
Date: June 2017

Archetype Modeling Language (AML)
V1.0 – Beta 2

__

OMG Document Number: dtc/2017-05-02

Standard document URL: http://www.omg.org/spec/AML/1.0

Associated Normative Files:
http://www.omg.org/spec/AML/20150501/ConstraintProfile.xmi
http://www.omg.org/spec/AML/20150501/ReferenceModelProfile.xmi
http://www.omg.org/spec/AML/20150501/TerminologyProfile.xmi
Associated Non-Normative Files:
http://www.omg.org/spec/AML/20150501/AMLGlobals.qvto
http://www.omg.org/spec/AML/20150501/AMLplatformBinding.qvto
http://www.omg.org/spec/AML/20150501/adl2uml.qvto
http://www.omg.org/spec/AML/20150501/uml2adl.qvto

__

O B J E C T M A N A G E M E N T G R O U P

Date: June 2017

Archetype Modeling Language (AML)
V1.0 – Beta 2

__

OMG Document Number: dtc/2017-05-02

Standard document URL: http://www.omg.org/spec/AML/1.0

Associated Normative Files:
http://www.omg.org/spec/AML/20150501/ConstraintProfile.xmi
http://www.omg.org/spec/AML/20150501/ReferenceModelProfile.xmi
http://www.omg.org/spec/AML/20150501/TerminologyProfile.xmi
Associated Non-Normative Files:
http://www.omg.org/spec/AML/20150501/AMLGlobals.qvto
http://www.omg.org/spec/AML/20150501/AMLplatformBinding.qvto
http://www.omg.org/spec/AML/20150501/adl2uml.qvto
http://www.omg.org/spec/AML/20150501/uml2adl.qvto

__

O B J E C T M A N A G E M E N T G R O U P

Copyright © 2017, Mayo Clinic
Copyright © 2017, Object Management Group, Inc.
Copyright © 2017, Visumpoint, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

Copyright © 2017, Mayo Clinic
Copyright © 2017, Object Management Group, Inc.
Copyright © 2017, Visumpoint, LLC

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject to
change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person
shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason
of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

C®, CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL
INSTRUMENT GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object
Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling
Language®, UML®, UML Cube logo®, VSIPL®, and XMI® are registered trademarks of the Object
Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

C®, CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL
INSTRUMENT GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object
Management Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling
Language®, UML®, UML Cube logo®, VSIPL®, and XMI® are registered trademarks of the Object
Management Group, Inc.

For a complete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance

http://www.omg.org/legal/tm_list.htm

points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm.)

points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/report_issue.htm.)

Table of Contents

Table of Contents
1 Scope..7

1.1 Archetype Modeling Language (AML) Background..7

1.2 AML Intended Users...8

1.3 AML Profiles...8

2 Conformance..9
2.1 Conformance Points..9

2.2 AML Reference Model Profile..9

2.3 AML Terminology Binding Profile...9

2.4 AML Constraint Model Profile...9

3 References..9
3.1 Normative References...9

3.2 Informative References...10

4 Terms and Definitions..11
Archetype...11

Archetype Definition Language (ADL)...11

Archetype Instance...11

Archetype Model (AM)...11

Archetype Object Model (AOM)...11

Archetype Query Language (AQL)...12

Clinical Data Repository (CDR)..12

Clinical Document Architecture (CDA)..12

Clinical Information Model (CIM)..12

Clinical Information Modeling Initiative (CIMI)..12

Clinical Information Modeling Initiative (CIMI) Reference Model (RM)..12

Clinical Model Governance...12

Clinical Model Repository...12

Clinical Model Verification..12

Clinical Modeling Language..12

Clinical Requirement...12

Code System..13

Archetype Modeling Language (AML), v1.0 (Beta 2) 1

Table of Contents

Table of Contents
1 Scope..7

1.1 Archetype Modeling Language (AML) Background..7

1.2 AML Intended Users...8

1.3 AML Profiles...8

2 Conformance..9
2.1 Conformance Points..9

2.2 AML Reference Model Profile..9

2.3 AML Terminology Binding Profile...9

2.4 AML Constraint Model Profile...9

3 References..9
3.1 Normative References...9

3.2 Informative References...10

4 Terms and Definitions..11
Archetype...11

Archetype Definition Language (ADL)...11

Archetype Instance...11

Archetype Model (AM)...11

Archetype Object Model (AOM)...11

Archetype Query Language (AQL)...12

Clinical Data Repository (CDR)..12

Clinical Document Architecture (CDA)..12

Clinical Information Model (CIM)..12

Clinical Information Modeling Initiative (CIMI)..12

Clinical Information Modeling Initiative (CIMI) Reference Model (RM)..12

Clinical Model Governance...12

Clinical Model Repository...12

Clinical Model Verification..12

Clinical Modeling Language..12

Clinical Requirement...12

Code System..13

Archetype Modeling Language (AML), v1.0 (Beta 2) 1

Common Terminology Services 2 (CTS2)..13

Concept..13

Concept Domain..13

Concept Domain Binding..13

Conceptual Information Model..13

Conformance..13

Constraint Model...13

Detailed Clinical Model...13

Fully Defined Concept...13

Information Model...13

Node...14

Ontology..14

Reference Model..14

Reference Terminology..14

Semantic Binding...14

Terminology...14

Terminology Binding...14

Value Binding...14

Value Set..14

5 Symbols...14
5.1 Graphical Symbols..14

5.2 Abbreviations..14

6 Additional Information..16
6.1 Acknowledgements...16

7 ADL, AOM, and AML (Informative)..18
7.1 Business Purpose...18

7.2 Technical Aims of ADL / AOM..19

7.3 Technical Aims of AML..21

8 Profiles...22
8.1 Dependencies...23

8.2 ReferenceModelProfile [Profile]...23

8.2.1 Infrastructure [Stereotype]...24

8.2.2 MappedDataType [Stereotype]..24

8.2.3 ReferenceModel [Stereotype]..25

8.2.4 Runtime [Stereotype]...26

8.3 TerminologyProfile [Profile]...26

2 Archetype Modeling Language (AML), v1.0 (Beta 2)

Common Terminology Services 2 (CTS2)..13

Concept..13

Concept Domain..13

Concept Domain Binding..13

Conceptual Information Model..13

Conformance..13

Constraint Model...13

Detailed Clinical Model...13

Fully Defined Concept...13

Information Model...13

Node...14

Ontology..14

Reference Model..14

Reference Terminology..14

Semantic Binding...14

Terminology...14

Terminology Binding...14

Value Binding...14

Value Set..14

5 Symbols...14
5.1 Graphical Symbols..14

5.2 Abbreviations..14

6 Additional Information..16
6.1 Acknowledgements...16

7 ADL, AOM, and AML (Informative)..18
7.1 Business Purpose...18

7.2 Technical Aims of ADL / AOM..19

7.3 Technical Aims of AML..21

8 Profiles...22
8.1 Dependencies...23

8.2 ReferenceModelProfile [Profile]...23

8.2.1 Infrastructure [Stereotype]...24

8.2.2 MappedDataType [Stereotype]..24

8.2.3 ReferenceModel [Stereotype]..25

8.2.4 Runtime [Stereotype]...26

8.3 TerminologyProfile [Profile]...26

2 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.3.1 ArchetypeType [Enumeration]..27

8.3.2 about [Stereotype]..28

8.3.3 ArchetypeTerm [Stereotype]...28

8.3.4 CodeSystemReference [Stereotype]..32

8.3.5 CodeSystemVersionReference [Stereotype]..32

8.3.6 ConceptReference [Stereotype]...32

8.3.7 DescribedIdentifier [Stereotype]...33

8.3.8 Entry [Stereotype]..34

8.3.9 EnumeratedValueDomain [Stereotype]...35

8.4.11 IdentifiedItem [Stereotype]..36

8.3.11 IdEntry [Stereotype]..36

8.3.12 PermissibleValue [Stereotype]...37

8.3.13 ResourceReference [Stereotype]...38

8.3.14 ScopedIdentifier [Stereotype]..38

8.3.15 TermResourceTranslation [Stereotype]...39

8.3.16 ValueSetDefinitionReference [Stereotype]..40

8.3.17 ValueSetReference [Stereotype]..40

8.4 ConstraintProfile [Profile]...42

8.4.1 ArchetypeType [Enumeration]..44

8.4.2 Lifecycle_state [Enumeration]...45

8.4.3 VERSION_STATUS [Enumeration]...46

8.4.4 Archetype [Stereotype]..47

8.4.5 ArchetypeDefinition [Stereotype]...54

8.4.6 ArchetypeLibrary [Stereotype]..55

8.4.7 ArchetypeRoot [Stereotype]..56

8.4.8 ArchetypeSlot [Stereotype]...58

8.4.9 AuthoredResource [Stereotype]...60

8.4.10 ComplexObjectConstraint [Stereotype]...63

8.4.11 Constrains [Stereotype]..76

8.4.12 ObjectConstraint [Stereotype]...77

8.4.13 ResourceAnnotationNodeItem [Stereotype]..83

8.4.14 ResourceTranslation [Stereotype]..83

9 AML-UML Transformation Reference (Informative)...87
9.1 Introduction...87

9.1.1 AML Provisioning Context...87

9.1.2 QVT Packaging...90

9.1.3 Transformation Reuse and Composition...91

Archetype Modeling Language (AML), v1.0 (Beta 2) 3

8.3.1 ArchetypeType [Enumeration]..27

8.3.2 about [Stereotype]..28

8.3.3 ArchetypeTerm [Stereotype]...28

8.3.4 CodeSystemReference [Stereotype]..32

8.3.5 CodeSystemVersionReference [Stereotype]..32

8.3.6 ConceptReference [Stereotype]...32

8.3.7 DescribedIdentifier [Stereotype]...33

8.3.8 Entry [Stereotype]..34

8.3.9 EnumeratedValueDomain [Stereotype]...35

8.4.11 IdentifiedItem [Stereotype]..36

8.3.11 IdEntry [Stereotype]..36

8.3.12 PermissibleValue [Stereotype]...37

8.3.13 ResourceReference [Stereotype]...38

8.3.14 ScopedIdentifier [Stereotype]..38

8.3.15 TermResourceTranslation [Stereotype]...39

8.3.16 ValueSetDefinitionReference [Stereotype]..40

8.3.17 ValueSetReference [Stereotype]..40

8.4 ConstraintProfile [Profile]...42

8.4.1 ArchetypeType [Enumeration]..44

8.4.2 Lifecycle_state [Enumeration]...45

8.4.3 VERSION_STATUS [Enumeration]...46

8.4.4 Archetype [Stereotype]..47

8.4.5 ArchetypeDefinition [Stereotype]...54

8.4.6 ArchetypeLibrary [Stereotype]..55

8.4.7 ArchetypeRoot [Stereotype]..56

8.4.8 ArchetypeSlot [Stereotype]...58

8.4.9 AuthoredResource [Stereotype]...60

8.4.10 ComplexObjectConstraint [Stereotype]...63

8.4.11 Constrains [Stereotype]..76

8.4.12 ObjectConstraint [Stereotype]...77

8.4.13 ResourceAnnotationNodeItem [Stereotype]..83

8.4.14 ResourceTranslation [Stereotype]..83

9 AML-UML Transformation Reference (Informative)...87
9.1 Introduction...87

9.1.1 AML Provisioning Context...87

9.1.2 QVT Packaging...90

9.1.3 Transformation Reuse and Composition...91

Archetype Modeling Language (AML), v1.0 (Beta 2) 3

9.1.4 Transformation Notation..93

9.1.5 Platform Binding...95

9.1.6 Global Properties...96

9.2 Archetype Library...97

9.3 Archetype..97

9.4 Terminology Definition...99

9.5 Terminology Binding...102

9.6 Local Value-Sets..103

9.7 Archetype Definition...105

9.8 Object References..106

9.9 Primitive Constraints...109

9.10 Temporal Constraints...111

9.11 Code Constraints..112

9.12 Assertions..112

4 Archetype Modeling Language (AML), v1.0 (Beta 2)

9.1.4 Transformation Notation..93

9.1.5 Platform Binding...95

9.1.6 Global Properties...96

9.2 Archetype Library...97

9.3 Archetype..97

9.4 Terminology Definition...99

9.5 Terminology Binding...102

9.6 Local Value-Sets..103

9.7 Archetype Definition...105

9.8 Object References..106

9.9 Primitive Constraints...109

9.10 Temporal Constraints...111

9.11 Code Constraints..112

9.12 Assertions..112

4 Archetype Modeling Language (AML), v1.0 (Beta 2)

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices
• CORBAFacilities

Archetype Modeling Language (AML), v1.0 (Beta 2) 5

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications
• CORBA/IIOP
• Data Distribution Services
• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
• UML, MOF, CWM, XMI
• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
• CORBAServices
• CORBAFacilities

Archetype Modeling Language (AML), v1.0 (Beta 2) 5

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text, table text, bullets

Helvetica/Arial – 9 or 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier new/Courier – 10 pt. Bold: Programming Languages

Helvetica/Arial – 10 pt.: Exceptions

Courier/Courier New – 9

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm .

6 Archetype Modeling Language (AML), v1.0 (Beta 2)

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

Signal and Image Processing Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text, table text, bullets

Helvetica/Arial – 9 or 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier new/Courier – 10 pt. Bold: Programming Languages

Helvetica/Arial – 10 pt.: Exceptions

Courier/Courier New – 9

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm .

6 Archetype Modeling Language (AML), v1.0 (Beta 2)

1 Scope
1.1 Archetype Modeling Language (AML) Background

This specification defines the Archetype Modeling Language (AML). The AML defines a standard means for modeling
Archetype Models (AMs) to support the representation of Clinical Information Modeling Initiative (CIMI) artifacts using
modeling profiles as defined in the UML. Archetype Models are Platform Independent Models (PIMs) and are developed
as a set of constraints on a specific Reference Model (RM).
The CIMI RM is the underlying RM on which CIMI’s clinical information models are defined. The reference model
defines a rigorous and stable set of modeling patterns that include a set of structural patterns, complex data types, and
demographic classes. All CIMI clinical models will be defined by constraining the CIMI reference model. Each instance
of a CIMI Clinical Model will be a constrained instance of the CIMI reference model conforming to the constraints
defined by the associated clinical model.
The motivation for including a reference model in the CIMI clinical modeling architecture is to provide a consistent
computational framework upon which model authoring and translation tools can be based. The reference model is the
‘common language’ used to describe all clinical models. It provides a single information model that can be used to
represent instances of all clinical models and upon which further constraints can be applied to represent the specific
information requirements of all clinical model. This information model represents the core artifact implemented in
software; it provides the physical structure of the clinical models and its example instances. Existing implementation
experience has shown this increases the computational capabilities of the resulting modeling and translation tools.
Development of the AML specification was guided by:

1. The need for a means to accurately and usefully represent Ams in accordance with the openEHR
 Foundation's Archetype Definition Language (ADL) and Archetype Object Model (AOM) version 2.0
 specifications.

2. Compatibility with the Object Management Group (OMG) Common Terminology Service 2 (CTS2)
 specification.

3. Where possible, being informed by and faithful to the ISO/IEC 11179, Information Technology, – Metadata
 registries, specification.

In the AML RFP, the version of the openEHR Foundation’s ADL and AOM specifications cited for coverage by the
OMG AML specification was version 1.5. In the process of producing the AML specification, however, a number of
inconsistencies were discovered in the openEHR specifications, as well as opportunities for improvements. These were
reported to the openEHR Foundation. In response, the openEHR Foundation revised the specifications. This resulted in a
set of changes to the specifications that were not backward compatible with version 1.5. As a consequence, the revised
specifications were released as version 2.0, subsuming the requirements found in version 1.5, now made consistent in
version 2.0, and forming the updated requirements basis for AML coverage.

1.2 AML Intended Users

The AML is primarily intended to support two clinical modeling communities of users:

! Those having subject matter expertise regarding clinical model domains and currently using ADL-based tools to
develop such models, and

Archetype Modeling Language (AML), v1.0 (Beta 2) 7

1 Scope
1.1 Archetype Modeling Language (AML) Background

This specification defines the Archetype Modeling Language (AML). The AML defines a standard means for modeling
Archetype Models (AMs) to support the representation of Clinical Information Modeling Initiative (CIMI) artifacts using
modeling profiles as defined in the UML. Archetype Models are Platform Independent Models (PIMs) and are developed
as a set of constraints on a specific Reference Model (RM).
The CIMI RM is the underlying RM on which CIMI’s clinical information models are defined. The reference model
defines a rigorous and stable set of modeling patterns that include a set of structural patterns, complex data types, and
demographic classes. All CIMI clinical models will be defined by constraining the CIMI reference model. Each instance
of a CIMI Clinical Model will be a constrained instance of the CIMI reference model conforming to the constraints
defined by the associated clinical model.
The motivation for including a reference model in the CIMI clinical modeling architecture is to provide a consistent
computational framework upon which model authoring and translation tools can be based. The reference model is the
‘common language’ used to describe all clinical models. It provides a single information model that can be used to
represent instances of all clinical models and upon which further constraints can be applied to represent the specific
information requirements of all clinical model. This information model represents the core artifact implemented in
software; it provides the physical structure of the clinical models and its example instances. Existing implementation
experience has shown this increases the computational capabilities of the resulting modeling and translation tools.
Development of the AML specification was guided by:

1. The need for a means to accurately and usefully represent Ams in accordance with the openEHR
 Foundation's Archetype Definition Language (ADL) and Archetype Object Model (AOM) version 2.0
 specifications.

2. Compatibility with the Object Management Group (OMG) Common Terminology Service 2 (CTS2)
 specification.

3. Where possible, being informed by and faithful to the ISO/IEC 11179, Information Technology, – Metadata
 registries, specification.

In the AML RFP, the version of the openEHR Foundation’s ADL and AOM specifications cited for coverage by the
OMG AML specification was version 1.5. In the process of producing the AML specification, however, a number of
inconsistencies were discovered in the openEHR specifications, as well as opportunities for improvements. These were
reported to the openEHR Foundation. In response, the openEHR Foundation revised the specifications. This resulted in a
set of changes to the specifications that were not backward compatible with version 1.5. As a consequence, the revised
specifications were released as version 2.0, subsuming the requirements found in version 1.5, now made consistent in
version 2.0, and forming the updated requirements basis for AML coverage.

1.2 AML Intended Users

The AML is primarily intended to support two clinical modeling communities of users:

! Those having subject matter expertise regarding clinical model domains and currently using ADL-based tools to
develop such models, and

Archetype Modeling Language (AML), v1.0 (Beta 2) 7

! Those familiar with modeling using the UML, though not necessarily familiar with clinical modeling domains
or current methods employed to represent them.

Clause 7 of this specification, AML Meta Model, provides an informational meta model of the openEHR AOM as an aid
to bridging between these communities.
While the AML specification targets CIMI clinical modeling practitioners, the modeling approach defined in the profiles
is intended to be generalizable for use with other reference models and application in other domain areas.

1.3 AML Profiles
The AML is specified by three UML profiles collectively meeting the requirements of archetype modeling. These are
the:

! Reference Model Profile (RMP): Enables the specification of reference models upon which archetypes can be
based;

! Constraint Model Profile (CMP): Supports the specification of constraints on a given reference model to enable
the development of archetypes including Clinical Information Models (CIMS); and

! Terminology Binding Profile (TBP): Supports the binding of information models to terminology. Terminology
bindings include:

1. Value Bindings: Support linking the data model to value domains that restrict the valid value of an
 attribute to a set of values corresponding to a set of meanings recorded in an external terminology;
2. Semantic Bindings: Define the meaning of model elements using concepts in an external
 terminology; and
3. Constraint Bindings: Specify constraints on the information model using concepts and relationships
 defined in an external terminology.

This set of UML profiles enables the specification of CIMI clinical model content (using the CIMI Reference Model)
and the generation of CIMI clinical model artifacts, such as ones represented by the openEHR Foundation’s ADL. (The
ADL is a serialization of the openEHR Foundation’s AOM.) While the transformation of AML models to an instance of
the AOM was an optional requirement for the AML specification, the AML profile supports the representation of
sufficient information in an AM to enable such a transformation.

2 Conformance
2.1 Conformance Points

This specification defines the following conformance points (also referred to as conformance targets):

! AML Reference Model Profile

! AML Terminology Binding Profile

! AML Constraint Model Profile

An implementation claiming AML conformance must implement all three conformance points listed in clause 2
Conformance.

8 Archetype Modeling Language (AML), v1.0 (Beta 2)

! Those familiar with modeling using the UML, though not necessarily familiar with clinical modeling domains
or current methods employed to represent them.

Clause 7 of this specification, AML Meta Model, provides an informational meta model of the openEHR AOM as an aid
to bridging between these communities.
While the AML specification targets CIMI clinical modeling practitioners, the modeling approach defined in the profiles
is intended to be generalizable for use with other reference models and application in other domain areas.

1.3 AML Profiles
The AML is specified by three UML profiles collectively meeting the requirements of archetype modeling. These are
the:

! Reference Model Profile (RMP): Enables the specification of reference models upon which archetypes can be
based;

! Constraint Model Profile (CMP): Supports the specification of constraints on a given reference model to enable
the development of archetypes including Clinical Information Models (CIMS); and

! Terminology Binding Profile (TBP): Supports the binding of information models to terminology. Terminology
bindings include:

1. Value Bindings: Support linking the data model to value domains that restrict the valid value of an
 attribute to a set of values corresponding to a set of meanings recorded in an external terminology;
2. Semantic Bindings: Define the meaning of model elements using concepts in an external
 terminology; and
3. Constraint Bindings: Specify constraints on the information model using concepts and relationships
 defined in an external terminology.

This set of UML profiles enables the specification of CIMI clinical model content (using the CIMI Reference Model)
and the generation of CIMI clinical model artifacts, such as ones represented by the openEHR Foundation’s ADL. (The
ADL is a serialization of the openEHR Foundation’s AOM.) While the transformation of AML models to an instance of
the AOM was an optional requirement for the AML specification, the AML profile supports the representation of
sufficient information in an AM to enable such a transformation.

2 Conformance
2.1 Conformance Points

This specification defines the following conformance points (also referred to as conformance targets):

! AML Reference Model Profile

! AML Terminology Binding Profile

! AML Constraint Model Profile

An implementation claiming AML conformance must implement all three conformance points listed in clause 2
Conformance.

8 Archetype Modeling Language (AML), v1.0 (Beta 2)

2.2 AML Reference Model Profile
Sub clause 8.2 of this specification defines the AML Reference Model Profile.

2.3 AML Terminology Binding Profile
Sub clause 8.3 of this specification defines the AML Terminology Binding Profile. The Terminology Binding Profile
imports the Reference Model Profile.

2.4 AML Constraint Model Profile
Sub clause 8.4 of this specification defines the AML Constraint Model Profile. The Constraint Model Profile imports
both the Reference Model Profile and Terminology Binding Profile.

3 References

3.1 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of any of these publications do not
apply.

[ADL] openEHR Archetype Definition Language: ADL 2, Revision 2.0.5,
http://www.openehr.org/releases/trunk/architecture/am/adl2.pdf

[AOM] openEHR Archetype Object Model (AOM), Revision 2.1.14,
http: //www.openehr.org/releases/trunk/architecture/am/aom2.pdf

[CEM] Standards for detailed clinical models as the basis for medical data exchange
and decision support. Int J Med Inf, 69(2-3), 157-74.

[CIMI] CIMI Reference Model Requirements,
http://informatics.mayo.edu/CIMI/index.php/CIMI_Reference_Model_Requir e
ments

[CTS2] OMG Common Terminology Service 2 (CTS2),
http://www.omg.org/spec/CTS2/1.1/

[MDMI] OMG Model Driven Message Interoperability (MDMI), Version 1.0,
http://www.omg.org/spec/MDMI/1.0/

[MDR] ISO/IEC 11179, Information Technology, -- Metadata registries,
http://metadata-standards.org/11179/

[MOF] OMG Meta Object Facility (MOF) Core, Version 2.5.1,
 http://www.omg.org/spec/ MOF /2. 5.1 /

Archetype Modeling Language (AML), v1.0 (Beta 2) 9

2.2 AML Reference Model Profile
Sub clause 8.2 of this specification defines the AML Reference Model Profile.

2.3 AML Terminology Binding Profile
Sub clause 8.3 of this specification defines the AML Terminology Binding Profile. The Terminology Binding Profile
imports the Reference Model Profile.

2.4 AML Constraint Model Profile
Sub clause 8.4 of this specification defines the AML Constraint Model Profile. The Constraint Model Profile imports
both the Reference Model Profile and Terminology Binding Profile.

3 References

3.1 Normative References
The following normative documents contain provisions, which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of any of these publications do not
apply.

[ADL] openEHR Archetype Definition Language: ADL 2, Revision 2.0.5,
http://www.openehr.org/releases/trunk/architecture/am/adl2.pdf

[AOM] openEHR Archetype Object Model (AOM), Revision 2.1.14,
http: //www.openehr.org/releases/trunk/architecture/am/aom2.pdf

[CEM] Standards for detailed clinical models as the basis for medical data exchange
and decision support. Int J Med Inf, 69(2-3), 157-74.

[CIMI] CIMI Reference Model Requirements,
http://informatics.mayo.edu/CIMI/index.php/CIMI_Reference_Model_Requir e
ments

[CTS2] OMG Common Terminology Service 2 (CTS2),
http://www.omg.org/spec/CTS2/1.1/

[MDMI] OMG Model Driven Message Interoperability (MDMI), Version 1.0,
http://www.omg.org/spec/MDMI/1.0/

[MDR] ISO/IEC 11179, Information Technology, -- Metadata registries,
http://metadata-standards.org/11179/

[MOF] OMG Meta Object Facility (MOF) Core, Version 2.5.1,
 http://www.omg.org/spec/ MOF /2. 5.1 /

Archetype Modeling Language (AML), v1.0 (Beta 2) 9

http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
http://metadata-standards.org/11179/
http://www.omg.org/spec/MDMI/1.0/
http://www.omg.org/spec/CTS2/1.1/
http://informatics.mayo.edu/CIMI/index.php/CIMI_Reference_Model_Requirements
http://informatics.mayo.edu/CIMI/index.php/CIMI_Reference_Model_Require
http://informatics.mayo.edu/CIMI/index.php/CIMI_Reference_Model_Require
http://www.openehr.org/releases/trunk/architecture/am/aom2.pdf
http://www.openehr.org/releases/trunk/architecture/am/aom2.pdf
http://www.openehr.org/releases/trunk/architecture/am/adl2.pdf

[NIEM] OMG UML Profile for NIEM Version 1.0, http://www.omg.org/spec/NIEM-
UML/1.0/

[OCL] OMG Object Constraint Language (OCL), Version 2.4,
 http://www.omg.org/spec/OCL/2.4/

[QVT] OMG Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.2,
http://www.omg.org/spec/QVT/1.2/

[UML] OMG Unified Modeling Language (UML) Version 2.5,
 http://www.omg.org/spec/UML/2.5/

3.2 Informative References

[AOMT] openEHR openEHR Templates (supersedes openEHR Archetype Templates),
http://www.openehr.org/releases/trunk/architecture/am/tom.pdf

[AQL] Archetype Query Language Description
https://openehr.atlassian.net/wiki/idsplay/spec/Archetype+Query+Language
+Description

[ARCH] openEHR Archetypes: Constraint-based Domain Models for Future-proof
 Information Systems,
http://www.openehr.org/publications/archetypes/archetypes_beale_oopsla_200
2.pdf

[CKM] openEHR Clinical Knowledge Manager

http://openehr.org/ckm/

[HLV7v3] HL7 Version 3 Standard: Core Principles and Properties of Version 3 Models,
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=58

[ISO13606-2] Health informatics — Electronic health record communication Part
2:Archetype interchange specification, 2008-12-01

[KAI] openEHR Knowledge Artefact Identification, Revision 0.7.5,
http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system .
pdf

[ODM] OMG Ontology Definition Metamodel (ODM) Version 1.1,
http://www.omg.org/spec/ODM/1.1/

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

10 Archetype Modeling Language (AML), v1.0 (Beta 2)

[NIEM] OMG UML Profile for NIEM Version 1.0, http://www.omg.org/spec/NIEM-
UML/1.0/

[OCL] OMG Object Constraint Language (OCL), Version 2.4,
 http://www.omg.org/spec/OCL/2.4/

[QVT] OMG Meta Object Facility (MOF) 2.0 Query/View/Transformation, V1.2,
http://www.omg.org/spec/QVT/1.2/

[UML] OMG Unified Modeling Language (UML) Version 2.5,
 http://www.omg.org/spec/UML/2.5/

3.2 Informative References

[AOMT] openEHR openEHR Templates (supersedes openEHR Archetype Templates),
http://www.openehr.org/releases/trunk/architecture/am/tom.pdf

[AQL] Archetype Query Language Description
https://openehr.atlassian.net/wiki/idsplay/spec/Archetype+Query+Language
+Description

[ARCH] openEHR Archetypes: Constraint-based Domain Models for Future-proof
 Information Systems,
http://www.openehr.org/publications/archetypes/archetypes_beale_oopsla_200
2.pdf

[CKM] openEHR Clinical Knowledge Manager

http://openehr.org/ckm/

[HLV7v3] HL7 Version 3 Standard: Core Principles and Properties of Version 3 Models,
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=58

[ISO13606-2] Health informatics — Electronic health record communication Part
2:Archetype interchange specification, 2008-12-01

[KAI] openEHR Knowledge Artefact Identification, Revision 0.7.5,
http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system .
pdf

[ODM] OMG Ontology Definition Metamodel (ODM) Version 1.1,
http://www.omg.org/spec/ODM/1.1/

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

10 Archetype Modeling Language (AML), v1.0 (Beta 2)

http://www.omg.org/spec/ODM/1.1/
http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system.pdf
http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system.pdf
http://www.openehr.org/releases/trunk/architecture/am/knowledge_id_system
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=58
http://www.openehr.org/publications/archetypes/archetypes_beale_oopsla_2002.pdf
http://www.openehr.org/publications/archetypes/archetypes_beale_oopsla_200
https://openehr.atlassian.net/wiki/idsplay/spec/Archetype+Query+Language
http://www.openehr.org/releases/trunk/architecture/am/tom.pdf
http://www.omg.org/spec/UML/2.5/Beta2/
http://www.omg.org/spec/QVT/1.2/Beta/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/NIEM-UML/1.0/
http://www.omg.org/spec/NIEM-

Archetype
An archetype is a re-usable formal definition of domain level information defined in terms of constraints on an
information model. The key feature of the archetype approach to computing is a complete separation of information
models (such as object models of software or models of database schemas) from domain models.

Archetype Definition Language (ADL)

ADL is a formal language for expressing archetypes. It provides a formal, textual syntax for describing constraints on
any domain entity whose data is described by an information model (also known as the 'underlying reference model').
The ADL syntax is semantically equivalent to the AOM and represents one possible serialization of the AOM. The
current version of ADL is known as 'ADL 2'.

Archetype Instance
An archetype instance is a single instantiation of data conforming to a specific archetype. In the context of CIMI this
data will typically be clinical.

Archetype Model (AM)

An AM is a re-usable, formal model of an archetype expressed as a computable set of constraint statements on an
underlying reference model (URM). Concepts that can be modeled using archetypes include weight measurement, blood
pressure, microbiology results, discharge referral, prescription, or diagnosis. CIMI archetypes will be represented as an
instance of the ‘Archetype Object Model’.

Archetype Object Model (AOM)
The AOM is the definitive expression of archetype semantics and is independent of any particular syntax. It is defined as
an object model using a UML class diagram. It is a generic model, meaning it can be used to express archetypes for any
reference model in a standard way. Version 1.4 of the AOM was standardized in ISO-13606:2. The current version is
known as 'AOM 2'.

Archetype Query Language (AQL)

The AQL is a declarative query language developed specifically for expressing queries used for searching and retrieving
the clinical data found in archetype-based EHRs. AQL expresses queries at the archetype level, i.e. semantic level, and
not at the data instance level. This is key to achieving shared queries across system or enterprise boundaries.

Clinical Data Repository (CDR)
A CDR is a data store holding and managing clinical data collected from service encounters at the point-of-service
locations such as hospitals, clinics, etc.

Clinical Document Architecture (CDA)

A CDA is an HL7 XML-based markup standard intended to specify the encoding, structure, and semantics of clinical
documents for exchange.

Clinical Information Model (CIM)
A CIM is a representation of the structured clinical information (including relationships, constraints and terminology)
describing a specific clinical concept - e.g. a blood pressure observation, a Discharge Summary, or a Medication Order.

Clinical Information Modeling Initiative (CIMI)

CIMI is an initiative established to “improve the interoperability of healthcare information systems through shared
implementable clinical information models.”

Archetype Modeling Language (AML), v1.0 (Beta 2) 11

Archetype
An archetype is a re-usable formal definition of domain level information defined in terms of constraints on an
information model. The key feature of the archetype approach to computing is a complete separation of information
models (such as object models of software or models of database schemas) from domain models.

Archetype Definition Language (ADL)

ADL is a formal language for expressing archetypes. It provides a formal, textual syntax for describing constraints on
any domain entity whose data is described by an information model (also known as the 'underlying reference model').
The ADL syntax is semantically equivalent to the AOM and represents one possible serialization of the AOM. The
current version of ADL is known as 'ADL 2'.

Archetype Instance
An archetype instance is a single instantiation of data conforming to a specific archetype. In the context of CIMI this
data will typically be clinical.

Archetype Model (AM)

An AM is a re-usable, formal model of an archetype expressed as a computable set of constraint statements on an
underlying reference model (URM). Concepts that can be modeled using archetypes include weight measurement, blood
pressure, microbiology results, discharge referral, prescription, or diagnosis. CIMI archetypes will be represented as an
instance of the ‘Archetype Object Model’.

Archetype Object Model (AOM)
The AOM is the definitive expression of archetype semantics and is independent of any particular syntax. It is defined as
an object model using a UML class diagram. It is a generic model, meaning it can be used to express archetypes for any
reference model in a standard way. Version 1.4 of the AOM was standardized in ISO-13606:2. The current version is
known as 'AOM 2'.

Archetype Query Language (AQL)

The AQL is a declarative query language developed specifically for expressing queries used for searching and retrieving
the clinical data found in archetype-based EHRs. AQL expresses queries at the archetype level, i.e. semantic level, and
not at the data instance level. This is key to achieving shared queries across system or enterprise boundaries.

Clinical Data Repository (CDR)
A CDR is a data store holding and managing clinical data collected from service encounters at the point-of-service
locations such as hospitals, clinics, etc.

Clinical Document Architecture (CDA)

A CDA is an HL7 XML-based markup standard intended to specify the encoding, structure, and semantics of clinical
documents for exchange.

Clinical Information Model (CIM)
A CIM is a representation of the structured clinical information (including relationships, constraints and terminology)
describing a specific clinical concept - e.g. a blood pressure observation, a Discharge Summary, or a Medication Order.

Clinical Information Modeling Initiative (CIMI)

CIMI is an initiative established to “improve the interoperability of healthcare information systems through shared
implementable clinical information models.”

Archetype Modeling Language (AML), v1.0 (Beta 2) 11

Clinical Information Modeling Initiative (CIMI) Reference Model (RM)
The CIMI RM is the underlying Reference Model on which CIMI's clinical models (i.e. archetypes) are defined. This
reference model defines a rigorous and stable set of modeling patterns, including a set of complex data types,
information patterns (e.g. data, qualifier, state), and structural patterns (e.g. composition, entry, tree). All CIMI clinical
models (i.e. archetypes) will be defined by constraining the CIMI RM. The RM is intended to be instantiated with patient
data which conforms to the constraints defined by the associated clinical model.

Clinical Model Governance

Clinical Model Governance is a set of policies and processes through which the high clinical quality of all clinical
artifacts (including clinical models and-or archetypes) is maintained during creation, storage, verification, maintenance,
and distribution, by, for, and on behalf of CIMI.

Clinical Model Repository
The Clinical Model Repository is a data store holding clinical information models and associated artifacts in an agreed
sharable format.

Clinical Model Verification

Clinical Model Verification is the act of reviewing, inspecting, or testing in order to establish a clinical model
specification meets appropriate clinical safety and quality standards.

Clinical Modeling Language
A Clinical Modeling Language is a modeling language defining clinical information models.

Clinical Requirement

Clinical Requirements are requirements articulating clinical needs including clinical practices, standards, guidelines,
principles, and other clinical concepts.

Code System
A Code System is a managed collection of uniquely identifiable concepts with associated representations. A code system
may also form an ontological system for representing a set of concepts, e.g. SNOMED-CT, LOINC, ICD-10, etc.

Common Terminology Services 2 (CTS2)

CTS2 is an OMG specification providing a standard interface to disparate terminology sources. The Information Model
specifies the structural definition, attributes, and associations of resources common to structured terminologies such as
Code Systems, Binding Domains, and Value Sets. The Computational Model specifies the service descriptions and
interfaces needed to access and maintain structured terminologies.

Concept
In information modeling, a concept represents an “idea” as a word or phrase in order to support human understanding,
but may also be represented with a concept identifier in order to bind it to a controlled terminology or ontology.

Concept Domain

A Concept Domain is a named category of like concepts bound to one or more coded elements in an information model.
Concept Domains exist to constrain the intent of the coded element and are independent of any specific vocabulary, code
system, or Realm. A Concept Domain provides a high level grouping for all things possible in a given domain from
which value sets will be constructed.

Concept Domain Binding
A Concept Domain Binding is the association of a value set with a concept domain in a given context.

12 Archetype Modeling Language (AML), v1.0 (Beta 2)

Clinical Information Modeling Initiative (CIMI) Reference Model (RM)
The CIMI RM is the underlying Reference Model on which CIMI's clinical models (i.e. archetypes) are defined. This
reference model defines a rigorous and stable set of modeling patterns, including a set of complex data types,
information patterns (e.g. data, qualifier, state), and structural patterns (e.g. composition, entry, tree). All CIMI clinical
models (i.e. archetypes) will be defined by constraining the CIMI RM. The RM is intended to be instantiated with patient
data which conforms to the constraints defined by the associated clinical model.

Clinical Model Governance

Clinical Model Governance is a set of policies and processes through which the high clinical quality of all clinical
artifacts (including clinical models and-or archetypes) is maintained during creation, storage, verification, maintenance,
and distribution, by, for, and on behalf of CIMI.

Clinical Model Repository
The Clinical Model Repository is a data store holding clinical information models and associated artifacts in an agreed
sharable format.

Clinical Model Verification

Clinical Model Verification is the act of reviewing, inspecting, or testing in order to establish a clinical model
specification meets appropriate clinical safety and quality standards.

Clinical Modeling Language
A Clinical Modeling Language is a modeling language defining clinical information models.

Clinical Requirement

Clinical Requirements are requirements articulating clinical needs including clinical practices, standards, guidelines,
principles, and other clinical concepts.

Code System
A Code System is a managed collection of uniquely identifiable concepts with associated representations. A code system
may also form an ontological system for representing a set of concepts, e.g. SNOMED-CT, LOINC, ICD-10, etc.

Common Terminology Services 2 (CTS2)

CTS2 is an OMG specification providing a standard interface to disparate terminology sources. The Information Model
specifies the structural definition, attributes, and associations of resources common to structured terminologies such as
Code Systems, Binding Domains, and Value Sets. The Computational Model specifies the service descriptions and
interfaces needed to access and maintain structured terminologies.

Concept
In information modeling, a concept represents an “idea” as a word or phrase in order to support human understanding,
but may also be represented with a concept identifier in order to bind it to a controlled terminology or ontology.

Concept Domain

A Concept Domain is a named category of like concepts bound to one or more coded elements in an information model.
Concept Domains exist to constrain the intent of the coded element and are independent of any specific vocabulary, code
system, or Realm. A Concept Domain provides a high level grouping for all things possible in a given domain from
which value sets will be constructed.

Concept Domain Binding
A Concept Domain Binding is the association of a value set with a concept domain in a given context.

12 Archetype Modeling Language (AML), v1.0 (Beta 2)

Conceptual Information Model
A Conceptual Information Model is a representation of real-world objects and their relationships and constraints as
understood by domain experts. A conceptual model should include no implementation-specific details.

Conformance

Conformance is the requirement that those who participate in CIMI by contributing data components or creating and
sharing ADL artifacts are following the agreed-upon procedures for doing so and that all documentation meets minimum
criteria and the CIMI Naming and Design Rules where applicable.

Constraint Model
A Constraint Model is a formal specification used for describing constraints on an Underlying Reference Model. The
Constraint Model is used to express clinical information models (i.e. archetypes), not to be confused with the clinical
information models that are instances of the constraint model.

Detailed Clinical Model

A Detailed Clinical Model is a relatively small standalone information model designed to express a precise clinical
concept in a standardized and reusable manner.

Fully Defined Concept
A Fully Defined Concept is a concept uniquely defined by a set of defining relationships.

Information Model

An Information Model is a structured representation of the information requirements of a domain including the classes of
information required and their attributes, relationships, and constraints.

Node
A Node is a named part of an information model.

Ontology

An Ontology is a formal representation of knowledge as a set of concept identifiers, terms describing the concepts so
identified, and the relationships among them.

Reference Model
A Reference Model is an information model defining a set of modeling patterns upon which clinical models are defined.

Reference Terminology

A Reference Terminology is a terminology designed to provide common semantics for diverse implementations.

Semantic Binding
Semantic Binding is the association of a node in an information model with a concept from a controlled terminology
representing its meaning.

Terminology

A Terminology is a vocabulary of technical terms used in a particular field, subject, science, or art.

Terminology Binding
Terminology Binding is the assertion of a relationship between an information model and a terminology.

Archetype Modeling Language (AML), v1.0 (Beta 2) 13

Conceptual Information Model
A Conceptual Information Model is a representation of real-world objects and their relationships and constraints as
understood by domain experts. A conceptual model should include no implementation-specific details.

Conformance

Conformance is the requirement that those who participate in CIMI by contributing data components or creating and
sharing ADL artifacts are following the agreed-upon procedures for doing so and that all documentation meets minimum
criteria and the CIMI Naming and Design Rules where applicable.

Constraint Model
A Constraint Model is a formal specification used for describing constraints on an Underlying Reference Model. The
Constraint Model is used to express clinical information models (i.e. archetypes), not to be confused with the clinical
information models that are instances of the constraint model.

Detailed Clinical Model

A Detailed Clinical Model is a relatively small standalone information model designed to express a precise clinical
concept in a standardized and reusable manner.

Fully Defined Concept
A Fully Defined Concept is a concept uniquely defined by a set of defining relationships.

Information Model

An Information Model is a structured representation of the information requirements of a domain including the classes of
information required and their attributes, relationships, and constraints.

Node
A Node is a named part of an information model.

Ontology

An Ontology is a formal representation of knowledge as a set of concept identifiers, terms describing the concepts so
identified, and the relationships among them.

Reference Model
A Reference Model is an information model defining a set of modeling patterns upon which clinical models are defined.

Reference Terminology

A Reference Terminology is a terminology designed to provide common semantics for diverse implementations.

Semantic Binding
Semantic Binding is the association of a node in an information model with a concept from a controlled terminology
representing its meaning.

Terminology

A Terminology is a vocabulary of technical terms used in a particular field, subject, science, or art.

Terminology Binding
Terminology Binding is the assertion of a relationship between an information model and a terminology.

Archetype Modeling Language (AML), v1.0 (Beta 2) 13

Value Binding
Value Binding is the association of a given node in a clinical model with the set of valid concepts that may populate it.

Value Set

A Value Set is a set of concept identifiers deemed valid for use in a specific context, especially to define the domain of a
data element.

5 Symbols
5.1 Graphical Symbols
No AML-specific graphical symbols are defined in this specification.

5.2 Abbreviations

ADL Archetype Definition Languge

AM Archetype Model

AML Archetype Modeling Language

AOM Archetype Object Model

AQL Archetype Query Language

CDA Clinical Document Architecture

CDL Clinical Document Language

CDR Clinical Data Repository

CEM Clinical Element Models

CIM Clinical Information Model

CIMI Clinical Information Modeling Initiative

CKM Clinical Knowledge Manager

CMP Constraint Model Profile

CRM Clinical Reference Model

CTS2 Common Terminology Services 2

EHR Electronic Health Record

14 Archetype Modeling Language (AML), v1.0 (Beta 2)

Value Binding
Value Binding is the association of a given node in a clinical model with the set of valid concepts that may populate it.

Value Set

A Value Set is a set of concept identifiers deemed valid for use in a specific context, especially to define the domain of a
data element.

5 Symbols
5.1 Graphical Symbols
No AML-specific graphical symbols are defined in this specification.

5.2 Abbreviations

ADL Archetype Definition Languge

AM Archetype Model

AML Archetype Modeling Language

AOM Archetype Object Model

AQL Archetype Query Language

CDA Clinical Document Architecture

CDL Clinical Document Language

CDR Clinical Data Repository

CEM Clinical Element Models

CIM Clinical Information Model

CIMI Clinical Information Modeling Initiative

CKM Clinical Knowledge Manager

CMP Constraint Model Profile

CRM Clinical Reference Model

CTS2 Common Terminology Services 2

EHR Electronic Health Record

14 Archetype Modeling Language (AML), v1.0 (Beta 2)

HL7 Health Level Seven

ICD-10 International Statistical Classification of Diseases and Related Health
Problems, 10th Edition

ISO13606-2 Archetype interchange specification

LOINC Logical Observation Identifiers Names and Codes

MDA Model Driven Architecture

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

OpenEHR Open Electronic Health Record

PIM Platform Independent Model

PSM Platform Specific Model

RM Reference Model

RMP Reference Model Profile

SNOMED CT Systematized Nomenclature of Medicine – Clinical Terms

TBP Terminology Binding Profile

UML Unified Modeling Language

URI Uniform Resource Identifier

URM Underlying Reference Model

6 Additional Information
6.1 Acknowledgements

The following companies submitted this specification:

! Mayo Clinic

! Visumpoint, LLC

The following companies supported this specification:

! Escape Velocity, LLC

Archetype Modeling Language (AML), v1.0 (Beta 2) 15

HL7 Health Level Seven

ICD-10 International Statistical Classification of Diseases and Related Health
Problems, 10th Edition

ISO13606-2 Archetype interchange specification

LOINC Logical Observation Identifiers Names and Codes

MDA Model Driven Architecture

MOF Meta Object Facility

OCL Object Constraint Language

OMG Object Management Group

OpenEHR Open Electronic Health Record

PIM Platform Independent Model

PSM Platform Specific Model

RM Reference Model

RMP Reference Model Profile

SNOMED CT Systematized Nomenclature of Medicine – Clinical Terms

TBP Terminology Binding Profile

UML Unified Modeling Language

URI Uniform Resource Identifier

URM Underlying Reference Model

6 Additional Information
6.1 Acknowledgements

The following companies submitted this specification:

! Mayo Clinic

! Visumpoint, LLC

The following companies supported this specification:

! Escape Velocity, LLC

Archetype Modeling Language (AML), v1.0 (Beta 2) 15

The following individuals aided the development of this specification:

Thomas Beale Ocean Informatics

Dave Carlson Intermountain Healthcare (Consultant)

Angelique Cortez Accenture

Bob Daniel Escape Velocity LLC

Tom Digre Visumpoint LLC

Stanley M. Huff, MD Intermountain Healthcare

Patrick Langform Intermountain Healthcare (Consultant)

Robert Lario Visumpoint LLC

Jay Lyle Ockham Information Services LLC

Virginia Riehl Independent Consultant

Deepak Kumar Sharma, M.S. Mayo Clinic

Harold Solbrig Mayo Clinic

Mason Tran Visumpoint LLC

Bill Fredricks Visumpoint LLC

Michael van der Zel University Medical Center Groningen Results4Care

16 Archetype Modeling Language (AML), v1.0 (Beta 2)

The following individuals aided the development of this specification:

Thomas Beale Ocean Informatics

Dave Carlson Intermountain Healthcare (Consultant)

Angelique Cortez Accenture

Bob Daniel Escape Velocity LLC

Tom Digre Visumpoint LLC

Stanley M. Huff, MD Intermountain Healthcare

Patrick Langform Intermountain Healthcare (Consultant)

Robert Lario Visumpoint LLC

Jay Lyle Ockham Information Services LLC

Virginia Riehl Independent Consultant

Deepak Kumar Sharma, M.S. Mayo Clinic

Harold Solbrig Mayo Clinic

Mason Tran Visumpoint LLC

Bill Fredricks Visumpoint LLC

Michael van der Zel University Medical Center Groningen Results4Care

16 Archetype Modeling Language (AML), v1.0 (Beta 2)

7 ADL, AOM, and AML
(Informative)

This clause describes the relationship between the Archetype Definition Language (ADL) [ADL], the Archetype Object
Model (AOM) [AOM] and the Archetype Modeling Language (AML) specification.

