
Date: June 2014

FTF - Beta1

__

OMG Document Number: dtc/14-06-08

Standard document URL: http://www.omg.org/spec/APP-INST/1.0

Associated Schema File(s):

 http://www.omg.org/spec/APP-INST/20130801/omg_appinst_c_src.zip

 http://www.omg.org/spec/APP-INST/20130801/omg_appinst_java_src.zip

 http://www.omg.org/spec/APP-INST/20130801/omg_appinst_pim.xmi

 http://www.omg.org/spec/APP-INST/20130801/omg_appinst_pim.eap

This OMG document replaces the submission document (c4i/2013-08-02, Alpha). It is an OMG

Adopted Beta specification and is currently in the finalization phase. Comments on the content of this

document are welcome, and should be directed to issues@omg.org.

You may view the pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on September 26, 2014.

If you are reading this after that date, please download the available specification from the OMG

Specifications Catalog.

http://www.omg.org/spec/APP-INST/20130801/omg_appinst_java_src.zip
mailto:issues@omg.org
http://www.omg.org/issues/

Copyright © 2014, Object Management Group, Inc. (OMG)

Copyright © 2013, Real-Time Innovations, Inc. (RTI)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,

conditions and notices set forth below. This document does not represent a commitment to implement any

portion of this specification in any company's products. The information contained in this document is subject to

change without notice.

LICENSES

The company listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-

free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute

copies of the modified version. Each of the copyright holders listed above has agreed that no person shall be

deemed to have infringed the copyright in the included material of any such copyright holder by reason of

having used the specification set forth herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant

you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to

sublicense), to use this specification to create and distribute software and special purpose specifications that are

based upon this specification, and to use, copy, and distribute this specification as provided under the Copyright

Act; provided that: (1) both the copyright notice identified above and this permission notice appear on any

copies of this specification; (2) the use of the specifications is for informational purposes and will not be copied

or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for

commercial purposes; and (3) no modifications are made to this specification. This limited permission

automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you

will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications

may require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents

for which a license may be required by any OMG specification, or for conducting legal inquiries into the legal

validity or scope of those patents that are brought to its attention. OMG specifications are prospective and

advisory only. Prospective users are responsible for protecting themselves against liability for infringement of

patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications

regulations and statutes. This document contains information, which is protected by copyright. All Rights

Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any

means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage

and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY

CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES

LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO

THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A

PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR

ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,

INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY

THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS

MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you.

This disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c)

(1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in

subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.

52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as

specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The

specification copyright owners are as indicated above and may be contacted through the Object Management

Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

IMM®, MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and

XMI® are registered trademarks of the Object Management Group, Inc., and Object Management Group™,

OMG™, Unified Modeling Language™, Model Driven Architecture Logo™, Model Driven Architecture

Diagram™, CORBA logos™, XMI Logo™, CWM™, CWM Logo™, IIOP™, MOF™, OMG Interface

Definition Language (IDL)™, and OMG SysML™ are trademarks of the Object Management Group. All other

products or company names mentioned are used for identification purposes only, and may be trademarks of their

respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its

designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of

computer software to use certification marks, trademarks or other special designations to indicate compliance

with these materials.

Software developed under the terms of this license may claim compliance or conformance with this

specification if and only if the software compliance is of a nature fully matching the applicable compliance

points as stated in the specification. Software developed only partially matching the applicable compliance

points may claim only that the software was based on this specification, but may not claim compliance or

conformance with this specification. In the event that testing suites are implemented or approved by Object

Management Group, Inc., software developed using this specification may claim compliance or conformance

with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we

encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by

completing the Issue Reporting Form listed on the main web page http://www.omg.org, under

Documents, Report a Bug/Issue (http://www.omg.org/report_issue).

Application Instrumentation, Beta1 i

Table Of Contents

TABLE OF CONTENTS ... I

PREFACE .. V

OMG ... V

OMG SPECIFICATIONS .. V

TYPOGRAPHICAL CONVENTIONS ... VI

1 SCOPE ... 1

2 CONFORMANCE .. 1

2.1 Changes to Adopted OMG Specifications .. 1

2.2 Compliance Levels .. 1

3 NORMATIVE REFERENCES .. 1

4 TERMS AND DEFINITIONS .. 1

5 SYMBOLS .. 2

6 ADDITIONAL INFORMATION .. 2

6.1 Overview of this Specification ... 2

6.2 Design Rationale ... 3

6.3 Statement of Proof of Concept .. 3

6.4 Acknowledgements ... 3

7 PLATFORM INDEPENDENT MODEL (PIM) .. 4

7.1 General ... 4

7.2 Format and Conventions .. 4

7.3 PIM Overview ... 6
7.3.1 Application Instrumentation API .. 6

ii Application Instrumentation, Beta 1

7.3.1.1 Data collection .. 7
7.3.1.2 Data processing ... 8

7.3.2 Instrumentation Domain ... 10

7.4 Application Instrumentation API ... 11
7.4.1 Instrumentation Module .. 12

7.4.1.1 Infrastructure .. 13
7.4.1.2 InstrumentationService .. 16

7.4.2 Data Representation Module .. 23
7.4.2.1 ObservableSchema .. 24
7.4.2.2 Field ... 25
7.4.2.3 Observation ... 26
7.4.2.4 ObservationFlagKind ... 29

7.4.3 Data Collection Module ... 30
7.4.3.1 ObservableScope.. 31
7.4.3.2 ObservableObject .. 35
7.4.3.3 DataProcessor ... 42
7.4.3.4 DataProcessorArgs ... 46
7.4.3.5 DataProcessorState ... 47

7.4.4 Data Type Module ... 48
7.4.4.1 DataValueKind .. 50
7.4.4.2 DataValue .. 51
7.4.4.3 PrimitiveValue... 51
7.4.4.4 NumericValue .. 51
7.4.4.5 SequenceValue<T>.. 51
7.4.4.6 BOOL ... 52
7.4.4.7 OCTET .. 52
7.4.4.8 INT16 .. 52
7.4.4.9 INT32 .. 52
7.4.4.10 INT64 ... 52
7.4.4.11 UINT16.. 52
7.4.4.12 UINT32.. 53
7.4.4.13 UINT64.. 53
7.4.4.14 FLOAT32... 53
7.4.4.15 FLOAT64... 53
7.4.4.16 FLOAT128 .. 53
7.4.4.17 CHAR8 ... 53
7.4.4.18 CHAR32 .. 53
7.4.4.19 STRING8 ... 53
7.4.4.20 STRING32 .. 53
7.4.4.21 BOOLSeq... 53
7.4.4.22 OCTETSeq .. 53
7.4.4.23 INT16Seq ... 53
7.4.4.24 INT32Seq ... 53
7.4.4.25 INT64Seq ... 53
7.4.4.26 UINT16Seq .. 54
7.4.4.27 UINT32Seq .. 54
7.4.4.28 UINT64Seq .. 54
7.4.4.29 FLOAT32Seq ... 54
7.4.4.30 FLOAT64Seq ... 54
7.4.4.31 FLOAT128Seq .. 54
7.4.4.32 CHAR8Seq.. 54
7.4.4.33 CHAR32Seq ... 54
7.4.4.34 STRING8Seq ... 54
7.4.4.35 STRING32Seq ... 54

Application Instrumentation, Beta1 iii

7.4.4.36 DataValueSource<T> ... 54
7.4.4.37 ReturnCode .. 55
7.4.4.38 Time ... 55
7.4.4.39 UTCTime .. 55

7.4.5 Properties Module .. 56
7.4.5.1 DefaultConfigurationTable .. 58
7.4.5.2 InstrumentationServiceProperties .. 61
7.4.5.3 ObservableSchemaProperties .. 61
7.4.5.4 FieldProperties ... 61
7.4.5.5 ObservableScopeProperties .. 62
7.4.5.6 ObservableObjectProperties ... 62
7.4.5.7 DataProcessorProperties ... 63

7.5 Instrumentation Domain .. 64
7.5.1 Distributed Architecture ... 64
7.5.2 Data Distribution Model ... 64
7.5.3 Addressing of Instrumentation Entities .. 64
7.5.4 Remote Service Interface.. 65

7.5.4.1 Description of operations .. 65

8 PLATFORM SPECIFIC MODEL (PSM) .. 70

8.1 Application Instrumentation API PSMs.. 70
8.1.1 C PSM ... 70

8.1.1.1 PIM to PSM Mapping Rules ... 70
8.1.2 Java PSM ... 72

8.1.2.1 PIM to PSM Mapping Rules ... 72

8.2 Instrumentation Domain PSMs ... 75
8.2.1 OGM Data Distribution Service ... 75

8.2.1.1 PIM to PSM Mapping Rules ... 75
8.2.1.2 Remote Service Interface ... 80

9 INSTRUMENTATION EXAMPLE (NON-NORMATIVE) ... 83

9.1 Overview ... 83

9.2 Example Overview ... 83
9.2.1 Instrumented System ... 83
9.2.2 Instrumentation Requirements .. 84

9.3 Instrumentation Configuration ... 85
9.3.1 Instrumentation Service .. 85
9.3.2 Data Types ... 85

9.3.2.1 Module Performance .. 85
9.3.2.2 Track Update Throughput ... 87
9.3.2.3 Application Configuration ... 88

9.3.3 Data Collection ... 89
9.3.3.1 Module Performance .. 89
9.3.3.2 Track Update Throughput ... 90
9.3.3.3 Application Configuration ... 91

9.3.4 Data Processing ... 91
9.3.4.1 General Processing ... 92
9.3.4.2 Module Performance .. 93

iv Application Instrumentation, Beta 1

9.3.4.3 Track Update Throughput ... 95

Application Instrumentation, Beta1 v

Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry

standards consortium that produces and maintains computer industry specifications for interoperable, portable, and

reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach

to enterprise integration that covers multiple operating systems, programming languages, middleware and networking

infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling

Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);

and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A Specifications Catalog

is available from the OMG website at:

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifications

are available from the OMG website at:

http://www.omg.org/spec

Specifications are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

vi Application Instrumentation, Beta 1

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG

specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,

may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org.

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Helvetica/Arial - 10 pt. Bold:

Courier - 9 pt. Bold:

Helvetica/Arial - 10 pt.

Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

http://www.iso.org/

Application Instrumentation, Beta1 1

1 Scope

This specification defines a general API for minimally intrusive instrumentation of applications.

The API provides:

 A mechanism to define composite data types from the set of supported primitive types.

 A mechanism to create typed data sources and to collect application data through them.

 A mechanism to apply processing filters to collected data and to control its distribution to remote consumers.

 A mechanism to remotely control the instrumentation during the application’s run-time.

2 Conformance

2.1 Changes to Adopted OMG Specifications
This specification does not modify any existing adopted OMG specifications.

2.2 Compliance Levels
There are two conformance levels for implementations of this specification:

 Application Instrumentation API conformance: a complete implementation of the API described in 7.4 shall

be provided through either (or both) of the PSM described in 8.1.

 Instrumentation Domain PSM conformance: the implementation shall be completely compatible with the

PSM described in 8.2

3 Normative References

The following documents and specifications are referenced by this document:

 Unified Modeling Language (UML) [http://www.omg.org/spec/UML/2.4.1/]

 Data Distribution Service for Real-time Systems (DDS) [http://www.omg.org/spec/DDS/1.2/]

 C Programming Language [http://www.open-std.org/jtc1/sc22/wg14/www/standards]

 Java Programming Language [http://docs.oracle.com/javase/specs/]

 Key words for use in RFCs to Indicate Requirement Levels (RFC2119) [http://www.ietf.org/rfc/rfc2119.txt]

 IEEE Standard for Floating-Point Arithmetic (IEEE 754-2008)

[http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=4610935]

 Date and Time format ISO 8601 [http://www.iso.org/iso/home/standards/iso8601.htm]

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Data Distribution Service (DDS)

An OMG distributed data communications specification that allows Quality of Service policies to be specified for data

timeliness and reliability. It is independent of implementation languages.

2 Application Instrumentation, Beta1

5 Symbols

This specification does not define any symbols or abbreviations.

6 Additional Information

6.1 Overview of this Specification
This specification defines a general API for application instrumentation. The goal is to perform typed observations of

internal state of application, including values of application variables, from separate monitoring applications, possibly

distributed over a network environment.

This kind of instrumentation will enable accurate and flexible monitoring of custom application state information

typically hidden within an application’s execution environment and unavailable to external observers.

The scope of Application Instrumentation API intersects with that of other existing monitoring solutions, such as logging

and system monitoring frameworks. In contrast to those solutions, this API addresses the need for precise access to

custom application data and continuously changing variables as required by tasks such as application-logic debugging,

testing and on-line monitoring of distributed applications. Other solutions typically fail to:

1. Support machine consumption of information by providing a sufficiently expressive type system that can accu-

rately represent the data of interest.

2. Grant access to the specific information of interest, which may be available only within the application’s execu-

tion environment.

3. Limit the degradation of performance in instrumented applications to support instrumentation of production-

level system.

For example, the data-model adopted by logging tools cannot directly support extraction of numerical data and requires

serialization and deserialization to and from the string format. This increases the cost of the instrumentation and it may

reduce the accuracy of observed data.

Solutions for system-level monitoring typically do not have access to internal application state. They operate in separate

processes and they can only observe external events of an application, often by instrumenting system calls and

intercepting context-switches.

Even when access to internal state is available other limitations must be considered. For example, using a debugger to

manually control the application and its memory greatly impacts an application’s performance and it is usually not

recommended for verifying a distributed application, since timing of the operations is often critical.

This specification defines a platform-independent instrumentation API and a distributed instrumentation infrastructure.

Application developers can use the API to define the state information produced by an application, instrument the

application code and then generate data from running applications. The API allows the configuration of custom data

processing, performed before data is distributed outside of the application. Instrumentation may also be dynamically

controlled to enable or disable specific parts of the instrumentation logic.

Data instrumented with the API will be distributed to remote consumers through the external distributed instrumentation

architecture. The API’s platform-independent model specifies how the processing phase may affect distribution of data,

but leaves the details of how data is exchanged between distributed processes to each platform-specific models of the

instrumentation architecture.

Multiple platform-specific API implementations may be created for different communication technologies. Each

platform-specific API implementation shall specify how data generated using the instrumentation API is managed in its

target distributed environment and how remote consumers may access it using the selected technology.

The platform-independent API describes the operations that may be invoked by client application to the instrumentation

infrastructure. Client applications can use these operations to modify the configuration of available instrumentation

entities dynamically during the execution of the instrumented applications.

This specification includes:

Application Instrumentation, Beta1 3

 A Platform Independent Model (PIM) for an Application Instrumentation API to instantiate and manage instru-

mentation entities from an application.

 A PIM for a distributed instrumentation infrastructure, which grants access to data collected by instrumented

applications and remote configuration of their instrumentation.

 A C and a Java mapping for the Application Instrumentation API.

 A mapping of the distributed instrumentation infrastructure to the OMG Data Distribution Service platform.

6.2 Design Rationale
The API is designed with a particular focus on enabling efficient extraction of internal state data from running

applications. The objective is to minimize the run-time overhead caused by the execution of instrumentation operations

during the “steady state” of an instrumented application while providing a sufficiently rich set of instrumentation tools

capable of addressing a wide variety of use cases.

A comprehensive platform-independent data-type system enables the accurate description types for the data of interest,

while guaranteeing consistent access from heterogeneous execution environments. Each platform-specific model for the

instrumentation API will define a mapping between the platform-independent types and data-types supported by a

specific programming language and/or platform.

The model used to collect data from instrumented applications decouples data generation from data processing and the

distribution to external consumers. Data is collected and processed in a separate context from the application. This

context may execute asynchronously from the application code, thus reducing the impact of instrumentation on the

application’s critical path for example by operating in a lower priority, independent, thread.

Because of this focus on minimizing the impact on the application, the operations exposed by the interfaces of the API

are not multi-thread safe unless explicitly stated in the description of a class or an operation.

Most entities created by the instrumentation API can be dynamically enabled or disabled during the execution of an

instrumented application. The ability of maintaining all or part of the entities in a disabled state allows the

instrumentation infrastructure to be used in an active system possibly deployed to production. The instrumentation will

“lie dormant” within the execution environment until each specific entity is enabled, either by the instrumented

application itself or an external application using the remote configuration interface.

6.3 Statement of Proof of Concept

The submitters have already implemented almost all elements in the specification. A prototype of the software with the

specified API's and behaviors has been made available in the past months to key stakeholders as part of the US Navy

SBIR N092-121 titled "Minimally Intrusive Real-time Software Instrumentation Technologies".

