Date: March 2028 | Deleted: April 2021
|

OBJECT MANAGEMENT GROUP®

Application Programming Interfaces
for Knowledge Platforms (API4KP)

Version 1.0 — Beta 2

‘ //{ Deleted: 1

| /{ Deleted: Alpha2

/

OMG Document Number: ptc/2023-02-04
Standard Document URL: https://www.omg.org/spec/API4KP/1.0/Beta2/

/7{ Field Code Changed

/
/

/ {Deleted: 1

a

o L

Normative reference:
https://www.omg.org/spec/API4KP/1.0/KnowledgeArtifactRepository.html

https://www.omg.org/spec/API4KP/1.0/KnowledgeAssetRepository.html

https://www.omg.org/spec/API4KP/1.0/KnowledgeAssetTransrepresentation.html

https://www.omg.org/spec/API14KP/1.0/KnowledgeBaseConstruction.html

https://www.omg.org/spec/API4KP/1.0/KnowledgeReasoning.html

Machine readable file(s): https://www.omg.org/AP14KP/20230201/

Normative:
https://lwww.omg.org/spec/API4KP/20230201/api4kp.xmi,

{ Deleted: 1

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/knowledgeArtifactRepository.oas.yaml

Deleted: 1

https://lwww.omg.org/spec/API4KP/20230201/knowledgeAssetRepository.oas.yaml

,{ Deleted: 1

https://lwww.omg.org/spec/API4KP/20230201/knowledgeAssetTransrepresentation.oas.yaml

https://lwww.omg.org/spec/API4KP/20230201/knowledgeBaseConstruction.oas.yaml

Field Code Changed
J"‘/

1/ Deleted: 1

https://www.omg.org/spec/API14KP/20230201/knowledgeReasoning.oas.yaml

https://lwww.omg.org/spec/API4KP/20230201/api.inference.idl

(
/A
’/ //,{ Field Code Changed
/ { Deleted: 1

1y /"/{ Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/api.knowledgebase.idl

/// /{ Deleted: 1

/ /
Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/api.repository.artifact.idl

/ Deleted: 1

https://lwww.omg.org/spec/API4KP/20230201/api.repository.asset.idl

https://lwww.omg.org/spec/API4KP/20230201/api.transrepresentation.idl

Field Code Changed

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_

o G U U U JU U U U L U L

i

https://www.omg.org/spec/API4KP/1.0/Beta2/
https://www.omg.org/spec/API4KP/1.0/Beta2/
https://www.omg.org/spec/API4KP/1.0/KnowledgeArtifactRepository.html
https://www.omg.org/spec/API4KP/1.0/KnowledgeAssetRepository.html
https://www.omg.org/spec/API4KP/1.0/KnowledgeAssetTransrepresentation.html
https://www.omg.org/spec/API4KP/1.0/KnowledgeBaseConstruction.html
https://www.omg.org/spec/API4KP/1.0/KnowledgeReasoning.html
https://www.omg.org/spec/API4KP/20230201/api4kp.xmi
https://www.omg.org/spec/API4KP/20230201/api4kp.xmi
https://www.omg.org/spec/API4KP/20230201/knowledgeArtifactRepository.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeArtifactRepository.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeAssetRepository.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeAssetRepository.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeAssetTransrepresentation.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeAssetTransrepresentation.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeBaseConstruction.oas.yaml
https://www.omg.org/spec/API4KP/20230201/knowledgeBaseConstruction.oas.yaml
https://www.omg.org/spec/API4KP/20230201/api.inference.idl
https://www.omg.org/spec/API4KP/20230201/api.inference.idl
https://www.omg.org/spec/API4KP/20230201/api.knowledgebase.idl
https://www.omg.org/spec/API4KP/20230201/api.knowledgebase.idl
https://www.omg.org/spec/API4KP/20230201/api.repository.artifact.idl
https://www.omg.org/spec/API4KP/20230201/api.repository.artifact.idl
https://www.omg.org/spec/API4KP/20230201/api.repository.asset.idl
https://www.omg.org/spec/API4KP/20230201/api.repository.asset.idl
https://www.omg.org/spec/API4KP/20230201/api.transrepresentation.idl
https://www.omg.org/spec/API4KP/20230201/api.transrepresentation.idl

https://lwww.omg.org/spec/API4KP/20230201/datatypes.idl

/{ Deleted: 1

https://lwww.omg.org/spec/API4KP/20230201/id.idl

;\{ Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/services.idl

| Deleted: 1

https://www.omg.org/spec/API4KP/20230201/surrogate.idl

Field Code Changed

https://lwww.omg.org/spec/AP14KP/20230201/api4kp.rdf

Deleted: 1

Field Code Changed

https://www.omg.org/spec/API4KP/apidkp.rdf
https://lwww.omg.org/spec/AP14KP/20230201/api4kp-kao.rdf

Deleted: 1

Deleted: 1

https://www.omg.org/spec/API4KP/apidkp-kao.rdf
https://lwww.omg.org/spec/API4KP/20230201/api4kp-kp.rdf

Field Code Changed

Deleted: 1

Field Code Changed

https://www.omg.org/spec/API4KP/apidkp-kp.rdf
https://lwww.omg.org/spec/API4KP/20230201/api4kp-krr.rdf

Deleted: 1

Field Code Changed

https://www.omg.org/spec/API4KP/apidkp-krr.rdf
https://lwww.omg.org/spec/AP14KP/20230201/apidkp-lang.rdf

Deleted: 1

Field Code Changed

https://www.omg.org/spec/API4KP/apidkp-lang.rdf
https://lwww.omg.org/spec/API4KP/20230201/api4kp-ops.rdf

Deleted: 1

T

Field Code Changed

https://www.omg.org/spec/API4KP/apidkp-ops.rdf
https://lwww.omg.org/spec/API4KP/20230201/api4kp-rel.rdf

—

/
/

Field Code Changed

Deleted: 1

https://www.omg.org/spec/API4KP/apidkp-rel.rdf

https://lwww.omg.org/spec/API4KP/20230201/api4kp-series.rdf

Deleted: 1

Field Code Changed

https://www.omg.org/spec/API4KP/apidkp-series.rdf

https://www.omg.org/spec/API4KP/20230201/api4kp.ttl

| Deleted: 1

Field Code Changed

Field Code Changed

Jhttps://www.omg.org/spec/API4KP/api4kp.ttl

Field Code Changed

https://www.omg.org/spec/API4KP/20230201/api4kp-kao.ttl

Field Code Changed

Jhttps://www.omg.org/spec/API4KP/api4kp-kao.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/api4kp-kp.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/api4kp-kp.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/api4kp-krr.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/api4kp-krr.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/api4kp-lang.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/api4kp-lang.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/apidkp-ops.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/apidkp-ops.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/apidkp-rel.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/apidkp-rel.ttl

Field Code Changed

https://lwww.omg.org/spec/API4KP/20230201/api4kp-series.ttl

Formatted

2 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta

SO

Deleted: 1

D e e IR e e e e e D e e D e D e e e e D e e e

https://www.omg.org/spec/API4KP/20230201/datatypes.idl
https://www.omg.org/spec/API4KP/20230201/datatypes.idl
https://www.omg.org/spec/API4KP/20230201/id.idl
https://www.omg.org/spec/API4KP/20230201/id.idl
https://www.omg.org/spec/API4KP/20230201/services.idl
https://www.omg.org/spec/API4KP/20230201/services.idl
https://www.omg.org/spec/API4KP/20230201/api4kp.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp.rdf
https://www.omg.org/spec/API4KP/api4kp.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-kao.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-kao.rdf
https://www.omg.org/spec/API4KP/api4kp-kao.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-kp.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-kp.rdf
https://www.omg.org/spec/API4KP/api4kp-kp.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-krr.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-krr.rdf
https://www.omg.org/spec/API4KP/api4kp-krr.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-lang.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-lang.rdf
https://www.omg.org/spec/API4KP/api4kp-lang.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-ops.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-ops.rdf
https://www.omg.org/spec/API4KP/api4kp-ops.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-rel.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-rel.rdf
https://www.omg.org/spec/API4KP/api4kp-rel.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-series.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp-series.rdf
https://www.omg.org/spec/API4KP/api4kp-series.rdf
https://www.omg.org/spec/API4KP/20230201/api4kp.ttl
https://www.omg.org/spec/API4KP/api4kp.ttl
https://www.omg.org/spec/API4KP/20230201/api4kp-kao.ttl
https://www.omg.org/spec/API4KP/api4kp-kao.ttl
https://www.omg.org/spec/API4KP/20230201/api4kp-kp.ttl
https://www.omg.org/spec/API4KP/api4kp-kp.ttl
https://www.omg.org/spec/API4KP/20230201/api4kp-krr.ttl
https://www.omg.org/spec/API4KP/api4kp-krr.ttl
https://www.omg.org/spec/API4KP/20230201/api4kp-lang.ttl
https://www.omg.org/spec/API4KP/api4kp-lang.ttl
https://www.omg.org/spec/API4KP/20230201/api4kp-ops.ttl
https://www.omg.org/spec/API4KP/api4kp-ops.ttl
https://www.omg.org/spec/API4KP/20230201/api4kp-rel.ttl
https://www.omg.org/spec/API4KP/api4kp-rel.ttl

https://www.omg.org/spec/AP14KP/api4kp-series.ttl

| Formatted: Default Paragraph Font, Font: (Default)

Times New Roman, Not Bold

Informative: See Annex E

This OMG document replaces the submission document otc/21-04-02). It is an OMG Adopted Beta Specification and is | Deleted: ad

currently in the finalization phase., |

{ Deleted: 3

You may view the pending issues for this specification from the OMG revision issues web page

. y . Del ;1
https://issues.omg.org/issues/lists. eleted

Deleted: Comments on the content of this document are
welcome and should be directed to issues@omg.org by
August 29, 2021.

The FTF Recommendation and Report for this specification will be published in April 2023, If you are reading this after thaL
date, please download the available specification from the OMG Specifications Catalog.

Deleted: 2

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ B

Copyright © 2017-2023 88 Solutions

[Deleted: 1

Copyright © 2017 Athan Services
Copyright © 2021-2023 agnos.ai UK Ltd.
Copyright © 2020-2023 Federated Knowledge LLC

[Deleted:

Copyright © 2017-2023 Fraunhofer FOKUS

Copyright © 2017-2023 Mayo Foundation for Medical Education and Research (MFMER)

(Deleted:

Copyright © 2020-2023 Micro Focus

4[Deleted:

Copyright © 2017-2023 Model Driven Solutions

Copyright © 2017-2023 Object Management Group, Inc.

Deleted:

Copyright © 2017-2023 Raytheon Technologies

Copyright © 2017-2023 Thematix Partners LLC

gy
[Deleted:

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any
portion of this specification in any company's products. The information contained in this document is subject
to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document and
distribute copies of the modified version. Each of the copyright holders listed above has agreed that no person

shall be deemed to have infringed the copyright in the included material of any such copyright holder by reason

of having used the specification set forth herein or having conformed any computer software to the
specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant
you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that are
based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright
Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any
copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied
or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for
commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you
will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications
may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents
for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal
validity or scope of those patents that are brought to its attention. OMG specifications are prospective and
advisory only. Prospective users are responsible for protecting themselves against liability for infringement of
patents.

Deleted:

1
1
1
{ Deleted: 1
1
1
1
1

{ Deleted:

o G JC U L

/[Deleted: 1

4 Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 —BetaL/

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR
OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.
This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)
(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object Management
Group, 9C Medway Road, PMB 274, Milford, MA 01757 U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT
GLOBAL IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management
Group®, OMG®, OMG Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®,
UML®, UML Cube Logo®, VSIPL®, and XMI® are registered trademarks of the Object Management Group,
Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

/{ Deleted: 1
/

/
/
Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 5 /

https://www.omg.org/legal/tm_list.htm

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of
computer software to use certification marks, trademarks or other special designations to indicate compliance
with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

/[Deleted: 1
/
/

/
6 Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 —BetaL/

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the
Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

/
Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ fr /

Table of Contents

Contents

Preface
1 Scope...
11 General Scope...... .12

1.2 Background Information
13 SCOPEA FEATUIES ...ttt 12

2 Conformance
API4KP Versioning Strategy

Normative References
Terms and Definitions ...

.15

o |01 |~ W

6.1

7 Application Programming Interfaces for Knowledge Platforms..
7.1 Overview

7.2 Architectural Styles and APPrOACH.........cuuiiiiiiiiiiit et 22
7.2.1 _ Cross-Architecture Alignment

7.2.2 _ Proxy-Oriented Approach....

7.2.3 Common Datatypes

7.2.4 (Canonical) KNOWIEAE SUIMOGALESeeuieieirieiitiiieieitieieieeeiiitt ettt 30
7.24.1 KNOowledge ASSE (SUMTOQALE). ...ttt 31
7.2.4.2 Knowledge Artifact (SUMOQAtE)c.evieiiieiiiieiiiiiie et 32
7.24.3 Knowledge EXpression (REPreSENtAtioN)uou.ceereeseieieiesriietiesesiseessese sttt seseseensseeesn e 33
7.25 Knowledge Resource RelationShipS. ueceieieiiiiiiieiiiiiisitettsi sttt

7.25.1 Resource to Concept Relationship

7.252 Resource to Resource Relationship

7.2.6 Knowledge Carrier

7.26.1 Composite KNOWIEAGE CAITIBNviviiviiiiiieitieieieetiee ettt ettt et esesaneas 36
7.2.6.2 PAISING LEVEIS ...ttt 37
T.2.7 IVIONAAS L.ttt 38
7.2.8 Operations - GeNEral PAEINSc.c.ieiiiiieisieiteee sttt 44
APIAKP SEIVICES ...ttt 48
7.2.9 Knowledge Artifact REPOSItOrY SEIVICE ...ttt 48

8 Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 —Beta

Deleted: 1

7.2.10 Knowledge Asset REPOSITONY SEIVICEucuieeiieiiiiiiiiiiiiiiee e 4

7.2.11 Knowledge Asset Transrepresentation Service

7.2.12 Knowledge Base Construction Service ...

o OO

7.2.13 Knowledge Base Reasoning Service
Annex A: _ API4KP Ontologies (normative)

Al Namespace Definitions .. i
A2 Ontology Overview b
APIAKP COIE ONEOIOUY ..ottt sttt ettt 5pb
API4KP Knowledge Asset Type Ontology (KAO) ..ottt 58
API4KP Knowledge Platform (KP) ONtOIOQY ...ttt 5p
API4KP Knowledge Representation and Reasoning (KRR) ONtOI0QY ...t 5p
API4KP Language (LANG) ONTOIOQY ...ttt sttt sr ettt seeeeeeee 60
API4KP Ontology of Operations (OPS)coccuiiiiiiiiiieiieiteeti i ste et sis et ete et et et e steeteese et estessesteesssestensessersaeaneas 6]l
API4KP Relations (REL) Ontology. B
API4KP Series (SERIES) Ontology...... .68
Annex B: __ API4KP Knowledge Architecture (informative) ..
B.1 Knowledge Artifacts ‘@S SOFIWAIEcvieeiiiiieetieiieeteee ettt 65

oY

B.2 Complex Knowledge Resources

Structuring 5
Dependencies... B
SETUCEUIES L.ttt i
B.3 Identification aNd VErSIONING 7L
LOEN I CATION ...ttt 7L
VEISIONING BNG SEIIES ...ttt s ettt 7P
B.4 DIBIIVALION. ...ttt

B.5 Examples

B.5.1 Composite Asset with Semantic Versioning.

B.5.2 Semantic Decomposition and Classification....

Annex C: Use Cases (INFOIMALIVE) ...ttt
c1 Generic Criminal Legal System B
C.2 Connected Patient.... B
Cc3 Semantic Workflow Models D
c4 Knowledge Management and Delivery PIatfOrmcocccuieiiiiiiiiisieiee st 79
C5 Ontology-Driven Termin0lOgy SYSIEMScouciriereieiiieieiiitieeieseeitesestsi st sttt se s 8p
C6 ‘DiSCOVETY” PlAtfOrM ...t 8p
(o4 ‘SME to Screen’ hybrid PIPEINeS ..ottt 8l

Annex D: Architectural Styles (informative)
D.1 Integration Styles

oT

D.2 Knowledge Based SYStEM PAEINS ...t 8

Annex E: Examples

Annex F: Informative API4KP Machine-Readable Files

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 9 |

1.1 General Scope 1211

1.2 Background Information 1211

1.3 Scoped Features 12117

2 ConformancCe.couvveiiiiiiiiiiiii e

37

API4KP Versioning Strategy 15147

3 Normative

REFEIENCES. ... e e

4 Terms and
DEfiNItioNS.ooivitiiiii e

6 Additional
INFOrMAtion..........ouive i

6.1 Acknowledgements 20197

7 Application Programming Interfaces for Knowledge
Platforms.........ooouiiiiii 2
1207

7.1 Overview 21207

7.2 Architectural Styles and Approach 2221

7.2.1 Cross-Architecture Alignment 23229

7.2.2 Proxy-Oriented Approach 2524

7.2.3 Common Datatypes 2524

7.2.4 (Canonical) Knowledge Surrogates 307

7.2.4.1 Knowledge Asset (Surrogate) 319

7.2.4.2 Knowledge Artifact (Surrogate) 32

7.2.5 Knowledge Resource Relationships 33349

7.25.1 Resource to Concept Relationship 34

7.2.5.2 Resource to Resource Relationship 34357

7.2.6 Knowledge Carrier 35367

7.2.6.1 Composite Knowledge Carrier 36367

7.2.6.2 Parsing Levels 37377

7.2.7 Monads 38377

7.2.8 Operations - General Patterns 4441

API4KP Services 48431

7.2.9 Knowledge Artifact Repository Service 48437
7.2.10 Knowledge Asset Repository Service 49449

7.2.11 Knowledge Asset Transrepresentation Service 5045¢
7.2.12 Knowledge Base Construction Service 51467
7.2.13 Knowledge Base Reasoning Service 52479

Annex A: API4KP Ontologies

(normative)
A.1 Namespace Definitions 5449

A.2 Ontology Overview 55507

API4KP Core Ontology 55507

API4KP Knowledge Asset Type Ontology (KAO) 58529
API4KP Knowledge Platform (KP) Ontology 5853
API4KP Knowledge Representation and Reasoning (KRR)
Ontology 58531

API4KP Language (LANG) Ontology 5853

)

/{ Deleted: 1
/

/

/

/

F.1 API4KP OpenAPI .yaml VOCADUIANY FIlBSiuiiiiiiiiiiitsiis it iieseie st setseiseesesesisssiassiesssesaatesseanseasesaresaseeas 94
F.2 API4KP XML Schemas derived from the UML model fileSccccociiiiiiiiiiiiiiiiiiieiieisiisicccn 96
10 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 //

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable, and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach
to enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications
are available from the OMG website at:

https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org
Certain OMG specifications are also available as 1SO standards. Please consult http://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process, we encourage |
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.

{ Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 1 |/

1 Scope
1.1 General Scope

This OMG specification defines the Application Programming Interfaces for Knowledge Based Systems and Platforms
(API4KP), in response to the OMG’s Application Programming Interfaces for Knowledge Bases (API4KB) RFP. The
purpose of these APIs is to facilitate the development and integration of knowledge graphs and knowledge-based
systems in a broader enterprise framework. They provide a standard interface between client applications, knowledge
resources and the platforms used to manage and deliver them - including but not limited to editors, repositories and
reasoners/ rule engines.

1.2 Background Information

The development of ‘Knowledge Driven’ applications is rooted in the discipline of Knowledge (i) Representation and
(i) (Automated) Reasoning, and can be augmented by (iii) Knowledge Acquisition and (iv) Knowledge Management
and Delivery. Knowledge Representation and Reasoning (KRR) is part of the broader field that lies at the intersection
of Artificial Intelligence (Al), Linguistics and Natural Language Processing (NLP), Machine Learning (ML) and Data
Mining, Management, and Governance. Over the years, interest in the different sub-fields has shifted, resulting in a
variety of approaches and techniques. Specifically, with respect to KRR, different paradigms (e.g., rules, constraints,
ontologies, processes, etc.) have been the subject of attention, resulting in a variety of knowledge representation
languages with different expressivity and underlying logic formalisms, with different trade-offs between expressivity,
specificity and tractability. Adoption, then, has been largely influenced by the availability of tooling, from editing to
reasoning, both proprietary and open source. Despite the great success of some of these tools, and increasing demand
for knowledge graph-based decision support, interoperability has been limited, and even then, hardly goes beyond the
scope of the individual languages and applications. For these reasons, although a vast amount of ‘knowledge’ from a
variety of domains has been captured over time, the artifacts (documents, graphs, databases) that carry it vary in
languages and formats as well as richness and expressivity, and their combined use is not easily supported except by
complex, one-off orchestration of a variety of tools.

This specification addresses these shortcomings by providing a uniform abstraction layer that, from a client perspective,
simplifies and normalizes the way KRR artifacts are accessed, manipulated, assembled into rich knowledge graphs and
related systems to which a variety of analytics, reasoning, and rules, can be applied for question answering and
computation.

1.3 Scoped Features

Features that are considered in-scope for this specification include:

e APIs for Knowledge Platforms, to be used in the development of knowledge-based applications

e Semantics of the operations exposed by means of the APIs, including decomposition of the operations into
simpler actions

Definition of ‘Knowledge Base’, ‘Knowledge Resource’ and related concepts
Definition of ‘Knowledge Platform’ in terms of the functional roles of its major components

e Information models realizing descriptions (‘metadata’) of knowledge resources minimally viable for
knowledge management and delivery, including vocabularies, in the form of ontologies expressed in the W3C

12 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

{ Deleted: 1

/

Web Ontology Language (OWL), to designate knowledge representation languages/notations and related
concepts

Features that are considered beyond the scope of this specification include:

Actual specification of KRR languages, and mappings thereof

Algorithms for knowledge-based reasoning

Implementation of knowledge platform components

Development of adapters for candidate components that do not implement the API4KP directly
Knowledge-based applications

Individual Knowledge Avrtifacts, including Domain Models, Knowledge Graphs, and Knowledge Bases

/{ Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 13 |/

2 Conformance

API4KP defines conformance based on the following orthogonal criteria:

1. Completeness
As the specification defines several modules with operations grouped into component services,
implementations are allowed to cover all (and only) those modules that are relevant to the environment they
are deployed in.

2. Coverage
The variety of knowledge representation languages and formats for which capabilities are exposed may vary.
Some environments may focus on a single language (e.g., OWL), while heterogeneous environments may
support operations across a broader variety of notations.

Completeness and accuracy are combined to define levels of conformance for each API14KP module, across the
modules, as specified in Tables 2.1-2.5

Table 2.1: API4KP Conformance Levels - Information Exchange

Level 0 Implementations are able to exchange knowledge artifacts, including surrogates

Level 1 The operations exchange knowledge artifacts using the API14KP standard data
structures, using terminology from the API14KP standard vocabularies.

Level 2 The implementation supports the API14KP knowledge surrogate and knowledge carrier
concepts for the exchange of meta-knowledge.

Table 2.2: API4KP Conformance Levels - Repository Service

Conformance Level 0 PIM Compliance: Equivalent functionality is provided ‘as a service’, but the actual
interfaces do not match any PSMs that can be mapped to the specification.

Conformance Level 1 PSM Compliance: Functionality is provided through a PSM implementation of the
standard PIM

Conformance Level 2 Full Compliance: All operations are supported.
Table 2.3: API4KP Conformance Levels & Transrepresentation Service [Deleted: -
Conformance Level 0 PIM Compliance: Equivalent functionality is provided ‘as a service’, but the actual

interfaces do not match any PSMs that can be mapped to the specification.

Conformance Level 1 PSM Compliance: Functionality is provided through a PSM implementation of the
standard PIM

Conformance Level 2 Full Compliance: All operations are supported.

/{ Deleted: 1

/
/
/
/

14 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

Table 2.4: API4KP Conformance Levels - Knowledge Base Service

Conformance Level 0 PIM Compliance: Equivalent functionality is provided ‘as a service’, but the actual
interfaces do not match any PSMs that can be mapped to the specification.

Conformance Level 1 PSM Compliance: Functionality is provided through a PSM implementation of the
standard PIM

Conformance Level 2 Full Compliance: All operations are supported.

Table 2.5: API4KP Conformance Levels - Reasoning Service

Conformance Level 0 PIM Compliance: Equivalent functionality is provided ‘as a service’, but the actual
interfaces do not match any PSMs that can be mapped to the specification.