7.1 Business Purpose
The Archetype formalism, comprising the Archetype Definition Language (ADL) and its sibling specification Archetype
Object Model (AOM) were devised by the openEHR Foundation as part of an approach to account for the need to
accommodate ‘domain semantics’ and ‘domain models’, which are numerous and highly variable, while preserving
existing ‘information models’, where the latter are understood as the definition of data / instances, in the orthodox object-
oriented and relational manner. The same need was recognized by the CEN and ISO committees in health with the result
that AOM became an ISO standard (13606-2) [ISO13606-2] in 2008. The same need was identified since 2011 by the
Clinical Information Modeling Initiative (CIMI) [CIMI], which chose the latest version of ADL/AOM as its modeling
formalism. Independently of this lineage of development, Intermountain Healthcare developed over many years a system
of domain content modeling known as Clinical Element Models (CEMs) [CEM] which in its technical form and tooling
approach is very close to the Archetype approach, so much so that inter-conversion from CEMs to Archetypes are
available today, and Archetype à CEM convertibility is imminent.

In the following, the term ‘Archetype’ can be assumed to also stand for Intermountain CEMs.

To make the distinction between domain and information models concrete, information models in openEHR, CIMI and
more generally in e-health typically define things like ‘clinical data types’, such as Quantity (with units, accuracy etc),
Coded text, Ordinal (an Integer/symbol conjunction), and fairly generic clinical structures, such as ‘clinical statement’
(often denoted by the type Entry), clinical document, report, and so on. Such a class model may contain 50-100 classes,
including 20+ classes for the clinical data types. This enables the construction of instance structures corresponding to the
various parts and sections of e.g. a clinical encounter note or a hospital discharge summary. However, neither a class
model of this size, nor the capabilities of standard UML 2.5 can naturally accommodate the explosion of diversity of
possible values of instances which can make up a clinical document created in any particular situation (e.g. a specific
kind of patient visiting a specialist), for example the tens of thousands of clinical observations (e.g. ‘systolic blood
pressure’, ‘visual acuity’, etc, many of them consisting of multiple data points in specific structures), or the O(100k)
laboratory analyte result types. Further, the size of terminology needed to annotate data items, both ‘names’ and ‘values’
in a name/value understanding of the data is in the O(100k) concepts range, as exemplified by the SNOMED CT and
ICD11 terminologies.

The above situation applies across most information-rich industries, with varying but generally very large numbers;
health is used here just as a convenient example.

Although technically these numerous possible values could just be understood as the specific values that ‘happen to
occur’ in a situation of data creation, it is widely understood within IT in general that domain data value ‘complexes’ (co-
occurring structures of data) correspond to meaningful patterns that constitute a relatively small fraction of the
astronomical number of possible combinations of values within structures. Thus, while some tens to hundreds of
thousands of ‘clinical statement’ patterns would adequately cover nearly all of general medical data recording (i.e.
leaving the terminal real world values such as actual blood pressure open, within their respective sanity ranges), the
information models in typical use would permit possible instance structures in the O(1E10) and higher ranges. In other
words, most possible data constructions are garbage.

It is also widely recognized that mechanisms are needed to enable some sort of domain level ‘modeling’ or ‘templating’,
to enable the common patterns to be defined, and thus to allow the creation of software or other mechanisms (e.g. pre-
built UI forms) to limit the possible instance structures to those that actually make sense. The general need was identified
in Martin Fowler’s 1991 publication ‘Analysis Patterns’, in which ‘patterns’ are illustrated in ‘above the line’ parts of
UML diagrams, but has been known for some decades. It is generally understood that this kind of modeling cannot
simply be an extension of the existing software or database schemata; if it is, it implies endless maintenance and

Archetype Modeling Language (AML), v1.0 (Beta 2) 17

7 ADL, AOM, and AML
(Informative)

This clause describes the relationship between the Archetype Definition Language (ADL) [ADL], the Archetype Object
Model (AOM) [AOM] and the Archetype Modeling Language (AML) specification.

7.1 Business Purpose
The Archetype formalism, comprising the Archetype Definition Language (ADL) and its sibling specification Archetype
Object Model (AOM) were devised by the openEHR Foundation as part of an approach to account for the need to
accommodate ‘domain semantics’ and ‘domain models’, which are numerous and highly variable, while preserving
existing ‘information models’, where the latter are understood as the definition of data / instances, in the orthodox object-
oriented and relational manner. The same need was recognized by the CEN and ISO committees in health with the result
that AOM became an ISO standard (13606-2) [ISO13606-2] in 2008. The same need was identified since 2011 by the
Clinical Information Modeling Initiative (CIMI) [CIMI], which chose the latest version of ADL/AOM as its modeling
formalism. Independently of this lineage of development, Intermountain Healthcare developed over many years a system
of domain content modeling known as Clinical Element Models (CEMs) [CEM] which in its technical form and tooling
approach is very close to the Archetype approach, so much so that inter-conversion from CEMs to Archetypes are
available today, and Archetype à CEM convertibility is imminent.

In the following, the term ‘Archetype’ can be assumed to also stand for Intermountain CEMs.

To make the distinction between domain and information models concrete, information models in openEHR, CIMI and
more generally in e-health typically define things like ‘clinical data types’, such as Quantity (with units, accuracy etc),
Coded text, Ordinal (an Integer/symbol conjunction), and fairly generic clinical structures, such as ‘clinical statement’
(often denoted by the type Entry), clinical document, report, and so on. Such a class model may contain 50-100 classes,
including 20+ classes for the clinical data types. This enables the construction of instance structures corresponding to the
various parts and sections of e.g. a clinical encounter note or a hospital discharge summary. However, neither a class
model of this size, nor the capabilities of standard UML 2.5 can naturally accommodate the explosion of diversity of
possible values of instances which can make up a clinical document created in any particular situation (e.g. a specific
kind of patient visiting a specialist), for example the tens of thousands of clinical observations (e.g. ‘systolic blood
pressure’, ‘visual acuity’, etc, many of them consisting of multiple data points in specific structures), or the O(100k)
laboratory analyte result types. Further, the size of terminology needed to annotate data items, both ‘names’ and ‘values’
in a name/value understanding of the data is in the O(100k) concepts range, as exemplified by the SNOMED CT and
ICD11 terminologies.

The above situation applies across most information-rich industries, with varying but generally very large numbers;
health is used here just as a convenient example.

Although technically these numerous possible values could just be understood as the specific values that ‘happen to
occur’ in a situation of data creation, it is widely understood within IT in general that domain data value ‘complexes’ (co-
occurring structures of data) correspond to meaningful patterns that constitute a relatively small fraction of the
astronomical number of possible combinations of values within structures. Thus, while some tens to hundreds of
thousands of ‘clinical statement’ patterns would adequately cover nearly all of general medical data recording (i.e.
leaving the terminal real world values such as actual blood pressure open, within their respective sanity ranges), the
information models in typical use would permit possible instance structures in the O(1E10) and higher ranges. In other
words, most possible data constructions are garbage.

It is also widely recognized that mechanisms are needed to enable some sort of domain level ‘modeling’ or ‘templating’,
to enable the common patterns to be defined, and thus to allow the creation of software or other mechanisms (e.g. pre-
built UI forms) to limit the possible instance structures to those that actually make sense. The general need was identified
in Martin Fowler’s 1991 publication ‘Analysis Patterns’, in which ‘patterns’ are illustrated in ‘above the line’ parts of
UML diagrams, but has been known for some decades. It is generally understood that this kind of modeling cannot
simply be an extension of the existing software or database schemata; if it is, it implies endless maintenance and

Archetype Modeling Language (AML), v1.0 (Beta 2) 17

updating of deployed software, and worse, frequent database migration. In systems operating 24x365, and routinely
creating Terabytes of data per year per hospital, this is not an acceptable approach.

Consequently, most large system software products in the health and other domains have some kind of configuration or
template building tool(s) that enable modeling of typical domain content patterns (often conceived of as forms).

The problem to date has been that no such capability is available independent of particular software products (specific
vendors), concrete forms (UI forms, XSDs etc) or domains (e.g. process and control systems engineering have domain
specific languages) – i.e. even tools that may be technically powerful enough are buried inside specific products, and are
usually targeted to the database schemas of the product.

An important economic factor is that the creation of good quality domain models is time-consuming and expensive,
relying as it does on domain experts – typically experienced clinicians, engineers etc – rather than IT staff. If models are
created inside a specific product (e.g. a particular hospital information system), and that product is replaced, there is
often little appetite or availability of the staff to recreate the work done to create the models/templates created in the first
product. Multiplied across products, sites, and whole industry verticals, the lack of standard ways of representing models
of domain content has become a significant blockage to the production of high quality information systems. Instead, as
each solution is replaced, its domain models usually die with it.

The need for an efficient, formal, and product- and format-independent domain modeling capability is therefore clear.
The sheer numbers of content patterns / models in health have led to the creation of an approach, centered around the
Archetype formalism, used in conjunction with available terminologies (i.e. SNOMED CT, LOINC, ICDx and many
others).

The archetype formalism primarily addresses the expression of models of possible data instance structures, rather than
higher level concepts such as workflows, clinical guidelines (which are decision graphs) and so on, although its general
approach can be applied to any of these, i.e. the use of a model of ‘what can be said’ and a formalism or mechanism for
constraining possibilities to the meaningful subset.

The openEHR ADL/AOM formalism is designed to be independent of any specific information model (known as a
‘reference model’), product, technical format, or industry vertical. It is designed so instances of the formalism, known as
Archetypes, can be computationally processed into desired output forms corresponding to specific technology
environments. This is routinely performed in openEHR and Intermountain tooling environments.

It also supports two distinct types of domain content models, relating to a universal need, which is to be able to represent
both use-independent definitions of ‘data points’, and use-case dependent definition of ‘data sets’. Consider the case of
recording patient vital signs. Assume that a content model can be defined for ‘blood pressure’, ‘heart rate’ and ‘blood
oxygen’. These definitions need to be independent of specific uses such as patient home measurement, GP encounter,
and hospital bedside measurement, since in all these cases, the blood pressure etc. are recorded in exactly the same way.
However in each case, these vital signs data points are recorded within a larger data set of items that correspond to the
health system event occurring, such as a GP patient health checkup. Thus there are two related needs: to be able to model
domain data items and structures, and secondly, to be able to model larger structures in which they may occur. The
alternative would be to create a domain model for every data set and within many of these models, to repeatedly create
the same sub-model of recurring content, such as blood pressure. The former approach results in two layers of domain
models: reusable data point models (Archetypes), and use-case specific data-set models (Templates, in ADL parlance).

7.2 Technical Aims of ADL / AOM
The ADL/AOM specifications published by openEHR [ADL], and later adopted in various forms by ISO and CIMI, take
the following technical approach to domain content modeling:

! Domain content models are separated into two layers – re-usable Archetypes and use-case specific data-set
models, known as Templates;

! A single formalism is used for all models: ADL syntax and its parse-tree equivalent AOM; a Template is
understood as a specific kind of Archetype, constructed of elements chosen from specific Archetypes;

! The formalism is designed on the basis of constraints on a reference model i.e. any standard UML information

18 Archetype Modeling Language (AML), v1.0 (Beta 2)

updating of deployed software, and worse, frequent database migration. In systems operating 24x365, and routinely
creating Terabytes of data per year per hospital, this is not an acceptable approach.

Consequently, most large system software products in the health and other domains have some kind of configuration or
template building tool(s) that enable modeling of typical domain content patterns (often conceived of as forms).

The problem to date has been that no such capability is available independent of particular software products (specific
vendors), concrete forms (UI forms, XSDs etc) or domains (e.g. process and control systems engineering have domain
specific languages) – i.e. even tools that may be technically powerful enough are buried inside specific products, and are
usually targeted to the database schemas of the product.

An important economic factor is that the creation of good quality domain models is time-consuming and expensive,
relying as it does on domain experts – typically experienced clinicians, engineers etc – rather than IT staff. If models are
created inside a specific product (e.g. a particular hospital information system), and that product is replaced, there is
often little appetite or availability of the staff to recreate the work done to create the models/templates created in the first
product. Multiplied across products, sites, and whole industry verticals, the lack of standard ways of representing models
of domain content has become a significant blockage to the production of high quality information systems. Instead, as
each solution is replaced, its domain models usually die with it.

The need for an efficient, formal, and product- and format-independent domain modeling capability is therefore clear.
The sheer numbers of content patterns / models in health have led to the creation of an approach, centered around the
Archetype formalism, used in conjunction with available terminologies (i.e. SNOMED CT, LOINC, ICDx and many
others).

The archetype formalism primarily addresses the expression of models of possible data instance structures, rather than
higher level concepts such as workflows, clinical guidelines (which are decision graphs) and so on, although its general
approach can be applied to any of these, i.e. the use of a model of ‘what can be said’ and a formalism or mechanism for
constraining possibilities to the meaningful subset.

The openEHR ADL/AOM formalism is designed to be independent of any specific information model (known as a
‘reference model’), product, technical format, or industry vertical. It is designed so instances of the formalism, known as
Archetypes, can be computationally processed into desired output forms corresponding to specific technology
environments. This is routinely performed in openEHR and Intermountain tooling environments.

It also supports two distinct types of domain content models, relating to a universal need, which is to be able to represent
both use-independent definitions of ‘data points’, and use-case dependent definition of ‘data sets’. Consider the case of
recording patient vital signs. Assume that a content model can be defined for ‘blood pressure’, ‘heart rate’ and ‘blood
oxygen’. These definitions need to be independent of specific uses such as patient home measurement, GP encounter,
and hospital bedside measurement, since in all these cases, the blood pressure etc. are recorded in exactly the same way.
However in each case, these vital signs data points are recorded within a larger data set of items that correspond to the
health system event occurring, such as a GP patient health checkup. Thus there are two related needs: to be able to model
domain data items and structures, and secondly, to be able to model larger structures in which they may occur. The
alternative would be to create a domain model for every data set and within many of these models, to repeatedly create
the same sub-model of recurring content, such as blood pressure. The former approach results in two layers of domain
models: reusable data point models (Archetypes), and use-case specific data-set models (Templates, in ADL parlance).

7.2 Technical Aims of ADL / AOM
The ADL/AOM specifications published by openEHR [ADL], and later adopted in various forms by ISO and CIMI, take
the following technical approach to domain content modeling:

! Domain content models are separated into two layers – re-usable Archetypes and use-case specific data-set
models, known as Templates;

! A single formalism is used for all models: ADL syntax and its parse-tree equivalent AOM; a Template is
understood as a specific kind of Archetype, constructed of elements chosen from specific Archetypes;

! The formalism is designed on the basis of constraints on a reference model i.e. any standard UML information

18 Archetype Modeling Language (AML), v1.0 (Beta 2)

model, such that instances of the domain models (i.e. actual Archetypes or Templates) are guaranteed to be legal
technical instances of the underlying reference model;

! The ADL and AOM expressions of the formalism structurally follow the graph nature of instance networks
resulting from class model instantiation, that is to say, ADL is a block-structured syntax, and the AOM defines
equivalent in-memory graph structures that relate to corresponding structures from the underlying Reference
Model;

! The formalism is independent of natural language, and can accommodate domain models in any language, as
well as translation into other languages;

! The formalism accommodates ‘bindings’ to any terminology, enabling the relationship between semantic
entities (terminology concepts and ontology entities) to be formally expressed;

! Specialization and Composition between models are supported, in similar ways to inheritance and association in
UML;

! Every individual element in an Archetype or Template is identified by a path that can be used to create
statements in a query language for data retrieval;

! Various structured, multi-lingual meta-data are supported, including language, translation details, purpose, use,
misuse, keywords, IP-related meta-data, and annotations.

The specifications of ADL and AOM can be referred to for details, but one key feature of the formalism is worth
pointing out here: it relies systematically on a simple conjunction of reference model class names with codes,
representing domain entities. The following fragment of ADL illustrates this. The names CLUSTER, ELEMENT and
DV_QUANTITY are type-names from the openEHR Reference Model, while the codes [id3], [id22], etc stand for
domain semantic definitions such as ‘Blood pressure measurement’ and so on, as shown in the comments (the actual
code definitions are in the lower part of the archetype definition, not shown here). This simple device allows, for
example, two ELEMENT objects to be marked as representing two types of blood pressure. In its general form, it can be
understood as a way of marking standard building block instances as being different parts of a domain instance structure,
such as a medical result or complex document.

 CLUSTER[id3] matches { -- Blood pressure measurement
 items matches {
 ELEMENT[id22] matches { -- systolic blood pressure
 value matches {
 DV_QUANTITY[id35]
 }
 }
 ELEMENT[id23] matches { -- diastolic blood pressure
 value matches {
 DV_QUANTITY [id37]
 }
 }
 }

This ‘concept-marking’ of nodes is applied universally throughout an Archetype, and where nodes have siblings, the
codes are defined in an Archetype-local terminology.

An additional specification defines the structure and semantics of Archetype identifiers, versioning and lifecycle [KAI].

Functionally, archetypes and templates are used at design time to define domain content models, and at runtime for two
purposes:

Archetype Modeling Language (AML), v1.0 (Beta 2) 19

model, such that instances of the domain models (i.e. actual Archetypes or Templates) are guaranteed to be legal
technical instances of the underlying reference model;

! The ADL and AOM expressions of the formalism structurally follow the graph nature of instance networks
resulting from class model instantiation, that is to say, ADL is a block-structured syntax, and the AOM defines
equivalent in-memory graph structures that relate to corresponding structures from the underlying Reference
Model;

! The formalism is independent of natural language, and can accommodate domain models in any language, as
well as translation into other languages;

! The formalism accommodates ‘bindings’ to any terminology, enabling the relationship between semantic
entities (terminology concepts and ontology entities) to be formally expressed;

! Specialization and Composition between models are supported, in similar ways to inheritance and association in
UML;

! Every individual element in an Archetype or Template is identified by a path that can be used to create
statements in a query language for data retrieval;

! Various structured, multi-lingual meta-data are supported, including language, translation details, purpose, use,
misuse, keywords, IP-related meta-data, and annotations.

The specifications of ADL and AOM can be referred to for details, but one key feature of the formalism is worth
pointing out here: it relies systematically on a simple conjunction of reference model class names with codes,
representing domain entities. The following fragment of ADL illustrates this. The names CLUSTER, ELEMENT and
DV_QUANTITY are type-names from the openEHR Reference Model, while the codes [id3], [id22], etc stand for
domain semantic definitions such as ‘Blood pressure measurement’ and so on, as shown in the comments (the actual
code definitions are in the lower part of the archetype definition, not shown here). This simple device allows, for
example, two ELEMENT objects to be marked as representing two types of blood pressure. In its general form, it can be
understood as a way of marking standard building block instances as being different parts of a domain instance structure,
such as a medical result or complex document.

 CLUSTER[id3] matches { -- Blood pressure measurement
 items matches {
 ELEMENT[id22] matches { -- systolic blood pressure
 value matches {
 DV_QUANTITY[id35]
 }
 }
 ELEMENT[id23] matches { -- diastolic blood pressure
 value matches {
 DV_QUANTITY [id37]
 }
 }
 }

This ‘concept-marking’ of nodes is applied universally throughout an Archetype, and where nodes have siblings, the
codes are defined in an Archetype-local terminology.

An additional specification defines the structure and semantics of Archetype identifiers, versioning and lifecycle [KAI].

Functionally, archetypes and templates are used at design time to define domain content models, and at runtime for two
purposes:

Archetype Modeling Language (AML), v1.0 (Beta 2) 19

! Creating initial instance structures (from Templates); these must be by definition correct domain content
structures, assuming the Archetypes are correct and complete;

! Validating previously created data retrieved from a data source or message channel, including data not
originally created using Archetypes.

In openEHR, a third key function, querying, is performed using queries in the Archetype Query Language (AQL)
[AQL], written solely based on Archetype paths and Reference Model relations, but independent of physical data storage
schema.

These uses of Archetypes and Templates provide a basis for lifting data processing to a domain semantic level, from
what would otherwise be a syntactic level; it enables higher level functionality such as decision support and business
intelligence to reliably refer to domain semantic entities rather than trying to match in ad hoc ways.

To provide a practical idea of use to date, there are nearly 500 openEHR archetypes, with an average of 15 data points
per archetype published – a total of around 7,500 substantive clinical data point definitions - on the openEHR.org
Clinical Knowledge Manager (CKM) repository [CKM]. Additionally some thousands of archetypes have been created
in national repositories in certain countries, and also within vendor products. Many thousands of Templates and AQL
queries are constructed from this base of archetypes, and are operating in deployed openEHR systems around the world.

The Intermountain internal CEM repository [CEM] has around 6,500 CEMs, each with one substantive data point (the
granularity is finer). The CEMs bind directly to Intermountain’s own controlled terminology, and are used to build
Template equivalents, known as CE-Types.

7.3 Technical Aims of AML
AML’s purpose is to provide the capabilities of the Archetype Object Model (AOM) in a native UML environment. Due
to the way UML works, the technical aims can be understood in somewhat different, although equivalent terms.

The starting point is the same, i.e. a generic but otherwise orthodox UML information model, acting as the Reference
Model.

The key difference between the native AOM approach and AML is that the latter converts the explicit conjunction of a
class name with a domain code into a new class name that corresponds to the meaning of the code. For example, a
Reference Model class Element could be subtyped in AML to the class SystolicBloodPressureElement.

The AML profiles and stereotypes enable the equivalent definition of local terminology as described above to be done,
along with the definition of classes representing the nodes. An AML Archetype will therefore be isomorphic with the
equivalent ADL/AOM archetype i.e. same node structure in the definition part. Other parts of the profile support the
definition of the same meta-data items as defined by the AOM, enabling an AML Archetype to be treated as a ‘model’ in
its own right.

20 Archetype Modeling Language (AML), v1.0 (Beta 2)

! Creating initial instance structures (from Templates); these must be by definition correct domain content
structures, assuming the Archetypes are correct and complete;

! Validating previously created data retrieved from a data source or message channel, including data not
originally created using Archetypes.

In openEHR, a third key function, querying, is performed using queries in the Archetype Query Language (AQL)
[AQL], written solely based on Archetype paths and Reference Model relations, but independent of physical data storage
schema.

These uses of Archetypes and Templates provide a basis for lifting data processing to a domain semantic level, from
what would otherwise be a syntactic level; it enables higher level functionality such as decision support and business
intelligence to reliably refer to domain semantic entities rather than trying to match in ad hoc ways.

To provide a practical idea of use to date, there are nearly 500 openEHR archetypes, with an average of 15 data points
per archetype published – a total of around 7,500 substantive clinical data point definitions - on the openEHR.org
Clinical Knowledge Manager (CKM) repository [CKM]. Additionally some thousands of archetypes have been created
in national repositories in certain countries, and also within vendor products. Many thousands of Templates and AQL
queries are constructed from this base of archetypes, and are operating in deployed openEHR systems around the world.

The Intermountain internal CEM repository [CEM] has around 6,500 CEMs, each with one substantive data point (the
granularity is finer). The CEMs bind directly to Intermountain’s own controlled terminology, and are used to build
Template equivalents, known as CE-Types.

7.3 Technical Aims of AML
AML’s purpose is to provide the capabilities of the Archetype Object Model (AOM) in a native UML environment. Due
to the way UML works, the technical aims can be understood in somewhat different, although equivalent terms.

The starting point is the same, i.e. a generic but otherwise orthodox UML information model, acting as the Reference
Model.

The key difference between the native AOM approach and AML is that the latter converts the explicit conjunction of a
class name with a domain code into a new class name that corresponds to the meaning of the code. For example, a
Reference Model class Element could be subtyped in AML to the class SystolicBloodPressureElement.

The AML profiles and stereotypes enable the equivalent definition of local terminology as described above to be done,
along with the definition of classes representing the nodes. An AML Archetype will therefore be isomorphic with the
equivalent ADL/AOM archetype i.e. same node structure in the definition part. Other parts of the profile support the
definition of the same meta-data items as defined by the AOM, enabling an AML Archetype to be treated as a ‘model’ in
its own right.

20 Archetype Modeling Language (AML), v1.0 (Beta 2)

8 Profiles

There is a need for information interoperability between health entities. Information needs to be shared between
organizations and across international boundaries. The inability to share this information in a repeatable manner greatly
affects the quality of care provided. The Clinical Information Modeling Initiative (CIMI) has the potential to be a
disruptive innovation in eHealth. By providing the AML specifications for the representation of health information
content, semantically interoperable information may be created and shared in health records, messages, and documents.
The CIMI initiative affords the opportunity to enable the storage of lifelong health information; simplify data exchange,
aggregation, querying and analysis; and support knowledge-based activities such as decision support. This will be
achieved through the development of non-proprietary, common and fully defined information models of clinical content
and known transformations.

The clinical reference model (an instance of a reference model), clinical archetype models and associated terminology
will serve as the domain vocabulary for clinical information. The syntax and semantics defined by these clinical
archetype models shall be maintained by users, in a common language that can be consistently understood and shared.
The AML Profile enables the creation, definition and use of this common language in UML.

The purpose of the AML Profile is to enable an UML ecosystem that supports and underpins CIMI activities through the
use of adopted standards. The AML Profile provides a clear, consistent means of designing clinical models using UML,
where tool vendors may add additional value/usability; clinical modeling concepts are separated from specific solutions
(ex. XML, JSON, DB schema, etc.); and the creation of open source solutions is enabled.

The AML Profile:

! Specifies a collection of complementary UML profiles that work together to support the creation of CIMI
content models;

! Supports the specification of CIMI content models in UML, such that they can be translated into AOM 2.0;

! Is capable of being used in other domain areas, with other reference models;

! Is capable of being used in developing specific implementations of CIMI content models using platform
specific solutions (e.g. Clinical Document Architecture (CDA), openEHR etc.)

The AML Profile provides consistency by ensuring that a UML representation of a CIMI model produced by one
developer can be accurately interpreted by developers, modelers and transformations. It offers completeness by ensuring
that a developer can produce a UML representation of any CIMI reference and constraint model. Finally, the AML
Profile offers practicality by ensuring that a developer/modeler can develop a CIMI compliant clinical model by
employing the profile in current UML modeling tools.
Within the healthcare community the pattern of creating a common model that is reused by others to create specialized
models through constraining the original model is often referred to as reference / constraint modeling. The reference
model consists of syntax-neutral and technology- independent building blocks that can be used for data modeling. Major
benefits of this approach include improved reuse of existing data artifacts and improved enterprise interoperability.

The AML profile provides a family of UML sub-profiles that enables the representation of semantic-based information
models and addresses the problem of the lack of semantic interoperability within and between applications and databases
in healthcare computing environments, including across enterprises and national borders. The AML Profile is the
aggregation of three sub-profiles:

1. The Reference Model Profile (RMP)
2. The Constraint Model Profile (CMP)
3. The Terminology Binding Profile (TBP).

Traditionally, a single model containing all the required information concepts is designed for a specific application,
transport and database without regard to interoperability. Standards for the exchange of that health data between

Archetype Modeling Language (AML), v1.0 (Beta 2) 21

8 Profiles

There is a need for information interoperability between health entities. Information needs to be shared between
organizations and across international boundaries. The inability to share this information in a repeatable manner greatly
affects the quality of care provided. The Clinical Information Modeling Initiative (CIMI) has the potential to be a
disruptive innovation in eHealth. By providing the AML specifications for the representation of health information
content, semantically interoperable information may be created and shared in health records, messages, and documents.
The CIMI initiative affords the opportunity to enable the storage of lifelong health information; simplify data exchange,
aggregation, querying and analysis; and support knowledge-based activities such as decision support. This will be
achieved through the development of non-proprietary, common and fully defined information models of clinical content
and known transformations.

The clinical reference model (an instance of a reference model), clinical archetype models and associated terminology
will serve as the domain vocabulary for clinical information. The syntax and semantics defined by these clinical
archetype models shall be maintained by users, in a common language that can be consistently understood and shared.
The AML Profile enables the creation, definition and use of this common language in UML.

The purpose of the AML Profile is to enable an UML ecosystem that supports and underpins CIMI activities through the
use of adopted standards. The AML Profile provides a clear, consistent means of designing clinical models using UML,
where tool vendors may add additional value/usability; clinical modeling concepts are separated from specific solutions
(ex. XML, JSON, DB schema, etc.); and the creation of open source solutions is enabled.

The AML Profile:

! Specifies a collection of complementary UML profiles that work together to support the creation of CIMI
content models;

! Supports the specification of CIMI content models in UML, such that they can be translated into AOM 2.0;

! Is capable of being used in other domain areas, with other reference models;

! Is capable of being used in developing specific implementations of CIMI content models using platform
specific solutions (e.g. Clinical Document Architecture (CDA), openEHR etc.)

The AML Profile provides consistency by ensuring that a UML representation of a CIMI model produced by one
developer can be accurately interpreted by developers, modelers and transformations. It offers completeness by ensuring
that a developer can produce a UML representation of any CIMI reference and constraint model. Finally, the AML
Profile offers practicality by ensuring that a developer/modeler can develop a CIMI compliant clinical model by
employing the profile in current UML modeling tools.
Within the healthcare community the pattern of creating a common model that is reused by others to create specialized
models through constraining the original model is often referred to as reference / constraint modeling. The reference
model consists of syntax-neutral and technology- independent building blocks that can be used for data modeling. Major
benefits of this approach include improved reuse of existing data artifacts and improved enterprise interoperability.

The AML profile provides a family of UML sub-profiles that enables the representation of semantic-based information
models and addresses the problem of the lack of semantic interoperability within and between applications and databases
in healthcare computing environments, including across enterprises and national borders. The AML Profile is the
aggregation of three sub-profiles:

1. The Reference Model Profile (RMP)
2. The Constraint Model Profile (CMP)
3. The Terminology Binding Profile (TBP).

Traditionally, a single model containing all the required information concepts is designed for a specific application,
transport and database without regard to interoperability. Standards for the exchange of that health data between

Archetype Modeling Language (AML), v1.0 (Beta 2) 21

applications and databases have been focused on static message definitions that have not enabled a sufficient degree of
interoperability or flexibility. They have not enabled 'single-source' modeling, whereby a single definition (e.g. a
microbiology lab result) can be re-used for multiple purposes, such as a message definition, a document definition, a
screen display form, a screen data capture form, or a report.

A more flexible and interoperable way of standardizing business semantics has long been required.

This submission provides a means for developing a common set of semantic building blocks that represent the general
types of healthcare data in use today. The solution should provide an approach for the creation of new healthcare
information models and the semantic binding of these information models to published terminologies to achieve
semantic interoperability of data.

8.1 Dependencies
The figure below shows the AML sub-profile dependencies. The TerminologyProfile provides a generic set of extensions
that allow UML model elements to be identified, designated and associated with ontological concepts that identify the
intended meaning of the model elements, enumerations and associated value sets.

The ReferenceModelProfile identifies the set of elements in a UML Reference Model that can be further constrained via.
the ConstraintProfile. It also provides a mechanism to associate primitive type constaints in the constraint profile with
the corresponding elements in the UML reference model.

The ConstraintProfile provides mechanisms for constraining the names, cardinality, types and possible values of
elements in the UML Reference Model.

8.2 ReferenceModelProfile [Profile]
The Reference Model Profile (RMP) enables the specification of reference models, upon which archetypes can be based.
The RMP enables the identification of a root package that identifies the set of reference model elements (REM) that can
be constrained by a collection of archetype model elements (AME) in an Archetype Library.

22 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 1. AML Dependencies

applications and databases have been focused on static message definitions that have not enabled a sufficient degree of
interoperability or flexibility. They have not enabled 'single-source' modeling, whereby a single definition (e.g. a
microbiology lab result) can be re-used for multiple purposes, such as a message definition, a document definition, a
screen display form, a screen data capture form, or a report.

A more flexible and interoperable way of standardizing business semantics has long been required.

This submission provides a means for developing a common set of semantic building blocks that represent the general
types of healthcare data in use today. The solution should provide an approach for the creation of new healthcare
information models and the semantic binding of these information models to published terminologies to achieve
semantic interoperability of data.

8.1 Dependencies
The figure below shows the AML sub-profile dependencies. The TerminologyProfile provides a generic set of extensions
that allow UML model elements to be identified, designated and associated with ontological concepts that identify the
intended meaning of the model elements, enumerations and associated value sets.

The ReferenceModelProfile identifies the set of elements in a UML Reference Model that can be further constrained via.
the ConstraintProfile. It also provides a mechanism to associate primitive type constaints in the constraint profile with
the corresponding elements in the UML reference model.

The ConstraintProfile provides mechanisms for constraining the names, cardinality, types and possible values of
elements in the UML Reference Model.

8.2 ReferenceModelProfile [Profile]
The Reference Model Profile (RMP) enables the specification of reference models, upon which archetypes can be based.
The RMP enables the identification of a root package that identifies the set of reference model elements (REM) that can
be constrained by a collection of archetype model elements (AME) in an Archetype Library.

22 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 1. AML Dependencies

The RMP provides the ability to associate the "primitive data types" identified in an instance of a Constraint Model
Profile with the corresponding (mapped) data types in the reference model. It also allows properties in the target
reference model to be identified as "unconstrainable", because they carry "runtime" provenance and workflow
information or because they carry "infrastructure" items such as archetype identifiers, etc.

8.2.1 Infrastructure [Stereotype]
Description

An «Infrastructure» Property models an Archetype implementation aspect such as a specific Archetype identifier.
Properties with an applied Infrastructure Stereotype cannot be constrained in AML.

Diagrams

Reference Model Profile

Meta-classes

UML::Property

8.2.2 MappedDataType [Stereotype]

Description

A «MappedDataType» Abstraction specifies the AML Primitive Type abstraction for a Reference Model Classifier.
AML Primitive types are defined by the UML Type Library and/or the XML Primitive Type Library. The client of the
Abstraction is a Reference Model Classifier. The supplier of the Abstraction is an AML Primitive type. The mapping of
the Abstraction defines the transformations between the Reference Model Classifier and its AML Primitive Type
counterpart. Note that AML primitive Archetype Constraints are defined with respect to AML Primitive Types even
when the Type being constrained is a Reference Model Type.

Diagrams
Reference Model Profile

Meta-classes

UML::Abstraction

Constraints
! isAMLDataType

The supplier AML Primitive Type must be an AML Primitive Type defined in the UML Primitive Type or XML
Primitive Type libraries.

Archetype Modeling Language (AML), v1.0 (Beta 2) 23

Figure 2. Reference Model Profile

The RMP provides the ability to associate the "primitive data types" identified in an instance of a Constraint Model
Profile with the corresponding (mapped) data types in the reference model. It also allows properties in the target
reference model to be identified as "unconstrainable", because they carry "runtime" provenance and workflow
information or because they carry "infrastructure" items such as archetype identifiers, etc.

8.2.1 Infrastructure [Stereotype]
Description

An «Infrastructure» Property models an Archetype implementation aspect such as a specific Archetype identifier.
Properties with an applied Infrastructure Stereotype cannot be constrained in AML.

Diagrams

Reference Model Profile

Meta-classes

UML::Property

8.2.2 MappedDataType [Stereotype]

Description

A «MappedDataType» Abstraction specifies the AML Primitive Type abstraction for a Reference Model Classifier.
AML Primitive types are defined by the UML Type Library and/or the XML Primitive Type Library. The client of the
Abstraction is a Reference Model Classifier. The supplier of the Abstraction is an AML Primitive type. The mapping of
the Abstraction defines the transformations between the Reference Model Classifier and its AML Primitive Type
counterpart. Note that AML primitive Archetype Constraints are defined with respect to AML Primitive Types even
when the Type being constrained is a Reference Model Type.

Diagrams
Reference Model Profile

Meta-classes

UML::Abstraction

Constraints
! isAMLDataType

The supplier AML Primitive Type must be an AML Primitive Type defined in the UML Primitive Type or XML
Primitive Type libraries.

Archetype Modeling Language (AML), v1.0 (Beta 2) 23

Figure 2. Reference Model Profile

[OCL]

self.base_Abstraction.supplier->exists(s|s.oclIsKindOf(PrimitiveType) and
((s.namespace.name='XMLPrimitiveTypes') or
(s.namespace.name='PrimitiveTypes')))

8.2.3 ReferenceModel [Stereotype]

Description

A «ReferenceModel» Package defines the complex data types and structural patterns that can be constrained by a
collection of Archetypes. A «ReferenceModel» Stereotype includes tag definitions for the publisher, namespace and
version of a Reference Model in a form compatible with a modeling language such as [ADL].

Diagrams

Reference Model Profile

Meta-classes

UML::Package

Attributes

! rmPublisher : UML::PrimitiveTypes::String [1]

The value of this tag is the name of the Reference Model publisher. This tag definition maps to the [AOM]
ARCHETYPE_HRID/rm_publisher attribute.

! RmNamespace : UML::PrimitiveTypes::String [0..1]

The value of this tag is the reverse domain name of the namespace (for example, uk.gov.nhs). This tag
definition maps to the [AOM] ARCHETYPE_HRID/namespace attribute.

! RmVersion : UML::PrimitiveTypes::String [0..1]

The value of this tag is the version id of the reference model on which the archetype is based. The tag maps to
the [AOM] ARCHETYPE/rm_release attribute.

Constraints

! [AOM] ARCHETYPE_HRID:Invariant:Rm_publisher_validity

The [AOM] ARCHETYPE_HRID/rm_publisher must have a value. This [AOM] Invariant maps to the AML Constraint
that the «ReferenceModel» rmPublisher is required.

[English]

The requirement that there is a specified rmPublisher is enforced by the UML
Semantic for the required tag rmPublisher.

24 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

self.base_Abstraction.supplier->exists(s|s.oclIsKindOf(PrimitiveType) and
((s.namespace.name='XMLPrimitiveTypes') or
(s.namespace.name='PrimitiveTypes')))

8.2.3 ReferenceModel [Stereotype]

Description

A «ReferenceModel» Package defines the complex data types and structural patterns that can be constrained by a
collection of Archetypes. A «ReferenceModel» Stereotype includes tag definitions for the publisher, namespace and
version of a Reference Model in a form compatible with a modeling language such as [ADL].

Diagrams

Reference Model Profile

Meta-classes

UML::Package

Attributes

! rmPublisher : UML::PrimitiveTypes::String [1]

The value of this tag is the name of the Reference Model publisher. This tag definition maps to the [AOM]
ARCHETYPE_HRID/rm_publisher attribute.

! RmNamespace : UML::PrimitiveTypes::String [0..1]

The value of this tag is the reverse domain name of the namespace (for example, uk.gov.nhs). This tag
definition maps to the [AOM] ARCHETYPE_HRID/namespace attribute.

! RmVersion : UML::PrimitiveTypes::String [0..1]

The value of this tag is the version id of the reference model on which the archetype is based. The tag maps to
the [AOM] ARCHETYPE/rm_release attribute.

Constraints

! [AOM] ARCHETYPE_HRID:Invariant:Rm_publisher_validity

The [AOM] ARCHETYPE_HRID/rm_publisher must have a value. This [AOM] Invariant maps to the AML Constraint
that the «ReferenceModel» rmPublisher is required.

[English]

The requirement that there is a specified rmPublisher is enforced by the UML
Semantic for the required tag rmPublisher.

24 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.2.4 Runtime [Stereotype]

Description

A «Runtime» Property models a dynamic or "runtime" element such as a time stamp. A Property with an applied
Runtime Stereotype cannot be constrained using AML.

Diagrams

Reference Model Profile

Meta-classes

UML::Property

8.3 TerminologyProfile [Profile]

The Terminology Binding Profile supports the binding of information models terminology, with optional support for
binding to CTS2. Profile bindings include:

1. Value Bindings: Linkage of the data model to value domains, which restrict the valid value(s) of an attribute
 to a set of values that correspond to a set of meanings recorded in an external terminology;

2. Semantic Bindings: Definition of the meaning of model elements using concepts in an external terminology;

3. Constraint Bindings: Specifying constraints on the information model, using concepts and relationships
 defined in an external terminology.

The Terminology Binding Profile includes the UML equivalent of the ADL 2.0 terminology section, including:

! Identifiers – The IdentifiedItem stereotype allows "id", "at" and "ac" identifiers to be assigned to Class
constraints, Enumeration Literals and Enumerations respectively.

! Term definitions – The ResourceTranslation, Entry and IdEntry stereotypes allow language specific text/
description tuples to be assigned directly to model elements (Entry) or indirectly to identified elements

! Term bindings:

o Model elements may be associated with a concept reference in an external terminology using the about
association, which includes term bindings for ADL 2.0 "id" codes.

o Enumerations may be associated with a value set and optional definition that identifies the list of
possible "meanings" that can be associated with the owned enumeration literals, which includes term
bindings for ADL "ac" codes.

o Enumeration literals may be associated concept references in an external terminology that define the
intended meaning of the enumeration literal in the context of the containing enumeration which
includes term bindings for ADL "at" codes.

The Terminology Binding profile draws on the ISO 11179-3 model for the identification, designation, definition and
value / meaning binding aspects and on the OMG Common Terminology Services 2 (CTS2) specification for the model
of Concept, Code System, Code System Version, Value Set and Value Set Definition references.

Archetype Modeling Language (AML), v1.0 (Beta 2) 25

8.2.4 Runtime [Stereotype]

Description

A «Runtime» Property models a dynamic or "runtime" element such as a time stamp. A Property with an applied
Runtime Stereotype cannot be constrained using AML.

Diagrams

Reference Model Profile

Meta-classes

UML::Property

8.3 TerminologyProfile [Profile]

The Terminology Binding Profile supports the binding of information models terminology, with optional support for
binding to CTS2. Profile bindings include:

1. Value Bindings: Linkage of the data model to value domains, which restrict the valid value(s) of an attribute
 to a set of values that correspond to a set of meanings recorded in an external terminology;

2. Semantic Bindings: Definition of the meaning of model elements using concepts in an external terminology;

3. Constraint Bindings: Specifying constraints on the information model, using concepts and relationships
 defined in an external terminology.

The Terminology Binding Profile includes the UML equivalent of the ADL 2.0 terminology section, including:

! Identifiers – The IdentifiedItem stereotype allows "id", "at" and "ac" identifiers to be assigned to Class
constraints, Enumeration Literals and Enumerations respectively.

! Term definitions – The ResourceTranslation, Entry and IdEntry stereotypes allow language specific text/
description tuples to be assigned directly to model elements (Entry) or indirectly to identified elements

! Term bindings:

o Model elements may be associated with a concept reference in an external terminology using the about
association, which includes term bindings for ADL 2.0 "id" codes.

o Enumerations may be associated with a value set and optional definition that identifies the list of
possible "meanings" that can be associated with the owned enumeration literals, which includes term
bindings for ADL "ac" codes.

o Enumeration literals may be associated concept references in an external terminology that define the
intended meaning of the enumeration literal in the context of the containing enumeration which
includes term bindings for ADL "at" codes.

The Terminology Binding profile draws on the ISO 11179-3 model for the identification, designation, definition and
value / meaning binding aspects and on the OMG Common Terminology Services 2 (CTS2) specification for the model
of Concept, Code System, Code System Version, Value Set and Value Set Definition references.

Archetype Modeling Language (AML), v1.0 (Beta 2) 25

8.3.1 ArchetypeType [Enumeration]

Description
The «ArchetypeType» Enumeration specifies the structural type of an Archetype. The ArchetypeType is mapped to the
structural variants described by [AOM] ARCHETYPE/is_template and ARCHETYPE/is_overlay attributes.

Diagrams
Terminology Binding Profile

Literals
! archtype

This literal specifies that the Archetype is structured as a source Archetype.

Source archetypes can be specialized, in which case their definition structure is a partial overlay on the flat parent, or
‘top-level’, in which case the definition structure is complete. «ArchetypeRoot» instances may only be used to represent
external references to other Archetypes.

An "archetype" maps to an [AOM] ARCHETYPE in which both ARCHETYPE/is_template and
ARCHETYPE/is_overlay are false.

! template

This literal specifies that the Archetype is structured as a Template.

26 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 3. Terminology Binding Profile

8.3.1 ArchetypeType [Enumeration]

Description
The «ArchetypeType» Enumeration specifies the structural type of an Archetype. The ArchetypeType is mapped to the
structural variants described by [AOM] ARCHETYPE/is_template and ARCHETYPE/is_overlay attributes.

Diagrams
Terminology Binding Profile

Literals
! archtype

This literal specifies that the Archetype is structured as a source Archetype.

Source archetypes can be specialized, in which case their definition structure is a partial overlay on the flat parent, or
‘top-level’, in which case the definition structure is complete. «ArchetypeRoot» instances may only be used to represent
external references to other Archetypes.

An "archetype" maps to an [AOM] ARCHETYPE in which both ARCHETYPE/is_template and
ARCHETYPE/is_overlay are false.

! template

This literal specifies that the Archetype is structured as a Template.

26 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 3. Terminology Binding Profile

A source template is an Archetype containing «ArchetypeRoot» elements representing slot fillers - each referring to an
external Archetype or template, or potentially an overlay archetype.

An Archetype template corresponds to an [AOM] ARCHETYPE/is_template attribute having value=True.

! template_overlay

This literal specifies that the Archetype is structured as a template overlay.

These are purely local components of templates, and include only the definition and terminology. The definition structure
is always a specialized overlay on something else, and may not contain any slot fillers or external references, i.e. no
«ArchetypeRoot» objects. No identifier, adl_version, languages or description are required, as they are considered to be
propagated from the owning root template.

Accordingly, template overlays act like a simplified specialized archetype. Template overlays can be thought of as being
similar to ‘anonymous’ or ‘inner’ classes in some object-oriented programming languages.

