions
	8.6.5 Classification Expressions
	8.6.6 Equality Expressions
	8.6.7 Logical Expressions
	8.6.8 Conditional Logical Expressions
	8.6.9 Null-Coalescing Expressions

	8.7 Conditional-Test Expressions
	8.8 Assignment Expressions

	9 Statements
	9.1 Overview
	9.2 Annotated Statements
	9.3 In-line Statements
	9.4 Block Statements
	9.5 Empty Statements
	9.6 Local Name Declaration Statements
	9.7 Expression Statements
	9.8 if Statements
	9.9 switch Statements
	9.10 while Statements
	9.11 do Statements
	9.12 for Statements
	9.13 break Statements
	9.14 return Statements
	9.15 accept Statements
	9.16 classify Statements

	10 Units
	10.1 Overview
	10.2 Namespaces
	10.3 Packages
	10.4 Classifiers
	10.4.1 Overview
	10.4.2 Classes
	10.4.3 Active Classes
	10.4.4 Data Types
	10.4.5 Associations
	10.4.6 Enumerations
	10.4.7 Signals
	10.4.8 Activities

	10.5 Features
	10.5.1 Overview
	10.5.2 Properties
	10.5.3 Operations
	10.5.3.1 General Operations
	10.5.3.2 Constructors
	10.5.3.3 Destructors

	10.5.4 Receptions

	11 Standard Model Library
	11.1 Overview
	11.2 ActionLanguage Profile
	11.3 Primitive Types
	11.3.1 PrimitiveTypes Package
	11.3.2 Natural Type
	11.3.3 Bit String Type

	11.4 Primitive Behaviors
	11.4.1 PrimitiveBehaviors Package
	11.4.2 Boolean Functions
	11.4.3 Integer Functions
	11.4.4 Real Functions
	11.4.5 String Functions
	11.4.6 UnlimitedNatural Functions
	11.4.7 Bit String Functions
	11.4.8 Sequence Functions

	11.5 Basic Input and Output
	11.6 Collection Functions
	11.7 Collection Classes
	11.7.1 CollectionClasses Package
	11.7.2 Bag<T>
	11.7.3 Collection<T>
	11.7.4 Deque<T>
	11.7.5 Entry
	11.7.6 List<T>
	11.7.7 Map<Key, Value>
	11.7.8 OrderedSet<T>
	11.7.9 Queue<T>
	11.7.10 Set<T>

	12 Common Abstract Syntax
	12.1 Overview
	12.2 Class Descriptions
	12.2.1 AssignedSource
	12.2.2 DocumentedElement
	12.2.3 ElementReference
	12.2.4 ExternalElementReference
	12.2.5 InternalElementReference
	12.2.6 SyntaxElement