Conformance Level 1 PSM Compliance: Functionality is provided through a PSM implementation of the
standard PIM

Conformance Level 2 Full Compliance: All operations are supported.

API4KP Versioning Strategy

Conformance is defined for a specific version of API4KP. Compatibility rules are further defined across versions.

Every version of the API4KP standard is marked according to the release date. The current version, as per this version

of this document, is 20230201. URIs associated to the specification, such as Ontology version IRIs, shall use the samle [Deleted: 1

date-based version as a version tag. Version agnostic URIs, such as Ontology IRIs, should NOT include the version tag.

Every release of the specification will define an API version, which shall be versioned according to the SemVer
standard. Specifically, increments in Major versions will denote breaking changes; increments in Minor versions will
denote added functionality; increments in Patch version will denote fixes to the current functionalities.

As of this document, the API version is 1.0.0-Beta2. This approach generally follows the OMG standard |

recommendation for version management.

Public, stable implementations of the APIs that need to maintain backwards compatibility, or compatibility across
versions, should at a minimum use the Major Version number.
As of this document, the Major API version should be 1.0.0.

—| Deleted: Alpha2

For example, the base URL for a web implementation should be [base_url]/api4kp/1.0.0/, while packages

should refine org.omg.spec.api4kp.l.0.0. Implementations that declare, or imply, a specific version of the

specification may omit the version tag.

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 15 |

{ Deleted: considered vO, until the specification is finalized

as...

\\(Deleted: vO

) \\{ Deleted: vO

/{ Deleted: 1

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of
this specification. For dated references, subsequent amendments to, or revisions of, any of these publications may not

apply.
API4KP-23 — Revise references cited in the revised ontologies { Formatted: Font: Bold
Commons Commons Ontology Library, v1.0. Available at
https://www.omg.org/spec/COMMONS.
[Dublin Core] DCMI Metadata Terms, Issued 2020-01-02 by the Dublin Core Metadata Initiative.
Auvailable at https://www.dublincore.org/specifications/dublin-core/dcmi-terms/.
[DOL] Distributed Ontology, Model, and Specification Language (DOL ™), version 1.0.
Available at https://www.omg.org/spec/DOL/.
[ISO 704] 1SO 704:2022 Terminology Work — Principles and Methods { Deleted: 2009
[ISO 1087] 1SO 1087-1:2019 Terminology — Vocabulary — Part 1: Theory and application
[LCC] Languages, Countries and Codes (LCC), v12. Available at { Deleted: 1
https://www.omg.org/spec/LCC/.
[MOF] Meta Object Facility (MOF™), v2.5.1. Available at
https://www.omg.org/spec/MOF/2.5.1/.
[XMI] XML Metadata Interchange, v2.5.1. Available at https://www.omg.org/spec/XMI/. B
[OpenAPI 2] OpenAPI Specification v2, Available at https://swagger.io/specification/v2/. \\\{ Deleted: [OMG AB Specification Metadata]
[OpenAPI 3] OpenAPI Specification v3, Available at http://spec.openapis.org/oas/v3.1.0
[OWL 2] OWL 2 Web Ontology Language Quick Reference Guide (Second Edition), W3C

Recommendation 11 December 2012. Available at https://www.w3.org/TR/owl2-
quick-reference/.

[RDF Concepts] RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak, David Wood and Markus
Lanthaler, Editors. W3C Recommendation, 25 February 2014. Latest version is
available at https://www.w3.0rg/TR/rdf11-concepts/.

[RDF Schema] RDF Schema 1.1. Dan Brickley and R.V. Guha, Editors. W3C Recommendation, 25
February 2014. Latest version is available at https://www.w3.org/TR/rdf-schema/.

[SemVer] Semantic Versioning. Available at https://semver.org/

[SKOS] SKOS Simple Knowledge Organization System Reference, W3C Recommendation 18

August 2009. Alistair Miles and Sean Bechhofer, Editors. Available at
https://www.w3.0rg/TR/2009/REC-skos-reference-20090818/.

[UML] Unified Modeling Language™ (UML®), version 2.5.1. Available at
https://www.omg.org/spec/UML/.
[Unicode] The Unicode Standard, Version 5.0, The Unicode Consortium, Addison-Wesley, 2006,

as updated from time to time by the publication of new versions. (See
https://www.unicode.org/versions/Unicode13.0.0/ for the latest version and additional
information on versions of the standard and of the Unicode Character Database).
[UTF-8] RFC 3629: UTF-8, a transformation format of ISO 10646. F. Yergeau. IETF,
November 2003, http://www.ietf.org/rfc/rfc3629.txt

[XML Schema Datatypes] | XML Schema Part 2: Datatypes. W3C Recommendation 28 October 2004. Latest
version is available at https://www.w3.org/TR/xmlschema-2/.

Deleted: 1

16 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 /

https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
https://www.omg.org/spec/DOL/
https://www.omg.org/spec/LCC/
https://www.omg.org/spec/MOF/2.5.1/
https://www.omg.org/spec/XMI/
https://swagger.io/specification/v2/
https://www.w3.org/TR/owl2-quick-reference/
https://www.w3.org/TR/owl2-quick-reference/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-schema/
https://semver.org/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/
https://www.omg.org/spec/UML/
https://www.unicode.org/versions/Unicode13.0.0/
http://www.ietf.org/rfc/rfc3629.txt
https://www.w3.org/TR/xmlschema-2/

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply. A proper formalization of the concepts
evoked by these terms, together with additional definitions, elucidations examples, and related concepts is provided in
the normative ontologies. This specification also depends on the Distributed Ontology, Model, and Specification
Language (DOL™), including terminology defined therein and, in particular, terms and definitions that are formalized
in the DOL ontology.

Activity — intentional process, executed with the active participation of one of more agents that carry out a plan
Agent — entity that has the capability (potential) to initiate or participate in an activity
Concept — atomic (non-decomposable) unit of knowledge created by a unique combination of characteristics

Environment — mathematical structure of mappings and members, where the domain and codomains of the mappings
are members of the environment

Idempotency — property of an operation such that it will yield no additional result (and/or side effect) if it is executed
more than once using the same information as inputs

Immutable Entity — entity whose state does not, or cannot, change over time without preserving the identity of the
entity

Information Asset — knowledge asset used by agents to acquire, represent, organize, exchange, store, retrieve and
distribute data, about some domain of interest, using structured formats

Knowledge — cognition (know-what), pragmatics (know-how) and understanding (know-why) about the nature and/or
behavior of something that, when internalized by an agent, has the potential of generating actions in situations that the
knowledge applies to

Knowledge Artifact — digital or physical object that is specifically constructed to carry one or more (expressions of)
knowledge assets

Knowledge Asset — work of knowledge that is a knowledge resource considered valuable by a party
Knowledge Carrier — role of a physical or digital object (Artifact) that carries a knowledge asset

Knowledge Expression — expression of a piece of knowledge in some language, i.e. using a combination of signs
and symbols that conform to the rules of the grammar of that language

Knowledge Fragment — proper part of a knowledge expression that is not the realization of a knowledge asset itself

Knowledge Manifestation — concept that abstracts a specific class of knowledge artifacts, defining the common
qualities of its members and their content

Knowledge Platform — computing environment designed to host reasoners and consume knowledge artifacts

Knowledge Representation and Reasoning Language — machine-executable language used in knowledge
expressions to express works of knowledge

Knowledge Resource — immutable, identifiable, versionable entity that is, expresses or carries some piece of
knowledge

Mutable Entity — continuant entity whose state, determined by the configuration of its qualia, changes over time while
maintaining a principle of identity

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 17 | /

{ Deleted: 1

Note that for the purposes of this specification, knowledge resources are considered immutable. This is important with
respect to the operations on knowledge graphs and/or knowledge bases specified herein to preserve idempotency.

/{ Deleted: 1

/
/
/
/

18 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

5

API
AST
BPMN
CMMN
DMN
DOL
FRBR
KA
KB
KBS
KR

KP
KRR
MIREOT
RDF
ReST
OowL
SKOS
TTL
WoK
XML

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_

Symbols

Application Programming Interface
Abstract Syntax Tree

Business Process Modeling Notation
Case Management Modeling Notation
Decision Modeling Notation

Distributed Ontology Language
Functional Requirements for Bibliographic Records
Knowledge Artifact

Knowledge Base

Knowledge Based System

Knowledge Resource

Knowledge Platform

Knowledge Representation & Reasoning
Minimum Information to Reference an External Ontology Term
Resource Description Framework
Representational State Transfer

Web Ontology Language

Simple Knowledge Organization System
Terse Triple Notation

Work of Knowledge

eXtensible Markup Language

{ Deleted: 1

6 Additional Information

6.1 Acknowledgements

The submission team for this specification includes 88 Solutions and Thematix Partners. Major contributors include:
angos.ai, Fraunhofer FOKUS, Mayo Clinic, and Micro Focus, with significant support from the Freie Universitat
Berlin, Universitét Leipzig and Raytheon Technologies.

Primary Contacts:

Elisa Kendall
Thematix Partners LLC
ekendall@thematix.com

Manfred Koethe
88 Solutions
manfred@88solutions.com

Additional Contributor and Supporter Contacts:

Pete Rivett
agnos.ai UK Ltd
pete.rivett@agnos.ai

Adrian Paschke
Fraunhofer FOKUS and Freie Universitét Berlin
adrian.paschke@fokus.fraunhofer.de

Ralph Schéfermeier

Fraunhofer FOKUS and Universitét Leipzig
ralph.schafermeier@gmail.com

Davide Sottara
Mayo Clinic
sottara.davide@mayo.edu

John Draga
Micro Focus
John.Draga@microfocus.com

Cory Casanave
Model Driven Solutions
cory-c@modeldriven.com

Roy Bell
Raytheon Technologies
Roy_M_Bell@raytheon.com

The submission team would also like to thank Tara Athan (Athan Services), colleagues at Arizona State University, and
Cognitive Medical Systems for their contributions over the last several years.

/{ Deleted: 1

/
/
/
/

20 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

mailto:mbennett@edmcouncil.org
mailto:manfred@88solutions.com
mailto:pete.rivett@agnos.ai
mailto:adrian.paschke@fokus.fraunhofer.de
mailto:ralph.schafermeier@gmail.com
mailto:sottara.davide@mayo.edu
mailto:John.Draga@microfocus.com
mailto:cory-c@modeldriven.com
mailto:Roy_M_Bell@raytheon.com

~

7.1

Application Programming Interfaces for
Knowledge Platforms

Overview

The purpose of the API4KP interfaces is to expose the API4KP operations, as functionalities provided ‘as a Service’ by
one or more software components of a Knowledge Platform.

The APIs follow a number of principles, which are reflected in the signature of the operations. The principles are also
intended to facilitate implementations across multiple paradigms - in particular local Virtual Machine vs. REST vs.
SOAP. The well-known mappings between general API and web-service oriented APIs will be used to support non
distributed applications in a consistent and predictable way.

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 2 |/

Resource Orientation — For each operation, the verbal definition is equivalently specified in terms of a
nominal definition. For example, ‘translate’ (operation - verb) is the execution of a ‘translation’ (operation -
name) by a ‘translator’ (server - entity).

As a consequence of this approach, servers, and capabilities thereof, are represented by an explicit object
(resource in the ReST sense) which can be used for the discovery and configuration of knowledge platforms.
“‘Capability” resources materialize the concept of Task as a class of operations that an actor, as represented by a
“‘Server’ object, can perform. Capability resources describe internal objects that can instantiate ‘Action’ (Task
instances) objects which, when applied to appropriate inputs including (carriers of) Knowledge Resources,
result in Operations being executed.

Strategy Orientation — A second consequence of the resource-oriented approach is that each capability, in its
nominal definition, can also be materialized by an object, which acts both as a resource for further
discovery/configuration, as an uniquely identifiable and classifiable invocation target, and as a wrapper of the
actual implementation of an operation, following the principles of the Strategy pattern.

This approach also favors the decomposition of the implementation into indexable sub-components, e.g. to
handle different languages in different ways. These objects materialize the API14KP notion of ‘Method’.

— (Optional) Configurability
Most implementation strategies are expected to provide a ‘default” behavior, but a Client should be
able to configure the behavior by passing additional parameters which depend on the class of the
agent (e.g. DL Reasoner) and/or the strategy being implemented (e.g. tableaux-based classification)

ReST-fulness — Operations follow principles and best practices for distributed APIs such as statelessness and
idempotence. ‘getX’ and ‘listXs’ operations follow GET semantics; ‘setX’ operations follow PUT semantics;
‘addX’ and ‘createX’ operations follow with POST semantics; ‘isX” follow HEAD semantics; ‘deleteX’, to
align with DELETE semantics, are not aimed at removing resources, but rather to ensure that resources are not
present.

Support for Provenance — Since the outcome of most operations depends heavily on the ability of a given
server and strategy to handle different languages, a server is expected (but not required) to provide an
‘Explanation’ of how it produced the actual result.

Semantic Web Orientation — Individual entities in the API14KP conceptual space are expected to be denoted
using URIs, including both version-agnostic and version-specific URIs.

Functional Programming Orientation — The APIs expose services that can be formalized using concepts
from the functional programming paradigm.

{ Deleted: 1

— Monads allow to bind pure functions to generic data structures, by providing a computational context
that handles the application of a function across different data types.

— Functors (reified functions) represent units of behavior comprised by the API14KP specification.

— Composition is the mechanism by which an Operation, exposed through an AP, is defined in terms of
atomic functions.

— Application is the act of using a function on some data (as opposed to passing the data as arguments
to the function)

— Currying The incremental application of a function to multiple arguments, in terms of composition of
multiple unary functions.

Example :

f(CX, Y)=goh

where:

h X - gx(C Y) = gC Y I X)
Y - vy, x() = vCl X, Y)

g :
fCX, Y) =eval (v,x)

That is, h applied to X returns a unary function object that, when applied to Y, returns a nullary
function object. When evaluated (lazily), this last object returns the same value as the (eager)
evaluation of ¥ on the same arguments X and Y. Currying generalizes to an arbitrary number of
arguments by induction.

7.2 Architectural Styles and Approach

Software communication requires a message transport, a message protocol, and a destination address. A message
transport plays the role of carrier - in this case, a physical means to convey a message. Examples of transport
mechanisms include Ethernet, shared memory, and the Peripheral Component Interconnect (PCI) bus. Wi-Fi and
Bluetooth are examples of wireless transports. All three concepts of transport, protocol, and destination address are
interrelated. A change to one affects the others. For example: if the source and destination happen to be in the same
virtual address space; the source will know the virtual address of the receiving function and will know how to invoke it
and how to pass a message through parameters. Nearly all CORBA implementations automatically recognize when this
optimization can be used. A simple function call is not possible when the source and destination are physically
separated. Distributed software communication is accomplished by serializing the message according to a protocol that
destination understands. A remote destination addresses could be something simple like the combination of an IP
address and port number or it could be expressed as a URL, or an IRI, or a CORBA Interoperable Object Reference
(IOR). All physical message transports including Ethernet and Wi-Fi just transport bytes. It is left up to the source and
destination to agree on a message protocol. The protocol specifies the set of rules for how these messages will be
serialized for transport. A protocol could be ad-hoc and unsophisticated or it might have the sophistication necessary for
the source and destination to remain oblivious of the distributed nature of the system. This in turn allows the developer
to choose the style that best fits the application.

The API4KP PIM is designed to support, at a minimum, the following bindings:

(Java) Interfaces
SOAP (WSDL)
ReST

OMG IDL

e

Both CORBA and Java RMI serialize messages in compliance with the Internet Inter-ORB Protocol (I110P) standard.
This is a comprehensive standard, which is usually implemented with support from automated tools. On the other hand,
web services only specify the use of XML and leaves up to the software developer(s) to ensure that the source and the
destination have the same understanding of the XML content. There are many tools to support this understanding.
WSDL specifies that messages will comply to an XML schema. If WSDL is not being used and no XML schema has
been specified; the source and destination must at least have some sort of mutual understanding of an implied schema or

22 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

{ Deleted: 1

/

else they run the risk that parts of their messages will be lost or misunderstood. In this context, ReST should be
interpreted as an architectural style based on Resource orientation and functional interactions, generalizing the common
notion of ReST-on-HTTP used for web services. As an architectural paradigm, it is not incompatible with
object/operation-oriented architectures. In fact, a ReSTful approach is primarily compatible with this functional
approach to knowledge bases and reasoning.

7.2.1 Cross-Architecture Alignment

The problem of deterministically aligning the different styles with a common abstract PIM is addressed using a fully
model-driven approach. The architecture metamodel is partitioned in three main components, and Translation,
Projection and Structuring operations are used to generate a variety of PIM, PSM and implementation artifacts. Given a
distinction between:

o the specification of the operations, representing the behavioral component of the architecture, and driving the
APIs

o the modeling of the datatypes, exchanged through the operations, representing the structural component of the
architecture, thus driving the ReST resource types

o the definition of the controlled terms, which provide the semantic component of the architecture through a
binding to a common set of API4KP ontologies.

Different representation languages, specific to each asset type, are used to define the primary artifacts.
e OpenAPI v2, (Swagger) was used as the basis for the initial version of this specification for the operations. |

While mainly used for ReST architectures, OpenAPI specs are designed to be mapped to object-oriented
languages (e.g. Java), and thus can be reverse engineered into operation-oriented interfaces, expressed using
IDL.

OpenAPI v3 specifications are included herein, derived from the OpenAPI v2 specification by means of a
functional upgrade.

e UML Class models are used for the datatypes. The class models deliberately use minimal capabilities (classes,
attributes, unidirectional associations, limited inheritance, no cycles) in order to enable mapping to tree-
oriented models such as XML and JSON schemas.

e The semantic elements are defined in OWL. Within dspecific implementations bf a Knowledge Platform, it is

recommended that ontologies are first MIREOT-ed to derive SKOS vocabularies, then flattened into

enumerations that can be bound to specific attributes/elements of the UML/XSD models. Acknowledging that
there may be alternative approaches, it is expected that the mappings, preserve traceability to the URI of the

original ontology entity.

Notice that the vocabularies are late-bound to the schemas, and the schemas are late-bound to the operations. This
approach has been adopted because the native modeling capabilities of OpenAPI are mainly designed for information
interchange rather than processing or, to an even lesser extent, modeling. OpenAPI adopts a limited version of JSON
schema which provides a very limited variety of datatypes (e.g. no distinction between String and URI). For similar
reasons, neither XSD nor OpenAPI (nor UML) provide a concise way to formalize concepts and their relationships. In
general, more expressive languages have been used for the different parts of this API4KP specification, effectively
making the specification itself a composite knowledge artifact in the API4KP sense.

Figure 1 provides an overview of the metamodeling environment, described using the API4KP/DOL concepts of Asset,
Language, Profile, Serialization, Format, and mapping thereof.

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 23 |

{

\

Y Deleted: The
(

[Deleted: *

~| Commented [SD1]: API4KP-19 The vocabularies are no
longer normative.

In fact, the use of SKOS-mediated bindings is not strictly
necessary, as long as the correct URIs are used consistently
when exchanging information via the API.

Since different platforms may have different and/or more
efficient ways to achieve the same goal, the pattern is left as
a general guideline, for PSMs to consider

Deleted: The

Deleted: which are further

Deleted:

(N

/{ Deleted: 1

APIAKP APIAKP API4KP API4KP APIAKP
Knowded Serialization --=-+--- > Meta
Assets expressed Languages profile of Profiles Formats uses Formats
In
(primary)
DL
N [Ops] T
IDL e
n
Operation | mapping IbL ’» s
Specification o . [Schema] |
OpenAPI 2)»
¢) s YAML
i mapping
{ OpenAPI3 |-wmmizimiziztiniil >(_Ison
L J %
hasinput H
hasOutput o i
UML +
linterface] [~ me Ly
— XM
Resource s
DataType |N~—o_ L = St S
Ll DN, ,‘ UML)_ - e
| [Datatype] | N
boundTo e e
i mapping - .
p , 2
fromimimm e >C o
|__Schema | P

OWL 2
1SkoS] [

Controlled

Vocabulary

defines derivedFro
m

RDF

Formal Ontology

Figure 1. API Metamodeling Environment

Figure 2, then, provides a view of how the components of API4KP are integrated with and generated from one another,
as described above, up to a platform-specific implementation. This chain(s) of derivations and integrations, as noted
operations that can themselves be defined using API4KP semantics, is compatible with the API4KP environment, but

not the only possible one.

DML

Enums

API4KP (API4KP 1
owL/skos
Ontologies ‘>{ e H Terminologies % SKOS Compiler H
. a1

skos
10 XSD

(Resource)| POJO
xoxe0 > Schemas —— ﬁ Classes
o - javail

ot
\; 77777777777 i
\ I
T Resource
0 1oL Schemas |
i oomi i

(Web)

Operations [swagger Web API " swagger | -
metaces < WBY s [e | Sewee
’ . e g

oL openapi+2 « yami

Figure 2. API Construction/Generation Overview

24

/
/

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 /

{ Deleted: 1

/
/

/
/

7.2.2 Proxy-Oriented Approach

Despite their prominence, object-orientation and web services are not the only possible communication paradigms.
Additional alternatives, distinguished according to the degree of coupling between the client and the server, are
described in Annex D. API4KP takes a proxy-oriented approach, and generalizes the OpenAPI-based code generation
framework, based on the architectural pattern shown in Figure 3.

£ serverimpl |
4 Serverimpl
apiserver
% |
p AT ikl o APIAdapter | s APIDelegate
. T @ sameDpeationiparie | X Respoase]l]
someperatian ¢ ”] |
@ Respon el |
delegate]”)
o WebControter, |
i)
embeddederver. 1]
-
- :li!ml
—_— AP
api . !
P S } ~ @ cemAPlseray ; AMDelegate) AR
"'T" e dl 3001 | G pewAPseres - ARClientFaciond - AP)
e 7] |
i = |
 AEYFscade | re A ! o ApiClient
| emate * t @ do.someOpeat
¥ iy - ond)
=t 5 restClient}. 1] —————————"

Figure 3. Proxy Pattern for Code Generation

Given that OpenAPI is primarily a web service framework, APIClient and APIDelegate are client/server stub/skeletons
that handle the (web) transport: the client application interacts with the APIClient, and the server is an implementation
of the interface APIDelegate. As the server implements the operations, it is necessary to wrap the results in a Response
— a data structure that not only contains the result, but also additional metadata such as HTTP response codes and
headers. While useful, the metadata is web-specific and overfits only one of the API4KP integration patterns. On the
other hand, the client application is presented with a plain operation with a core return type Y: if necessary, the metadata
can be queried explicitly from the APIClient. This approach does not fit the monadic approach of API4KP.

In the approach taken herein, the Server is expected to implement an APlInternal interface, which allows the server to
either return the result directly — improving compatibility with servers not designed for web integration — or,
alternatively, to wrap the result in a monadic, rather than web-oriented, wrapper Answer. A Client is presented with an
API interface that extends APlInternal directly, supporting the direct, by-reference integration pattern. Alternatively, and
transparently, APIFacade implements API, but delegates to APIClient, which in turn delegates to a web server,
supporting a web-mediated interaction. The role of the Fagade is to extract the information from APIClient, and package
it into an Answer. In order to expose Answer-enabled servers as web-servers, a further ApiAdapter is needed. This
adapter transforms an Answer into a Response, which is then transformed back into an Answer client-side.

This capability also allows to deploy a server designed for the web, i.e. one that implements APIDelegate natively or
through an APIAdapter — as an embedded client-side component.

7.2.3 Common Datatypes
The APIs use a limited number of data structures across input and/or outputs, which can be divided into basic value

types, reusable Data Structures and (ReST-enabled) Resources.
/{ Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 25 |

7231 Primitive Datatypes Deleted: Basic

API4KP uses a limited number of primitive datatypes. Jn addition to the basic UML String, Integer and Boolean, Deleted:

2additional datatypes are defined as follows: Deleted: The basic UML datatypes, e.g.
\ Deleted: , are supported

e DateTime — The representation of an atomic point in time, with arbitrary granularity and optional time zone,
Deleted: Additional

as defined in the standard ISO 8601, and mapped to the W3C XML Schema ‘dateTime’ datatype.