6.4 Acknowledgements

The following companies submitted this specification:

 Real-Time Innovations, Inc.

The following companies supported this specification:
 SimVentions

4 Application Instrumentation, Beta1

7 Platform Independent Model (PIM)

7.1 General
The purpose of this clause is to provide an operational overview of the Application Instrumentation API PIM and the

classifiers that it comprises.

7.2 Format and Conventions
In addition to the UML diagrams, all the classes that constitute the API are documented using tables. The format used to

document these classes is shown below:

<class name> [<class parameter>]

[<super classes list>]

Attributes

<attribute name> <attribute type>

... ...

Operations

<operation name> <return type>

<parameter> <parameter type>

... ...

... ...

The operation <parameter> can contain the modifier “in,” “out,” or “inout” ahead of the parameter name. If this modifier

is omitted, it is implied that the parameter is an “in” parameter.

In some cases, the operation parameters or return value(s) are a collection with elements of a given <type>. This is

indicated with the notation “<type> [].” This notation does not imply that it will be implemented as an array. The actual

implementation is defined by the PSM: it may end up being mapped to a sequence, a list, or other kind of collection.

Application Instrumentation, Beta1 5

Figure 1 Application Instrumentation PIM

6 Application Instrumentation, Beta1

7.3 PIM Overview

.

The platform-independent model described by this specification defines an infrastructure for the collection and

consumption of internal state information from one or more application processes.

Instrumented applications use a platform-independent API to describe and generate data during their execution. Local

instrumentation entities within the application’s process collect data, process it, and then distribute it to an external

Instrumentation Domain.

The Instrumentation Domain abstracts the communication infrastructure connecting instrumented applications and

monitoring applications interested in accessing their state information. The instrumentation entities created by each

application do not require prior knowledge of the observers/consumers of the data they will produce. Samples of data to

be distributed outside of instrumented applications will be forwarded to the Instrumentation Domain, which in turn will

deliver them to remote endpoints. Depending on its implementation platform, the Instrumentation Domain may provide

decoupling in time and space between producers and consumers. Data can be stored by the Instrumentation Domain and

made available to monitoring applications after its publication by the local instrumentation.

Local instrumentation entities may be dynamically configured during the application’s execution by using the

Application Instrumentation API or by issuing configuration commands from remote applications through the

Instrumentation Domain.

7.3.1 Application Instrumentation API

The Application Instrumentation API defines an abstract data-model and a set of platform-independent entities, which

can be used to instrument and collect data from a running application.

As shown in Figure 3, an InstrumentationService manages the entire instrumentation infrastructure local to a single

application. Application state information is described by custom data-types called ObservableSchema. One or more

ObservableScopes define sources of data, which will be used by the application, and control how data is processed.

Data is produced using an ObservableObject. An ObservableObject is an instantiation of an ObservableSchema and

allows application to take snapshots of its attributes, called Observations. ObservableObjects are logically grouped using

ObservableGroups.

The ObservableScope containing an ObservableObject is responsible for collecting and distributing Observations to the

Instrumentation Domain. An optional processing phase may be carried out by a customizable DataProcessor, which can

alter the content of an Observation and prevent it from being published outside the instrumented application’s context.

Figure 2 Distributed instrumentation infrastructure

Application Instrumentation, Beta1 7

An Observation carries all the necessary information to identify its source and (local) time of generation. Its contents can

be accessed without prior knowledge of its structure by using the information provided by it ObservableSchema.

7.3.1.1 Data collection

Applications use the interface provided by an ObservableObject to pass data to the instrumentation. Figure 4 shows an

example of the interactions required to extract data from an instrumented application and distribute it to the

Instrumentation Domain.

Values from application variables can be stored inside the attributes of an ObservableObject. Internal memory shall store

these values between multiple accesses to the ObservableObject so that the application may build its state incrementally

from separate points in the application code if necessary.

When an ObservableObject contains the expected information, an application can generate a snapshot of its current state

using its save_observation operation. This shall make a copy of the current values stored by the ObservableObject into a

new Observation instance. The ObservableObject shall then notify its enclosing ObservableScope of the new

Observation, which shall collect, process, and distribute as determined by the ObservationProcessor.

An ObservableScope operates in a separate context, independently of the application, and it periodically extracts all new

Observations from its ObservableObjects. Once collected, the new Observations shall be passed (if so configured) to the

process_observations method of a DataProcessor. The Observations shall then be handed over to the Instrumentation

Domain to be distributed outside of the application and finally returned to the ObservableObject, which may reuse them

to store future snapshots.

This final phase can be altered by a DataProcessor, which can prevent an Observation from both being distributed and

being recycled by the original ObservableObject.

Figure 3 Components of the local instrumentation

8 Application Instrumentation, Beta1

7.3.1.2 Data processing

The Application Instrumentation API processes all Observations within the context of an ObservableScope. An

ObservableScope implements all the logic required to receive Observations from ObservableObjects, apply a

customizable processing phase to each of them and then distribute those that have not been filtered out to the

Instrumentation Domain.

The operations of an ObservableScope shall be executed on a separate thread. The configuration and settings of this

thread are left outside this specification, however it is recommended that it be configured to run at a lower priority than

the application threads. To the extent possible, application threads shall not sustain the overhead caused by processing

and distribution of Observations to remote applications. They should instead only be concerned with the generation of

Observations from application data, using the available ObservableObjects.

Customizable processing is provided through the DataProcessor interface. A DataProcessor is an entity created within

an InstrumentationService that can be attached to multiple ObservableObject instances within the same

InstrumentationService. Once attached to an ObservableObject, the DataProcessor can receive, through its

process_observations method, all Observation samples collected by the ObservableObject’s ObservableScope for that

specific ObservableObject.

Since the ObservableScope defines a single-threaded processing context, a DataProcessor shall process each

ObservableObject contained in the same ObservableScope sequentially. Implementations of the DataProcessor interface

can be simplified by not requiring explicit solutions for multi-thread safety provided their computations only operate

within the boundaries of a single ObservableScope, even if they are attached to ObservableObject instances in a different

ObservableScope.

Figure 4 Example of data collection

Application Instrumentation, Beta1 9

A DataProcessor can manipulate each Observation, accessing its values and altering them arbitrarily. The

ObservableSchema describing an Observation can also be dynamically inspected, allowing highly adaptive processing

functionalities to be implemented. Additionally, a DataProcessor can alter the life cycle of an Observation by signaling

the enclosing ObservableScope through a set of binary flags contained in the Observation:

 LOCAL: This flag allows the DataProcessor to prevent an Observation from being distributed by the

ObservableScope to remote applications through the Instrumentation Domain.

 KEEP: This flag shall signal the ObservableScope that the Observation shall not be returned to the

ObservableObject that generated it but instead added to the ObservableObject’s observation history so that it is

available to future invocations of process_observations for that ObservableObject.

When a DataProcessor instance is attached to an ObservableObject, it is also attached to the ObservableGroup and

ObservableScope instances containing the ObservableObject. A DataProcessor may, at this time, allocate custom

processing state for each of these entities, which shall be stored by the instrumentation infrastructure and passed to each

invocation of process_observations made for Observations created by that specific ObservableObject. This “scoped

state” provides a flexible infrastructure that simplifies the implementation of complex processing logic by relieving

DataProcessor instances from having to maintain state for each entity themselves.

Figure 5 Data Processing Example

10 Application Instrumentation, Beta1

Figure 5 shows an example of how a DataProcessor instance interacts with other instrumentation entities. In particular, it

shows how a DataProcessor is attached to an ObservableObject and the multiple operations that it may perform on each

Observation instance received from an ObservableScope.

7.3.2 Instrumentation Domain

The Instrumentation Domain is responsible for letting instrumented and monitoring applications communicate and

exchange instrumentation data.

Its characteristics are intentionally left abstract by this specification and provided only as a set of high-level descriptions

because many aspects of its interface and functionalities depend on the communication infrastructure chosen for its

implementation.

Figure 6 shows an example of how remote monitoring applications can interact with the Instrumentation Domain in order

to access the instrumentation infrastructure. While the Instrumentation Domain’s principal purpose is to deliver

Observation samples received from instrumented application to the monitoring applications that requested them, an

Instrumentation Domain can also be used to dynamically configure the instrumentation entities created by applications

attached to it.

The signature of the read_observations and control_instrumentation operations are not specified in this specification. In

fact, each implementation of the Instrumentation Domain may expose access to Observation instances and remote

configuration through very different interfaces and communication tools, which it may not be possible to map to a

programmatic interface.

For example, a very simple instrumentation domain may serialize each Observation to a text file, which can be then

inspected by a consumer using utilities such as tail or grep or a text editor. Other solutions may leverage more complex

distribution schemes such as those offered by a publish/subscribe middleware. This is the case for the platform-specific

model (PSM) of the Instrumentation Domain using OMG Data Distribution Service and presented in 8.2.1.

Figure 6 Example interaction with Instrumentation Domain

Application Instrumentation, Beta1 11

7.4 Application Instrumentation API
The PIM of the Application Instrumentation API is organized in three functional modules, which group the API entities

according to their purpose.

The responsibilities of each module are summarized in the following table. The rest of this describes each module in

further detail by presenting the interface of each entity in the module.

Module Purpose

Instrumentation
Define the infrastructure required to manage the local instrumentation of an

application and its interaction with a distributed Instrumentation Domain.

Data Representation
Describe the structure of application data by defining the data schemas and provide a

generic interface to manipulate samples of data.

Data Collection

Provide an interface for the generation of data from instrumented applications and

support configuration of its processing and distribution to the Instrumentation

Domain.

Data Type
Define a set of platform-independent data types to represent primitive and sequence

data types supported by the instrumentation API.

Properties
Define data structures to configure instrumentation entities and provide support for

defining default configuration properties for each type of entity.

12 Application Instrumentation, Beta1

7.4.1 Instrumentation Module

The Instrumentation Module is comprised of the following classifiers:

 Infrastructure

 InstrumentationService

Figure 7 Instrumentation Module

Application Instrumentation, Beta1 13

7.4.1.1 Infrastructure

The Infrastructure class shall be responsible for managing the life cycle of the local instrumentation used by an

application. This class shall provide operations to initialize and finalize the global resources required to create and

manage InstrumentationService instances.

Implementations of this specification shall provide access to at least one Infrastructure instance. It is recommended,

although not mandatory, that Infrastructure be implemented using the singleton pattern.

Infrastructure

No Attributes

Operations

create_service

 InstrumentationService

name String

properties
InstrumentationService

Properties

[out] retcode ReturnCode

delete_all_services ReturnCode

delete_service
 ReturnCode

service InstrumentationService

finalize ReturnCode

get_default_

configuration_table
 DefaultConfigurationTable

get_host_id String

get_services InstrumentationService[]

init
 ReturnCode

host_id String

lookup_service

 InstrumentationService

name String

[out] retcode ReturnCode

7.4.1.1.1 create_service

This operation shall create or retrieve an instance of InstrumentationService.

If the creation fails, the operation shall return ‘nil’ (as defined by the platform [PSM]) and shall set retcode to

RETCODE_ERROR.

If no other InstrumentationService instance with the specified name exists, the operation shall create a new instance,

return it and shall set retcode to RETCODE_OK. If an instance with the specified name already exists, the operation shall

return a reference to the existing InstrumentationService and shall set retcode to RETCODE_NOT_MODIFIED.

14 Application Instrumentation, Beta1

This operation shall call init implicitly if the application had not invoked it prior to this call, passing

APPINST_HOST_ID_AUTO as host_id. If init fails, this operation shall also fail and return ‘nil’ (as defined by the

PSM) and it shall set retcode to RETCODE_PRECONDITION_NOT_MET.

If the special value APPINST_INSTRUMENTATION_SERVICE_PROPERTIES_DEFAULT is passed as the properties

argument, the operation shall substitute it with the value returned by the get_default_service_properties operation on the

DefaultConfigurationTable instance.

Parameter name: The name to assign to the new InstrumentationService.

Parameter properties: An InstrumentationServiceProperties structure used to configure the new InstrumentationService.

If an InstrumentationService with the specified name already exists, this parameter is ignored.

APPINST_INSTRUMENTATION_SERVICE_PROPERTIES_DEFAULT may be specified in order to use the default

value returned by the DefaultConfigurationTable’s get_default_service_properties operation.

Parameter retcode: The operation shall return RETCODE_OK if the new InstrumentationService was successfully

created. RETCODE_NOT_MODIFIED if an existing InstrumentationService with the same name was found locally,

RETCODE_BAD_PARAMETER if values specified for parameters properties and/or name were incorrect, and

RETCODE_ERROR if there was any other type of error.

Return: The operation shall return an InstrumentationService in case of success (RETCODE_OK or

RETCODE_NOT_MODIFIED), or ‘nil’ (as defined by the platform [PSM]) in case of error.

7.4.1.1.2 delete_all_services

This operation shall delete any InstrumentationService instance currently existing in the instrumentation infrastructure by

invoking the delete_service operation on each of them. If the deletion of any existing InstrumentationService fails, this

operation shall fail and return RETCODE_ERROR.

If the init operation has never been called successfully yet, this operation shall do nothing and return

RETCODE_PRECONDITION_NOT_MET.

Return: The operation shall return RETCODE_OK upon successful deletion of all existing InstrumentationService

instances, RETCODE_PRECONDITION_NOT_MET if the init operation has never been successfully called yet,

RETCODE_ERROR if any other type of error occurred.

7.4.1.1.3 delete_service

This operation shall delete an instance of InstrumentationService and all entities it contains

If the InstrumentationService contains any entity, the operation shall:

 Delete every ObservableScope instance (as reported by the InstrumentationService’s get_observable_scopes

operation) by invoking the InstrumentationService’s delete_observable_scope operation on each of them.

 Delete every DataProcessor instance (as reported by the InstrumentationService’s get_data_processors

operation) by invoking the InstrumentationService’s delete_data_processor operation on each of them.

 Delete every ObservableSchema instance (as reported by the InstrumentationService’s get_observable_schemas

operation) by invoking the InstrumentationService’s delete_observable_schema operation on each of them.

If the deletion of any of the contained entities fails by returning a value other than RETCODE_OK, the operation shall

fail and return RETCODE_ERROR.

If the specified InstrumentationService was not created by this Infrastructure or the value ‘nil’ (as specified by the

platform [PSM]) is passed to the operation, the operation shall fail and return RETCODE_BAD_PARAMETER.

If the init operation has never been called successfully on the Infrastructure instance yet, the operation shall fail and

return RETCODE_PRECONDITION_NOT_MET.

Parameter service: The InstrumentationService to delete.

Return: The operation shall return RETCODE_OK upon successful deletion of the InstrumentationService and all its

contained entities, RETCODE_PRECONDITION_NOT_MET if any of the contained entities was not successfully

deleted or the init operation has never been called successfully on the Infrastructure, RETCODE_BAD_PARAMETER if

Application Instrumentation, Beta1 15

a bad value was specified for the service parameter, RETCODE_ERROR if any other error occurred.

7.4.1.1.4 finalize

This operation shall finalize the static resources required to manage the instrumentation infrastructure and all the

InstrumentationService instances that were created locally.

If any InstrumentationService instance still exists in the Infrastructure, the operation shall fail and return

RETCODE_PRECONDITION_NOT_MET.

This operation shall free any resource reserved by the invocation of operation init. If the freeing of any of these resources

fails, the operation shall fail and return RETCODE_ERROR.

If the init operation has never been called successfully yet, this operation shall do nothing and return

RETCODE_NOT_MODIFIED.

Return: The operation shall return RETCODE_OK upon successful finalization of all instrumentation,

RETCODE_PRECONDITION_NOT_MET if any InstrumentationService instance still exists in the Infrastructure,

RETCODE_ERROR if any error occurred during finalization of static resources, RETCODE_NOT_MODIFIED if the

init operation has never been successfully called yet.

7.4.1.1.5 get_default_configuration_table

This operation shall return the singleton instance of DefaultConfigurationTable. If the instance does not exist, the

operation shall create a new one and store it internally so that it may be returned by future invocations of this operation.

Return: a DefaultConfigurationTable instance or ‘nil’ (as defined by the platform [PSM]) if any type of error occurred.

7.4.1.1.6 get_host_id

This operation shall return a non-empty string containing the host identifier specified to the init operation. If init was

called with special value APPINST_HOST_ID_AUTO, the returned value shall be the one automatically assigned by the

Infrastructure.