	13 Expressions Abstract Syntax
	13.1 Overview
	13.2 Class Descriptions
	13.2.1 ArithmeticExpression
	13.2.2 AssignmentExpression
	13.2.3 BehaviorInvocationExpression
	13.2.4 BinaryExpression
	13.2.5 BitStringUnaryExpression
	13.2.6 BooleanLiteralExpression
	13.2.7 BooleanUnaryExpression
	13.2.8 CastExpression
	13.2.9 ClassExtentExpression
	13.2.10 ClassificationExpression
	13.2.11 CollectOrIterateExpression
	13.2.12 ConditionalLogicalExpression
	13.2.13 ConditionalTestExpression
	13.2.14 EqualityExpression
	13.2.15 Expression
	13.2.16 ExtentOrExpression
	13.2.17 FeatureInvocationExpression
	13.2.18 FeatureLeftHandSide
	13.2.19 FeatureReference
	13.2.20 ForAllOrExistsOrOneExpression
	13.2.21 IncrementOrDecrementExpression
	13.2.22 InstanceCreationExpression
	13.2.23 InvocationExpression
	13.2.24 IsolationExpression
	13.2.25 IsUniqueExpression
	13.2.26 LeftHandSide
	13.2.27 LinkOperationExpression
	13.2.28 LiteralExpression
	13.2.29 LogicalExpression
	13.2.30 NameBinding
	13.2.31 NamedExpression
	13.2.32 NamedTemplateBinding
	13.2.33 NamedTuple
	13.2.34 NameExpression
	13.2.35 NameLeftHandSide
	13.2.36 NaturalLiteralExpression
	13.2.37 NullCoalescingExpression
	13.2.38 NumericUnaryExpression
	13.2.39 OutputNamedExpression
	13.2.40 PositionalTemplateBinding
	13.2.41 PositionalTuple
	13.2.42 PropertyAccessExpression
	13.2.43 QualifiedName
	13.2.44 RealLiteralExpression
	13.2.45 RelationalExpression
	13.2.46 SelectOrRejectExpression
	13.2.47 SequenceAccessExpression
	13.2.48 SequenceConstructionExpression
	13.2.49 SequenceElements
	13.2.50 SequenceExpansionExpression
	13.2.51 SequenceExpressionList
	13.2.52 SequenceOperationExpression
	13.2.53 SequenceRange
	13.2.54 SequenceReductionExpression
	13.2.55 ShiftExpression
	13.2.56 StringLiteralExpression
	13.2.57 SuperInvocationExpression
	13.2.58 TemplateBinding
	13.2.59 TemplateParameterSubstitution
	13.2.60 ThisExpression
	13.2.61 Tuple
	13.2.62 UnaryExpression
	13.2.63 UnboundedLiteralExpression

	14 Statements Abstract Syntax
	14.1 Overview
	14.2 Class Descriptions
	14.2.1 AcceptBlock
	14.2.2 AcceptStatement
	14.2.3 Annotation
	14.2.4 Block
	14.2.5 BreakStatement
	14.2.6 ClassifyStatement
	14.2.7 ConcurrentClauses
	14.2.8 DoStatement
	14.2.9 EmptyStatement
	14.2.10 ExpressionStatement
	14.2.11 ForStatement
	14.2.12 IfStatement
	14.2.13 InLineStatement
	14.2.14 LocalNameDeclarationStatement
	14.2.15 LoopVariableDefinition
	14.2.16 NonFinalClause
	14.2.17 QualifiedNameList
	14.2.18 ReturnStatement
	14.2.19 Statement
	14.2.20 SwitchClause
	14.2.21 SwitchStatement
	14.2.22 WhileStatement

	15 Units Abstract Syntax
	15.1 Overview
	15.2 Class Descriptions
	15.2.1 ActiveClassDefinition
	15.2.2 ActivityDefinition
	15.2.3 AssociationDefinition
	15.2.4 ClassDefinition
	15.2.5 ClassifierDefinition
	15.2.6 ClassifierTemplateParameter
	15.2.7 DataTypeDefinition
	15.2.8 ElementImportReference
	15.2.9 EnumerationDefinition
	15.2.10 EnumerationLiteralName
	15.2.11 FormalParameter
	15.2.12 ImportedMember
	15.2.13 ImportReference
	15.2.14 Member
	15.2.15 NamespaceDefinition
	15.2.16 OperationDefinition
	15.2.17 PackageDefinition
	15.2.18 PackageImportReference
	15.2.19 PropertyDefinition
	15.2.20 ReceptionDefinition
	15.2.21 SignalDefinition
	15.2.22 SignalReceptionDefinition
	15.2.23 StereotypeAnnotation
	15.2.24 TaggedValue
	15.2.25 TaggedValueList
	15.2.26 TypedElementDefinition
	15.2.27 UnitDefinition

	16 Common Mapping
	16.1 General
	16.2 Syntax Elements
	16.3 Documented Elements
	16.4 Element References
	16.5 Assigned Sources