A

e URI/URL - The unique identifier of a resource on the web, or address thereof, as specified in

Formatted: Font: Bold

Formatted: Font: Bold

o U U L

https://www.ietf.org/rfc/rfc3305 and predecessors

Formatted: Indent: Left: 0.5", No bullets or]
Deleted: v4]

Deleted: as

v

N Moved down [1]: Any — Maps to ‘Object’, ‘Thing’ or
“?” —an object whose type can only be determined at
e UUID - Auniversal ID, conforming to the structure specified in https:/tools.ietf.org/html/rfc4122 runtime
‘\\

e Bindings — A Collection of Entries. An Entry is a key/value pair, where the key, is a locally unique identifier, Deleted: Map — An unordered collection of entries,
associated to a value of Any type. Bindings are primarily intended to capture variable assignments, such as xvar}:]cehiir;:;y/value pairs where the key is a String and the
may result from the execution of a Query. Jn this context, values can either be NULL (free/unassigned
variable), or immutable (bound variable). Formatted: Indent: Left: 0.5", No bullets or]

\

Deleted: <#>Array (List) — An ordered collection of
e & - . . values of the same type
e Any - Marker datatype used to describe values that have an undefined, unstructured and/or unconstrained ‘ 1

form. This datatype is mapped to the W3C XML Schema ‘anyType’. Tuple — An ordered collection of Any

1
Relation — A Set of Tuples with a Header Array

7.2.3.2 [Signs, Identifiers, Terms_and Descriptors

Deleted: Map

\ Deleted: s

An Identifier is a symbol used tojdentify one and one entity? within some context. Depending on the context — e.g.

universal vs local, web vs internal — it may convenient, or even necessary, for the identifier to have a specific form.

Deleted: represent query Variables, and, for each
v \
In API4KP, URIs and UUIDs are considered the primary, general purpose form of identifiers. URI should be preferred ||
when the identifier is intended to be persistent and/or dereferenceable. UUIDs are primarily used within the scope of \

variable, the values

Deleted: Parameters — A Map<String, String> that

\
API-mediated interactions, because they do not require a central authority to be minted and/or assigned. UUIDs and \

parameters for the execution of an Operation

other forms of identifiers with internal structure such as OIDs and DIDs can also be used for more permanent entities,

contains non-NULL values that represent configuration
as long as they are mapped to their canonical URI form. Moved (insertion) [1] }
APIA%K.P also c_ie_fines a numb_er of Structured Identifiers, as a way to 'uniquely denote Resources of interest, while Deleted: Maps to ‘Object’, *Thing’ or 2’ — an object
providing a minimal descriptive context. The Resources of Interests include formal Knowledge Resources as managed whose type can only be determined at runtime
by a Knowledge Platform, Semantic entities from a Business Domain of reference (“Concepts”), and versions and
representations thereof. Commented [SD3]: API4KP-19 This section has been J

rewritten.

The use of interfaces and inheritance resulted in an over-
specified model.

The revised datatypes have been coalesced to make
distinctions between

- designators of Knowledge Resources, Concepts, and/or
other business entities

Commented [SD4R3]: The design has also been
Deleted: and

Deleted: denote

Deleted: For this reason, API4KP defines a single, comp[_j

2 Conversely, an entity can have multiple identifiers Deleted: 1
26 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta

https://tools.ietf.org/html/rfc4122

package [g’Q dentfiers Dagrm])
wdataTypes widataTypes wdatalypas
ControlledTerm
sitvituten it attrbutan
+uuid : ULUD[T) Hag : String [1] +abal : String {0..1]
+varsionTag - String [0..1] +varsionTag : String [0..1] +6 SR
+iversionHash : Integar [0..1) < URI[0..1] +icoda - String [1]
+abel : Siring [0..1]
+Hormal : URI[0..1]
adataTypes
adataTypes]
-
Gt 1 R =
hwhor:sum{1| Hag : Siring [1]
+/patch : String [1] +varsionTag : String [(..1]
T g e g0
+ String [0..1) -
Al +rasourceld : LRI [1)
+versionkd * URI[0.1]
- DentaTime [0..1]
T +ereatedOn - CateTime [0.1] +ancestors : ControlledTerm 10..%]
+description : String [0..1] +parents : ControfledTerm [0. *]
MIMECode *+ype : ControlledTerm [0.1] +children : ControbedTerm [0.7]
ity +mimeType | MVECode [0..1] +descendants : ControbedTerm [0.."]
+value : Siring [1] +href : URL [0.1]
© BOOlsaN = true

Figure 4. Identifier and Resource Identifier Descriptions

ConceptDescriptor
A Structured Designator that supports the bridging of Concepts, as atomic fragments of Semantic Knowledge Resourcefs
(e.g, Ontologies, Concept Schemes, Vocabularies) and Terms, syntactic representations used in other forms of
Knowledge Resources and/or the APIs used to process them.

ConceptDescriptor is influenced by the W3C Ontolex model, and cover all three dimensions of the semiotic triangle. In
particular, Concepts are universal individuals (in the SKOS sense) which are evoked by Terms, and are the intensional
counterpart of their extensional Referent Entities — classes, relationships and/or known individuals. More specifically,
Concepts can be organized in Concept Schemes, which usually provide a codification system and a ‘broader/narrower’
relationship, and/or (formally) defined in one or more Ontologies.

As a datatype, ConceptDescriptor allows to carry references to other Concepts in the neighborhood of the given
Concept, which can be used to support various reasoning tasks.

Remark: since Concepts are considered fragments of a Semantic Knowledge Resource, they should not have a version
that is independent from the version of the scoping Resource.

3 Versionl dentifier
[Eg versionTag : String [1]

e
(&3 Identifies : Anyl,
 tag : String (1]

53 name : String [0
[establishedOn :

—

(g versionTagFormat | AnyURI 0.1

[, IdentifierTagType
& OID_VALUE
5 STRING_VALUE
= UUID_VALUE

Deleted:

| (5 href AnyURI 1]
| 5 type : anyupt 0. 1)

17 Semamt

£ resourceld ; AnyURI [1]
£ Mversionid : AnyURI 10..1]
[£3 fuuid UUID 1]

£ tag - String [1]

£ versionTag : String [0.1]
[name : String (.1

£ namespacoUri : AnyURI [0
[£3 fqName : GiName 10..1]

[MtagFormat - AnyURI [0.1)]
g MversionTagFormat ; Anyl
[establishedOn : DateTimi

Attribute Description

code The primary, local identifier of the Concept, within the scope of the defining Semantic
Knowledge Resource. May or may not coincide with the local part of the conceptld.

conceptld A universal identifier associated to the Concept which, by definition, is not scoped by the

defining Semantic Knowledge Resource. Concept Ids are usually version agnostic.

The universal identifier of a Concept Scheme, where this Concept has been scoped. If present
the referenced Scheme should be the context which assigned the code and/or the conceptld.
When possible, this URI should be version-specific.

codeSystem

versionTag An optional version identifier associated to the specific Concept. If present, should be consistent
with the version of the scoping Resource, which should be inferable from the respective URI.

referentld The URI of the denoted Referent entity, possibly dereferenceable to, and resolvable within a
formal Ontology

label The (primary) term used to evoke this Concept, in the context of use of this ConceptDescriptor

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 27 |

Deleted: 1

additionalLabels

Additional terms associated to this Concept, as key/value pairs where the the key denotes the
type/role of the label. The key should be derived from an annotation property (e.g.
skos:altLabel), or a language code (e.g. ‘us-en’).

parents References to other Concepts Pj=o.n_in the same Scheme, such that this Concept ‘has broader’ B; /{ Formatted: Subscript
children References to other Concepts Cj=o.n in the same Scheme, such G; ‘has broader’ this Concept -

ancestors The closure of the ‘has broader’ relationships in the context of the defining Scheme \{ Formatted: Subscript
descendants The closure of the inverse ‘has broader’ relationship in the context of the defining Scheme Formatted: Subscript

ControlledTerm

A simple Structured Designator that can be used to denote an entity, and/or evoke a Concept. Combines a formal

identifier with a (contextual) human readable label.

Attribute Description

conceptld The universal identifier of either an evoked Concept, or a Referent entity.
Given that either choice has different formal properties, the choice should be consistent with the
context of use of the ControlledTerm

code A local identifier associated to the denoted/evoked entity.

label The (primary) term used to evoke this Concept in its context of use

Keyldentifier

Structured ldentifier that identifies a specific version a Knowledge Resource. A Keyldentifier is designed for internal

use by API14KP services, to index and retrieve efficiently resources, including KnowledgeBases and components

thereof.

Keyldentifer can be considered the minimal counterpart of a Pointer, from which it can be derived.

/{ Formatted: Font: Bold

Attribute Description

uuid The universal identifier associated with the resource, across its versions
versionTag The component of the identifier associated to the specific version of the resource
/versionHash A compact binary encoding of the versionTag, based on a hash function

MIMECode
A designator of the characteristics of the manifestation of a Knowledge Resource. In API4KP, (generalized) MIME
codes are terms that denote Media Types (https://www.iana.org/assignments/media-types/media-types.xhtml). More

specifically, MIME “types” are associated to the categories of Knowledge Artifacts such as text or software, while the

"subtypes” are correlated with the characteristics of the Knowledge Expression carried by a Knowledge Artifact.
Moreover, A MIME Code is considered formal if its sub-type code can be parsed, and used to denote unambiguously
the syntactic components of an Expression (language, profile, serialization, format, lexicon, alphabet and encoding).
Informal MIME codes are considered pre-coordinated, and their interpretation is predetermined.

Attribute Description

value The string-based representation of the MIME type code

formal If true, denotes a post-coordinated (parsable) MIME code
Pointer

Structured Designator that identifies a specific version a Knowledge Resource, while providing a minimal description
of the Resource itself.

Attribute Description
tag A version-agnostic Identifier associated to the Resource. Tags are not required to be universal
identifiers.

28 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

Deleted: 1

https://www.iana.org/assignments/media-types/media-types.xhtml

Commented [SD5]: API4KP-19 The illustrative examples
in this section have been updated, to align to the new
datatype structures

versionTag An identifier of the specific version of the denoted Resource, to be used in combination with the
tag and/or uuid.

uuid A version-agnostic, universal ldentifier associated to the Resource, in the form of a UUID

name A human readable, informative name that designates the Resource

resourceld A version-agnostic URI that identifies the Resource — also known as “series” Identifier

versionld A version-specific URI that identifies the Resource

description A human readable, informative, contextual description of the Resource.

lastModified The date/time of the creation of this version of the denoted Resource

createdOn The date/time associated to the creation of the first, original version of the denoted Resource

type One or more ControlledTerms that denote classifiers (e.g. OWL Classes) that apply to this
Resource (e.g. such that the denoted Resource can be considered an instance of)

mimeType A pre-coordinated basic descriptor of the representational characteristics of the denoted
Resource.
When the Pointer denotes a Knowledge Asset, the mimeType can be omitted, or be used to
denote a canonical representation of the Asset

href A URL where the Resource can be accessed

Structuredldentifier

Structured ldentifier that identifies an Entity as it is known to the Business Clients of a Knowledge Platform. Identifier

of this kind should be generally considered “metadata” by the API14KP services.

Attribute Description

tag The textual form of the business identifier associated to the denoted Resource

versionTag The identifier of the specific version of the denoted Resource

namespace The URI of the namespace that scopes this identifier, as a proxy for the identification authority
that assigns and/or allows to dereference the identifiers

label A human readable name associated to the denoted Resource

format A URI that denotes the grammatical rules that the tags should conform to, e.qg. to distinguish
OIDs from DIDs

Versionlnfo

VersionlInfo are post-coordinated structures used to parse and process the version-specific part of the Identifier of a

particular version of a Knowledge Resource, usually referenced as a ‘versionTag’.

Since AP14KP recommends the use of semantic versioning, the structure is borrowed directly from the SemVer 2.0

specification, and its use should be consistent with that specification.

Other strategies such as Calendar-based versioning should be aligned, for example using Year/Month/Day as

Major/Minor/Patch components.

Attribute Description

tag The pre-coordinated version tag

major The major component of a structured version tag
minor The minor component of a structured version tag
patch The patch component of a structured version tag
build The build component of a structured version tag

pre The pre-release component of a structured version tag

7.2.3.2.1 [Correlation| Between Identifiers

Implementations should, where possible, correlate the elements of _structured designators such as Pointer and

ConceptDescriptor. An entity should have a primary, universal URI, and optionally a version URI. These URIs should

Deleted: Identifier |

Identifier datatypes provide information to denote,
designate or locate an individual resource.{

identifies: a universal identifier of the individual, in URI
format

tag: a local identifier of the individual, i.e. an identifier
that can be guaranteed to be resolved uniquely only in a
specific contextq

tagFormat: the type of tag, chosen from styles that
include, but not limited to, UUIDs, OIDs, String or
date/time stamps{

name: a lexical form of appellation of the resource, which
is informative, but not required to be resolvable uniquely{
establishedOn: date when the identifier was assigned to
the individual ||

Versionldentifier{

An identifier of a specific version of an entityf
versionTag: the identifier of the version of the entity,
resolvable within the context of the individual’s series{
versionTagFormat: the type of versionTag, chosen from
styles that include, but not limited to, UUIDs, OIDs,
String or date/time stampsf

Scopedldentifier|

An identifier with a tag that can be resolved within an
explicitly known context.{

namespaceURI: the URI of the namespace that provides
the explicit context{

Universalldentifier{

An identifier that can be resolved unambiguously to an
entity, regardless of context.|

Semanticldentifiery

A scoped, versioned, universal identifier.|
Resourceldentifier{

The canonical implementation of a Semanticldentifier.{
resourceld: a URI of the identified resource. Maps to
Identifier.identifies{

versionld: a URI specific to this version of the entity,
obtained by combination of the resourceld and the
versiontag{

gName: a QName, derived from the namespaceUri and the
tagfl

uuid: a UUID is mainly used for joins and identity
comparison. If not provided explicitly, a UUID version 1
should be derived from the resourceld.§

Term (Lexicalldentifier)f

A semiotic Resourceldentifier that identifies a Concept.
This specification uses a full semiotic approach where a
Concept is a ‘unit of knowledge’, as described in a
concept scheme, that references, but is distinct from, a
referent entity, as described in some Domain ontology.{
prefLabel: a lexical form used to designate the concept.
The use of label is informative: it could contain one of the
labels associated to the concept in a reference dictionary.
See skos:prefLabel|

be decomposable into their namespace, tag and versionTag components. When appropriate, UUIDs should be derived

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_

\(Deleted: a Resourceldentifier

Deleted: 1

29 |

Deleted: namespace: https://ckm.m.e/a/
gName: https://ckm.m.e/a | {tag}

functionally from the primary and/or version URIs, according to the UUIDs v5 methodology.

Deleted: namespace: urn:uuid

Deleted: namespace

O)

Example:
A Pointer with a decomposable URI and a versionTag:

Deleted: versionTag

resourceld: https://ckm.m.e/a/{tag}
versionTag: {versionTag}

Deleted: versionld:
{systemNs}/versions/{versionTag}/id/{ta

gt

Deleted: gName: {entityNs} | {tag}

// derived
versionld: https://ckm.m._e/a/{tag}/versions/{versionTag}

tag: {tag}
uuid: isUUID(tag) ? { tag } : UUID.v5from({resourceld})

v
Wi
1

Example:
| A Pointer to a Resource natively identified by a UUID (with an optional versionTag):
uuid : {uuid} ‘ ‘
versionTag: {versionTag} i

i

Imi

// derived
resourceld: urn:uuid:{uuid}

versionld: wurn:uuid:{uuid}{versionTag} i
tag: {uuid} if

| .

Example:
A ConceptDescriptor referencing a coding system that differentiates between the system namespace and the entity

namespace:

resourceld: {entityNs}/{tag}
| codeSystem: {systemNs}

tag: {tag}
versionTag (system scope): {systemVersionTag}

// derived
I .
uuid: isUUID(tag) ? { tag } : UUID.v5from({resourceld})

| .

7.24 [lcanonical) Knowledge Surrogates
A Knowledge Surrogate is a ‘metadata’ Knowledge Artifact about other Knowledge Resource(s) that carries a relevant
subset of syntactic, structural and semantic information that is relevant to some API4KP operation. There are numerous
approaches to ‘Metadata’ models in and for Knowledge Management. The APIs formalize the notion of metadata record
as ‘Knowledge Surrogate’, which is, and thus is processed as, a kind of Knowledge Artifact. The ‘canonical’ API14KP
Surrogate model is a Schema (thus a kind of Knowledge Representation Language) which is mappable to other
metadata models, and transrepresentable to/from those models by means of API4KP operations. The canonical model
ensures that, whatever metadata model is natively adopted by a particular organization, the metadata that supports
different API4KP operations is isolated and can be exchanged/exposed in a predictable way.

|| updated, to reflect the changes in the datatypes.

[Deleted: <#>Representation

| Commented [SD71: API4KP-19 This section has been }

Deleted: <#> Information{
_,. SyntacticRepresentation

[Eg language : KnowledgeRepresentationlanguage [1]
[£4 profile : KnowledgeRepresentationLanguageProfile [|
[£3 format : SerializationFormat [0..1]

[E4 lexicon : Lexicon [*]

[Eg locale : Language [0..1]

[Eg charset : String [0..1]

[Eg encoding : String [0..1]

[E4 serialization : KnowledgeRepresentationLanguageSe
[Eg logic : String [0..1]

[Eg complexity : String [0..1]
[Eg role : KnowledgeRepresentationLanguageRole [0..1]

3

subL."alj_!qL

Figure 5. Syntactic Representation Data
Structuref
The SyntacticRepresentation data structure contains
metadata about a Knowledge Expression that focuses on
the formal, syntactic and semantic characteristics of the
Knowledge Expression, as shown in Figure 5. This
metadata, asserted or extracted from the Knowledge
Resource, provides quick and uniform access to
information that is used by the APIs for processing, in a
form that does not depend on any specific Knowledge

Resource.
language - a controlled term that denotes the (version of)

the machine-readable language used in the Expression
Example: OWL2, DMN 1.2, but also HTML5
profile - a controlled term that denotes a profile the
language that the Expression conforms to

Example: OWL2-DLY
serialization - a controlled term that denotes the concrete

syntax of the language used in the Expression (only
applies to Concrete Knowledge Expressions or its

subclasses)
Example: OWL2 Turtle Syntax, DMN XML (as per th{

30

/{ Deleted: 1
/

/
/
/
/

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 //

adataTypes
KnowledgeAsset

wdataTypes
Annotation

altributes
+assetid : URI[1]
+secondaryid : Structuredidentifier [0..%]
+formalType : ControlledTerm [0..%]

atirivutes
+ref : ControlledTerm [1]
+description : String [0..1]
+rel : ControlledTerm [0..1]

wenumerations

+expressionCategory : ArtifactCategory [0..1]
+representation : Know ledgeExpression [1]
+createdOn : DateTime [0..1]
+lastModifiedOn : DateTime [0..1]
+establishedOn : DateTime [0..1]

+istatus : PublicationStatus [1]

+annotation : Annotation [0..7]

+association : Related [0..1]

+memberOf : URI[0..]

+charset : ControfledTerm[0..1]
+enceding : ControlledTerm [0..1]
+localization ; ControlledTerm [0..%]
+ogic : ControlledTerm [0..1]

+role : ConftrolledTerm [0..1]

+subLanguage : Know ledgeExpression [0..%]

+formaiCategory - ControlledTerm|[0."] #arget: URI[0..1] Eihlicationsiatis
+hbel . Stlng [1] enuTeralio,
+description : String [0..1] ARCHVED
+memberOf : URI[0..%] PUBLISHED
+annolation : Annotation [0.."] adataTypes E{:‘BLBE
+association : Related [0..] Related
+carriers : Know ledgeArtifact [0..%] T UNPUBLISHED
+surrogates : Know ledgeAriifact [0..7] : Lot
+createdOn : DateTime [0..1] :::: .:DL;Int[r%ledTerm U
+name : String [0..1]
+refType : ControlledTerm [0, %]
+reflLang : MIMECoade [0..1]
wdataTypes wdataTypes» senumerations
Know ledge Artifact dgeExg i ArtifactCategory
attributes altributes enumeration lilerals
+artifactid . URI[1] +language : ControlledTerm [1] COLLECTION
yid : Structur ifier [0..%] +lexicon : ControledTerm [0.."]{nonunique} DATASET
+Hitle : String [0.."] +profile : ControlledTerm [0..1] EVENT
+description ; String [0..1] +serialization : ControfledTerm [0..1] MAGE
+Hocator : URL [0..%] +format : ControlledTerm [0..1] INTERACTIVE_RESOURCE

Figure 5. Knowledge Assets, Artifacts and Expressions

Figure 56, provides a view of knowledge assets and associated artifacts as used in API4KP. It is important to consider |

that, strictly speaking, the Surrogates are Representations of, but distinct from, the actual Knowledge Resources.

Knowledge Assets are immaterial until expressed in some Language: a Surrogate is the only way to acquire some

information without access to a representation of that knowledge itself. Knowledge Artifacts are documents, files and

(in a sense beyond the scope of API4KP) even physical objects such as books and diagrams that the Knowledge Artifact

Surrogate is a proxy for.

7.2.4.1 Knowledge Asset (Surrogate)

A Surrogate that focuses on the Knowledge Asset, i.e., the knowledge content of a Knowledge Resource, regardless of
the availability of any representation of that Knowledge.

E‘ «Resource»
KnowledgeAsset

[£3 formalType : KnowledgeAssetType [*]

[£4 formalCategory : KnowledgeAssetCategor
[£3 processingMethod : KnowledgeProcessing
£ role : KnowledgeAssetRole [*l{unique}

[E3 assetld : Resourceldentifier [1]

[E3 name : String [1]

[£g description : String [0..1]

L)

+

a

]

P

seoDescription : String [0..1]
[E4 secondaryld : Resourceldentifier [*Jfuniqui
[£4 memberOf : Resourceldentifier [*]{unique}

I

Deleted:

knowledggContent[1..*] about|

carriers

suU

g_ «Resource»
KnowledgeArtifact

[£g localization : Language [*lunique}

[£4 alternativeTitle : String [*J{unique}

Es artifactld : Resourceldentifier [1]

[Eg expressionCategory : KnowledgeArtifactC
[Eg name : String [0..1]

[E4 description : String [0..1]

[£g title : String [0..7]

[Eg seoDescription : String [0..1]

[£4 secondaryld : Resourceldentifier [*Juniqu
[E4 /codedRepresentationType : String [0..1]
[Eg mimeType : String [0..1]

[Eg hash : Baseb4Binary [0..1]

[E4 digitalSignature : Base64Binary [0..1]

[Eg inlinedExpression : String [0..1]

[E4 locator : AnyURI [0..1]

Deleted: and

Deleted: Figure 6

Attribute Description

assetld

The version-specific URI that identifies the version of the Knowledge Asset described by this

Surrogate. Should be decomposable into a Keyldentifier

secondaryld

Zero or more business identifiers associated to the Knowledge Asset

formalType

Controlled Term that denotes a subclass of api4kp:KnowledgeAsset, according to a classification

that is based on, or implies, the formal semantics of the work of Knowledge.

Example: dol:Ontology, as in a logic-based axiomatic theory

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_

formalCategory | Controlled Term that denotes a generalized classifier that classifies the Knowledge Asset

Deleted: 1

label A human readable name, possibly contextual, associated to the Knowledge Asset

description A human readable description of the Knowledge Asset. Descriptions are informative and for
human consumptions: they should not be used for Knowledge Processing, and should not be
confused with Knowledge Expressions that use some Natural Language representation

memberOf A reference to one or more collections that this Knowledge Asset if member of.
Note that aggregates of Knowledge Assets should not be confused with Set-oriented Composite
Knowledge Assets

annotation Structured Annotations used to describe Asset/Concept relationships (see section 7.2.5.1)

association Structured Links used to describe Asset/Asset relationships (see section 7.2.5.2)

carriers The association between a Knowledge Asset (Surrogate) and its Knowledge Artifact
(Surrogates), to reflect the association between the described entities

surrogates The association between a Knowledge Asset (Surrogate) and other Surrogates of the same Asset.
possibly including this Surrogate (“self”)

createdOn A dateTime that reflects the moment when the Knowledge Asset was first created, to a sufficient
degree of precision.

7.2.4.2 Knowledge Artifact (Surrogate)

A Surrogate that focuses on a Knowledge Artifact, i.e., any one of the concrete manifestations of a Knowledge Asset,

including Assets that

are Descriptions of other Assets.