If the init operation has never been called successfully yet, the operation shall return ‘nil’ (as defined by the platform

[PSM]).

Return: the operation shall return a non-modifiable, non-empty string containing the identifier of the host containing the

Infrastructure instance or ‘nil’ (as defined by the platform [PSM]) if the init operation has not been called on the

Infrastructure instance yet or any other type of error occurred.

7.4.1.1.7 get_services

This operation returns a collection of all InstrumentationService instances that have been created in the local

instrumentation. An empty collection will be returned if no InstrumentationService has yet been created locally.

If the init operation has never been called successfully on the Infrastructure instance yet, the operation shall return ‘nil’

(as defined by the platform [PSM]).

Return: The operation shall return a collection of InstrumentationService instances or ‘nil’ (as defined by the platform

[PSM]) if init as not been called on the Infrastructure instance yet or any other type of error occurred.

7.4.1.1.8 init

This operation shall initialize the local instrumentation infrastructure and allocate the resources required to create

instances of InstrumentationService and to manage their life cycle.

If an error prevents initialization from succeeding, this operation shall return RETCODE_ERROR.

If the initialization is completed successfully, this operation shall return RETCODE_OK.

16 Application Instrumentation, Beta1

After successful initialization, future invocations of this operation shall have no effect and return

RETCODE_NOT_MODIFIED, until the operation finalize_instrumentation is called. The call to

finalize_instrumentation restores the instrumentation service to its initial state as it was prior to the first call to

init_instrumentation.

Prior to calling this operation for the first time, the instrumentation infrastructure shall be considered ‘uninitialized’.

After successful return from this operation, the instrumentation infrastructure shall be considered ‘initialized’. The

‘initialized’ state shall continue until the operation finalize_instrumentation is called and executed successfully.

While the instrumentation infrastructure is in the ‘uninitialized’ state all operations, with the exception of operations

init_instrumentation, create_service and lookup_service, shall fail and set retcode to

RETCODE_PRECONDITION_NOT_MET.

The values specified by the host_id parameter shall be stored by the instrumentation infrastructure. It shall be used to

mark all Observation samples generated by this instrumentation infrastructure and it will be used to identify the local

instrumentation infrastructure it in the distributed environment.

The value APPINST_HOST_ID_AUTO may be specified as host_id. In this case, the operation shall automatically

generate a name for the local instrumentation infrastructure. The algorithm used to generate the string is not normative.

Parameter host_id: A string providing an identifier for the host on which the instrumentation infrastructure is being

initialized. The special value APPINST_HOST_ID_AUTO may be specified to let the instrumentation infrastructure

automatically generate a value.

Return: The operation shall return RETCODE_OK if the operation succeeds and the instrumentation infrastructure is in

state ‘initialize’ after the return from the operation. If the value of host_id is an empty string, the operation shall return

RETCODE_BAD_PARAMETER. If the operation has already been called successfully, the operation shall return

RETCODE_NOT_MODIFIED. Otherwise it shall return RETCODE_ERROR if any other kind of error occurred.

7.4.1.1.9 lookup_service

This operation shall search among the InstrumentationService instances created locally and return the one identified by

the specified name.

If an instance by that name is found, the operation shall return it and set retcode to RETCODE_OK.

If no matching instance is found and automatic creation is enabled in the DefaultConfigurationTable, the operation shall

create a new InstrumentationService by invoking create_service with the specified name and the default value for

InstrumentationServiceProperties, contained in the DefaultConfigurationTable. If the creation of the new

InstrumentationService fails by returning a ‘nil’ (as defined by the platform [PSM]) value, this operation shall return ‘nil’

(as defined by the platform [PSM]) and set retcode to RETCODE_ERROR.

If no matching instance is found and automatic creation is disabled, the operation shall return ‘nil’ (as defined by the

platform [PSM]) and set retcode to RETCODE_ERROR.

If the init operation has never been called successfully on the Infrastructure instance yet, the operation return ‘nil’ (as

specified by the platform [PSM]) and set retcode to RETCODE_PRECONDITION_NOT_MET.

Parameter name: The name of the InstrumentationService to lookup.

Parameter retcode: The operation shall return RETCODE_OK if a matching InstrumentationService was found or

successfully created. RETCODE_PRECONDITION_NOT_MET if the InstrumentationService could not be

automatically created or init has not been successfully called on the Infrastructure, and RETCODE_ERROR if no

matching instance was found or there was any other type of error.

Return: The operation shall return an InstrumentationService in case of success (RETCODE_OK), or ‘nil’ (as defined by

the platform [PSM]) otherwise.

7.4.1.2 InstrumentationService

The InstrumentationService creates and manages all local instrumentation entities used by an application and it attaches

the local instrumentation to an external Instrumentation Domain.

Application Instrumentation, Beta1 17

Implementations of this specification shall support creation of multiple InstrumentationService instances within the same

Infrastructure instance, for example, to produce data to multiple Instrumentation Domains.

Each InstrumentationService shall be identified by a unique name, which may be used to reference it within the context

of an instrumented application. This name may be specified by the application when creating an InstrumentationService

or it may be automatically generated by the instrumentation infrastructure.

An InstrumentationService instance may be responsible for managing one or more threads that execute the data

collection and processing operations of the ObservableScope instances contained in the InstrumentationService. It is left

to implementations of this specification to define how this functionality may be configured by applications. Note that

some implementations may employ separate threads to operate the ObservableScope instances or alternatively execute

their operations on application threads.

InstrumentationService

No Attributes

Operations

activate_observable_

schema

 ReturnCode

schema ObservableSchema

create_data_processor

 DataProcessor

name String

properties DataProcessorProperties

[out] retcode ReturnCode

create_observable_schema

 ObservableSchema

name String

properties ObservableSchemaProperties

[out] retcode ReturnCode

create_observable_scope

 ObservableScope

name String

properties ObservableScopeProperties

[out] retcode ReturnCode

delete_data_processor
 ReturnCode

processor DataProcessor

delete_observable_schema
 ReturnCode

schema ObservableSchema

delete_observable_scope
 ReturnCode

scope ObservableScope

get_data_processors DataProcessor[]

get_name String

18 Application Instrumentation, Beta1

get_observable_schemas ObservableSchema[]

get_observable_scopes ObservableScope[]

lookup_data processor

 DataProcessor

name String

[out] retcode ReturnCode

lookup_observable_schema

 ObservableSchema

name String

[out] retcode ReturnCode

lookup_observable_scope

 ObservableScope

name String

[out] retcode ReturnCode

7.4.1.2.1 activate_observable_schema

This operation shall set the state of an ObservableSchema to ‘active’. The ‘active’ state signals the

InstrumentationService that the definition of the ObservableSchema is complete and ObservableObject instances may be

created referencing the schema. When an ObservableSchema is set to ‘active’, subsequent calls to the create_field

operation shall fail with RETCODE_PRECONDITION_NOT_MET.

Parameter schema: the ObservableSchema to be activated.

Return: The operation shall return RETCODE_OK if the ObservableSchema was correctly set ‘active’,

RETCODE_NOT_MODIFIED if the ObservableSchema was already in state ‘active’, and RETCODE_ERROR if any

type of error occurred when activating the schema.

7.4.1.2.2 create_data_processor

This operation shall create a new DataProcessor instance in the InstrumentationService.

The new DataProcessor shall have the specified name and it will be initialized using the specified properties. If the

creation succeeds, the operation shall return the newly created DataProcessor and set retcode to RETCODE_OK. If a

DataProcessor instance with the same name already exists in the InstrumentationService, the operation shall return the

existing instance and set retcode to RETCODE_NOT_MODIFIED.

Each platform [PSM] must define how applications shall specify the implementation of the DataProcessor interface that

will be used to create the new instance by extending the DataProcessorProperties structure.

If the special value APPINST_DATA_PROCESSOR_PROPERTIES_DEFAULT is passed as the properties argument,

the operation shall use the value returned by the get_default_data_processor_properties operation on the

DefaultConfigurationTable instance.

After successfully creating the new DataProcessor, the operation shall invoke its initialize operation passing the

DataProcessorArgs value contained in the specified properties and the InstrumentationService instance itself as

arguments. If this operation returns a value other than RETCODE_OK, the operation shall delete the newly created

DataProcessor (as specified in the description of operation delete_data_processor) and set retcode to

RETCODE_ERROR.

If the creation fails, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

Parameter name: The name to assign to the new DataProcessor.

Application Instrumentation, Beta1 19

Parameter properties: A DataProcessorProperties structure used to configure the new DataProcessor. If a

DataProcessor with the specified name already exists, this Parameter is ignored.

Parameter retcode: The operation shall return RETCODE_OK if the new DataProcessor was successfully created and

initialized. RETCODE_NOT_MODIFIED if an existing DataProcessor with the same name was found locally,

RETCODE_BAD_PARAMETER if values specified for parameters properties and/or name were incorrect, and

RETCODE_ERROR if the newly created DataProcessor could not be initialized or if there was any other type of error.

Return: The operation shall return a DataProcessor in case of success (RETCODE_OK or

RETCODE_NOT_MODIFIED), or ‘nil’ (as defined by the platform [PSM]) in case of error.

7.4.1.2.3 create_observable_schema

This operation shall create or retrieve an ObservableSchema instance in an InstrumentationService.

The new ObservableSchema shall have the specified name and it will be initialized using the specified properties. If the

creation succeeds, the operation shall return the newly created ObservableSchema and set retcode to RETCODE_OK. If

an ObservableSchema instance with the same name already exists in the InstrumentationService, the operation shall

return the existing instance and set retcode to RETCODE_NOT_MODIFIED.

If the special value APPINST_OBSERVABLE_SCHEMA_PROPERTIES_DEFAULT is passed as the properties

argument, the operation shall use the value returned by the get_default_observable_schema_properties operation on the

DefaultConfigurationTable instance.

If the creation of the ObservableSchema fails, the operation shall return ‘nil’ and set retcode to RETCODE_ERROR.

Parameter name: The name to assign to the new ObservableSchema.

Parameter properties: An ObservableSchemaProperties structure used to configure the new ObservableSchema. If an

ObservableSchema with the specified name already exists, this parameter is ignored. ‘nil’ (as specified by the platform

[PSM]) may be specified in order to use the default value returned by the DefaultConfigurationTable’s

get_default_observable_schema_properties operation.

Parameter retcode: The operation shall return RETCODE_OK if the new ObservableSchema was successfully created.

RETCODE_NOT_MODIFIED if an existing ObservableSchema with the same name was found locally,

RETCODE_BAD_PARAMETER if values specified for parameters properties and/or name were incorrect, and

RETCODE_ERROR if there was any other type of error.

Return: The operation shall return an ObservableSchema in case of success (RETCODE_OK or

RETCODE_NOT_MODIFIED), or ‘nil’ (as defined by the platform [PSM]) in case of error.

7.4.1.2.4 create_observable_scope

This operation shall create or retrieve an ObservableScope instance in the InstrumentationService.

The new ObservableScope shall have the specified name and it will be initialized using the specified properties. If the

creation succeeds, the operation shall return the newly created ObservableScope and set retcode to RETCODE_OK. If an

ObservableScope instance with the same name already exists in the InstrumentationService, the operation shall return the

existing instance and set retcode to RETCODE_NOT_MODIFIED.

If the special value APPINST_OBSERVABLE_SCOPE_PROPERTIES_DEFAULT is passed as the properties argument,

the operation shall use the value returned by the get_default_observable_scope_properties operation on the

DefaultConfigurationTable instance.

If data collection is enabled in the specified properties (by setting attribute enable_data_collection to True), after

successfully creating the new ObservableScope and any contained ObservableObject instance, the operation shall invoke

its enable_data_collection operation. If this operation returns a value other than RETCODE_OK, the operation shall

delete any already created ObservableObject (as specified by the description of operation delete_observable_object of

ObservableScope), the newly created ObservableScope (as specified by the description of operation

delete_observable_scope) and set retcode to RETCODE_ERROR.

If the creation fails, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

20 Application Instrumentation, Beta1

Parameter name: The name to assign to the new ObservableScope.

Parameter properties: An ObservableScopeProperties structure used to configure the new ObservableScope. If an

ObservableScope with the specified name already exists, this Parameter is ignored.

APPINST_OBSERVABLE_SCOPE_PROPERTIES_DEFAULT may be specified in order to use the default value

returned by the DefaultConfigurationTable’s get_default_observable_scope_properties operation.

Parameter retcode: The operation shall return RETCODE_OK if the new ObservableScope was successfully created.

RETCODE_NOT_MODIFIED if an existing ObservableScope with the same name was found locally,

RETCODE_BAD_PARAMETER if values specified for parameters properties and/or name were incorrect, and

RETCODE_ERROR if data collection could not be enabled on the newly created ObservableScope or if there was any

other type of error.

Return: The operation shall return an ObservableScope in case of success (RETCODE_OK or

RETCODE_NOT_MODIFIED), or ‘nil’ (as defined by the platform [PSM]) in case of error.

7.4.1.2.5 delete_data_processor

This operation shall delete an existing DataProcessor instance from an InstrumentationService.

If the DataProcessor is currently attached to any ObservableObject, the operation shall fail and return

RETCODE_PRECONDITION_NOT_MET.

The operation shall invoke the DataProcessor’s finalize operation passing the InstrumentationService instance itself as

argument. If any value other than RETCODE_OK is returned, the operation shall return

RETCODE_PRECONDITION_NOT_MET. The operation shall try to free all resources independently of the value

returned by the DataProcessor‘s finalize operation.

If the DataProcessor is successfully deleted, the operation shall return RETCODE_OK.

The operation shall fail and return RETCODE_BAD_PARAMETER if the InstrumentationService performing the

operation did not create the DataProcessor.

Parameter schema: the DataProcessor to delete.

Return: The operation shall return RETCODE_OK if the DataProcessor was successfully deleted from the

InstrumentationService, RETCODE_PRECONDITION_NOT_MET if the DataProcessor is currently attached to any

ObservableObject or the finalize operation of the DataProcessor did not exited successfully,

RETCODE_BAD_PARAMETER if the specified DataProcessor was not created by this InstrumentationService, and

RETCODE_ERROR if any other type of error occurred.

7.4.1.2.6 delete_observable_schema

This operation shall delete an existing ObservableSchema instance from an InstrumentationService.

The operation shall fail and return RETCODE_PRECONDITION_NOT_MET if there are currently ObservableObject

instances using the ObservableSchema in any of the ObservableScope instances of the InstrumentationService.

The operation shall fail and return RETCODE_BAD_PARAMETER if the InstrumentationService performing the

operation did not create the ObservableSchema.

Parameter schema: the ObservableSchema to delete.

Return: The operation shall return RETCODE_OK if the ObservableSchema was successfully deleted from the

InstrumentationService, RETCODE_PRECONDITION_NOT_MET if any ObservableObject referencing the

ObservableSchema exists in the InstrumentationService, RETCODE_BAD_PARAMETER if the specified

ObservableSchema was not created by this InstrumentationService, and RETCODE_ERROR if any other type of error

occurred.

7.4.1.2.7 delete_observable_scope

This operation shall delete an existing ObservableScope instance from an InstrumentationService.

This operation shall invoke the ObservableScope’s disable_data_collection operation before deleting all

Application Instrumentation, Beta1 21

ObservableObject instances contained in the ObservableScope (as specified by operation delete_observable_object).

If any of these operations fails with return value other than RETCODE_OK, the operation shall fail and return

RETCODE_PRECONDITION_NOT_MET.

If all contained ObservableObject instances and the ObservableScope are successfully deleted, the operation shall return

RETCODE_OK.

The operation shall fail and return RETCODE_BAD_PARAMETER if the InstrumentationService performing the

operation did not create the ObservableScope.

Parameter schema: the ObservableScope to delete.

Return: The operation shall return RETCODE_OK if the ObservableScope was successfully deleted from the

InstrumentationService, RETCODE_PRECONDITION_NOT_MET if any ObservableObject contained in the

ObservableScope could not be deleted or data collection could not be disabled in the ObservableScope,

RETCODE_BAD_PARAMETER if the specified ObservableScope was not created by this InstrumentationService, and

RETCODE_ERROR if any other type of error occurred.

7.4.1.2.8 get_data_processors

This operation shall return a collection of all DataProcessor instances that have been created in an

InstrumentationService. An empty collection shall be returned if the InstrumentationService does not contain any

DataProcessor yet.

7.4.1.2.9 get_name

This operation shall return a string containing the name of an InstrumentationService instance.

Return: The operation shall return an unmodifiable, non-empty, string.