A template_overlay is mapped to an [AOM] ARCHETYPE with both ARCHETYPE/is_template and
ARCHETYPE.is_overlay set to true.

8.3.2 about [Stereotype]

Description

The «about» Abstraction specifies an ontological meaning for an AML model element. The about stereotype is used to
model the ISO 11179-3 "meaning" association between a Data Element and a Data Element Concept or between a Value
Domain and a Conceptual Domain.

Diagrams

Terminology Binding Profile

Meta-classes

UML::Abstraction

Constraints

! isConceptReference

The supplier (target) of an «about» Abstraction must be a «ConceptReference».

[OCL]

self.base_Abstraction.supplier->
select(c|c.stereotypedBy('ConceptReference'))->size()=1

8.3.3 ArchetypeTerm [Stereotype]

Description
An «ArchetypeTerm» EnumerationLiteral is used to model a definition identifier. A definition identifier is used to
isolate an Archetype model element from its definition in a specific natural language, technology binding, or value set
grouping. An «IdentifiedItem» element within an Archetype specifies an «ArchetypeTerm» as the language-neutral
identification of a term. Language-specific terminology names and definitions are specified by «IdEntry»
EnumerationLiterals, each of which has an id whose value is an «ArchetypeTerm» EnumerationLiteral. The natural
language associated with an «IdEntry» EnumerationLiteral is in the containing «ResourceTranslation» Enumeration,
which defines all the meta-data associated with a given natural language.

Archetype Modeling Language (AML), v1.0 (Beta 2) 27

A source template is an Archetype containing «ArchetypeRoot» elements representing slot fillers - each referring to an
external Archetype or template, or potentially an overlay archetype.

An Archetype template corresponds to an [AOM] ARCHETYPE/is_template attribute having value=True.

! template_overlay

This literal specifies that the Archetype is structured as a template overlay.

These are purely local components of templates, and include only the definition and terminology. The definition structure
is always a specialized overlay on something else, and may not contain any slot fillers or external references, i.e. no
«ArchetypeRoot» objects. No identifier, adl_version, languages or description are required, as they are considered to be
propagated from the owning root template.

Accordingly, template overlays act like a simplified specialized archetype. Template overlays can be thought of as being
similar to ‘anonymous’ or ‘inner’ classes in some object-oriented programming languages.

A template_overlay is mapped to an [AOM] ARCHETYPE with both ARCHETYPE/is_template and
ARCHETYPE.is_overlay set to true.

8.3.2 about [Stereotype]

Description

The «about» Abstraction specifies an ontological meaning for an AML model element. The about stereotype is used to
model the ISO 11179-3 "meaning" association between a Data Element and a Data Element Concept or between a Value
Domain and a Conceptual Domain.

Diagrams

Terminology Binding Profile

Meta-classes

UML::Abstraction

Constraints

! isConceptReference

The supplier (target) of an «about» Abstraction must be a «ConceptReference».

[OCL]

self.base_Abstraction.supplier->
select(c|c.stereotypedBy('ConceptReference'))->size()=1

8.3.3 ArchetypeTerm [Stereotype]

Description
An «ArchetypeTerm» EnumerationLiteral is used to model a definition identifier. A definition identifier is used to
isolate an Archetype model element from its definition in a specific natural language, technology binding, or value set
grouping. An «IdentifiedItem» element within an Archetype specifies an «ArchetypeTerm» as the language-neutral
identification of a term. Language-specific terminology names and definitions are specified by «IdEntry»
EnumerationLiterals, each of which has an id whose value is an «ArchetypeTerm» EnumerationLiteral. The natural
language associated with an «IdEntry» EnumerationLiteral is in the containing «ResourceTranslation» Enumeration,
which defines all the meta-data associated with a given natural language.

Archetype Modeling Language (AML), v1.0 (Beta 2) 27

An «ArchetypeTerm» EnumerationLiteral may be used to represent the [AOM] concepts of “id”, “ac”, or “at” codes, all
of which have natural language translations. An “at” code represents value term codes within a terminology and may be
used as possible values on terminological constraints. An “ac” code represents a value set, which is a set of “at” codes.
The “id” codes are used to provide identification for other element nodes within an Archetype.

The term_binding tag within an «ArchetypeTerm» is used to specify technology bindings for “at” codes. Each “at” code
may be bound to many «ResourceReference» EnumerationLiterals, each of which may specify an URI as its technology-
specific identifier.

The value_set_members tag within an «ArchetypeTerm» is used to specify value set membership for an “ac” code. The
members of the value set are sibling «ArchetypeTerm»s, each of which represent an “at” code.

Diagrams
Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::PermissibleValue
8.3.12 PermissibleValue [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes
• value_set_members : UML::EnumerationLiteral [0..*]

When the «ArchetypeTerm» corresponds to an [AOM] “ac” code, the value_set_members tag is used to identify the
sibling «ArchetypeTerm» “at” codes logically contained in the “ac” value set. All of the “at” codes must be in the same
Enumeration as the “ac” code.

This tag encapsulates the [AOM] concept of VALUE_SET.

• term_bindings : UML::EnumerationLiteral [0..*]

When the «ArchetypeTerm» corresponds to an [AOM] “at” code, the term_bindings tag is used to identify the list of
«ResourceReference» EnumerationLiterals to be associated with the “at” code. A term binding may be used to specify
the "meaning" of the «ArchetypeTerm», either in the ISO 11179 sense or as a reference to a terminology definition
provided by an external service. In either case, each term_binding member is a «ConceptReference» within an
Enumeration representing the [AOM] concept of term_binding.

Constraints
! [AOM] ARCHETYPE_TERM:Invariant:code_valid_code

The name of the base_EnumerationLiteral must be defined.

[OCL]

not(self.base_EnumerationLiteral.name.oclIsUndefined())
and(self.base_EnumerationLiteral.name<>'')

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:term_bindings_validity

A terminology binding is specified by the values of the term_bindings tag. Each terminology binding must be to a
Concept Reference within the same Archetype.

28 Archetype Modeling Language (AML), v1.0 (Beta 2)

An «ArchetypeTerm» EnumerationLiteral may be used to represent the [AOM] concepts of “id”, “ac”, or “at” codes, all
of which have natural language translations. An “at” code represents value term codes within a terminology and may be
used as possible values on terminological constraints. An “ac” code represents a value set, which is a set of “at” codes.
The “id” codes are used to provide identification for other element nodes within an Archetype.

The term_binding tag within an «ArchetypeTerm» is used to specify technology bindings for “at” codes. Each “at” code
may be bound to many «ResourceReference» EnumerationLiterals, each of which may specify an URI as its technology-
specific identifier.

The value_set_members tag within an «ArchetypeTerm» is used to specify value set membership for an “ac” code. The
members of the value set are sibling «ArchetypeTerm»s, each of which represent an “at” code.

Diagrams
Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::PermissibleValue
8.3.12 PermissibleValue [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes
• value_set_members : UML::EnumerationLiteral [0..*]

When the «ArchetypeTerm» corresponds to an [AOM] “ac” code, the value_set_members tag is used to identify the
sibling «ArchetypeTerm» “at” codes logically contained in the “ac” value set. All of the “at” codes must be in the same
Enumeration as the “ac” code.

This tag encapsulates the [AOM] concept of VALUE_SET.

• term_bindings : UML::EnumerationLiteral [0..*]

When the «ArchetypeTerm» corresponds to an [AOM] “at” code, the term_bindings tag is used to identify the list of
«ResourceReference» EnumerationLiterals to be associated with the “at” code. A term binding may be used to specify
the "meaning" of the «ArchetypeTerm», either in the ISO 11179 sense or as a reference to a terminology definition
provided by an external service. In either case, each term_binding member is a «ConceptReference» within an
Enumeration representing the [AOM] concept of term_binding.

Constraints
! [AOM] ARCHETYPE_TERM:Invariant:code_valid_code

The name of the base_EnumerationLiteral must be defined.

[OCL]

not(self.base_EnumerationLiteral.name.oclIsUndefined())
and(self.base_EnumerationLiteral.name<>'')

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:term_bindings_validity

A terminology binding is specified by the values of the term_bindings tag. Each terminology binding must be to a
Concept Reference within the same Archetype.

28 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

self.term_bindings->
forAll(binding|binding.stereotypedBy('ConceptReference') and
(binding.namespace.namespace.namespace=self.base_EnumerationLiteral.namespace.
namespace.namespace))

! [AOM] VALUE_SET:Invariant:Id_valid

An [AOM] VALUE_SET maps to an AML «ArchetypeTerm» which has values in the value_set_members tag. The
[AOM] VALUE_SET/id must be a valid value set code.

[English]

In AML, the [AOM] Constraint is definitional; the ArchetypeTerm name is an
Identifier Definition id as well as the Value Set definition.

! [AOM] VALUE_SET:Invariant:Members_valid

An [AOM] VALUE_SET maps to an AML «ArchetypeTerm» which has values in the value_set_members tag. Each
member of value_set_members must be a sibling «ArchetypeTerm» within the same Enumeration.

[OCL]

self.value_set_members->
forAll(m|m.namespace=self.base_EnumerationLiteral.namespace)

! [AOM] VETDF- external term validity

Each external term used within the archetype definition must exist in the relevant terminology.

[OCL]

self.term_bindings->forAll(b|b.namespace.namespace.name='term_bindings')

! [AOM] VTCBK- terminology constraint binding key valid

Every constraint binding must be to a defined archetype constraint code (‘ac-code’).

[OCL]

self.term_bindings->forAll(b|b.namespace.namespace.name='term_bindings')

! [AOM] VTLC- language consistency

Every code must exist in all languages. In AML, every Archetype Term must be referenced by a definitional IdEntry in
each of the language-specific Resource Translations.

[OCL]

self.base_EnumerationLiteral.namespace.oclAsType(Enumeration).
namespace.oclAsType(Package).ownedType->
select(t|t.stereotypedBy('ResourceTranslation')).oclAsType(Enumeration)
forAll(sibling|sibling.ownedLiteral->
exists(ol|ol.appliedStereotype('IdEntry').oclAsType(IdEntry).ref=
self.base_EnumerationLiteral))

Archetype Modeling Language (AML), v1.0 (Beta 2) 29

[OCL]

self.term_bindings->
forAll(binding|binding.stereotypedBy('ConceptReference') and
(binding.namespace.namespace.namespace=self.base_EnumerationLiteral.namespace.
namespace.namespace))

! [AOM] VALUE_SET:Invariant:Id_valid

An [AOM] VALUE_SET maps to an AML «ArchetypeTerm» which has values in the value_set_members tag. The
[AOM] VALUE_SET/id must be a valid value set code.

[English]

In AML, the [AOM] Constraint is definitional; the ArchetypeTerm name is an
Identifier Definition id as well as the Value Set definition.

! [AOM] VALUE_SET:Invariant:Members_valid

An [AOM] VALUE_SET maps to an AML «ArchetypeTerm» which has values in the value_set_members tag. Each
member of value_set_members must be a sibling «ArchetypeTerm» within the same Enumeration.

[OCL]

self.value_set_members->
forAll(m|m.namespace=self.base_EnumerationLiteral.namespace)

! [AOM] VETDF- external term validity

Each external term used within the archetype definition must exist in the relevant terminology.

[OCL]

self.term_bindings->forAll(b|b.namespace.namespace.name='term_bindings')

! [AOM] VTCBK- terminology constraint binding key valid

Every constraint binding must be to a defined archetype constraint code (‘ac-code’).

[OCL]

self.term_bindings->forAll(b|b.namespace.namespace.name='term_bindings')

! [AOM] VTLC- language consistency

Every code must exist in all languages. In AML, every Archetype Term must be referenced by a definitional IdEntry in
each of the language-specific Resource Translations.

[OCL]

self.base_EnumerationLiteral.namespace.oclAsType(Enumeration).
namespace.oclAsType(Package).ownedType->
select(t|t.stereotypedBy('ResourceTranslation')).oclAsType(Enumeration)
forAll(sibling|sibling.ownedLiteral->
exists(ol|ol.appliedStereotype('IdEntry').oclAsType(IdEntry).ref=
self.base_EnumerationLiteral))

Archetype Modeling Language (AML), v1.0 (Beta 2) 29

! [AOM] VTSD- specialization level of codes

Term or constraint code defined in archetype terminology must be of the same or a less specialized level then the
specialization level of the Archetype.

[English]

Term or constraint code defined in archetype terminology must be of the same or
a less specialized level then the specialization level of the Archetype.

! [AOM] VTTBK- terminology term binding key valid

Every term binding must be to a defined archetype term (‘at-code’).

[OCL]

self.term_bindings->forAll(b|b.namespace.namespace.name='term_bindings')

! [AOM] VTVSID- value-set id defined

The identifying code of a value set must be defined in the term definitions of the terminology of the current archetype.

[English]

This [AOM] Validity Rule is definitional in AML. The definition of the
identifying code of a value set is an Archetype Term which has a non-empty value
for the value_set_members tag.

! [AOM] VTVSMD- value-set members defined

The member codes of a value set must be defined in the term definitions of the current archetype.

Note that in AML, this is equivalent to requiring that value_set_members are in the same Enumeration as this
ArchetypeTerm.

[OCL]

self.value_set_members->
forAll(member|member.namespace=self.base_EnumerationLiteral.namespace)

! [AOM] VTVSUQ- value-set members unique

The member codes of a value set must be unique within the value set.

The member codes of a value set must be from the same Enumeration as this ArchetypeTerm.

Note that the value_set_members tag definition is declared to be unique.

[OCL]

self.value_set_members->
forAll(member|member.namespace=self.base_EnumerationLiteral.namespace)

30 Archetype Modeling Language (AML), v1.0 (Beta 2)

! [AOM] VTSD- specialization level of codes

Term or constraint code defined in archetype terminology must be of the same or a less specialized level then the
specialization level of the Archetype.

[English]

Term or constraint code defined in archetype terminology must be of the same or
a less specialized level then the specialization level of the Archetype.

! [AOM] VTTBK- terminology term binding key valid

Every term binding must be to a defined archetype term (‘at-code’).

[OCL]

self.term_bindings->forAll(b|b.namespace.namespace.name='term_bindings')

! [AOM] VTVSID- value-set id defined

The identifying code of a value set must be defined in the term definitions of the terminology of the current archetype.

[English]

This [AOM] Validity Rule is definitional in AML. The definition of the
identifying code of a value set is an Archetype Term which has a non-empty value
for the value_set_members tag.

! [AOM] VTVSMD- value-set members defined

The member codes of a value set must be defined in the term definitions of the current archetype.

Note that in AML, this is equivalent to requiring that value_set_members are in the same Enumeration as this
ArchetypeTerm.

[OCL]

self.value_set_members->
forAll(member|member.namespace=self.base_EnumerationLiteral.namespace)

! [AOM] VTVSUQ- value-set members unique

The member codes of a value set must be unique within the value set.

The member codes of a value set must be from the same Enumeration as this ArchetypeTerm.

Note that the value_set_members tag definition is declared to be unique.

[OCL]

self.value_set_members->
forAll(member|member.namespace=self.base_EnumerationLiteral.namespace)

30 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.3.4 CodeSystemReference [Stereotype]

Description

«CodeSystemReference» is used to model a reference to a code system (aka. "Terminology", "Classification scheme", or
"ontology").

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

8.3.5 CodeSystemVersionReference [Stereotype]

Description

«CodeSystemVersionReference» is used to model a reference to a specific version of a code system and, if known, the
code system which it is a version of. [CTS2]

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes

• codeSystem : UML::EnumerationLiteral [0..1]

The codeSystem tag is a reference to the code system. The codeSystem tag is used in situations where the code system
itself has a well-known URI but the referenced version does not. In this case the version URI can be omitted and the
reference used in its place.

8.3.6 ConceptReference [Stereotype]

Description

ConceptReference is the scoped identifier of a concept. The name of the base EnumerationLiteral is the code (for
example id, label, and in the case of [CTS2], name) of the target concept. The scoping namespace is supplied by the
owning ScopedIdentifier.

Archetype Modeling Language (AML), v1.0 (Beta 2) 31

8.3.4 CodeSystemReference [Stereotype]

Description

«CodeSystemReference» is used to model a reference to a code system (aka. "Terminology", "Classification scheme", or
"ontology").

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

8.3.5 CodeSystemVersionReference [Stereotype]

Description

«CodeSystemVersionReference» is used to model a reference to a specific version of a code system and, if known, the
code system which it is a version of. [CTS2]

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes

• codeSystem : UML::EnumerationLiteral [0..1]

The codeSystem tag is a reference to the code system. The codeSystem tag is used in situations where the code system
itself has a well-known URI but the referenced version does not. In this case the version URI can be omitted and the
reference used in its place.

8.3.6 ConceptReference [Stereotype]

Description

ConceptReference is the scoped identifier of a concept. The name of the base EnumerationLiteral is the code (for
example id, label, and in the case of [CTS2], name) of the target concept. The scoping namespace is supplied by the
owning ScopedIdentifier.

Archetype Modeling Language (AML), v1.0 (Beta 2) 31

Diagrams
Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes

• designation : UML::PrimitiveTypes::String [0..*]

The designation tag models a contextually appropriate name or signifier for the referenced concept.

Constraints
• mustBeScopedIdentifier

The owning enumeration must be stereotyped with ScopedIdentifier.

[OCL]

self.base_EnumerationLiteral.namespace.stereotypedBy('ScopedIdentifier')

8.3.7 DescribedIdentifier [Stereotype]

Description

The DescribedIdentifier stereotype is a ScopedIdentifier whose ownedLiterals are concept references.
DescribedIdentifier includes an optional definingCodeSystem tag that can reference the code system or code system
version that describes the owned concept references. The definingCodeSystem of an owned concept reference can be
overridden on the concept reference level.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ScopedIdentifier
8.3.14 ScopedIdentifier [Stereotype]

Meta-classes

UML::Enumeration

Attributes

• definingCodeSystem : UML::EnumerationLiteral [0..1]

The definingCodeSystem tag specifies the default Code System for the owned ConceptReferences.

Constraints

• definingCodeSystem

definingCodeSystem, if present, must reference an enumeration literal stereotyped by CodeSystemReference or
CodeSystemVersionReference

32 Archetype Modeling Language (AML), v1.0 (Beta 2)

Diagrams
Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes

• designation : UML::PrimitiveTypes::String [0..*]

The designation tag models a contextually appropriate name or signifier for the referenced concept.

Constraints
• mustBeScopedIdentifier

The owning enumeration must be stereotyped with ScopedIdentifier.

[OCL]

self.base_EnumerationLiteral.namespace.stereotypedBy('ScopedIdentifier')

8.3.7 DescribedIdentifier [Stereotype]

Description

The DescribedIdentifier stereotype is a ScopedIdentifier whose ownedLiterals are concept references.
DescribedIdentifier includes an optional definingCodeSystem tag that can reference the code system or code system
version that describes the owned concept references. The definingCodeSystem of an owned concept reference can be
overridden on the concept reference level.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ScopedIdentifier
8.3.14 ScopedIdentifier [Stereotype]

Meta-classes

UML::Enumeration

Attributes

• definingCodeSystem : UML::EnumerationLiteral [0..1]

The definingCodeSystem tag specifies the default Code System for the owned ConceptReferences.

Constraints

• definingCodeSystem

definingCodeSystem, if present, must reference an enumeration literal stereotyped by CodeSystemReference or
CodeSystemVersionReference

32 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

not(self.definingCodeSystem.oclIsUndefined()) implies
self.definingCodeSystem.stereotypedBy('CodeSystemReference') or
self.definingCodeSystem.stereotypedBy('CodeSystemVersionReference'))

• membersMustBeConceptReference

All of the member EnumerationLiterals must be stereotyped by ConceptReference.

[OCL]

self.base_Enumeration.ownedLiteral->
forAll(ol|ol.stereotypedBy('ConceptReference'))

8.3.8 Entry [Stereotype]

Description

An «Entry» EnumerationLiteral models a language specific name (text) and optional description. The description of an
Entry is provided in the ownedComment.body of the EnumeraitonLiteral. The name (text) of the Entry is defined in the
required text tag.

Diagrams

Terminology Binding Profile

Meta-classes

UML::NamedElement

Direct Subclasses (Specialization)

TerminologyProfile::IdEntry
8.3.11 IdEntry [Stereotype]

Attributes

• text : UML::PrimitiveTypes::String [1]

The text tag models the language specific name of a terminology definition.

Note that the same name may be used more than once in a language-specific terminology definition (for example, “cold”
may be a medical condition or a temperature). Since UML does not allow multiple EnumerationLiterals to have the
same name, the terminology definition name is placed in this tag rather than as the name of the EnumerationLiteral.

Constraints

• [AOM] ARCHETYPE_TERM:Invariant:text_valid

The text tag must have a value.

[English]

The [AOM] Invariant is enforced by the UML semantic for the required text tag.

Archetype Modeling Language (AML), v1.0 (Beta 2) 33

[OCL]

not(self.definingCodeSystem.oclIsUndefined()) implies
self.definingCodeSystem.stereotypedBy('CodeSystemReference') or
self.definingCodeSystem.stereotypedBy('CodeSystemVersionReference'))

• membersMustBeConceptReference

All of the member EnumerationLiterals must be stereotyped by ConceptReference.

[OCL]

self.base_Enumeration.ownedLiteral->
forAll(ol|ol.stereotypedBy('ConceptReference'))

8.3.8 Entry [Stereotype]

Description

An «Entry» EnumerationLiteral models a language specific name (text) and optional description. The description of an
Entry is provided in the ownedComment.body of the EnumeraitonLiteral. The name (text) of the Entry is defined in the
required text tag.

Diagrams

Terminology Binding Profile

Meta-classes

UML::NamedElement

Direct Subclasses (Specialization)

TerminologyProfile::IdEntry
8.3.11 IdEntry [Stereotype]

Attributes

• text : UML::PrimitiveTypes::String [1]

The text tag models the language specific name of a terminology definition.

Note that the same name may be used more than once in a language-specific terminology definition (for example, “cold”
may be a medical condition or a temperature). Since UML does not allow multiple EnumerationLiterals to have the
same name, the terminology definition name is placed in this tag rather than as the name of the EnumerationLiteral.

Constraints

• [AOM] ARCHETYPE_TERM:Invariant:text_valid

The text tag must have a value.

[English]

The [AOM] Invariant is enforced by the UML semantic for the required text tag.

Archetype Modeling Language (AML), v1.0 (Beta 2) 33

8.3.9 EnumeratedValueDomain [Stereotype]

Description

The EnumeratedValueDomain stereotype represents a discrete set of possible values (PermissibleValues) for a particular
field or data element. Each PermissibleValue identifies a unique value and (optionally) its intended meaning.

An EnumeratedValueDomain may reference a value set or value set definition via the valueSetBinding tag.
Implementations may use the tag value to validate the PermissibleValue meaning links, populate the permissible values
in the EnumeratedValueDomain, or provide selection lists for existing mappings.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::IdentifiedItem
8.4.11 IdentifiedItem [Stereotype]

Meta-classes

UML::Enumeration

Attributes

• valueSetBinding : UML::EnumerationLiteral [0..1]

The identifier of the value set or value set definition whose resolution defines the set of possible value meanings for this
set of permissible values.

Constraints

• bindingIsValueSetOrDefinition

The valueSetBinding tag value, if present, must reference an EnumerationLiteral that is stereotyped by
ValueSetReference or ValueSetDefinitionReference.

[OCL]

not(self.valueSetBinding.oclIsUndefined()) implies
(self.valueSetBinding.stereotypedBy('ValueSetReference') or
self.valueSetBinding.stereotypedBy('ValueSetDefinitionReference'))

• permissibleValues

All ownedLiterals must be stereotyped by PermissibleValue.

[OCL]

self.base_Enumeration.ownedLiteral->
forAll(x:EnumerationLiteral|x.stereotypedBy('PermissibleValue'))

34 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.3.9 EnumeratedValueDomain [Stereotype]

Description

The EnumeratedValueDomain stereotype represents a discrete set of possible values (PermissibleValues) for a particular
field or data element. Each PermissibleValue identifies a unique value and (optionally) its intended meaning.

An EnumeratedValueDomain may reference a value set or value set definition via the valueSetBinding tag.
Implementations may use the tag value to validate the PermissibleValue meaning links, populate the permissible values
in the EnumeratedValueDomain, or provide selection lists for existing mappings.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::IdentifiedItem
8.4.11 IdentifiedItem [Stereotype]

Meta-classes

UML::Enumeration

Attributes

• valueSetBinding : UML::EnumerationLiteral [0..1]

The identifier of the value set or value set definition whose resolution defines the set of possible value meanings for this
set of permissible values.

Constraints

• bindingIsValueSetOrDefinition

The valueSetBinding tag value, if present, must reference an EnumerationLiteral that is stereotyped by
ValueSetReference or ValueSetDefinitionReference.

[OCL]

not(self.valueSetBinding.oclIsUndefined()) implies
(self.valueSetBinding.stereotypedBy('ValueSetReference') or
self.valueSetBinding.stereotypedBy('ValueSetDefinitionReference'))

• permissibleValues

All ownedLiterals must be stereotyped by PermissibleValue.

[OCL]

self.base_Enumeration.ownedLiteral->
forAll(x:EnumerationLiteral|x.stereotypedBy('PermissibleValue'))

34 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.4.11 IdentifiedItem [Stereotype]

Description

An «IdentifiedItem» is a NamedElement which may reference definition identifiers. A definition identifier
(«ArchetypeTerm») enables natural language terminology definitions, technology bindings, and value sets to be specified
independently from the Archetype definition.

Diagrams

Terminology Binding Profile

Meta-classes

UML::NamedElement

Direct Subclasses (Specialization)

TerminologyProfile::EnumeratedValueDomain
8.3.9 EnumeratedValueDomain [Stereotype]
ConstraintProfile::ObjectConstraint
8.4.12 ObjectConstraint [Stereotype]
TerminologyProfile::PermissibleValue
8.3.12 PermissibleValue [Stereotype]

Attributes

• id : UML::EnumerationLiteral [0..*]

The id tag references one or more «ArchetypeTerm» EnumerationLiterals as the definition identifiers for the Archetype
element. The referenced Archetype Terms enable multiple language terminology definitions, technology bindings, and
value set composition.

Constraints

• uniqueScopes

Every id must belong to a unique Enumeration. An identified Item cannot have two or more identifiers drawn from the
same Enumeration.

[OCL]

self.id->forAll(l1 | self.id->forAll(l2 |
l1.oclAsType(EnumerationLiteral).namespace =
l2.oclAsType(EnumerationLiteral).namespace implies l1 = l2))

8.3.11 IdEntry [Stereotype]

Description
An «IdEntry» EnumerationLiteral models a language-specific term / description representation for the definition
identifier («ArchetypeTerm») specified in the ref tag. An «IdEntry» is contained by a «ResourceTranslation», which
provides meta-data about the language translation used in the context of a particular Archetype.

Diagrams
Terminology Binding Profile

Archetype Modeling Language (AML), v1.0 (Beta 2) 35

8.4.11 IdentifiedItem [Stereotype]

Description

An «IdentifiedItem» is a NamedElement which may reference definition identifiers. A definition identifier
(«ArchetypeTerm») enables natural language terminology definitions, technology bindings, and value sets to be specified
independently from the Archetype definition.

Diagrams

Terminology Binding Profile

Meta-classes

UML::NamedElement

Direct Subclasses (Specialization)

TerminologyProfile::EnumeratedValueDomain
8.3.9 EnumeratedValueDomain [Stereotype]
ConstraintProfile::ObjectConstraint
8.4.12 ObjectConstraint [Stereotype]
TerminologyProfile::PermissibleValue
8.3.12 PermissibleValue [Stereotype]

Attributes

• id : UML::EnumerationLiteral [0..*]

The id tag references one or more «ArchetypeTerm» EnumerationLiterals as the definition identifiers for the Archetype
element. The referenced Archetype Terms enable multiple language terminology definitions, technology bindings, and
value set composition.

Constraints

• uniqueScopes

Every id must belong to a unique Enumeration. An identified Item cannot have two or more identifiers drawn from the
same Enumeration.

[OCL]

self.id->forAll(l1 | self.id->forAll(l2 |
l1.oclAsType(EnumerationLiteral).namespace =
l2.oclAsType(EnumerationLiteral).namespace implies l1 = l2))

8.3.11 IdEntry [Stereotype]

Description
An «IdEntry» EnumerationLiteral models a language-specific term / description representation for the definition
identifier («ArchetypeTerm») specified in the ref tag. An «IdEntry» is contained by a «ResourceTranslation», which
provides meta-data about the language translation used in the context of a particular Archetype.

Diagrams
Terminology Binding Profile

Archetype Modeling Language (AML), v1.0 (Beta 2) 35

Direct Superclasses (Generalization)
TerminologyProfile::Entry
8.3.8 Entry [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes
• ref : UML::EnumerationLiteral [1]

The ref tag references an «ArchetypeTerm», which is the language-independent definition identifier for an Archetype.
The referenced «ArchetypeTerm» serves as a binding from the Archetype constraint model to multiple terminology
definition languages.

Constraints
• [AOM] ARCHETYPE_TERM:Invariant:description_valid

Every term definition must have a description.

[OCL]

self.base_EnumerationLiteral.ownedComment._'body'->
exists(b|not(b.oclIsUndefined()))

8.3.12 PermissibleValue [Stereotype]

Description
A «PermissibleValue» EnumerationLiteral models a possible value in a data record. A permissible value may be a
context specific code (e.g. 0, 1, "M", "A", etc.) a concept identifier (e.g. "74400008", "16285-9"), a URI or, in the case of
[ADL], an "at" code. Note that the meaning of the permissible value is assigned by its meaning.

Diagrams
Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::IdentifiedItem
8.4.11 IdentifiedItem [Stereotype]

Meta-classes

UML::EnumerationLiteral

Direct Subclasses (Specialization)
TerminologyProfile::ArchetypeTerm
8.3.3 ArchetypeTerm [Stereotype]

Attributes
• meaning : UML::EnumerationLiteral [0..1]

The ConceptReference that provides the meaning for the permissible value

Constraints

36 Archetype Modeling Language (AML), v1.0 (Beta 2)

Direct Superclasses (Generalization)
TerminologyProfile::Entry
8.3.8 Entry [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes
• ref : UML::EnumerationLiteral [1]

The ref tag references an «ArchetypeTerm», which is the language-independent definition identifier for an Archetype.
The referenced «ArchetypeTerm» serves as a binding from the Archetype constraint model to multiple terminology
definition languages.

Constraints
• [AOM] ARCHETYPE_TERM:Invariant:description_valid

Every term definition must have a description.

[OCL]

self.base_EnumerationLiteral.ownedComment._'body'->
exists(b|not(b.oclIsUndefined()))

8.3.12 PermissibleValue [Stereotype]

Description
A «PermissibleValue» EnumerationLiteral models a possible value in a data record. A permissible value may be a
context specific code (e.g. 0, 1, "M", "A", etc.) a concept identifier (e.g. "74400008", "16285-9"), a URI or, in the case of
[ADL], an "at" code. Note that the meaning of the permissible value is assigned by its meaning.

Diagrams
Terminology Binding Profile

Direct Superclasses (Generalization)
TerminologyProfile::IdentifiedItem
8.4.11 IdentifiedItem [Stereotype]

Meta-classes

UML::EnumerationLiteral

Direct Subclasses (Specialization)
TerminologyProfile::ArchetypeTerm
8.3.3 ArchetypeTerm [Stereotype]

Attributes
• meaning : UML::EnumerationLiteral [0..1]

The ConceptReference that provides the meaning for the permissible value

Constraints

36 Archetype Modeling Language (AML), v1.0 (Beta 2)

• mustBeConceptReference

Meaning, if present, must reference an EnumerationLiteral that is stereotyped by ConceptReference

[OCL]

not(self.meaning.oclIsUndefined()) implies
self.meaning.stereotypedBy('ConceptReference')

8.3.13 ResourceReference [Stereotype]

Description

ResourceReference couples a local identifier with an optional URI which references the target resource.
ResourceReference models the [CTS2] NameAndMeaningReference data type, where the domain is determined by the
specializing stereotype and the name by the name of the base EnumerationLiteral. The [CTS2] href attribute is not part of
ResourceReference as it is an aspect of a service instance, not a model.

Diagrams

Terminology Binding Profile

Meta-classes

UML::EnumerationLiteral

Direct Subclasses (Specialization)

TerminologyProfile::CodeSystemReference
 8.3.4 CodeSystemReference [Stereotype]
TerminologyProfile::CodeSystemVersionReference

 8.3.5 CodeSystemVersionReference [Stereotype]
TerminologyProfile::ConceptReference
8.3.6 ConceptReference [Stereotype]
TerminologyProfile::ValueSetDefinitionReference

 8.3.16 ValueSetDefinitionReference [Stereotype]
TerminologyProfile::ValueSetReference
8.3.17 ValueSetReference [Stereotype]

Attributes

• uri : UML::PrimitiveTypes::String [0..1]

The uri tag specifies the URI of the referenced resource. This tag definition is similar to the [CTS2] specification which
defines the concept as "A globally unique URI that identifies the intended meaning of the identifier."

8.3.14 ScopedIdentifier [Stereotype]

Description

The ScopedIdentifier stereotype models both the ISO 11179-3 namespace, "... a set of designations and/or scoped
identifiers for a particular business need" and Scoped_Identifier, "the identifier of an identified item within a specified
namespace". ScopedIdentifier extends Enumeration, where Enumeration plays the role of the scoping namespace and
the owned EnumerationLiterals the contained identifiers. A ScopedIdentifier may include an optional URI that identifies
the scoping namespace and, if necessary, an URI pattern that defines how URIs for the contained identifiers are
constructed.

Archetype Modeling Language (AML), v1.0 (Beta 2) 37

• mustBeConceptReference

Meaning, if present, must reference an EnumerationLiteral that is stereotyped by ConceptReference

[OCL]

not(self.meaning.oclIsUndefined()) implies
self.meaning.stereotypedBy('ConceptReference')

8.3.13 ResourceReference [Stereotype]

Description

ResourceReference couples a local identifier with an optional URI which references the target resource.
ResourceReference models the [CTS2] NameAndMeaningReference data type, where the domain is determined by the
specializing stereotype and the name by the name of the base EnumerationLiteral. The [CTS2] href attribute is not part of
ResourceReference as it is an aspect of a service instance, not a model.

Diagrams

Terminology Binding Profile

Meta-classes

UML::EnumerationLiteral

Direct Subclasses (Specialization)

TerminologyProfile::CodeSystemReference
 8.3.4 CodeSystemReference [Stereotype]
TerminologyProfile::CodeSystemVersionReference

 8.3.5 CodeSystemVersionReference [Stereotype]
TerminologyProfile::ConceptReference
8.3.6 ConceptReference [Stereotype]
TerminologyProfile::ValueSetDefinitionReference

 8.3.16 ValueSetDefinitionReference [Stereotype]
TerminologyProfile::ValueSetReference
8.3.17 ValueSetReference [Stereotype]

Attributes

• uri : UML::PrimitiveTypes::String [0..1]

The uri tag specifies the URI of the referenced resource. This tag definition is similar to the [CTS2] specification which
defines the concept as "A globally unique URI that identifies the intended meaning of the identifier."

8.3.14 ScopedIdentifier [Stereotype]

Description

The ScopedIdentifier stereotype models both the ISO 11179-3 namespace, "... a set of designations and/or scoped
identifiers for a particular business need" and Scoped_Identifier, "the identifier of an identified item within a specified
namespace". ScopedIdentifier extends Enumeration, where Enumeration plays the role of the scoping namespace and
the owned EnumerationLiterals the contained identifiers. A ScopedIdentifier may include an optional URI that identifies
the scoping namespace and, if necessary, an URI pattern that defines how URIs for the contained identifiers are
constructed.

Archetype Modeling Language (AML), v1.0 (Beta 2) 37

 As an example, the SNOMED CT identifier namespace would have a uri of "http://snomed.info/id/", indicating that an
EnumerationLiteral named 74400008 would be represented as "http://snomed.info/id/74400008".

Diagrams
Terminology Binding Profile

Meta-classes

UML::Enumeration

Direct Subclasses (Specialization)
TerminologyProfile::DescribedIdentifier
8.3.7 DescribedIdentifier [Stereotype]

Attributes

• uri : UML::PrimitiveTypes::String [0..1]

The uri tag specifies the URI of the namespace. As an example, one might have a ScopedIdentifier named "owl" with a
URI of "http://www.w3.org/2002/07/owl#".

• identifierURIPattern : UML::PrimitiveTypes::String [0..1]

The identifierURIPattern tag models a URI substitution pattern, where "$1" indicates where the name of an owned
EnumerationLiteral would be substituted to create a URI. Example: http://loinc.org/id/$1. If no URI substitution
pattern is supplied, URI's are assumed to be constructed by concatenating the name of an enumeration literal onto the
value of the uri attribute.

8.3.15 TermResourceTranslation [Stereotype]

Description
TermResourceTranslation is a collection of designations and descriptions/definitions in a target language.
TermResourceTranslation represents a refactoring of the ISO 11179-3 Designatable_Item, where Designation sign is
represented as the name of the extended EnumerationLiteral and the Definition text as the associated comment(s). The
language attribute is represented by the language tag.

Diagrams
Terminology Binding Profile

Meta-classes

UML::Enumeration

Attributes
• language : UML::EnumerationLiteral [0..1]

The language tag identifies the target language.

Constraints

38 Archetype Modeling Language (AML), v1.0 (Beta 2)

 As an example, the SNOMED CT identifier namespace would have a uri of "http://snomed.info/id/", indicating that an
EnumerationLiteral named 74400008 would be represented as "http://snomed.info/id/74400008".

Diagrams
Terminology Binding Profile

Meta-classes

UML::Enumeration

Direct Subclasses (Specialization)
TerminologyProfile::DescribedIdentifier
8.3.7 DescribedIdentifier [Stereotype]

Attributes

• uri : UML::PrimitiveTypes::String [0..1]

The uri tag specifies the URI of the namespace. As an example, one might have a ScopedIdentifier named "owl" with a
URI of "http://www.w3.org/2002/07/owl#".

• identifierURIPattern : UML::PrimitiveTypes::String [0..1]

The identifierURIPattern tag models a URI substitution pattern, where "$1" indicates where the name of an owned
EnumerationLiteral would be substituted to create a URI. Example: http://loinc.org/id/$1. If no URI substitution
pattern is supplied, URI's are assumed to be constructed by concatenating the name of an enumeration literal onto the
value of the uri attribute.

8.3.15 TermResourceTranslation [Stereotype]

Description
TermResourceTranslation is a collection of designations and descriptions/definitions in a target language.
TermResourceTranslation represents a refactoring of the ISO 11179-3 Designatable_Item, where Designation sign is
represented as the name of the extended EnumerationLiteral and the Definition text as the associated comment(s). The
language attribute is represented by the language tag.

Diagrams
Terminology Binding Profile

Meta-classes

UML::Enumeration

Attributes
• language : UML::EnumerationLiteral [0..1]

The language tag identifies the target language.

Constraints

38 Archetype Modeling Language (AML), v1.0 (Beta 2)

• translationEntries

All of the ownedLiterals must be stereotyped by Entry.

[OCL]

self.base_Enumeration.ownedLiteral->forAll(ol|ol.stereotypedBy('Entry'))

8.3.16 ValueSetDefinitionReference [Stereotype]

Description

A «ValueSetDefinitionReference» EnumerationLiteral represents the [CTS2] concept of a reference to a set of rules for
constructing a value set along with the corresponding value set if known.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes

• valueSet : UML::EnumerationLiteral [0..1]

The reference to the value set that is defined by this value set definition. This tag reduces the requirement to assign
unique URIs to each value set definition. If the definition itself has a URI, the valueSet tag link can provide sufficient
information to get a known definition without having to generate a new URI.

8.3.17 ValueSetReference [Stereotype]

Description

ValueSetReference models the [CTS2] concept of "A reference to a named set of entity references." ValueSetReference
references a set of ValueSetDefinitionReferences. The members of the set can vary over time and context and depend on
(a) the particular value set definition (aka. version) of the value set and (b) the particular version of the code system(s)
that are used to resolve the rules in the value set definition.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Archetype Modeling Language (AML), v1.0 (Beta 2) 39

• translationEntries

All of the ownedLiterals must be stereotyped by Entry.

[OCL]

self.base_Enumeration.ownedLiteral->forAll(ol|ol.stereotypedBy('Entry'))

8.3.16 ValueSetDefinitionReference [Stereotype]

Description

A «ValueSetDefinitionReference» EnumerationLiteral represents the [CTS2] concept of a reference to a set of rules for
constructing a value set along with the corresponding value set if known.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Attributes

• valueSet : UML::EnumerationLiteral [0..1]

The reference to the value set that is defined by this value set definition. This tag reduces the requirement to assign
unique URIs to each value set definition. If the definition itself has a URI, the valueSet tag link can provide sufficient
information to get a known definition without having to generate a new URI.

8.3.17 ValueSetReference [Stereotype]

Description

ValueSetReference models the [CTS2] concept of "A reference to a named set of entity references." ValueSetReference
references a set of ValueSetDefinitionReferences. The members of the set can vary over time and context and depend on
(a) the particular value set definition (aka. version) of the value set and (b) the particular version of the code system(s)
that are used to resolve the rules in the value set definition.

Diagrams

Terminology Binding Profile

Direct Superclasses (Generalization)

TerminologyProfile::ResourceReference
8.3.13 ResourceReference [Stereotype]

Meta-classes

UML::EnumerationLiteral

Archetype Modeling Language (AML), v1.0 (Beta 2) 39

Attributes
• valueSetDefinition : UML::EnumerationLiteral [0..*]

The value of this tag is a set of references to value set definition references. Each element of this set must be a
«ValueSetDefinitionReference».

Constraints
• definition

Each member of valueSetDefinition must be a «ValueSetDefinitionReference» EnumerationLiteral.

[OCL]

self.valueSetDefinition->
forAll(d|d.stereotypedBy('ValueSetDefinitionReference'))

40 Archetype Modeling Language (AML), v1.0 (Beta 2)

Attributes
• valueSetDefinition : UML::EnumerationLiteral [0..*]

The value of this tag is a set of references to value set definition references. Each element of this set must be a
«ValueSetDefinitionReference».

Constraints
• definition

Each member of valueSetDefinition must be a «ValueSetDefinitionReference» EnumerationLiteral.

[OCL]

self.valueSetDefinition->
forAll(d|d.stereotypedBy('ValueSetDefinitionReference'))

40 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.4 ConstraintProfile [Profile]

There is a need for information interoperability between health entities. Information needs to be shared between
organizations and across international boundaries. The inability to share this information in a repeatable manner greatly
affects the quality of care provided. The Clinical Information Modeling Initiative (CIMI)[CIMI] has the potential to be a
disruptive innovation in eHealth. The AML specification for the representation of health information content,

Archetype Modeling Language (AML), v1.0 (Beta 2) 41

Figure 4. Constraint Profile

8.4 ConstraintProfile [Profile]

There is a need for information interoperability between health entities. Information needs to be shared between
organizations and across international boundaries. The inability to share this information in a repeatable manner greatly
affects the quality of care provided. The Clinical Information Modeling Initiative (CIMI)[CIMI] has the potential to be a
disruptive innovation in eHealth. The AML specification for the representation of health information content,

Archetype Modeling Language (AML), v1.0 (Beta 2) 41

Figure 4. Constraint Profile

semantically interoperable information may be created and shared in health records, messages, and documents. The
CIMI initiative affords the opportunity to enable the storage of lifelong health information; simplify data exchange,
aggregation, querying and analysis; and support knowledge-based activities such as decision support. This will be
achieved through the development of non-proprietary, common and fully defined information models of clinical content
and known transformations.

The clinical reference model (an instance of a reference model), clinical archetype models and associated terminology
will serve as the domain vocabulary for clinical information. The syntax and semantics defined by these clinical
archetype models shall be maintained by users, in a common language that can be consistently understood and shared.
The AML Profile enables the creation, definition and use of this common language in UML.

The purpose of the AML Profile is to enable an UML ecosystem that supports and underpins CIMI activities through the
use of adopted standards. The AML Profile provides a clear, consistent means of designing clinical models using UML,
where tool vendors may add additional value/usability; clinical modeling concepts are separated from specific solutions
(ex. XML, JSON, DB schema, etc.); and the creation of open source solutions is enabled.

The AMP Profile:

! Specifies a collection of complementary UML profiles that work together to support the creation of CIMI
content models.

! Supports the specification of CIMI content models in UML, such that they can be translated into AOM 2.0.

! Is capable of being used in other domain areas, with other reference models.

! Is capable of being used in developing specific implementations of CIMI content models using platform
specific solutions (e.g. Clinical Document Architecture (CDA), openEHR etc.).

The AML Profile provides consistency by ensuring that a UML representation of a CIMI model produced by one
developer can be accurately interpreted by developers, modelers and transformations. It offers completeness by ensuring
that a developer can produce a UML representation of any CIMI reference and constraint model. Finally, the AML
Profile offers practicality by ensuring that a developer/modeler can develop a CIMI compliant clinical model by
employing the profile in current UML modeling tools.
Within the healthcare community the pattern of creating a common model that is reused by others to create specialized
models through constraining the original model is often referred to as reference / constraint modeling. The reference
model consists of syntax-neutral and technology- independent building blocks that can be used for data modeling. Major
benefits of this approach include improved reuse of existing data artifacts and improved enterprise interoperability.

The AML profile provides a family of UML sub-profiles that enables the representation of semantic-based information
models and addresses the problem of the lack of semantic interoperability within and between applications and databases
in healthcare computing environments, including across enterprises and national borders.

The AML Profile is the aggregation of three sub-profiles:

1. The Reference Model Profile (RMP)
2. The Constraint Model Profile (CMP)
3. The Terminology Binding Profile (TBP)

Traditionally, a single model containing all the required information concepts is designed for a specific application,
transport and database without regard to interoperability. Standards for the exchange of that health data between
applications and databases have been focused on static message definitions that have not enabled a sufficient degree of
interoperability or flexibility. They have not enabled 'single-source' modeling, whereby a single definition (e.g. a
microbiology lab result) can be re-used for multiple purposes, such as a message definition, a document definition, a
screen display form, a screen data capture form, or a report.

A more flexible and interoperable way of standardizing business semantics has long been required.

This submission provides a means for developing a common set of semantic building blocks that represent the general
types of healthcare data in use today. The solution should provide an approach for the creation of new healthcare
information models and the semantic binding of these information models to published terminologies to achieve
semantic interoperability of data. It can be employed wherever health data is being defined, stored, used, shared or

42 Archetype Modeling Language (AML), v1.0 (Beta 2)

semantically interoperable information may be created and shared in health records, messages, and documents. The
CIMI initiative affords the opportunity to enable the storage of lifelong health information; simplify data exchange,
aggregation, querying and analysis; and support knowledge-based activities such as decision support. This will be
achieved through the development of non-proprietary, common and fully defined information models of clinical content
and known transformations.

The clinical reference model (an instance of a reference model), clinical archetype models and associated terminology
will serve as the domain vocabulary for clinical information. The syntax and semantics defined by these clinical
archetype models shall be maintained by users, in a common language that can be consistently understood and shared.
The AML Profile enables the creation, definition and use of this common language in UML.