Attribute

Description

artifactld

The version-specific URI that identifies the version of the Knowledge Artifact described by
this Surrogate. Should be decomposable into a Keyldentifier

secondaryld

Zero or more business identifiers associated to the Knowledge Artifact

title Human readable, often official, designations associated to the Knowledge Artifact

description A human readable description of the Knowledge Artifact. Could be used as an informative
summary of the Artifact content for human consumption, but should not be used for
processing.

memberOf A reference to one or more collections that the denoted Knowledge Artifact is member of.

locator Any URL where (copies of) the Knowledge Artifact can be acquired

association Structured Links used to describe Asset/Asset relationships (see section 7.2.5.2)

annotation Structured Annotations used to describe Asset/Concept relationships (see section 7.2.5.1)

status Publication Status of the described Knowledge Artifact

createdOn A dateTime that reflects the moment when the Knowledge Artifact was first created, up to a

sufficient degree of precision.

lastModifiedOn

A dateTime that reflects the moment when the given version of the Knowledge Artifact was
created, up to a sufficient degree of precision.

establishedOn

A dateTime that reflects the moment when the given version of the Knowledge Artifact was
published to a Knowledge Platform, up to a sufficient degree of precision.

expressionCategory

A classification of the material/digital form of this Knowledge Artifact, based on the DCMI
(Artifact) Types taxonomy

representation

The description of the syntactic characteristics of the Knowledge Expression carried by the

described Artifact

It is important to remark that publication statuses are derived. Instances of an API4KP KnowledgeArtifact describe

specific and immutable versions of an actual Knowledge Artifact Resource. As the Artifact evolves in terms of quality

and maturity, different versions should be established, and the version tag should reflect the publication status.

In particular:

- Unpublished Artifacts do not “exist” as Resources, and thus do not have a stable version nor a status.

- Draft Artifacts are likely to have “SNAPSHOT” versions, not all of which may be tracked explicitly, which

would be associated to a specific timestamp (“lastModifiedOn”).

- Pre-Published Artifacts versions (aka “Final Draft” or “Release Candidate”) would be tagged with a version

tag that denotes the candidacy status.

32

Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

Deleted: assetld

The Resourceldentifier of the Knowledge Asset that this
Surrogate is about. |

1

secondaryld

Additional Identifiers used to reference the Knowledge Asset
that this Surrogate is about.{

1

name

A human readable label used to designate the Asset that this
Surrogate is about. Names are not, nor should be expected to
be unique or unambiguous.{

1

description

A textual summary of the salient characteristics of the Asset
that this Surrogate is about. This information should, but is
not expected to, be complete and/or consistent with the
Asset.|

1

seoDescription

A description that is expressed in a machine-readable
language, so to support Query operations for search purpose.
Like description, it should be considered informative.

Note: this attribute derives from ‘search engine optimized’
descriptions, where a description is rewritten in a controlled
natural language that can be more efficiently processed by
search engines with capabilities ranging from keyword
indexing to (semantic) NLP.

1

formalCategory

A categorization that is based on formal properties of the
Knowledge Asset, and specifically those properties that
determine the minimum capabilities of a reasoner that
intends to process (any expression of) the Asset.

Example: Assets on the ‘Semantic Spectrum’ vs ‘Rule-
based” Assetsf

1

formalType

A finer categorization that is based on the formal properties
of the Knowledge Asset, and specifically those properties
that determine the kind of reasoning tasks that can be
performed with (a suitable expression of) the Asset
Example: A Vocabulary and an Ontology can both be used
to retrieve the definition of a concept (Description Task), but
a Vocabulary does not usually have enough internal
formalism to be checked for logical consistency (Consistency
Check Task). T

1

role

A categorization of the Asset that is based on its relationship
to other Assets or semantic concepts, which impacts the
applicability of the Asset to certain tasks, and/or in certain
contexts of use by clients.{

1

processingMethod

A categorization that is based on formal properties of the
Knowledge Asset, and specifically those properties that
constrain the kind of reasoner that is expected to consume
(an Expression of) the Asset.{

Deleted: 1]

- Published Artifact versions would have a stable version tag.

Also note that the attribute “establishedOn” allows to differentiate the time an Artifact becomes available to/through a

Knowledge Platform, even if the publication process has not been managed through the Knowledge Platform itself.

7.2.4.3 Knowledge Expression (Representation)

A Surrogates that focuses on the aspects of the formal language(s) used to construct a Knowledge Expression, as the

representation of a Knowledge Asset and carried by a Knowledge Artifact.

As a whole, the Representation metadata correlates to the minimal required capabilities of a Knowledge Platform that i
expected to parse the Artifact content, before it is processed.

Deleted: artifactid

The Resourceldentifier of the Knowledge Artifact that this
Surrogate is about.

1

secondaryld

Additional Identifiers used to reference the Knowledge
Artifact that this Surrogate is about

1

name

A human readable label used to designate the Artifact that
this Surrogate is about.

Names are not, nor should be expected to be unique or
unambiguous.

1

title

An official label used to designate the Artifact that this
Surrogate is about, assigned when the Artifact is published.
Titles are usually, but should not be expected to be,
reflective of the Artifact content.

alternativeTitle

Additional Titles that can be used to refer to the Artifact
1

description

A textual summary of the salient characteristics of the
Artifact that this Surrogate is about.

Commented [SD8]: API4KP-19 This section has been
refined.

The scope has been generally reduced: a diagram is no
longer necessary, and some paragraphs have been removed.

With respect to what is left, the changes have been mostly
editorial

Attribute Description

language Term that denotes the abstract syntax of the (primary) representation language used in the
Expression.
Example: OWL2

lexicon Term that denotes the vocabularies, and implies the Concept Schemes / Ontologies, from which
the Terms used in the Expression have been sources
Example: SNOMED-CT, FIBO as medical and financial ontologies, respectively, providing
terms (denoting concepts) that can be used to construct sentences (axioms) in OWL2

profile Term that denotes a well-known restriction of the primary language, usually trading expressivity
for complexity.
Example. OWL2-RL — a simpler but less computationally intensive subset of OWL2

serialization Term that denotes the concrete syntax used in conjunction with the primary language
Example: RDF/XML, Turtle for OWL2 ontologies

format Term that denotes the meta-format used to define the language’s serialization
Example: The RDF/XML serialization of OWL 2 is based on XML

charset Term that denotes the Character Set used to construct the representation of the Terms, assumed
to be compatible with the serialization
Example: UTF-16, Windows-1252

encoding Term that denotes any additional re/encoding of the serialized expression
Example: “Default” for the given charset; Base64

localization Term that denotes the natural language(s) used in the non-computational aspects of the
Expression

logic Term that denotes the formalism sufficient and necessary to capture the Expression, possibly
associated to the computational complexity of the Expression.

subLanguage Association between a primary and one or more secondary representations. A secondary
representation denotes the language used to construct fragments, which are woven into a primary
expression, usually to decorate, complement or supplement the primary expression.
Example: fragments of MathML injected into a set of OWL2 axioms

role Term that classifies a secondary representation, with respect to a scoping primary representation.
Example: MathML as a (mathematical) functional expression language, extending OWL2

7.25 |Knowledge Resource Relationships

v

Knowledge Resources are related in different ways other than the ‘vertical” Artifact — Asset stack, Surrogates can carry

those relationships, and linked Surrogates form a special kind of Knowledge Base that is at the core of the Semantic
Knowledge Asset Repository APIs.

Relationships can be partitioned in two main categories:

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 33 |

-2 <Resources
' * Knowledge Asset

o ansetia - Rescsseidentitier [1]

alesources
% annotation

£ 1ol Conceptidentiier DIl ER o

g 1ol - Cengepuidemtitier [1]

kmowledgeConient(1.]

aTjers

camepi'l
- wResources
* Kngwiedge Artifact

5 wtifactid : Reseurceidensifier [1]

Cg breemisionCategory | KnowbedgedetilasCategory

T

sumaary
surtrrnyfo. 1]

© 4 Sumemary
£ 1ol - SumemarizationType [1]
5 test - String [1]

"}

Deleted:

Deleted: Figure 7. Relationships Among Knowledge

Resources

|

Deleted: , as shown in Figure 7

)

Deleted: 1

)

e Knowledge Resource to (Domain) Concept relationships

e Knowledge Resource to Knowledge Resource relationships

7.25.1 Resource to Concept Relationship
Knowledge Resource to Domain Concept relationships, also called informally “Annotations”, can be used to highlight

/{D leted: Annotationf

focal Concepts that are part of that Resource’s Knowledge Asset for purposes such as searching and querying.

Semantically, Annotations should be considered as reified RDF statements (“triples”) where the subject is the annotated

Knowledge Resource. Annotations are expected not only to be consistent with the formal semantics of the target

ontology, but also with the business domain semantics.

API4KP Annotations are generally aligned with the Web Annotation Data Model, which should be adopted for more

complex use cases.

Deleted: should

Annotation

Attribute Description

rel A ControlledTerm that denotes the ‘property” that relates the subject Knowledge Resource and
the object Concept. If omitted, the Concept should be considered a “semantic tag”

ref A ControlledTerm that evokes the Concept related to the Knowledge Resource.

description An optional, human readable representation of the referenced concept. Enables the preview of
the annotation without having to dereference the object Concept

target An optional identifier of the Component or Fragment in the source Knowledge Resource that this
annotation more specifically applies to. If not specified, should be assumed to coincide with the
source Resource itself.

7.2.5.2 Resource to Resource Relationship
Related(Resource) is a Link-like data structure that follows the principles of HATEOAS, and is used to establish

Deleted: ref

The identifier of the Concept used for annotation. The
identifier’s URI should de-reference into some target domain
ontology (e.g., FIBO for finance, SNOMED-CT for
healthcare). The ontology itself should be identifiable
through the identifier’s namespace. If the target ontology
supports compositional grammars, the tag MAY actually
contain a post-coordinated expression of primitive tags.
Example: a complex tag expressed using the SNOMED-CT
compositional grammar and SNOMED codes

Example: a DL expression in Manchester Syntax that
structures the (preferred) labels of some OWL classes

associations between Knowledge Resources that are managed using the API14KP. A Related instance should be

considered a reified Statement that points to a target Resource by means of its Jdentifier, ,

Deleted: rel

An optional relationship concept that refines the relationship
between the Knowledge Resource and the concept.
Effectively transforms a ‘tagging’ annotation into a semantic
triple.

Deleted:
Link
Link

Deleted: relationships

Deleted: Link

Deleted: Resource

Related

Attribute Description

rel A ControlledTerm that denotes the specific semantic association between the subject Resource
(denoted by the identifier in KnowledgeAsset or KnowledgeArtifact) and the target (“ref”)
Knowledge Resource. The denoted relationship should be, or be consistent of, a subproperty of
api4kp:associatedTo

ref The ldentifier of the (version of the) target Knowledge Resource

name A human readable designation of the target resource

refType An optional ControlledTerm that classifies the target Resource

refLang An optional code that describes the syntactic form of the target Artifact, when the target
Resource is a Knowledge Artifact

Deleted: , and establishes the relationship between the two

Deleted: Links

Semantically, associations between Resources can be partitioned in 5 sub-categories, and further refined using

hierarchies of properties defined in the API4KP-rel ontology.,

34

Formatted: Font: Bold

)
)
)
)
)
)

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta

Deleted: The Link structure is sub-classed to allow for
bindings to the different controlled vocabularies derived
from the ontologic properties.

Deleted: 1

e Version (Series):
Relationship between two individual Knowledge Resources that are versions of the same Mutable entity, and
are partially ordered in a Series. As such, version-related Resources share essential characteristics such as
subject or asset type/category.
Newer versions are usually meant to replace the older ones. Succession between Assets often implies
derivation from the predecessor version; succession between Expressions often, but not necessarily, implies
derivation.

e Derivation
Relationship between two Knowledge Resources A and B, which implies not only that B was used in the |

intellectual effort of creating A, but also that A exhibits some of the key concepts of B.
A derivative Resource may derive from multiple source Resources at the same time, but derivatives are
generally independent: as a consequence, derivatives are usually not used together with their sources.
Derivation implies that the two Resources are distinct, so they do not need to share key characteristics.

e Dependency
The Dependency of a Resource A on a Resource B implies that the use of A is impacted by the ability to
acquire and use B at the same time. Resources may or may not be distributed together, allowing for late
resolution and binding.
The strength of the dependency, implied by the specific dependency relationship, determines if B is optional
(A can still be used if B is not available), recommended (A can be used
without B, although less effectively) or mandatory (A cannot be used without B).

e Component
Structural relationships are used in the definition of Composite Assets and Artifacts. Resources that are
structurally related cannot be used without each other, and are retrieved and used together. In fact, removing or
even rearranging the components results in a different Resource.
Role
Component Links allow to define the role that the target Resource plays with respect to the subject Resource.
Role is used primarily in the relationships between a Composite and its Components.

e Variant
A is a variant of B if and only if A and B are alternative, distinct representations of the same Knowledge Asset.
In particular, Variance is based on characteristics of the Expression, not the carrier Artifact.
Variance MAY be associated to derivation, especially when a Resource B is obtained from a Resource A by
means of a ‘horizontal” transrepresentation operation.
Note: If asserted between Knowledge Assets, variance implies equivalence.

More details on the usage of relationships in combination with AP14KP operations can be found in Annex A.

7.2.6 Knowledge Carrier |

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 35 |

[Deleted: Derivation

{ Commented [SD11]: API4KP-19 This section has been
AN

refined / updated to reflect the updated datatypes

|

~
{ Deleted: Summary

)

Deleted:

Summarization is a relationship between a Knowledge
Resource A and an anonymous Knowledge Expression that
captures the focal subset of the Knowledge content of A.{
1

\| Citation

(Deleted: 1

(Bibliographic) Citations establish relationships between a
Knowledge Resource A and an anonymous Knowledge
Resource B. Despite not having an API4KP identifier, B is
referenced by means of an Expression in some (structured or
semistructured) bibliographic citation syntax, such as BibTex
or MLAY

/{ Deleted: 1

package services [|5 Carriers Resources Diagram U

wdalaTypes p——

KnowledgeCarrier e
+assetd : Keyldentifier [0.1] e
+rootid : Keyidentifier [0..1] h“BSEITRAa“cr
+artifactid : Keyklentifier (0..1]
+Hevel : Level [1] MLE’.EJE
+href : URL [0..1] .SERIA
+abel : String [0..1] ENCODED

+structType : CompositeStructType [0..1] = NONE
+components : Know ledgeCarrier [0.."] =

+struct : Know ledgeCarriar [0..1) aenumerations
+expression : Any [0.1] | SRMpoR AR UCTRS
+representation : MVECode [1] oM Drtion Bava

TREE
SET
wdataTypes GRAPH

KnowledgeBase

+Kbasekl | Keyldenifier [1]
+manifestation - Know ledgeCarrier [0..1]
+kbaseRef | Pointer [0..1]

wdataTypes
AssetPayload
+asset: Ponter [1]
+carrier : Know ledgeCarrier [0..]
+surrogate : Know edgeCarrier [0..%]

Figure 6. Structure of a Knowledge Carrier

The KnowledgeCarrier structure, given in Figure 8, is the runtime counterpart of KnowledgeAsset. As a Surrogate,
KnowledgeAsset provides information on Knowledge Resources “at rest’. KnowledgeCarrier, conversely, provides
runtime metadata for Knowledge Resources ‘in motion’, as they are processed using the Operations exposed by the
APIs. KnowledgeCarriers are initialized with information extracted from a KnowledgeAsset/Artifact surrogate, and
updated by the same operations that manipulate the carried Knowledge Resource.

v

E‘ «Resources
Knowledge B

£ kbaseld - Pointer [0.1]

menifestation

expression meniestatign0. 1]

expression[1]

H) «Resources
i # KnowledgeCarrier
[artifactid : Resourceldentifier [0..1]
[level - ParsingLevel [1]
[assetld - Resourceldentifer [0.1]
I href - AnyURI[0..1]
[lebel : String [0.1]

sgf0 1] compprent
component[1 7]
struct
l I
£ CompositeKnowledgeCi

g structType : CompositeStructType [0..1
g rootld : Resourceldentifier [0.1]

Deleted:

7.2.6.1 Composite Knowledge Carrier

A Composite Knowledge Carrier is a Knowledge Carrier, and contains Knowledge Carriers, to support computation
with Composite Knowledge Resources. While the components are stored in a flat list, a Composite KnowledgeCarrier
delegates to a dedicated component, a “Struct”, the responsibility of tracking the actual internal structural relationships.

Structs are Expressions, and can be implemented using, e.g., extensional RDF graphs or intensional sequence of DOL

structuring operations. Composite Knowledge Carriers enable the distribution (map/reduce) of operations from the
composite to the components. To this end,,Composite KnowledgeCarrier categorizes the Struct in terms of its topology,

and maintains a reference to the ID of the root component.

(Composite) KnowledgeCarrier

Deleted: <#>assetld

The Resourceldentifier of the Asset of which the carried
Expression is a realization{

artifactld

The Resourceldentifier of the Artifact from which the
carried Expression was extractedy

label

An informative human redable designation, usually
matching the carried Asset’s label

representation

Metadata about the carried Expression

expression

A direct reference to the carried expressionf

href

An indirect reference to the carried Expression, in the
form of a URL where the Expression can be accessed.
Supports scenarios where operations need to be executed
remotely, e.g. because of security or performance
constraints

level

(see Section x on Parsing Levels){

Deleted: uses

Deleted: expressions

\
\

Deleted: the

Attribute Description

assetld The identifier of the version of the carried Knowledge Asset

artifactid The identifier of the version of the wrapped Knowledge Artifact

level The level of abstraction of the wrapped Avrtifact (see 7.2.6.2)

label A human readable designation of the wrapped Artifact

href The URL where the Artifact can be retrieved, if not embedded as “expression”

36 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta

(

Deleted:

Deleted: 1

(D | W

expression The wrapped Knowledge Artifact, at the given parsing Level

representation A (formal) MIME Code that summarizes the representation aspects of the wrapped Artifact

rootld Only applies to TREE-oriented Composite Resources, identifying the “root” component

structType A summary descriptor of the topology of the Composite Artifact, or NONE for atomic Artifacts

struct The representation of the Structure of a Composite Artifact, itself wrapped in a
KnowledgeCarrier. Atomic Artifacts should not have a Struct

components The Components of a Composite Artifact, each wrapped in a KnowledgeCarrier. In the case of
Atomic Artifacts, any attempt to access the Components should return an empty collection, or a
singleton that only comprises the atomic Artifact itself

KnowledgeBase

A structured datatype that acts as a proxy for the manifestation of a named Knowledge Base. Note that Knowledge

Bases are defined as Composite Knowledge Assets, which are manifested as (Composite) Knowledge Artifacts for

computational purposes. A KnowledgeBase structure can either embed the Artifacts, or reference their location

/{ Formatted: Font: Not Bold

/{ Formatted: Font: Not Bold

Attribute Description

kBaseld The identifier of the version of a Composite Knowledge Asset, as a Knowledge Base

manifestation An embedded (Composite) Knowledge Carrier, which realizes the Knowledge Base

kBaseRef A Reference to the (Composite) Knowledge Base, when the Knowledge Base is not embedded.
The Pointer should include a dereferenceable URI, or a href URL, to support the resolution of the
KnowledgeBase content

AssetPayload

A specialized KnowledgeCarrier designed to hold any number of Artifacts and Surrogates which co-reference the same|

Knowledge Asset, thus being mutual variants..

Attribute Description

assetld The identifier of a specific version of a Knowledge Asset

carrier The variant of Artifact(s) that embody the Knowledge Asset version

surrogate The variant of Surrogate(s) that embody a description (“metadata”) of the Knowledge Asset
version

7.2.6.2 Parsing Levels

One important consideration is that, while some operations may conceptually apply to Knowledge Resources at the
Knowledge Asset level, computation can only happen if some kind of Knowledge Expression is involved. Knowledge
Carriers use the notion of Parsing Level to reflect the highest Lifting that the Expression has been subject to. The
parsing level determines the nature of the ‘expression object’ carried by the Knowledge Carrier.

e (Internal Semantic Graph) |

An internal,

private representation that corresponds to an Agent’s internalization of a Knowledge Asset.

Not used by Knowledge Carriers, whose primary role is to facilitate the flow of information between Agents,
including servers that implement the APIs
e Abstract Knowledge Expression
An expression that conforms to the Abstract Syntax of the language used for representation.
The Knowledge Carrier wraps an Abstract Syntax Tree / Abstract Syntax Graph representation of the

Expression

e Concrete Knowledge Expression
An expression that conforms to the Concrete Syntax of the language used for representation
The Knowledge Carrier wraps a Parse Tree representation of the Expression
e Serialized Knowledge Expression
A sequence of characters/symbols that has been generated according to the Concrete Syntax of the language

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_

37 |

Deleted: struct

A Knowledge Carrier that carries a representation of the
internal relationships between the components{
structType

A topological categorization of the internal Struct — Tree,
Set, or Graph({

rootld

The 1d of the component that is the Root/Source of the
Tree/Graph internal structure. The rootld is NULL for Set-
oriented structures.{

Component

The collection of (Carriers of) the Component Expressions.q

Deleted: Abstract

)

Deleted: 1

used for representation.
The Knowledge Carrier wraps a String representation of the Expression, based on a Character Set.

e Encoded Knowledge Expression
A sequence/array/stream of bytes which results from a mapping of the characters/symbols to a binary
encoding.
The Knowledge Carrier wraps a binary-encoded representation of the Expression. The Encoding can be the
DEFAULT Character Set / Binary encoding provided by a platform, but also re-encodings (e.g. Base64),
compressions (e.g. ZIP) and/or cryptographic encodings,

7.2.7 Monads

API4KP monads provide context around (Atomic) Knowledge Resource Objects, ensuring that operations, and chains
thereof, can be applied consistently. Knowledge Representation languages and the tools that process them do not always
support the context information natively because they are not generally designed for use in a hybrid environment. This
gluing information is then provided as part of the API4KP infrastructure. Monad constructors ensure that necessary
information such as identifiers and/or structure is available even when the languages used to express the knowledge do
not support that natively; bindings then ensure that the context is maintained and propagated correctly as operations are
performed on the Resources.

The role of Monads in API4KP can be summarized as follows:

e Monads are used as arguments by the public APIs.
e Monads wrap Resources expressed in a variety of notations, normalizing their use

Monads encapsulate the part of the API4KP specification that does not vary across logics, languages
and serializations

e Monads bind Resources to API14KP atomic actions
Operations, exposed as APIs, are defined in terms of chained, atomic, functional actions

(e}

[e]

Conceptually, several Monads can be defined, each one highlighting a different aspect that concerns every API4KP
operation, regardless of its specific nature and purpose.

7271 Identifiable

Identifiable carries a Knowledge Resource’s ID in context, and ensures that 1Ds are propagated correctly as functions
are applied to derive new Resources. Most operations transform a Resource and require assigning a new ID to the result.
Some operations, however, preserve the identity of its operand(s)

For example, a translation action applied to Knowledge Resource preserves the ID of the Asset, but not the ID of the
Expression, and thus impacts the ID of the Artifact the result will be engraved on.

Constructor:

Identifiable<R,1 a ldentifier>

Dub R 1 | Mint R

Identifiable<R> >>= f

Bind:
Map:
(f
Functions:
getId :
hasId :
newId :
38

preserveldentity(¥) ?
Dub f(C R) getld(R) | Mint f(R)

- S) - (g: Identifiable<R> - Identifiable<S>)
sameAs(R, FCR)) ?
Dub f(R) getld(R) | Mint f(R)

R->1I

R, I - bool
void - I

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

{ Deleted: 1

See also: Identity monad

7.2.7.2 Series

Series tags a Resource with version information, regardless of the actual implementation (timestamp-based, semantic
versioning, incremental, etc.). Additionally, it ensures that version tags are updated properly as functions are applied to
a Resource, depending on the nature of the function. An operation that does not alter its argument should not modify its
version. Conversely, an operation that does not preserve Identity should also always generate a new version for the
product. The new version may be set to an initial value (e.g. “0.0.1”), based on the time of execution, or derived
(functionally) from a combination of the input’s version and the operation.

Constructor:
Versionable<R,V a VersionTag>
=Tag RV | Init R

Bind:
Versionable<R> >>= f
= case:
preserveldentity(¥) -> Tag f(R) getVersionTag(R)
revise(¥) -> Tag f(R) next(getVersionTag(R))
otherwise -> Init f(R)
Functions:

getVersionTag : R - V
hasVersion : R, V - bool
next : V - V

newTag : void - V

See also: Identity monad

7.2.7.3 Trace

Trace maintains the list of (versions of) a Resource, involved in a chain of computations, according to the Memento
pattern. Trace is a specialization of List, which assumes that the elements are ordered.

When applied to Resources, Trace is used to retrieve particular versions of a Resource, as well as to apply Functions to
either a specific version of a Resource, or to the entire chain.