7.4.1.2.10 get_observable_schemas

This operation shall return a collection of all ObservableSchema instances that have been created in an

InstrumentationService. An empty collection will be returned if the InstrumentationService does not contain any

ObservableSchema yet.

Return: The operation shall return a collection of ObservableSchema instances.

7.4.1.2.11 get_observable_scopes

This operation shall return a collection of all ObservableScope instances that have been created in an

InstrumentationService. An empty collection will be returned if the InstrumentationService does not contain any

ObservableScope yet.

Return: The operation shall return a collection of ObservableScope instances.

7.4.1.2.12 lookup_data_processor

This operation shall search among the DataProcessor instances created in an InstrumentationService and return the one

identified by the specified name.

If an instance by that name is found, the operation shall return it and set retcode to RETCODE_OK.

If no matching instance is found, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

Parameter name: The name of the DataProcessor to lookup.

Parameter retcode: The operation shall return RETCODE_OK if a matching DataProcessor was found in the

InstrumentationService, RETCODE_BAD_PARAMETER if a bad value was specified for the name parameter, and

RETCODE_ERROR if no matching instance was found or there was any other type of error.

22 Application Instrumentation, Beta1

Return: The operation shall return a DataProcessor in case of success (RETCODE_OK), or ‘nil’ (as defined by the

platform [PSM]) otherwise

7.4.1.2.13 lookup_observable_schema

This operation shall search among the ObservableSchema instances created in an InstrumentationService and return the

one identified by the specified name.

If an instance by that name is found, the operation shall return it and set retcode to RETCODE_OK.

If no matching instance is found, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

Parameter name: The name of the ObservableSchema to lookup.

Parameter retcode: The operation shall return RETCODE_OK if a matching ObservableSchema was found in the

InstrumentationService, RETCODE_BAD_PARAMETER if a bad value was specified for the name parameter, and

RETCODE_ERROR if no matching instance was found or there was any other type of error.

Return: The operation shall return an ObservableSchema in case of success (RETCODE_OK), or ‘nil’ (as defined by the

platform [PSM]) otherwise.

7.4.1.2.14 lookup_observable_scope

This operation shall search among the ObservableScope instances created in an InstrumentationService and return the

one identified by the specified name.

If an instance by that name is found, the operation shall return it and set retcode to RETCODE_OK.

If no matching instance is found, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

Parameter name: The name of the ObservableScope to lookup.

Parameter retcode: The operation shall return RETCODE_OK if a matching ObservableScope was found in the

InstrumentationService, RETCODE_BAD_PARAMETER if a bad value was specified for the name parameter, and

RETCODE_ERROR if no matching instance was found or there was any other type of error.

Return: The operation shall return an ObservableScope in case of success (RETCODE_OK), or ‘nil’ (as defined by the

platform [PSM]) otherwise.

Application Instrumentation, Beta1 23

7.4.2 Data Representation Module

The Data Representation Module is comprised of the following classifiers:

 ObservableSchema

 Field

 Observation

 ObservationFlagKind

Figure 8 Data Representation Module

24 Application Instrumentation, Beta1

7.4.2.1 ObservableSchema

An ObservableSchema describes the structure of application data collected at run-time.

Each ObservableSchema defines a complex data-type composed of a collection of named fields, each one containing a

value of application data. Values stored in an ObservableSchema’s field may be of two types:

 A single value of a primitive type, such as numbers, characters or strings.

 A bounded sequence of values of a primitive type.

ObservableSchema instances are created and managed by an InstrumentationService. They expose operations to define

new Field entries and inspect the resulting type definition dynamically through reflection.

ObservableSchema

No Attributes

Operations

create_field

 Field

name String

properties FieldProperties

[out] retcode ReturnCode

get_fields Field[]

get_name String

lookup_field
 ReturnCode

name String

7.4.2.1.1 create_field

This operation shall create a new Field instance and add it to the collection of fields of an ObservableSchema.

The Field will have the specified name and it will be initialized using the specified properties.

If creation succeeds, the operation shall return the new Field and set retcode to RETCODE_OK. If a Field with the same

name already exists, the operation shall fail, returning ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_PRECONDITION_NOT_MET.

If the ObservableSchema has already been set to ‘active’ state in the InstrumentationService (by invoking the

InstrumentationService’s activate_observable_schema operation), the operation shall fail, returning ‘nil’ and setting

retcode to RETCODE_PRECONDITION_NOT_MET.

The operation shall assign a numerical index to the new Field, which uniquely identifies the new Field within the context

of the enclosing ObservableSchema.

Parameter name: name of the new Field to create.

Parameter properties: an instance of FieldProperties specifying the properties for the new Field. If attribute type is one

of the sequence data types, then max_length must be greater than 0 and specifies the maximum length of the sequence. If

attribute type is a primitive data type, max_length will be ignored. If type is one of TYPE_STRING8, TYPE_STRING32,

TYPE_STRING8_SEQ, or TYPE_STRING32_SEQ, string_max_length must present a value greater than 0, indicating

the maximum length of a string stored in the Field. If type is any other non-string type, string_max_length will be

ignored. If a Field with the same name already exists, this attribute is ignored.

Application Instrumentation, Beta1 25

Parameter retcode: The operation shall return RETCODE_OK if the new Field was successfully created and added to

the ObservableSchema. RETCODE_PRECONDITION_NOT_MET if an existing Field with the same name was found

locally or if the ObservableSchema is already in ‘active’ state and cannot be modified, RETCODE_BAD_PARAMETER

if values specified for parameters properties and/or name were incorrect, and RETCODE_ERROR if there was any other

type of error.

7.4.2.1.2 get_fields

This operation shall return a collection of all Field instances that have been created in an ObservableSchema. An empty

collection will be returned if the ObservableSchema does not contain any Field yet.

Return: The operation shall return a collection of DataProcessor instances.

7.4.2.1.3 get_name

This operation shall return a string containing the name of an ObservableSchema instance.

Return: The operation shall return an unmodifiable, non-empty, string.

7.4.2.1.4 lookup_field

This operation shall search among the Field instances created in an ObservableSchema and return the one identified by

the specified name.

If an instance by that name is found, the operation shall return it and set retcode to RETCODE_OK.

If no matching instance is found, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

Parameter name: The name of the Field to lookup.

Parameter retcode: The operation shall return RETCODE_OK if a matching Field was found in the ObservableSchema,

RETCODE_BAD_PARAMETER if a bad value was specified for the name parameter, and RETCODE_ERROR if no

matching instance was found or there was any other type of error.

Return: The operation shall return a Field in case of success (RETCODE_OK), or ‘nil’ (as defined by the platform

[PSM]) otherwise

7.4.2.2 Field

A Field instance describes a single field in an ObservableSchema. It provides an interface to access its properties.

Fields shall have a unique order within an ObservableSchema, which is reflected by the index assigned to each of them at

creation. The value of each field’s index can determined using the get_index operation provided by the Field interface.

Field

No Attributes

Operations

get_field_max_length Integer

get_index Integer

get_name String

get_string_max_length Integer

get_type DataValueKind

26 Application Instrumentation, Beta1

7.4.2.2.1 get_field_max_length

This operation shall return the maximum number of values that can be stored in a Field. This value is always 1 for all

primitive values. Field instances of a sequence type shall return a positive integer corresponding to the maximum length

of sequences that can be stored in the Field.

Return: The operation shall return an integer value greater than 0. If the Field is of primitive type, the operation shall

return 1.

7.4.2.2.2 get_index

This operation shall return the unique, 0-based, index that identifies the Field within its enclosing ObservableSchema.

Return: The operation shall return an integer value between 0 and N-1, where N is the number of Field instances in the

ObservableSchema.

7.4.2.2.3 get_name

This operation shall return a string containing the name of a Field instance.

Return: The operation shall return an unmodifiable, non-empty, string.

7.4.2.2.4 get_string_max_length

This operation shall return the maximum length of all strings contained in a Field. This value shall only be used if the

Field’s type is one of TYPE_STRING8, TYPE_STRING32, TYPE_STRING8_SEQ, or TYPE_STRING32_SEQ.

Return: The operation shall return an integer value greater than 0 if the Field is of type TYPE_STRING8,

TYPE_STRING32, TYPE_STRING8_SEQ, or TYPE_STRING32_SEQ. Otherwise, the return value of this operation is

undefined.

7.4.2.2.5 get_type

This operation shall return the type of the value that can be stored in a Field. The type is represented by a value of the

enumeration type DataValueKind defined by the Data Type Module (see 7.4.4).

Return: One of the values of enumeration DataValueKind.

7.4.2.3 Observation

An Observation shall contain a sample of data collected from an instrumented application. Observation instances provide

an interface to access instrumented data and to dynamically determine its structure by inspecting the associated

ObservableSchema.

An Observation may carry a time-stamp to identify the instant when it was generated by the application’s code.

A set of flags is associated with each Observation. Flags are used to control the life cycle of an Observation, for example

to control its processing and distribution.

Observation

No Attributes

Operations

get_generation_timestamp UTCTime

get_observable_schema ObservableSchema

get_sequence_number Integer

Application Instrumentation, Beta1 27

get_value <T:DataValue>

 T

field_index Integer

[out] ReturnCode

is_flag_set
 Boolean

flag ObservationFlagKind

set_flag
 ReturnCode

flag ObservationFlagKind

set_value <T:DataValue>

 ReturnCode

field_index Integer

value T

reset_flags ReturnCode

unset_flag
 ReturnCode

flag ObservationFlagKind

7.4.2.3.1 get_generation_timestamp

This operation shall return an UTCTime value indicating when the Observation was generated. If a time-stamp was not

collected when the Observation was generated, the operation shall return the special value

APPINST_UTCTIME_INVALID.

Return: The operation shall return an UTCTime value containing the Observation’s generation time-stamp or special

value APPINST_UTCTIME_INVALID if no generation time-stamp is present.

7.4.2.3.2 get_observable_schema

This operation shall return the ObservableSchema associated with the value contained in an Observation.

Return: The operation shall return an ObservableSchema.

7.4.2.3.3 get_sequence_number

This operation shall return a positive integer value representing the sequence number of the Observation with respect to

its generating source. Observation instances generated from the same source can be totally ordered by increasing

sequence number. The resulting order shall reflect exactly the order in which the Observation instances where generated

by their source.

The first Observation generated by a source shall have sequence number 1.

Return: The operation shall return an integer value.

7.4.2.3.4 get_value<T>

This operation shall return the value stored by an Observation for a specific Field of its ObservableSchema. The

Observation shall contain a value for each Field contained in the ObservableSchema. If a Field with the specified

field_index exists in the ObservableSchema, the operation shall return the value stored for the Field by the Observation

and set retcode to RETCODE_OK.

The operation shall expose a parameter T, which may be type DataValue or one of its sub-classes, specifying the type of

value that must be returned to the application. If the specified type is different from the requested Field’s data type and

28 Application Instrumentation, Beta1

the value stored in the Observation cannot be converted to the requested type, the operation shall return the default value

of data type T and set retcode to RETCODE_PRECONDITION_NOT_MET.

If the specified field_index does not match the index of any of the Field instances contained in the Observation’s

ObservableSchema, the operation shall return ‘nil’ and set retcode to RETCODE_BAD_PARAMETER.

Parameter field_index: The index of the Field of the Observation’s ObservableSchema whose value must be returned.

Parameter retcode: The operation shall return RETCODE_OK if a Field with the specified index was found in the

Observation’s ObservableSchema and its value was successfully returned, RETCODE_BAD_PARAMETER if no

matching Field was found for the specified index, RETCODE_PRECONDITION_NOT_MET if the data type of the

selected field cannot be converted to the requested T data type, RETCODE_ERROR if any other type of error occurred.

Return: On success (RETCODE_OK), the operation shall return the value of the selected Field, converted to data type

T, or the default value defined for T if any error occurred.

7.4.2.3.5 is_flag_set

This operation shall check if a flag (identified by a value of enumeration ObservationFlagKind) is currently in ‘set’ state

in an Observation.

If the specified value does not identify any valid flag of this Observation, the operation shall do nothing and return False.

Parameter flag: The Observation’s flag to check.

Return: The operation shall return True if the specified flag is in ‘set’ state, False if it’s in the ‘unset’ one or the specified

flag does not exist.

7.4.2.3.6 reset_flags

This operation shall set the state of all flags in an Observation to ‘unset’. Calling operation the Observation’s is_flag_set

on any flag (identified by a value of enumeration ObservationFlagKind) shall always return False if this operation

completed successfully and set_flag was never called yet on the specific flag after reset_flags.

If a flag is already in state ‘unset’, this operation shall do nothing.

Return: The operation shall return RETCODE_OK if all flags were successfully transitioned to state ‘unset’ or were

already in state ‘unset’, RETCODE_NOT_MODIFIED if all flags were already in state ‘unset’, RETCODE_ERROR if

any error prevented all flags from being set to state ‘unset’.

7.4.2.3.7 set_flag

This operation shall set the state of a flag (identified by a value of enumeration ObservationFlagKind) in an Observation

to ‘set’. Calling operation the Observation’s is_flag_set on the same flag shall always return True if this operation

completed successfully and unset_flag was never called yet on the specific flag after set_flag.

If the specified value does not identify any valid flag of this Observation, the operation shall do nothing and return

RETCODE_BAD_PARAMETER.

Parameter flag: The Observation’s flag to set.

Return: The operation shall return RETCODE_OK if the flag’s was successfully transitioned from state ‘unset’ to state

‘set’, RETCODE_NOT_MODIFIED if the flag was already in ‘set’ state, RETCODE_BAD_PARAMETER if the

specified flag does not exist, RETCODE_ERROR if any other error occurred while changing the flag’s state.

7.4.2.3.8 set_value<T>

This operation shall store a value in an Observation for a specific Field of its ObservableSchema. If a Field with the

specified field_index exists in the ObservableSchema, the operation shall store the value in the Observation and return

RETCODE_OK. The operation shall provide all memory required to make a copy of the value and store it in the

Observation. If an error occurs creating a copy of the value, the operation shall fail and return RETCODE_ERROR.

The operation shall expose a parameter T, which can be DataType or one its sub-classes of DataValue, specifying the

type of value that is passed by the application and must be set in the Observation. If the specified type is incompatible

Application Instrumentation, Beta1 29

with the requested Field’s data type and the value cannot be converted to the specified type, the operation shall fail and

return RETCODE_PRECONDITION_NOT_MET.

If the specified field_index does not match the index of any of the Field instances contained in the Observation’s

ObservableSchema, the operation shall fail and return RETCODE_BAD_PARAMETER.

If the operation fails, the value stored by the Observation for the specified Field shall not be modified. Calling get_value

on the Observation with the same field_index shall return the same value before and after the operation is invoked.

Parameter field_index: The index of the Field of the Observation’s ObservableSchema whose value must be set.

Parameter value: The value to store in the Observation.

Return: The operation shall return RETCODE_OK if a Field with the specified index was found in the Observation’s

ObservableSchema and the specified value was successfully copied into the Observation,

RETCODE_BAD_PARAMETER if no matching Field was found for the specified index,

RETCODE_PRECONDITION_NOT_MET if the specified value of type T cannot be converted to the type of the

selected Field, RETCODE_ERROR if an error occurred while creating a copy of the value or any other type of error

occurred.

7.4.2.3.9 unset_flag

This operation shall set the state of a flag (identified by a value of enumeration ObservationFlagKind) in an Observation

to ‘unset’. Calling operation the Observation’s is_flag_set on the same flag shall always return False if this operation

completed successfully and set_flag was never called yet on the specific flag after unset_flag.

If the specified value does not identify any valid flag of this Observation, the operation shall do nothing and return

RETCODE_BAD_PARAMETER.

Parameter flag: The Observation’s flag to unset.

Return: The operation shall return RETCODE_OK if the flag’s was successfully transitioned from state ‘set’ to state

‘unset’, RETCODE_NOT_MODIFIED if the flag was already in ‘unset’ state, RETCODE_BAD_PARAMETER if the

specified flag does not exist, RETCODE_ERROR if any other error occurred while changing the flag’s state.

7.4.2.4 ObservationFlagKind

This enumeration shall define all the valid flags that may be manipulated in an Observation instance using its is_flag_set,

set_flag, unset_flag, and reset_flags operations.

7.4.2.4.1 KEEP

This flag shall have the following meaning:

 ‘unset’ state: The Observation may be reused to store new values as soon as the instrumentation infrastructure

has finished processing it and, if requested, distributing it to the Instrumentation Domain.

 ‘set’ state: The Observation shall not be reused to store new values until it is explicitly disposed.