The purpose of the AML Profile is to enable an UML ecosystem that supports and underpins CIMI activities through the
use of adopted standards. The AML Profile provides a clear, consistent means of designing clinical models using UML,
where tool vendors may add additional value/usability; clinical modeling concepts are separated from specific solutions
(ex. XML, JSON, DB schema, etc.); and the creation of open source solutions is enabled.

The AMP Profile:

! Specifies a collection of complementary UML profiles that work together to support the creation of CIMI
content models.

! Supports the specification of CIMI content models in UML, such that they can be translated into AOM 2.0.

! Is capable of being used in other domain areas, with other reference models.

! Is capable of being used in developing specific implementations of CIMI content models using platform
specific solutions (e.g. Clinical Document Architecture (CDA), openEHR etc.).

The AML Profile provides consistency by ensuring that a UML representation of a CIMI model produced by one
developer can be accurately interpreted by developers, modelers and transformations. It offers completeness by ensuring
that a developer can produce a UML representation of any CIMI reference and constraint model. Finally, the AML
Profile offers practicality by ensuring that a developer/modeler can develop a CIMI compliant clinical model by
employing the profile in current UML modeling tools.
Within the healthcare community the pattern of creating a common model that is reused by others to create specialized
models through constraining the original model is often referred to as reference / constraint modeling. The reference
model consists of syntax-neutral and technology- independent building blocks that can be used for data modeling. Major
benefits of this approach include improved reuse of existing data artifacts and improved enterprise interoperability.

The AML profile provides a family of UML sub-profiles that enables the representation of semantic-based information
models and addresses the problem of the lack of semantic interoperability within and between applications and databases
in healthcare computing environments, including across enterprises and national borders.

The AML Profile is the aggregation of three sub-profiles:

1. The Reference Model Profile (RMP)
2. The Constraint Model Profile (CMP)
3. The Terminology Binding Profile (TBP)

Traditionally, a single model containing all the required information concepts is designed for a specific application,
transport and database without regard to interoperability. Standards for the exchange of that health data between
applications and databases have been focused on static message definitions that have not enabled a sufficient degree of
interoperability or flexibility. They have not enabled 'single-source' modeling, whereby a single definition (e.g. a
microbiology lab result) can be re-used for multiple purposes, such as a message definition, a document definition, a
screen display form, a screen data capture form, or a report.

A more flexible and interoperable way of standardizing business semantics has long been required.

This submission provides a means for developing a common set of semantic building blocks that represent the general
types of healthcare data in use today. The solution should provide an approach for the creation of new healthcare
information models and the semantic binding of these information models to published terminologies to achieve
semantic interoperability of data. It can be employed wherever health data is being defined, stored, used, shared or

42 Archetype Modeling Language (AML), v1.0 (Beta 2)

exchanged.

8.4.1 ArchetypeType [Enumeration]

Description
The «ArchetypeType» Enumeration specifies the structural type of an Archetype. The ArchetypeType is mapped to the
structural variants described by [AOM] ARCHETYPE/is_template and ARCHETYPE/is_overlay attributes.

Diagrams
Terminology Binding Profile

Literals

! archetype

This literal specifies that the Archetype is structured as a source Archetype.

Source archetypes can be specialized, in which case their definition structure is a partial overlay on the flat parent, or
‘top-level’, in which case the definition structure is complete. «ArchetypeRoot» instances may only be used to represent
external references to other Archetypes.

An "archetype" maps to an [AOM] ARCHETYPE in which both ARCHETYPE/is_template and
ARCHETYPE/is_overlay are false.

! template

This literal specifies that the Archetype is structured as a Template.

A source template is an Archetype containing «ArchetypeRoot» elements representing slot fillers - each referring to an
external Archetype or template, or potentially an overlay archetype.

An Archetype template corresponds to an [AOM] ARCHETYPE/is_template attribute having value=True.

! template_overlay

This literal specifies that the Archetype is structured as a template overlay.

These are purely local components of templates, and include only the definition and terminology. The definition structure
is always a specialized overlay on something else, and may not contain any slot fillers or external references, i.e. no
«ArchetypeRoot» objects. No identifier, adl_version, languages or description are required, as they are considered to be
propagated from the owning root template.

Accordingly, template overlays act like a simplified specialized archetype. Template overlays can be thought of as being
similar to ‘anonymous’ or ‘inner’ classes in some object-oriented programming languages.

A template_overlay is mapped to an [AOM] ARCHETYPE with both ARCHETYPE/is_template and
ARCHETYPE.is_overlay set to true.

8.4.2 Lifecycle_state [Enumeration]

Description

Archetype Modeling Language (AML), v1.0 (Beta 2) 43

exchanged.

8.4.1 ArchetypeType [Enumeration]

Description
The «ArchetypeType» Enumeration specifies the structural type of an Archetype. The ArchetypeType is mapped to the
structural variants described by [AOM] ARCHETYPE/is_template and ARCHETYPE/is_overlay attributes.

Diagrams
Terminology Binding Profile

Literals

! archetype

This literal specifies that the Archetype is structured as a source Archetype.

Source archetypes can be specialized, in which case their definition structure is a partial overlay on the flat parent, or
‘top-level’, in which case the definition structure is complete. «ArchetypeRoot» instances may only be used to represent
external references to other Archetypes.

An "archetype" maps to an [AOM] ARCHETYPE in which both ARCHETYPE/is_template and
ARCHETYPE/is_overlay are false.

! template

This literal specifies that the Archetype is structured as a Template.

A source template is an Archetype containing «ArchetypeRoot» elements representing slot fillers - each referring to an
external Archetype or template, or potentially an overlay archetype.

An Archetype template corresponds to an [AOM] ARCHETYPE/is_template attribute having value=True.

! template_overlay

This literal specifies that the Archetype is structured as a template overlay.

These are purely local components of templates, and include only the definition and terminology. The definition structure
is always a specialized overlay on something else, and may not contain any slot fillers or external references, i.e. no
«ArchetypeRoot» objects. No identifier, adl_version, languages or description are required, as they are considered to be
propagated from the owning root template.

Accordingly, template overlays act like a simplified specialized archetype. Template overlays can be thought of as being
similar to ‘anonymous’ or ‘inner’ classes in some object-oriented programming languages.

A template_overlay is mapped to an [AOM] ARCHETYPE with both ARCHETYPE/is_template and
ARCHETYPE.is_overlay set to true.

8.4.2 Lifecycle_state [Enumeration]

Description

Archetype Modeling Language (AML), v1.0 (Beta 2) 43

The Lifecycle_state Enumeration is used to specify the state of an Archetype within its defined lifecycle. The lifecycle
state machine and versioning rules are explained fully in the openEHR Knowledge Artefact Identification specification
[KIS].

Diagrams
Constraint Profile

Literals

! deprecated

A code indicating that the artifact that is obsolete, suspended or withdrawn from active use

! in_development

A code indicating that an artifact is actively being created or modified.

! published

A code indicating that an artifact is available and is in active use.

! rejected

A code indicating that an artifact is withdrawn from development prior to being published.

! release_candidate

A code indicating that an artifact is being considered for publication.

! unmanaged

 A code indicating that an artifact has no recognized owner organization.

8.4.3 VERSION_STATUS [Enumeration]

Description
Status of this version, as one of a number of possible values: uncontrolled, prerelease, release, build.

Diagrams
Constraint Profile

Literals

! alpha

A code indicating a version which is ‘unstable’ i.e. that the version contains an unknown size of change with respect to
its base version. Rendered with the build number as a string in the form “N.M.P-alpha.B” e.g. “2.0.1-alpha.154”.

! beta

A code indicating a version which is ‘beta’ i.e. that the version contains an unknown but reducing size of change with
respect to its base version. Rendered with the build number as a string in the form “N.M.P-beta.B” e.g. “2.0.1-beta.154”.

! build

44 Archetype Modeling Language (AML), v1.0 (Beta 2)

The Lifecycle_state Enumeration is used to specify the state of an Archetype within its defined lifecycle. The lifecycle
state machine and versioning rules are explained fully in the openEHR Knowledge Artefact Identification specification
[KIS].

Diagrams
Constraint Profile

Literals

! deprecated

A code indicating that the artifact that is obsolete, suspended or withdrawn from active use

! in_development

A code indicating that an artifact is actively being created or modified.

! published

A code indicating that an artifact is available and is in active use.

! rejected

A code indicating that an artifact is withdrawn from development prior to being published.

! release_candidate

A code indicating that an artifact is being considered for publication.

! unmanaged

 A code indicating that an artifact has no recognized owner organization.

8.4.3 VERSION_STATUS [Enumeration]

Description
Status of this version, as one of a number of possible values: uncontrolled, prerelease, release, build.

Diagrams
Constraint Profile

Literals

! alpha

A code indicating a version which is ‘unstable’ i.e. that the version contains an unknown size of change with respect to
its base version. Rendered with the build number as a string in the form “N.M.P-alpha.B” e.g. “2.0.1-alpha.154”.

! beta

A code indicating a version which is ‘beta’ i.e. that the version contains an unknown but reducing size of change with
respect to its base version. Rendered with the build number as a string in the form “N.M.P-beta.B” e.g. “2.0.1-beta.154”.

! build

44 Archetype Modeling Language (AML), v1.0 (Beta 2)

A code indicating a version is the current base release. Rendered with the build number as a string in the form
“N.M.P+B” e.g. “2.0.1+33”.

! released

A code indicating a version which is ‘released’, i.e. is the definitive base version. Rendered with the build number as a
string in the form “N.M.P” e.g. “2.0.1”.

! release_candidate

A code indicating a version which is ‘release candidate’, i.e. contains only patch-level changes on the base version.
Rendered as a string as “N.M.P-rc.B” e.g. “2.0.1-rc.27”.

8.4.4 Archetype [Stereotype]

Description

An «Archetype» is a topic- or theme-based model of domain content, expressed in terms of constraints on a reference
information model. Since each «Archetype» constitutes an encapsulation of a set of data points pertaining to a topic, it is
of a manageable, limited size, and has a clear boundary. An «Archetype» includes descriptive meta-data, language
information, annotations, revision history, the Archetype definition, rules, and terminology.

The Archetype definition for an Archetype is modeled using exactly one «ArchetypeDefinition» Usage. The client of the
Usage is the «Archetype» while the supplier of the Usage is the top level «ComplexObjectConstraint» Classifier
constituting the definition of the «Archetype». The overall structure of an Archetype definition consists of the top level
Classifier, which owns attributes which have compositions of Classifiers, which owns attributes, etc. All of the
Classifiers in the Archetype definition are owned by the «Archetype» Package.

«Archetype» Rules are represented in AML as Constraints owned by the «Archetype» and constraining the Archetype
definition.

Archetype terminology is modeled in a nested Package with the name "ontology". Within the "ontology" Package,
there are nested packages representing the terminology concepts in [AOM]:

! Terminology definitions. The Terminology definitions package contains a set of «ResourceTranslation»s, one
for each natural language translation of the definition identifiers referenced in the Archetype definition
structure. Additionally, there is an Identifier Definition Enumeration which serves to bind elements from the
Archetype definition to the various natural language translations, the technology bindings, and value set
compositions. The name of the Terminology Package is the terminology identifier, a name such as ISO_639-1.

! term_bindings. The term_bindings package contains technology bindings for codes defined in the Identifier
Definition. Each technology binding is modeled as an Enumeration.· terminology_extracts. The
terminology_extracts package contains extracts from external terminologies such as SNOMED CT. Each
extract is modeled as an Enumeration consisting of codes and preferred term rubrics, enabling small value sets
to be captured locally in the model.

In [AOM], the name of an ARCHETYPE is specified in the attribute ARCHETYPE_HRID/physical_id, which is
expressed using the following syntax:

[rm_publisher]-[rm_closure]-[rm_class].[concept_id].v[release_version]-[version_status].[build_count]

In AML, the physical_id is implicit, being derived from the following model elements:

! rm_publisher. This is the value of the «ReferenceModel»::rmPublisher tag, where «ReferenceModel» is
imported by the containing «ArchetypeLibrary ».

! rm_closure. This is the value of the «ArchetypeLibrary »::rm_package tag.

Archetype Modeling Language (AML), v1.0 (Beta 2) 45

A code indicating a version is the current base release. Rendered with the build number as a string in the form
“N.M.P+B” e.g. “2.0.1+33”.

! released

A code indicating a version which is ‘released’, i.e. is the definitive base version. Rendered with the build number as a
string in the form “N.M.P” e.g. “2.0.1”.

! release_candidate

A code indicating a version which is ‘release candidate’, i.e. contains only patch-level changes on the base version.
Rendered as a string as “N.M.P-rc.B” e.g. “2.0.1-rc.27”.

8.4.4 Archetype [Stereotype]

Description

An «Archetype» is a topic- or theme-based model of domain content, expressed in terms of constraints on a reference
information model. Since each «Archetype» constitutes an encapsulation of a set of data points pertaining to a topic, it is
of a manageable, limited size, and has a clear boundary. An «Archetype» includes descriptive meta-data, language
information, annotations, revision history, the Archetype definition, rules, and terminology.

The Archetype definition for an Archetype is modeled using exactly one «ArchetypeDefinition» Usage. The client of the
Usage is the «Archetype» while the supplier of the Usage is the top level «ComplexObjectConstraint» Classifier
constituting the definition of the «Archetype». The overall structure of an Archetype definition consists of the top level
Classifier, which owns attributes which have compositions of Classifiers, which owns attributes, etc. All of the
Classifiers in the Archetype definition are owned by the «Archetype» Package.

«Archetype» Rules are represented in AML as Constraints owned by the «Archetype» and constraining the Archetype
definition.

Archetype terminology is modeled in a nested Package with the name "ontology". Within the "ontology" Package,
there are nested packages representing the terminology concepts in [AOM]:

! Terminology definitions. The Terminology definitions package contains a set of «ResourceTranslation»s, one
for each natural language translation of the definition identifiers referenced in the Archetype definition
structure. Additionally, there is an Identifier Definition Enumeration which serves to bind elements from the
Archetype definition to the various natural language translations, the technology bindings, and value set
compositions. The name of the Terminology Package is the terminology identifier, a name such as ISO_639-1.

! term_bindings. The term_bindings package contains technology bindings for codes defined in the Identifier
Definition. Each technology binding is modeled as an Enumeration.· terminology_extracts. The
terminology_extracts package contains extracts from external terminologies such as SNOMED CT. Each
extract is modeled as an Enumeration consisting of codes and preferred term rubrics, enabling small value sets
to be captured locally in the model.

In [AOM], the name of an ARCHETYPE is specified in the attribute ARCHETYPE_HRID/physical_id, which is
expressed using the following syntax:

[rm_publisher]-[rm_closure]-[rm_class].[concept_id].v[release_version]-[version_status].[build_count]

In AML, the physical_id is implicit, being derived from the following model elements:

! rm_publisher. This is the value of the «ReferenceModel»::rmPublisher tag, where «ReferenceModel» is
imported by the containing «ArchetypeLibrary ».

! rm_closure. This is the value of the «ArchetypeLibrary »::rm_package tag.

Archetype Modeling Language (AML), v1.0 (Beta 2) 45

! rm_class. This is derived from the root (defining) class of this «Archetype». The value is the name of the
«ReferenceModel» Class specialized by the Archetype definition of this «Archetype».

! concept_id. The value is the name of the «Archetype» Package.

! release_version. The value is the full numeric version of this «Archetype», as specified in the release_version
tag of this «Archetype».

! version_status. The value is the status of the version, as specified in the version_status tag of this «Archetype».

! build_count. The value is the build_count, as specified in the build_count tag of this «Archetype»

The URI of the «Archetype» Package represents the [AOM] attribute ARCHETYPE/namespace.

«Archetype» specialization may be modeled using a PackageImport from some parent «Archetype».

An «Archetype» Package contains (directly or indirectly) a set of constraints on «ReferenceModel» Classifiers. The
constrained Classifiers must be owned by the «ReferenceModel» imported from the nesting Package
«ArchetypeLibrary».

Diagrams
Constraint Profile

Direct Superclasses (Generalization)
ConstraintProfile::AuthoredResource
8.4.9 AuthoredResource [Stereotype]

Meta-classes

UML::Package

Attributes
• archetypeType : [0..1]

The archetypeType tag models the kind of the archetype. The archetypeType value may be one of archetype, template or
template_overlay.

• amlVersion : UML::PrimitiveTypes::String [1]

The version of the AML specification used to define this version of the Archetype.

• is_controlled : UML::PrimitiveTypes::Boolean [1]

The is_controlled tag indicates whether the archetype is change-controlled or not. If is_controlled is true, the Archetype
should have a revision history section included, otherwise an Archetype may omit the revision history. This indicator
enables Archetypes to be privately edited in an early development phase without generating large revision histories of
little or no value.

If this indicator is false, the Archetype is an ad hoc, uncontrolled artifact, not formally associated with any organization.
This case is typical for an experimental archetype. If true, then the archetype must include a namespace which denotes
the original authoring organization.

• is_generated : UML::PrimitiveTypes::Boolean [0..1]

46 Archetype Modeling Language (AML), v1.0 (Beta 2)

! rm_class. This is derived from the root (defining) class of this «Archetype». The value is the name of the
«ReferenceModel» Class specialized by the Archetype definition of this «Archetype».

! concept_id. The value is the name of the «Archetype» Package.

! release_version. The value is the full numeric version of this «Archetype», as specified in the release_version
tag of this «Archetype».

! version_status. The value is the status of the version, as specified in the version_status tag of this «Archetype».

! build_count. The value is the build_count, as specified in the build_count tag of this «Archetype»

The URI of the «Archetype» Package represents the [AOM] attribute ARCHETYPE/namespace.

«Archetype» specialization may be modeled using a PackageImport from some parent «Archetype».

An «Archetype» Package contains (directly or indirectly) a set of constraints on «ReferenceModel» Classifiers. The
constrained Classifiers must be owned by the «ReferenceModel» imported from the nesting Package
«ArchetypeLibrary».

Diagrams
Constraint Profile

Direct Superclasses (Generalization)
ConstraintProfile::AuthoredResource
8.4.9 AuthoredResource [Stereotype]

Meta-classes

UML::Package

Attributes
• archetypeType : [0..1]

The archetypeType tag models the kind of the archetype. The archetypeType value may be one of archetype, template or
template_overlay.

• amlVersion : UML::PrimitiveTypes::String [1]

The version of the AML specification used to define this version of the Archetype.

• is_controlled : UML::PrimitiveTypes::Boolean [1]

The is_controlled tag indicates whether the archetype is change-controlled or not. If is_controlled is true, the Archetype
should have a revision history section included, otherwise an Archetype may omit the revision history. This indicator
enables Archetypes to be privately edited in an early development phase without generating large revision histories of
little or no value.

If this indicator is false, the Archetype is an ad hoc, uncontrolled artifact, not formally associated with any organization.
This case is typical for an experimental archetype. If true, then the archetype must include a namespace which denotes
the original authoring organization.

• is_generated : UML::PrimitiveTypes::Boolean [0..1]

46 Archetype Modeling Language (AML), v1.0 (Beta 2)

A flag indicating whether the archetype was generated (is_generated = true) or authored (is_generated = false). This
marker is used to support the migration to differential archetype representation introduced in ADL 1.5, to enable proper
representation of specialized archetypes.

• release_version : UML::PrimitiveTypes::String [1]

The release_version tag specifies the full numeric version of this Archetype. In AOM, this identifier will consist of 3
parts: the major, the minor and the patch version.

• version_status : ConstraintProfile::VERSION_STATUS [1]

The version_status tag specifies the status of the version.

• build_count : UML::PrimitiveTypes::Integer [1]

The build_count tag specifies the number of builds since the last increment of any version part.

• other_metadata : UML::PrimitiveTypes::String [0..*]

The other_metadata tag contains additional information about an Archetype.

• other_metadata_id : UML::PrimitiveTypes::String [0..*]

The other_metadata_id tag contains the name associated with additional information about an Archetype.
other_metadata_id Strings are matched to other_metadata Strings by order.

Constraints

! mustBeOwned

Every Archetype Package must be owned by a Package with an ArchetypeLibrary stereotype.

[OCL]

self.base_Package.owningPackage.stereotypedBy('ArchetypeLibrary')

! ownsObjectConstraints

Types (other than Associations) owned by an Archetype Package must be ObjectConstraints.

[OCL]

self.base_Package.ownedType->select(x|x.oclIsKindOf(Classifier) and
not(x.oclIsKindOf(Association)))->
forAll(x|x.stereotypedBy('ObjectConstraint'))

! specializesArchetype

 If an Archetype specializes another Archetype the ArchetypeDefinition supplier of both Archetypes must be the same.
In other words, both Archetypes must constrain the same "root class" in the reference model.

[OCL]

self.base_Package.packageImport.importedPackage->
select(p|p.stereotypedBy('Archetype')).clientDependency->
select(t|t.stereotypedBy('ArchetypeDefinition')).supplier.

Archetype Modeling Language (AML), v1.0 (Beta 2) 47

A flag indicating whether the archetype was generated (is_generated = true) or authored (is_generated = false). This
marker is used to support the migration to differential archetype representation introduced in ADL 1.5, to enable proper
representation of specialized archetypes.

• release_version : UML::PrimitiveTypes::String [1]

The release_version tag specifies the full numeric version of this Archetype. In AOM, this identifier will consist of 3
parts: the major, the minor and the patch version.

• version_status : ConstraintProfile::VERSION_STATUS [1]

The version_status tag specifies the status of the version.

• build_count : UML::PrimitiveTypes::Integer [1]

The build_count tag specifies the number of builds since the last increment of any version part.

• other_metadata : UML::PrimitiveTypes::String [0..*]

The other_metadata tag contains additional information about an Archetype.

• other_metadata_id : UML::PrimitiveTypes::String [0..*]

The other_metadata_id tag contains the name associated with additional information about an Archetype.
other_metadata_id Strings are matched to other_metadata Strings by order.

Constraints

! mustBeOwned

Every Archetype Package must be owned by a Package with an ArchetypeLibrary stereotype.

[OCL]

self.base_Package.owningPackage.stereotypedBy('ArchetypeLibrary')

! ownsObjectConstraints

Types (other than Associations) owned by an Archetype Package must be ObjectConstraints.

[OCL]

self.base_Package.ownedType->select(x|x.oclIsKindOf(Classifier) and
not(x.oclIsKindOf(Association)))->
forAll(x|x.stereotypedBy('ObjectConstraint'))

! specializesArchetype

 If an Archetype specializes another Archetype the ArchetypeDefinition supplier of both Archetypes must be the same.
In other words, both Archetypes must constrain the same "root class" in the reference model.

[OCL]

self.base_Package.packageImport.importedPackage->
select(p|p.stereotypedBy('Archetype')).clientDependency->
select(t|t.stereotypedBy('ArchetypeDefinition')).supplier.

Archetype Modeling Language (AML), v1.0 (Beta 2) 47

oclAsType(Classifier).general->forAll(x|self.base_Package.clientDependency->
select(t|t.stereotypedBy('ArchetypeDefinition')).supplier.
oclAsType(Classifier).general->includes(x))

! [AOM] ARCHETYPE:Invariant:Concept_valid

The [AOM] invariant requires the concept_code to exist in the terminology definition. In AML, the concept_code is the
language-specific text for the top-level Archetype definition Classifier. Thus in AML, this [AOM] invariant maps to the
requirement that the Archetype definition Classifier must have an «Archetype» id tag whose value is a «ArchetypeTerm»
within an Identifier Definition. Note that this Constraint ends up the same as [AOM]
ARCHETYPE_TERMINOLOGY:Invariant:concept_code_validity.

[OCL]

self.base_Package.clientDependency->
select(d|d.stereotypedBy('ArchetypeDefinition')).supplier->
exists(s|s.appliedStereotypeInstance.oclAsType(ComplexObjectConstraint).id->
notEmpty())

! [AOM] ARCHETYPE:Invariant:Definition_exists

Every Archetype Package must have exactly one clientDependency which is an ArchetypeDefinition and whose supplier
is a ComplexObjectConstraint within the same Archetype Package.

[OCL]

self.base_Package.clientDependency->
exists(d|d.stereotypedBy('ArchetypeDefinition'))

! [AOM] ARCHETYPE:Invariant:Original_language_valid

The Archetype must have a valid original language. In AML, the original language is identified as a Usage from the
Archetype to a Resource Translation.

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='original_language')).supplier->
select(e|e.stereotypedBy('ResourceTranslation'))->size()=1

[AOM] ARCHETYPE:Invariant:Rules_valid

! [AOM] ARCHETYPE:Invariant:Rules_valid

The [AOM] ARCHETYPE/rules, if present, must not be an empty list. [AOM] ARCHETYPE/rules maps to AML
«Archetype» ownedRule Constraints. An [AOM] ARCHETYPE/rules which has no value is mapped to an empty list of
AML «Archetype» ownedRule Constraints.

[English]

This [AOM] Invariant is definitional in AML. In AML, if rules is empty, it
implies rules are undefined.

48 Archetype Modeling Language (AML), v1.0 (Beta 2)

oclAsType(Classifier).general->forAll(x|self.base_Package.clientDependency->
select(t|t.stereotypedBy('ArchetypeDefinition')).supplier.
oclAsType(Classifier).general->includes(x))

! [AOM] ARCHETYPE:Invariant:Concept_valid

The [AOM] invariant requires the concept_code to exist in the terminology definition. In AML, the concept_code is the
language-specific text for the top-level Archetype definition Classifier. Thus in AML, this [AOM] invariant maps to the
requirement that the Archetype definition Classifier must have an «Archetype» id tag whose value is a «ArchetypeTerm»
within an Identifier Definition. Note that this Constraint ends up the same as [AOM]
ARCHETYPE_TERMINOLOGY:Invariant:concept_code_validity.

[OCL]

self.base_Package.clientDependency->
select(d|d.stereotypedBy('ArchetypeDefinition')).supplier->
exists(s|s.appliedStereotypeInstance.oclAsType(ComplexObjectConstraint).id->
notEmpty())

! [AOM] ARCHETYPE:Invariant:Definition_exists

Every Archetype Package must have exactly one clientDependency which is an ArchetypeDefinition and whose supplier
is a ComplexObjectConstraint within the same Archetype Package.

[OCL]

self.base_Package.clientDependency->
exists(d|d.stereotypedBy('ArchetypeDefinition'))

! [AOM] ARCHETYPE:Invariant:Original_language_valid

The Archetype must have a valid original language. In AML, the original language is identified as a Usage from the
Archetype to a Resource Translation.

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='original_language')).supplier->
select(e|e.stereotypedBy('ResourceTranslation'))->size()=1

[AOM] ARCHETYPE:Invariant:Rules_valid

! [AOM] ARCHETYPE:Invariant:Rules_valid

The [AOM] ARCHETYPE/rules, if present, must not be an empty list. [AOM] ARCHETYPE/rules maps to AML
«Archetype» ownedRule Constraints. An [AOM] ARCHETYPE/rules which has no value is mapped to an empty list of
AML «Archetype» ownedRule Constraints.

[English]

This [AOM] Invariant is definitional in AML. In AML, if rules is empty, it
implies rules are undefined.

48 Archetype Modeling Language (AML), v1.0 (Beta 2)

! [AOM] ARCHETYPE:Invariant:Specialisation_validity

The [AOM] ARCHETYPE/is_specialised value is true if this archetype is a specialization of another. The [AOM]
ARCHETYPE/specialisation_depth is larger than 0 if this archetype has a parent. In AML, both is_specialised and
specialisation_depth are derived, if required, during mapping.

[English]

During AML transformations, is_specialised is derived and will be consistent
with specialisation_depth, which is also derived.

[AOM] ARCHETYPE:Invariant:Terminology_exists

! [AOM] ARCHETYPE:Invariant:Terminology_exists

A terminology definition must exist for an Archetype. This [AOM] Invariant maps to the AML Constraint that an
Archetype must have one or more Resource Transformations.

[OCL]

self.base_Package.nestedPackage.nestedPackage.ownedType->
exists(o|o.stereotypedBy('ResourceTranslation'))

! [AOM] ARCHETYPE_HRID:Invariant:Base_version_validity

The tag release_version MUST have a value.

[English]

The release_version tag is required, so this [AOM] invariant is enforced by
[UML] semantics.

! [AOM] ARCHETYPE_HRID:Invariant:Concept_id_validity

The [AOM] ARCHETYPE_HRIN/concept_id must have a value. [AOM] ARCHETYPE_HRIN/concept_id maps to the
name of the «Archetype» Package.

[OCL]

not(self.base_Package.name.oclIsUndefined()) and (self.base_Package.name<>'')

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:concept_code_validity

The [AOM] ARCHETYPE/concept_code must be represented in the terminology definition. The [AOM]
ARCHETYPE/concept_code is mapped to the AML language-specific text for the top-level Archetype definition
Classifier. Thus in AML, this [AOM] invariant maps to the requirement that the Archetype definition Classifier must
have an «IdentifiedItem» id tag whose value is a «ArchetypeTerm» within an Identifier Definition.

[OCL]

self.base_Package.clientDependency->
select(d|d.stereotypedBy('ArchetypeDefinition')).supplier->
exists(s|s.appliedStereotypeInstance.oclAsType(ComplexObjectConstraint).id->
notEmpty())

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:original_language_validity

There must exist an original language for the [AOM] ARCHETYPE_TERMINOLOGY. This [AOM] invariant maps to
the requirement that an AML Archetype Package must have exactly one Usage association named
"terminology_original_language" whose supplier is a ResourceTranslation.

Archetype Modeling Language (AML), v1.0 (Beta 2) 49

! [AOM] ARCHETYPE:Invariant:Specialisation_validity

The [AOM] ARCHETYPE/is_specialised value is true if this archetype is a specialization of another. The [AOM]
ARCHETYPE/specialisation_depth is larger than 0 if this archetype has a parent. In AML, both is_specialised and
specialisation_depth are derived, if required, during mapping.

[English]

During AML transformations, is_specialised is derived and will be consistent
with specialisation_depth, which is also derived.

[AOM] ARCHETYPE:Invariant:Terminology_exists

! [AOM] ARCHETYPE:Invariant:Terminology_exists

A terminology definition must exist for an Archetype. This [AOM] Invariant maps to the AML Constraint that an
Archetype must have one or more Resource Transformations.

[OCL]

self.base_Package.nestedPackage.nestedPackage.ownedType->
exists(o|o.stereotypedBy('ResourceTranslation'))

! [AOM] ARCHETYPE_HRID:Invariant:Base_version_validity

The tag release_version MUST have a value.

[English]

The release_version tag is required, so this [AOM] invariant is enforced by
[UML] semantics.

! [AOM] ARCHETYPE_HRID:Invariant:Concept_id_validity

The [AOM] ARCHETYPE_HRIN/concept_id must have a value. [AOM] ARCHETYPE_HRIN/concept_id maps to the
name of the «Archetype» Package.

[OCL]

not(self.base_Package.name.oclIsUndefined()) and (self.base_Package.name<>'')

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:concept_code_validity

The [AOM] ARCHETYPE/concept_code must be represented in the terminology definition. The [AOM]
ARCHETYPE/concept_code is mapped to the AML language-specific text for the top-level Archetype definition
Classifier. Thus in AML, this [AOM] invariant maps to the requirement that the Archetype definition Classifier must
have an «IdentifiedItem» id tag whose value is a «ArchetypeTerm» within an Identifier Definition.

[OCL]

self.base_Package.clientDependency->
select(d|d.stereotypedBy('ArchetypeDefinition')).supplier->
exists(s|s.appliedStereotypeInstance.oclAsType(ComplexObjectConstraint).id->
notEmpty())

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:original_language_validity

There must exist an original language for the [AOM] ARCHETYPE_TERMINOLOGY. This [AOM] invariant maps to
the requirement that an AML Archetype Package must have exactly one Usage association named
"terminology_original_language" whose supplier is a ResourceTranslation.

Archetype Modeling Language (AML), v1.0 (Beta 2) 49

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='terminology_original_language')).supplier->
select(e|e.stereotypedBy('ResourceTranslation'))->size()=1

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:Parent_archetype_valid

The [AOM] ARCHETYPE/terminology is required. The [AOM] ARCHETYPE/terminology maps to a nested Package
of the «Archetype» Package named "ontology".

[OCL]

self.base_Package.nestedPackage->exists(p|p.name='ontology')

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:term_definitions_validity

The [AOM] ARCHETYPE_TERMINOLOGY/term_definitions maps to a set of AML «ResourceTranslation»s, one per
language. There must be one or more «ResourceTranslation»s for an Archetype.

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='original_language')).supplier->
exists(e|e.stereotypedBy('ResourceTranslation'))

! [AOM] OPERATIONAL_TEMPLATE:Invariant:Component_terminologies_existence

An [AOM] OPERATIONAL_TEMPLATE maps to an AML Archetype with value of tag
archetypeType=ArchetypeType::template. Within the implicit context of an OPERATIONAL_TEMPLATE, there is a
logical compendium of flattened terminologies from externally referenced archetypes.

[English]

The compendium of terminologies from externally archetypes is derivable from the
AML model. Although not explicitly defined in AML, it is conceptually
derivable from an Archetype. The derived value would contain a list of the
flattened terminologies from the externally referenced archetypes.

! [AOM] OPERATIONAL_TEMPLATE:Invariant:Is_specialised

An [AOM] OPERATIONAL_TEMPLATE maps to an AML Archetype with value of tag archetypeType
=ArchetypeType::template.

[English]

This [AOM] invariant is definitional in AML.

! [AOM] VACSD- archetype concept specialisation depth

The specialization depth of the concept code must be one greater than the specialization depth of the parent archetype.

[English]

This [AOM] Validation Rule is definitional for AML-UML; the specialisation_depth
is implicitly derived from the number of parent-archetype specializations above
the current archetype.

50 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='terminology_original_language')).supplier->
select(e|e.stereotypedBy('ResourceTranslation'))->size()=1

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:Parent_archetype_valid

The [AOM] ARCHETYPE/terminology is required. The [AOM] ARCHETYPE/terminology maps to a nested Package
of the «Archetype» Package named "ontology".

[OCL]

self.base_Package.nestedPackage->exists(p|p.name='ontology')

! [AOM] ARCHETYPE_TERMINOLOGY:Invariant:term_definitions_validity

The [AOM] ARCHETYPE_TERMINOLOGY/term_definitions maps to a set of AML «ResourceTranslation»s, one per
language. There must be one or more «ResourceTranslation»s for an Archetype.

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='original_language')).supplier->
exists(e|e.stereotypedBy('ResourceTranslation'))

! [AOM] OPERATIONAL_TEMPLATE:Invariant:Component_terminologies_existence

An [AOM] OPERATIONAL_TEMPLATE maps to an AML Archetype with value of tag
archetypeType=ArchetypeType::template. Within the implicit context of an OPERATIONAL_TEMPLATE, there is a
logical compendium of flattened terminologies from externally referenced archetypes.

[English]

The compendium of terminologies from externally archetypes is derivable from the
AML model. Although not explicitly defined in AML, it is conceptually
derivable from an Archetype. The derived value would contain a list of the
flattened terminologies from the externally referenced archetypes.

! [AOM] OPERATIONAL_TEMPLATE:Invariant:Is_specialised

An [AOM] OPERATIONAL_TEMPLATE maps to an AML Archetype with value of tag archetypeType
=ArchetypeType::template.

[English]

This [AOM] invariant is definitional in AML.

! [AOM] VACSD- archetype concept specialisation depth

The specialization depth of the concept code must be one greater than the specialization depth of the parent archetype.

[English]

This [AOM] Validation Rule is definitional for AML-UML; the specialisation_depth
is implicitly derived from the number of parent-archetype specializations above
the current archetype.

50 Archetype Modeling Language (AML), v1.0 (Beta 2)

! [AOM] VALC- archetype language conformance

The languages defined in a specialized archetype must be the same as or a subset of those defined in the flat parent.

[OCL]

self.base_Package.packageImport.importedPackage->
forAll(superArch|self.base_Package.clientDependency.supplier->
select(s|s.stereotypedBy('ResourceTranslation')).name
forAll(language|superArch.clientDependency.supplier->
select(s|s.stereotypedBy('ResourceTranslation')).name->exists(n|n=language)))

! [AOM] VARD- description specified

For an ArchetypeType of 'archetype' or 'template', a description section containing the main meta-data of the archetype
must exist.

[OCL]

(self.archetypeType.repr()<>'template_overlay') implies
self.base_Package.clientDependency.supplier->
select(d|d.stereotypedBy('ResourceTranslation'))->notEmpty()

! [AOM] VARDT- archetype definition typename validity

The [AOM] C_OBJECT/rm_type_name mentioned in the outer block of the archetype definition section must match the
type mentioned in the [AOM] ARCHETYPE_HRID/rm_class. The [AOM] C_OBJECT/rm_type_name maps to the
name of the AML Reference Model Class specialized by the archetype definition. In other words, the [AOM]
rm_type_name and rm_class map to a single element in AML.

[English]

In AML, the typename in the archetype id is derived from the name of the
constrained RM Type in the outer block of the archetype definition section, so
the [AOM] validity rule is always satisfied.

! [AOM] VARIABLE_DECLARATION:Invariant:Name_valid

An [AOM] VARIABLE_DECLARATION/name maps to a UML InstanceSpecification/name owned by an «Archetype»
Package. The name must be defined and not empty.

[OCL]

self.namespace.stereotypedBy('Namespace')implies(
not(self.name.oclIsUndefined()) and(self.name<>''))

! [AOM] VARID- archetype identifier validity

The archetype must have an identifier that conforms to the openEHR specification for archetype identifiers.

[OCL]

self.release_version.match('[0-9]*(\\.[0-9]*(\\.[0-9]*)?)?')

! [AOM] VASID- archetype specialisation parent identifier validity

The [AOM] attribute AUTHORED_RESOURCE/parent_archetype_id must be the identifier of the immediate
specialization parent archetype.

Archetype Modeling Language (AML), v1.0 (Beta 2) 51

! [AOM] VALC- archetype language conformance

The languages defined in a specialized archetype must be the same as or a subset of those defined in the flat parent.

[OCL]

self.base_Package.packageImport.importedPackage->
forAll(superArch|self.base_Package.clientDependency.supplier->
select(s|s.stereotypedBy('ResourceTranslation')).name
forAll(language|superArch.clientDependency.supplier->
select(s|s.stereotypedBy('ResourceTranslation')).name->exists(n|n=language)))

! [AOM] VARD- description specified

For an ArchetypeType of 'archetype' or 'template', a description section containing the main meta-data of the archetype
must exist.

[OCL]

(self.archetypeType.repr()<>'template_overlay') implies
self.base_Package.clientDependency.supplier->
select(d|d.stereotypedBy('ResourceTranslation'))->notEmpty()

! [AOM] VARDT- archetype definition typename validity

The [AOM] C_OBJECT/rm_type_name mentioned in the outer block of the archetype definition section must match the
type mentioned in the [AOM] ARCHETYPE_HRID/rm_class. The [AOM] C_OBJECT/rm_type_name maps to the
name of the AML Reference Model Class specialized by the archetype definition. In other words, the [AOM]
rm_type_name and rm_class map to a single element in AML.

[English]

In AML, the typename in the archetype id is derived from the name of the
constrained RM Type in the outer block of the archetype definition section, so
the [AOM] validity rule is always satisfied.

! [AOM] VARIABLE_DECLARATION:Invariant:Name_valid

An [AOM] VARIABLE_DECLARATION/name maps to a UML InstanceSpecification/name owned by an «Archetype»
Package. The name must be defined and not empty.

[OCL]

self.namespace.stereotypedBy('Namespace')implies(
not(self.name.oclIsUndefined()) and(self.name<>''))

! [AOM] VARID- archetype identifier validity

The archetype must have an identifier that conforms to the openEHR specification for archetype identifiers.

[OCL]

self.release_version.match('[0-9]*(\\.[0-9]*(\\.[0-9]*)?)?')

! [AOM] VASID- archetype specialisation parent identifier validity

The [AOM] attribute AUTHORED_RESOURCE/parent_archetype_id must be the identifier of the immediate
specialization parent archetype.

Archetype Modeling Language (AML), v1.0 (Beta 2) 51

The [AOM] attribute AUTHORED_RESOURCE/parent_archetype_id maps to an AML packageImport from the
«Archetype» Package to the parent «Archetype» Package. There may be at most one imported parent «Archetype»
Package.

[OCL]

self.base_Package.packageImport.importedPackage->
select(p|p.stereotypedBy('Archetype'))->size()<=1

! [AOM] VATCD- archetype code specialisation level validity

Each archetype term (‘at’ code) and constraint code (‘ac’ code) used in the archetype definition part must have a
specialization level no greater than the specialization level of the archetype.

[English]

The specialization level used for archetype terms and constraint codes are
derived and enforced during mapping to [AOM] to conform with the specialization
level validity constraint.

! [AOM] VDEOL- original language specified

An original_language section containing the meta-data of the original authoring language must exist.

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='original_language')).supplier->
select(s|s.stereotypedBy('ResourceTranslation'))->notEmpty()

! [AOM] VOKU- object key unique

Within any keyed list in an archetype, including the description, terminology, and annotations sections, each item must
have a unique key with respect to its siblings.

[English]

This [AOM] validation rule is enforced by the UML constraint that names within a
namespace must be unique.

8.4.5 ArchetypeDefinition [Stereotype]

Description
The ArchetypeDefinition stereotype associates a ComplexObjectConstraint supplier with an Archetype client, indicating
that the ComplexObjectConstraint is the root definition of the client Archetype. ArchetypeDefinition corresponds to the
definition association between ARCHETYPE and C_COMPLEX_OBJECT in the [AOM] model.

Diagrams
Constraint Profile

Meta-classes

UML::Usage

52 Archetype Modeling Language (AML), v1.0 (Beta 2)

The [AOM] attribute AUTHORED_RESOURCE/parent_archetype_id maps to an AML packageImport from the
«Archetype» Package to the parent «Archetype» Package. There may be at most one imported parent «Archetype»
Package.

[OCL]

self.base_Package.packageImport.importedPackage->
select(p|p.stereotypedBy('Archetype'))->size()<=1

! [AOM] VATCD- archetype code specialisation level validity

Each archetype term (‘at’ code) and constraint code (‘ac’ code) used in the archetype definition part must have a
specialization level no greater than the specialization level of the archetype.

[English]

The specialization level used for archetype terms and constraint codes are
derived and enforced during mapping to [AOM] to conform with the specialization
level validity constraint.

! [AOM] VDEOL- original language specified

An original_language section containing the meta-data of the original authoring language must exist.

[OCL]

self.base_Package.clientDependency->select(d|d.oclIsKindOf(Usage) and
(d.name='original_language')).supplier->
select(s|s.stereotypedBy('ResourceTranslation'))->notEmpty()

! [AOM] VOKU- object key unique

Within any keyed list in an archetype, including the description, terminology, and annotations sections, each item must
have a unique key with respect to its siblings.

[English]

This [AOM] validation rule is enforced by the UML constraint that names within a
namespace must be unique.

8.4.5 ArchetypeDefinition [Stereotype]

Description
The ArchetypeDefinition stereotype associates a ComplexObjectConstraint supplier with an Archetype client, indicating
that the ComplexObjectConstraint is the root definition of the client Archetype. ArchetypeDefinition corresponds to the
definition association between ARCHETYPE and C_COMPLEX_OBJECT in the [AOM] model.

Diagrams
Constraint Profile

Meta-classes

UML::Usage

52 Archetype Modeling Language (AML), v1.0 (Beta 2)

Constraints

! [AOM] ARCHETYPE_HRID:Invariant:Rm_class_name_validity

The [AOM] ARCHETYPE_HRID/Rm_class maps to the name of the Reference Model Classifier which is the general of
the top level Archetype definition Classifier. The [AOM] invariant maps to the AML requirement that the top level
Archetype definition Classifier must exist.

[OCL]

self.base_Usage.supplier->exists(s|s.stereotypedBy('ObjectConstraint') and
s.oclAsType(Classifier).general->notEmpty())

8.4.6 ArchetypeLibrary [Stereotype]

Description
An «ArchetypeLibrary» is a container of «Archetype»s. An archetype library imports exactly one «ReferenceModel»
Package. The imported «ReferenceModel» provides metadata used to derive parts of Archetype identifiers.

All Archetypes within a library constrain Classifiers and Properties within the same Reference Model. The Reference
Model also specifies how to bind Reference Model Classifiers to AML Primitive Types (namely the UML Primitive
Types plus the XML Primitive Types).

Diagrams
Constraint Profile

Meta-classes

UML::Package

Attributes

• has_aom_ids : UML::PrimitiveTypes::Boolean [1]

If true, then all Archetypes in this Archetype Library use the id tag in «IdentifiedItem» to specify an «ArchetypeTerm»
for binding model elements to multiple natural languages, technology bindings, and value set compositions. The
has_aom_ids must be true to enable round-trip engineering between [AOM] models and AML. In this mode, the names
of «ArchetypeTerm» EnumerationLiterals will be based on the [AOM] naming conventions (they will be of the form
“id*”, “ac*”, or “at*”).

If false, a somewhat simplified modeling paradigm is available, and the id tag in «IdentifiedItem» is not used.
Transformation to [AOM] is not supported in this mode. It is assumed that there is a single Natural Language, and that
language has no metadata. The «Entry» Stereotype may be applied to a model element in order to specify a terminology
name independent of the NamedElement name. The description for the term may be specified in an ownedComment
body. In this case, code value constraints are modeled as «PermissibleValue» EnumerationLiterals. A (single)
technology binding would be specified as the value (having type «ResourceReference») of the meaning tag on the
«PermissibleValue». A set of «PermissibleValue»s would be owned by an «EnumeratedValueDomain» Enumeration. A
value set may be modeled using the valueSetBinding tag on the «EnumeratedValueDomain» Enumeration.

• rm_package : UML::PrimitiveTypes::String [1]

Name of the Reference Model Package in whose closure the rm_class is found (there can be more than one possibility in
a reference model). This tag corresponds to the [AOM] model attribute ARCHETYPE_HRID/rm_closure. Since this
does not necessarily correspond to a physical package in the UML Reference Model, the type of this tag is a String.

Archetype Modeling Language (AML), v1.0 (Beta 2) 53

Constraints

! [AOM] ARCHETYPE_HRID:Invariant:Rm_class_name_validity

The [AOM] ARCHETYPE_HRID/Rm_class maps to the name of the Reference Model Classifier which is the general of
the top level Archetype definition Classifier. The [AOM] invariant maps to the AML requirement that the top level
Archetype definition Classifier must exist.

[OCL]

self.base_Usage.supplier->exists(s|s.stereotypedBy('ObjectConstraint') and
s.oclAsType(Classifier).general->notEmpty())

8.4.6 ArchetypeLibrary [Stereotype]

Description
An «ArchetypeLibrary» is a container of «Archetype»s. An archetype library imports exactly one «ReferenceModel»
Package. The imported «ReferenceModel» provides metadata used to derive parts of Archetype identifiers.

All Archetypes within a library constrain Classifiers and Properties within the same Reference Model. The Reference
Model also specifies how to bind Reference Model Classifiers to AML Primitive Types (namely the UML Primitive
Types plus the XML Primitive Types).