See also: List monad
7.27.4 Carrier
Carrier wraps an Expression with context that contains information about the representation of the Expression itself.

As a monad, it ensures that the metadata is updated consistently, according to the semantics of the action itself. The
constituents of the Carrier are as follows:

Constructor:
Carrier<R>
= Tag R representationinfo
Bind:
Carrier<R> >>= f
= Carrier
fCR)

7 fC R), representationinfo (R))

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 39 | /

{ Deleted: 1

Functions:
representationinfo : R - SyntacticRepresentation

Every action f that applies to Resources must also be implemented in a way that returns (infers, asserts or retrieves) the
representation metadata about the returned Resource. In general, this information is function of the specific f(R) and,
secondarily of the metadata about R

See also: Maybe monad

7.2.7.5 Structure

Structure allows composition of atomic Resources into complex ones, by means of parent/child (tree) and sibling (set)
relationships. As described in the seminal paper2. Structure has two components: the structure itself, a composite
tree/set organization of one of more (specific versions of specific, carrier-wrapped) Resources, and a ‘manifest’
structure descriptor, which is itself a Resource

Constructor:
Structure<T,S,C>
= Empty | Construct (TreeSet T) (Manifest S)
TreeSet<R>
= Atomic R | TreeSet R
Bind:

Structure<T,S,C> >>= F
= case:
Empty — Empty
otherwise — Construct TreeSet f(T) Manifest ¥°(S)
TreeSet<R> >>= f
= Atomic FC R) | TreeSet f(R)

Functions:
flatten : (T, S) - C

See also: Either, Tree monad

7.2.7.6 Explain

Explain wraps a Resource and keeps an ‘explanation’ in context - an additional (Structured) Resource that carries
additional information - e.g. provenance, or proofs - about the main Resource. The explanation is built incrementally, as
operations are chained together, specializing the behavior of the classic Writer monad. Additionally, in case the
Resource (or the Explanation) include variables/parameters, a Bindings structure is used to convey the associated
values.

Constructor:
Explain<S,E>
= Explain S (With b)? (Explanation E)?

Bind:
Explain<S> >>= f =
X « £(bind(S, b))
Explain X
(With subst(b, f7(X)))?

3 https://github.com/AP14K Bs/api4kbs/blob/master/publications/Monad_Trees.pdf { Deleted: 1

40 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

https://github.com/API4KBs/api4kbs/blob/master/publications/Monad_Trees.pdf

(Explanation add(explain(X), E))

In particular, when Explains are chained through operations: i) the bindings are applied to the main structure S, ii) the
associated action(s) are applied to the bound structure to derive the next Answer; iii) as needed, the bindings are
propagated by substitution; iv) the Explanation for the latest action, if any, is incrementally added (structured) into the
current Explanation.

See also: Writer monad

7277 |integration| Commented [SD12]: API4KP-19 This section was
underspecified. Relevant Content has been added

An API4KP Monad integrates Identifiable, Series, Carrier and Explain, and can be extended with Series and Structure.
In the API specification, Knowledge Carriers are used in combination with a Monadic wrapper, Answer, that combines
the behavior of all the API14KP monads. In particular, (Composite) KnowledgeCarrier provides the structural
component, while Answer defines the monadic operations — return/of, bind/map, join/flatmap.

Answer is the same object has been introduced in Section 7.2.7, with the motivation of generalizing web-oriented /{ Deleted: Error! Reference source not found.

operations to other integration patterns.

To support the development of the common API substrate, the following data structures harmonize some of the more
popular, modern API development frameworks, while remaining compatible and aligned with the API4KP functional
approach. Note that the structures are not specific to Knowledge APIs, and thus support but do not assume that the
wrapped / references data is an actual Knowledge Resource.

package services| | %) Contract Resources Diagram])

| % [
Derived from | Derived from ![hl'edl’ =
| hitps:/fjsonapd.org/ https:iiw ww rfc-editor orgirfe/ic TEOT [Reaaived Iroay -

io.znnmwenu.fsnec.m

«dataTypes adataTypes | adalaTypen [sdalaTypes

Answer Issue Event

+id - String [1]

[+source ; URI[1]

i+type : ControledTerm [1]
warrors © lmave (0.7 *detall : String [0..1] +boolean - Bookean [0..1] { +dalaContentType : MMECoda [1)
—_— : 1 1

+data : Any [0..1] +id: Sting[1]
+meta ; Bindngs [0. 1] #instance - URI[0.1

|+data - Any [0.1]

wdataTypes
Links

~ adataTypes
ResultSet

+salf : URL [0,.1]
+ralated : Link [0..]
+first : URL [0..1]
+next : URL {0..1]
+prev . URL[0.1] srumeration Worels
+ast: URL [0..1]

+bindings : Bindings [0..]

oK

INF |

UK | Derived from

WRN | itpsitwe w w w3 org TRisparg!! 1-resulta-json
ERR

Figure 7. General Operation Patterns

Answer

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 41 |

The Answer data structure provides the substrate for the Answer monad.

Attribute Description

data The actual payload — in API4KP, this usually consists of a KnowledgeCarrier

meta Metadata about the execution of an operation. Mostly used for “technical” metadata
supports platform-specific execution contexts. In web-based implementations, this capability
is implemented using HTTP headers

links Server-driven links to drive further interaction

errors Semantic metadata about the execution of an operation. Most often used to report errors and
issues.

Links

Links is a wrapper object that arranges any server-driven suggestion for further interaction with additional resources,

available at the linked endpoints. Links can be paginated

Attribute Description
self A link to the original resource, which generated the Answer containing this supplemental
Links
related The collection of Link objects
first / next / prev / last | Pagination links, used when the ‘related” list is considered too long
Link
Attribute Description
href The URL where the linked target Resource is expected to be available
describedBy A reference to the formal description of the behavior of the linked resource. Can range from
a classifier Concept URI (e.qg. type, role) to the location of a Knowledge Resource that
specifies the nature and/or behavior of the resource.
title A human readable designation of the target Resource
hrefLang A MIME type that describes the syntactic representation of the information retrievable from
the target link
rel A term that denotes the relationship between the Resource just acquired and the linked one.
Issue

Issue is a general-purpose data structure, based on https://www.rfc-editor.org/rfc/rfc7807, which can be used to describe

a variety of operation outcomes, including errors of varying severity. When using Issue, servers should distinguish

between the outcomes of an operation request as opposed to the outcomes of an operation execution.

For example, a request may be successful, but return no information because there is no information to return, which

could be an issue from a client perspective. Likewise, a request to perform a consistency check on an Ontology may

succeed, yet discover that the ontology is inconsistent — a different scenario than one where either client or server was

unable to provide/access the ontology to validate in the first place.

Attribute Description

id An identifier of the Issue instance

instance A reference to the primary individual entity that this Issue is about

title A human readable summary of the Issue

detail A full representation of the issue. May be human readable, or be handled as an embedded
Knowledge Expression

type The identifier of a classifier used to categorize this issue

status The operation request outcome, as a HTTP status code, reflecting the status of the server
from the client’s perspective.

42 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

Deleted: 1

https://www.rfc-editor.org/rfc/rfc7807

severity The operation execution outcome, as a severity level reflecting the server’s perspective on
the client.
FATAL outcomes are expected block the client’s execution; ERROR outcomes require the
client’s intervention; WARNING outcomes expect a client’s eventual intervention; OK and
INF outcomes do not need nor expect the client’s intervention, respectively. UNK(nown)
outcomes are undetermined

cause An upstream Issue, which is considered to be the cause of this Issue

trace An explanation of the issue

components Sub-issues, used as components/fragments to describe this Issue in finer details

I

QueryResults

A wrapper structure that provides context for a ResultSet, returned in response to a Query

/{ Formatted: Font: Not Italic

Event is a data structure

Attribute Description

vars The list of variables for which bindings to result values are provided

link Generic reference to additional information

results The query response, as a matrix of variable bindings.
Specifically, a ResultSet is a collection of Bindings, where each element in the collection
describes a different entity, while each entity is described by a variable Bindings.

boolean The query response, for queries that have a boolean response

Event

that can wrap Event payloads, in line with the CloudEvents specification

Attribute Description

id A unique identifier of this Event instance

source The identifier of the context where the event was originated

type A classifier of the Event

dataContentType A MIME type that describes the format of the event payload. Must complement, or be
consistent, with the dataSchema

subject The identifier of the primary entity that the event is about

dataSchema The identifier of the grammar/schema used to represent the event payload

time The time at which the event occurred

data The payload that describes the event occurrence

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_

43 |

/{ Formatted: Font: Not Bold

Deleted: 1

7.2.8 Operations - General Patterns

In line with the general AP14KP principles, most operations are designed to follow a common pattern, as shown below
in Figure 9.

Triric: Operaion Think: Lamda
Think: Sofwars Component Think: Aigorthm
4 KnowfodgeFlatformComponent | | -+ KnowtedgeProcessingiethod & KnowledgoProcessing Task -+ KnowlecigeProcessingQperator |
| 4 g { ! ! !
 tancuk) - Rescormidontter [1 | K meeroa | Ruscurceldentier |1 [Spem— L ———
+ ki : Resourcakienttes [0, 1 sl capaban]| m— aprias
- g sor] omsot|
n
ypernares
saploystial’| epiree] e S e —

accaptcPagai). 1|

Rescarces
o | PwametDufinitions
ocernParam

Figure 8. General Operation Patterns

API4KP Components are named Software components that implement at least one API4KP Knowledge Processing
Task. The role of API4KP Component can be played by existing knowledge-oriented software, wrapped using API4KP
interfaces, but also dedicated software that implements a variety of different algorithms.

An API4KP Component must provide behaviors that are compliant with the operation semantics defined in the API14KP
ontology of Knowledge Processing Operations (api4kp-ops).

Service endpoints that conform to the API4KP signatures expose the operations to clients as functions. Operators are
the modules that bind the signature to the underlying implementation, and are usually realized with strategies that range
from sub-components to “lambdas”.

The APIs allow for some degree of insight into the Knowledge Platform Implementation.

Discovery

Servers as a whole, as well as individual Operators, can return self-describing resources with metadata and other
descriptive information. Knowledge Platform components — including servers - can use “manifest” data structures to
describe their own capabilities. The manifests include Operator descriptors, which can be used to advertise the specific
operation types provided by the platform component.,

} Commented [SD13]: API4KP-19 This section has been
expanded

Deleted: These descriptive resources themselves are not

standardized, but should extend
api4kp:KnowledgePlatformComponent and/or
api4kp:KnowledgeProcessingOperator.

In particular, the descriptors should use
apidkp:Resourceldentifiers as identifiers, and use standard
references to the concepts in the API4KP ontologies,
including api4kp-ops and api4kp-kp, when describing the
nature of the platform components themselves.

/{ Deleted: 1

/
/

44 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 /

package services| | Service Resources Diagram]J

wcataTypes
Knowledge AssetCatalog

aﬁ‘alﬂ"i'ymn

sitribifes
+sarvantid - Keyﬂaﬂl!mlﬂ
+descripion : 0.1
+kind - Donlrome[o 7
Hrnow ledgePracessingOperator [0.]
smormasal‘l‘ypes DonlmladT |i] %]
: o

+href - URL [0 1]

abtreutes
+servantid : Kwuacmﬂatm

+descry

+Hdnd Damo!ad‘!m[o 21

+supportedLang Jageslw“ Ojnlmlu:lTu‘m [IJ A
+supporedOperators | Know ledgeProcessingOperator [0..7]
+hraf : URL [0 1]

adataTypes

adataTypes

Knowledge Pr.

sttt
+sarvantid Ko\'l:lanli'lar[li e
+descripion : String [0..1]
+kind - Controbed Term [0,,]
+href : URL [D..1]
+dafaultRepository : Boalean [0..1]

attribetes
+operalond : Keyentfier [1]

4description : String [0..1]

+methodd : ControbedTerm [0..1]

+operatoniing em[0..1]
+additionalParameters : Pararmster Definition (0%

«dataTypes
ParameterDefinition

atiriutes

+name : 5‘"‘9[‘])]

:Kfmn String [0..1]
+dafautValue : Typodvaluo [0..1]
+required : Boolean [1] = false

Figure 9. Service Capability Manifests

KnowledgeAssetCatalog

The manifest (summary descriptor) of a Semantic Knowledge Asset Repository Service

Attribute Description

servantld A unique identifier of the server, as a specific implementation of the API4KP specification

description A human readable name and/or description of the server

kind ControlledTerm that denotes a classifier that applies to this server, according to some
classification scheme implemented in a given Knowledge Platform

href The base URL where the server is deployed

operators The additional KnowledgeProcessingOperator that are embedded in the server, augmenting
its capabilities

supportedAssetTypes | The list of Types (Classifiers) of Knowledge Assets that the server has the capability to
process

supportedAnnotations | The list of Property types that this server is able to support as Annotations (Resource /
Concept association)

KnowledgeArtifactRepositoryManifest

The manifest (summary descriptor) of a Knowledge Artifact Repository Service

Attribute Description

servantld A unique identifier of the server, as a specific implementation of the API4KP specification

description A human readable name and/or description of the server

kind ControlledTerm that denotes a classifier that applies to this server, according to some
classification scheme implemented in a given Knowledge Platform

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 45 |

Deleted: 1

href The base URL where the server is deployed
default Flag that denotes a ‘default’ repository, where requests for specific Artifacts should be

routed to, unless otherwise specified

KnowledgeProcessingServiceManifest

The manifest (summary descriptor) of a Knowledge Transrepresentation, Construction and/or Reasoning Service.

Attribute Description

servantld A unique identifier of the server, as a specific implementation of the API4KP specification

description A human readable name and/or description of the server

kind ControlledTerm that denotes a classifier that applies to this server, according to some
classification scheme implemented in a given Knowledge Platform

href The base URL where the server is deployed

supportedOperators The KnowledgeProcessingOperators instantiated by the server

supportedAssetTypes | The list of Types (Classifiers) of Knowledge Assets that the server has the capability to
process

supportedLanguages | The list of Representations of Knowledge Artifacts that she server has the capability to
process

KnowledgeProcessingOperator

The descriptor of any specific Knowledge Processing Operation implemented by a Knowledge Platform component.

While API4KP endpoints differentiate the various Knowledge Processing Tasks structurally, the endpoints are not able

to provide the semantic details of how an operation has been implemented by a specific server. The Operator descriptor,

or extensions thereof, is designed to provide the additional information.

Attribute Description

operatorld A unique identifier of the operator, specific to the implementation (version), but common
across its deployments and instatiations

description A human readable name and/or description of the operator

methodld A Term that classifies the implementation technigue(s) that the operator is based on (e.g.

logic-based reasoning, NLP), up to denoting the specific algorithm, if well-known.

operationKind

A ControlledTerm that classifies the specific type of Knowledge processing operation

consistent with (any extension of) the API4KP Knowledge Operations ontology

Parameters

additionalParameters

Operator-specific parameters that allow clients to further refine the behavior of the server

Several operations allow the client to provide component-specific Parameters.
API4KP parameters are key/value pairs of simple Strings, which are (de)serialized according to the following grammar.

<Parameters> := <Parameter> (“,” <Parameter>)*

<Parameter>

= <Key> “=” <Value>

<Key> := <STR>
<Value> := <STR>
<STR> := \w*

Component descriptors should include ParameterDefinitions — simple metadata objects that enumerate the supported
parameters, and map each parameter to a definition. The definition COULD consist in a Knowledge Asset URI, to link
to formal, machine readable and/or computable definitions.

ParameterDefinition

/{ Formatted: Font: Bold
B Deleted: 1

46 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

Attribute Description

name The unigue name of the Parameter

type The datatype of the Parameter value

definition A human readable definition of the parameter’s purpose, admissible values and general
usage

required If true, the parameter will be considered mandatory. Clients are expected to provide a value,
or a default value will be used, or the operation request will fail.

defaultValue A representation of the value that will be assigned to the parameter, when no value is
provided by the client

Parameters can be used to drive the behavior of an operator, and could be used to refine, but must not extend nor alter
the execution semantics of an operation. In particular, parameters MUST not be used to drive an API4KP endpoint to
provide a function that should be exposed using a different API14KP endpoint.

Content Negotiation

APIs that return Knowledge Artifacts COULD support content negotiation to return variant formats of the resulting
Artifacts, in order to meet client’s preferences.

Given that APIKP APIs use (Composite)KnowledgeCarrier wrappers, content negotiation, when supported, should
distinguish between the format and/or encoding of the wrapper from the language, serialization, format, and/or binary
encoding used in the Artifact itself. The former is usually controlled by the implementation frameworks: over web
transactions, for example, Accept and Content-Type headers are used by user agents such as browsers and REST
clients. The latter should be controlled by the API4KP components. Operations that support content negotiation expose
an optional “extended Accept” parameter. Implementations should distinguish between their (in)ability to support
content negotiation in general (Unsupported), from their inability to handle individual requests (NotAcceptable).

Pagination and Filtering

Operations that enumerate collections of resources COULD support pagination and filtering.

Pagination is supported using optional parameters offset and limit, following the usual semantics of indexing a
Collection, returning resources in the range [offset .. offset + limit]. Default values of 0 and -1, respectively, allow to

access the entire collection.

Sorting and filtering is resource-specific. Unless otherwise specified, sorting is performed according to the timestamps
associated to the resources’ identifiers. The default filter is the null filter, which returns the entire collection.

Operations are performed in the order: filtering, sorting, pagination.

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 47 | /

/{ Deleted: 1
/

API4KP Services

Each of the services mentioned below is fully documented in the OpenAPI documentation that is included by reference
herein. Figure 10 provides a high-level view of the services defined for API4KP.

] Knowledge Reasoning] Knowledge Base Manager
v} 1]
[
! g}
) knowledge Asset Repository e Knowledge Transrepr
W]]
%] knowledge Artifact Repository

Figure 10. API4KP Services

7.2.9 Knowledge Artifact Repository Service

Knowledge Artifact Repositories storage and retrieval of (copies of) digital knowledge artifacts (KA). KARs treat KAs
as black-box binary objects, so there is no limitation nor expectation on the nature of the content, or the requirements to
consume it. However, identity and versioning must be supported. Identifiers must be universal, unique and opaque, so
they MUST be UUID v4 compliant. Version tags can follow different patterns (semantic versioning, incremental
numbering, date/time stamps, etc...). Special considerations involve the deletion of an Artifact. For traceability and
safety purposes, KARs SHOULD NOT allow Artifacts to be deleted in an unrecoverable way. Deletion itself is defined
as making an Artifact no longer accessible to a client (i.e., status 404). A server SHOULD allow a deletion operation to
be undone, e.g., using mechanisms conceptually similar to ‘trash bins', and SHOULD at a minimum keep track of the
IDs of Artifacts that were at some point managed in each Repository. For this reason, a two-phase deletion is
recommended. Deleted Artifacts transition into a 'deleted' status in which they cannot be discovered nor retrieved,
unless a dedicated flag is set. Once in a deleted state, Artifacts MAY be deleted permanently.

The API also supports the (logical) federation of Repositories. A server instance MAY expose different repositories to a
client, who should expect each repository to be independent. Whether these repositories map to actual physical
repositories (e.g., different DBs), folder-like structures or logic tags/collections is left to the implementation.

The same artifact (as defined by having the same ID) COULD be stored in more than one repository, but all copies
MUST be identical to each other

With adequate rights, and if supported by the implementation, repositories can be enabled or disabled. Enabled (resp.
disabled) repositories are (resp. not) available to a client, regardless of whether the (de)allocation of actual resources is
involved at the implementation level.

The Knowledge Artifact Repository Service is fully specified in the AP14KP OpenAPI Documentation / Knowledge
Artifact Repository (https://www.omg.org/spec/API4KP/1.0/KnowledgeArtifactRepository.html).
An overview of the interfaces is provided in Figure 11.

/{ Deleted: 1

/
/
/
/

48 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

https://www.omg.org/spec/API4KP/1.0/KnowledgeArtifactRepository.html

package artfact] |7 artfact | |

HaowledgeArtifact

| et ke A S ac sry kol cebsted : Bookean |11 repostoryd Sunu {1]. arifactid : Sing |11, versiontag : St
| Boolsan , artfactd Slrr\qlll versontag

| +paiKncoledgrarifactarsion(delednd - Raciear, 1 }mmw qumll it netid - Saing (1]
;umwmuwnu\mw Bookan [1], reposdoryd - String (1], arfactd ; Sting (11 v
+uatiincna bedge il ac i arsion] docurment =nmg|1| ropoehoryid - Siring [1], aeifactid | Siring [1], vertiontag - 51

Knowledge ArtifactRe posiory 8] |
S 1)
m S"wlr["'lujl el Repostory [1]
& m
String [1])

st 1.7

¥ 111 i : Sring [1]) ok w:x:;.:miq!

m»mktms‘mn

'%mmmwm:m Slmg“ reposionyid - Sting [1], artfactid - Swrieg [1])
| rcumarknow| 1], repsasitoryid - String [1])
| +celatetnon »U‘su[m Boelnanlu raposioryid amjl‘l arifachd - String [1])

+enablekinow reposioryid - Sirina [1], arifactid String [1))

:W mm m[‘]mm Maqulﬁtromilmla Siring [1], ferkt - indeger [1), artifactid - Swing [1], aftensg : Siring 11, sorl: Sirng [1]. beloretag : String [1]) : PoiverLis! [0..7
| +getLaiestinow ?& an 1], reposioryid © Sing [1] antfactid : Siring (1]) - String [1]

qm-mlqu rwnnnqoﬂ sun;m - S [1]

|+ Enciean |1], repostoeyd © String [1], anfactid - Sirng [
;ﬂmwmwuim amnm,\].drut mu;er[u repasioryid - String [1], m nlrgnrﬂ” FonterList [0.7]

Figure 11. Knowledge Artifact Repository Service Interfaces

7.2.10 Knowledge Asset Repository Service

Knowledge Assets are immutable, versioned works of knowledge that are expressible in any form fit for consumption
by a designated audience. Assets managed through a Knowledge Asset catalog and repository are usually, though not
necessarily, enterprise knowledge assets. In other words, they are assets whose content is endorsed by some subject
matter expert (party), and whose identification and life cycle is managed by an authority that registers them in the
repository. A Knowledge Asset Repository catalogs surrogates carrying the descriptions (‘metadata’) of the knowledge
assets, and can resolve references to artifacts that are carriers of those assets. Knowledge Asset Repositories also
support the discovery of knowledge assets through the same metadata structures. API4KP Asset Repositories are model
driven and semantically aware. In particular, they treat the entirety of the surrogates they maintain as a Knowledge
Base, which may be queried and reasoned over.

The Knowledge Artifact Repository Service is fully specified in the API4KP OpenAPI Documentation / Knowledge
Asset Repository (https://www.omg.org/spec/AP14KP/1.0/KnowledgeAssetRepository.html).
An overview of the interfaces is provided in Figure 12.

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 49 |

Deleted: 1

https://www.omg.org/spec/API4KP/1.0/KnowledgeAssetRepository.html

package ssset]| % asset]J

xaccept : Strng 1], assatid Swu[‘ﬂi'nwmd\;

xacoapt | Sring (11 asseld | String [1], versiontag | Sying [1])« Know leagedssst 1]
o TR B

offaet Ml‘lm Daring [1]. ik - Infeger (1) aftertag : String [1], sort - String [1]. beforetag -”’Wl'” PoirderLit 0%

- Hieger (1, It i 1] + Siring [1]. String [1]. g - St [1]) : PointerList (0.7
gy Ko ledgeda ¥: BndingaLat [0.7]

+BotKncw KdgA s el raiond Bt | Ml‘lm svnnlil muwm Koo egeAsent 1))

KnowledgeAs

- s e o

-mwmmm sn-n;mm.& aniu. lodgeCarier [1]
| ring [11. sssatid [#m Suirg [1]) WMWM m

f = Sring [H g -
:m?’mm amﬂl]iuuu suhg[uETu Sociean [1], u‘l‘nlug String [1] ﬁoﬂwﬂnﬂ(mhﬂgoﬂvmr[l]
+geiComposdeknaw| Strng (1L Samg [mm&m
L+gaito i nlusmmu lontag - S :\cmwum. odgeCarmer 1
-:mw RA B e ar :M MII Iﬂ‘im Sﬂql'?” I‘E“ﬂ L i :
smqmum:sng“;-mm.-n

- Swing 1)
1 L.m Siring [1], antfactversiontg 1], aiiactd : Sirng |.va=u1q-.wr~q|=|] Finow indgeCarmier [1]

 Suing (1, a8 -'a-smlar.mm S [1]): Know losgeCamer 1]
S o 1L L S [[: ekt S 1] - oL 1]
offset hhglrll],-lllh Sting [t l| + Integer 1] aflertag : Siring [1], versiontag : Siring [1] sort : String [1], beforetag : String (1]) - PonterList 0.
Vumroggeted - g 1], off et - bieger 1], avaend Suing [11 bk - beger |1, aetag 361 [1 verakniay - S |1, st S 1] beforstag : g (1]) - FerList 0.
ol hm[\lanﬁf String [1). bkt - intsger [1], aftertag : Strng [1], versiontag : Siring [1], sort : Siring [1) befocetag - Siring [1]) : PorerLst [0.7]
onf ans String (1] sasmplar : St [1], artfacted - Sirieg [1] versiontag .J..;m.