7.4.2.4.2 LOCAL

This flag shall have the following meaning:

 ‘unset’ state: The Observation may be made visible outside of the InstrumentationService where it was

generated and distributed to the Instrumentation Domain.

 ‘set’ state: The Observation shall not be distributed to the Instrumentation Domain and it should not be exposed

outside the boundaries of the InstrumentationService where it was generated.

30 Application Instrumentation, Beta1

7.4.3 Data Collection Module

The Data Collection Module is comprised of the following classifiers:

 ObservableScope

 ObservableObject

 DataProcessor

 DataProcessorArgs

 DataProcessorState

Figure 9 Data Collection Module

Application Instrumentation, Beta1 31

7.4.3.1 ObservableScope

An ObservableScope shall define a single-threaded execution context where Observation instances generated by multiple

ObservableObject instances are collected, processed, and distributed to the Instrumentation Domain.

An ObservableScope manages a set of ObservableObject instances. It collects new Observation objects created by each

ObservableObject and it may invoke the services of DataProcessor instances attached to the ObservableObject instances.

An ObservableScope processes data per-ObservableObject, extracting new Observation values from each of its managed

ObservableObject instances. Implementations of this specification may provide configurable policies to control how the

ObservableObject are polled for new data values. These policies may control when an ObservableObject is polled for

new Observation objects (e.g. periodically, upon notification, etc.) and may also enable configuration of advanced

aspects, such as, collection ordering. Extensions to the ObservableScopeProperties structure and/or the

ObservableObjectProperties structure may be defined by implementations to configure these policies. These extended

policies are not specified in this specification. This specification only provides means to control how many Observation

instances an ObservableScope may collect at most each time it processes an ObservableObject.

An ObservableScope guarantees that Observation objects obtained from two ObservableObject instances belonging to

the same scope will never be processed concurrently. Collection, processing and distribution of newly generated

Observation objects shall occur within the single-threaded context associated with the ObservableScope. Independently

of the policies controlling the frequency of these operations and the order in which ObservableObject instances are

processed, the ObservableScope shall always process Observation objects from a single ObservableObject instance at a

time.

An ObservableScope shall periodically perform the following operations for each ObservableObject instance:

 Collect new Observation objects, generated by that ObservableObject, that have not been processed yet in a

collection ordered by increasing sequence number (as reported by each Observation’s get_sequence_number

operation). If the size of the collection is limited
1
, it shall include the oldest unprocessed Observation (the one

with the lowest sequence number) and any following Observation fitting within the collection’s boundaries.

 Invoke the process_observations operation of the DataProcessor attached to the ObservableObject, if a

DataProcessor has been attached to the ObservableObject. The operation shall be invoked passing the following

values to its parameters:

o observations: the collection of newly extracted unprocessed Observation objects.

o object: the ObservableObject currently being processed by the ObservableScope.

o scope_state: the DataProcessorState returned when the ObservableScope invoked the DataProcessor’s

attach_to_observable_scope operation.

o object_state: the DataProcessorState returned when the ObservableObject invoked the

DataProcessor’s attach_to_observable_object operation.

 Distribute any Observation object contained in the collection that does not have flag LOCAL in state ‘set’ to the

Instrumentation Domain.

 Store any Observation object contained in the collection that has flag KEEP in state ‘set’ into the

ObservableObject’s observation history, so that it shall become part of the collection returned by the

ObservableObject’s get_observation_history operation.

 Return any Observation object contained in the collection that has flag KEEP in state ‘unset’ to the

ObservableObject that generated it so that it may be reused to store new observations.

1
 Recall that a limit on the maximum number of Observation values to collect per-ObservableObject is specified in the

ObservableScope’s initialization properties.

32 Application Instrumentation, Beta1

An ObservableScope shall guarantee that all Observation objects created by a successful invocation of an

ObservableObject’s save_observation operation will be eventually collected and processed in the same order as they

were generated by the ObservableObject.

The execution context of an ObservableScope and the collection of data from ObservableObject objects may be

dynamically enabled or disabled. If data-collection is disabled, the execution context of an ObservableScope shall be

stopped, interrupting the extraction of new Observation objects from any of its contained ObservableObject instances.

An ObservableScope shall not be required to provide a multi-thread safe interface. Only operations that explicitly state so

may be safely invoked when the execution context of an ObservableScope is enabled and performing data-collection.

Implementations of this specification may decide to execute the data-collection operations performed by an

ObservableScope on any thread, as long as the requirement for single-threaded execution context is satisfied (i.e. all the

operations are performed by the same thread). This will allow an ObservableScope’s operation to be naturally supported

on different threads than the application’s ones, possibly limiting the overhead caused by instrumentation code added to

the application. Mapping of ObservableScope instances and threads is not specified by this specification.

Implementations may provide additional parameters in InstrumentationServiceProperties and/or

ObservableScopeProperties to configure how many threads should be used by all the ObservableScope instances of an

InstrumentationService and on which thread(s) each ObservableScope should be executed.

ObservableScope

No Attributes

Operations

create_observable_object

 ObservableGroup

name String

properties ObservableObjectProperties

[out] retcode ReturnCode

delete_observable_object
 ReturnCode

object ObservableObject

disable_data_collection ReturnCode

enable_data_collection ReturnCode

get_name String

get_observable_objects ObservableObject[]

get_service InstrumentationService

is_data_collection_

enabled
 ObservableScope

lookup_observable_object

 ObservableObject

name String

[out] retcode ReturnCode

7.4.3.1.1 create_observable_object

This operation shall create or retrieve an ObservableObject instance.

Application Instrumentation, Beta1 33

The new ObservableObject shall have the specified name and it shall be initialized using the specified properties. If the

creation succeeds, the operation shall return the newly created ObservableObject and set retcode to RETCODE_OK. If

an ObservableObject instance with the same name already exists in the ObservableScope, the operation shall return the

existing instance and set retcode to RETCODE_NOT_MODIFIED.

If the special value APPINST_OBSERVABLE_OBJECT_PROPERTIES_DEFAULT is passed as the properties

argument, the operation shall use the value returned by the get_default_observable_object_properties operation on the

DefaultConfigurationTable instance.

If the observable_schema_name attribute of the specified properties is ‘nil’ (as specified by the platform [PSM]) or no

ObservableSchema instance is returned by invoking the lookup_observable_schema operation on the enclosing

InstrumentationService with the specified name, the operation shall fail, returning ‘nil’ (as specified by the platform

[PSM]) and set retcode to RETCODE_BAD_PARAMETER.

If the data_processor_name attribute of the specified properties contains a non-empty string, the operation shall retrieve

the specified DataProcessor, using the enclosing InstrumentationService’s lookup_data_processor operation, and pass it

to the newly created ObservableObject’s attach_data_processor operation.

If the DataProcessor cannot be found in the InstrumentationService, the operation shall not create an ObservableObject,

return ‘nil’ (as specified by the platform [PSM]) and set retcode to RETCODE_BAD_PARAMETER.

If the ObservableObject’s attach_data_processor fails, the create_observable_object operation shall undo any side

effects performed by operation, including deleting the newly created ObservableObject if one had been created. In this

situation the operation shall return ‘nil’ (as specified by the platform [PSM]) and set retcode to RETCODE_ERROR.

If generation of Observation instances is enabled in the specified properties (by setting attribute

enable_save_observation to True), after successfully creating the new ObservableObject and possibly attaching a

DataProcessor to it, the operation shall invoke the ObservableObject’s enable_save_observation operation. If this

operation returns a value other than RETCODE_OK, the operation shall undo any side effects performed by operation,

including deleting the newly created ObservableObject if one had been created. In this situation the operation shall return

‘nil’ (as specified by the platform [PSM]) and set retcode to RETCODE_ERROR.

If the creation fails, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

Parameter name: The name to assign to the new ObservableObject.

Parameter properties: An ObservableObjectProperties structure used to configure the new ObservableObject. If an

ObservableObject with the specified name already exists, this Parameter is ignored. The value

APPINST_OBSERVABLE_OBJECT_PROPERTIES_DEFAULT may be specified in order to use the default value

returned by the DefaultConfigurationTable’s get_default_observable_object_properties operation.

Parameter retcode: The operation shall return RETCODE_OK if the new ObservableObject was successfully created.

RETCODE_NOT_MODIFIED if an existing ObservableObject with the same name was found locally,

RETCODE_PRECONDITION_NOT_MET if data-collection is enabled in the ObservableScope,

RETCODE_BAD_PARAMETER if values specified for parameters properties and/or name were incorrect, and

RETCODE_ERROR if a DataProcessor could not be attached to the ObservableObject, if the generation of Observation

instances could not be enabled on the newly created ObservableObject of if there was any other type of error.

Return: The operation shall return an ObservableObject in case of success (RETCODE_OK or

RETCODE_NOT_MODIFIED), or ‘nil’ (as defined by the platform [PSM]) in case of error.

7.4.3.1.2 delete_observable_object

This operation shall delete an existing ObservableObject instance from an ObservableScope.

If data-collection is enabled in the ObsersableScope, the operation shall do nothing and return

RETCODE_PRECONDITION_NOT_MET.

If the ObservableObject has a DataProcessor attached, the operation shall do nothing and return

RETCODE_PRECONDITION_NOT_MET. .

If the ObservableObject instance is successfully deleted, the operation shall return RETCODE_OK.

34 Application Instrumentation, Beta1

The operation shall fail and return RETCODE_BAD_PARAMETER if the ObservableScope performing the operation

did not create the ObservableObject to be deleted.

Parameter schema: the ObservableObject to delete.

Return: The operation shall return RETCODE_OK if the ObservableObject was successfully deleted from the

ObservableScope, RETCODE_PRECONDITION_NOT_MET if data collection is currently enabled in the

ObservableScope or a DataProcessor could not be detached from the ObservableObject,

RETCODE_BAD_PARAMETER if the specified ObservableObject was not created by this ObservableScope, and

RETCODE_ERROR if any other type of error occurred.

7.4.3.1.3 disable_data_collection

This operation shall disable data-collection in an ObservableScope, deactivating its single-threaded execution context. If

data-collection is successfully disabled, the operation shall return RETCODE_OK.

If data-collection and the ObservableScope’s execution context are already disabled, the operation shall do nothing and

return RETCODE_NOT_MODIFIED.

If any error prevents data-collection from being disabled, the operation shall return RETCODE_ERROR

Return: The operation shall return RETCODE_OK if data-collection was successfully disabled in the ObservableScope,

RETCODE_NOT_MODIFIED if data-collection was already disabled, RETCODE_ERROR if any error prevented data-

collection from being disabled.

7.4.3.1.4 enable_data_collection

This operation shall enable data-collection in an ObservableScope, activating its single-threaded execution context. If

data-collection is successfully enabled, the operation shall return RETCODE_OK.

If data-collection and the ObservableScope’s execution context are already enabled, the operation shall do nothing and

return RETCODE_NOT_MODIFIED.

If any error prevents data-collection from being enabled, the operation shall return RETCODE_ERROR

Return: The operation shall return RETCODE_OK if data-collection was successfully enabled in the ObservableScope,

RETCODE_NOT_MODIFIED if data-collection was already enabled, RETCODE_ERROR if any error prevented data-

collection from being enabled.

7.4.3.1.5 get_name

This operation shall return a string containing the name of an ObservableScope instance.

This operation may be safely invoked while data-collection is enabled in the ObservableScope.

Return: The operation shall return an unmodifiable, non-empty, string.

7.4.3.1.6 get_observable_objects

This operation shall return a collection of all ObservableObject instances that have been created in an ObservableScope.

An empty collection shall be returned if the ObservableScope does not contain any ObservableObject yet.

This operation may be safely invoked while data-collection is enabled in the ObservableScope.

Return: The operation shall return a collection of ObservableObject instances.

7.4.3.1.7 get_service

This operation shall return the InstrumentationService that created an ObservableScope instance.

This operation may be safely invoked while data-collection is enabled in the ObservableScope.

Return: The operation shall return an InstrumentationService instance.

Application Instrumentation, Beta1 35

7.4.3.1.8 is_data_collection_enabled

This operation shall check the current state of data-collection in an ObservableScope.

Return: The operation shall return True if the ObservableScope’s execution context is currently active and data-

collection is enabled, False otherwise.

7.4.3.1.9 lookup_observable_object

This operation shall search among the ObservableObject instances created in an ObservableScope and return the one

identified by the specified name.

If an instance by that name is found, the operation shall return it and set retcode to RETCODE_OK.

If no matching instance is found, the operation shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to

RETCODE_ERROR.

This operation may be safely invoked while data-collection is enabled in the ObservableScope.

Parameter name: The name of the ObservableObject to lookup.

Parameter retcode: The operation shall return RETCODE_OK if a matching ObservableObject was found in the

ObservableScope, and RETCODE_ERROR if no matching instance was found or there was any other type of error.

Return: The operation shall return an ObservableObject in case of success (RETCODE_OK), or ‘nil’ (as defined by the

platform [PSM]) otherwise.

7.4.3.2 ObservableObject

An ObservableObject represents a source of instrumented application data. Applications may generate samples of

instrumented data during their execution by using the interface of ObservableObject to associate application data-objects

with any field of an ObservableSchema and then capture a snapshot of these values in an Observation.

An ObservableObject shall be associated with a single ObservableSchema, which describes the structure and nature of

data that can be provided by applications through that ObservableObject.

Applications shall use the ObservableObject to specify values contained in each field of an Observation and then invoke

the ObservableObject’s save_observation operation to store these values in an Observation, which may be collected by

the ObservableScope managing the ObservableObject.

Applications may provide data for a specific field using two types of operations:

 A setter operation, called set_value, which shall store the specified value (of one of the supported sub-types of

DataValue) in internal buffers of the ObservableObject.

 A binding operation, called bind_value, which shall associate the values of a field of the ObservableObject with

an external data source (represented by a DataValueSource instance) contained in the application’s data space.

An ObservableObject shall maintain in its internal state any value successfully stored using the set_value operation and

any reference to external date sources provided using the bind_value operation. This allows the values of fields in an

ObservableObject to be specified incrementally by the application, before a snapshot is captured in an Observation using

the save_observation operation.

When save_observation is invoked, the values associated with each field by the ObservableObject shall be copied to the

corresponding fields of the Observation object being generated. The value of fields that were bound by bind_value shall

be determined by sampling the associated external data source at the time the operation save_observation is executed.

An ObservableObject shall provide configuration parameters to control the number of Observation objects it may

allocate during the application’s execution. This limit controls the amount of resources used to store instrumentation data

and offers a trade-off between performance and accuracy of the observed behavior. An ObservableObject shall reuse any

Observation objects that its ObservableScope returns to it, after processing and distribution, once the maximum number

of Observation objects have been allocated. The save_observation operation may fail if all available Observation objects

have been already allocated and the associated ObservableScope is still currently processing all of them. Application may

36 Application Instrumentation, Beta1

set a maximum amount of time (ranging from 0 to infinity) that the save_observation operation may block execution of

an application waiting for an Observation object to be made available, before failing.

Generation of Observation objects may also be dynamically enabled and disabled by an application. When generation of

Observation objects is disabled, the save_observation operation shall have no effect.

The operations of an ObservableObject do not offer safety with respect to invocation from multiple threads of execution

for the generation of Observation objects. An ObservableObject’s save_observation shall be used to generate data only

from a single thread at a time.

An ObservableObject shall allow invocation of its enable_observation and disable_observation operations from threads

concurrent to any other thread using the ObservableObject to generate data. The ObservableObject shall guarantee that

the change of status will be eventually propagated to the thread generating data.

ObservableObject

No Attributes

Operations

attach_data_processor
 ReturnCode

processor DataProcessor

bind_value <T:DataValue>

 ReturnCode

field_index Integer

value_source DataValueSource<T>

detach_data_processor
 DataProcessor

[out] retcode ReturnCode

disable_save_observation ReturnCode

enable_save_observation ReturnCode

get_data_processor DataProcessor

get_name String

get_observable_schema ObservableSchema

get_observable_scope ObservableScope

get_observation_history Observation[]

is_save_observation_

enabled
 Boolean

is_value_bound
 Boolean

field_index Integer

remove_observation_

from_history

 ReturnCode

observation Observation

save_observation ReturnCode

Application Instrumentation, Beta1 37

set_value <T:DataValue>

 ReturnCode

field_index Integer

value T

unbind_value
 ReturnCode

field_index Integer

7.4.3.2.1 attach_data_processor

This operation shall attach a DataProcessor to an ObservableObject. The DataProcessor shall be used by the

ObservableScope that manages the ObservableObject to process all Observation objects generated by the

ObservableObject.