Diagrams
Constraint Profile

Meta-classes

UML::Package

Attributes

• has_aom_ids : UML::PrimitiveTypes::Boolean [1]

If true, then all Archetypes in this Archetype Library use the id tag in «IdentifiedItem» to specify an «ArchetypeTerm»
for binding model elements to multiple natural languages, technology bindings, and value set compositions. The
has_aom_ids must be true to enable round-trip engineering between [AOM] models and AML. In this mode, the names
of «ArchetypeTerm» EnumerationLiterals will be based on the [AOM] naming conventions (they will be of the form
“id*”, “ac*”, or “at*”).

If false, a somewhat simplified modeling paradigm is available, and the id tag in «IdentifiedItem» is not used.
Transformation to [AOM] is not supported in this mode. It is assumed that there is a single Natural Language, and that
language has no metadata. The «Entry» Stereotype may be applied to a model element in order to specify a terminology
name independent of the NamedElement name. The description for the term may be specified in an ownedComment
body. In this case, code value constraints are modeled as «PermissibleValue» EnumerationLiterals. A (single)
technology binding would be specified as the value (having type «ResourceReference») of the meaning tag on the
«PermissibleValue». A set of «PermissibleValue»s would be owned by an «EnumeratedValueDomain» Enumeration. A
value set may be modeled using the valueSetBinding tag on the «EnumeratedValueDomain» Enumeration.

• rm_package : UML::PrimitiveTypes::String [1]

Name of the Reference Model Package in whose closure the rm_class is found (there can be more than one possibility in
a reference model). This tag corresponds to the [AOM] model attribute ARCHETYPE_HRID/rm_closure. Since this
does not necessarily correspond to a physical package in the UML Reference Model, the type of this tag is a String.

Archetype Modeling Language (AML), v1.0 (Beta 2) 53

Constraints
• oneReferenceModel

There must be exactly one packageImport of a Package stereotyped as a ReferenceModel.

[OCL]

self.base_Package.packageImport.importedPackage->
select(stereotypedBy('ReferenceModel'))->size() = 1

• onlyArchetypes

All packaged elements must be Archetypes.

[OCL]

self.base_Package.packagedElement->forAll(p|p.stereotypedBy('Archetype'))

• [AOM] ARCHETYPE_HRID:Invariant:Rm_closure_validity
self.base_Package.packagedElement->forAll(p|p.stereotypedBy('Arche

The [AOM] ARCHETYPE_HRID:Rm_closure maps to the AML «ArchetypeLibrary» rm_package tag. The
rm_package tag must have a value, which is enforced by the multiplicity of the tag being [1].

[English]

The [AOM] Invariant is enforced by the UML semantic for a required Property.

8.4.7 ArchetypeRoot [Stereotype]

Description
«ArchetypeRoot» is a specialization of «ComplexObjectConstraint » in which an external «Archetype» is being reused.
The reuse reference to the external «Archetype» is modeled as a «Constrains» Generalization in which the specific
Classifier is this «ArchetypeRoot» and the general is the top-level definition Classifier for the external «Archetype».

An «ArchetypeRoot» does not own any attributes.

Diagrams
Constraint Profile

Direct Superclasses (Generalization)
ConstraintProfile::ComplexObjectConstraint
8.4.10 ComplexObjectConstraint [Stereotype]

Meta-classes

UML::Classifier

Constraints
• [AOM] C_ARCHETYPE_ROOT:Invariant:Archetype_ref_validity

The «Archetype» Classifier must specialize an «ObjectConstraint» Classifier which is the root of an Archetype
definition.

54 Archetype Modeling Language (AML), v1.0 (Beta 2)

Constraints
• oneReferenceModel

There must be exactly one packageImport of a Package stereotyped as a ReferenceModel.

[OCL]

self.base_Package.packageImport.importedPackage->
select(stereotypedBy('ReferenceModel'))->size() = 1

• onlyArchetypes

All packaged elements must be Archetypes.

[OCL]

self.base_Package.packagedElement->forAll(p|p.stereotypedBy('Archetype'))

• [AOM] ARCHETYPE_HRID:Invariant:Rm_closure_validity
self.base_Package.packagedElement->forAll(p|p.stereotypedBy('Arche

The [AOM] ARCHETYPE_HRID:Rm_closure maps to the AML «ArchetypeLibrary» rm_package tag. The
rm_package tag must have a value, which is enforced by the multiplicity of the tag being [1].

[English]

The [AOM] Invariant is enforced by the UML semantic for a required Property.

8.4.7 ArchetypeRoot [Stereotype]

Description
«ArchetypeRoot» is a specialization of «ComplexObjectConstraint » in which an external «Archetype» is being reused.
The reuse reference to the external «Archetype» is modeled as a «Constrains» Generalization in which the specific
Classifier is this «ArchetypeRoot» and the general is the top-level definition Classifier for the external «Archetype».

An «ArchetypeRoot» does not own any attributes.

Diagrams
Constraint Profile

Direct Superclasses (Generalization)
ConstraintProfile::ComplexObjectConstraint
8.4.10 ComplexObjectConstraint [Stereotype]

Meta-classes

UML::Classifier

Constraints
• [AOM] C_ARCHETYPE_ROOT:Invariant:Archetype_ref_validity

The «Archetype» Classifier must specialize an «ObjectConstraint» Classifier which is the root of an Archetype
definition.

54 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

self.base_Classifier.general.supplierDependency.client->
exists(g|g.stereotypedBy('Archetype'))

• [AOM] VARXAV-external reference node archetype reference validity

If this Archetype root is a redefinition of another external node, then that external node must have as an ancestor the
Archetype definition which is the parent of this Archetype.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot'))
implies self.base_Classifier.general.general->
forAll(g|g.namespace=self.base_Classifier.namespace.oclAsType(Package).
packageImport.importedPackage->select(p|p.stereotypedBy('Archetype'))->
asSequence()->first())

• [AOM] VARXID – external reference slot filling id validity

An external reference node defined as a filler for a slot in the parent archetype must have a node id that is a
specialization of that of the slot.

Note that mapping to [AOM] may coerce the value of C_ARCHETYPE_ROOT/node_id to a value in conformance with
this [AOM] Validation Rule.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot')or
g.stereotypedBy('ArchetypeSlot')) implies
self.id.oclAsType(EnumerationLiteral)->forAll(e|e.name.startsWith (
self.base_Classifier.general.appliedStereotype('ObjectConstraint').oclAsType(
ObjectConstraint).id.oclAsType(EnumerationLiteral).name->asSequence()->
first()))

• [AOM] VARXNC – external reference node identifier validity

If the reference object is a redefinition of either a slot node, or another external reference node, the node_id of the object
must conform to (i.e. be the same or a child of) the node_id of the corresponding parent node.

Note that the AML-UML transformation to [AOM] may coerce the node_id of provisioned C_ARCHETYPE_ROOT to
a value in conformance with the [AOM] Validation Rule.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot')or
g.stereotypedBy('ArchetypeSlot')) implies
self.id.oclAsType(EnumerationLiteral)->
forAll(e|e.name.startsWith(self.base_Classifier.general.appliedStereotype
Instance.oclAsType(ObjectConstraint).id.oclAsType(EnumerationLiteral).name->
asSequence()->first()))

• [AOM] VARXR – external reference refers to resolvable artefact

The archetype reference must refer to an artefact that can be found in the current repository.

[English]

In AML-UML, the archetype reference is modeled using inheritance, which enforces
that the referenced artefact is accessible.

Archetype Modeling Language (AML), v1.0 (Beta 2) 55

[OCL]

self.base_Classifier.general.supplierDependency.client->
exists(g|g.stereotypedBy('Archetype'))

• [AOM] VARXAV-external reference node archetype reference validity

If this Archetype root is a redefinition of another external node, then that external node must have as an ancestor the
Archetype definition which is the parent of this Archetype.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot'))
implies self.base_Classifier.general.general->
forAll(g|g.namespace=self.base_Classifier.namespace.oclAsType(Package).
packageImport.importedPackage->select(p|p.stereotypedBy('Archetype'))->
asSequence()->first())

• [AOM] VARXID – external reference slot filling id validity

An external reference node defined as a filler for a slot in the parent archetype must have a node id that is a
specialization of that of the slot.

Note that mapping to [AOM] may coerce the value of C_ARCHETYPE_ROOT/node_id to a value in conformance with
this [AOM] Validation Rule.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot')or
g.stereotypedBy('ArchetypeSlot')) implies
self.id.oclAsType(EnumerationLiteral)->forAll(e|e.name.startsWith (
self.base_Classifier.general.appliedStereotype('ObjectConstraint').oclAsType(
ObjectConstraint).id.oclAsType(EnumerationLiteral).name->asSequence()->
first()))

• [AOM] VARXNC – external reference node identifier validity

If the reference object is a redefinition of either a slot node, or another external reference node, the node_id of the object
must conform to (i.e. be the same or a child of) the node_id of the corresponding parent node.

Note that the AML-UML transformation to [AOM] may coerce the node_id of provisioned C_ARCHETYPE_ROOT to
a value in conformance with the [AOM] Validation Rule.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot')or
g.stereotypedBy('ArchetypeSlot')) implies
self.id.oclAsType(EnumerationLiteral)->
forAll(e|e.name.startsWith(self.base_Classifier.general.appliedStereotype
Instance.oclAsType(ObjectConstraint).id.oclAsType(EnumerationLiteral).name->
asSequence()->first()))

• [AOM] VARXR – external reference refers to resolvable artefact

The archetype reference must refer to an artefact that can be found in the current repository.

[English]

In AML-UML, the archetype reference is modeled using inheritance, which enforces
that the referenced artefact is accessible.

Archetype Modeling Language (AML), v1.0 (Beta 2) 55

• [AOM] VARXS – external reference conforms to slot

The archetype referenced must be in the same library as this archetype.

[OCL]

self.base_Classifier.general.namespace.namespace->
forAll(al|al=self.base_Classifier.namespace.namespace)

• [AOM] VARXTV – external reference type validity

This Archetype Root must conform to the type it references, which may be a Reference Model Classifier or an Archetype
Classifier.

[English]

The [AOM] Validation Rule is enforced by UML semantics for inheritance, since
the «ArchetypeRoot» inherits from the «ArchetypeSlot» in the archetype parent
archetype.

8.4.8 ArchetypeSlot [Stereotype]

Description
An «ArchetypeSlot» provides a set of constraints on the possible Archetypes that determines which other archetypes can
appear at that point in the current archetype. It can be thought of like a keyhole, into which few or many keys might fit,
depending on how specific its shape is. Logically it has the same semantics as a ComplexObjectConstraint, except that
the constraints are expressed in another Archetype, not the current one.

ArtchetypeSlot allows an archetype to have a composition relationship with any number of archetypes matching some
constraint pattern. Depending on what archetypes are available within the system, the archetypes matched may vary.

Assertions are used in ArchetypeSlots, in order to express the ‘included’ and ‘excluded’ archetypes for the slot. In this
case, each assertion is an expression that refers to parts of other archetypes, such as its identifier (e.g. ‘include archetypes
with short_concept_name matching xxxx’).

Assertions are modeled in AML as a generic expression tree of unary prefix and binary infix operators.

In AML, the assertions are modeled using a Constraint whose specification is a UML Expression. The UML Expression
construct enables representation of the generic [AOM] expression tree consisting of unary prefix and binary infix
operators.

The top level Expression symbol for an Assertion will be 'include' or 'exclude' to reflect the kind of assertion to be made
on the slot.

An ArchetypeSlot can be redefined by:

! one or more ArchetypeRoot nodes taken together, considered to define a 'filled' version of the slot;

! an ArchetypeSlot. If the UML attribute 'leaf' is set, the slot is closed to further filling either in further
specializations or at runtime. If leaf is not set, the slot remains open.

The redefinition of an ArchetypeSlot is modeled as a Generalization in UML, in which the general is an ArchetypeSlot
and the specific is either a ArchetypeRoot or another ArchetypeSlot.

Diagrams
Constraint Profile

Direct Superclasses (Generalization)

56 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] VARXS – external reference conforms to slot

The archetype referenced must be in the same library as this archetype.

[OCL]

self.base_Classifier.general.namespace.namespace->
forAll(al|al=self.base_Classifier.namespace.namespace)

• [AOM] VARXTV – external reference type validity

This Archetype Root must conform to the type it references, which may be a Reference Model Classifier or an Archetype
Classifier.

[English]

The [AOM] Validation Rule is enforced by UML semantics for inheritance, since
the «ArchetypeRoot» inherits from the «ArchetypeSlot» in the archetype parent
archetype.

8.4.8 ArchetypeSlot [Stereotype]

Description
An «ArchetypeSlot» provides a set of constraints on the possible Archetypes that determines which other archetypes can
appear at that point in the current archetype. It can be thought of like a keyhole, into which few or many keys might fit,
depending on how specific its shape is. Logically it has the same semantics as a ComplexObjectConstraint, except that
the constraints are expressed in another Archetype, not the current one.

ArtchetypeSlot allows an archetype to have a composition relationship with any number of archetypes matching some
constraint pattern. Depending on what archetypes are available within the system, the archetypes matched may vary.

Assertions are used in ArchetypeSlots, in order to express the ‘included’ and ‘excluded’ archetypes for the slot. In this
case, each assertion is an expression that refers to parts of other archetypes, such as its identifier (e.g. ‘include archetypes
with short_concept_name matching xxxx’).

Assertions are modeled in AML as a generic expression tree of unary prefix and binary infix operators.

In AML, the assertions are modeled using a Constraint whose specification is a UML Expression. The UML Expression
construct enables representation of the generic [AOM] expression tree consisting of unary prefix and binary infix
operators.

The top level Expression symbol for an Assertion will be 'include' or 'exclude' to reflect the kind of assertion to be made
on the slot.

An ArchetypeSlot can be redefined by:

! one or more ArchetypeRoot nodes taken together, considered to define a 'filled' version of the slot;

! an ArchetypeSlot. If the UML attribute 'leaf' is set, the slot is closed to further filling either in further
specializations or at runtime. If leaf is not set, the slot remains open.

The redefinition of an ArchetypeSlot is modeled as a Generalization in UML, in which the general is an ArchetypeSlot
and the specific is either a ArchetypeRoot or another ArchetypeSlot.

Diagrams
Constraint Profile

Direct Superclasses (Generalization)

56 Archetype Modeling Language (AML), v1.0 (Beta 2)

ConstraintProfile::ObjectConstraint
8.4.12 ObjectConstraint [Stereotype]

Meta-classes

UML::Classifier

Constraints
• [AOM] ARCHETYPE_SLOT:Invariant:excludes_valid

The [AOM] ARCHETYPE_SLOT/excludes is defined implies ARCHETYPE_SLOT/excludes is not empty.

The [AOM] ARCHETYPE_SLOT/excludes maps to AML as a list of 'exclude' Expressions.

[English]

The [AOM] Invariant is definitional for AML. An undefined [AOM]
ARCHETYPE_SLOT/excludes maps to an empty list of exclude Expressions.

• [AOM] ARCHETYPE_SLOT:Invariant:includes_valid

The [AOM] ARCHETYPE_SLOT/includes is defined implies ARCHETYPE_SLOT/includes is not empty.

The [AOM] ARCHETYPE_SLOT/includes maps to AML as a list of 'include' Expressions.

[English]

The [AOM] Invariant is definitional for AML. An undefined [AOM]
ARCHETYPE_SLOT/includes maps to an empty list of include Expressions.

• [AOM] VDSEV-archetype slot 'exclude' constraint validity

The ‘exclude’ constraint in an archetype slot must conform to the slot constraint validity rules.

[OCL]

self.base_Classifier.ownedRule.specification->
select(r|r.oclAsType(Expression).symbol='includes')->notEmpty() implies
self.base_Classifier.ownedRule.specification->
select(r|r.oclAsType(Expression).symbol='includes')->notEmpty() implies
select(r|r.oclAsType(Expression).symbol='excludes')->isEmpty()

• [AOM] VDSIV – archetype slot 'include' constraint validity

The ‘include’ constraint in an archetype slot must conform to the slot constraint validity rules.

[OCL]

(self.base_Classifier.ownedRule->
select(r|r.specification.oclAsType(Expression).symbol='excludes')->
notEmpty()) implies (self.base_Classifier.ownedRule->
select(r|r.specification.oclAsType(Expression).symbol='includes')->
isEmpty())

• [AOM] VDSSC – specialised archetype slot definition closed validity

Archetype Modeling Language (AML), v1.0 (Beta 2) 57

ConstraintProfile::ObjectConstraint
8.4.12 ObjectConstraint [Stereotype]

Meta-classes

UML::Classifier

Constraints
• [AOM] ARCHETYPE_SLOT:Invariant:excludes_valid

The [AOM] ARCHETYPE_SLOT/excludes is defined implies ARCHETYPE_SLOT/excludes is not empty.

The [AOM] ARCHETYPE_SLOT/excludes maps to AML as a list of 'exclude' Expressions.

[English]

The [AOM] Invariant is definitional for AML. An undefined [AOM]
ARCHETYPE_SLOT/excludes maps to an empty list of exclude Expressions.

• [AOM] ARCHETYPE_SLOT:Invariant:includes_valid

The [AOM] ARCHETYPE_SLOT/includes is defined implies ARCHETYPE_SLOT/includes is not empty.

The [AOM] ARCHETYPE_SLOT/includes maps to AML as a list of 'include' Expressions.

[English]

The [AOM] Invariant is definitional for AML. An undefined [AOM]
ARCHETYPE_SLOT/includes maps to an empty list of include Expressions.

• [AOM] VDSEV-archetype slot 'exclude' constraint validity

The ‘exclude’ constraint in an archetype slot must conform to the slot constraint validity rules.

[OCL]

self.base_Classifier.ownedRule.specification->
select(r|r.oclAsType(Expression).symbol='includes')->notEmpty() implies
self.base_Classifier.ownedRule.specification->
select(r|r.oclAsType(Expression).symbol='includes')->notEmpty() implies
select(r|r.oclAsType(Expression).symbol='excludes')->isEmpty()

• [AOM] VDSIV – archetype slot 'include' constraint validity

The ‘include’ constraint in an archetype slot must conform to the slot constraint validity rules.

[OCL]

(self.base_Classifier.ownedRule->
select(r|r.specification.oclAsType(Expression).symbol='excludes')->
notEmpty()) implies (self.base_Classifier.ownedRule->
select(r|r.specification.oclAsType(Expression).symbol='includes')->
isEmpty())

• [AOM] VDSSC – specialised archetype slot definition closed validity

Archetype Modeling Language (AML), v1.0 (Beta 2) 57

In the specialization of an archetype slot, either the slot can be specified to be closed (is_closed = True) or the slot can be
narrowed, but not both.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ARCHETYPE_ROOT'))
implies (self.base_Classifier.ownedRule->
isEmpty()=self.base_Classifier.isLeaf)

• [AOM] VDSSID- slot redefinition child node id

A slot node in a specialised archetype that redefines a slot node in the flat parent must have an identical node id.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot'))
implies (self.base_Classifier.appliedStereotype('ArchetypeRoot').
oclAsType(ArchetypeRoot).id->forAll(e|e=self.base_Classifier.general.
appliedStereotype('ArchetypeRoot').oclAsType(ArchetypeRoot).id->
asSequence()->first()))

• [AOM] VDSSM-specialised archetype slot definition match validity

The set of archetypes matched from a library of archetypes by a specialized archetype slot definition must be a proper
subset of the set matched from the same library by the parent slot definition.

[English]

The set of archetypes matched from a library of archetypes by a specialized
archetype slot definition must be a proper subset of the set matched from the
same library by the parent slot definition.

• [AOM] VDSSP-specialised archetype slot definition parent validity

The flat parent of the specialization of an archetype slot must not be closed (is_closed = False).

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ARCHETYPE_SLOT'))
implies self.base_Classifier.general->forAll(g|not(g.isLeaf))

8.4.9 AuthoredResource [Stereotype]

Description

An «AuthoredResource» provides descriptive details about a resource as well as metadata about governance and usage.
An «AuthoredResource» represents a combination of the [AOM] AUTHORED_RESOURCE and
RESOURCE_DESCRIPTION model elements.

Diagrams

Constraint Profile

Meta-classes

UML::Namespace

58 Archetype Modeling Language (AML), v1.0 (Beta 2)

In the specialization of an archetype slot, either the slot can be specified to be closed (is_closed = True) or the slot can be
narrowed, but not both.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ARCHETYPE_ROOT'))
implies (self.base_Classifier.ownedRule->
isEmpty()=self.base_Classifier.isLeaf)

• [AOM] VDSSID- slot redefinition child node id

A slot node in a specialised archetype that redefines a slot node in the flat parent must have an identical node id.

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ArchetypeRoot'))
implies (self.base_Classifier.appliedStereotype('ArchetypeRoot').
oclAsType(ArchetypeRoot).id->forAll(e|e=self.base_Classifier.general.
appliedStereotype('ArchetypeRoot').oclAsType(ArchetypeRoot).id->
asSequence()->first()))

• [AOM] VDSSM-specialised archetype slot definition match validity

The set of archetypes matched from a library of archetypes by a specialized archetype slot definition must be a proper
subset of the set matched from the same library by the parent slot definition.

[English]

The set of archetypes matched from a library of archetypes by a specialized
archetype slot definition must be a proper subset of the set matched from the
same library by the parent slot definition.

• [AOM] VDSSP-specialised archetype slot definition parent validity

The flat parent of the specialization of an archetype slot must not be closed (is_closed = False).

[OCL]

self.base_Classifier.general->forAll(g|g.stereotypedBy('ARCHETYPE_SLOT'))
implies self.base_Classifier.general->forAll(g|not(g.isLeaf))

8.4.9 AuthoredResource [Stereotype]

Description

An «AuthoredResource» provides descriptive details about a resource as well as metadata about governance and usage.
An «AuthoredResource» represents a combination of the [AOM] AUTHORED_RESOURCE and
RESOURCE_DESCRIPTION model elements.

Diagrams

Constraint Profile

Meta-classes

UML::Namespace

58 Archetype Modeling Language (AML), v1.0 (Beta 2)

Direct Subclasses (Specialization)
ConstraintProfile::Archetype
8.4.4 Archetype [Stereotype]

Attributes
• copyright : UML::PrimitiveTypes::String [0..1]

 The copyright property records the copyright applying to the artefact, and is normally in the standard form ‘(c) name’
 or ‘(c) year name’. The special character © may also be used (UTF-8 0xC2A9).

 • current_revision : UML::PrimitiveTypes::String [0..1]

 The current_revision tag specifies the most recent revision in revision_history if is_controlled is true else
 “(uncontrolled)”.

 • custodian_namespace : UML::PrimitiveTypes::String [0..1]

 The custodian_namespace tag specifies the formal namespace corresponding to the current custodian of the artefact.
 It enables the user of the artefact to determine the definitive maintainer and publisher

• custodian_organisation : UML::PrimitiveTypes::String [0..1]

 The custodian_organisation tag specifies a human-readable organization identifier corresponding to the current
 custodian of the artefact. It enables the user of the artefact to determine the definitive maintainer and publisher.

• licence : UML::PrimitiveTypes::String [0..1]

 The licence (US: ‘license’) under which the artefact can be used. The recommended format is ‘licence name <reliable
 URL to licence statement>’.

• lifecycle_state : ConstraintProfile::Lifecycle_state [1]

 The lifecycle_state property is used to record its state in a defined lifecycle. The lifecycle state machine and
 versioning roles are explained fully in the openEHR Knowledge Artefact Identification [KIS] specification.

• original_author_date : UML::PrimitiveTypes::String [0..1]

 Date of original authoring of the resource.

 Maps to [AOM] RESOURCE_DESCRIPTION/original_author where id="date".

• original_author_email : UML::PrimitiveTypes::String [0..1]

 The original_author_email tag specifies the original author's email address.

 Corresponds to [AOM] RESOURCE_DESCRIPTION/original_author where id="email".

• original_author_name : UML::PrimitiveTypes::String [0..1]

 The original_author_name tag specifies the name of original author.

 Maps to [AOM] RESOURCE_DESCRIPTION/original_author where id="name".

• original_author_organization : UML::PrimitiveTypes::String [0..1]

 The original_author_organization tag specifies the name of original author's organization.

 Maps to [AOM] RESOURCE_DESCRIPTION/original_author where id="organization".

• original_namespace : UML::PrimitiveTypes::String [0..1]

 The original publishing organization namespace, i.e. the original publishing environment where the artefact was first
 imported or created. The original_namespace property is normally the same value as archetype_id.namespace, unless
 the artefact has been forked into its current custodian, in which case archetype_id.namespace and
 custodian_namespace will be the same.

• original_publisher : UML::PrimitiveTypes::String [0..1]

Archetype Modeling Language (AML), v1.0 (Beta 2) 59

Direct Subclasses (Specialization)
ConstraintProfile::Archetype
8.4.4 Archetype [Stereotype]

Attributes
• copyright : UML::PrimitiveTypes::String [0..1]

 The copyright property records the copyright applying to the artefact, and is normally in the standard form ‘(c) name’
 or ‘(c) year name’. The special character © may also be used (UTF-8 0xC2A9).

 • current_revision : UML::PrimitiveTypes::String [0..1]

 The current_revision tag specifies the most recent revision in revision_history if is_controlled is true else
 “(uncontrolled)”.

 • custodian_namespace : UML::PrimitiveTypes::String [0..1]

 The custodian_namespace tag specifies the formal namespace corresponding to the current custodian of the artefact.
 It enables the user of the artefact to determine the definitive maintainer and publisher

• custodian_organisation : UML::PrimitiveTypes::String [0..1]

 The custodian_organisation tag specifies a human-readable organization identifier corresponding to the current
 custodian of the artefact. It enables the user of the artefact to determine the definitive maintainer and publisher.

• licence : UML::PrimitiveTypes::String [0..1]

 The licence (US: ‘license’) under which the artefact can be used. The recommended format is ‘licence name <reliable
 URL to licence statement>’.

• lifecycle_state : ConstraintProfile::Lifecycle_state [1]

 The lifecycle_state property is used to record its state in a defined lifecycle. The lifecycle state machine and
 versioning roles are explained fully in the openEHR Knowledge Artefact Identification [KIS] specification.

• original_author_date : UML::PrimitiveTypes::String [0..1]

 Date of original authoring of the resource.

 Maps to [AOM] RESOURCE_DESCRIPTION/original_author where id="date".

• original_author_email : UML::PrimitiveTypes::String [0..1]

 The original_author_email tag specifies the original author's email address.

 Corresponds to [AOM] RESOURCE_DESCRIPTION/original_author where id="email".

• original_author_name : UML::PrimitiveTypes::String [0..1]

 The original_author_name tag specifies the name of original author.

 Maps to [AOM] RESOURCE_DESCRIPTION/original_author where id="name".

• original_author_organization : UML::PrimitiveTypes::String [0..1]

 The original_author_organization tag specifies the name of original author's organization.

 Maps to [AOM] RESOURCE_DESCRIPTION/original_author where id="organization".

• original_namespace : UML::PrimitiveTypes::String [0..1]

 The original publishing organization namespace, i.e. the original publishing environment where the artefact was first
 imported or created. The original_namespace property is normally the same value as archetype_id.namespace, unless
 the artefact has been forked into its current custodian, in which case archetype_id.namespace and
 custodian_namespace will be the same.

• original_publisher : UML::PrimitiveTypes::String [0..1]

Archetype Modeling Language (AML), v1.0 (Beta 2) 59

 The original publishing organization, i.e. the original publishing environment where the artefact was first imported or
 created.

• other_contributors : UML::PrimitiveTypes::String [0..*]

 The other_contributors property is a simple list of strings, one for each contributor. The recommended format of the
 string is one of:

• ‘first names last name, organization’

• ‘first names last name, organization <contributor email address>’

• ‘first names last name, organization <organization email address>’

• otherDetails : UML::PrimitiveTypes::String [0..*]

 The otherDetails tag contains additional information about an Authored Resource.

• otherDetails_id : UML::PrimitiveTypes::String [0..*]

 The otherDetails_id tag contains the name associated with additional information about an Archetype. otherDetails_id
 Strings are matched to otherDetails Strings by order.

• references : UML::PrimitiveTypes::String [0..*]

 The references tag contains external citations and references.

• references_id : UML::PrimitiveTypes::String [0..*]

 The references_id tag contains the name associated with external citations and references.

 references_id Strings are matched to references Strings by order.

• resourceDocumentLanguage : UML::PrimitiveTypes::String [0..1]

 The language (e.g. [AOM], CEM, ...) of the source of the constraints, if any. This tag has no mapping to [AOM].

• resourceDocumentSyntax : UML::PrimitiveTypes::String [0..1]

 The syntax of the resource document ([ADL], [XML], [XMI], ...). This tag has no mapping to [AOM].

• resourceSource : UML::PrimitiveTypes::String [0..1]

 A URI that references the source document (if any) from which the original resource was derived. This tag has no
 mapping to [AOM].

• resourceSourceURI : UML::PrimitiveTypes::String [0..1]

 The resourceSourceURI tag specifies an external identifier that uniquely identifies this Archetype. The format and
 structure of this identifier are determined by the rules of the resourceDocumentLanguage and/or
 resourceDocumentSyntax. This identifier cannot be used as an identifier within AML itself as it may not always be
 present. It must be preserved, however, for export to external resources.

 This tag has no mapping to [AOM].

• resource_package_uri : UML::PrimitiveTypes::String [0..1]

 The optional resource_package_uri property enables the recording of a reference to a package of archetypes or other
 resources, to which this archetype is considered to belong. It may be in the form of ‘text <URL>’. This tag has no
 mapping to [AOM].

• uid : UML::PrimitiveTypes::String [0..1]

 The uid attribute defines a machine identifier equivalent to the human readable archetype_id.semantic_id, i.e.
 ARCHETYPE_HRID up to its major version, and changes whenever the latter does. It is defined as optional but to be
 practically useful would need to be mandatory for all archetypes within a custodian organization where this identifier|
 was in use. It could in principle be synthesized at any time for a custodian that decided to implement it. This tag has
 no mapping to [AOM].

• ip_acknowledgements : UML::PrimitiveTypes::String [0..*]

60 Archetype Modeling Language (AML), v1.0 (Beta 2)

 The original publishing organization, i.e. the original publishing environment where the artefact was first imported or
 created.

• other_contributors : UML::PrimitiveTypes::String [0..*]

 The other_contributors property is a simple list of strings, one for each contributor. The recommended format of the
 string is one of:

• ‘first names last name, organization’

• ‘first names last name, organization <contributor email address>’

• ‘first names last name, organization <organization email address>’

• otherDetails : UML::PrimitiveTypes::String [0..*]

 The otherDetails tag contains additional information about an Authored Resource.

• otherDetails_id : UML::PrimitiveTypes::String [0..*]

 The otherDetails_id tag contains the name associated with additional information about an Archetype. otherDetails_id
 Strings are matched to otherDetails Strings by order.

• references : UML::PrimitiveTypes::String [0..*]

 The references tag contains external citations and references.

• references_id : UML::PrimitiveTypes::String [0..*]

 The references_id tag contains the name associated with external citations and references.

 references_id Strings are matched to references Strings by order.

• resourceDocumentLanguage : UML::PrimitiveTypes::String [0..1]

 The language (e.g. [AOM], CEM, ...) of the source of the constraints, if any. This tag has no mapping to [AOM].

• resourceDocumentSyntax : UML::PrimitiveTypes::String [0..1]

 The syntax of the resource document ([ADL], [XML], [XMI], ...). This tag has no mapping to [AOM].

• resourceSource : UML::PrimitiveTypes::String [0..1]

 A URI that references the source document (if any) from which the original resource was derived. This tag has no
 mapping to [AOM].

• resourceSourceURI : UML::PrimitiveTypes::String [0..1]

 The resourceSourceURI tag specifies an external identifier that uniquely identifies this Archetype. The format and
 structure of this identifier are determined by the rules of the resourceDocumentLanguage and/or
 resourceDocumentSyntax. This identifier cannot be used as an identifier within AML itself as it may not always be
 present. It must be preserved, however, for export to external resources.

 This tag has no mapping to [AOM].

• resource_package_uri : UML::PrimitiveTypes::String [0..1]

 The optional resource_package_uri property enables the recording of a reference to a package of archetypes or other
 resources, to which this archetype is considered to belong. It may be in the form of ‘text <URL>’. This tag has no
 mapping to [AOM].

• uid : UML::PrimitiveTypes::String [0..1]

 The uid attribute defines a machine identifier equivalent to the human readable archetype_id.semantic_id, i.e.
 ARCHETYPE_HRID up to its major version, and changes whenever the latter does. It is defined as optional but to be
 practically useful would need to be mandatory for all archetypes within a custodian organization where this identifier|
 was in use. It could in principle be synthesized at any time for a custodian that decided to implement it. This tag has
 no mapping to [AOM].

• ip_acknowledgements : UML::PrimitiveTypes::String [0..*]

60 Archetype Modeling Language (AML), v1.0 (Beta 2)

 The ip_acknowledgements tag contains acknowledgements about intellectual property.

• ip_acknowledgements_id : UML::PrimitiveTypes::String [0..*]

 The ip_acknowledgements_id tag contains the name associated with acknowledgements about intellectual property.
 ip_acknowledgements_id Strings are matched to ip_acknowledgements Strings by order.

8.4.10 ComplexObjectConstraint [Stereotype]

Description
A «ComlexObjectConstraint» is a Classifier constraining (directly or indirectly) a Reference Model Classifier. A
ComplexObjectConstraint may constrain the existence, cardinality and/or possible values of any or all of the constrained
Reference Model Classifier attributes.

A ComplexObjectConstraint maps to an [AOM] C_COMPLEX_OBJECTl. It defines constraints on a Reference Model
Classifier. The constrained Reference Model Classifier is modeled as the general Classifier for the
ComplexObjectConstraint (which corresponds to the C_OBJECT/rm_type_name property in the [AOM] Model).

The owned properties of a ComplexObjectConstraint correspond to the attributes of a C_COMPLEX_OBJECT (which
are C_ATTRIBUTEs in the [AOM] model). Each owned Property (i.e., C_ATTRIBUTE) constrains a Reference Model
attribute (whose name corresponds to the C_ATTRIBUTE/rm_attr_name in [AOM]). The constrained Reference Model
attribute is modeled in UML using either a subsetsProperty or redefinesProperty . The constraining Property is subject to
the rules for subsetting/redefinition within UML, which in general means it may have a multiplicity range within the
constrained Property's multiplicity range, and the type of the Property must be a valid subset of the constrained
Property's type. A Reference Model Property may have multiple subsetting/redefining Properties. Together, the
Properties define an ordering for contained instances, and must overall conform to multiplicity constraints of the
Reference Model Property.

The types of constraining Properties will generally be archetype-specific subtypes of corresponding Reference Model
types referenced by the Reference Model Properties. In the case of primitive types, the archetype model will generally
reference the same type referenced by the Reference Model (e.g., string, integer, etc.).

In addition to the multiplicity and type constraints, each constraining Property may express additional constraints in the
form of UML Constraints. The UML Constraint will be owned by the Classifier owning the Property, but will
specifically be defined to constrain the Property. The specification of the Constraint is a ValueSpecification, typically in
the form of a UML Expression which evaluates to the required Boolean result of a Constraint Specification. A UML
Expression consists of a symbol (i.e., an operator) and a set of operands (which are also ValueSpecifications). The
various expressions used in [AOM] may be represented in the form of these expression trees.

The [AOM] concept of default_value for a Classifier is modeled as the defaultValue for the Property typed by the
Classifier.

The [AOM] concept of assumed_value for a Classifier is modeled as a constraint containing an expression whose symbol
is 'assumed_value' and whose operand is the ValueSpecification for the Classifier (e.g., a LiteralSpecification or an
InstanceValue whose instance is an EnumerationLiteral).

The [AOM] node_id is modeled as a tag value on the inherited ObjectConstraint Stereotype and constitutes a reference to
a term defined in the Archetype Terminology model.

The [AOM] concept of is_frozen is modeled in AML as isLeaf.

The overall structure of an Archetype can be described as a containment structure consisting of [AOM]
C_COMPLEX_OBJECT==>C_ATTRIBUTE==>C_COMPLEX_OBJECT... Normally the aggregation kind of each
Property (C_ATTRIBUTE) is composite. Within [AOM], there is a notion of a "Proxy", which is basically a reference
to a C_COMPLEX_OBJECT (instead of a composite). In UML, this is modeled at the Property level using an
aggregation of "none" (instead of composite). Thus, in UML the [AOM] C_COMPLEX_OBJECT_PROXY is not
explicitly part of the AML model (but is instead mapped to the aggregation of the Property).

Archetype Modeling Language (AML), v1.0 (Beta 2) 61

 The ip_acknowledgements tag contains acknowledgements about intellectual property.

• ip_acknowledgements_id : UML::PrimitiveTypes::String [0..*]

 The ip_acknowledgements_id tag contains the name associated with acknowledgements about intellectual property.
 ip_acknowledgements_id Strings are matched to ip_acknowledgements Strings by order.

8.4.10 ComplexObjectConstraint [Stereotype]

Description
A «ComlexObjectConstraint» is a Classifier constraining (directly or indirectly) a Reference Model Classifier. A
ComplexObjectConstraint may constrain the existence, cardinality and/or possible values of any or all of the constrained
Reference Model Classifier attributes.

A ComplexObjectConstraint maps to an [AOM] C_COMPLEX_OBJECTl. It defines constraints on a Reference Model
Classifier. The constrained Reference Model Classifier is modeled as the general Classifier for the
ComplexObjectConstraint (which corresponds to the C_OBJECT/rm_type_name property in the [AOM] Model).

The owned properties of a ComplexObjectConstraint correspond to the attributes of a C_COMPLEX_OBJECT (which
are C_ATTRIBUTEs in the [AOM] model). Each owned Property (i.e., C_ATTRIBUTE) constrains a Reference Model
attribute (whose name corresponds to the C_ATTRIBUTE/rm_attr_name in [AOM]). The constrained Reference Model
attribute is modeled in UML using either a subsetsProperty or redefinesProperty . The constraining Property is subject to
the rules for subsetting/redefinition within UML, which in general means it may have a multiplicity range within the
constrained Property's multiplicity range, and the type of the Property must be a valid subset of the constrained
Property's type. A Reference Model Property may have multiple subsetting/redefining Properties. Together, the
Properties define an ordering for contained instances, and must overall conform to multiplicity constraints of the
Reference Model Property.

The types of constraining Properties will generally be archetype-specific subtypes of corresponding Reference Model
types referenced by the Reference Model Properties. In the case of primitive types, the archetype model will generally
reference the same type referenced by the Reference Model (e.g., string, integer, etc.).

In addition to the multiplicity and type constraints, each constraining Property may express additional constraints in the
form of UML Constraints. The UML Constraint will be owned by the Classifier owning the Property, but will
specifically be defined to constrain the Property. The specification of the Constraint is a ValueSpecification, typically in
the form of a UML Expression which evaluates to the required Boolean result of a Constraint Specification. A UML
Expression consists of a symbol (i.e., an operator) and a set of operands (which are also ValueSpecifications). The
various expressions used in [AOM] may be represented in the form of these expression trees.

The [AOM] concept of default_value for a Classifier is modeled as the defaultValue for the Property typed by the
Classifier.

The [AOM] concept of assumed_value for a Classifier is modeled as a constraint containing an expression whose symbol
is 'assumed_value' and whose operand is the ValueSpecification for the Classifier (e.g., a LiteralSpecification or an
InstanceValue whose instance is an EnumerationLiteral).

The [AOM] node_id is modeled as a tag value on the inherited ObjectConstraint Stereotype and constitutes a reference to
a term defined in the Archetype Terminology model.

The [AOM] concept of is_frozen is modeled in AML as isLeaf.

The overall structure of an Archetype can be described as a containment structure consisting of [AOM]
C_COMPLEX_OBJECT==>C_ATTRIBUTE==>C_COMPLEX_OBJECT... Normally the aggregation kind of each
Property (C_ATTRIBUTE) is composite. Within [AOM], there is a notion of a "Proxy", which is basically a reference
to a C_COMPLEX_OBJECT (instead of a composite). In UML, this is modeled at the Property level using an
aggregation of "none" (instead of composite). Thus, in UML the [AOM] C_COMPLEX_OBJECT_PROXY is not
explicitly part of the AML model (but is instead mapped to the aggregation of the Property).

Archetype Modeling Language (AML), v1.0 (Beta 2) 61

A ComplexObjectConstraint may represent the concept of an [AOM] C_ARCHETYPE_ROOT. When an attribute has a
type which is a ComplexObjectConstraint in another Archetype Package, there is an implicit C_ARCHETYPE_ROOT
with appropriate archetype_id.

A Property owned by a ComplexObjectConstraint may express ownership of the [AOM] concept of
ARCHETYPE_SLOT as a UML Constraint on that Property wherein the specification is a UML Expression with an
operand of "and", "includes", or "excludes".

Diagrams
Constraint Profile

Direct Superclasses (Generalization)
ConstraintProfile::ObjectConstraint
8.4.12 ObjectConstraint [Stereotype]

Meta-classes

UML::Classifier

Direct Subclasses (Specialization)
ConstraintProfile::ArchetypeRoot
8.4.7 ArchetypeRoot [Stereotype]

Constraints
• allAttributeConstraints

All owned attributes are attribute constraints. Each must subset or redefine a reference model property.

[OCL]

 self.namespace.stereotypedBy('ComplexObjectConstraint') implies
((self.subsettedProperty->notEmpty()) or(self.redefinedProperty->notEmpty()))

• singleParent

Every constraint must specialize exactly one Class.

[OCL]

self.base_Classifier.generalization->size() = 1

• [AOM] ASSERTION:Invariant:Expression_valid

An [AOM] ASSERTION/expression must exist and must be of type Boolean. It maps to a UML
Constraint/specification.

[English]

This [AOM] invariant is enforced by the UML constraint that a Constraint
specification must be of type Boolean.

• [AOM] ASSERTION:Invariant:Tag_valid

An [AOM] tag maps to the name of a UML Constraint and must either be defined or be a non-empty String.

62 Archetype Modeling Language (AML), v1.0 (Beta 2)

A ComplexObjectConstraint may represent the concept of an [AOM] C_ARCHETYPE_ROOT. When an attribute has a
type which is a ComplexObjectConstraint in another Archetype Package, there is an implicit C_ARCHETYPE_ROOT
with appropriate archetype_id.

A Property owned by a ComplexObjectConstraint may express ownership of the [AOM] concept of
ARCHETYPE_SLOT as a UML Constraint on that Property wherein the specification is a UML Expression with an
operand of "and", "includes", or "excludes".

Diagrams
Constraint Profile

Direct Superclasses (Generalization)
ConstraintProfile::ObjectConstraint
8.4.12 ObjectConstraint [Stereotype]

Meta-classes

UML::Classifier

Direct Subclasses (Specialization)
ConstraintProfile::ArchetypeRoot
8.4.7 ArchetypeRoot [Stereotype]

Constraints
• allAttributeConstraints

All owned attributes are attribute constraints. Each must subset or redefine a reference model property.

[OCL]

 self.namespace.stereotypedBy('ComplexObjectConstraint') implies
((self.subsettedProperty->notEmpty()) or(self.redefinedProperty->notEmpty()))

• singleParent

Every constraint must specialize exactly one Class.

[OCL]

self.base_Classifier.generalization->size() = 1

• [AOM] ASSERTION:Invariant:Expression_valid

An [AOM] ASSERTION/expression must exist and must be of type Boolean. It maps to a UML
Constraint/specification.

[English]

This [AOM] invariant is enforced by the UML constraint that a Constraint
specification must be of type Boolean.

• [AOM] ASSERTION:Invariant:Tag_valid

An [AOM] tag maps to the name of a UML Constraint and must either be defined or be a non-empty String.

62 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

(self.constrainedElement.oclIsKindOf(Property) and
self.constrainedElement.oclAsType(Property).namespace.stereotypedBy('ComplexObje
ctConstraint')) implies (self.name.oclIsUndefined() or (self.name<>''))

• [AOM] C_ATTRIBUTE:Invariant:Alternatives_valid

If this is a Property whose upper bound is 1, then the occurrences of all children have an upper bound of 1.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper=1)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty))->forAll(p|p.upper=1))

• [AOM] C_ATTRIBUTE:Invariant:Cardinality_valid

The [AOM] C_ATTRIBUTE/is_multiple is false if children are alternative child objects (e.g., a choice); otherwise a
value of true means children are a collection of independent child objects. The [AOM] C_ATTRIBUTE/is_multiple
=false maps to AML Properties which have an aggregation of 'shared', wherease a value of true maps to AML Properties
which have an aggregation of 'composite'. The sibling AML Properties mapped to the [AOM] children must all have the
same aggregation kind.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->
union(sibling.redefinedProperty)->includes(refProperty))->
forAll(p|p.aggregation=self.aggregation))

• [AOM] C_ATTRIBUTE:Invariant:Children_occurrences_lower_sum_validity

If the upper multiplicity of this Property is bounded, then the sum of the multiplicity lower bounds of children is less
than or equal to the upper multiplicity of the constrained Property.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->
union(sibling.redefinedProperty)->includes(refProperty)).lower->
sum()<=refProperty.upper)

• [AOM] C_ATTRIBUTE:Invariant:Children_orphans_validity

If this is a Property with a bounded upper limit, then the minimum number of possible children must be less than or
equal to the upper value of the constrained Property.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->

Archetype Modeling Language (AML), v1.0 (Beta 2) 63

[OCL]

(self.constrainedElement.oclIsKindOf(Property) and
self.constrainedElement.oclAsType(Property).namespace.stereotypedBy('ComplexObje
ctConstraint')) implies (self.name.oclIsUndefined() or (self.name<>''))

• [AOM] C_ATTRIBUTE:Invariant:Alternatives_valid

If this is a Property whose upper bound is 1, then the occurrences of all children have an upper bound of 1.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper=1)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty))->forAll(p|p.upper=1))

• [AOM] C_ATTRIBUTE:Invariant:Cardinality_valid

The [AOM] C_ATTRIBUTE/is_multiple is false if children are alternative child objects (e.g., a choice); otherwise a
value of true means children are a collection of independent child objects. The [AOM] C_ATTRIBUTE/is_multiple
=false maps to AML Properties which have an aggregation of 'shared', wherease a value of true maps to AML Properties
which have an aggregation of 'composite'. The sibling AML Properties mapped to the [AOM] children must all have the
same aggregation kind.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->
union(sibling.redefinedProperty)->includes(refProperty))->
forAll(p|p.aggregation=self.aggregation))

• [AOM] C_ATTRIBUTE:Invariant:Children_occurrences_lower_sum_validity

If the upper multiplicity of this Property is bounded, then the sum of the multiplicity lower bounds of children is less
than or equal to the upper multiplicity of the constrained Property.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->
union(sibling.redefinedProperty)->includes(refProperty)).lower->
sum()<=refProperty.upper)

• [AOM] C_ATTRIBUTE:Invariant:Children_orphans_validity

If this is a Property with a bounded upper limit, then the minimum number of possible children must be less than or
equal to the upper value of the constrained Property.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->

Archetype Modeling Language (AML), v1.0 (Beta 2) 63

forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty))->select(p|p.lower>0)->size()<refProperty.upper)

• [AOM] C_ATTRIBUTE:Invariant:Children_validity

An [AOM] C_ATTRIBUTE/children may be undefined, meaning the attribute type may be any legal type of the
Reference Model attribute, or there is a non-empty list of archetype-specific children (types derived from the Reference
Model type). An [AOM] C_ATTRIBUTE with undefined children maps to an AML Property whose type is the same as
the Reference Model attribute's type. An [AOM] C_ATTRIBUTE with children maps to a list of Properties which subset
or redefine the Reference Model attribute, but whose types are in the Archetype.