Figure 12. Knowledge Asset Repository Service Interfaces

7.2.11 Knowledge Asset Transrepresentation Service

This API defines "syntactic" manipulations of Knowledge Artifacts, based on the stratified representational aspects of
the Artifacts themselves (Language, profile, syntax/serialization, meta-format, encoding). It supports both 'vertical'
operations (parsing/serialization), which preserve the Asset and the Language, and 'horizontal' operations
(transrepresentations) which preserve the aspects up to a certain level, but map across variants at the same level.

The Transrepresentation Service also exposes detection and validation capabilities: the former is used to infer the
SyntacticRepresentation of a given Knowledge Artifact, the latter is used to validate the conformance of a Knowledge
Artifact with respect to a given SyntacticRepresentation.

The Knowledge Asset Transrepresentation Service is fully specified in the API4KP OpenAPI Documentation /
Knowledge Asset Transrepresentation
(https://www.omg.org/spec/AP14KP/1.0/KnowledgeAssetTransrepresentation.html).

An overview of the interfaces is provided in Figure 12

50 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

Deleted: 1

https://www.omg.org/spec/API4KP/1.0/KnowledgeAssetTransrepresentation.html

package ion [52 L]J

+applyLift[xoccopt ; String [1], kvoltag : Farsinglovel [1), xparams - String [1]. smcrﬂm Know kedgeCarrier [1]) : Know ledgeCarriar [1]
mwm:w Siring [1], leveltag : ParsingLevel [1], xparams : String [1], scurceartifact : Know ledgeCarrier [1]) : Know ledgeCarrier [1]

NarmedLEt| xac smngm leveltag : ParsingLevel [1], xparams : :amn;m, opmnunu String |1), spurceartact - Know ledgeCarrer (1]) mun ledgeCarrier |1)
+applyNamadLow er(aoosnl ring 1], levedag : mhw [1]. xparams : Siring [1], + String [1]. igeCarriar [1]) : KnowledgeCarrier [1
+getLiftOperator{ stmg[ll} . [
vgd.muonm{ Saring [1])

11
ILiftOperators(into . S‘rmm from : Siring {1]) : DeseriaizationOperatorList [0,
-Iisﬂ.mmmi bo : String [1], from : Strng [1])} : DeserializationOperstorLis|

Detect (@)
aperaticn
+applyDetect{ xparams . nn|1| !Kr‘wr wmr;m Know lecgeCarrier [1]
*applyNamadDetect| xparame - no[] I [11 Knox Carrier (1]) Kinow 1
tblmf jor
+ksiDetactionOperators{ into - iring [1]) : Eeimm@emm 110

+geiD -String []) - Doserilzer [1]
WW:SHWH])'D&MWN
g TxCx i ; Siring [I| - Traw 1

g Siring [1]) : Valdater [1]

| +isiDeseralzationComponents(ino : String [1], methodtag : String [1], from : String [1)) : DeserialzerList [0.7]
#istDelectComponents| it : s«mg 1]nmhodhg Siring [1]) : Detectorlist [0..7)

+is{TxComponents| inta : String [1], methodiag : Siring (11, from: String [1]) : TransrepresenatorList [0..7]

+isValdationComponents| methodtag : String [1]. fmm Steing [1]) - 'n"akdalale 0.4

Trans

+applyNamedTransrepresent] xaccep! : String (1], xparame : String [1], - i + String (1), arrier [1]) : Know ledgeCarrier [1]
represent :wsstﬂﬂg I1II xpararms : Strng [1], smma:t Hnow mge.arne-r 1]} : Know iedgeCarrier [1]
o [1

+get] tring {1 1
+Es(TxlonOparators(into : String [1]. from : String [1]) - Trmmswamwamsrlﬂ]

Validate ‘..’I
<applyNamedValdato(xparars - Siring [1], operatork; - Sing 1], R
-+applyValidate(xparams : Slzng[u sourceartifact : Klmleﬂge(‘.vmr[ll]
‘aldal ing [1]) : ValidatianOperator [1]

cperatord :
W aldationCperators(from sung [|]) VaidationOperatorList [0.7]

Figure 13. Knowledge Transrepresentation Service Interfaces

7.2.12 Knowledge Base Construction Service

The KnowledgeBase APIs enable the transition between Knowledge at rest, i.e. Knowledge in the form of Artifacts
stored in a repository and not yet assembled into a Knowledge Base, and Knowledge in motion, i.e. Knowledge Bases
deployed/paired with a runtime engine/reasoner/execution platform that is able to perform computations using that
Knowledge.

The Knowledge Base Management API is inspired by the State monad. Knowledge Bases are incubated within the
server from their initialization, through their construction, until their deployment. As operations are applied to
manipulate the KB, new versions are constructed ensuring reproducibility and traceability. Implementations, however,
are not required nor guaranteed to be transactional.

The API consists in two groups of Operators. Composition Operators allow to construct, incrementally, a Knowledge
Base starting from known named (carriers of) Knowledge Assets. Transcreation operators allow to mutate Knowledge
Artifacts, usually to create transient ephemeral versions which are used to prepare the KnowledgeBase for deployment,
but would not otherwise be treated as Assets.

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 51 |

package know b [_V.“ []J

struct ; , xparams : String [1]) : Know ledgeCarrier [1]
mrmimsm:xmram 31:ng[1| sb‘ucbdemwn Know lecgeCarrier [1]) : Know ledgeCarrisr [1]
arrier [1]. xparams : String [1]) : Know ledgeCarrier [1]

Carrier [1], xparams : String [1]) : Know ledgeCarrierList [D..*]
+iattenAnifacl artifact | Krwledge{:amer[ﬂ xparams : Swing [1]. rootassetd : sumg[lj} Know ledgeCarrier [1]

)

+bind(kbasedd : String [1]. hlndhos Bindings [1]. xparams : String [1]. vmlmhn String [1] } : Fointer [1]
+hishteknow kbaseid : String [1], xparams : String [1])

+exiract| kbaseki - String [1], xparams : String (1], versiontay - String [1], rootassetid : Strg [1]) : Pointer [1]
+ilatien(kbaseid : String [1], xparams : Strng [1], versiontag : String [1]) : Pointer [1]

+getknow ledgeBase(kbaseld | String [1), xparams : String [1], g : String [1]) : Know (W]

+getknow ledgeBaseComponents(kbaseid : String [1], xparams : Sting [1], versiontag Slrlng [1]) : PointerList 0.]

+getknow ledgeBaseManifestaton| kbaseid : String [1]. Xparams : String [1], g [1]) : K dgeCarrier [1]
nies(kbased : String [1), xparams : String |i|] FointerList [0,]

thmmwmm Sulng [I]. Xparans : stﬂngl J.varslnmm Slmg[u} Know ledgeCarrier [1]
+hasKnow lecgeBase(kbasaid | String [1], xparams : String [1], versiontag

Initialcoeponer ledgeCar 3 Pointe
mpoemwld Sklng[iL:pu:llrs Suhglﬂ.warsbn!a:pas?r‘m SW‘%n-rrnerm T

+namedBind{ kbaseid : String [1]. bindings : Bindings |1], xparams : &mg rsnmng - String [1]. operatorid : Stng[‘]} Pointar [1]
+namedExtract| kbaseld : String [1], xparams : String [1], [1 Siring z String [1], - [11) : Pointer [1]
+namedFlatten{ kbaseld : String [1], xparams : String 1], versiontag : Svlng[lhoom'nbrid Sulngilll Pointer [1]
+namedintrospect(kbaseid : String [1), xparams : &mg[l}‘\'mmg String [1]. operatorid : String [1]) : Pointer [1]
+namedSelect(kbaseid : String [1]. selectdefinition : Know ledgeCarrier [1], xparams ; String [1], versiontag : String [1], operatorid : String [1]) : Pointer [1]
+namedTransform(kbaseld : String [1], xparams : String [1]. versiontag : String [1]. operalorid : String [1]) : Poanter [1]
Maseid - Siring [1], aspects : Know kedgeCarrier [1), xpararms Slmy[l] versiontag S|rng[1,,operaond String [1]) : Pointer [1]

+nextknow ledgeBaseVersion(kbaseid - String [1], xparams | String [1] ring [1]) : Know

artifact arriar [1], kbasad Swring [1). xpualrs Stmg [1], versiontag - Slmc [11) : Pointer [1]
+select{ Kbaseid smn].swmm m«mgecarrmm.:pcram Siring (1), versiontag : String [1]) : Poinler [1]

w rrier [1], l‘haaeud Siring [1]. xparams - String [1], versiontag : String [1]) : Pointer [1]
+Hransform(kbaseld . S!.rhg{!],:pm Slmg[1] uumrisg): Merh]
+weave(kbaselc : String (1], aspects : Know ledgeCarrier (1], xparams : Siring (1], versiontag : String [1]) : Pointer [1]
Transcreate O
+applyNamedBind| kbaseld - suing[u Dindings : Bimlgsltl.xpum snmgm wsm String [1], operatorid : String [1]) : Know ledgeCarrier [1]
+applyNamedBindDiract{ artfact - leduemnar[]npm;u_ [|]: KnmladgeCamer[!]
WMMN Stmgﬁl. xparams : String [1], ring [1]. g [1) : String [1]) : Know ledgeCarrier [1]
act : Know ledgeCarriar [1), xparams - 51ring[1| rootassetid S]mg'ﬂ opermlu s]rﬂg[ﬂj anleﬂge@aﬂler“
memw Strirg [1], xparams : Siring [1], vers String [1]. i ing [1]) 1]
+applyNamedintros, artifact : Know iedgeCarrier [1], xpalans 51mg[1|.opermoﬂd ﬂlnng [1|] Knawledgef.‘a’ner[‘l
W Sining [1], xparams : Siring (1], definiion er [1], : String (1], op Sting [1]) : anneugetarrerlﬂ
+applyNamedSekciDirect(artifact | Know kdgeCarrier [1], xmrm String [1], dalmlbun Know ledgeCarrier [1], d : String [1]) - Kr for [1]
WMI&MMW Slmg[l].xpam Slmg vatsnnlug Shnglu operatorid : String [1]) ; Know ledgeCarrer [1]
rier [1], xparams : [1], operatorid : String [1]) : Know ledgeCarrier [1]
Wmﬂewﬂmdd su-.gm. aspoots : Knowbdgcﬁwmrm.:wm String [1], versiontag : String [1], operatorid : String [1]) : Know ledgeCarrier [1]
+applyNamedWeaveDirect{ artifact : Know ledgeCarrier [1], aspects : Know ledgeCarrier [1], xparams : String [1], + String [1]) - Carrier [1]

Figure 14. Knowledge Base Construction Service Interface

The Knowledge Base Construction Service is fully specified in the API4KP OpenAPI Documentation / Knowledge
Base Construction (https://www.omg.org/spec/API4KP/1.0/KnowledgeBaseConstruction.html).
An overview of the interfaces is provided in Figure 11.

7.2.13 Knowledge Base Reasoning Service
The Reasoning APIs that expose the information processing capabilities of Knowledge Platform Components, typically
called engines or reasoners, which are able to apply "knowledge" to "data", in order to derive new information.

Knowledge Reasoning APIs are likely to provide an abstraction layer for the proprietary API of existing engines, but
could also be used to expose engine-less microservices designed to work with individual, named knowledge bases.

The APIs pivot on the notion of Knowledge Base _in motion_, and consider reasoners as operators applied to the KBs.
In this context, Knowledge Bases prepared for Reasoning are also called Knowledge Models, or *Models" for short,

providing a connection to modern Al implementations.
Deleted: 1

52 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

https://www.omg.org/spec/API4KP/1.0/KnowledgeBaseConstruction.html

The binding between the Knowledge Base and the Reasoning service can be implemented in different ways. Patterns
include, but are not limited to,

e Knowledge Bases deployed within an engine backing the server

e Knowledge Bases implemented by the server directly, through manual software development or trans-
compilation process

e References to remote/distributed Knowledge Bases that can be resolved by the server
e Proxies/Brokers/Adapters where the server delegates the execution to another service

The Knowledge Base Inference Service is fully specified in the API4KP OpenAPI Documentation / Knowledge Base
Inference (https://www.omg.org/spec/API4KP/1.0/KnowledgeReasoning.html).
An overview of the interfaces is provided in Figure 11.

package inference | ;;' infarance])

modelid : String [1], versiontag : Siring [1]) : Know kedgeCarrier [1]
+listhiodels{) : PointerList [0.."]

Ol

Reasoning (

+askOuery(modelid : String [1], query : Know ledgeCarrier [1]. :(palare Slmgl!l varsiontag : String [1]) : BindingsList [0..7]
+checkConsistency(modelid : String [1), xparams : String [1], versiontag : String [1]) : Boclean [1]
whedMnhcrshp{mm String [1], modesd : String [1], xparams : String [11, entityid : String [1], versiontag : String [1]) : Boalean [1]
+checkSatisfi rmodelid : String [1], xparams : String [1], versiontag : String [1]) : BindingsLst [0.."]
+checkSubsumption(classid : String [1], modelid : String [1], xparams : String [1], entityid : String [1], versiontag : String [1]) : Bockean [1]
+entais{ polentalconsequence . Know ledgeCarrier [1], modelid - String [1], xparams . String [1], versiontag . String [1]) : Boolean [1]
+avaluate{ features : Bindings [1], modelid : String [1], xparame : String [1], versiontag : String [1]) : Bindings [1]
+infer(features : Bindings [1], modelid : String [1], xparams : String [1], versiontag : String [1]) : Know ledgeCarrier [1]
+istMembership(features : Bindings (1], modeld : String (1], xparams : String [1], entityid : String [1], versiontag : String [1]) : PointerList [0..7]
+HistSubsunptions(modeld : String [1], xparams : String [1], entityid : String [1], versiontag : String [1]) : PeinterList [:l |

Figure 15. Knowledge Base Reasoning Service Interface

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 53 |

Deleted: 1

https://www.omg.org/spec/API4KP/1.0/KnowledgeReasoning.html

Annex A: API4KP Ontologies (normative)

The API4KP ontology is composed by a family of ontologies, that formalize the vocabulary defined in Clause 4 as well
as those introduced in Annex A and that are used throughout the specification. They also drive the generation of the
APIs.

A.l Namespace Definitions

The namespaces and prefixes corresponding to external elements required for use in API4KP are provided herein.
Table A-1 lists the prefixes and namespaces on which API4KP depends that are external to API4KP. Table A-2
provides the namespace declarations required for use of API4KP itself. The prefixes provided in Tables A-1 and A-2
are normative, and their use is required in any conformant extension.

API4KP-23 — Augment external namespaces to incorporate the referenced Commons ontologies and eliminate /{ Formatted: Font: Bold

the use of Specification Metadata

Formatted: Font: Bold

Table A-1. Prefix and Namespaces for referenced/external vocabularies
Namespace Namespace
Prefix
rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.0rg/2000/01/rdf-schema#
owl http://www.w3.0rg/2002/07/owl#
xsd http://www.w3.0rg/2001/XMLSchema#
dct http://purl.org/dc/terms/
skos http://www.w3.0rg/2004/02/skos/core#
cmns-av, Jhttps://www.omg.org/spec/Commons/AnnotationVocabulary/ \(Deleted: sm ﬁ
cmns-cds https://www.omg.org/spec/Commons/CodesAndCodeSets/ Formatted: Font: Not Bold }
~ Formatted: Font: (Default) Courier New, 9 pt }

cmns-col https://www.omg.org/spec/Commons/Col lections/
cmns- https://www.omg.org/spec/Commons/ContextualDesignators/
cxtdsg, /{ Formatted: Font: Not Bold
cmns-dsg, https://www.omg.org/spec/Commons/Designators/ /{Formatted- Font: Not Bold
cmns-id https://www.omg.org/spec/Commons/ldentifiers/
dol https://www.omg.org/spec/DOL/DOL-terms/
Icc-Ir https://www.omg.org/spec/LCC/Languages/LanguageRepresentation/

The namespace approach taken for API4KP is based on OMG guidelines and is constructed as follows:
- Astandard prefix https://www.omg.org/spec/

- The abbreviation for the specification: in this case AP 14KP

- The ontology name (including the module) Deleted: 1

54 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2000/01/rdf-schema
http://www.w3.org/2002/07/owl
http://www.w3.org/2001/XMLSchema
http://purl.org/dc/terms/
http://www.w3.org/2004/02/skos/core
https://www.omg.org/spec/DOL/DOL-terms/
https://www.omg.org/spec/LCC/Languages/LanguageRepresentation/

Note that the URI/IRI strategy for the ontologies in API4KP takes a “slash” rather than “hash” approach, in order to
accommodate server-side applications. Namespace prefixes are constructed as follows with the components separated
by -

- The specification abbreviation: api4kp
- An abbreviation for the ontology name

The namespaces and prefixes corresponding to the normative Application Programming Interfaces for Knowledge
Platforms (API14KP) ontologies are summarized in Table A-2. These are given in alphabetical order, rather than with

any intent to show imports relationships. | /{ Deleted: |
Table A-2. Prefix and Namespaces for the normative ontologies comprising Application Programming
Interfaces for Knowledge Platforms (API4KP)
Namespace Namespace
Prefix

apidkp https://www.omg.org/spec/AP14KP/api4kp/

apidkp-kao https://www.omg.org/spec/API14KP/api4kp-kao/

apidkp-kp https://www.omg.org/spec/AP14KP/apidkp-kp/

apidkp-krr https://www.omg.org/spec/AP14KP/apidkp-krr/

apidkp-lang https://www.omg.org/spec/AP14KP/api4kp-lang/

apidkp-ops https://www.omg.org/spec/AP14KP/api4kp-ops/

apidkp-rel https://www.omg.org/spec/AP14KP/apidkp-rel/

apidkp-series https://www.omg.org/spec/AP14KP/apidkp-series/

A.2 Ontology Overview, /{ Formatted: Font: Font color: Auto

This section provides an overview of the terms, definitions, relationships, and additional logic specified in the
ontologies that make up normative API4KP ontologies.

API4KP Core Ontology

The API4KP core ontology provides a systemic description of the vocabulary used throughout the specification. It
defines foundational concepts including that of a knowledge resource (asset, expression, artifact) and the basic
relationships between them, effectively serving as an upper ontology for the other modules.

API14KP-23 — Replace Figures 16-18 with new figures that reflect the current ontologies (no change to summary
text

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 55 |

https://www.omg.org/spec/API4KP/api4kp/
https://www.omg.org/spec/API4KP/api4kp-kao/
https://www.omg.org/spec/API4KP/api4kp-kp/
https://www.omg.org/spec/API4KP/api4kp-krr/
https://www.omg.org/spec/API4KP/api4kp-lang/
https://www.omg.org/spec/API4KP/api4kp-ops/
https://www.omg.org/spec/API4KP/api4kp-rel/
https://www.omg.org/spec/API4KP/api4kp-series/

* asomealesTrons
[sowestncions | sautClansis |
3 o
/ o

ol l ']

[-m....m.lm---mm‘.i ¥
[

Figure 16. API4KP Knowledge Resource Hierarchy
Figure 16 provides a view of the top-level core elements of the API4KP vocabulary and how they relate to one another.

Many elements that can be expressed using the ontology are either knowledge resources or concepts, where concepts
are the atomic ‘units of knowledge’ that constitute (pieces of) knowledge.
Though many definitions exist, API4KP defines Knowledge as the ‘Cognition (know-what), pragmatics (know-how)
and understanding (know-why) about the nature and/or behavior of something that, when internalized by an agent, has
the potential of generating actions in situations that the knowledge applies to’. The definition emphasizes the roles of
semantics — both formal and domain oriented — in the use of knowledge for cognitive processing.
A knowledge resource, as defined herein, is an ‘immutable, identifiable, versionable entity that is, expresses or carries
some piece of knowledge’. Pieces of knowledge that are deliberately scoped and constructed for communication and
processing are defined ‘works of knowledge’. A knowledge asset is a ‘work of knowledge that is a knowledge resource
considered valuable by a party’. A knowledge expression is an ‘expression of a piece of knowledge in some language,
i.e. using a combination of signs and symbols that conform to the rules of the grammar of that language’. A knowledge
artifact is a “digital or physical object that is specifically constructed to carry one or more (expressions of) knowledge
assets.” In other words, the core “creative work’, in the sense of an FRBR creative work, is a knowledge asset, which
may be expressed in any number of ways, represented by a ‘knowledge expression’, and that may be embodied in any
number of artifacts that carry specific versions of an expression of that asset. In this sense, Assets play the role of
(Knowledge) Content with respect to Artifacts, and Artifacts play the role of Carrier.

T

I e o

| essbtissstts | sutcmasan

ol wowiaste ‘

e

Figure 17. API4KP Knowledge Expression Hierarchy

56 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta

cewnny

EnowledgeResource

[P ——

curcefescnpton carmes
Datal = “comiar]

latal = “ecaladon e daviption]

astpctfopertys ‘

e
| wowiCs
Ereodes

[lasal = “wnesdes inmsis

Deleted:

Knowieage

Babal = el

/ pra—

e = wnew

AbstractinowledgeFspeeasian

1azel = “atarsct

Deleted:

Deleted: 1

Figure 17 provides a bit more context, depicting the various forms that a knowledge expression may take in terms of
variations in encoding and serialization. In order to be embodied into Digital Knowledge Artifacts, usually for
persistence, exchange and processing purposes, Knowledge Assets need to be

e Expressed using the syntactic constructs of a (Knowledge Representation) Language, in the form of one or
more sentences that conform to the rules of the Language’s Grammar

e Further concretized using markup and delimiter constructs, to ensure the unambiguous recognition of the
structure of the expression, enabling the serialization of the Expression

e Serialized into a sequence (‘string’) of symbols (‘characters’) from a given Alphabet
e Encoded in binary form, mapping each symbol to a binary representation.

The dual process of internalizing a Knowledge Artifact leads to the ‘Parsing Levels’: an Encoded Expression is
internalized as a sequence of bytes; bytes are decoded into Characters, to obtain a serialized String; the String is
deconstructed into tokens by, and organized into a parse tree that reflects the structural patterns of the language’s
concrete syntax; eventually, the information content of the parse tree is extracted into an abstract syntax tree (AST).
Semantic systems may further map the linguistic constructs of the AST to (an internal representation of) the concepts
associated to the constructs, creating an abstract syntax graph (ASG) in the process.

ey pin,

srtwscseOh I:;lnc-nm\f-u ersrsscendte _:.';T-.?.Tm'é‘..,'

T
Banichnomiedgebescure
Pabai » e wncutaign mcsese]

- ol = T vty tammeacr] axeizatn

Figure 18. Basic and Complex Resources

Figure 18 shows the distinction between a basic and complex knowledge resource. A basic resource is atomic, i.e., one
that does not have proper parts that are themselves individual knowledge resources. Basic resources can be further
deconstructed into Fragments, usually corresponding to sentences or constructs in the resource’s language, which can
only be addressed in the context of the scoping resource.

In contrast, a complex knowledge resource is one that can possibly be decomposed into proper parts, i.e. parts that can
be assigned identity and treated (recursively) as knowledge resources, typically at the same level of abstraction. A
resource that is actually deconstructed is further considered a Composite knowledge resource. A Composite Resource
always has a special component, which is a knowledge resource itself: a Structuring Component (often called
“Structure’) that establishes the identity, types, roles, and relationships of the Composite with respect to its Components.
In particular, Composites are Homogeneous (vs Heterogeneous) when all the components share the same representation,
and Pure (vs Hybrid) if all the components share the same formal type. While Knowledge Artifacts processed
individually are often Basic resources, non-trivial Knowledge Bases are usually Composite. Knowledge Base
Construction APIs can be used to manipulate and assemble — as opposed to retrieve — Composite Knowledge Resources.