If the same DataProcessor is already attached to the ObservableObject, the operation shall return

RETCODE_NOT_MODIFIED.

If another DataProcessor is already attached to the ObservableObject, the operation shall fail and return

RETCODE_PRECONDITION_NOT_MET.

If this is the first ObservableObject instance attached to this DataProcessor within the enclosing ObservableScope, the

operation shall invoke attach_to_observable_scope operation of the DataProcessor, with the following parameters:

 scope: The ObservableScope that created the ObservableObject

The DataProcessorState value returned by the DataProcessor shall be stored by the ObservableScope if it is different

than ‘nil’ (as specified by the platform [PSM]).

If the attach_to_observable_scope operation returns a return code different from RETCODE_OK, the

attach_data_processor operation shall fail and return RETCODE_ERROR.

After having successfully attached the DataProcessor to the ObservableObject‘s ObservableScope, the operation shall

invoke the DataProcessor’s attach_to_observable_object operation with the following parameters:

 object: the ObservableObject performing the attach_data_processor operation.

 scope_state: he DataProcessorState value returned when the ObservableScope invoked the DataProcessor’s

attach_to_observable_scope operation.

The DataProcessorState value returned by the DataProcessor shall be stored by the ObservableObject if it is different

than ‘nil’ (as specified by the platform [PSM]).

If the attach_to_observable_object operation returns a return code different from RETCODE_OK, the

attach_data_processor operation shall fail and return RETCODE_ERROR.

If all operations succeed with return code RETCODE_OK, the attach_data_processor operation shall return

RETCODE_OK.

This operation may be safely invoked while data-collection is enabled in the enclosing ObservableScope.

Implementations shall guarantee that the newly attached DataProcessor will be eventually used to process the

Observation instances generated by the ObservableObject and collected by the ObservableScope’s execution context.

Parameter processor: The DataProcessor to be attached to the ObservableObject.

Return: The operation shall return RETCODE_OK if the DataProcessor was successfully attached to the

ObservableObject (and possibly the enclosing ObservableScope), RETCODE_ERROR if any of the DataProcessor’s

attach_to_observable_scope and attach_to_observable_object failed, RETCODE_ERROR if any other error prevented

the DataProcessor from being attached to the ObservableObject.

7.4.3.2.2 bind_value<T>

This operation shall create a binding inside an ObservableObject instance, between an external data source of type T

(represented by a DataValueSource instance of type T) and one of the fields of an ObservableObject’s

38 Application Instrumentation, Beta1

ObservableSchema. The value reported by the FieldValueSource shall be sampled by the ObservableObject’s

save_observation operation and copied to any new Observation.

If the specified index does not match the index of any of the Field instances contained in the ObservableObject’s

ObservableSchema, the operation shall fail and return RETCODE_BAD_PARAMETER.

If the specified T data type is not compatible with the value of the selected Field, the operation shall fail and return

RETCODE_ERROR.

The operation shall release any memory that might have been previously required to store a value for the Field specified

using the set_value operation.

Parameter field_index: An integer identifying the index of the ObservableSchema’s Field to which the

DataValueSource must be bound.

Parameter source: a FieldValueSource instance that will be bound to the selected Field.

Return: The operation shall return RETCODE_OK if the specified source was successfully bound in the

ObservableObject and is now associated with the specified Field of its ObservableSchema,

RETCODE_BAD_PARAMETER if the specified index does not identify any Field of the ObservableSchema,

RETCODE_ERROR if the specified source is of an incompatible data type or if any other error prevented the

ObservableObject from binding the specified source.

7.4.3.2.3 detach_data_processor

This operation shall detach a DataProcessor from an ObservableObject, causing the enclosing ObservableScope to stop

using the DataProcessor to process any Observation instance generated by the ObservableObject.

If the ObservableObject has no DataProcessor instance currently attached to it, the operation shall do nothing and return

RETCODE_NOT_MODIFIED.

The operation shall invoke the DataProcessor’s detach_from_observable_object operation, passing the following

parameters:

 object: the ObservableObject performing the detach_data_processor operation.

 scope_state: The DataProcessorState value returned when the enclosing ObservableScope invoked the

DataProcessor’s attach_to_observable_scope operation.

 object_state: he DataProcessorState value returned when the ObservableObject invoked the DataProcessor’s

attach_to_observable_object operation.

If this operation returns a value other than RETCODE_OK, the detach_data_processor operation shall fail and return

RETCODE_ERROR.

If this is the last ObservableObject instance the DataProcessor is attached to within the enclosing ObservableScope, the

operation shall invoke the DataProcessor’s detach_from_observable_scope operation with the following parameters:

 scope: the ObservableScope containing the ObservableObject performing the detach_data_processor operation.

 scope_state: the DataProcessorState value returned when the ObservableScope invoked the DataProcessor’s

attach_to_observable_scope operation.

If this operation returns a value other than RETCODE_OK, the detach_data_processor operation shall fail and return

RETCODE_ERROR.

Implementations are not required to support invocation of this operation while data-collection is enabled in the enclosing

ObservableScope. Undetermined behavior may arise if a DataProcessor instance is detached from an ObservableObject

while the ObservableScope is processing it (and possibly using the DataProcessor’s services).

Parameter retcode: The operation shall return RETCODE_OK if a DataProcessor instance was detached from the

ObservableObject, RETCODE_NOT_MODIFIED if no DataProcessor instance was previously attached to the

ObservableObject, RETCODE_ERROR if either of the DataProcessor’s detach_from_observable_object and

detach_from_observable_scope operations failed, or if any other type of error occurred.

Application Instrumentation, Beta1 39

Return: upon success (RETCODE_OK), the operation shall return a DataProcessor instance. In any other case, ‘nil’ (as

specified by the platform [PSM]) shall be returned.

7.4.3.2.4 disable_save_observation

This operation shall disable generation of Observation objects from an ObservableObject. If generation is successfully

disabled, the operation shall return RETCODE_OK.

If generation of Observation objects is already disabled, the operation shall do nothing and return

RETCODE_NOT_MODIFIED.

If any error prevents the generation of Observation instances from being disabled, the operation shall return

RETCODE_ERROR

Return: The operation shall return RETCODE_OK if generation of Observation objects was successfully disabled in the

ObservableObject, RETCODE_NOT_MODIFIED if generation was already disabled, RETCODE_ERROR if any error

prevented generation from being disabled.

7.4.3.2.5 enable_save_observation

This operation shall enable the generation of Observation objects in an ObservableObject. If generation is successfully

enabled, the operation shall return RETCODE_OK.

If generation of Observation objects is already enabled, the operation shall do nothing and return

RETCODE_NOT_MODIFIED.

If any error prevents generation from being enabled, the operation shall return RETCODE_ERROR

Return: The operation shall return RETCODE_OK if generation of Observation objects was successfully enabled in the

ObservableObject, RETCODE_NOT_MODIFIED if generation was already enabled, and RETCODE_ERROR if any

error prevented generation from being enabled.

7.4.3.2.6 get_name

This operation shall return a string containing the name of an ObservableObject instance.

Return: The operation shall return an unmodifiable, non-empty, string.

7.4.3.2.7 get_observable_schema

This operation shall return the ObservableSchema associated with the ObservableObject.

Return: The operation shall return the ObservableSchema associated with the ObservableObject.

7.4.3.2.8 get_observable_scope

This operation shall return the ObservableScope that created an ObservableObject instance.

Return: The operation shall return the ObservableScope that created the ObservableObject.

7.4.3.2.9 get_observation_history

This operation shall provide access to an ordered collection of Observation objects that have been stored in an

ObservableObject’s observation history. These Observation objects were generated by the ObservableObject, collected

and processed by its ObservableScope and then stored by a DataProcessor by using the KEEP flag.

Observation objects contained in the returned collection shall be ordered by increasing value of sequence number.

Only a DataProcessor accessing the ObservableObject within the execution context of an ObservableScope (i.e. in its

attach_to_observable_object, detach_from_observable_object and process_observations operations) may safely invoke

this operation. Instrumented applications may only safely invoke this operation directly if data-collection is disabled in

the ObservableScope that contains the ObservableObject.

The returned collection shall not be modified. Observation objects contained in the collection may be individually

40 Application Instrumentation, Beta1

removed (and returned to the ObservableObject for storing new values) by using the ObservableObject’s

remove_observation_from_history operation. In order to retrieve an updated version of the collection (without the

removed element), the get_observation_history operation needs to be invoked again. It shall be possible to safely iterate

over the value returned by get_observation_history and remove Observation instances using

remove_observation_from_history.

Return: An unmodifiable collection of Observation instances. The collection may be empty if no Observation has been

saved in the ObservableObject’s observation history.

7.4.3.2.10 is_save_observation_enabled

This operation shall check the current state of the generation of Observation instances in an ObservableObject.

Return: The operation shall return True if the generation is enabled in the ObservableObject and the save_observation

operation may be used to generate new Observation instances, False otherwise.

7.4.3.2.11 is_value_bound

This operation shall check whether a Field of an ObservableObject’s ObservableSchema is currently bound to a

DataValueSource.

If the specified index does not match the index of any of the Field instances contained in the ObservableObject’s

ObservableSchema, the operation shall fail and return False.

Parameter field_index: An integer identifying the index of the ObservableSchema’s Field to which the value must be

associated.

Return: The operation shall return True if the specified Field is currently bound to a DataValueSource, False if the Field

is not bound or an error occurred while determining the Field’s status.

7.4.3.2.12 remove_observation_from_history

This operation shall remove an Observation from an ObservableObject’s observation history. The Observation shall be

disposed and the values stored for each Field reverted to the defaults specified by each data type, so that it may be used

by future invocations of the save_observation operation.

If the Observation is not currently stored in the ObservableObject’s observation history or if the ObservableObject did

not generate it, the operation shall fail and return RETCODE_BAD_PARAMETER.

If an error occurs while removing the Observation from the observation history or while disposing it, the operation shall

fail and return RETCODE_ERROR.

It shall be possible to safely invoke this operation while iterating over the elements of the collection returned by

operation get_observation_history.

Return: The operation shall return RETCODE_OK if the specified Observation was successfully removed and returned

to the ObservableObject for reuse, RETCODE_BAD_PARAMETER if the Observation was not in the observation

history or the ObservableObject did not generate it, RETCODE_ERROR if any error occurred while removing or

disposing the Observation or any other part of the operation’s implementation.

7.4.3.2.13 save_observation

This operation shall generate an Observation object containing the values that an ObservableObject currently associates

with the fields of its ObservableSchema.

If generation of Observation objects is disabled in the ObservableObject, the operation shall do nothing and return

RETCODE_NOT_MODIFIED.

If enabled in the ObservableObject’s initialization properties, the operation shall collect a time-stamp of the time at

which the operation started and store it in as an UTCTime value, which will be copied to the new Observation.

The operation shall retrieve an Observation object to store the values by either:

Application Instrumentation, Beta1 41

 Reusing an Observation object previously allocated by the ObservableObject that has not been used to store

values yet or that has already been processed by the ObservableObject’s ObservableScope and returned to the

ObservableObject.

 Dynamically allocating a new Observation object, if the maximum number of Observation objects that can be

allocated by the ObservableObject has not been reached yet.

The operation may block the execution for a configurable amount of time (specified in the ObservableObject’s

initialization properties) in order to allow the enclosing ObservableScope to complete processing of existing Observation

objects. If no Observation is made available during this time (or no wait time is allowed in case of no Observation

instance available), save_observation will fail and return RETCODE_PRECONDITION_NOT_MET.

 For each Field instance contained in the ObservableObject’s ObservableSchema, the Observation instance shall contain

 The value associated to the Field by the latest successful invocations of the ObservableObject’s set_value or

bind_value operations.

 The default value specified by the Field’s data type.

For bound fields, the operation shall sample the value of each field by invoking its bound DataValueSource’s get_value

operation. If an error occurs during the sampling of any bound DataValueSource, the operation shall dispose the

Observation instance, restoring default values for each Field, and return RETCODE_ERROR.

The operation shall retrieve any memory required to copy the values into the Observation object. If an error occurs

during the copy of the value of any Field, the operation shall dispose the Observation object, restoring default values for

each Field and releasing any memory previously acquired, and return RETCODE_ERROR.

The operation shall assign a sequence number to the new Observation, starting from 1 for each ObservableObject.

After successfully generating the new Observation, the operation shall add it to a queue associated with the

ObservableObject, where the enclosing ObservableScope might later extract it for processing, and notify the

ObservableScope of the new Observation. If any error occurs in adding the Observation to the queue or notifying the

ObservableScope of its generation, the operation shall dispose the Observation object, restoring default values for each

Field and releasing any memory previously acquired, and return RETCODE_ERROR.

After successfully notifying the new Observation to the ObservableScope, the operation shall increment the sequence

number assigned to the Observation and store the value internally to the ObservableObject for the next invocation of

save_observation.

Return: The operation shall return RETCODE_OK if a new Observation containing the values of the ObservableObject

was successfully generated and notified to the enclosing ObservableScope, RETCODE_NOT_MODIFIED if the

generation of Observation objects is disabled in the ObservableObject, RETCODE_PRECONDITION_NOT_MET if no

Observation object could be retrieved or be allocated to store the values, RETCODE_ERROR if any error occurred

during the generation of the Observation, its notification to the ObservableScope or any other part of the operation’s

implementation.

7.4.3.2.14 set_value<T>

This operation shall store a value of type T inside the memory of an ObservableObject, associating it with one of the

fields of the ObservableObject’s ObservableSchema. The value shall be copied to any new Observation created by the

ObservableObject’s save_observation operation, until a new one is supplied through a new invocation of this operation

or the field is bound to an external source using the bind_value operation.

If the specified index does not match the index of any of the Field instances contained in the ObservableObject’s

ObservableSchema, the operation shall fail and return RETCODE_BAD_PARAMETER.

If the specified T data type is not compatible with the value of the selected Field and an error occurred while converting

it, the operation shall fail and return RETCODE_ERROR.

If the specified Field has been currently bound to an external DataValueSource by using the bind_value operation, the

operation shall fail and return RETCODE_PRECONDITION_NOT_MET.

The operation shall retrieve any memory required to store a copy of the specified value independently from the

application and to make it available to following invocations of the ObservableObject’s save_observation operation. The

42 Application Instrumentation, Beta1

memory may be dynamically allocated or accessed from pre-allocated buffers.

Parameter field_index: An integer identifying the index of the ObservableSchema’s Field to which the value must be

associated.

Parameter value: the value to set in the ObservableObject.

Return: The operation shall return RETCODE_OK if the specified value was successfully copied into the

ObservableObject and is now associated with the specified Field of its ObservableSchema,

RETCODE_BAD_PARAMETER if the specified index does not identify any Field of the ObservableSchema,

RETCODE_ERROR if the specified value is of an incompatible data type or the Field is currently bound to a

DataValueSource or if any other error prevented the ObservableObject from storing the specified value.

7.4.3.2.15 unbind_value

This operation shall delete an existing binding between a DataValueSource and one of the Fields of an

ObservableObject’s ObservableSchema. The default value of the Field’s data type shall be copied into any new

Observation created by the ObservableObject’s save_observation operation, until a new value is supplied using the

set_field operation or the field is bound to an external source using the bind_value operation

If the specified index does not match the index of any of the Field instances contained in the ObservableObject’s

ObservableSchema, the operation shall fail and return RETCODE_BAD_PARAMETER.

If the selected Field is not currently bound to any FieldValueSource in the ObservableObject, the operation shall do

nothing and return RETCODE_NOT_MODIFIED.

If the Field is bound to a DataValueSource, the operation shall discard the DataValueSource and revert the value of the

Field in the ObservableObject to its data type’s default value. The operation shall retrieve any memory necessary to store

this value.

Parameter field_index: An integer identifying the index of the ObservableSchema’s Field to which the value must be

associated.

Return: The operation shall return RETCODE_OK if the specified Field was successfully unbound from its

DataValueSource, RETCODE_BAD_PARAMETER if the specified index does not identify any Field of the

ObservableSchema, RETCODE_NOT_MODIFIED if the Field was not bound to any DataValueSource,

RETCODE_ERROR if any other error prevented the Field from being unbound.

7.4.3.3 DataProcessor

The DataProcessor interface shall provide support for the implementation of custom processing of Observation objects

collected by an ObservableScope. Applications shall be able to create instances of DataProcessor within an

InstrumentationService, using its create_data_processor operation, and then attach these instances to any

ObservableObject contained in the InstrumentationService, by means of the ObservableObject’s attach_data_processor

operation.