This [AOM] Invariant maps to an AML Constraint that the type of a Property may be (directly) a Reference Model Type
only if it has no siblings which subset or redefine the same Reference Model attribute.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
not(self.type.getNearestReferenceModel().oclIsUndefined())) implies
self.namespace.oclAsType(Class).ownedAttribute->select(a|a<>self)
and not(a.subsetsProperty->includes(self.subsetsProperty->first()))
and not(a.redefinesProperty->
includes(self.redefinesProperty->first())))->isEmpty()

• [AOM] C_BOOLEAN:Invariant:Binary_consistency

A Constraint on a Boolean typed Property is expressed as an "or" of LiteralBooleans.

[OCL]

(self.constrainedElement.oclIsKindOf(Property) and
self.constrainedElement.oclAsType(Property).namespace.
stereotypedBy('ComplexObjectConstraint') and
(self.constrainedElement.oclAsType(Property).type.name='Boolean') and
self.specification.oclIsKindOf(Expression) and
(self.specification.oclAsType(Expression).symbol='or'))
implies(self.specification.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(LiteralBoolean)))

• [AOM] C_BOOLEAN:Invariant:Prototype_value_consistency

[AOM] P_C_BOOLEAN/constraint maps to the operands of an 'or' Expression, each operand being a LiteralBoolean,
and each operand having a unique value.

[English]

Each operand of an 'or' Expression must be a unique value.

• [AOM] C_COMPLEX_OBJECT:Invariant:Any_allowed_validity

An [AOM] C_COMPLEX_OBJECT/attributes which is empty maps to a UML Property whose type is a Reference
Model Classifier (i.e., no additional Constraints on value).

[English]

The invariant is definitional; it defines representation for a Property which
has no value constraints (beyond the Reference Model type).

64 Archetype Modeling Language (AML), v1.0 (Beta 2)

forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty))->select(p|p.lower>0)->size()<refProperty.upper)

• [AOM] C_ATTRIBUTE:Invariant:Children_validity

An [AOM] C_ATTRIBUTE/children may be undefined, meaning the attribute type may be any legal type of the
Reference Model attribute, or there is a non-empty list of archetype-specific children (types derived from the Reference
Model type). An [AOM] C_ATTRIBUTE with undefined children maps to an AML Property whose type is the same as
the Reference Model attribute's type. An [AOM] C_ATTRIBUTE with children maps to a list of Properties which subset
or redefine the Reference Model attribute, but whose types are in the Archetype.

This [AOM] Invariant maps to an AML Constraint that the type of a Property may be (directly) a Reference Model Type
only if it has no siblings which subset or redefine the same Reference Model attribute.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
not(self.type.getNearestReferenceModel().oclIsUndefined())) implies
self.namespace.oclAsType(Class).ownedAttribute->select(a|a<>self)
and not(a.subsetsProperty->includes(self.subsetsProperty->first()))
and not(a.redefinesProperty->
includes(self.redefinesProperty->first())))->isEmpty()

• [AOM] C_BOOLEAN:Invariant:Binary_consistency

A Constraint on a Boolean typed Property is expressed as an "or" of LiteralBooleans.

[OCL]

(self.constrainedElement.oclIsKindOf(Property) and
self.constrainedElement.oclAsType(Property).namespace.
stereotypedBy('ComplexObjectConstraint') and
(self.constrainedElement.oclAsType(Property).type.name='Boolean') and
self.specification.oclIsKindOf(Expression) and
(self.specification.oclAsType(Expression).symbol='or'))
implies(self.specification.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(LiteralBoolean)))

• [AOM] C_BOOLEAN:Invariant:Prototype_value_consistency

[AOM] P_C_BOOLEAN/constraint maps to the operands of an 'or' Expression, each operand being a LiteralBoolean,
and each operand having a unique value.

[English]

Each operand of an 'or' Expression must be a unique value.

• [AOM] C_COMPLEX_OBJECT:Invariant:Any_allowed_validity

An [AOM] C_COMPLEX_OBJECT/attributes which is empty maps to a UML Property whose type is a Reference
Model Classifier (i.e., no additional Constraints on value).

[English]

The invariant is definitional; it defines representation for a Property which
has no value constraints (beyond the Reference Model type).

64 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] C_COMPLEX_OBJECT:Invariant:Prohibited_validity

A UML Property with upper multiplicity of 0 is prohibited from having any value.

[English]

This Constraint is enforced by UML semantic for a Multiplicity upper bound of 0.

• [AOM] C_COMPLEX_OBJECT:InvariantAttributes_valid

The [AOM] C_COMPLEX_OBJECT/attributes attribute must be defined. This is mapped to AML ownedAttributes,
which is always defined (but may be empty).

[English]

The [AOM] invariant is always satisfied since its mapping to UML is
ownedAttributes, which is a collection and is never oclIsUndefined().

• [AOM] C_COMPLEX_OBJECT:Tuples_valid

The [AOM] C_COMPLEX_OBJECT/attribute_tuples is a list of C_ATTRIBUTE_TUPLE. Each member of
C_ATTRIBUTE_TUPLE must be a member of C_COMPLEX_OBJECT/attributes.

The [AOM] C_ATTRIBUTE_TUPLE maps to a UML Classifier nested inside this Complex Object, and specializes this
Complex Object. Each ownedAttribute of the nested Classifier must subset or redefine a Property owned by this
Complex Object.

[OCL]

self.base_Classifier.oclIsKindOf(Class) implies
self.base_Classifier.oclAsType(Class).nestedClassifier->select(n|n.general->
exists(g|g=self.base_Classifier)).attribute->forAll(a|a.subsettedProperty->
forAll(s|s.namespace=self.base_Classifier)and a.redefinedProperty->
forAll(s|s.namespace=self.base_Classifier))

• [AOM] C_COMPLEX_OBJECT_PROXY:Invariant:Consistency

An [AOM] C_COMPLEX_OBJECT_PROXY can not be a proxy for any allowed Reference Model Classifier. This
[AOM] Invariant is mapped to an AML Constraint that a Property of a Complex Object Constraint, whose aggregation is
none, can not be (directly) typed by a Reference Model Classifier.

 [OCL]

((self.aggregation=AggregationKind::none) and
self.namespace.stereotypedBy('ComplexObjectConstraint')) implies
self.type.getNearestReferenceModel().oclIsUndefined()

• [AOM] C_DATE:Invariant:Pattern_validity

An [AOM] C_DATE/pattern_constraint (if present) maps to a the first operand of a 'P_C_DATE' Expression, where that
first operand is a LiteralString named 'pattern_constraint' and its value must conform to the ISO 8601 date constraint
pattern.

[English]

An [AOM] C_DATE/pattern_constraint (if present) maps to a the first operand of a
'P_C_DATE' Expression, where that first operand is a LiteralString named

Archetype Modeling Language (AML), v1.0 (Beta 2) 65

• [AOM] C_COMPLEX_OBJECT:Invariant:Prohibited_validity

A UML Property with upper multiplicity of 0 is prohibited from having any value.

[English]

This Constraint is enforced by UML semantic for a Multiplicity upper bound of 0.

• [AOM] C_COMPLEX_OBJECT:InvariantAttributes_valid

The [AOM] C_COMPLEX_OBJECT/attributes attribute must be defined. This is mapped to AML ownedAttributes,
which is always defined (but may be empty).

[English]

The [AOM] invariant is always satisfied since its mapping to UML is
ownedAttributes, which is a collection and is never oclIsUndefined().

• [AOM] C_COMPLEX_OBJECT:Tuples_valid

The [AOM] C_COMPLEX_OBJECT/attribute_tuples is a list of C_ATTRIBUTE_TUPLE. Each member of
C_ATTRIBUTE_TUPLE must be a member of C_COMPLEX_OBJECT/attributes.

The [AOM] C_ATTRIBUTE_TUPLE maps to a UML Classifier nested inside this Complex Object, and specializes this
Complex Object. Each ownedAttribute of the nested Classifier must subset or redefine a Property owned by this
Complex Object.

[OCL]

self.base_Classifier.oclIsKindOf(Class) implies
self.base_Classifier.oclAsType(Class).nestedClassifier->select(n|n.general->
exists(g|g=self.base_Classifier)).attribute->forAll(a|a.subsettedProperty->
forAll(s|s.namespace=self.base_Classifier)and a.redefinedProperty->
forAll(s|s.namespace=self.base_Classifier))

• [AOM] C_COMPLEX_OBJECT_PROXY:Invariant:Consistency

An [AOM] C_COMPLEX_OBJECT_PROXY can not be a proxy for any allowed Reference Model Classifier. This
[AOM] Invariant is mapped to an AML Constraint that a Property of a Complex Object Constraint, whose aggregation is
none, can not be (directly) typed by a Reference Model Classifier.

 [OCL]

((self.aggregation=AggregationKind::none) and
self.namespace.stereotypedBy('ComplexObjectConstraint')) implies
self.type.getNearestReferenceModel().oclIsUndefined()

• [AOM] C_DATE:Invariant:Pattern_validity

An [AOM] C_DATE/pattern_constraint (if present) maps to a the first operand of a 'P_C_DATE' Expression, where that
first operand is a LiteralString named 'pattern_constraint' and its value must conform to the ISO 8601 date constraint
pattern.

[English]

An [AOM] C_DATE/pattern_constraint (if present) maps to a the first operand of a
'P_C_DATE' Expression, where that first operand is a LiteralString named

Archetype Modeling Language (AML), v1.0 (Beta 2) 65

'pattern_constraint' and its value must conform to the ISO 8601 date constraint
pattern.

• [AOM] C_OBJECT:Invariant:Rm_type_name_valid

An [AOM] rm_type_name maps to the name of the Reference Model Classifier which is the supertype of an Archetype
Classifier. The Reference Model Classifier must have a non-empty name.

[OCL]

self.base_Classifier.general->forAll(g|not(g.name.oclIsUndefined()) and
(g.name<>''))

• [AOM] C_PRIMITIVE_OBJECT:Invariant:Assumed_value_valid

The [AOM] C_PRIMITIVE_OBJECT/assumed_value maps to an AML Constraint on a Property whose specification
includes a type-specific declaration of the assumed value. The assumed value is a ValueSpecification which should be
typed in accordance with the type of the Property and should have a value in conformance with the constraints expressed
on that Property's Type.

[English]

The [AOM] C_PRIMITIVE_OBJECT/assumed_value maps to an AML Constraint on a
Property whose specification includes a type-specific declaration of the assumed
value. The assumed value is a ValueSpecification which should be typed in
accordance with the type of the Property and should have a value in conformance
with the constraints expressed on that Property's Type.

• [AOM] C_PRIMITIVE_OBJECT:Invariant:Representation_validity

An [AOM] C_PRIMITIVE_OBJECT is mapped to an AML Property which is constrained by a UML Constraint and
whose type resolves to a recognized AML Primitive Type (resides in either the UML Type Library or the XML Type
Library). Resolving a type may include navigating the «MappedDataType» Abstraction from a Reference Model type to
one of the AML Primitive Types.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
((self.type.namespace.name='PrimitiveTypes')
or(self.type.namespace.name='XMLPrimitiveTypes') or
self.type.clientDependency->
select(d|d.stereotypedBy('MappedDataType')).supplier->
exists(t|(t.namespace.name='PrimitiveTypes') or
(t.namespace.name='XMLPrimitiveTypes')))) implies
self.namespace.ownedRule->notEmpty()

• [AOM] C_TERMINOLOGY_CODE:Invariant:Terminology_id_validity

An [AOM] C_TERMINOLOGY_CODE/constraint maps to a UML Constraint. The Constraint is owned by a Complex
Object Constraint Classifier, but constrains a Property. The Constraint has a specification of a "=" Expression. The
Expression must have an operand which is an InstanceValue. The InstanceValue has an instance which must be an
Archetype Term from the Archetype's Identifier Definition Enumeration.

[OCL]

66 Archetype Modeling Language (AML), v1.0 (Beta 2)

'pattern_constraint' and its value must conform to the ISO 8601 date constraint
pattern.

• [AOM] C_OBJECT:Invariant:Rm_type_name_valid

An [AOM] rm_type_name maps to the name of the Reference Model Classifier which is the supertype of an Archetype
Classifier. The Reference Model Classifier must have a non-empty name.

[OCL]

self.base_Classifier.general->forAll(g|not(g.name.oclIsUndefined()) and
(g.name<>''))

• [AOM] C_PRIMITIVE_OBJECT:Invariant:Assumed_value_valid

The [AOM] C_PRIMITIVE_OBJECT/assumed_value maps to an AML Constraint on a Property whose specification
includes a type-specific declaration of the assumed value. The assumed value is a ValueSpecification which should be
typed in accordance with the type of the Property and should have a value in conformance with the constraints expressed
on that Property's Type.

[English]

The [AOM] C_PRIMITIVE_OBJECT/assumed_value maps to an AML Constraint on a
Property whose specification includes a type-specific declaration of the assumed
value. The assumed value is a ValueSpecification which should be typed in
accordance with the type of the Property and should have a value in conformance
with the constraints expressed on that Property's Type.

• [AOM] C_PRIMITIVE_OBJECT:Invariant:Representation_validity

An [AOM] C_PRIMITIVE_OBJECT is mapped to an AML Property which is constrained by a UML Constraint and
whose type resolves to a recognized AML Primitive Type (resides in either the UML Type Library or the XML Type
Library). Resolving a type may include navigating the «MappedDataType» Abstraction from a Reference Model type to
one of the AML Primitive Types.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
((self.type.namespace.name='PrimitiveTypes')
or(self.type.namespace.name='XMLPrimitiveTypes') or
self.type.clientDependency->
select(d|d.stereotypedBy('MappedDataType')).supplier->
exists(t|(t.namespace.name='PrimitiveTypes') or
(t.namespace.name='XMLPrimitiveTypes')))) implies
self.namespace.ownedRule->notEmpty()

• [AOM] C_TERMINOLOGY_CODE:Invariant:Terminology_id_validity

An [AOM] C_TERMINOLOGY_CODE/constraint maps to a UML Constraint. The Constraint is owned by a Complex
Object Constraint Classifier, but constrains a Property. The Constraint has a specification of a "=" Expression. The
Expression must have an operand which is an InstanceValue. The InstanceValue has an instance which must be an
Archetype Term from the Archetype's Identifier Definition Enumeration.

[OCL]

66 Archetype Modeling Language (AML), v1.0 (Beta 2)

self ->forAll(constraint|constraint.namespace.
stereotypedBy('ComplexObjectConstraint') and
constraint.constrainedElement->forAll(ce|ce.oclIsKindOf(Property)) and
constraint.specification.oclIsKindOf(Expression) and
(constraint.specification.oclAsType(Expression).symbol='=') and
constraint.specification.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue))) implies
self.specification.oclAsType(Expression).operand->
forAll(o|o.oclAsType(InstanceValue).instance.stereotypedBy('ArchetypeTerm'))

• [AOM] EXPR_BINARY_OPERATOR:Invariant:left_operand_valid

The [AOM] EXPR_BINARY_OPERATOR maps to a UML Expression whose symbol is one of the defined [AOM]
binary operators and which has exactly two operands.

 [OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and (
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))
implies (self.operand->size()=2)

• [AOM] EXPR_BINARY_OPERATOR:Invariant:right_operand_valid

An [AOM] EXPR_BINARY_OPERATOR maps to a UML Expression whose symbol is one of the defined [AOM]
binary operators and which has exactly two operands.

[OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and(
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))
implies (self.operand->size()=2)

• [AOM] EXPR_ITEM:Invariant:Type_valid

The [AOM] EXPR_ITEM/type must be defined. It maps to a UML ValueSpecification/type.

[OCL]

self.getNearestPackage().stereotypedBy('Archetype') implies
not(self.type.oclIsUndefined())

Archetype Modeling Language (AML), v1.0 (Beta 2) 67

self ->forAll(constraint|constraint.namespace.
stereotypedBy('ComplexObjectConstraint') and
constraint.constrainedElement->forAll(ce|ce.oclIsKindOf(Property)) and
constraint.specification.oclIsKindOf(Expression) and
(constraint.specification.oclAsType(Expression).symbol='=') and
constraint.specification.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue))) implies
self.specification.oclAsType(Expression).operand->
forAll(o|o.oclAsType(InstanceValue).instance.stereotypedBy('ArchetypeTerm'))

• [AOM] EXPR_BINARY_OPERATOR:Invariant:left_operand_valid

The [AOM] EXPR_BINARY_OPERATOR maps to a UML Expression whose symbol is one of the defined [AOM]
binary operators and which has exactly two operands.

 [OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and (
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))
implies (self.operand->size()=2)

• [AOM] EXPR_BINARY_OPERATOR:Invariant:right_operand_valid

An [AOM] EXPR_BINARY_OPERATOR maps to a UML Expression whose symbol is one of the defined [AOM]
binary operators and which has exactly two operands.

[OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and(
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))
implies (self.operand->size()=2)

• [AOM] EXPR_ITEM:Invariant:Type_valid

The [AOM] EXPR_ITEM/type must be defined. It maps to a UML ValueSpecification/type.

[OCL]

self.getNearestPackage().stereotypedBy('Archetype') implies
not(self.type.oclIsUndefined())

Archetype Modeling Language (AML), v1.0 (Beta 2) 67

• [AOM] EXPR_UNARY_OPERATOR:Invariant:operand_valid

An [AOM] EXPR_UNARY_OPERATOR maps to a UML Expression having a symbol which is one of the defined
[AOM] unary operators and which has exactly one operand.

[OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and(
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))

implies (self.operand->size()=1)

• [AOM] OPERATOR_KIND:Invariant:Validity

The [AOM] OPERATOR_KIND is mapped to a UML Expression symbol. The UML Expressions symbol must
correspond to one of the operators defined in [AOM] OPERATOR_KIND.

[OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and(
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))
implies((self.operand->size()=2) or (self.operand->size()=1))

• [AOM] QUERY_VARIABLE:Invariant:Context_valid

The [AOM] QUERY_VARIABLE maps to a UML InstanceSpecification whose specification is an OpaqueExpression.
The [AOM] QUERY_VARIABLE/context maps to the name of the UML OpaqueExpression. The name of the
OpaqueExpression must be either undefined or non-empty. The [AOM] QUERY_VARIABLE/query_id maps to the
name of the UML InstanceSpecification.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
not(self.specification.oclIsUndefined()) and
self.specification.oclIsKindOf(OpaqueExpression)) implies
(self.specification.name.oclIsUndefined() or (self.specification.name<>''))

• [AOM] VACDF-constraint code validity

Each value set code (ac-code) used in a term constraint in the archetype definition must be defined in the
term_definitions part of the terminology of the current archetype.

68 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] EXPR_UNARY_OPERATOR:Invariant:operand_valid

An [AOM] EXPR_UNARY_OPERATOR maps to a UML Expression having a symbol which is one of the defined
[AOM] unary operators and which has exactly one operand.

[OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and(
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))

implies (self.operand->size()=1)

• [AOM] OPERATOR_KIND:Invariant:Validity

The [AOM] OPERATOR_KIND is mapped to a UML Expression symbol. The UML Expressions symbol must
correspond to one of the operators defined in [AOM] OPERATOR_KIND.

[OCL]

(self.getNearestPackage().stereotypedBy('Archetype') and(
(self.symbol='=') or (self.symbol='<>') or
(self.symbol='<=') or (self.symbol='<') or
(self.symbol='>=') or (self.symbol='>') or
(self.symbol='matches') or (self.symbol='and') or
(self.symbol='or') or (self.symbol='xor') or
(self.symbol='implies') or (self.symbol='for_all') or
(self.symbol='exists') or (self.symbol='+') or
(self.symbol='-') or (self.symbol='*') or
(self.symbol='/') or (self.symbol='^')))
implies((self.operand->size()=2) or (self.operand->size()=1))

• [AOM] QUERY_VARIABLE:Invariant:Context_valid

The [AOM] QUERY_VARIABLE maps to a UML InstanceSpecification whose specification is an OpaqueExpression.
The [AOM] QUERY_VARIABLE/context maps to the name of the UML OpaqueExpression. The name of the
OpaqueExpression must be either undefined or non-empty. The [AOM] QUERY_VARIABLE/query_id maps to the
name of the UML InstanceSpecification.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
not(self.specification.oclIsUndefined()) and
self.specification.oclIsKindOf(OpaqueExpression)) implies
(self.specification.name.oclIsUndefined() or (self.specification.name<>''))

• [AOM] VACDF-constraint code validity

Each value set code (ac-code) used in a term constraint in the archetype definition must be defined in the
term_definitions part of the terminology of the current archetype.

68 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

(self._'context'.stereotypedBy('ComplexObjectConstraint') and
self.specification.oclIsKindOf(Expression) and
(self.specification.oclAsType(Expression).symbol='=')) implies
self.specification.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue) and
o.oclAsType(InstanceValue).instance.stereotypedBy('ArchetypeTerm') and
o.oclAsType(InstanceValue).instance.getNearestPackage().
nestingPackage.nestingPackage=self.getNearestPackage())

• [AOM] VACMCO-cardinality/occurrences orphans

It must be possible for at least one instance of one optional child object (i.e. an object for which the occurrences lower
bound is 0) and one instance of every mandatory child object (i.e. object constraints for which the occurrences lower
bound is >= 1) to be included within the cardinality range.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty) ->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty)).lower->sum()<=(refProperty.upper-1))

• [AOM] VACMCU-cardinality/occurrences upper bound validity

When a cardinality with a finite upper bound is declared on an attribute, for all immediate child objects for which an
occurrences constraint is stated, the occurrences must either have an open upper bound (i.e. n..*) which is interpreted as
the maximum value allowed within the cardinality, or else a finite upper bound which is = the cardinality upper bound.

[English]

The [AOM] cardinality attribute of C_ATTRIBUTE is derived in UML from the set of
sibling Properties subsetting/redefining a common Reference Model Property.
The derivation is implemented as part of the AML-UML to [AOM] QVT
transformation. The derived cardinality is computed from the sum of the lower
and sum of the upper multiplicity ranges for the related Properties. The
collection type characteristics are also derived from the related Properties. In
summary, the [AOM] validation rule is enforced during provisioning from AML-UML
to [AOM].

• [AOM] VACSO-single-valued attribute child object occurrences validity

The occurrences of a child object of a single-valued attribute cannot have an upper limit greater than 1.

The [AOM] validation rule is realized by UML redefinition and/or property subsetting constraints. We verify in this
UML Constraint that Properties within a «ComplexObjectConstraint» are indeed redefined or subsetted.

[OCL]

self.namespace.stereotypedBy('ComplexObjectConstraint') implies(
self.subsettedProperty->notEmpty() or self.redefinedProperty->notEmpty())

• [AOM] VARCN-archetype concept validity

Archetype Modeling Language (AML), v1.0 (Beta 2) 69

[OCL]

(self._'context'.stereotypedBy('ComplexObjectConstraint') and
self.specification.oclIsKindOf(Expression) and
(self.specification.oclAsType(Expression).symbol='=')) implies
self.specification.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue) and
o.oclAsType(InstanceValue).instance.stereotypedBy('ArchetypeTerm') and
o.oclAsType(InstanceValue).instance.getNearestPackage().
nestingPackage.nestingPackage=self.getNearestPackage())

• [AOM] VACMCO-cardinality/occurrences orphans

It must be possible for at least one instance of one optional child object (i.e. an object for which the occurrences lower
bound is 0) and one instance of every mandatory child object (i.e. object constraints for which the occurrences lower
bound is >= 1) to be included within the cardinality range.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint'))
.subsettedProperty->union(self.redefinedProperty) ->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty)).lower->sum()<=(refProperty.upper-1))

• [AOM] VACMCU-cardinality/occurrences upper bound validity

When a cardinality with a finite upper bound is declared on an attribute, for all immediate child objects for which an
occurrences constraint is stated, the occurrences must either have an open upper bound (i.e. n..*) which is interpreted as
the maximum value allowed within the cardinality, or else a finite upper bound which is = the cardinality upper bound.

[English]

The [AOM] cardinality attribute of C_ATTRIBUTE is derived in UML from the set of
sibling Properties subsetting/redefining a common Reference Model Property.
The derivation is implemented as part of the AML-UML to [AOM] QVT
transformation. The derived cardinality is computed from the sum of the lower
and sum of the upper multiplicity ranges for the related Properties. The
collection type characteristics are also derived from the related Properties. In
summary, the [AOM] validation rule is enforced during provisioning from AML-UML
to [AOM].

• [AOM] VACSO-single-valued attribute child object occurrences validity

The occurrences of a child object of a single-valued attribute cannot have an upper limit greater than 1.

The [AOM] validation rule is realized by UML redefinition and/or property subsetting constraints. We verify in this
UML Constraint that Properties within a «ComplexObjectConstraint» are indeed redefined or subsetted.

[OCL]

self.namespace.stereotypedBy('ComplexObjectConstraint') implies(
self.subsettedProperty->notEmpty() or self.redefinedProperty->notEmpty())

• [AOM] VARCN-archetype concept validity

Archetype Modeling Language (AML), v1.0 (Beta 2) 69

The node_id of the root object of the archetype must be of the form id1{.1}*, where the number of ‘.1’ components
equals the specialization depth, and must be defined in the terminology.

[OCL]

self.base_Classifier.supplierDependency->
exists(d|d.stereotypedBy('ArchetypeDefinition')) implies
self.id.oclAsType(EnumerationLiteral)->forAll(e|e.name.match('id1(\\.1)*'))

• [AOM] VATDA-value set assumed value code validity

Each value code (at-code) used as an assumed_value for a value set in a term constraint must exist in a value set within
the terminology definition. In AML, the assumed_value is defined as part of the specification of a Constraint on the
Property, where the assumed_value is an «ArchetypeTerm». The «ArchetypeTerm» may represent a value code (at-code)
or a value set (ac-code). In any case, the term will be in the Identifier Definition.

Note that this [AOM] Validty rule maps to the same form of Constraint as rule VATDF.

[OCL]

self->select(constraint|constraint.namespace.
stereotypedBy('ComplexObjectConstraint') and
constraint.constrainedElement->forAll(ce|ce.oclIsKindOf(Property)))->
select(c|c.specification->forAll(e|e.oclIsKindOf(Expression) and
(e.oclAsType(Expression).symbol='=') and (e.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue))))).constrainedElement implies
self.specification.oclAsType(Expression).operand.oclAsType(InstanceValue)->
forAll(o|o.instance.stereotypedBy('ArchetypeTerm') and
(o.namespace.namespace.namespace.namespace=self.namespace.namespace))

• [AOM] VATDF-value code validity

Each value code (at-code) used in a term constraint within an Archetype must be an Archetype Term defined in the same
Archetype. A term constraint in AML is modeled as a Constraint on a Property, where the Constraint specification is an
"=" Expression and the operands are Archetype Terms.

[OCL]

self->select(constraint|constraint.namespace.
stereotypedBy('ComplexObjectConstraint') and constraint.constrainedElement->
forAll(ce|ce.oclIsKindOf(Property)))->select(c|c.specification->
forAll(e|e.oclIsKindOf(Expression) and (e.oclAsType(Expression).symbol='=') and
(e.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue))))).constrainedElement implies
self.specification.oclAsType(Expression).operand.oclAsType(InstanceValue)->
forAll(o|o.instance.stereotypedBy('ArchetypeTerm') and
(o.namespace.namespace.namespace.namespace=self.namespace.namespace))

• [AOM] VCACA-archetype attribute reference model cardinality conformance

The cardinality of an attribute must conform, i.e. be the same or narrower, to the cardinality of the corresponding
attribute in the underlying information model.

[English]

This cardinality rule is enforced by UML constraints on subsetted and/or
redefined properties.

70 Archetype Modeling Language (AML), v1.0 (Beta 2)

The node_id of the root object of the archetype must be of the form id1{.1}*, where the number of ‘.1’ components
equals the specialization depth, and must be defined in the terminology.

[OCL]

self.base_Classifier.supplierDependency->
exists(d|d.stereotypedBy('ArchetypeDefinition')) implies
self.id.oclAsType(EnumerationLiteral)->forAll(e|e.name.match('id1(\\.1)*'))

• [AOM] VATDA-value set assumed value code validity

Each value code (at-code) used as an assumed_value for a value set in a term constraint must exist in a value set within
the terminology definition. In AML, the assumed_value is defined as part of the specification of a Constraint on the
Property, where the assumed_value is an «ArchetypeTerm». The «ArchetypeTerm» may represent a value code (at-code)
or a value set (ac-code). In any case, the term will be in the Identifier Definition.

Note that this [AOM] Validty rule maps to the same form of Constraint as rule VATDF.

[OCL]

self->select(constraint|constraint.namespace.
stereotypedBy('ComplexObjectConstraint') and
constraint.constrainedElement->forAll(ce|ce.oclIsKindOf(Property)))->
select(c|c.specification->forAll(e|e.oclIsKindOf(Expression) and
(e.oclAsType(Expression).symbol='=') and (e.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue))))).constrainedElement implies
self.specification.oclAsType(Expression).operand.oclAsType(InstanceValue)->
forAll(o|o.instance.stereotypedBy('ArchetypeTerm') and
(o.namespace.namespace.namespace.namespace=self.namespace.namespace))

• [AOM] VATDF-value code validity

Each value code (at-code) used in a term constraint within an Archetype must be an Archetype Term defined in the same
Archetype. A term constraint in AML is modeled as a Constraint on a Property, where the Constraint specification is an
"=" Expression and the operands are Archetype Terms.

[OCL]

self->select(constraint|constraint.namespace.
stereotypedBy('ComplexObjectConstraint') and constraint.constrainedElement->
forAll(ce|ce.oclIsKindOf(Property)))->select(c|c.specification->
forAll(e|e.oclIsKindOf(Expression) and (e.oclAsType(Expression).symbol='=') and
(e.oclAsType(Expression).operand->
forAll(o|o.oclIsKindOf(InstanceValue))))).constrainedElement implies
self.specification.oclAsType(Expression).operand.oclAsType(InstanceValue)->
forAll(o|o.instance.stereotypedBy('ArchetypeTerm') and
(o.namespace.namespace.namespace.namespace=self.namespace.namespace))

• [AOM] VCACA-archetype attribute reference model cardinality conformance

The cardinality of an attribute must conform, i.e. be the same or narrower, to the cardinality of the corresponding
attribute in the underlying information model.

[English]

This cardinality rule is enforced by UML constraints on subsetted and/or
redefined properties.

70 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] VCAEX-archetype attribute reference model existence conformance

The existence of an attribute must conform, i.e. be the same or narrower, to the existence of the corresponding attribute
in the underlying information model.

[English]

The [AOM] validation rule is enforced by UML validation rules for subsetted or
redefined properties.

• [AOM] VCAM-archetype attribute reference model multiplicity conformance

The multiplicity, i.e. whether an attribute is multiply- or single-valued, of an attribute must conform to that of the
corresponding attribute in the underlying information model.

[English]

This validation rule is enforced by UML Constraints on subsetted and/or
redefined Properties.

• [AOM] VCARM-attribute name reference model validity

An attribute name introducing an attribute constraint block must be defined in the underlying information model as an
attribute (stored or computed) of the type which introduces the enclosing object block.

[English]

This [AOM] Validation Rule is enforced by UML type constraints for subsetted
and/or redefined Properties.

• [AOM] VCATU-attribute uniqueness

Sibling attributes occurring within an object node must be uniquely named with respect to each other, in the same way as
for class definitions in an object reference model.

[English]

The [AOM] Validation Rule is enforced by UML Namespace constraints for names.

• [AOM] VDIFP-specialised archetype attribute differential path validity

If an attribute constraint has a differential path, the path must exist in the flat parent, and also be valid with respect to the
reference model, i.e. in the sense that it corresponds to a legal potential construction of objects.

[English]

If an attribute constraint has a differential path, the path must exist in the
flat parent, and also be valid with respect to the reference model, i.e. in
the sense that it corresponds to a legal potential construction of objects.

• [AOM] VDIFV-archetype attribute differential path validity:

An archetype may only have a differential path if it is specialized.

[English]

An archetype may only have a differential path if it is specialized.

Archetype Modeling Language (AML), v1.0 (Beta 2) 71

• [AOM] VCAEX-archetype attribute reference model existence conformance

The existence of an attribute must conform, i.e. be the same or narrower, to the existence of the corresponding attribute
in the underlying information model.

[English]

The [AOM] validation rule is enforced by UML validation rules for subsetted or
redefined properties.

• [AOM] VCAM-archetype attribute reference model multiplicity conformance

The multiplicity, i.e. whether an attribute is multiply- or single-valued, of an attribute must conform to that of the
corresponding attribute in the underlying information model.

[English]

This validation rule is enforced by UML Constraints on subsetted and/or
redefined Properties.

• [AOM] VCARM-attribute name reference model validity

An attribute name introducing an attribute constraint block must be defined in the underlying information model as an
attribute (stored or computed) of the type which introduces the enclosing object block.

[English]

This [AOM] Validation Rule is enforced by UML type constraints for subsetted
and/or redefined Properties.

• [AOM] VCATU-attribute uniqueness

Sibling attributes occurring within an object node must be uniquely named with respect to each other, in the same way as
for class definitions in an object reference model.

[English]

The [AOM] Validation Rule is enforced by UML Namespace constraints for names.

• [AOM] VDIFP-specialised archetype attribute differential path validity

If an attribute constraint has a differential path, the path must exist in the flat parent, and also be valid with respect to the
reference model, i.e. in the sense that it corresponds to a legal potential construction of objects.

[English]

If an attribute constraint has a differential path, the path must exist in the
flat parent, and also be valid with respect to the reference model, i.e. in
the sense that it corresponds to a legal potential construction of objects.

• [AOM] VDIFV-archetype attribute differential path validity:

An archetype may only have a differential path if it is specialized.

[English]

An archetype may only have a differential path if it is specialized.

Archetype Modeling Language (AML), v1.0 (Beta 2) 71

• [AOM] VOBAV-object node assumed value validity

The value of an assumed value must fall within the value space defined by the constraint to which it is attached.

[English]

The value of an assumed value must fall within the value space defined by the
constraint to which it is attached.

• [AOM] VSAM-specialised archetype attribute multiplicity conformance

The multiplicity, i.e. whether an attribute is multiply- or single-valued, of a redefined attribute must conform to that of
the corresponding attribute in the parent archetype.

[English]

The [AOM] validation rule is enforced by UML multiplicity constraints applicable
to subsetted and/or redefined Properties.

• [AOM] VSANCC-specialised archetype attribute node cardinality conformance

The cardinality of a redefined (multiply-valued) attribute node in a specialized archetype, must conform to the
cardinality of the corresponding node in the flat parent archetype by either being identical, or being wholly contained by
the latter.

[English]

This [AOM] validation rule is enforced by UML constraints related to cardinality
of subsetted and/or redefined Properties.

• [AOM] VSANCE-specialised archetype attribute node existence conformance

The existence of a redefined attribute node in a specialized archetype must conform to the existence of the corresponding
node in the flat parent archetype, by having an identical range, or a range wholly contained by the latter.

[English]

This [AOM] Validation Rule is enforced by UML type and cardinality constraints
associated with subsetted and/or redefined Properties.

• [AOM] VSONIF-specialised archetype object node identifier validity in flat siblings

The [AOM] C_OBJECT/node_id must be valid with respect to any sibling C_OBJECT nodes.

An [AOM] C_OBJECT/node_id is mapped to a UML Constraint Object id tag value. The Constraint Object may be
applied to a Classifier, or it the Classifier is not in the same Archetype, to the Property which is typed by the external
Classifier. This [AOM] Validation rule is mapped to an AML Constraint which requires that the id tag values for owned
attributes of a Complex Object Constraint are unique.

72 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] VOBAV-object node assumed value validity

The value of an assumed value must fall within the value space defined by the constraint to which it is attached.

[English]

The value of an assumed value must fall within the value space defined by the
constraint to which it is attached.

• [AOM] VSAM-specialised archetype attribute multiplicity conformance

The multiplicity, i.e. whether an attribute is multiply- or single-valued, of a redefined attribute must conform to that of
the corresponding attribute in the parent archetype.

[English]

The [AOM] validation rule is enforced by UML multiplicity constraints applicable
to subsetted and/or redefined Properties.

• [AOM] VSANCC-specialised archetype attribute node cardinality conformance

The cardinality of a redefined (multiply-valued) attribute node in a specialized archetype, must conform to the
cardinality of the corresponding node in the flat parent archetype by either being identical, or being wholly contained by
the latter.

[English]

This [AOM] validation rule is enforced by UML constraints related to cardinality
of subsetted and/or redefined Properties.

• [AOM] VSANCE-specialised archetype attribute node existence conformance

The existence of a redefined attribute node in a specialized archetype must conform to the existence of the corresponding
node in the flat parent archetype, by having an identical range, or a range wholly contained by the latter.

[English]

This [AOM] Validation Rule is enforced by UML type and cardinality constraints
associated with subsetted and/or redefined Properties.

• [AOM] VSONIF-specialised archetype object node identifier validity in flat siblings

The [AOM] C_OBJECT/node_id must be valid with respect to any sibling C_OBJECT nodes.

An [AOM] C_OBJECT/node_id is mapped to a UML Constraint Object id tag value. The Constraint Object may be
applied to a Classifier, or it the Classifier is not in the same Archetype, to the Property which is typed by the external
Classifier. This [AOM] Validation rule is mapped to an AML Constraint which requires that the id tag values for owned
attributes of a Complex Object Constraint are unique.

72 Archetype Modeling Language (AML), v1.0 (Beta 2)

[OCL]

self.base_Classifier.oclIsKindOf(Class) implies
self.base_Classifier.oclAsType(Class).ownedAttribute->
forAll(attribute|(attribute.stereotypedBy('ObjectConstraint') and
(self.base_Classifier.oclAsType(Class).ownedAttribute->
select(a|a<>attribute)->
forAll(sibling|(sibling.stereotypedBy('ObjectConstraint') and
not(sibling.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()->first()))) or
(sibling.type.stereotypedBy('ObjectConstraint') and
not(sibling.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()->first())))))) or
(attribute.type.stereotypedBy('ObjectConstraint') and
(self.base_Classifier.oclAsType(Class).ownedAttribute->
select(a|a<>attribute)->
forAll(sibling|(sibling.stereotypedBy('ObjectConstraint') and
not(sibling.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()->first()))) or
(sibling.type.stereotypedBy('ObjectConstraint') and
not(sibling.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
asSequence()->first())))))))

• [AOM] VSONPI-specialised archetype prohibited object node [AOM] node id validity

A redefined object node in a specialized archetype with occurrences matching {0} must have exactly the same node id as
the node in the flat parent being redefined.

[OCL]

self.base_Classifier.attribute->select(a|a.upper=0).type->
forAll(t|t.oclAsType(Classifier).general->
forAll(g|g.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
forAll(e|e=t.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()>first())))

• [AOM] VSUNT-use_node specialisation parent validity

An [AOM] C_COMPLEX_OBJECT_PROXY node may be redefined in a specialized archetype by another
C_COMPLEX_OBJECT_PROXY (e.g. in order to redefine occurrences), or by a C_COMPLEX_OBJECT structure that
legally redefines the target C_COMPLEX_OBJECT node referred to by the reference.

[English]

A proxy is modeled using a Property aggregation of none. The aggregation of a
redefined/subsetted Property, and consequently whether or not the node is a
Proxy, may be different than the archetype Property. Therefore, it is permitted
to use a proxy or regular node in a specialized archetype.

Archetype Modeling Language (AML), v1.0 (Beta 2) 73

[OCL]

self.base_Classifier.oclIsKindOf(Class) implies
self.base_Classifier.oclAsType(Class).ownedAttribute->
forAll(attribute|(attribute.stereotypedBy('ObjectConstraint') and
(self.base_Classifier.oclAsType(Class).ownedAttribute->
select(a|a<>attribute)->
forAll(sibling|(sibling.stereotypedBy('ObjectConstraint') and
not(sibling.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()->first()))) or
(sibling.type.stereotypedBy('ObjectConstraint') and
not(sibling.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()->first())))))) or
(attribute.type.stereotypedBy('ObjectConstraint') and
(self.base_Classifier.oclAsType(Class).ownedAttribute->
select(a|a<>attribute)->
forAll(sibling|(sibling.stereotypedBy('ObjectConstraint') and
not(sibling.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()->first()))) or
(sibling.type.stereotypedBy('ObjectConstraint') and
not(sibling.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
includes(attribute.type.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
asSequence()->first())))))))

• [AOM] VSONPI-specialised archetype prohibited object node [AOM] node id validity

A redefined object node in a specialized archetype with occurrences matching {0} must have exactly the same node id as
the node in the flat parent being redefined.

[OCL]

self.base_Classifier.attribute->select(a|a.upper=0).type->
forAll(t|t.oclAsType(Classifier).general->
forAll(g|g.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->
forAll(e|e=t.appliedStereotype('ObjectConstraint').
oclAsType(ObjectConstraint).id->asSequence()>first())))

• [AOM] VSUNT-use_node specialisation parent validity

An [AOM] C_COMPLEX_OBJECT_PROXY node may be redefined in a specialized archetype by another
C_COMPLEX_OBJECT_PROXY (e.g. in order to redefine occurrences), or by a C_COMPLEX_OBJECT structure that
legally redefines the target C_COMPLEX_OBJECT node referred to by the reference.

[English]

A proxy is modeled using a Property aggregation of none. The aggregation of a
redefined/subsetted Property, and consequently whether or not the node is a
Proxy, may be different than the archetype Property. Therefore, it is permitted
to use a proxy or regular node in a specialized archetype.

Archetype Modeling Language (AML), v1.0 (Beta 2) 73

• [AOM] VUNP-use_node path validity

The path mentioned in a use_node statement must refer to an object node defined elsewhere in the same archetype or any
of its specialization parent archetypes, that is not itself an internal reference node, and which carries a node identifier if
one is needed at the reference point.

Note that the AML representation for a use_node is a «ComplexObjectConstraint» owned property which has
aggregation=none.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
self.aggregation=AggregationKind::none) implies(
(self.type.getNearestPackage()=self.getNearestPackage()) or
self.getNearestPackage().packageImport.importedPackage->
includes(self.type.getNearestPackage()))

• [AOM] VUNT-use_node reference model type validity

The Reference Model type mentioned in an [AOM] C_COMPLEX_OBJECT_PROXY node must be the same as or a
supertype (according to the Reference Model) of the Reference Model type of the node referred to.

[English]

The [AOM] validation rule is enforced by UML type constraints related to
subsetted and/or redefined Properties.

• [AOM] WACMCL-cardinality/occurrences lower bound validity

When a cardinality with a finite upper bound is stated on an attribute, for all immediate child objects for which an
occurrences constraint is stated, the sum of occurrences lower bounds should be lower than the cardinality upper limit.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint')).
subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty)).lower->sum()<=refProperty.upper)

8.4.11 Constrains [Stereotype]

Description
A «Constrains» Generalization specifies the Classifier to be constrained by the specific Object Constraint. The specific
Classifier of the Generalization is an Object Constraint which may specify constraints on names, possible values,
cardinalities, types, and other attributes of the general Classifier. The general of the Generalization may be either a
Classifier in the Reference Model or another AML Object Constraint.

The «Constrains» Generalization maps to the [AOM] C_OBJECT/rm_type_name attribute when constraining a
Reference Model Classifier, otherwise it maps to the [AOM] ARCHETYPE_CONSTRAINT/parent attribute.

Diagrams
Constraint Profile

74 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] VUNP-use_node path validity

The path mentioned in a use_node statement must refer to an object node defined elsewhere in the same archetype or any
of its specialization parent archetypes, that is not itself an internal reference node, and which carries a node identifier if
one is needed at the reference point.

Note that the AML representation for a use_node is a «ComplexObjectConstraint» owned property which has
aggregation=none.

[OCL]

(self.namespace.stereotypedBy('ComplexObjectConstraint') and
self.aggregation=AggregationKind::none) implies(
(self.type.getNearestPackage()=self.getNearestPackage()) or
self.getNearestPackage().packageImport.importedPackage->
includes(self.type.getNearestPackage()))

• [AOM] VUNT-use_node reference model type validity

The Reference Model type mentioned in an [AOM] C_COMPLEX_OBJECT_PROXY node must be the same as or a
supertype (according to the Reference Model) of the Reference Model type of the node referred to.

[English]

The [AOM] validation rule is enforced by UML type constraints related to
subsetted and/or redefined Properties.

• [AOM] WACMCL-cardinality/occurrences lower bound validity

When a cardinality with a finite upper bound is stated on an attribute, for all immediate child objects for which an
occurrences constraint is stated, the sum of occurrences lower bounds should be lower than the cardinality upper limit.

[OCL]

self->select(s|s.namespace.stereotypedBy('ComplexObjectConstraint')).
subsettedProperty->union(self.redefinedProperty)->select(r|r.upper>0)->
forAll(refProperty|self.namespace.oclAsType(Class).ownedAttribute->
select(sibling|sibling.subsettedProperty->union(sibling.redefinedProperty)->
includes(refProperty)).lower->sum()<=refProperty.upper)

8.4.11 Constrains [Stereotype]

Description
A «Constrains» Generalization specifies the Classifier to be constrained by the specific Object Constraint. The specific
Classifier of the Generalization is an Object Constraint which may specify constraints on names, possible values,
cardinalities, types, and other attributes of the general Classifier. The general of the Generalization may be either a
Classifier in the Reference Model or another AML Object Constraint.

The «Constrains» Generalization maps to the [AOM] C_OBJECT/rm_type_name attribute when constraining a
Reference Model Classifier, otherwise it maps to the [AOM] ARCHETYPE_CONSTRAINT/parent attribute.

Diagrams
Constraint Profile

74 Archetype Modeling Language (AML), v1.0 (Beta 2)

Meta-classes

UML::Generalization

Constraints
• constrainsRMElement

The general property must reference a Classifier within the Package extended by the ReferenceModel stereotype that is
imported by the containing ArchetypeLibrary or it must reference another ObjectConstraint.

[OCL]

(self.base_Generalization.specific.namespace.oclAsType(Package).nestingPackage.
packageImport.importedPackage ->select(p|p.stereotypedBy('ReferenceModel'))->
exists(referenceModel|self.base_Generalization.general.
getNearestReferenceModel()=referenceModel)) or
self.base_Generalization.general.stereotypedBy('ObjectConstraint')

• specificObjectConstraint

The specific property must reference an ObjectConstraint.

[OCL]

self.base_Generalization.specific.stereotypedBy('ObjectConstraint')

8.4.12 ObjectConstraint [Stereotype]

Description
An «ObjectConstraint» models a restriction on the possible values, types, cardinalities and/or other aspects of the base
NamedElement.