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_

Deleted: *

O ———

trnglampnges

astwetzcet
RasSiructunngCompos:
Patal = as cnniag comos

satersnats
has Saruchar i omporeent
L]

/{ Deleted: 1
/

The additional ontologies included in the normative set of ontologies that comprise the specification build on these
basic concepts.

API4KP Knowledge Asset Type Ontology (KAO)

The Knowledge Asset Type Ontology (KAO) provides a classification scheme for knowledge assets based on the logical
and mathematical constructs used in the formalization of the assets themselves. The classification, in turn, determines
(i) what (knowledge representation) languages are suitable to express the assets, and (ii) the kind of reasoning activities
that can be performed using the assets. In other words, the classification scheme determine what kind of operations can
be performed, and what kind of platform components are required in order to perform those operations.

Notice that this formal classification does not prevent, though may correlate, with other classification schemes such as
ones based on domain-specific semantics. One should also consider that the classification is defined at the Knowledge
Asset level, and thus does not depend on the choice of representation language, setting the basis for the application of
iso-semantic and iso-pragmatic ‘horizontal’ AP14KP operations.

A further corollary is that the choice of representation language may be contingent, and not sufficient, to determine the
nature of the Asset carried by an Artifact. For example, an Artifact that embeds a well-formed OWL expression may not
actually carry an Ontology, in the sense of a logically consistent, semantically correct and pragmatically reasonable
conceptualization of a domain of interest based on a first-order formalization in a description logic. However, one such
Ontology could be expressed in OWL, but also in Common Logic, and the two variants could be translatable into each

other.
API4KP-23 Insert new diagram (no change to summary text) _—| Formatted: Font: (Default) Times New Roman, 10 pt,
Not Italic
aoPpetys
wotecPricenys | [cablinsalfs) I | cautCimalh faubCiasalifs sabCiasalls
isProperPartOf e - 1 - r .
fsratasive i . wwiiasss wowiiasss wowiiasss owiCmss
S [| | [|| [| | [
sAClasslt AsutTasslty wseEllasslt sabliass0rn
T owCiass ‘ T owiiasss ‘
MeiricAswet SemacticAsaet
acat e iowiacpu mar] | | i arcn amar) aoat = s) paoat « i sy
waubliaalils
wawiCiass
Technigee
assbliasalts antClanalits assbCiasallts oaubtCiaaalils
aowiCiasas aowiCianas aowiCianas eoailianss
(vt = “comomont oA ot | fuounomesimoonions | | nsourn sconn emnicns
Figure 19 Knowledge Asset Type Class Hierarchy
Deleted: 1

58 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 /

API4KP Knowledge Platform (KP) Ontology

The Knowledge Platform (KP) Ontology extends the core ontology to specify the nature of a knowledge platform, i.e., a
computing environment designed to host reasoners, rule engines and other knowledge processing capable applications,
and consume knowledge artifacts, and enables specification of the services that such a platform can provide.

The KP ontology distinguishes between (Knowledge Processing) Software at rest, in the form of source code in some
programming language, in transit (packaged for distribution), and in motion - deployed in a runtime environment.

As such, it draws a parallel between “Software Assets” and “Knowledge Assets”, where the former can be considered a
narrow specialization of the latter, but also a ‘meta’ layer that uses knowledge about knowledge processing to create
components that can execute the processing of knowledge.

API14KP-23 Insert new diagram (no change to summary text)

Figure 20 Knowledge Platform Class Hierarchy

API4KP Knowledge Representation and Reasoning (KRR) Ontology

The Knowledge Representation and Reasoning (KRR) Ontology specializes the core concepts to support environments
that provide formal semantics for the operations exposed via the APIs. This ontology builds on several concepts
defined in the DOL-terms ontology, providing a tight integration point between the two standards.

In particular, the DOL notion of institution — a meta-framework that relates logics, languages and mappings thereof — is
used to scope a Knowledge Platform — a set of Components and Operations that support implementations of an
Institution.

API14KP-23 Insert new diagram (no change to summary text)

/{ Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 59 | /

Figure 21 Knowledge Representation and Reasoning Hierarchy

API4KP Language (LANG) Ontology

The Languages (LANG) ontology relates natural languages to formal languages, including, but not limited to, those
used for knowledge representation and reasoning. This ontology complements and extends the OMG’s
LanguageRepresentation (Icc-Ir) ontology, from the Languages, Countries, and Codes (LCC) specification. Figure 19,
below, provides a view of how those relationships work.

While LCC-LR focuses on Natural Languages, the API4KP ontology focuses on Constructed Languages, and in
particular on languages that can be described using a Formal Grammar. A Formal Grammar is a Knowledge Asset that
has formal semantics — for example, based on constraints or production rules, which is used to define and recognize the
sentences of a language. Formal Grammars are usually expressed using a Formal (meta)Language such as the Backus-
Naur Format. Notice that being defined using a Formal Grammar is necessary for the language to be Machine-Readable.
However, it is not sufficient to infer that any, as opposed to all, Expressions in the Language would have Formal
Semantics itself (i.e., to make the Language Machine-Executable). In fact, to have Formal Semantics is a property of the
Asset more than its Expression. For example, consider the elementary sentences “all men are mortal” or “2+2=4": both
are (semantically) formal, despite not having been formalized. This distinction is primarily important from the
perspective of the API4KP Knowledge Reasoning APIs. Because of the possible ambiguity, the use of the term “Formal
Language” is discouraged unless absolutely clear from the context of use.

API14KP-23 Revise existing diagram to reflect changes (no change to summary text)

/{ Deleted: 1

/
/

60 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2 /

Figure 22. Expressions and Languages

API4KP Ontology of Operations (OPS)

The API4KP Operations (OPS) ontology formalizes the notion of a knowledge processing task, providing semantics for
the operations that are exposed by means of the API4KP APIs, including but not limited to access and transformation

services.

API14KP-23 Revise existing diagrams to reflect ontology updates (no change to summary text)

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 61 |

satleasdly sutClasaOfs
owCias o it
fapsdip) (padam)
Jusal » mssiusge mar] Pabal = moutange s

crw i

Language
ILerpusgeleperental
| Dasad = Wargus

ewtClasalls |

| st

I

1
wawiCia
- Langm
(apeig-se
asurCiassl

ANFYaETYe

eswCiasas B M — —
- : i
P Lot

Deleted: @ -~ -------~- s A

Deleted: 1

Figure 23. Knowledge Processing Task Definition
In API14KP, a “Task” is the abstract, conceptual counterpart of an Activity. Instances of the former are intensional and

definitional, while instances of the latter are extensional occurrences that realize the former.
For example, the class of “Translation Tasks” correspond to the set of all Tasks that involve a mapping between two

languages, such as ‘OWL-2 to Common Logic Translation Task (based on a specific mapping)’. The Task is then
realized every time an Operator performs an (instance/occurrence of) Translation Activity, applying the mapping to a

source Artifact e.g., in OWL-2 to generate a specific Artifact e.g. in Common Logic.
Figure 20, above, sets out the relationships between knowledge processing tasks and the roles that various resources

play in those tasks. The conceptual hierarchy of processing tasks is shown below in Figure 21.

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta

62

Deleted:

cewiCiasas
KnowledgeRrocessinghenyin

et = wrawivazs srceming actvin]

ndrapays

esomelsbesroms -mmm,i

™

auCaslh ™
~

Deleted: 1

Deleted:

Figure 24. Knowledge Processing Task Hierarchy

The hierarchy is organized around the various API4KP Services — Repository, Syntactic Transrepresentation, Semantic
Manipulation and Pragmatic Reasoning: in particular, the leaf classes are aligned with the API4KP operations described
in Section 7.

API4KP Relations (REL) Ontology

The API4KP Relations (REL) ontology focuses on relationships between knowledge resources. These relationships are
reused in a number of the subordinate ontologies and their usage is further exemplified in the set of informative
ontologies that demonstrate how these ontologies can be used in an application environment. The ontology does NOT
cover other relationships between knowledge resources and other Things such as concepts (“‘aboutness’) or
activities/agents that impacted the lifecycle of the resource. The upper concepts of the REL ontology are composition,
derivation, variance, versioning, and dependency.

Versioning allows us to control mutability (and thus reproducibility) across chains of operations, even if (specific
versions of) knowledge resources are considered immutable; Composition and Dependency impact the Knowledge Base
Construction operations, defining tight and loose couplings between Components; Derivation and Variance are asserted
as a consequence of Transrepresentation Operations, depending on an operation’s characteristic of (not) preserving a
Knowledge Asset while manipulating its Carrier.

API4KP Series (SERIES) Ontology

The AP14KP Series (SERIES) ontology extends the core API4KP ontology to incorporate notions of snapshots and
versions of knowledge artifacts as they change over time.

API14KP-23 Insert new diagram (no change to summary text)

Deleted: 1

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 63 | /

Deleted: 1

64 Application Programming Interfaces for Knowledge Platforms (API14KP), 1.0 —-Beta

Annex B: API4KP Knowledge Architecture
(informative)

This Annex provides background and insight on the practical applications of the concepts defined in the API14KP
ontologies, providing insights on the relevance and scope of the related operations.

B.1 Knowledge Artifacts ‘as Software’

Knowledge Artifacts are Carriers of Knowledge Assets, and Knowledge Reasoning APIs expose the behavior of
Components that process those Knowledge Assets. In between the Acquisition — whether by Knowledge Representation
or Machine Learning — of the Assets and its Execution, the Knowledge is Stored as a binary Artifact, and exchanged as
an Expression.

This process is similar — and arguably a generalization — of the common workflows adopted in the development,
distribution, deployment and execution of traditional ‘Software’ — imperative algorithmic Knowledge expressed in a
Programming Language. Knowledge Assets are usually expressed more declarative languages, and executed by means
of dedicated virtual machines optimized around the formal nature of the Assets.

The analogy may drive the use, and possibly facilitate the adoption/integration, of API4KP compliant interfaces:

e Artifact Repository = Software Repository

e Asset Repository > Package Management System

e Transrepresentation = Validators, Compilers / Transpilers
e Knowledge Base Construction - Assemblers

e Reasoning > Interpreters

As a consequence, the implementation of API4KP components should leverage well known notions from the theory of
compilers, in parallel or addition to the foundations of ‘reasoning” algorithms such as RETE (for production rules) or
Tableaux (for description logics). In particular, the former become a key element of an API4KP architecture when
dealing with hybrid platforms, where there is a many-to-many relationships between Assets, Languages used for the
Expression, and Components used for the Execution thereof.

The primary distinctive element of a Knowledge Artifact, besides its specific Asset content, is the Language used in the
embodied expression. Knowledge Artifacts that are the product of explicit Knowledge Representation endeavors have
formal semantics, and are expressed using formal languages, making the Artifact machine readable and executable.
The choice of language may correlate to the formal type of the Asset, thus determining what kind of operations can be
performed with it.

Two additional dimensions involve portability and shareability. Portability, the ability to execute a Knowledge Asset
across different Platforms, depends on the ability of the Execution environment of providing valid, meaningful values
for the Asset’s open variables — inputs and parameters —, as well as the ability to resolve dependencies, both early and
late bound. Dependencies are discussed in further detail in Appendix B.2

Shareability, the ability to lift a Knowledge Artifact and interpret its Asset content with equivalent results across
different platforms, depends on whether the different environments share a common ontology, as well as a common
language. Grammars (abstract and concrete) are necessary to recognize the patterns and the structure of the Expressions,
enabling the mapping of the syntactic constructs to the proper concepts (“interpretation”). Formal concepts are usually
expressed by keywords of the language, while domain concepts are expressed using terms from a Vocabulary which
must be bound to the common ontology. Furthermore, to enable communication on a (digital) medium, the sentences
that constitute the Expression must be serialized using characters from a known Alphabet, and encoded — usually in
binary form.

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 65 | /

{ Deleted: 1

For this reason, mereologic syntactic categories (grammar), topologic patterns (serialization), terminology (vocabulary),
symbols (alphabet) and encodings are all syntactic constructs that must be acknowledged in order to lift a Knowledge
expression, and interpret it as a Knowledge Asset. These elements constitute the ‘core syntactic metadata’ used in the
KnowledgeCarrier wrappers used by the APIs, and correspond to the “vertical’ parsing levels also stated in the
KnowledgeCarrier, and used by the Operations.

This perspective is further complicated when certain categories of Languages are involved:

e Embedded Languages
Multi-lingual expressions are Expressions that use more than one Language for different Fragments. It is
common for one Language to be the primary language, and the Expression would be parsed according to the
Grammar of that Language. This main Grammar would then support ‘Island’ sub-languages in specific
positions. Expressions in this sub-language become Embedded in another Expression in the primary language.
Multi-lingual Artifacts are likely Carriers of Complex Assets, and may have to be processed as Composites
(see Section B.2).

e Markup Languages
Fragments in a markup language wrap, rather than being embedded, Fragments expressed in a different
language within the context of the same Artifact. Markup languages can be used to supplement another
language, enriching its ability to provide structure (syntactic markup), semantics (annotation markup) or
facilitate the recognition (presentation markup) of Expressions in the target language.

e Meta-Formats
(Not) “Languages” such as JSON, XML, YAML, and possibly RDF (but not RDFS!) have grammars which
exist solely at the concrete syntax level. For example, parsing XML produces a tree whose semantics is
completely determined by the interpretation of the element/attribute names and values, which are part of a
Vocabulary that is late-bound to the specific Expression.
Notice that Schemas, instead, count as Grammars.

B.2 Complex Knowledge Resources

In the simplest of use cases, Knowledge-Based System deal with individual Knowledge Expressions, that realize a
single Intellectual Work, having one Piece of Knowledge as subject, serialized using one concrete syntax, and engraved
into one Artifact that is an exemplar of a Native Carrier.

Example: a plain, single XML file that contains the XML serialization of one BPMN business process. As a Knowledge
Artifact, it carries a Representation that expresses a model (the Intellectual Work) of how a loan approval process
works (the Piece of Knowledge). The model is simple enough to be captured by that single BPMN expression carried by
that file.

Real scenarios, however, involve more variety and complexity. For example, Knowledge Artifacts that are analogous to
‘libraries’, ‘collections’ or ‘anthologies’ may carry more than one Expression. The same Expression may require two or
more Artifacts to be carried, each one carrying a Fragment of the original Expression. An Expression itself may be
composite of multiple parts, which are themselves Expressions (or Fragments thereof), realizing some (Complex)
Intellectual Work.

In general, there is a many-to-many relationship between Artifact and Expressions, a many-to-one relationship between
Knowledge Expressions and (Atomic) Works of Knowledge, and a many-to-many relationship between Knowledge
Expressions and Complex Works.

Structuring

API4KP ‘Transrepresentation’ and ‘Knowledge Base’ operations allow to (de)construct this complexity. The purpose of
this section is to provide guidance on when and why to use the operations.

66 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

{ Deleted: 1

/

Within this document, the term ‘aggregation’ will denote the combination of two or more entities of the same type into
a collection thereof. The term ‘union’ denotes the combination of a collection of two or more entities of the same type
into a new, distinct single entity of that type.

The term “‘composition’ denotes the extension of an entity by means of another entity, which does not need to be of the
same type. A composition is ‘complex” when the different parts remain identifiable, and play a specific role. ‘Injection’
is the act of combining two composite entities into a single one: the injected entity becomes a part of the entity it is
injected into, and the latter becomes an ‘extension’ of its new component.

Composition is based on a parent/child part-of relationship, while aggregation defines an implicit container of which the
elements are member-of, and siblings to each other. Aggregation and Composition are ‘structuring’ operations: the
elements remain separate, but their inter-relationships are described in an additional, separate ‘structure’ entity, which
can be conceptualized by means of a named, directed graph that states the actual relationships.

‘Merging’ or ‘Fusion’ denotes the general operation of combining two or more entities into a single entity, in terms of
union and/or injection. ‘Assembly’ or ‘Flattening’ is the act of merging entities based on the specification provided by a
structure. Note that after an assembly is performed, it may or may not be possible to discern the original components.

For each one of these operations, an inverse can be defined. ‘Deconstructing’ - either by ‘decomposition’ or
‘disaggregation’ - is the operation by which a structure is superimposed on an entity, to identify proper parts which can
be separated. In particular, a collection can be partitioned into its individual members, while a component can be
extracted, removing it from its composite parent.

‘Disassembling’ is the act of breaking an entity into a set of smaller entities, based on a destructuring.

Notice that the operations are defined on resources, atomic or not, and can be used recursively. These concepts apply to
any Knowledge Endeavor. Because the API4KP specification focuses on Knowledge Expressions, the APIs expose
these operations at the Expression level.

Formally*:
e Construct:
o Aggregation(Xy, ..., Xp) => < { X, .., Xn} >
o Composition(X, Y)=><X[Y]>
Fusion:
o Union(Xy, ..., Xp) =>X
o Injection(X, Y)=>X[Y]
e Deconstruct:
o Disaggregation(X) =><{ Xz ..., Xn} >
o Decomposition(X)=><X[Y]>

e Separate:
o Partition({ Xy, ..., Xa }) => Xy, ..., X
o Extraction(X[Y])=>X)Y
o Removal(X[Y])=>X][]
e Flatten(Xy, ..., Yn< X1, ..., Yo>)=>Z
m = Fusion(*, Structure(*))
e Disassembly(X, < Xi, ..., Ya>)=> Xy, ..., Ya

m = Separate(X, Deconstruct(X))

In order to understand the principles behind the “structuring’ operations, one has to consider three major elements: (i)
tree- vs collection-orientation, (ii) analysis vs synthesis and (iii) inverse operations.
1. Expressions in a knowledge representation language are usually collections of sentences. Sets treat members as
individual peers, which can be added or removed with limited syntactic burden. Each sentence, on the other
hand, has an internal structure and can be modelled using an (abstract syntax) tree. Because of the mutual role,

4{} denotes set aggregation, [] is used for tree composition, and <> for structuring - combinations of trees and/or sets

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 67 | /

{ Deleted: 1

elements of a composition must be compatible with each other, and even at the syntactic level, a component
may only fit specific positions within the parent element.

2. Astructure, which can include atomic elements as well as their set/tree sub-structures can be identified /
defined without actually (dis)assembling a new Expression. However, the structure may be actually used,
sooner or later, as a blueprint.

3. For each operation, an inverse operation is defined. Notice, however, that operations are not functions (e.g. an
Expression can be Destructured in multiple ways).

The definition of the “structuring’ operations is transparent with respect to the actual syntax, semantics and pragmatics
of the composites and components, but some constraints are imposed nevertheless.

Set-oriented structures are used for Expressions where multiple ‘sentences’ (fragments) can be identified: e.g. OWL
axioms in a OWL ontology, or RuleML rules in a RuleML rulebase. Likewise, Tree-oriented structures are used to
manipulate individual sentences, typically by adding a term to a fragment, or expanding an existing one. Examples
include replacing an occurrence of a named class in an OWL axiom with its equivalent class expression according to
some ontology; composing a BPMN workflow model with one or more DMN decision models that specify some of the
decision tasks in the workflow.

Dependencies

As previously noted, the purpose of a Work of Knowledge (WoK), atomic or complex, is to select and prepare a Piece
of Knowledge (PoK) in a way that can be utilized, usually for representation (eventually aimed at communication)
and/or reasoning. The atomic PoK is usually called ‘concept’, stressing it role as an abstraction that depends on some
intelligent agent, or ‘representational unit’, emphasizing its potential role as the subject of a WoK.

Example: The minting of a new term for a Concept is possibly the simplest WoK. The creation of a Definition of a
Concept is a WoK. The combination of the two acts is also a WoK.

While it may be possible to agree on an objective definition of atomic PoK, the notion of ‘atomic WoK’ is more
arbitrary and depends on the intent of its creator. It is more interesting to analyze a WoK in terms of the boundary
relationships between concepts included in the PoK that is the subject of the WoK, and the concepts that are not, but are
pre-required to understand the WoK itself and internalize the Knowledge it conveys.

A Work of Knowledge is Plain if it captures a Piece of Knowledge that, in order to be understood by an Agent, pre-
requires only Common Knowledge: i.e. knowledge that every agent possesses, and that every Agent can expect other
Agents to possess. Otherwise, it is Profound: it pre-requires additional non-trivial, possibly expert, knowledge to be
understood completely. A Plain WoK can play the role of Elucidation if it elucidates a Profound WoK: that is, their
composition is a Lucid Work. In this case, the elucidation creates a bridge between the advanced Concepts in the
Cryptic WoK and simpler Concepts.

The ‘Common Knowledge’ that allows to distinguish between Lucid and Cryptic works can be absolute, but is more
likely to be scoped by a business domain, leading to the notion of Domain-Specific Common Knowledge, proper of any
(Domain-) Educated agent that is capable of conducting business in that domain. Agents that possess Knowledge about
a Domain that is not Domain-Specific Common Knowledge are often called Subject Matter Experts - or SMEs.
Example: the distinction between ‘procedures’ and ‘surgeries’ is common knowledge for healthcare workers. A senior
surgeon would possess Subject Matter Expertise on the topic.

Sometimes, a WoK is deliberately framed in a way that makes them Plain for SMEs, but Profound for anyone else.
Educated Agents may require some kind of Elucidation, but the work may be simply too complex for anyone else
without formal education on the subject.

Example: a lecture in an advanced course, that has some prerequisite courses.

This kind of Expert Work of Knowledge, i.e. a WoK that is targeted to SMEs, requiring additional knowledge that is
contained not in the WoK itself, is often designed to be more portable, since it leaves more degrees of freedom of
interpretation, but may do so at the expense of shareability, since it is generally understandable by a much smaller
audience.

68 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

{ Deleted: 1

/

Example: a recipe of the traditional Bolognese Lasagna, which takes for granted the recipe of the Bolognese Sauce.

A chef versed in the traditional cuisine would be able to follow it, possibly using their own interpretation of the sauce -
e.g., using a variation without tomato for people with allergies. A chef that is not an SME would need to find the recipe
of the Sauce first. Other agents would go to a ‘rosticceria’ and buy a tray.

Given the arbitrary nature of the boundaries of a WoK, and that complex multi-part works can be assembled into a
single one, we will initially discuss the relationships between a single WoK, its requirements in terms of other PoKs,
and the Expressions that realize it.

For every atomic WoK, there is at least one Expression of that WoK in the (Natural) Language of its author. This
Expression, whose original Carrier is named ‘Manifestation Singleton’ in the FRBR-OO terminology, is generated as an
outcome of the initial creative Work. That WoK is based on Concepts (and thus knowledge) that the authors possess,
new concepts the author may have defined in terms of more primitive ones, and the overall creative organization that
results from the Work. That expression is a Knowledge Resource that can be translated (interpreted and expressed
again) into other languages as needed. In particular, the Expression can be destructured and then disassembled into
parts, and each part translated into different languages, as long as the structure is preserved. Each part is either an
Expression of its own - if it can be considered the expression of some WoK (regardless of the explicit intention of the
author) - or a Fragment thereof.

Example: destructuring a narrative, identifying the description of a landscape. Later, the narrative is disassembled, the
description is replaced by a drawing (written language -> pictorial language translation), and the resulting
composition is reassembled.

Example: decomposing a narrative that expresses the combination of an ECA rule that triggers a business process, and
the specification of that business process. The rule is then translated into RuleML, the business process specification
into BPMN, and the two resulting Knowledge Expressions are recomposed.

When such a WoK is decomposed and its constituent parts are extracted, it is usually still desirable to maintain the
structure explicitly, to preserve the overall expression of WoK itself. A (composite) Expression A ‘imports’ another
(component) Expression B that resulted from such a separation. More specifically, an Expression A ‘includes (by
reference)’ another Resource B if B is explicitly expected to be injected into A. The separation allows for reuse of
Expressions, so that an author does not to have to express the same knowledge again, when it is shared across Works.
Import relationships can be distributed and inlined explicitly in the Expressions, but also expressed in a separate
‘structure’ Resource.

Example: an OWL ontology A that imports a different OWL ontology B.

Example: an empty OWL ontology C whose only purpose is to import the OWL ontologies A and B, which are otherwise
unrelated.

Example: a clinical decision support (ECA) rule that imports a cohort definition to limit its applicability to a specific
class of patients.

Imports/inclusions preserve the integrity of a WoK even when its Expression is decomposed. In the case of Cryptic
WoK, however, the integrity is not guaranteed. For simplicity, we define Cryptic Expression a Knowledge Expression
that expresses a Cryptic Work of Knowledge. A structure that defines the disassembled Expression of a Work of
Knowledge without fully specifying the imports between the components results, when reassembled, into a Cryptic
Expression®. This scenario can arise when a WoK is originally devised for an expert audience, and the author
deliberately chose not to communicate parts of the Work which are taken for granted, or when some parts of the
Expression of a Lucid Work are removed.