An ObservableScope shall use the DataProcessor that has been attached to an ObservableObject to process all

Observation objects collected from that ObservableObject. As detailed in 7.4.3.1, the ObservableScope shall invoke the

DataProcessor’s process_observations every time Observation objects are collected from an ObservableObject that that

DataProcessor is currently attached to.

In order to facilitate the implementation of custom processing functionalities, the instrumentation infrastructure shall

provide a DataProcessor with convenient attach and detach callback notifications that allow the DataProcessor to

associate (and conversely delete) custom processing state associated to any ObservableScope and/or ObservableObject.

DataProcessor

No Attributes

Operations

Application Instrumentation, Beta1 43

attach_to_

observable_object

 DataProcessorState

obj ObservableObject

scope_state DataProcessorState

[out] retcode ReturnCode

attach_to_

observable_scope

 DataProcessorState

scope ObservableScope

[out] retcode ReturnCode

detach_from_

observable_object

 ReturnCode

obj ObservableObject

scope_state DataProcessorState

obj_state DataProcessorState

detach_from_

observable_scope

 ReturnCode

scope ObservableScope

scope_state DataProcessorState

finalize
 ReturnCode

service InstrumentationService

get_name String

initialize

 ReturnCode

service InstrumentationService

init_args DataProcessorArgs

process_observations

 ReturnCode

observations Observation[]

obj ObservableObject

scope_state DataProcessorState

obj_state DataProcessorState

update

 ReturnCode

service InstrumentationService

args DataProcessorArgs

7.4.3.3.1 attach_to_observable_object

This operation shall be invoked only when a DataProcessor is attached to an ObservableObject (see 7.4.3.2.1). The

invocation of this operation shall notify the DataProcessor that it is going to be attached to an ObservableObject such

that it has the opportunity to reserve any resource it may require.

The DataProcessor shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to RETCODE_OK, if it does not

44 Application Instrumentation, Beta1

need to associate any specific state with the ObservableObject. Alternatively, the DataProcessor shall return a value of

type DataProcessorState instead, if explicit state for this ObservableObject needs to be maintained across invocations of

its process_observations operation.

The value returned by this operation shall be stored by the ObservableObject and passed to later invocations of the

DataProcessor’s operations.

Parameter obj: The ObservableObject that the DataProcessor is being attached to.

Parameter scope_state: The custom processing state associated with the ObservableScope that was returned by the

DataProcessor’s interface attach_to_observable_scope.

Parameter retcode: The operation shall return RETCODE_OK if the DataProcessor was successfully attached to the

ObservableObject, any other return value shall be interpreted as an error and it is up to implementations to define the

specific semantics of each one.

Return: the operation shall return ‘nil’ (as defined by the platform [PSM]) if no state should be associated with the

ObservableObject or a value of type DataProcessorState representing processing state that shall be stored by the

instrumentation infrastructure.

7.4.3.3.2 attach_to_observable_scope

This operation shall be invoked when a DataProcessor is attached to an ObservableObject and it is not yet attached to

any other ObservableObject instance contained in the same ObservableScope (see 7.4.3.2.1). The invocation of this

operation shall notify the DataProcessor that it is going to be attached to an ObservableObject within the specified

ObservableScope such that it has the opportunity to reserve any resource it may require.

The DataProcessor shall return ‘nil’ (as defined by the platform [PSM]) and set retcode to RETCODE_OK, if it does not

need to associate any specific state with the ObservableScope. The DataProcessor shall return a value of type

DataProcessorState instead, if explicit state for this ObservableScope needs to be maintained across invocations of its

process_observations operation.

The value returned shall be stored by the ObservableScope and passed to later invocations of the DataProcessor’s

operations.

Parameter scope: The ObservableScope that the DataProcessor is being attached to.

Parameter retcode: The operation shall return RETCODE_OK if the DataProcessor was successfully attached to the

ObservableScope, any other return value shall be interpreted as an error and it is up to implementations to define the

specific semantics of each one.

Return: the operation shall return ‘nil’ (as defined by the platform [PSM]) if no state should be associated with the

ObservableScope or a value of type DataProcessorState representing processing state that shall be stored by the

instrumentation infrastructure.

7.4.3.3.3 detach_from_observable_object

This operation shall be invoked when a DataProcessor is detached from an ObservableObject instance by using the

ObservableObject’s detach_data_processor operation. The implementation of this operation by the DataProcessor shall

release any resource that had been previously reserved by the DataProcessor to create processing state associated with

the ObservableObject, contained in the object_state parameter.

The operation shall return RETCODE_OK if freeing of resources was completed successfully.

Parameter obj: The ObservableObject that the DataProcessor is being detached from.

Parameter scope_state: The custom processing state associated with the ObservableScope that was returned by the

DataProcessor’s interface attach_to_observable_scope.

Parameter obj_state: The custom processing state associated with the ObservableObject that was returned by the

DataProcessor’s operation attach_to_observable_object.

Application Instrumentation, Beta1 45

Return: The operation shall return RETCODE_OK if the DataProcessor was successfully attached to the

ObservableObject, any other return value shall be interpreted as an error and it is up to implementations to define the

specific semantics of each one.

7.4.3.3.4 detach_from_observable_scope

This operation shall be invoked when a DataProcessor is detached from the last ObservableObject instance it was

attached to within a certain ObservableScope. The implementation of this operation by the DataProcessor shall release

any resource that had been previously reserved by the DataProcessor to create processing state associated with the

ObservableScope, contained in the scope_state parameter.

The operation shall return RETCODE_OK if freeing of resources was completed successfully.

Parameter scope: The ObservableScope that the DataProcessor is being detached from.

Parameter scope_state: The custom processing state associated with the ObservableScope that was returned by the

DataProcessor’s operation attach_to_observable_scope.

Return: The operation shall return RETCODE_OK if the DataProcessor was successfully attached to the

ObservableScope, any other return value shall be interpreted as an error and it is up to implementations to define the

specific semantics of each one.

7.4.3.3.5 finalize

This operation shall be invoked by an InstrumentationService’s delete_data_processor operation before the

DataProcessor is de-allocated (see 7.4.1.2.5). The invocation of this operation shall notify a DataProcessor instance that

it is going to be deleted by the InstrumentationService that created it.

The operation shall finalize and release any resource previously required by the DataProcessor to carry out its

operations.

This operation shall return RETCODE_OK if all resources used by the DataProcessor were successfully finalized. The

InstrumentationService shall interpret any other return code value as an error, but implementation may return any valid

value defined by type ReturnCode.

Parameter service: The InstrumentationService instance deleting the DataProcessor.

Return: The operation shall return RETCODE_OK if the finalization of the DataProcessor’s resources was successful,

any other return value shall be interpreted as an error and it is up to implementations to define the specific semantics of

each one.

7.4.3.3.6 get_name

This operation shall return a string containing the name of a DataProcessor.

Return: The operation shall return an unmodifiable non-empty string.

7.4.3.3.7 initialize

This operation shall be invoked by an InstrumentationService’s create_data_processor operation after the DataProcessor

has been allocated (see 7.4.1.2.2). The invocation of this operation shall notify a DataProcessor instance that it is being

created within a certain InstrumentationService and provide custom configuration parameters, in the form of a

DataProcessorArgs value specified in the DataProcessor’s initialization properties passed to the

InstrumentationService’s create_data_processor operation

The operation shall initialize any resource required by the DataProcessor to carry out its operations within the context of

the enclosing InstrumentationService.

This operation shall return RETCODE_OK if the initialization was completed successfully. The InstrumentationService

shall interpret any other return code value as an error, but implementation may return any valid value defined by type

ReturnCode.

Parameter service: The InstrumentationService instance creating the DataProcessor.

46 Application Instrumentation, Beta1

Return: The operation shall return RETCODE_OK if the initialization of the DataProcessor was successful, any other

return value shall be interpreted as an error and it is up to implementations to define the specific semantics of each one.

7.4.3.3.8 process_observations

This operation shall process a collection of Observation objects generated by an ObservableObject to which the

DataProcessor is attached. The operation may manipulate the values contained in an Observation, using the

Observation’s get_value and set_value operations, and control its distribution and life cycle, by setting and unsetting the

flags contained in the Observation.

The operation shall set flag LOCAL to ‘set’ state for each Observation instance that must not be distributed outside of the

InstrumentationService.

The operation shall set flag KEEP to ‘set’ state for each Observation instance that must not be returned to the original

ObservableObject that created it, so that it may be used to store new values, but instead added to the ObservableObject’s

observation history.

This operation may safely iterate over the observation history of each ObservableObject it processes by using the

ObservableObject’s get_observation_history. As explained in 7.4.3.2.12, elements may be removed from the observation

history if passed to the remove_from_observation_history operation.

Parameter observations: a collection of Observation instances that have not been processed yet. It may be empty.

Parameter obj: The ObservableObject that generated the Observation instances to be processed.

Parameter scope_state: The custom processing state associated with the ObservableScope that was returned by the

DataProcessor’s interface attach_to_observable_scope.

Parameter obj_state: The custom processing state associated with the ObservableObject that was returned by the

DataProcessor’s interface attach_to_observable_object.

Return: The operation shall return RETCODE_OK if the DataProcessor successfully processed the ObservableObject’s

Observation instances, any other return value shall be interpreted as an error and it is up to implementations to define the

specific semantics of each one.

7.4.3.3.9 update

This operation shall be invoked by the instrumentation infrastructure to request the reconfiguration of an existing

DataProcessor instance. The DataProcessor shall adapt its configuration and use the specified DataProcessorArgs value

for its parameters.

This operation shall return RETCODE_OK if the DataProcessor’s configuration was successfully updated. The

InstrumentationService shall interpret any other return code value as an error, but implementation may return any valid

value defined by type ReturnCode.

Parameter service: The InstrumentationService instance deleting the DataProcessor.

Return: The operation shall return RETCODE_OK if the update of the DataProcessor was successful, any other return

value shall be interpreted as an error and it is up to implementations to define the specific semantics of each one.

7.4.3.4 DataProcessorArgs

This class is used to provide custom configuration arguments to a DataProcessor.

DataProcessorArgs

Attributes

keys String[]

values String[]

Application Instrumentation, Beta1 47

7.4.3.4.1 keys

This attribute contains a collection of strings representing keys identifying the nature of the values stored at

corresponding indices in the collection contained by the values attribute.

7.4.3.4.2 values

This attribute contains a collection of strings representing arguments for the configuration of the DataProcessor instance.

7.4.3.5 DataProcessorState

DataProcessorState shall represent any generic state objects created by a DataProcessor instance in its

attach_to_observable_scope or attach_to_observable_object operations. No attribute or operation shall be specified for

this class, implementations must map it to a construct available in the target implementation language that will support

any custom data returned by a DataProcessorState (e.g. a pointer to type void in C or a value of type Object in Java).

48 Application Instrumentation, Beta1

7.4.4 Data Type Module

The Data Type Module is comprised of the following classifiers:

 DataValueKind

 DataValue

 PrimitiveValue

 NumericValue

 SequenceValue

 BOOL

 OCTET

 INT16

 INT32

 INT64

 UINT16

 UINT32

 UINT64

 FLOAT32

 FLOAT64

 FLOAT128

 CHAR8

 CHAR32

 STRING8

 STRING32

 BOOLSeq

 OCTETSeq

 INT16Seq

 INT32Seq

 INT64Seq

 UINT16Seq

 UINT32Seq

 UINT64Seq

 FLOAT32Seq

 FLOAT64Seq

 FLOAT128Seq

 CHAR8Seq

 CHAR32Seq

 STRING8Seq

 STRING32Seq

 DataValueSource

 ReturnCode

 Time

 UTCTime

Application Instrumentation, Beta1 49

Figure 10 Data Type Module

50 Application Instrumentation, Beta1

7.4.4.1 DataValueKind

The enumeration DataValueKind shall provide a list of all basic data-types that Application Instrumentation API supports

to represent application data and configuration properties. Each value of defined by the enumeration shall correspond to a

concrete data type available in the API.

DataValueKind DataValue type Description

TYPE_BOOL BOOL Boolean value

TYPE_OCTET OCTET 8-bit quantity

TYPE_INT16 INT16 16-bit integer value

TYPE_INT32 INT32 32-bit integer value

TYPE_INT64 INT64 64-bit integer value

TYPE_UINT16 UINT16 16-bit unsigned integer value

TYPE_UINT32 UINT32 32-bit unsigned integer value

TYPE_UINT64 UINT64 64-bit unsigned integer value

TYPE_FLOAT32 FLOAT32
IEEE single-precision floating

point number

TYPE_FLOAT64 FLOAT64
IEEE double-precision floating

point number

TYPE_FLOAT128 FLOAT128
IEEE double-extended floating

point number

TYPE_CHAR8 CHAR8 8-bit character

TYPE_CHAR32 CHAR32 32-bit character

TYPE_STRING8 STRING8 8-bit character string

TYPE_STRING32 STRING32 32-bit character string

TYPE_BOOL_SEQ BOOLSeq Array of Boolean values

TYPE_OCTET_SEQ OCTETSeq Array of 8-bit quantities

TYPE_INT16_SEQ INT16Seq Array of 16-bit integer values

TYPE_INT32_SEQ INT32Seq Array of 32-bit integer values

TYPE_INT64_SEQ INT64Seq Array of 64-bit integer values

TYPE_UINT16_SEQ UINT16Seq
Array of 16-bit unsigned integer

values

TYPE_UINT32_SEQ UINT32Seq
Array of 32-bit unsigned integer

values

TYPE_UINT64_SEQ UINT64Seq
Array of 64-bit unsigned integer

values

Application Instrumentation, Beta1 51

TYPE_FLOAT32_SEQ FLOAT32Seq
Array of IEEE single-precision

floating point numbers

TYPE_FLOAT64_SEQ FLOAT64Seq
Array of IEEE double-precision

floating point numbers

TYPE_FLOAT128_SEQ FLOAT128Seq
Array of IEEE double-extended

floating point numbers

TYPE_CHAR8_SEQ CHAR8Seq Array of 8-bit characters

TYPE_CHAR32_SEQ CHAR32Seq Array of 32-bit characters

TYPE_STRING8_SEQ STRING8Seq Array of 8-bit character strings

TYPE_STRING32_SEQ STRING32Seq Array of 32-bit character strings

7.4.4.2 DataValue

The DataValue data type is an abstract type that subsumes all other data types defined by the PIM to represent

application data.

DataValue is the base class of a platform-independent hierarchy of data-types, which includes both primitive values, such

as numbers, characters and strings, and limited sequences of primitive values.

PSMs are only required to provide representations for concrete sub-types of the type hierarchy. These types will typically

map to data types natively supported by the target platform to ease integration of the instrumentation in existing

applications. The set of supported data types may also be restricted to guarantee easier integration. Custom complex data

types will have to be defined if data types not available natively are to be supported on certain target platforms.

7.4.4.3 PrimitiveValue

PrimitiveValue is the base abstract type for primitive values.

7.4.4.4 NumericValue

NumericValue is the base abstract type for all numeric primitive values, which include integers, unsigned integers, and

floating-point numbers of different size. The default value for all sub-types of NumericValue is 0.

7.4.4.5 SequenceValue<T>

SequenceValue is the base abstract type for all complex values containing a finite collection of primitive values. It defines

the minimal interface to access the contained values and determine the length of the sequence.

This class is parameterized on the primitive type of its element, specified as one of the sub-types of PrimitiveValue. The

operations specified by this class shall be implemented as native operators on target platforms whenever possible. Values

may, for example, be represented as native arrays and random access provided using the array operator.

The default value for all sub-types of SequenceValue is ‘nil’ (as specified by the platform [PSM]).

SequenceValue <T:PrimitiveValue>

No Attributes

Operations

get
 T

index Integer

set ReturnCode

52 Application Instrumentation, Beta1

index Integer

value T

length Integer

7.4.4.5.1 get<T>

This operation shall perform random access on the sequence’s elements. If the specified index presents a value between 0

and the sequence’s length – 1, the operation shall return the value stored at that position by the collection.

Parameter index: the index of the element to access in the sequence.

Return: the operation shall return the value of type T contained by the sequence at the specified index or the default

value specified for type T if the index is not within the boundaries of sequence.

7.4.4.5.2 set<T>

This operation shall store an element at a particular index in the sequence. If the specified index presents a value between

0 and the sequence’s length – 1, the operation shall store the specified value at that position in the collection.

Parameter index: the index of the element of the collection to set.

Parameter value: the value of type T to be set at the specified position in the sequence.