If an «ObjectConstraint» is applied to a UML Classifier, the Classifier may only have ownedAttributes which subset or
redefine an inherited attribute. If an «ObjectConstraint» is applied to a UML Property, the Property may specify the
value space, type, and/or cardinality subject to the UML Property subset/redefinition semantics.

«ObjectConstraint» is a specialization of «IdentifiedItem», thus allowing the base NamedElements to be assigned unique
identifiers from external namespaces. In particular, when modeling [AOM], the value of the id will be an
«ArchetypeTerm», thus enabling multiple natural language terminology definitions, technology bindings, and value set
compositions for the underlying UML named elements.

Diagrams

Constraint Profile

Direct Superclasses (Generalization)
TerminologyProfile::IdentifiedItem
8.4.11 IdentifiedItem [Stereotype]

Meta-classes

UML::NamedElement

Archetype Modeling Language (AML), v1.0 (Beta 2) 75

Meta-classes

UML::Generalization

Constraints
• constrainsRMElement

The general property must reference a Classifier within the Package extended by the ReferenceModel stereotype that is
imported by the containing ArchetypeLibrary or it must reference another ObjectConstraint.

[OCL]

(self.base_Generalization.specific.namespace.oclAsType(Package).nestingPackage.
packageImport.importedPackage ->select(p|p.stereotypedBy('ReferenceModel'))->
exists(referenceModel|self.base_Generalization.general.
getNearestReferenceModel()=referenceModel)) or
self.base_Generalization.general.stereotypedBy('ObjectConstraint')

• specificObjectConstraint

The specific property must reference an ObjectConstraint.

[OCL]

self.base_Generalization.specific.stereotypedBy('ObjectConstraint')

8.4.12 ObjectConstraint [Stereotype]

Description
An «ObjectConstraint» models a restriction on the possible values, types, cardinalities and/or other aspects of the base
NamedElement.

If an «ObjectConstraint» is applied to a UML Classifier, the Classifier may only have ownedAttributes which subset or
redefine an inherited attribute. If an «ObjectConstraint» is applied to a UML Property, the Property may specify the
value space, type, and/or cardinality subject to the UML Property subset/redefinition semantics.

«ObjectConstraint» is a specialization of «IdentifiedItem», thus allowing the base NamedElements to be assigned unique
identifiers from external namespaces. In particular, when modeling [AOM], the value of the id will be an
«ArchetypeTerm», thus enabling multiple natural language terminology definitions, technology bindings, and value set
compositions for the underlying UML named elements.

Diagrams

Constraint Profile

Direct Superclasses (Generalization)
TerminologyProfile::IdentifiedItem
8.4.11 IdentifiedItem [Stereotype]

Meta-classes

UML::NamedElement

Archetype Modeling Language (AML), v1.0 (Beta 2) 75

Direct Subclasses (Specialization)
ConstraintProfile::ArchetypeSlot
8.4.8 ArchetypeSlot [Stereotype]
ConstraintProfile::ComplexObjectConstraint
8.4.10 ComplexObjectConstraint [Stereotype]

Attributes

• is_deprecated : UML::PrimitiveTypes::Boolean [0..1]

True if this node and by implication all sub-nodes are deprecated for use.

Constraints
• redefinesGeneralization

This Classifier must have exactly one generalization, and that is a «Constraint» Generalization.

[OCL]

self.base_NamedElement.oclIsKindOf(Classifier) implies
(self.base_NamedElement.oclAsType(Classifier).generalization->
forAll(x|x.stereotypedBy('Constrains')) and
(self.base_NamedElement.oclAsType(Classifier).generalization->size() = 1))

• [AOM] ARCHETYPE_CONSTRAIN:Invariant:path_exists

The path of this node relative to root of the archetype is defined.

[English]

In AML, the path to a node is implicit. Thus, the path is never undefined and
the path exists.

• [AOM] CARDINALITY:Invariant:Validity

A lower interval cannot be unbounded.

[English]

UML types lower bound as Integer (instead of UnlimitedNatural). Thus, lower
bound cannot be unbounded.

• [AOM] C_ATTRIBUTE:Invariant:Child_occurrences_validity

The cardinality of children of property must be within the cardinality of the property.

[English]

The [AOM] invariant is implemented by UML constraints regarding cardinality of
subsetted/redefined Properties.

• [AOM] C_ATTRIBUTE:Invariant:Existence_valid

In [AOM] C_ATTRIBUTE/existence must have a lower bound greater than or equal to 0 and upper bound of 1.

76 Archetype Modeling Language (AML), v1.0 (Beta 2)

Direct Subclasses (Specialization)
ConstraintProfile::ArchetypeSlot
8.4.8 ArchetypeSlot [Stereotype]
ConstraintProfile::ComplexObjectConstraint
8.4.10 ComplexObjectConstraint [Stereotype]

Attributes

• is_deprecated : UML::PrimitiveTypes::Boolean [0..1]

True if this node and by implication all sub-nodes are deprecated for use.

Constraints
• redefinesGeneralization

This Classifier must have exactly one generalization, and that is a «Constraint» Generalization.

[OCL]

self.base_NamedElement.oclIsKindOf(Classifier) implies
(self.base_NamedElement.oclAsType(Classifier).generalization->
forAll(x|x.stereotypedBy('Constrains')) and
(self.base_NamedElement.oclAsType(Classifier).generalization->size() = 1))

• [AOM] ARCHETYPE_CONSTRAIN:Invariant:path_exists

The path of this node relative to root of the archetype is defined.

[English]

In AML, the path to a node is implicit. Thus, the path is never undefined and
the path exists.

• [AOM] CARDINALITY:Invariant:Validity

A lower interval cannot be unbounded.

[English]

UML types lower bound as Integer (instead of UnlimitedNatural). Thus, lower
bound cannot be unbounded.

• [AOM] C_ATTRIBUTE:Invariant:Child_occurrences_validity

The cardinality of children of property must be within the cardinality of the property.

[English]

The [AOM] invariant is implemented by UML constraints regarding cardinality of
subsetted/redefined Properties.

• [AOM] C_ATTRIBUTE:Invariant:Existence_valid

In [AOM] C_ATTRIBUTE/existence must have a lower bound greater than or equal to 0 and upper bound of 1.

76 Archetype Modeling Language (AML), v1.0 (Beta 2)

[English]

In AML, existence is implicit and will have a lower, upper in the range of this
invariant.

• [AOM] C_ATTRIBUTE:Invariant:Rm_attribute_name_valid

This Property must redefine or subset a Reference Model Property

[OCL]

self.base_NamedElement.oclIsKindOf(Property) implies
self.base_NamedElement.oclAsType(Property)->forAll(p|p.redefinedProperty->
notEmpty() or p.subsettedProperty->notEmpty())

• [AOM] C_ATTRIBUTE:Invariant:[Differential_path_valid

The [AOM] C_ATTRIBUTE/differential_path, if it exists, references the parent object of the C_ATTRIBUTE. The
[AOM] C_ATTRIBUTE/differential_path is derived during mapping from AML.

[English]

The [AOM] Invariant is enforced during mapping from AML to [AOM].

• [AOM] C_COMPLEX_OBJECT_PROXY:Target_path_valid

The [AOM] C_COMPLEX_OBJECT_PROXY maps to a UML Property having an aggregation of none and a type of the
target object within the same «Archetype» (i.e., an internal reference).

An [AOM] target_path attribute is implicitly mapped to a UML Property type. The UML Property type must be defined.

[OCL]

(self.oclIsKindOf(Property) and
(self.oclAsType(Property).aggregation=AggregationKind::none)and
self.namespace.stereotypedBy('ComplexObjectConstraint')) implies
not(self.oclAsType(Property).type.oclIsUndefined())

• [AOM] C_DEFINED_OBJECT:Invariant:Default_value_valid

The default_value of a Property most conform to the type of the Property as well as any restrictions on the value range.

[English]

Validation of type constraints for defaultValue of a Property is enforced by UML
Property type and instance semantics. Value restrictions are expressed as
Constraints on the Property, but are not necessarily enforceable by UML
semantics directly.

• [AOM] C_OBJECT:Invariant:Node_id_valid

If the tag 'id' has a value, then it must be an Archetype Term EnumerationLiteral.

There are cases in which the tag has no value, such as for primitive types and other cases in which there is no
term_definition available.

[OCL]

self.id ->forAll(i|i.stereotypedBy('ArchetypeTerm'))

Archetype Modeling Language (AML), v1.0 (Beta 2) 77

[English]

In AML, existence is implicit and will have a lower, upper in the range of this
invariant.

• [AOM] C_ATTRIBUTE:Invariant:Rm_attribute_name_valid

This Property must redefine or subset a Reference Model Property

[OCL]

self.base_NamedElement.oclIsKindOf(Property) implies
self.base_NamedElement.oclAsType(Property)->forAll(p|p.redefinedProperty->
notEmpty() or p.subsettedProperty->notEmpty())

• [AOM] C_ATTRIBUTE:Invariant:[Differential_path_valid

The [AOM] C_ATTRIBUTE/differential_path, if it exists, references the parent object of the C_ATTRIBUTE. The
[AOM] C_ATTRIBUTE/differential_path is derived during mapping from AML.

[English]

The [AOM] Invariant is enforced during mapping from AML to [AOM].

• [AOM] C_COMPLEX_OBJECT_PROXY:Target_path_valid

The [AOM] C_COMPLEX_OBJECT_PROXY maps to a UML Property having an aggregation of none and a type of the
target object within the same «Archetype» (i.e., an internal reference).

An [AOM] target_path attribute is implicitly mapped to a UML Property type. The UML Property type must be defined.

[OCL]

(self.oclIsKindOf(Property) and
(self.oclAsType(Property).aggregation=AggregationKind::none)and
self.namespace.stereotypedBy('ComplexObjectConstraint')) implies
not(self.oclAsType(Property).type.oclIsUndefined())

• [AOM] C_DEFINED_OBJECT:Invariant:Default_value_valid

The default_value of a Property most conform to the type of the Property as well as any restrictions on the value range.

[English]

Validation of type constraints for defaultValue of a Property is enforced by UML
Property type and instance semantics. Value restrictions are expressed as
Constraints on the Property, but are not necessarily enforceable by UML
semantics directly.

• [AOM] C_OBJECT:Invariant:Node_id_valid

If the tag 'id' has a value, then it must be an Archetype Term EnumerationLiteral.

There are cases in which the tag has no value, such as for primitive types and other cases in which there is no
term_definition available.

[OCL]

self.id ->forAll(i|i.stereotypedBy('ArchetypeTerm'))

Archetype Modeling Language (AML), v1.0 (Beta 2) 77

• [AOM] C_OBJECT:Invariant:Occurrences_validity

If the upper bound of a Property is 1, then the upper bound of children properties is 1.

[English]

This [AOM] invariant is enforced by the UML constraints covering cardinality of
subsetted/redefined properties.

• [AOM] C_OBJECT:Invariant:Sibling_order_validity

If this Archetype is a specialization of another Archetype, then a sibling_order is implicitly derived from a merge of the
parent with this Classifier.

[English]

The [AOM] sibling_order is mapped from a merge of the current attribute children
with the parent Classifier in the parent Archetype.

• [AOM] SIBLING_ORDER:Invariant:sibling_node_id_validity

 The children of an attribute are ordered.

[English]

The order of children of an attribute is enforced by the UML semantic for
Property ordering.

• [AOM] VCOCD-object constraint definition validity

An object constraint block consists of one of the following (depending on subtype):

an ‘any’ constraint;
a reference;
an inline definition of sub-constraints,
or nothing, in the case where occurrences is set to {0}.

[English]

This [AOM] rule is definitional; subtypes of Object Constraint define content
and semantics.

• [AOM] VCOID-object node identifier validity

Every object node must have a node identifier.

[English]

An object constraint may have an id (which maps to [AOM] node_id) specified as a
tag. If not specified, than an implicit node_id is based on the object
constraint name. In case of constraints on primitive types, the derived
node_id may have an implied value starting with 'id9999'. As a consequence of
the UML defaults described, there will be a node identifier associated with
every object constraint node.

• [AOM] VCORM-object constraint type name existence

78 Archetype Modeling Language (AML), v1.0 (Beta 2)

• [AOM] C_OBJECT:Invariant:Occurrences_validity

If the upper bound of a Property is 1, then the upper bound of children properties is 1.

[English]

This [AOM] invariant is enforced by the UML constraints covering cardinality of
subsetted/redefined properties.

• [AOM] C_OBJECT:Invariant:Sibling_order_validity

If this Archetype is a specialization of another Archetype, then a sibling_order is implicitly derived from a merge of the
parent with this Classifier.

[English]

The [AOM] sibling_order is mapped from a merge of the current attribute children
with the parent Classifier in the parent Archetype.

• [AOM] SIBLING_ORDER:Invariant:sibling_node_id_validity

 The children of an attribute are ordered.

[English]

The order of children of an attribute is enforced by the UML semantic for
Property ordering.

• [AOM] VCOCD-object constraint definition validity

An object constraint block consists of one of the following (depending on subtype):

an ‘any’ constraint;
a reference;
an inline definition of sub-constraints,
or nothing, in the case where occurrences is set to {0}.

[English]

This [AOM] rule is definitional; subtypes of Object Constraint define content
and semantics.

• [AOM] VCOID-object node identifier validity

Every object node must have a node identifier.

[English]

An object constraint may have an id (which maps to [AOM] node_id) specified as a
tag. If not specified, than an implicit node_id is based on the object
constraint name. In case of constraints on primitive types, the derived
node_id may have an implied value starting with 'id9999'. As a consequence of
the UML defaults described, there will be a node identifier associated with
every object constraint node.

• [AOM] VCORM-object constraint type name existence

78 Archetype Modeling Language (AML), v1.0 (Beta 2)

A type name introducing an object constraint block must be defined in the underlying information model.

[English]

All Reference Model types are explicitly inherited and/or referenced as types
from an archetype structure. Thus the UML model will always use types defined
in the underlying Reference Model information model.

• [AOM] VCORMT – object constraint type validity

A type name introducing an object constraint block must be the same as or conform to the type stated in the underlying
information model of its owning attribute.

[English]

This [AOM] validation rule is enforced by UML type conformance constraints
associated with subsetted and/or redefined Properties.

• [AOM] VCOSU- object node identifier validity

Every object node identifier must be unique within the archetype.

[English]

Object node identifiers are the names of Archetype Term EnumerationLiterals
within the Definition Identifier and their uniqueness is enforced by UML name
constraints.

• [AOM] VSONCO-specialised archetype redefine object node occurrences validity

The occurrences of a redefined object node in a specialized archetype, if stated, must conform to the occurrences in the
corresponding node in the flat parent archetype by either being identical, or being wholly contained by the latter.

[English]

The [AOM] validation rule is enforced by UML multiplicity constraints for
subsetted and/or redefined Properties.

• [AOM] VSONCT- specialised archetype object node reference type conformance

The Reference Model type of a redefined object node in a specialized archetype must conform to the reference model
type in the corresponding node in the flat parent archetype by either being identical, or conforming via an inheritance
relationship in the relevant Reference Model.

[English]

This [AOM] validation rule is enforced by UML inheritance from the specialized
archetype, which itself inherits directly or indirectly from a Reference Model.

• [AOM] VSONIN-specialised archetype new object node identifier validity

If an object constraint node in a specialized archetype is a new node with respect to the flat parent, and it carries a node
identifier, the identifier must be a ‘new’ node identifier, specialized at the level of the child archetype.

[English]

Archetype Modeling Language (AML), v1.0 (Beta 2) 79

A type name introducing an object constraint block must be defined in the underlying information model.

[English]

All Reference Model types are explicitly inherited and/or referenced as types
from an archetype structure. Thus the UML model will always use types defined
in the underlying Reference Model information model.

• [AOM] VCORMT – object constraint type validity

A type name introducing an object constraint block must be the same as or conform to the type stated in the underlying
information model of its owning attribute.

[English]

This [AOM] validation rule is enforced by UML type conformance constraints
associated with subsetted and/or redefined Properties.

• [AOM] VCOSU- object node identifier validity

Every object node identifier must be unique within the archetype.

[English]

Object node identifiers are the names of Archetype Term EnumerationLiterals
within the Definition Identifier and their uniqueness is enforced by UML name
constraints.

• [AOM] VSONCO-specialised archetype redefine object node occurrences validity

The occurrences of a redefined object node in a specialized archetype, if stated, must conform to the occurrences in the
corresponding node in the flat parent archetype by either being identical, or being wholly contained by the latter.

[English]

The [AOM] validation rule is enforced by UML multiplicity constraints for
subsetted and/or redefined Properties.

• [AOM] VSONCT- specialised archetype object node reference type conformance

The Reference Model type of a redefined object node in a specialized archetype must conform to the reference model
type in the corresponding node in the flat parent archetype by either being identical, or conforming via an inheritance
relationship in the relevant Reference Model.

[English]

This [AOM] validation rule is enforced by UML inheritance from the specialized
archetype, which itself inherits directly or indirectly from a Reference Model.

• [AOM] VSONIN-specialised archetype new object node identifier validity

If an object constraint node in a specialized archetype is a new node with respect to the flat parent, and it carries a node
identifier, the identifier must be a ‘new’ node identifier, specialized at the level of the child archetype.

[English]

Archetype Modeling Language (AML), v1.0 (Beta 2) 79

If an object constraint node in a specialized archetype is a new node with
respect to the flat parent, and it carries a node identifier, the identifier
must be a ‘new’ node identifier, specialized at the level of the child
archetype.

• [AOM] VSONPO- specialised archetype object node prohibited occurrences validity

The occurrences of a new (i.e. having no corresponding node in the parent Archetype) object constraint node in a
specialized archetype, if stated, may not be ‘prohibited’, i.e. have an upper bound of {0}, since prohibition only makes
sense for an existing node.

[OCL]

self.namespace->select(n|n.stereotypedBy('ComplexObjectConstraint')
).oclAsType(Classifier).general->
select(g|g.stereotypedBy('ComplexObjectConstraint'))->isEmpty() implies
(self.upper<>0)

• [AOM] VSONPT-specialised archetype prohibited object node [AOM] type validity

The occurrences of a redefined object constraint node in a specialized archetype, may only be prohibited (i.e. have upper
bound of {0}) if the matching node in the parent is of the same [AOM] type.

[OCL]

(self.namespace->select(n|n.stereotypedBy('ComplexObjectConstraint')).
oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ComplexObjectConstraint')) and
(self.upper=0)) implies(self.redefinedProperty.type->
forAll(t|t=self.type) and self.subsettedProperty.type->forAll(t|t=self.type))

• [AOM] VSONT-specialised archetype object node meta-type conformance

The meta-type of a redefined object constraint node (i.e. the [AOM] node type such as C_COMPLEX_OBJECT etc) in a
specialized archetype must be the same as that of the corresponding node in the flat parent, with the following
exceptions:

a C_COMPLEX_OBJECT with no child attributes may be redefined by a node of any [AOM] type;
a C_COMPLEX_OBJECT_PROXY, may be redefined by a C_COMPLEX_OBJECT;
a ARCHTEYPE_SLOT may be redefined by C_ARCHETYPE_ROOT (i.e. ‘slot-filling’).

See also validity rules VDSSID and VARXID.

This [AOM] Validation rule maps to an AML Constraint:

A «ComplexObjectConstraint» may specialize a «ComplexObjectConstraint»
An «ArchetypeRoot» may specialize an «ArchetypeSlot»
An «ArchetypeRoot» may specialize an «ArchetypeRoot»
An «ArchetypeSlot» may specialize an «ArchetypeSlot»

[OCL]

((self.base_NamedElement.stereotypedBy('ComplexObjectConstraint') and
not self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.getNearestReferenceModel().oclIsUndefined())) implies
self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ComplexObjectConstraint'))) and (
(self.base_NamedElement.stereotypedBy('ArchetypeRoot') and

80 Archetype Modeling Language (AML), v1.0 (Beta 2)

If an object constraint node in a specialized archetype is a new node with
respect to the flat parent, and it carries a node identifier, the identifier
must be a ‘new’ node identifier, specialized at the level of the child
archetype.

• [AOM] VSONPO- specialised archetype object node prohibited occurrences validity

The occurrences of a new (i.e. having no corresponding node in the parent Archetype) object constraint node in a
specialized archetype, if stated, may not be ‘prohibited’, i.e. have an upper bound of {0}, since prohibition only makes
sense for an existing node.

[OCL]

self.namespace->select(n|n.stereotypedBy('ComplexObjectConstraint')
).oclAsType(Classifier).general->
select(g|g.stereotypedBy('ComplexObjectConstraint'))->isEmpty() implies
(self.upper<>0)

• [AOM] VSONPT-specialised archetype prohibited object node [AOM] type validity

The occurrences of a redefined object constraint node in a specialized archetype, may only be prohibited (i.e. have upper
bound of {0}) if the matching node in the parent is of the same [AOM] type.

[OCL]

(self.namespace->select(n|n.stereotypedBy('ComplexObjectConstraint')).
oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ComplexObjectConstraint')) and
(self.upper=0)) implies(self.redefinedProperty.type->
forAll(t|t=self.type) and self.subsettedProperty.type->forAll(t|t=self.type))

• [AOM] VSONT-specialised archetype object node meta-type conformance

The meta-type of a redefined object constraint node (i.e. the [AOM] node type such as C_COMPLEX_OBJECT etc) in a
specialized archetype must be the same as that of the corresponding node in the flat parent, with the following
exceptions:

a C_COMPLEX_OBJECT with no child attributes may be redefined by a node of any [AOM] type;
a C_COMPLEX_OBJECT_PROXY, may be redefined by a C_COMPLEX_OBJECT;
a ARCHTEYPE_SLOT may be redefined by C_ARCHETYPE_ROOT (i.e. ‘slot-filling’).

See also validity rules VDSSID and VARXID.

This [AOM] Validation rule maps to an AML Constraint:

A «ComplexObjectConstraint» may specialize a «ComplexObjectConstraint»
An «ArchetypeRoot» may specialize an «ArchetypeSlot»
An «ArchetypeRoot» may specialize an «ArchetypeRoot»
An «ArchetypeSlot» may specialize an «ArchetypeSlot»

[OCL]

((self.base_NamedElement.stereotypedBy('ComplexObjectConstraint') and
not self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.getNearestReferenceModel().oclIsUndefined())) implies
self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ComplexObjectConstraint'))) and (
(self.base_NamedElement.stereotypedBy('ArchetypeRoot') and

80 Archetype Modeling Language (AML), v1.0 (Beta 2)

not self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.getNearestReferenceModel().oclIsUndefined())) implies
self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ArchetypeRoot') or g.stereotypedBy('ArchetypeSlot')))
and ((self.base_NamedElement.stereotypedBy('ArchetypeSlot') and
not self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.getNearestReferenceModel().oclIsUndefined())) implies
self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ArchetypeSlot')))

• [AOM] VSSM-specialised archetype sibling order validity

The [AOM] SIBLING_ORDER/sibling_node_id must refer to a node found within the same container. The [AOM]
SIBLING_ORDER/sibling_node_id maps to the sequence of Properties in the ownedAttribute of a Class.

[English]

The order of sibling children are enforced by the UML semantics of List for the
ordered Attributes of a Class.

8.4.13 ResourceAnnotationNodeItem [Stereotype]

Description
The annotations section of an archetype or template provides a place for node-level meta-data to be added to the
archetype. This can be used during the design phase to track dependencies, design decisions, and specific resource
references. Each annotation is keyed by IdentifiedItem id associated with the item being annotated.

The ResourceAnnotationNodeItem stereotype indicates that the base Comment is an annotation for the
annotatedElement, i.e., some Model Element in the Archetype or Reference Model. Annotations are language specific
and are modeled as comments owned by a ResourceTranslation, where the target language is identified by the owning
ResourceTranslation.

The UML annotatedElement attribute of Comment identifies the model element being annotated, which may be a
Reference Model element or an ArchetypeTerm EnumerationLiteral within the Archetype IdentifierDefinition.

Diagrams
Constraint Profile

Meta-classes

UML::Comment

Constraints
• [AOM] VRANP- annotation path valid

Each resource annotation must annotate a reference model or archetype element.

[OCL]

not(self.base_Comment.annotatedElement->
includes(self.base_Comment.owningElement))

Archetype Modeling Language (AML), v1.0 (Beta 2) 81

not self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.getNearestReferenceModel().oclIsUndefined())) implies
self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ArchetypeRoot') or g.stereotypedBy('ArchetypeSlot')))
and ((self.base_NamedElement.stereotypedBy('ArchetypeSlot') and
not self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.getNearestReferenceModel().oclIsUndefined())) implies
self.base_NamedElement.oclAsType(Classifier).general->
forAll(g|g.stereotypedBy('ArchetypeSlot')))

• [AOM] VSSM-specialised archetype sibling order validity

The [AOM] SIBLING_ORDER/sibling_node_id must refer to a node found within the same container. The [AOM]
SIBLING_ORDER/sibling_node_id maps to the sequence of Properties in the ownedAttribute of a Class.

[English]

The order of sibling children are enforced by the UML semantics of List for the
ordered Attributes of a Class.

8.4.13 ResourceAnnotationNodeItem [Stereotype]

Description
The annotations section of an archetype or template provides a place for node-level meta-data to be added to the
archetype. This can be used during the design phase to track dependencies, design decisions, and specific resource
references. Each annotation is keyed by IdentifiedItem id associated with the item being annotated.

The ResourceAnnotationNodeItem stereotype indicates that the base Comment is an annotation for the
annotatedElement, i.e., some Model Element in the Archetype or Reference Model. Annotations are language specific
and are modeled as comments owned by a ResourceTranslation, where the target language is identified by the owning
ResourceTranslation.

The UML annotatedElement attribute of Comment identifies the model element being annotated, which may be a
Reference Model element or an ArchetypeTerm EnumerationLiteral within the Archetype IdentifierDefinition.

Diagrams
Constraint Profile

Meta-classes

UML::Comment

Constraints
• [AOM] VRANP- annotation path valid

Each resource annotation must annotate a reference model or archetype element.

[OCL]

not(self.base_Comment.annotatedElement->
includes(self.base_Comment.owningElement))

Archetype Modeling Language (AML), v1.0 (Beta 2) 81

8.4.14 ResourceTranslation [Stereotype]

Description

A «ResourceTranslation» models language-specific terminology definitions. Each «ResourceTranslation» contains
metadata about the language, metadata about the translation in the context of the Archetype, and an entry for each
terminology definition associated with the identified elements within the Archetype definition.

A «ResourceTranslation» maps to [AOM] TRANSLATION_DETAILS and RESOURCE_DESCRIPTION_ITEM.

A Resource Translation is associated with an Archetype Package via a Usage relationship named "original_language"
and a Usage named "terminology_original_language". The “original_language” Usage maps to [AOM]
AUTHORED_RESOURCE/original_language and the “terminology_original_language” Usage maps to [AOM]
ARCHETYPE_TERMINOLOGY/original_language.

Diagrams

Constraint Profile

Meta-classes

UML::Enumeration

Attributes

• accreditation : UML::PrimitiveTypes::String [0..1]

 The accreditation tag is used to specify the credentials of the translator.

• other_translation_details : UML::PrimitiveTypes::String [0..*]

 The other_translation_details tag contains other details of a translation.

 This tag maps to the value portion of the [AOM] TRANSLATION_DETAILS.other_details property.

• other_translation_details_id : UML::PrimitiveTypes::String [0..*]

 The other_translation_details_id tag contains the name associated with other details of a translation.
 other_translation_details_id Strings are matched to other_translation_details Strings by order.

• purpose : UML::PrimitiveTypes::String [1]

 The purpose tag specifies the intended design concept of the artefact. This tag maps to the [AOM] attribute
 RESOURCE_DESCRIPTION_ITEM/purpose.

• keywords : UML::PrimitiveTypes::String [0..*]

 The keywords tag is a list of keywords for the artifact. This tag maps to the [AOM] attribute
 RESOURCE_DESCRIPTION_ITEM/keyword.

• use : UML::PrimitiveTypes::String [0..1]

 The use tag specifies uses of the archetype. This tag maps to the attribute [AOM]
 RESOURCE_DESCRIPTION_ITEM/use.

• misuse : UML::PrimitiveTypes::String [0..1]

 The misuse tag specifies common errors of use, or apparently reasonable but wrong assumptions about use. This tag
 maps to the attribute [AOM] RESOURCE_DESCRIPTION_ITEM/misuse.

• copyright : UML::PrimitiveTypes::String [0..1]

 The copyright property records the copyright applying to the artefact, and is normally in the standard form ‘(c) name’
 or ‘(c) year name’. The special character © may also be used (UTF-8 0xC2A9).

• original_resource_uri : UML::PrimitiveTypes::String [0..*]

82 Archetype Modeling Language (AML), v1.0 (Beta 2)

8.4.14 ResourceTranslation [Stereotype]

Description

A «ResourceTranslation» models language-specific terminology definitions. Each «ResourceTranslation» contains
metadata about the language, metadata about the translation in the context of the Archetype, and an entry for each
terminology definition associated with the identified elements within the Archetype definition.

A «ResourceTranslation» maps to [AOM] TRANSLATION_DETAILS and RESOURCE_DESCRIPTION_ITEM.

A Resource Translation is associated with an Archetype Package via a Usage relationship named "original_language"
and a Usage named "terminology_original_language". The “original_language” Usage maps to [AOM]
AUTHORED_RESOURCE/original_language and the “terminology_original_language” Usage maps to [AOM]
ARCHETYPE_TERMINOLOGY/original_language.

Diagrams

Constraint Profile

Meta-classes

UML::Enumeration

Attributes

• accreditation : UML::PrimitiveTypes::String [0..1]

 The accreditation tag is used to specify the credentials of the translator.

• other_translation_details : UML::PrimitiveTypes::String [0..*]

 The other_translation_details tag contains other details of a translation.

 This tag maps to the value portion of the [AOM] TRANSLATION_DETAILS.other_details property.

• other_translation_details_id : UML::PrimitiveTypes::String [0..*]

 The other_translation_details_id tag contains the name associated with other details of a translation.
 other_translation_details_id Strings are matched to other_translation_details Strings by order.

• purpose : UML::PrimitiveTypes::String [1]

 The purpose tag specifies the intended design concept of the artefact. This tag maps to the [AOM] attribute
 RESOURCE_DESCRIPTION_ITEM/purpose.

• keywords : UML::PrimitiveTypes::String [0..*]

 The keywords tag is a list of keywords for the artifact. This tag maps to the [AOM] attribute
 RESOURCE_DESCRIPTION_ITEM/keyword.

• use : UML::PrimitiveTypes::String [0..1]

 The use tag specifies uses of the archetype. This tag maps to the attribute [AOM]
 RESOURCE_DESCRIPTION_ITEM/use.

• misuse : UML::PrimitiveTypes::String [0..1]

 The misuse tag specifies common errors of use, or apparently reasonable but wrong assumptions about use. This tag
 maps to the attribute [AOM] RESOURCE_DESCRIPTION_ITEM/misuse.

• copyright : UML::PrimitiveTypes::String [0..1]

 The copyright property records the copyright applying to the artefact, and is normally in the standard form ‘(c) name’
 or ‘(c) year name’. The special character © may also be used (UTF-8 0xC2A9).

• original_resource_uri : UML::PrimitiveTypes::String [0..*]

82 Archetype Modeling Language (AML), v1.0 (Beta 2)

 The original_resource_uri tag specifies references to original resources for this natural language. This tag maps to
 [AOM] RESOURCE_DESCRIPTION_ITEM/original_resource_uri.

• original_resource_uriId : UML::PrimitiveTypes::String [0..*]

 The original_resource_uriId tag contains the name associated with original resources for this natural language.
 original_resource_uriId Strings are matched to original_resource_uri Strings by order.

• other_details : UML::PrimitiveTypes::String [0..*]

 The other_details tag specifies additional information about the translation.

 This tag maps to attribute [AOM] RESOURCE_DESCRIPTION_ITEM/other_detail.

• other_detailsId : UML::PrimitiveTypes::String [0..*]

 The other_detailsId tag contains the name associated with additional information about the translation. other_detailsId
 Strings are matched to other_details Strings by order.

• author_name : UML::PrimitiveTypes::String [0..1]

 The author_name tag specifies the name of translation author.

This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='name'.

• author_organization : UML::PrimitiveTypes::String [0..1]

 The author_name tag specifies the name author's organization.

 This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='organization'.

• author_email : UML::PrimitiveTypes::String [0..1]

 The author_ email tag specifies the name author's e-mail address.

 This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='email'.

• author_date : UML::PrimitiveTypes::String [0..1]

 The author_ date tag specifies the date that the author made the translation.

 This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='date'.

• version_last_translated : UML::PrimitiveTypes::String [0..1]

 The version_last_translated tag is used to specify when the last translation was carried out for this language. The
 value of the tag is expected to be a physical_id, as defined for the [AOM] attribute ARCHETYPE_HRID/physical_id.
 This tag enables maintainers to know when new translations are needed for some or all languages.

 This tag maps to the [AOM] attribute TRANSLATION_DETAILS/version_last_translated.

Constraints
• translationEntries

All of the ownedLiterals must be stereotyped by IdEntry.

[OCL]

self.base_Enumeration.ownedLiteral->forAll(ol|ol.stereotypedBy('IdEntry'))

• uniqueEntries

The ref tags of the ownedLiterals must all be unique. No two translation entries may reference the same identifier.

[OCL]

Archetype Modeling Language (AML), v1.0 (Beta 2) 83

 The original_resource_uri tag specifies references to original resources for this natural language. This tag maps to
 [AOM] RESOURCE_DESCRIPTION_ITEM/original_resource_uri.

• original_resource_uriId : UML::PrimitiveTypes::String [0..*]

 The original_resource_uriId tag contains the name associated with original resources for this natural language.
 original_resource_uriId Strings are matched to original_resource_uri Strings by order.

• other_details : UML::PrimitiveTypes::String [0..*]

 The other_details tag specifies additional information about the translation.

 This tag maps to attribute [AOM] RESOURCE_DESCRIPTION_ITEM/other_detail.

• other_detailsId : UML::PrimitiveTypes::String [0..*]

 The other_detailsId tag contains the name associated with additional information about the translation. other_detailsId
 Strings are matched to other_details Strings by order.

• author_name : UML::PrimitiveTypes::String [0..1]

 The author_name tag specifies the name of translation author.

This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='name'.

• author_organization : UML::PrimitiveTypes::String [0..1]

 The author_name tag specifies the name author's organization.

 This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='organization'.

• author_email : UML::PrimitiveTypes::String [0..1]

 The author_ email tag specifies the name author's e-mail address.

 This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='email'.

• author_date : UML::PrimitiveTypes::String [0..1]

 The author_ date tag specifies the date that the author made the translation.

 This tag maps to [AOM] TRANSLATION_DETAILS/author item where id='date'.

• version_last_translated : UML::PrimitiveTypes::String [0..1]

 The version_last_translated tag is used to specify when the last translation was carried out for this language. The
 value of the tag is expected to be a physical_id, as defined for the [AOM] attribute ARCHETYPE_HRID/physical_id.
 This tag enables maintainers to know when new translations are needed for some or all languages.

 This tag maps to the [AOM] attribute TRANSLATION_DETAILS/version_last_translated.

Constraints
• translationEntries

All of the ownedLiterals must be stereotyped by IdEntry.

[OCL]

self.base_Enumeration.ownedLiteral->forAll(ol|ol.stereotypedBy('IdEntry'))

• uniqueEntries

The ref tags of the ownedLiterals must all be unique. No two translation entries may reference the same identifier.

[OCL]

Archetype Modeling Language (AML), v1.0 (Beta 2) 83

self.base_Enumeration.ownedLiteral->size() =
self.base_Enumeration.ownedLiteral.appliedStereotype('IdEntry').
oclAsType(IdEntry).ref->asSet()->size()

• [AOM] VOTM-terminology translations validity

Translations must exist for term_definitions and constraint_definitions sections for all languages defined in the
description / translations section.

[OCL]

self.base_Enumeration.ownedLiteral->notEmpty()

84 Archetype Modeling Language (AML), v1.0 (Beta 2)

self.base_Enumeration.ownedLiteral->size() =
self.base_Enumeration.ownedLiteral.appliedStereotype('IdEntry').
oclAsType(IdEntry).ref->asSet()->size()

• [AOM] VOTM-terminology translations validity

Translations must exist for term_definitions and constraint_definitions sections for all languages defined in the
description / translations section.

[OCL]

self.base_Enumeration.ownedLiteral->notEmpty()

84 Archetype Modeling Language (AML), v1.0 (Beta 2)

9 AML-UML Transformation Reference
(Informative)

9.1 Introduction
This clause provides component, structural and abstract orientation to the transformations between the UML Profile for
AML and the AOM 2.0 Meta-model, as specified in [AOM]. The transformations are expressed in terms of OMG QVT
[QVT]. The QVT and related metamodels and profiles are provided as machine-readable artifacts associated with this
specification. This clause, and its associated QVT, are presented from a transformation engineering perspective and
illustrate abstract model manipulation. Other clauses in this specification and/or informative artifacts associated with this
specification provide illustrations of concrete target artifact syntax. The associated QVT are the normative expression for
the mapping. In case of apparent conflict between the informative orientation provided in this clause and the QVT, the
QVT takes precedence.

9.1.1 AML Provisioning Context

The transformations referenced in this clause are intended to constitute a provisioning process that enables representation
of AOM 2.0 artifacts as AML-UML Models or in one of the native AOM-conformant formats, including XML. The
overall provisioning process is illustrated in Figure 5. The focus of this clause is to illustrate the transformation between
AML-UML Models and AOM 2.0. The AOM 2.0 concrete artifacts addressed by these transformations are XML
Documents conformant with the AOM 2.0 Archetype Schemas. The AOM architecture and tooling defines rendering of
an AOM Model in multiple formats, including ADL and XML. A meta-model for Schemas is specified in Clause 10
(XML Schema InfosetModel) of the OMG MOF 2 XMI Mapping Specification [XMI]. A meta-model based on the
AOM 2.0 Archetype Schemas is included in the machine-readable artifacts for this specification. AOM Artifacts
provisioned by the transformations are represented (serialized) in their native XML form.

The Archetypes in a Library constrain a Reference Model. The AML-UML Profile does not specify any specific
Reference Model. During transformation, the Archetypes are wired into UML representations of Reference Models.
Examples of Reference Models include:

CIMI Reference Model. A Reference Model used by the Clinical Information Modeling Initiative.

openEHR. A Reference Model used by the openEHR community whose main focus is electronic patient records and
systems.

The transformations use a set of shared, reusable libraries for:

PrimitiveTypes. The UML Primitive Types library includes definitions for some of the Primitive Types supported by the
AOM 2.0 meta-model: Boolean, String, Integer, and Real.

XML Primitive Types. The UML XML Primitive Types library represents the data types defined in the XML Schema for
Schemas. There is an isomorphic mapping between the types in the UML XML Primitive Type library and the
explicitly defined SimpleTypeDefinitions in the Schema for Schemas. This type library is defined by the NIEM-
UML Specification. The primary types referenced by AML-UML are the temporal types.

The AML-UML model which serves as source or target of a transformation is a «ArchetypeLibrary» Package.

• The AML Profiles are applied to the «ArchetypeLibrary» Package.

• The AML Profiles may import other Profiles and/or model libraries such as the XMLPrimitiveTypes.

• Some «ReferenceModel» is imported into the «ArchetypeLibrary». The Classifiers which are transitively owned by
 the «ReferenceModel» are constrained by the Classifiers owned by the «Archetype»s within the «ArchetypeLibrary».

The AOM model is an instance of an AOM 2.0 MOF Meta-model.

• The AOM Model is parsed-from/serialized-to an XML Document conformant with the AOM XML Schema.

Archetype Modeling Language (AML), v1.0 (Beta 2) 85

9 AML-UML Transformation Reference
(Informative)

9.1 Introduction
This clause provides component, structural and abstract orientation to the transformations between the UML Profile for
AML and the AOM 2.0 Meta-model, as specified in [AOM]. The transformations are expressed in terms of OMG QVT
[QVT]. The QVT and related metamodels and profiles are provided as machine-readable artifacts associated with this
specification. This clause, and its associated QVT, are presented from a transformation engineering perspective and
illustrate abstract model manipulation. Other clauses in this specification and/or informative artifacts associated with this
specification provide illustrations of concrete target artifact syntax. The associated QVT are the normative expression for
the mapping. In case of apparent conflict between the informative orientation provided in this clause and the QVT, the
QVT takes precedence.

9.1.1 AML Provisioning Context

The transformations referenced in this clause are intended to constitute a provisioning process that enables representation
of AOM 2.0 artifacts as AML-UML Models or in one of the native AOM-conformant formats, including XML. The
overall provisioning process is illustrated in Figure 5. The focus of this clause is to illustrate the transformation between
AML-UML Models and AOM 2.0. The AOM 2.0 concrete artifacts addressed by these transformations are XML
Documents conformant with the AOM 2.0 Archetype Schemas. The AOM architecture and tooling defines rendering of
an AOM Model in multiple formats, including ADL and XML. A meta-model for Schemas is specified in Clause 10
(XML Schema InfosetModel) of the OMG MOF 2 XMI Mapping Specification [XMI]. A meta-model based on the
AOM 2.0 Archetype Schemas is included in the machine-readable artifacts for this specification. AOM Artifacts
provisioned by the transformations are represented (serialized) in their native XML form.

The Archetypes in a Library constrain a Reference Model. The AML-UML Profile does not specify any specific
Reference Model. During transformation, the Archetypes are wired into UML representations of Reference Models.
Examples of Reference Models include:

CIMI Reference Model. A Reference Model used by the Clinical Information Modeling Initiative.

openEHR. A Reference Model used by the openEHR community whose main focus is electronic patient records and
systems.

The transformations use a set of shared, reusable libraries for:

PrimitiveTypes. The UML Primitive Types library includes definitions for some of the Primitive Types supported by the
AOM 2.0 meta-model: Boolean, String, Integer, and Real.

XML Primitive Types. The UML XML Primitive Types library represents the data types defined in the XML Schema for
Schemas. There is an isomorphic mapping between the types in the UML XML Primitive Type library and the
explicitly defined SimpleTypeDefinitions in the Schema for Schemas. This type library is defined by the NIEM-
UML Specification. The primary types referenced by AML-UML are the temporal types.

The AML-UML model which serves as source or target of a transformation is a «ArchetypeLibrary» Package.

• The AML Profiles are applied to the «ArchetypeLibrary» Package.

• The AML Profiles may import other Profiles and/or model libraries such as the XMLPrimitiveTypes.

• Some «ReferenceModel» is imported into the «ArchetypeLibrary». The Classifiers which are transitively owned by
 the «ReferenceModel» are constrained by the Classifiers owned by the «Archetype»s within the «ArchetypeLibrary».

The AOM model is an instance of an AOM 2.0 MOF Meta-model.

• The AOM Model is parsed-from/serialized-to an XML Document conformant with the AOM XML Schema.

Archetype Modeling Language (AML), v1.0 (Beta 2) 85

• The AOM Architecture externalizes an Archetype Object Model in one of several forms. Based on AOM tools and
 specifications, an AOM XML Document may be translated to/from an ADL Specification.

There are two QVT «OperationalTransformation»s between an AML-UML Model and the AOM Model:

• adl2uml. Transforms a set of AOM XML Documents to an AML-UML «ArchetypeLibrary».

• uml2adl. Transforms an AML-UML «ArchetypeLibrary» to a set of AOM XML Documents.

9.1.2 QVT Packaging

The transformations referenced in this clause include:
• adl2uml. Transforms a library of AOM Archetype Documents to AML-UML.

• uml2adl. Transforms an AML-UML model to a library of AOM Archetype Documents.

Additionally, there are inherited common transformations:
• AMLplatformBinding. A set of plaform-specific operations. For the purposes of this specification, these are defined
 as abstract operations.

• AMLglobals. A set of variables initialized at the beginning of the transformation, including references to
 Profiles and Stereotypes from AML-UML, and various constants referenced in the AOM 2.0
 Specification.

86 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 5. AML Provisioning Context

• The AOM Architecture externalizes an Archetype Object Model in one of several forms. Based on AOM tools and
 specifications, an AOM XML Document may be translated to/from an ADL Specification.

There are two QVT «OperationalTransformation»s between an AML-UML Model and the AOM Model:

• adl2uml. Transforms a set of AOM XML Documents to an AML-UML «ArchetypeLibrary».

• uml2adl. Transforms an AML-UML «ArchetypeLibrary» to a set of AOM XML Documents.

9.1.2 QVT Packaging

The transformations referenced in this clause include:
• adl2uml. Transforms a library of AOM Archetype Documents to AML-UML.

• uml2adl. Transforms an AML-UML model to a library of AOM Archetype Documents.

Additionally, there are inherited common transformations:
• AMLplatformBinding. A set of plaform-specific operations. For the purposes of this specification, these are defined
 as abstract operations.

• AMLglobals. A set of variables initialized at the beginning of the transformation, including references to
 Profiles and Stereotypes from AML-UML, and various constants referenced in the AOM 2.0
 Specification.

86 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 5. AML Provisioning Context

9.1.3 Transformation Reuse and Composition
Reuse and composition facilities are associated with QVT mapping operations. Disjunction enables selecting, among the
set of disjunctive mappings, the first that satisfies the when clause and then invoking it. For the AML transformations,
disjunction is used to identify a concrete MappingOperation to be selected from a given disjunctive MappingOperation.
The disjunction hierarchy generally follows the AOM meta-model inheritance hierarchy and/or the UML meta-model
inheritance hierarchy. Another reuse and composition facility associated with QVT mapping operations is inheritance.
Inheritance enables reuse of the execution logic of an inherited mapping. Thus, disjunction is used to initially select a
leaf mapping operation and inheritance is used to share common execution logic. For the AML transformations,
inheritance is used to identify the hierarchy of execution logic required to populate target Elements from a source
Element. The mapping inheritance generally follows the AOM meta-model inheritance hierarchy and/or the UML meta-
model inheritance hierarchy. Figure 7 illustrates the pattern of disjunction and inheritance used for the transformations.

• The notation «mapping» represents a QVT mapping operation.

• The notation «inherits» represents a QVT mapping inheritance.
• The notation «disjuncts» represents a QVT mapping operation.

• Only «mapping» operations with either inherits or disjuncts are included in the figure.
• The figure depicts «mapping» operations for the adl2uml transformation. The uml2adl transformation has a

 similar pattern of disjunction and inheritance.

Archetype Modeling Language (AML), v1.0 (Beta 2) 87

Figure 6. AML Transformations

9.1.3 Transformation Reuse and Composition
Reuse and composition facilities are associated with QVT mapping operations. Disjunction enables selecting, among the
set of disjunctive mappings, the first that satisfies the when clause and then invoking it. For the AML transformations,
disjunction is used to identify a concrete MappingOperation to be selected from a given disjunctive MappingOperation.
The disjunction hierarchy generally follows the AOM meta-model inheritance hierarchy and/or the UML meta-model
inheritance hierarchy. Another reuse and composition facility associated with QVT mapping operations is inheritance.
Inheritance enables reuse of the execution logic of an inherited mapping. Thus, disjunction is used to initially select a
leaf mapping operation and inheritance is used to share common execution logic. For the AML transformations,
inheritance is used to identify the hierarchy of execution logic required to populate target Elements from a source
Element. The mapping inheritance generally follows the AOM meta-model inheritance hierarchy and/or the UML meta-
model inheritance hierarchy. Figure 7 illustrates the pattern of disjunction and inheritance used for the transformations.