It is important to remark the distinction between a Representation the author chose to express Knowledge that is part of

SSince the author’s WoK is not fully represented, it is not trivial for a consumer Agent to understand the entirety of what
the author wanted to communicate, for the simple reason that they would not know when there was anything else to
understand.

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 69 | /

{ Deleted: 1

their original WoK, any other representation that expresses equivalent Knowledge (or the same Knowledge in an
equivalent way), and an expression that the recipient would be able to incorporate to better understand the Work, but is
not part of the original Work. In the first scenario, a Representation C would include a named Representation B. In the
second, Representation C would import either named Representation C, or any member of a class of Representation B*
that meet some criteria. In the third, a Representation C would be used to elucidate C. A Representation C requires
(depends on) either a named Representation B, or any one member of a class thereof, for the purpose of fully
expressing the author’s WoK. This relationship is defined to support constrained, and/or late-binding compositions.
When an actual Representation B is chosen to fill the dependency, C builds-upon B. C safely builds-upon B if the actual
composition of C and B is coherent and consistent. Notice that, by definition, builds-upon further generalizes the notion
of import, which is used to assert static dependencies.

Any Representation that is a candidate to fill a dependency of another Representation C (i.e. a Representation B that is
of a type that C and such that C can safely build upon B), or any Representation that can elucidate C is compatible with
that Representation C. Compatible representations used that are structured with C become supplements or
complements. Complementary resources improve the accessibility when available, supplemental resources reduce the
accessibility when not available.

Example: A clinical decision support rule recommends immunization against pneumococcal infections for asplenic
patients. Based on the scope of the author’s WoK, that rule requires some (unspecified) definition of ‘asplenic’ patient,
but is compatible with any business process for the choice, scheduling, and administration of an actual immunization
procedure. When the particular cohort definition and the process specification are chosen, the rule will build upon
them.

Expressions, including Representation Fragments and Structures, are carried by Knowledge Artifacts. An Artifact may
carry one or more expressions. If an Artifact carries all the Representations that compose a Structure, the implicit
Representation that results from its assembly is self-contained within the Artifact. Conversely, if an Artifact A does not
carry an imported Representation, which is instead carried by a different Artifact B, then A depends on B.

More generally, an Artifact A depends on a (singleton) class of Artifacts B when (i) A carries an Expression R that
needs a named Expression S carried by B, or (ii) A carries an Expression R that needs am Expression that expresses
some (Work of) Knowledge that is required by the (Work of) Knowledge realized by A.

Conversely, an Artifact B is linked to an Artifact A when B carries an Expression that is used as a supplement or as a
complement for some Expression carried by A.

Structures

Structuring is the act of identifying the components of a (Complex) Resource, and their mutual, functional relationships.
Structures can be are either synthetic or analytical. Analytical structures are identified on pre-existing Resources,
while synthetic structures are created in the process of assembling complex Resources. Analytical structures are further
classified into explicit or emergent: the latter are superimposed on a Flat(tened) Resource by means of a de-structuring
operation, while the former can be immediately identified as part of a Structured Resource.

Regardless of their origin, Structures are Knowledge Expressions themselves: they can be identified, versioned, and
need a language equipped with a concrete syntax in order to be expressed.

One should distinguish between descriptive (aka assertional, extensional) and constructive (aka operational,
intensional) expressions: the former defines what a structure is, while the latter describe how to create one. There is a
dual relationship between the two approaches: the assertion of a relationship between two Resources in a descriptive
structure can be considered the product of the execution of an operation prescribed by a constructive representation of
the same structure.

Example: A descriptive representation of a structure, conceptualized as a graph of dependencies between resources,
can be expressed using RDF, leveraging some of the relationships in the API4KP FRKR ontology.

Example: A constructive representation of a structure can be expressed using the OMG DOL language.

70 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

{ Deleted: 1

/

Any language used to express a Structure must, at a minimum, support (versioned) identifiers and either relationships or
relator operations. A Structure is (i) closed if every component Resource can be identified and resolved univocally, and
(ii) deterministic if it is closed and the assembling of those components is functional, resulting in one and only one
Resource.

In particular, openness may arise from:

e Openness by version: A structure that identifies the components, but not their specific version. Instead,
versions are either not specified, or specified in terms of a version interval, bounded or not.
Example: An OWL ontology o: that imports the latest version of the OWL ontology
http://omg.org/spec/apidkp/FRBR-KR

e Openness by resolution: A structure that denotes particular components by means of references that are not
identifiers, such as names.
Example: An OWL ontology o; that imports the API4KP FRKR ontology.

e Openness by definition: A structure where relationships/operations are not referencing particular Resources,
but classes thereof, defined intensionally
Example: An OWL ontology o; that imports any other one ontology O, such that “O, defines the notion of
Knowledge Resource*, of which the API4KP FRKR ontology is a fitting candidate.

B.3 Identification and Versioning

Identification
Identifiers

The API4KP specification uses URIs as identifiers. URIs are commonly supported even beyond the scope of the
(Semantic) Web, and most identifier schemes can be cast into some URI forms. Implementation might substitute other
identifiers as long as they support the following properties. That is, an Identifier MUST support

e Universal Scope: Identifiers must be globally unique

e Namespace support: Identifiers must be decomposable into the combination of a namespace and a locally
scoped identifier

e Support for Fragments: Fragments are used as ‘anchor points’ to identify parts of an identified entity that are
not entities themselves, and as such are not independently identifiable
Example: Knowledge Fragments within an Expression carried by an Artifact

e Decomposable Versioning: Identifiers must support the identification of an entity within a series. (See
Versioning)

An Identifier SHOULD also support the following:

e Uniqueness: Each entity should have one canonical Identifier, even if an entity is allowed to have multiple
Identifiers. An Identifier MUST still denote at most one entity, and SHOULD denote exactly one entity.

e Transparency: URIs can be transparent or opaque, even if evidence recommends the use of at least one
opaque URIs [add refs].
(A transparent Identifier is such that information about the denoted entity can be inferred from the structure of
the Identifier. Example: ex:person-123 likely denotes a person)

e Persistence: Identifiers that have been assigned to an entity should never be retired.
Identifiers of ‘social” entities, such as a Knowledge Asset, MUST be persistent.

Identifiables

Every entity in API4KP is identified by means of a URI. In particular, Intellectual Works, Expressions (abstract and
concrete) and Carrier Artifacts are each assigned a persistent identifier. Even if the identifier of an abstract entity (e.g., a
Piece of Knowledge) cannot be dereferenced to the entity itself, it can be associated to the concept of that entity,
metadata about that entity, or used to establish relationships to/with other entities. For example, the URI of a Piece of

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ |/

{ Deleted: 1

/

Work is used to correlate different Expressions of the same Work, and to reference semantic metadata that describes the
subject of the Work.

It is important to remark that even abstract entities such as Intellectual Works must be identified. The distinction is
important, for example, to be able to distinguish between an algorithm and its implementations (e.g. in Java) across
copies of the source code, or to express the fact that an OWL ontology and a Common Logic theory are different
formalizations of the same ontology.

Identification
Each entity type shall be equipped with a principle of identity and, optionally, a principle of equality.

(The actual choice of principles is beyond the scope of this specification. It is noted that the matter is a subject for the
debate in philosophy as much as in computer and information science. As such, the following definitions should be
considered non-normative.)

In general, each entity (type) possesses essential (‘genotypical’) qualities that remain unchanged from the moment the
entity is created until its destruction, and contingent (‘phenotypical’) qualities that may change over time, resulting in a
new version of the same entity. Furthermore, qualities can be observable if it possible to determine their value (‘quale’)
for a given individual entity. The type of an entity is associated to a set of essential qualities (and behaviors) that an
entity must possess. The exact relationship between type and qualities varies: for example, ‘duck typing’ goes as far as
stating that the type is defined by a set of qualities.

An entity comes into existence at a given point in space and time, in time remains the sameAs itself across all the time
its essential qualities - including its type - remain unaltered, and is destroyed as soon as any one of them changes.

An entity is (perceived to be) identical to another entity if they share the same type and all its (observable) qualities
have the same values. An entity is identical to the same version of itself, and two distinct entities, i.e., two individuals
that are not the same, can still be identical for as long as they share all the same property values, but can occupy
different portions of space and time. Consider for example, twins, or copies of the same book. Furthermore, two entities
are equal, according to some criteria, is a certain common subset of their (observable) qualities share the same values.
Two entities are equivalent (to a degree) if there exist a (non-boolean) criterion that allows to determine whether two
entities are equivalent or not, and that criterion holds true for that pair of entities. Notice that equivalence is not
necessarily based only on the qualities of those entities. Finally, two entities are considered equipollent if they can be
substituted (i.e., they can be used interchangeably) in some activity to yield the same effect.

Example: based on these principles, a file that carries an OWL/TTL ontology remains the same until it is deleted, and is
(byte-wise) identical to itself all its copies until it is changed and saved onto itself, resulting in a new version. It is equal
to any file with the same content that uses a different encoding, it is equivalent to any other concrete expression of the
same ontology (e.g., an OWL/RDF file that results from a transcription), and is equipollent to an exact translation of
the same logical theory in a different language (e.g., Common Logic) for the purpose of performing inferences.

Analogous definitions could be provided focusing on Knowledge Assets (using the AST as a focus), or even a Piece of
Work, even if the criteria tend to be less objective.

Versioning and Series

Any Knowledge Endeavor in API4KP - including the software that implements the components of a Knowledge
Platform - is expected to be an entity that is identified and versioned. Given identity and equality principles, the
relationship next (and its inverse previous) will be used to denote the relationship between the same entity between two
states such that the entity is no longer identical to itself. More generally, the relationship later (vs earlier) will denote
two non-contiguous states. The original version of an entity is such that there is no previous version, and the latest is
such that there is no next version. A snapshot is the version of an entity as of a particular point in time, as opposed to
being defined. All the versions of the same entity, over time, form a Series.

Based on these relationships, versioning shall follow the Memento pattern [http://mementoweb.org/guide/howto].

72 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

{ Deleted: 1

/

http://mementoweb.org/guide/howto

e The same entity, across its version, will be attributed a generic URI
e Each version shall have a URI that can be uniquely mapped to the generic URI.

o The version URI will introduce a single component that uniquely denotes the version, in a predictable
position in the URI structure: the generic URI can then be obtained by removing that component from
the version URI.

e The version-specific part of the identifier can be implemented using a variety of strategies: incremental
numbers, semantic versioning, timestamp-based, etc.

o Version identifiers v() for the same entity should respect a linear ordering > defined on the space of
identifiers. That is, if B is the next (version of) A, it should be the case that v(B) > v(A)

o Snapshots should use timestamp-based version identifier.

Versioning within Structures

Structures define how atomic Knowledge Representations are aggregated and composed together. A structure is a
defined in terms of a typed, directed graph that asserts the specific dependencies between the Representations.
Specifically:
e Each node in the graph is labelled with either
o the URI of a Representation (as a whole)
o the URI of a specific version of a Representation
o the URI of a fragment within a specific version of a Representation
e Each edge in the graph is labelled with the URI that denotes the specific semantic relationship between (two
fragments of) two (specific versions of two) Representations.
As a Resource itself, the Structure has a version URI. Every time a structure is modified, e.g., because of the application
of a structuring operation that is used for the incremental construction/modification of a complex Resource, the version
of the Structure will be incremented.
This approach is required to decouple the evolution of complex Expressions from the evolution of its components. The
fact that a certain version of a Resource could be combined with others does not guarantee in general that a newer
version of that Resource can safely be combined as well. Instead, it is likely that the other components of a resource
would need to be revised (and possibly updated).

B.4 Derivation

Derivation is a general relationship that holds between two entities and, in particular, two knowledge endeavors. An
entity derives from another entity if the former is the output of a (creative) activity that has the former as one of its
inputs.

Versioning almost always implies derivation: a newer version is usually somewhat influenced by the previous one.
However, versioning emphasizes the act of retiring an endeavor, and providing a new(er) one that should be used in
place of its predecessor. Derivation, instead, focuses on the kind of activity that led to the generation of the new
endeavor, regardless of whether it is intended to replace another endeavor or not. More importantly, a next version of an
entity has one prior entity, but can be the derivative of several other entities.

In the FRBR conceptual model that inspired the API4KP concepts, Derivation is further categorized according to two
criteria: level of abstraction (work vs expression) and preservation (or not), leading to three categories:

1. R2R derivation of a new Expression of the same WoK

2. W2R derivation of a new Expression of a new WoK from the Expression of a different WoK

3. W2W derivation of a new WoK from an existing WoK

In AP14KP, a slightly different categorization is followed.

Intra-institution trans-representations (R2R, WoK preserving)

An important sub-category is composed by derivations induced by operations that leverage (almost) exact mappings
between languages within the same Institution. Depending on what level the mapping is applied to, a Resource is

/

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 73 | /

/
/

{ Deleted: 1

/

transliteration of, is transcription of, or is translation of another Resource if the change affects, respectively, the
tokens, the parse tree, or the AST.

Linguistic manipulations (R2R, WoK preserving)
However, not all WoK-preserving derivations need to be based on a mapping between languages, or elements thereof.

A Resource is revision of another Resource if any element of its parse tree is altered in a way that (is intended to)
reduce the cost and/or the likelihood of errors in the act of abstracting its WoK content. Revised expressions are often
released as next versions of a resource.

A Resource R; is abridgement of another Resource R; if they have equivalent ASTs (i.e. parse(R1) = parse(R2)), but
the parse tree of R is a subtree of the parse tree of Ru.

OR

if the AST of R; is a subtree of the AST of Ry, but both can be abstracted to equivalent WoKs: abstract(R) =
abstract(R2).

A Resource Ry, is (re)arrangement of a Resource R; if they have different structures, but can be flattened to yield
equivalent Expressions: flatten(R1) = flatten(R2)

Content manipulations (non-WoK preserving)

The last category of interest involves derivations that do not preserve the underlying WoK. This kind of derivation
implies the abstraction of the original resource, the generation of a new WoK, and the expression of this resulting WoK
into a new, derived Resource. As such, when these relationships are asserted between Resources, they reflect underlying
relationships between the respective WoKs that the conceptualize the two expressions.

An (expression of a) WoK W, is summarization of an (expression of) a WoK W1 if W is a subgraph of W4, but W,
entails W1, so that W1 can be reconstructed by inference.

An (expression of a) WoK W is paraphrase of (an expresison of) a WoK W; if the two graphs have different node
(concepts) and edges (relationships thereof), but W, entails W» and vice versa. In particular, W- is linguistic adaptation
of W; if the particular combination of concepts used by W, facilitates its expression in some target language, e.g.,
because the language would not have symbols to express some of the concepts used in W.

A WoK W is inspired by a WoK W if their respective graphs are similar enough according to some criteria.
If the similarity exceeds some threshold, W- may be considered an imitation of Wi.

Finally, a WoK W is transcreation of a WoK W if W is inspired by W1, and the boundary concepts of W,’s graph are
close(r) to concepts that can be considered background knowledge for expressions of W, whereas W, would not.
Transcreation is another kind of adaptation.

B.5 Examples

B.5.1 Composite Asset with Semantic Versioning

Consider the following scenario. A healthcare SME devises a rule to help manage patients on anticoagulant therapy.
Based on an estimate of a patient’s probability of suffering from a stroke, as opposed to bleeding, criteria based on a
risk/benefit analysis are used to make recommendations on how to adjust the dosing of the drugs.

A Knowledge Engineer working with the SME observes that this Work of Knowledge can be decomposed into multiple
parts: the rule’s precondition uses a patient cohort definition (‘patient on anticoagulants’), two predictive models (‘risk

74 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

/
/

/

{ Deleted: 1

of stroke’, ‘risk of bleed’), a decision model (‘what is the most effective dose?”), drug-related knowledge (‘how
anticoagulants work’), and everything relies on a common domain terminology and its underlying ontology.

A (written) natural language expression of the WoK would look like : ’If a patient is on an anticoagulation therapy, and
their risk of bleeding is greater than their risk of stroking, then reduce the dose of anticoagulant as appropriate’.

The Knowledge Engineer establishes that four Resources should be created: An OMG PRR expression with OCL as a
constraint language, to express the rule and the cohort definition, treated as a Fragment; twvo DMG PMML scorecard
predictive models; one OMG DMN decision model with FEEL fragments. The terminology, provided by a SKOS
concept set based on an underlying OWL ontology, is taken as background knowledge. Because of this decision®, the
Rule is Profound until the terminology/ontology is referenced as a dependency, or injected into the expression.

The Structure is a heterogeneous composition: Rule/prr/ocl[[PM/pmml], [PM/pmml], [DM/dmn/feel]].

Each element is assigned an identifier. Identifiers are minted using a variation of the Semantic versioning strategy
http://semver.org/]. Major version numbers are used to identify the WoK: the number is then incremented every time
the SME revises the work in a way that requires the Resources to be revised. The increments in the minor and patch
version numbers, instead, reflect the effort of the Knowledge Engineer evolving, improving and fixing the resources
while trying to create more effective and faithful representations of the SME’s WoK.

Assuming the rule is a new work, and every Resource is the first attempt to express that work, every Resource - the rule,
the two predictive models and the decision model - is assigned version number “1.0”.

In particular, the identifiers of each resource are minted to be: ex:rule:ac/1.0, ex:pm:stroke/1.0, ex:pm:bleed/1.0 and
ex:dm:ac_dose/1.0

The series IDs associated to the Resource series across their versions can be identified deterministically by removing
the version number component from the URI.

The nature of the rule is such that the predictive models and the decision model are injected into specific points. The
structure graph would contain edges such as: <ex:rule:ac/1.0#bleed imports ex:pm:bleed/1.0>

Depending on the expressivity of the languages, the structure itself could be expressed explicitly as a RDF graph (and
get its own versioned identifier ex:struct:ac/1.0), or be implicitly determined by ‘import’-like fragments in the
individual expressions.

At some point, the drug dosing recommendations are updated by some professional society. The decision model - the
part of the work that deals with drug dosing - is revised by an SME. Changes are significant enough to mandate a new
representation, which is assigned id ex:dm:ac_dose/2.0

Around the same time, the knowledge engineer decides to fix a few minor bugs in the ‘bleed” predictive model, creating
version ex:pm:bleed/1.0.1

The currently released version of the complex is still ex:struct:ac/1.0, relying on version 1.0 of each component.

A joint effort by the SME and the knowledge engineer establishes that the new dosing algorithm and predictive model
still fit the intent, and serve the purpose, of making anticoagulant recommendations, but improve its effectiveness. As
such, the composite as a whole can not be considered a new WoK, but a revision of the existing one.

Hence, the (expression of) the complex WoK is revised to version ex:struct:ac/1.1, as opposed to version 2.0. This
version 1.1 of the complex expression is based on the original rule, ex:rule:ac/1.0, but now it is pointing to
ex:pm:stroke/1.0, ex:pm:bleed/1.0.1 and ex:dm:ac_dose/2.0.

Users will now be able to choose between ex:struct:ac/1.0 and ex:struct:ac/1.1

The version agnostic generic URI ex:struct:ac will resolve to ex:struct:ac/1.1.

% in a real world example, terms are usually expressed by means of URIs or QNames that are resolvable into well known
ontologies.

Application Programming Interfaces for Knowledge Platforms (AP14KP), 1.0 Beta2_ 5|/

{ Deleted: 1

http://semver.org/

sctualy
Composite L LI

" Structure

siructuras

P
ey (@)-- w)

wmms | C D

#h Flat
(— Deconstructable)

Figure 26. Composite Knowledge Assets

B.5.2 Semantic Decomposition and Classification

Example: The HL7 ‘Documentation Template’ is a profile of the HL7 KNART notation - a UML-based notation
comparable to OMG PRR with an XML-based concrete syntax defined by an XSD grammar.

It allows to express sets of ‘documentation items’, works of knowledge that conceptualize the notion of a ‘question’
used to elicit some useful piece of information. Optionally, a documentation item can also specify the admissible
answers, and how they should be expressed. Additionally, a documentation item can include some business logic (rules)
to predict and/or validate the answer in a given context.

Formally, the documentation template can be decomposed as an aggregate of items, and an item is a resource that can
be decomposed into its question/answer primary resource, and its optional rule fragments (rules are tightly coupled to
the question, so they are not usually considered resources themselves). From a logic perspective, a documentation item
can be formalized using a combination of erotetic logic (for the question/answer component) and production rules
and/or constraints (for the validation and/or prediction component).

KNART is a flat model which does not have formal semantics, but a decomposition could be superimposed and a given
documentation template with rules could look as follows:

S1 : Template[{ Item1[{ Rulela, Rulelb }], Item2[] }, Rule0]

In fact, a future version of the KNART notation might become structured explicitly , and allow the use of ‘pluggable’
sub-languages for the expression of business rules within a documentation item, or even within a template.
Regardless of an explicit decomposition, one may define a general class of KNART Documentation Items, and a
subclass of ‘Smart” KNART Documentation Items that are explicitly known to contain business rules. Knowing
whether a Documentation Template contains business rules or not is critical because of the different nature of the
underlying logic aspects, which possibly require different types of knowledge bases and/or reasoners.

An explicit structure allows for a deterministic classification, whereas a flat model requires a decomposition step which
may be non-deterministic. In particular, the decomposition may be able to identify the presence of certain components,
but not the exact relationships between the parts. However, this non-determinism may be pragmatically irrelevant: in
other words, it could be possible to define ‘paraphrasing’ operators that map one possible decomposition to another
possible decomposition while still remaining within a class of equivalent (or at least equipollent) expressions. In the
mentioned example, an equipollent decomposition could look as follows:

Sz : Template[{ Item1, Item2 }, { Rule0, Rulela, Rulelb }] { Deleted: 1

/
/
/
/

76 Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 —Beta 2

If rules can be attributed to items explicitly, the transformation between the two structures is obvious, and is biunivocal.
if not, there is a *-to-one relationship between S1 and S,. If the class of ‘Smart Templates’ is defined on S; , the
presence of a rule - regardless of its role and the Item it affects - is sufficient. If S; can be superimposed, one could
define “‘Smart Items’, and Smart Templates as aggregates that contain at least one Smart Item.

Summarizing, strong definitions based on an explicit structure would be:
e Template(R) <=struct(R) ~ { Item+ }
e Smart Template(R) <=struct(R) ~ { ltem+, Rule+ }
e Smart Template(R) <= struct(R) ~ { Smart Item+ }
o Smart Item(1) <= struct(1) ~ Item[Rule+]

The weak definitions would be:

e Smart Template(R) <=
exists M : map(decompose(R), M) ~ { Item+, Rule+ }

Application Programming Interfaces for Knowledge Platforms (API4KP), 1.0 Beta2_ 77 |

/{ Deleted: 1

Annex C: Use Cases (informative)

C.1 Generic Criminal Legal System

with input from (http://en.wikipedia.org/wiki/ltalian_Criminal_Procedure#Parties)

Actors Parties may have agents acting on their behalf, and these agents may be restricted in their access to the KB to
some subset of the authority of the Party. Parties include: Judges (may be different depending on stage of proceedings),
Suspect, Defendant, Prosecutor, Police, Injured party, Civilly-liable party (to pay damages and/or fines), Counsel /
Lawyers for suspect/defendant, Witnesses, Experts, Court, Jury, Legislature.

Actions can be roughly categorized based on CRUD (Create/Read/Update/Delete). Note that the difference between
Create and Update is a function of the modularity of the KB. In a highly modular architecture, a new knowledgebase-
module may be created when a law is passed, when an investigation is opened, etc.. In a less modular architecture, these
actions may be Updates rather than Creates.

o

© XN OA WD

e
[ANE =)

e N S
© N U~ WN

(*CRU) pass, modify and annul *laws™ - Legislature

(*R) query (including semantic query) to legal KB for details of the legal code - General Public
(*CRU) maintain records of investigations - Prosecutor, Judges, Defendant, Counsel, Police
(CRU) initiate proceedings - Prosecutor

(CRU) call a hearing - Judge

(*CRU) file requests (authorization to conduct investigations, such as wire-tapping) - Prosecutor
(*CRU) issue an order (e.g. authorizing investigations), *with explanation* - Judge

(CRU) appeal an order - Prosecutor, Counsel

(RU) drop charges - Prosecutor

. (CRU) proceed to trial - Judge, Prosecutor

. (*CRU) file a brief - Counsel

. (CRU) s