	17 Expressions Mapping
	17.1 General
	17.2 Qualified Names
	17.3 Literal Expressions
	17.4 Name Expressions
	17.5 this Expressions
	17.6 Property Access Expressions
	17.7 Invocation Expressions
	17.8 Tuples
	17.9 Behavior Invocation Expressions
	17.10 Feature Invocation Expressions
	17.11 Super Invocation Expressions
	17.12 Instance Creation Expressions
	17.13 Link Operation Expressions
	17.14 Class Extent Expressions
	17.15 Sequence Construction Expression
	17.16 Sequence Access Expressions
	17.17 Sequence Operation Expressions
	17.18 Sequence Reduction Expression
	17.19 Sequence Expansion Expressions
	17.20 Increment and Decrement Expressions
	17.21 Unary Expressions
	17.22 Binary Expression
	17.23 Conditional-Test Expressions
	17.24 Assignment Expressions

	18 Statements Mapping
	18.1 General
	18.2 In-Line Statements
	18.3 Block Statements
	18.4 Empty Statements
	18.5 Local Name Definition Statements
	18.6 Expression Statements
	18.7 if Statements
	18.8 switch Statements
	18.9 while Statements
	18.10 do Statements
	18.11 for Statements
	18.12 break Statements
	18.13 return Statements
	18.14 accept Statements
	18.15 classify Statements

	19 Units Mapping
	19.1 General
	19.2 Namespace Definitions
	19.3 Package Definitions
	19.4 Classifier Definitions
	19.5 Class Definitions
	19.6 Active Class Definitions
	19.7 Data Type Definitions
	19.8 Association Definitions
	19.9 Enumeration Definitions
	19.10 Signal (and Signal Reception) Definitions
	19.11 Activity Definitions
	19.12 Typed Element Definitions
	19.13 Formal Parameters
	19.14 Property Definitions
	19.15 Operation Definitions
	19.16 Reception Definitions

	Annex A: Semantic Integration with State Machines and Composite Structure
	A.1 Overview
	A.2 State Machines
	A.3 Composite Structure

	Annex B: Extended Examples
	B.1 Quicksort Activity
	B.1.1 Quicksort Functional Implementation
	B.1.2 Quicksort “In Place” Implementation

	B.2 Online Bookstore
	B.2.1 Graphical Model for Ordering
	B.2.2 Alf Representation of Entry Behaviors
	B.2.2.1 Activity EstablishCustomer
	B.2.2.2 Activity ProcessCharge
	B.2.2.3 Activity DeclineCharge
	B.2.2.4 Activity PackAndShip
	B.2.2.5 Activity NotifyOfDelivery

	B.2.3 Alf Representation of the Ordering Model
	B.2.3.1 Package Ordering
	B.2.3.2 Class Order

	B.3 Property Management Service
	B.3.1 The Property Management Model
	B.3.2 Data Model
	B.3.3 Message Model
	B.3.3.1 Request Messages
	B.3.3.2 Reply Messages

	B.3.4 Service Model
	B.3.5 Property Management Service Methods
	B.3.5.1 Property
	B.3.5.2 Identifier Factory
	B.3.5.3 Property Management Service Implementation

	B.4 Alf Standard Library Collection Classes Implementation
	B.4.1 Introduction
	B.4.2 CollectionClasses::Impl
	B.4.3 CollectionClasses::Impl::CollectionImpl
	B.4.4 CollectionClasses::Impl::OrderedCollectionImpl
	B.4.5 CollectionClasses::Impl::Set
	B.4.6 CollectionClasses::Impl::OrderedSet
	B.4.7 CollectionClasses::Impl::Bag
	B.4.8 CollectionClasses::Impl::List
	B.4.9 CollectionClasses::Impl::Queue
	B.4.10 CollectionClasses::Impl::Deque
	B.4.11 CollectionClasses::Impl::Map

	Annex C: Consolidated LL Grammar
	C.1 Introduction
	C.2 Lexical Analyzer
	C.3 Parser