• The notation «mapping» represents a QVT mapping operation.

• The notation «inherits» represents a QVT mapping inheritance.
• The notation «disjuncts» represents a QVT mapping operation.

• Only «mapping» operations with either inherits or disjuncts are included in the figure.
• The figure depicts «mapping» operations for the adl2uml transformation. The uml2adl transformation has a

 similar pattern of disjunction and inheritance.

Archetype Modeling Language (AML), v1.0 (Beta 2) 87

Figure 6. AML Transformations

88 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 7. AML Transformation Disjunction and Inheritance

88 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 7. AML Transformation Disjunction and Inheritance

9.1.4 Transformation Notation
Figure 8 provides an example of how mappings are described for the transformations.

• Each figure depicts a related set of model concepts. Since the model mappings are largely isomorphic, a
 single figure is used to illustrate an AOM to AML transformation as well as an AML to AOM
transformation.

• Each mapping figure has at least two models depicted, one being the AOM meta-model and the other being a
 representation of an AML-UML Model Instance. An AML-UML Model Instance is depicted as an actual
 AML-UML model fragment, when the UML graphical notation is appropriate. An AML-UML Model
 Instance may alternatively be depicted using UML Instance Specification notation, when there is no suitable
 UML graphical notation (as in the case of Value Specifications, Expressions, etc.). A Reference Model
 fragments is sometimes depicted as the third model.

• Each model is adorned with sample model notation used to depict concepts associated with that model.

• A QVT «mapping» is depicted as a Stereotyped Realization from the AOM meta-model to an instance of an
 AML-UML model. In cases where a Realization cannot be depicted, a Comment is shown annotating one or
 more model elements from the AOM meta-model and one or more instance model elements from the AML-
 UML model.

• Each QVT «mapping» is shown with the QVT mapping operation name. Details of the operation can be
 found in the associated QVT Files for this specification.

• Note that the figures in this clause are primarily intended as a high-level orientation to key «mapping»s of the
 QVTs. Neither the figures nor the accompanying narrative provide all detail associated with a mapping
 operation. For definitive information about fine-grained aspects of the mapping, please consult the associated
 QVT Files for this specification.

Archetype Modeling Language (AML), v1.0 (Beta 2) 89

9.1.4 Transformation Notation
Figure 8 provides an example of how mappings are described for the transformations.

• Each figure depicts a related set of model concepts. Since the model mappings are largely isomorphic, a
 single figure is used to illustrate an AOM to AML transformation as well as an AML to AOM
transformation.

• Each mapping figure has at least two models depicted, one being the AOM meta-model and the other being a
 representation of an AML-UML Model Instance. An AML-UML Model Instance is depicted as an actual
 AML-UML model fragment, when the UML graphical notation is appropriate. An AML-UML Model
 Instance may alternatively be depicted using UML Instance Specification notation, when there is no suitable
 UML graphical notation (as in the case of Value Specifications, Expressions, etc.). A Reference Model
 fragments is sometimes depicted as the third model.

• Each model is adorned with sample model notation used to depict concepts associated with that model.

• A QVT «mapping» is depicted as a Stereotyped Realization from the AOM meta-model to an instance of an
 AML-UML model. In cases where a Realization cannot be depicted, a Comment is shown annotating one or
 more model elements from the AOM meta-model and one or more instance model elements from the AML-
 UML model.

• Each QVT «mapping» is shown with the QVT mapping operation name. Details of the operation can be
 found in the associated QVT Files for this specification.

• Note that the figures in this clause are primarily intended as a high-level orientation to key «mapping»s of the
 QVTs. Neither the figures nor the accompanying narrative provide all detail associated with a mapping
 operation. For definitive information about fine-grained aspects of the mapping, please consult the associated
 QVT Files for this specification.

Archetype Modeling Language (AML), v1.0 (Beta 2) 89

9.1.5 Platform Binding
There are variations in UML Platform implementations, particularly with respect to management of
Profile/Stereotype/tag values. Some platforms implement Profiles via MOF, others provide implementation of applied
Stereotypes via UML InstanceSpecifications. Transformation Operations which have variant implementations across
platforms have been isolated from the specified transformations, enabling the core transformation to be applied to
different platforms via a platform binding layer. In most cases, the variations can be specified directly in QVT. Examples
of core UML utility functions which have platform variations include:

• abstract query UML::Profile::getOwnedStereotype(stereotypeName:String):UML::Stereotype;

Retrieves the first Stereotype with the specified “Name” from the “Owned Stereotype” reference list.

• abstract query UML::Element::getNearestPackage():UML::Package;

Retrieves the nearest package that owns (either directly or indirectly) this element, or the element itself (if it is a
package).

• abstract query UML::Element::isStereotypeApplied(stereotype:UML::Stereotype):Boolean;

90 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 8. AML Transformation Mapping Notation Overview

9.1.5 Platform Binding
There are variations in UML Platform implementations, particularly with respect to management of
Profile/Stereotype/tag values. Some platforms implement Profiles via MOF, others provide implementation of applied
Stereotypes via UML InstanceSpecifications. Transformation Operations which have variant implementations across
platforms have been isolated from the specified transformations, enabling the core transformation to be applied to
different platforms via a platform binding layer. In most cases, the variations can be specified directly in QVT. Examples
of core UML utility functions which have platform variations include:

• abstract query UML::Profile::getOwnedStereotype(stereotypeName:String):UML::Stereotype;

Retrieves the first Stereotype with the specified “Name” from the “Owned Stereotype” reference list.

• abstract query UML::Element::getNearestPackage():UML::Package;

Retrieves the nearest package that owns (either directly or indirectly) this element, or the element itself (if it is a
package).

• abstract query UML::Element::isStereotypeApplied(stereotype:UML::Stereotype):Boolean;

90 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 8. AML Transformation Mapping Notation Overview

Determines whether the specified stereotype is applied to this element.

• abstract query UML::Element::getStereotypeApplication(stereotype:UML::Stereotype):Stdlib::Element;

Retrieves the application of the specified stereotype for this element, or null if no such stereotype application
exists. The result is a Stdlib::Element, which may be implemented as a MOF instance or a UML
<InstanceSpecification>, depending upon platform.

• abstract helper Stdlib::Element::get<Classifier.name><Property.name>():<result>;

A basic getter for tag values. The context (Stdlib::Element) is an instance of a Classifier defined in the profile.
<Classifier.name> is the name of the Classifier (without the XSD prefix). <Property.name> (first character
capitalized) is the property to be retrieved.

<result> may be : an OCL Primitive type or Stdlib::Element (if it represents an instance of a Classifier in the
Profile) or some form of OCL Collection of OCL Primitive types or Stdlib::Elements.

• abstract helper Stdlib::Element::set<Classifier.name><Property.name>(value:<valueType>);

A setter for tag values. The context (Stdlib::Element) is an instance of a Classifier defined in the profile.
<Classifier.name> is the name of the Classifier (without the prefix). <Property.name> (first character
capitalized) is the property to be set. The value argument may be : an OCL Primitive type or some form of
Enumeration defined within the Profile.

• abstract helper Stdlib::Element::get<Classifier.name><Property.name>List():Stdlib::Element;

The context is an instance of a Classifier from the Profile. <Classifier.name> is the name of the Classifier
(without the prefix). <Property.name> (first character capitalized) is the property to be retrieved. The value
returned represents a logical “Slot” for a list of objects.

• abstract helper Stdlib::Element::create<Classifier.name>Instance():Stdlib::Element;

The context is a logical “Slot”. The operation creates an instance of the Classifier named <Classifier.name>
from the Profile and adds it to the context..

• abstract helper UML::MultiplicityElement::setLower(lower:Integer);

Context is a UML Multiplicity Element. The platform-specific operation sets the lower bound of the
multiplicity interval.

• abstract helper UML::MultiplicityElement::setUpper(upper:Integer);

Context is a UML Multiplicity Element. The platform-specific operation sets the upper bound of the
multiplicity interval.

• abstract helper UML::Package::applyProfile(profile : UML::Profile);

Context is a UML Package. Applies the current definition of the specified profile to this package and
automatically applies required stereotypes in the profile to elements within this package's namespace hierarchy.
If a different definition is already applied, automatically migrates any associated stereotype values on a “best
effort” basis (matching classifiers and structural features by name).

• abstract helper UML::Element::applyStereotype(stereotype:UML::Stereotype):Stdlib::Element;

Context is any UML Element. The operation applies the specified stereotype to this element and returns an
instance of the applied stereotype.

9.1.6 Global Properties

Property names are shared between the transformations. Properties may be one of the following kinds, depending upon
the name syntax:

• <name>Profile The value is a UML Profile initialized during transformation startup.

• <name>Stereotype The value is a UML Stereotype initialized during transformation startup.

Archetype Modeling Language (AML), v1.0 (Beta 2) 91

Determines whether the specified stereotype is applied to this element.

• abstract query UML::Element::getStereotypeApplication(stereotype:UML::Stereotype):Stdlib::Element;

Retrieves the application of the specified stereotype for this element, or null if no such stereotype application
exists. The result is a Stdlib::Element, which may be implemented as a MOF instance or a UML
<InstanceSpecification>, depending upon platform.

• abstract helper Stdlib::Element::get<Classifier.name><Property.name>():<result>;

A basic getter for tag values. The context (Stdlib::Element) is an instance of a Classifier defined in the profile.
<Classifier.name> is the name of the Classifier (without the XSD prefix). <Property.name> (first character
capitalized) is the property to be retrieved.

<result> may be : an OCL Primitive type or Stdlib::Element (if it represents an instance of a Classifier in the
Profile) or some form of OCL Collection of OCL Primitive types or Stdlib::Elements.

• abstract helper Stdlib::Element::set<Classifier.name><Property.name>(value:<valueType>);

A setter for tag values. The context (Stdlib::Element) is an instance of a Classifier defined in the profile.
<Classifier.name> is the name of the Classifier (without the prefix). <Property.name> (first character
capitalized) is the property to be set. The value argument may be : an OCL Primitive type or some form of
Enumeration defined within the Profile.

• abstract helper Stdlib::Element::get<Classifier.name><Property.name>List():Stdlib::Element;

The context is an instance of a Classifier from the Profile. <Classifier.name> is the name of the Classifier
(without the prefix). <Property.name> (first character capitalized) is the property to be retrieved. The value
returned represents a logical “Slot” for a list of objects.

• abstract helper Stdlib::Element::create<Classifier.name>Instance():Stdlib::Element;

The context is a logical “Slot”. The operation creates an instance of the Classifier named <Classifier.name>
from the Profile and adds it to the context..

• abstract helper UML::MultiplicityElement::setLower(lower:Integer);

Context is a UML Multiplicity Element. The platform-specific operation sets the lower bound of the
multiplicity interval.

• abstract helper UML::MultiplicityElement::setUpper(upper:Integer);

Context is a UML Multiplicity Element. The platform-specific operation sets the upper bound of the
multiplicity interval.

• abstract helper UML::Package::applyProfile(profile : UML::Profile);

Context is a UML Package. Applies the current definition of the specified profile to this package and
automatically applies required stereotypes in the profile to elements within this package's namespace hierarchy.
If a different definition is already applied, automatically migrates any associated stereotype values on a “best
effort” basis (matching classifiers and structural features by name).

• abstract helper UML::Element::applyStereotype(stereotype:UML::Stereotype):Stdlib::Element;

Context is any UML Element. The operation applies the specified stereotype to this element and returns an
instance of the applied stereotype.

9.1.6 Global Properties

Property names are shared between the transformations. Properties may be one of the following kinds, depending upon
the name syntax:

• <name>Profile The value is a UML Profile initialized during transformation startup.

• <name>Stereotype The value is a UML Stereotype initialized during transformation startup.

Archetype Modeling Language (AML), v1.0 (Beta 2) 91

• Other. All other properties are string constants statically initialized.

9.2 Archetype Library
The AML transformations are defined as a set of mappings between AOM Archetypes and AML-UML model elements.
In general, there is a one-to-one correspondence between Elements in the AML-UML model and Elements in the AOM
meta-model. At the highest compositional level defined within the AOM architecture, an archetype library is a container
for a set of AUTHORED_ARCHETYPEs. Figure 9 illustrates the high-level packaging map between an AOM
Archetype Library and an AML-UML model in the context of a UML Reference Model.

• A mapping is defined between a file system folder and an «ArchetypeLibrary» Package. Each AOM
AUTHORED_ARCHETYPE corresponds to a document within the file system folder and maps to an
«Archetype» Package. Based on the rmPublisher and rmVersion, the «ArchetypeLibrary» is bound (via
import) to some «ReferenceModel». The «ArchetypeLibrary» has the AML Profiles applied. The
«Archetype»s within an «ArchetypeLibrary» must have the same rmPublisher and rmPackage. While the
rmPublisher is specified in the «ReferenceModel», the logical notion of rmPackage is recorded in an
«ArchetypeLibrary» tag.

• A mapping is defined between each AUTHORED_ARCHETYPE document and an «Archetype» Package.

9.3 Archetype
Figure 10 illustrates mappings between AOM and AML related to an «Archetype» Package.

• An AML «Archetype» has tag definitions to capture information from an AOM AUTHORED_ARCHETYPE.
«Archetype» tags include attributes inherited by AUTHORED_ARCHETYPE as well as those contained by
some associated Classifiers.

92 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 9. <<Archetype Library>> Mapping Overview

• Other. All other properties are string constants statically initialized.

9.2 Archetype Library
The AML transformations are defined as a set of mappings between AOM Archetypes and AML-UML model elements.
In general, there is a one-to-one correspondence between Elements in the AML-UML model and Elements in the AOM
meta-model. At the highest compositional level defined within the AOM architecture, an archetype library is a container
for a set of AUTHORED_ARCHETYPEs. Figure 9 illustrates the high-level packaging map between an AOM
Archetype Library and an AML-UML model in the context of a UML Reference Model.

• A mapping is defined between a file system folder and an «ArchetypeLibrary» Package. Each AOM
AUTHORED_ARCHETYPE corresponds to a document within the file system folder and maps to an
«Archetype» Package. Based on the rmPublisher and rmVersion, the «ArchetypeLibrary» is bound (via
import) to some «ReferenceModel». The «ArchetypeLibrary» has the AML Profiles applied. The
«Archetype»s within an «ArchetypeLibrary» must have the same rmPublisher and rmPackage. While the
rmPublisher is specified in the «ReferenceModel», the logical notion of rmPackage is recorded in an
«ArchetypeLibrary» tag.

• A mapping is defined between each AUTHORED_ARCHETYPE document and an «Archetype» Package.

9.3 Archetype
Figure 10 illustrates mappings between AOM and AML related to an «Archetype» Package.

• An AML «Archetype» has tag definitions to capture information from an AOM AUTHORED_ARCHETYPE.
«Archetype» tags include attributes inherited by AUTHORED_ARCHETYPE as well as those contained by
some associated Classifiers.

92 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 9. <<Archetype Library>> Mapping Overview

• The AOM ARCHETYPE parent_archetype_id is represented as an import from one «Archetype» to another
«Archetype» within the same «ArchetypeLibrary».

• The name of the «Archetype» corresponds to a concept_id in the AOM meta-model. The AOM
AUTHORED_ARCHETYPE attributes rmPublisher and rmPackage are derivable from «ReferenceModel» and
«ArchetypeLibrary», respectively. The rmClass attribute defined in AOM is derivable from the top level
«ArchetypeDefinition» Usage. The remaining components of the physicalId attribute in AOM are captured as
tags in the «Archetype».

9.4 Terminology Definition
Figure 11 illustrates mappings related to Terminology Definitions.

• For an ARCHETYPE in AOM, there is exactly one terminology. The type of the terminology is
ARCHETYPE_TERMINOLOGY. That singleton ARCHETYPE_TERMINOLOGY is represented in
AML-UML as a package named “ontology”, nested within the «Archetype» Package.

• For an ARCHETYPE in AOM, natural languages have meta-data defined in TRANSLATION_DETAILS
and RESOURCE_DESCRIPTION_ITEM. The natural language is specified in a
TERMINOLOGY_CODE, which contains a combination of terminology_id and a language code. In
AML-UML, the terminology_id is modeled as a Package containing a «ResourceTranslation»

Archetype Modeling Language (AML), v1.0 (Beta 2) 93

Figure 10. <<Archetype>> Mapping Overview

• The AOM ARCHETYPE parent_archetype_id is represented as an import from one «Archetype» to another
«Archetype» within the same «ArchetypeLibrary».

• The name of the «Archetype» corresponds to a concept_id in the AOM meta-model. The AOM
AUTHORED_ARCHETYPE attributes rmPublisher and rmPackage are derivable from «ReferenceModel» and
«ArchetypeLibrary», respectively. The rmClass attribute defined in AOM is derivable from the top level
«ArchetypeDefinition» Usage. The remaining components of the physicalId attribute in AOM are captured as
tags in the «Archetype».

9.4 Terminology Definition
Figure 11 illustrates mappings related to Terminology Definitions.

• For an ARCHETYPE in AOM, there is exactly one terminology. The type of the terminology is
ARCHETYPE_TERMINOLOGY. That singleton ARCHETYPE_TERMINOLOGY is represented in
AML-UML as a package named “ontology”, nested within the «Archetype» Package.

• For an ARCHETYPE in AOM, natural languages have meta-data defined in TRANSLATION_DETAILS
and RESOURCE_DESCRIPTION_ITEM. The natural language is specified in a
TERMINOLOGY_CODE, which contains a combination of terminology_id and a language code. In
AML-UML, the terminology_id is modeled as a Package containing a «ResourceTranslation»

Archetype Modeling Language (AML), v1.0 (Beta 2) 93

Figure 10. <<Archetype>> Mapping Overview

corresponding to each language code. In the example below, the terminology_id is ISO_639-1. The
mapping from TERMINOLOGY_CODE to Package is performed by the QVT «mapping»
LanguagePackage.

• The language code of an AOM TERMINOLOGY_CODE is mapped to a «ResourceTranslation» via the
QVT «mapping» LanguageEnumeration. The mapping merges information from
RESOURCE_DESCRIPTION_ITEM and TRANSLATION_DETAILS. Thus, a «ResourceTranslation»
contains tag definitions which encompass the language-specific AOM meta-information contained in both
RESOURCE_DESCRIPTION_ITEM and TRANSLATION_DETAILS.

• The terminology_id Package (e.g., ISO_639-1) contains an «EnumeratedValueDomain» Enumeration
named IdentifierDefinition. The contents of the IdentifierDefinition are a set of node identifiers
corresponding to the ids in an AOM Terminology Definition. These identifiers are used to associate
Archetype Classifiers to multiple natural Languages, terminology bindings, and value sets. The
EnumerationLiterals in this Enumeration are referenced as the “id” for Archetype Classifiers and other
«IdentifiedItem»s, including the EnumerationLiterals within a «ResourceTranslation».

• The AOM AUTHORED_RESOURCE attribute “original_language” has a QVT «mapping» to a Usage
named “original_language” between an «Archetype» and the «ResourceTranslation » corresponding to that
original_language.

• Similarly, the AOM ARCHETYPE_TERMINOLOGY attribute “original_language” has a QVT
«mapping» to a Usage named “terminology_original_language” between an «Archetype» and the
«ResourceTranslation » corresponding to that original_language.

94 Archetype Modeling Language (AML), v1.0 (Beta 2)

corresponding to each language code. In the example below, the terminology_id is ISO_639-1. The
mapping from TERMINOLOGY_CODE to Package is performed by the QVT «mapping»
LanguagePackage.

• The language code of an AOM TERMINOLOGY_CODE is mapped to a «ResourceTranslation» via the
QVT «mapping» LanguageEnumeration. The mapping merges information from
RESOURCE_DESCRIPTION_ITEM and TRANSLATION_DETAILS. Thus, a «ResourceTranslation»
contains tag definitions which encompass the language-specific AOM meta-information contained in both
RESOURCE_DESCRIPTION_ITEM and TRANSLATION_DETAILS.

• The terminology_id Package (e.g., ISO_639-1) contains an «EnumeratedValueDomain» Enumeration
named IdentifierDefinition. The contents of the IdentifierDefinition are a set of node identifiers
corresponding to the ids in an AOM Terminology Definition. These identifiers are used to associate
Archetype Classifiers to multiple natural Languages, terminology bindings, and value sets. The
EnumerationLiterals in this Enumeration are referenced as the “id” for Archetype Classifiers and other
«IdentifiedItem»s, including the EnumerationLiterals within a «ResourceTranslation».

• The AOM AUTHORED_RESOURCE attribute “original_language” has a QVT «mapping» to a Usage
named “original_language” between an «Archetype» and the «ResourceTranslation » corresponding to that
original_language.

• Similarly, the AOM ARCHETYPE_TERMINOLOGY attribute “original_language” has a QVT
«mapping» to a Usage named “terminology_original_language” between an «Archetype» and the
«ResourceTranslation » corresponding to that original_language.

94 Archetype Modeling Language (AML), v1.0 (Beta 2)

9.5 Terminology Binding
The ARCHETYPE_TERMINOLOGY component of the AOM Model provides for multi-lingual terminology
definitions, bindings of terminology to technology, and local value set constraints.

• The AOM ARCHETYPE_TERMINOLOGY (of which there is one per «Archetype») has a term_bindings
«mapping» to a Package named “term_bindings”. The term_bindings Package owns all the
«ValueSetDefinitionReference»s used to define terminology bindings.

• The AOM ARCHETYPE_TERMINOLOGY attribute named “term_definitions” is a set of tables keyed by
language. Each entry in the term_definitions set has a QVT CodeDefinitionSet «mapping» to a
«ResourceDefinition» whose name is the language key.

• The columns of the table keyed by language are “id”, “text”, and a “description”. Each row of the table has an
ARCHETYPE_TERM «mapping» to an «IdentifiedItem» within the language’s «ResourceDefinition». The
AOM “text” is mapped to the «IdentifiedItem» name and the “description” is mapped to the body of the
ownedComment.

Archetype Modeling Language (AML), v1.0 (Beta 2) 95

Figure 11. Terminology Definition Mapping Overview

9.5 Terminology Binding
The ARCHETYPE_TERMINOLOGY component of the AOM Model provides for multi-lingual terminology
definitions, bindings of terminology to technology, and local value set constraints.

• The AOM ARCHETYPE_TERMINOLOGY (of which there is one per «Archetype») has a term_bindings
«mapping» to a Package named “term_bindings”. The term_bindings Package owns all the
«ValueSetDefinitionReference»s used to define terminology bindings.

• The AOM ARCHETYPE_TERMINOLOGY attribute named “term_definitions” is a set of tables keyed by
language. Each entry in the term_definitions set has a QVT CodeDefinitionSet «mapping» to a
«ResourceDefinition» whose name is the language key.

• The columns of the table keyed by language are “id”, “text”, and a “description”. Each row of the table has an
ARCHETYPE_TERM «mapping» to an «IdentifiedItem» within the language’s «ResourceDefinition». The
AOM “text” is mapped to the «IdentifiedItem» name and the “description” is mapped to the body of the
ownedComment.

Archetype Modeling Language (AML), v1.0 (Beta 2) 95

Figure 11. Terminology Definition Mapping Overview

• The «IdentifiedItem» has an “id” tag whose value is the corresponding «IdentifiedItem» identifier within the
IdentifierDefinition. AOM rules require that each language include text/description for all identifiers, so each
language will have a term/definition for each «ARCHETYPE_TERM» in the IdentifierDefinition.

• The AOM ARCHETYPE_TERMINOLOGY attribute named “term_bindings” is a set of tables keyed by a
technology identifier. Each entry in the term_bindings set has a QVT TermBindingSet «mapping» to a
«ValueSetDefinitionReference» whose name is the technology identifier.

• The columns of the table keyed by terminology identifier are “id” and “uri”. Each row of the table has a
TERM_BINDING_ITEM «mapping» to a «ConceptReference» within the terminology’s
«ValueSetDefinitionReference». The AOM “id” is mapped to the «ConceptReference » name and the “uri” is
mapped to the “uri” tag.

• The “id” tag from the AOM model corresponds to an «ARCHETYPE_TERM» owned by the
IdentifierDefinition. The «ARCHETYPE_TERM» tag named “term_bindings” references the term binding
«ConceptReference».

9.6 Local Value-Sets
The ARCHETYPE_TERMINOLOGY component of the AOM Model provides for definition of local value set
constraints in terms of «ARCHETYPE_TERM» identifiers.

• The AOM ARCHETYPE_TERMINOLOGY attribute named “value_sets” is a set of “at” lists keyed by an “ac”
identifier. Each entry in the value_sets set is used to populate the “value_set_members” tag of an
«ARCHETYPE_TERM» within the IdentifierDefinition. The «ARCHETYPE_TERM» whose name
corresponds to the “ac” key of a value set is located. Each “at” identifier also has an «ARCHETYPE_TERM»
with a matching name. The value_set_members tag of the “ac” «ARCHETYPE_TERM» is set to the list of
“at” «ARCHETYPE_TERM»s.

96 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 12. Terminology Binding Mapping Overview

• The «IdentifiedItem» has an “id” tag whose value is the corresponding «IdentifiedItem» identifier within the
IdentifierDefinition. AOM rules require that each language include text/description for all identifiers, so each
language will have a term/definition for each «ARCHETYPE_TERM» in the IdentifierDefinition.

• The AOM ARCHETYPE_TERMINOLOGY attribute named “term_bindings” is a set of tables keyed by a
technology identifier. Each entry in the term_bindings set has a QVT TermBindingSet «mapping» to a
«ValueSetDefinitionReference» whose name is the technology identifier.

• The columns of the table keyed by terminology identifier are “id” and “uri”. Each row of the table has a
TERM_BINDING_ITEM «mapping» to a «ConceptReference» within the terminology’s
«ValueSetDefinitionReference». The AOM “id” is mapped to the «ConceptReference » name and the “uri” is
mapped to the “uri” tag.

• The “id” tag from the AOM model corresponds to an «ARCHETYPE_TERM» owned by the
IdentifierDefinition. The «ARCHETYPE_TERM» tag named “term_bindings” references the term binding
«ConceptReference».

9.6 Local Value-Sets
The ARCHETYPE_TERMINOLOGY component of the AOM Model provides for definition of local value set
constraints in terms of «ARCHETYPE_TERM» identifiers.

• The AOM ARCHETYPE_TERMINOLOGY attribute named “value_sets” is a set of “at” lists keyed by an “ac”
identifier. Each entry in the value_sets set is used to populate the “value_set_members” tag of an
«ARCHETYPE_TERM» within the IdentifierDefinition. The «ARCHETYPE_TERM» whose name
corresponds to the “ac” key of a value set is located. Each “at” identifier also has an «ARCHETYPE_TERM»
with a matching name. The value_set_members tag of the “ac” «ARCHETYPE_TERM» is set to the list of
“at” «ARCHETYPE_TERM»s.

96 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 12. Terminology Binding Mapping Overview

9.7 Archetype Definition
An AOM ARCHETYPE has a distinguished C_COMPLEX_OBJECT which is the “definition” of an ARCHETYPE.
The overall structure of an Archetype in AOM is basically a structure where objects contain attributes which contain
objects, etc. Each Complex Object is a constraint of a Reference Model Classifier, and each attribute is a constraint on a
Reference Model attribute.

• The AOM ARCHETYPE attribute named “definition” is a C_COMPLEX_OBJECT which is the root of a
logical containment structure. The “definition” attribute itself has an ArchetypeDefinition «mapping» to an
«ArchetypeDefinition » Usage from the «Archetype» Package to a «ComplexObjectConstraint» Classifier. Part
of the AOM physical_id attribute is the rm_class, which is derived from the «Constrains» Classifier of the
Classifier identified by the «ArchetypeDefinition » Usage.

• The «ComplexObjectConstraint» Classifier is mapped from an AOM C_COMPLEX_OBJECT via the
C_COMPLEX_OBJECTAbstract «mapping». The «Constrains» Generalization is mapped from the
rm_type_name of the AOM C_OBJECT. The name of the «ComplexObjectConstraint» Classifier will be set to
the term name associated with the node_id in C_OBJECT, if possible. The AOM C_DEFINED_OBJECT
is_frozen attribute is mapped to the UML Classifier isLeaf attribute. The AOM node_id attribute of
C_OBJECT is mapped to the “id” tag of «ComplexObjectConstraint», which will have a value of the
corresponding «ARCHETYPE_TERM» in IdentifierDefinition.

• A Property is mapped from a C_ATTRIBUTE via the P_C_ATTRIBUTE «mapping». The mapping will subset
or redefine the Reference Model Property identified by rm_attribute_name of the AOM C_ATTRIBUTE. The
AOM C_ATTRIBUTE will be mapped to multiple UML Properties, one for each of the defined children of
_C_ATTRIBUTE. Cardinality of each such UML Property is determined by occurrences information in the
child C_OBJECT. A Property will nominally have composite Aggregation, unless it is a Proxy (in which case
Aggregation is “none”). The Property is an Association End of a newly created Association. The type of the
new Property is defined by the children, and is nominally a Classifier within the «Archetype». If the child itself
does not have any constraining attributes, then the type of the Property is the same as that specified in the
Reference Model.

Archetype Modeling Language (AML), v1.0 (Beta 2) 97

Figure 13. Local Value-sets

9.7 Archetype Definition
An AOM ARCHETYPE has a distinguished C_COMPLEX_OBJECT which is the “definition” of an ARCHETYPE.
The overall structure of an Archetype in AOM is basically a structure where objects contain attributes which contain
objects, etc. Each Complex Object is a constraint of a Reference Model Classifier, and each attribute is a constraint on a
Reference Model attribute.

• The AOM ARCHETYPE attribute named “definition” is a C_COMPLEX_OBJECT which is the root of a
logical containment structure. The “definition” attribute itself has an ArchetypeDefinition «mapping» to an
«ArchetypeDefinition » Usage from the «Archetype» Package to a «ComplexObjectConstraint» Classifier. Part
of the AOM physical_id attribute is the rm_class, which is derived from the «Constrains» Classifier of the
Classifier identified by the «ArchetypeDefinition » Usage.

• The «ComplexObjectConstraint» Classifier is mapped from an AOM C_COMPLEX_OBJECT via the
C_COMPLEX_OBJECTAbstract «mapping». The «Constrains» Generalization is mapped from the
rm_type_name of the AOM C_OBJECT. The name of the «ComplexObjectConstraint» Classifier will be set to
the term name associated with the node_id in C_OBJECT, if possible. The AOM C_DEFINED_OBJECT
is_frozen attribute is mapped to the UML Classifier isLeaf attribute. The AOM node_id attribute of
C_OBJECT is mapped to the “id” tag of «ComplexObjectConstraint», which will have a value of the
corresponding «ARCHETYPE_TERM» in IdentifierDefinition.

• A Property is mapped from a C_ATTRIBUTE via the P_C_ATTRIBUTE «mapping». The mapping will subset
or redefine the Reference Model Property identified by rm_attribute_name of the AOM C_ATTRIBUTE. The
AOM C_ATTRIBUTE will be mapped to multiple UML Properties, one for each of the defined children of
_C_ATTRIBUTE. Cardinality of each such UML Property is determined by occurrences information in the
child C_OBJECT. A Property will nominally have composite Aggregation, unless it is a Proxy (in which case
Aggregation is “none”). The Property is an Association End of a newly created Association. The type of the
new Property is defined by the children, and is nominally a Classifier within the «Archetype». If the child itself
does not have any constraining attributes, then the type of the Property is the same as that specified in the
Reference Model.

Archetype Modeling Language (AML), v1.0 (Beta 2) 97

Figure 13. Local Value-sets

9.8 Object References
An AOM C_OBJECT has specializations which provide for some variances in how objects may be referenced, reused, or
constrained.

• The AOM ARCHETYPE_SLOT is mapped to an «ArchetypeSlot » Classifier via the ARCHETYPE_SLOT
«mapping ». The «Constrains » Generalization may optionally be to a Classifier in a parent Archetype
(however, the example below does not override a parent definition). The includes, excludes attributes of the
AOM ARCHETYPE_SLOT are mapped to a Constraint . The element constrained is the Property whose type
is the «ArchetypeSlot » Classifier. In the example below, the Constrained element is the Property named “id97”
within the Classifier named “Discharge delayed”.

• An AOM C_COMPLEX_OBJECT_PROXY is essentially a reference to a Complex Object within the same
Archetype. A C_COMPLEX_OBJECT_PROXY effects the mapping of a Property. There is no Classifier
created for a C_COMPLEX_OBJECT_PROXY. Instead, the type of a Property is set to the target specified by
the target_path attribute of C_COMPLEX_OBJECT_PROXY and the aggregation of the Property is set to

98 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 14. Archetype Definition Mapping Overview

9.8 Object References
An AOM C_OBJECT has specializations which provide for some variances in how objects may be referenced, reused, or
constrained.

• The AOM ARCHETYPE_SLOT is mapped to an «ArchetypeSlot » Classifier via the ARCHETYPE_SLOT
«mapping ». The «Constrains » Generalization may optionally be to a Classifier in a parent Archetype
(however, the example below does not override a parent definition). The includes, excludes attributes of the
AOM ARCHETYPE_SLOT are mapped to a Constraint . The element constrained is the Property whose type
is the «ArchetypeSlot » Classifier. In the example below, the Constrained element is the Property named “id97”
within the Classifier named “Discharge delayed”.

• An AOM C_COMPLEX_OBJECT_PROXY is essentially a reference to a Complex Object within the same
Archetype. A C_COMPLEX_OBJECT_PROXY effects the mapping of a Property. There is no Classifier
created for a C_COMPLEX_OBJECT_PROXY. Instead, the type of a Property is set to the target specified by
the target_path attribute of C_COMPLEX_OBJECT_PROXY and the aggregation of the Property is set to

98 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 14. Archetype Definition Mapping Overview

“none”. In the example below, there is a «ComplexObjectConstraint » with id108 which was referenced via
containment from id105. There is a Property on id120 which references id108 with no aggregation,
corresponding to the AOM C_COMPLEX_OBJECT_PROXY with a target_path of id108. The original id of
C_COMPLEX_OBJECT_PROXY is retained in the «ObjectConstraint » placed on the Property with no
aggregation.

Archetype Modeling Language (AML), v1.0 (Beta 2) 99

“none”. In the example below, there is a «ComplexObjectConstraint » with id108 which was referenced via
containment from id105. There is a Property on id120 which references id108 with no aggregation,
corresponding to the AOM C_COMPLEX_OBJECT_PROXY with a target_path of id108. The original id of
C_COMPLEX_OBJECT_PROXY is retained in the «ObjectConstraint » placed on the Property with no
aggregation.

Archetype Modeling Language (AML), v1.0 (Beta 2) 99

100 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 15. Object Reference Mapping

100 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 15. Object Reference Mapping

9.9 Primitive Constraints
Constraints on an AOM C_PRIMITIVE_OBJECT are mapped to a UML Constraint on the Property whose type maps to
a C_PRIMITVE_OBJECT.

• A C_PRIMITVE_OBJECT maps to a Constraint. A Property whose type maps to the C_PRIMITIVE_OBJECT
is the constrainedElement of a Constraint. The Constraint is an ownedRule of the Classifier owning the
Property.

• The Constraint has a specification which is an Expression. The symbol for these primitive expressions is
normally “or” and the operands are either discrete literal values or Intervals.

• The assumed_value of a C_PRIMITIVE_OBJECT maps to some Literal ValueSpecification which is the
defaultValue for the Property.

• The AOM concept of an Interval constraint on a C_ORDERED Primitive is mapped to a UML Interval, with
Literal ValueSpecifications for the min and max of the Interval.

• A C_STRING mapping has Expression operands and a defaultValue which are LiteralString.

• A C_BOOLEAN mapping has Expression operands and a defaultValue which are LiteralBoolean.

• A C_REAL mapping has Expression operands which are Intervals, where the min and max are LiteralReal.

• A C_INTEGER mapping has Expression operands which are Intervals, where the min and max are
LiteralInteger.

Archetype Modeling Language (AML), v1.0 (Beta 2) 101

9.9 Primitive Constraints
Constraints on an AOM C_PRIMITIVE_OBJECT are mapped to a UML Constraint on the Property whose type maps to
a C_PRIMITVE_OBJECT.

• A C_PRIMITVE_OBJECT maps to a Constraint. A Property whose type maps to the C_PRIMITIVE_OBJECT
is the constrainedElement of a Constraint. The Constraint is an ownedRule of the Classifier owning the
Property.

• The Constraint has a specification which is an Expression. The symbol for these primitive expressions is
normally “or” and the operands are either discrete literal values or Intervals.

• The assumed_value of a C_PRIMITIVE_OBJECT maps to some Literal ValueSpecification which is the
defaultValue for the Property.

• The AOM concept of an Interval constraint on a C_ORDERED Primitive is mapped to a UML Interval, with
Literal ValueSpecifications for the min and max of the Interval.

• A C_STRING mapping has Expression operands and a defaultValue which are LiteralString.

• A C_BOOLEAN mapping has Expression operands and a defaultValue which are LiteralBoolean.

• A C_REAL mapping has Expression operands which are Intervals, where the min and max are LiteralReal.

• A C_INTEGER mapping has Expression operands which are Intervals, where the min and max are
LiteralInteger.

Archetype Modeling Language (AML), v1.0 (Beta 2) 101

102 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 16. Primitive Constraints

102 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 16. Primitive Constraints

9.10 Temporal Constraints
AOM Constraints on Temporal Primitives are specializations of constraints on ordered Primitives. As such, the AOM
Temporal Primitive map to UML Constraints on a Property. The Constraint will have an “or” Expression with operands.
The operands, in this case, will be TimeIntervals. The min/max will be TimeExpressions, with the exception of
Duration, where the ValueSpecification is specified as min/max Duration.

Archetype Modeling Language (AML), v1.0 (Beta 2) 103

Figure 17. Temporal Constraints Mapping Overview

9.10 Temporal Constraints
AOM Constraints on Temporal Primitives are specializations of constraints on ordered Primitives. As such, the AOM
Temporal Primitive map to UML Constraints on a Property. The Constraint will have an “or” Expression with operands.
The operands, in this case, will be TimeIntervals. The min/max will be TimeExpressions, with the exception of
Duration, where the ValueSpecification is specified as min/max Duration.

Archetype Modeling Language (AML), v1.0 (Beta 2) 103

Figure 17. Temporal Constraints Mapping Overview

9.11 Code Constraints
AOM Constraints on Codes are specializations of constraints on Primitives. As such, the AOM Code Constraint maps to
UML Constraints on a Property. The Constraint will have an “or” Expression with operands. The operands and/or
default Values, in this case, will be InstanceValues where the instance is an EnumerationLiteral.

9.12 Assertions
AOM Assertions may be placed on an Archetype as a whole or as the includes/excludes lists of an
ARCHETYPE_SLOT. The Assertions are mapped to UML Expression trees and become part of the Constraint
specification for an «ArchetypeSlot » or «Archetype ».

• An AOM ASSERTION has one EXPR_ITEM. The AOM EXPR_ITEM is mapped via EXPR_ITEM
«mapping » to a UML Expression. The name of the Expression is from the AOM ASSERTION tag. The
type of the Expression is derived from the AOM EXPR_ITEM type.

• An AOM EXPR_OPERATOR is mapped to a UML Expression via EXPR_OPERATOR «mapping »
(which inherits EXPR_ITEM «mapping »). The UML Expression symbol (i.e., operator) is derived from
the kind of EXPR_OPERATOR operator. An AOM EXPR_OPERATOR is specialized into
EXPR_UNARY_OPERATOR and EXP_BINARY_OPERATOR (with corresponding specializations of the
QVT mappings).

• An AOM EXPR_UNARY_OPERATOR is mapped to an Expression with a single operand using the QVT
«mapping » EXPR_UNARY_OPERATOR.

• An AOM EXPR_BINARY_OPERATOR is mapped to an Expression with a left operand and a right
operand using the QVT «mapping » EXPR_BINARY_OPERATOR.

104 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 18. Code Constraint Mapping Overview

9.11 Code Constraints
AOM Constraints on Codes are specializations of constraints on Primitives. As such, the AOM Code Constraint maps to
UML Constraints on a Property. The Constraint will have an “or” Expression with operands. The operands and/or
default Values, in this case, will be InstanceValues where the instance is an EnumerationLiteral.

9.12 Assertions
AOM Assertions may be placed on an Archetype as a whole or as the includes/excludes lists of an
ARCHETYPE_SLOT. The Assertions are mapped to UML Expression trees and become part of the Constraint
specification for an «ArchetypeSlot » or «Archetype ».

• An AOM ASSERTION has one EXPR_ITEM. The AOM EXPR_ITEM is mapped via EXPR_ITEM
«mapping » to a UML Expression. The name of the Expression is from the AOM ASSERTION tag. The
type of the Expression is derived from the AOM EXPR_ITEM type.

• An AOM EXPR_OPERATOR is mapped to a UML Expression via EXPR_OPERATOR «mapping »
(which inherits EXPR_ITEM «mapping »). The UML Expression symbol (i.e., operator) is derived from
the kind of EXPR_OPERATOR operator. An AOM EXPR_OPERATOR is specialized into
EXPR_UNARY_OPERATOR and EXP_BINARY_OPERATOR (with corresponding specializations of the
QVT mappings).

• An AOM EXPR_UNARY_OPERATOR is mapped to an Expression with a single operand using the QVT
«mapping » EXPR_UNARY_OPERATOR.

• An AOM EXPR_BINARY_OPERATOR is mapped to an Expression with a left operand and a right
operand using the QVT «mapping » EXPR_BINARY_OPERATOR.

104 Archetype Modeling Language (AML), v1.0 (Beta 2)

Figure 18. Code Constraint Mapping Overview

• An AOM EXPR_LEAF is a specialization of EXPR_ITEM. The type of the Expression is derived from the
AOM EXPR_ITEM type. The symbol (e.g., operator) is derived from EXPR_LEAF.reference_type.

Archetype Modeling Language (AML), v1.0 (Beta 2) 105

Figure 19. Assertions Mapping Overview

• An AOM EXPR_LEAF is a specialization of EXPR_ITEM. The type of the Expression is derived from the
AOM EXPR_ITEM type. The symbol (e.g., operator) is derived from EXPR_LEAF.reference_type.

Archetype Modeling Language (AML), v1.0 (Beta 2) 105

Figure 19. Assertions Mapping Overview

106 Archetype Modeling Language (AML), v1.0 (Beta 2)106 Archetype Modeling Language (AML), v1.0 (Beta 2)

	1 Scope
	1.1 Archetype Modeling Language (AML) Background
	1.2 AML Intended Users
	1.3 AML Profiles

	2 Conformance
	2.1 Conformance Points
	2.2 AML Reference Model Profile
	2.3 AML Terminology Binding Profile
	2.4 AML Constraint Model Profile

	3 References
	3.1 Normative References
	3.2 Informative References

	4 Terms and Definitions
	Archetype
	Archetype Definition Language (ADL)
	Archetype Instance
	Archetype Model (AM)
	Archetype Object Model (AOM)
	Archetype Query Language (AQL)
	Clinical Data Repository (CDR)
	Clinical Document Architecture (CDA)
	Clinical Information Model (CIM)
	Clinical Information Modeling Initiative (CIMI)
	Clinical Information Modeling Initiative (CIMI) Reference Model (RM)
	Clinical Model Governance
	Clinical Model Repository
	Clinical Model Verification
	Clinical Modeling Language
	Clinical Requirement
	Code System
	Common Terminology Services 2 (CTS2)
	Concept
	Concept Domain
	Concept Domain Binding
	Conceptual Information Model
	Conformance
	Constraint Model
	Detailed Clinical Model
	Fully Defined Concept
	Information Model
	Node
	Ontology
	Reference Model
	Reference Terminology
	Semantic Binding
	Terminology
	Terminology Binding
	Value Binding
	Value Set

	5 Symbols
	5.1 Graphical Symbols
	5.2 Abbreviations

	6 Additional Information
	6.1 Acknowledgements

	7 ADL, AOM, and AML (Informative)
	7.1 Business Purpose
	7.2 Technical Aims of ADL / AOM
	7.3 Technical Aims of AML

	8 Profiles
	8.1 Dependencies
	8.2 ReferenceModelProfile [Profile]
	8.2.1 Infrastructure [Stereotype]
	8.2.2 MappedDataType [Stereotype]
	8.2.3 ReferenceModel [Stereotype]
	8.2.4 Runtime [Stereotype]

	8.3 TerminologyProfile [Profile]
	8.3.1 ArchetypeType [Enumeration]
	8.3.2 about [Stereotype]
	8.3.3 ArchetypeTerm [Stereotype]
	8.3.4 CodeSystemReference [Stereotype]
	8.3.5 CodeSystemVersionReference [Stereotype]
	8.3.6 ConceptReference [Stereotype]
	8.3.7 DescribedIdentifier [Stereotype]
	8.3.8 Entry [Stereotype]
	8.3.9 EnumeratedValueDomain [Stereotype]
	8.4.11 IdentifiedItem [Stereotype]
	8.3.11 IdEntry [Stereotype]
	8.3.12 PermissibleValue [Stereotype]
	8.3.13 ResourceReference [Stereotype]
	8.3.14 ScopedIdentifier [Stereotype]
	8.3.15 TermResourceTranslation [Stereotype]
	8.3.16 ValueSetDefinitionReference [Stereotype]
	8.3.17 ValueSetReference [Stereotype]

	8.4 ConstraintProfile [Profile]
	8.4.1 ArchetypeType [Enumeration]
	8.4.2 Lifecycle_state [Enumeration]
	8.4.3 VERSION_STATUS [Enumeration]
	8.4.4 Archetype [Stereotype]
	8.4.5 ArchetypeDefinition [Stereotype]
	8.4.6 ArchetypeLibrary [Stereotype]
	8.4.7 ArchetypeRoot [Stereotype]
	8.4.8 ArchetypeSlot [Stereotype]
	8.4.9 AuthoredResource [Stereotype]
	8.4.10 ComplexObjectConstraint [Stereotype]
	8.4.11 Constrains [Stereotype]
	8.4.12 ObjectConstraint [Stereotype]
	8.4.13 ResourceAnnotationNodeItem [Stereotype]
	8.4.14 ResourceTranslation [Stereotype]

	9 AML-UML Transformation Reference (Informative)
	9.1 Introduction
	9.1.1 AML Provisioning Context
	9.1.2 QVT Packaging
	9.1.3 Transformation Reuse and Composition
	9.1.4 Transformation Notation
	9.1.5 Platform Binding
	9.1.6 Global Properties

	9.2 Archetype Library
	9.3 Archetype
	9.4 Terminology Definition
	9.5 Terminology Binding
	9.6 Local Value-Sets
	9.7 Archetype Definition
	9.8 Object References
	9.9 Primitive Constraints
	9.10 Temporal Constraints
	9.11 Code Constraints
	9.12 Assertions