Return: The operation shall return RETCODE_OK if the value was successfully set at the requested position of the

sequence, RETCODE_BAD_PARAMETER if the specified index was not within the boundaries of the sequence,

RETCODE_ERROR if any other type of error occurred.

7.4.4.5.3 length

This operation shall return the current length of the sequence.

Return: The operation shall return an integer representing the total number of elements currently stored in the sequence.

It may be 0 if no element as been added to the sequence yet.

7.4.4.6 BOOL

The BOOL data type represents a Boolean value. The default value for this type is False.

7.4.4.7 OCTET

The OCTET data type represents an 8-bit value. The default value for this type is 0x00.

7.4.4.8 INT16

The INT16 data type represents a 16-bit integer value.

7.4.4.9 INT32

The INT32 data type represents a 32-bit integer value.

7.4.4.10 INT64

The INT64 data type represents a 64-bit integer value.

7.4.4.11 UINT16

The UINT16 data type represents a 16-bit unsigned integer value.

Application Instrumentation, Beta1 53

7.4.4.12 UINT32

The UINT32 data type represents a 32-bit unsigned integer value.

7.4.4.13 UINT64

The UINT64 data type represents a 64-bit unsigned integer value.

7.4.4.14 FLOAT32

The FLOAT32 data type represents a 32-bit IEEE floating-point value (as defined by the IEEE 754-2008 specification .

7.4.4.15 FLOAT64

The FLOAT64 data type represents a 64-bit IEEE floating-point value (as defined by the IEEE 754-2008 specification .

7.4.4.16 FLOAT128

The FLOAT128 data type represents a 128-bit IEEE floating-point value (as defined by the IEEE 754-2008

specification .

7.4.4.17 CHAR8

The CHAR8 data type represents an 8-bit character value. The default value for this type is 0x00.

7.4.4.18 CHAR32

The CHAR32 data type represents a wide character value, typically Unicode. The default value for this type is

0x00000000.

7.4.4.19 STRING8

The STRING8 data type represents strings of 8-bit characters. The default value for this type is ‘nil’ (as specified by the

platform [PSM]).

7.4.4.20 STRING32

The STRING32 data type represents strings of wide characters. The default value for this type is ‘nil’ (as specified by the

platform [PSM])

7.4.4.21 BOOLSeq

The BOOLSeq data type represents SequenceValues containing BOOL elements.

7.4.4.22 OCTETSeq

The OCTETSeq data type represents SequenceValues containing OCTET elements.

7.4.4.23 INT16Seq

The INT16Seq data type represents SequenceValues containing INT16 elements.

7.4.4.24 INT32Seq

The INT32Seq data type represents SequenceValues containing INT32 elements.

7.4.4.25 INT64Seq

The INT64Seq data type represents SequenceValues containing INT64 elements.

54 Application Instrumentation, Beta1

7.4.4.26 UINT16Seq

The UINT16Seq data type represents SequenceValues containing UINT16 elements.

7.4.4.27 UINT32Seq

The UINT32Seq data type represents SequenceValues containing UINT32 elements.

7.4.4.28 UINT64Seq

The UINT64Seq data type represents SequenceValues containing UINT64 elements.

7.4.4.29 FLOAT32Seq

The FLOAT32Seq data type represents SequenceValues containing FLOAT32 elements.

7.4.4.30 FLOAT64Seq

The FLOAT64Seq data type represents SequenceValues containing FLOAT64 elements.

7.4.4.31 FLOAT128Seq

The FLOAT128Seq data type represents SequenceValues containing FLOAT128 elements.

7.4.4.32 CHAR8Seq

The CHAR8Seq data type represents SequenceValues containing CHAR8 elements.

7.4.4.33 CHAR32Seq

The CHAR32Seq data type represents SequenceValues containing CHAR32 elements.

7.4.4.34 STRING8Seq

The STRING8Seq data type represents SequenceValues containing STRING8 elements.

7.4.4.35 STRING32Seq

The STRING32Seq data type represents SequenceValues containing STRING32 elements.

7.4.4.36 DataValueSource<T>

A DataValueSource shall encapsulates a single value of application data and provide an interface for the instrumentation

infrastructure to dynamically sample it, for example when generating an Observation from an ObservableObject whose

fields have been bound using the bind_value operation.

DataValueSource <T:DataValue>

No Attributes

Operations

get_value T

7.4.4.36.1 get_value<T>

This operation shall return the current value of the data source wrapped by the DataValueSource instance. The returned

value shall be the value contained by the wrapped source as sampled at the time this operation was invoked.

Application Instrumentation, Beta1 55

Return: a value of type T representing the current value of the data source wrapped by the DataValueSource instance or

the default value for type T, if an error occurred while sampling the wrapped data source.

7.4.4.37 ReturnCode

ReturnCode is an enumerated type that is used by methods of the Application Instrumentation API to indicate the

outcome of an operation. The following table describes its possible values and provides a description of their meaning

with respect to the operation’s execution.

VALUE DESCRIPTION

RETCODE_OK The requested operation was executed correctly.

RETCODE_ERROR
The operation could not be carried out because an error

occurred.

RETCODE_BAD_PARAMETER
The operation could not be carried out because one or

more of the supplied arguments did not present

acceptable values for the operation.

RETCODE_PRECONDITION_NOT_MET
The operation could not be carried out because one or

more of the operation’s preconditions were not met at

the time the operation was executed.

RETCODE_NOT_MODIFIED
The operation was not performed and target resources

were not modified.

All operations of the API that perform non-trivial behavior include an output parameter of type ReturnCode (or they

return a value of type ReturnCode when no other return value is required) that applications can use to control the

outcome of the operation.

Any operation may return RETCODE_OK or RETCODE_ERROR. Any operation that takes an input parameter may

additionally return RETCODE_BAD_PARAMETER.

Operations that may return any other error code shall state so explicitly in their description.

7.4.4.38 Time

Time is a generic data type that shall represent an interval of time. It is left up to implementation of this specification to

define its attributes and operations. The implementing data type shall support the representation of finite and infinite

durations of time.

7.4.4.39 UTCTime

UTCTime is a generic data type that shall represent an instant of time using the UTC standard. It is left up to

implementation of this specification to define its attributes and operations. The implementing data type shall support the

representation of any date that can be expressed using the UTC standard.

56 Application Instrumentation, Beta1

7.4.5 Properties Module

The Properties Module is comprised of the following classifiers:

 DefaultConfigurationTable

 InstrumentationServiceProperties

 ObservableSchemaProperties

 FieldProperties

 ObservableScopeProperties

 ObservableObjectProperties

 DataProcessorProperties

Application Instrumentation, Beta1 57

Figure 11 Properties Module

58 Application Instrumentation, Beta1

7.4.5.1 DefaultConfigurationTable

The DefaultConfigurationTable class shall provide a single location where default configuration properties for each

instrumentation entities may be stored and accessed by applications.

The DefaultConfigurationTable shall be implemented as a singleton, accessible using the provided get_instance static

operation.

Any operation that creates an instrumentation entity, and accepts one of the properties structures defined by this module,

shall also accept ‘nil’ (as defined by the platform [PSM]) as the value for the entities initialization properties. In this case,

the operation shall use the default value reported for the specific type of properties by one of the methods of the

DefaultConfigurationTable singleton instance.

DefaultConfigurationTable

No Attributes

Operations

get_default_data_

processor_properties
 DataProcessorProperties

get_default_observable_

object_properties
 ObservableObjectProperties

get_default_observable_

schema_properties
 ObservableSchemaProperties

get_default_observable_

scope_properties
 ObservableScopeProperties

get_default_

service_properties
 InstrumentationServiceProperties

is_automatic_service_

creation_enabled
 Boolean

set_automatic_service_

creation

 ReturnCode

enabled Boolean

set_default_data

processor_properties

 ReturnCode

properties DataProcessorProperties

set_default_observable_

object_properties

 ReturnCode

properties ObservableObjectProperties

set_default_observable_

schema_properties

 ReturnCode

properties ObservableSchemaProperties

set_default_observable_

scope_properties

 ReturnCode

properties ObservableScopeProperties

set_default_ ReturnCode

Application Instrumentation, Beta1 59

service_properties
properties InstrumentationServiceProperties

7.4.5.1.1 get_default_data_processor_properties

This operation shall return the default DataProcessorProperties instance stored by the DefaultConfigurationTable.

If the operation set_default_service_properties was never called by the application, this operation shall return an instance

containing the default values for DataProcessorProperties, as defined by this specification.

Return: an instance of DataProcessorProperties.

7.4.5.1.2 get_default_observable_object_properties

This operation shall return the default ObservableObjectProperties instance stored by the DefaultConfigurationTable.

If the operation set_default_observable_object_properties was never called by the application, this operation shall return

an instance containing the default values for ObservableObjectProperties, as defined by this specification.

Return: an instance of ObservableObjectProperties.

7.4.5.1.3 get_default_observable_schema_properties

This operation shall return the default ObservableSchemaProperties instance stored by the DefaultConfigurationTable.

If the operation set_default_observable_schema_properties was never called by the application, this operation shall

return an instance containing the default values for ObservableSchemaProperties, as defined by this specification.

Return: an instance of ObservableSchemaProperties.

7.4.5.1.4 get_default_observable_scope_properties

This operation shall return the default ObservableScopeProperties instance stored by the DefaultConfigurationTable.

If the operation set_default_observable_scope_properties was never called by the application, this operation shall return

an instance containing the default values for ObservableScopeProperties, as defined by this specification.

Return: an instance of ObservableScopeProperties.

7.4.5.1.5 get_default_service_properties

This operation shall return the default InstrumentationServiceProperties instance stored by the

DefaultConfigurationTable.

If the operation set_default_service_properties was never called by the application, this operation shall return an instance

containing the default values for InstrumentationServiceProperties, as defined by this specification.

Return: an instance of InstrumentationServiceProperties.

Parameter properties: the value of InstrumentationServiceProperties to store in the DefaultConfigurationTable.

Return: the operation shall return RETCODE_OK if the specified values were successfully stored inside the

DefaultConfigurationTable, RETCODE_ERROR if any error occurred.

7.4.5.1.6 is_automatic_service_creation_enabled

This operation shall check whether InstrumentationService instances should be automatically created with default

InstrumentationServiceProperties (as returned by the get_default_service_properties) when looked up by name using the

lookup_service operation of the Infrastructure class.

If set_automatic_service_creation has never been called yet, this operation shall return False. Otherwise, the operation

shall return the last value specified using set_automatic_service_creation.

Return: The operation shall return True if InstrumentationService instances should be automatically created

60 Application Instrumentation, Beta1

7.4.5.1.7 set_automatic_service_creation

This operation shall set whether InstrumentationService instances should be automatically created with default

InstrumentationServiceProperties (as returned by the get_default_service_properties) when looked up by name using the

lookup_service operation of the Infrastructure class.

Parameter enabled: a Boolean value specifying whether the property is enabled or not.

Return: The operation shall return RETCODE_OK if the specified value was correctly stored, RETCODE_ERROR if

any type of error occurred.

7.4.5.1.8 set_default_data_processor_properties

This operation shall set the default DataProcessorProperties instance stored by the DefaultConfigurationTable.

If the value was successfully saved, this operation shall return RETCODE_OK. If an error prevented the value from

being stored in the DefaultConfigurationTable, the operation shall fail and return RETCODE_ERROR.

Every successive invocation of get_default_data_processor_properties shall return the values saved by this operation,

until it is successfully invoked again with different ones.

Parameter properties: the value of DataProcessorProperties to store in the DefaultConfigurationTable.

Return: the operation shall return RETCODE_OK if the specified values were successfully stored inside the

DefaultConfigurationTable, RETCODE_ERROR if any error occurred.

7.4.5.1.9 set_default_observable_object_properties

This operation shall set the default ObservableObjectProperties instance stored by the DefaultConfigurationTable.

If the value was successfully saved, this operation shall return RETCODE_OK. If an error prevented the value from

being stored in the DefaultConfigurationTable, the operation shall fail and return RETCODE_ERROR.

Every successive invocation of get_default_observable_object_properties shall return the values saved by this operation,

until it is successfully invoked again with different ones.

Parameter properties: the value of ObservableObjectProperties to store in the DefaultConfigurationTable.

Return: the operation shall return RETCODE_OK if the specified values were successfully stored inside the

DefaultConfigurationTable, RETCODE_ERROR if any error occurred.

7.4.5.1.10 set_default_observable_schema_properties

This operation shall set the default ObservableSchemaProperties instance stored by the DefaultConfigurationTable.

If the value was successfully saved, this operation shall return RETCODE_OK. If an error prevented the value from

being stored in the DefaultConfigurationTable, the operation shall fail and return RETCODE_ERROR.

Every successive invocation of get_default_observable_schema_properties shall return the values saved by this

operation, until it is successfully invoked again with different ones.

Parameter properties: the value of ObservableSchemaProperties to store in the DefaultConfigurationTable.

Return: the operation shall return RETCODE_OK if the specified values were successfully stored inside the

DefaultConfigurationTable, RETCODE_ERROR if any error occurred.

7.4.5.1.11 set_default_observable_scope_properties

This operation shall set the default ObservableScopeProperties instance stored by the DefaultConfigurationTable.

If the value was successfully saved, this operation shall return RETCODE_OK. If an error prevented the value from

being stored in the DefaultConfigurationTable, the operation shall fail and return RETCODE_ERROR.

Every successive invocation of get_default_observable_scope_properties shall return the values saved by this operation,

until it is successfully invoked again with different ones.

Application Instrumentation, Beta1 61

Parameter properties: the value of ObservableScopeProperties to store in the DefaultConfigurationTable.

Return: the operation shall return RETCODE_OK if the specified values were successfully stored inside the

DefaultConfigurationTable, RETCODE_ERROR if any error occurred.

7.4.5.1.12 set_default_observable_schema_properties

This operation shall set the default FieldProperties instance stored by the DefaultConfigurationTable.

If the value was successfully saved, this operation shall return RETCODE_OK. If an error prevented the value from

being stored in the DefaultConfigurationTable, the operation shall fail and return RETCODE_ERROR.

Every successive invocation of get_default_field_properties shall return the values saved by this operation, until it is

successfully invoked again with different ones.

Parameter properties: the value of FieldProperties to store in the DefaultConfigurationTable.

Return: the operation shall return RETCODE_OK if the specified values were successfully stored inside the

DefaultConfigurationTable, RETCODE_ERROR if any error occurred.

7.4.5.1.13 set_default_service_properties

This operation shall set the default InstrumentationServiceProperties instance stored by the DefaultConfigurationTable.

If the value was successfully saved, this operation shall return RETCODE_OK. If an error prevented the value from

being stored in the DefaultConfigurationTable, the operation shall fail and return RETCODE_ERROR.

Every successive invocation of get_default_service_properties shall return the values saved by this operation, until it is

successfully invoked again with different ones.

7.4.5.2 InstrumentationServiceProperties

This class shall define all configuration properties that may be used to control the initialization of an

InstrumentationService and its functionalities.

InstrumentationServiceProperties

Attributes

No attributes

7.4.5.3 ObservableSchemaProperties

This class shall define all configuration properties that may be used to control the initialization of an ObservableSchema

and its functionalities.

ObservableSchemaProperties

Attributes

No attributes

7.4.5.4 FieldProperties

This class defines the properties of a Field instance and allows their specification when creating the Field in an

ObservableSchema.

FieldProperties

62 Application Instrumentation, Beta1

Attributes

type DataValueKind

max_length Integer

string_max_length Integer

7.4.5.4.1 type

This attribute specifies the type of DataValue that can be stored in a Field. The default value of this attribute is

TYPE_INT32.

7.4.5.4.2 max_length

This attribute specifies the maximum length of a single value contained in a Field. The default value of this attribute is 1.

7.4.5.4.3 string_max_length

This attribute specifies the maximum number of single values that can be contained in a Field. The default value of this

attribute is 0.

7.4.5.5 ObservableScopeProperties

This class shall define all configuration properties that may be used to control the initialization of an ObservableScope

and its functionalities.

ObservableScopeProperties

Attributes

enable_data_collection Boolean

7.4.5.5.1 enable_data_collection

This attribute controls whether data-collection in the ObservableScope will be enabled automatically upon initialization

or if applications must enable it manually. If True is specified, data-collection will be enabled by invoking operation

ObservableScope::enable_data_collection. The default value of this attribute is True.

7.4.5.6 ObservableObjectProperties

This class shall define all configuration properties that may be used to control the initialization of an ObservableObject

and its functionalities.

ObservableObjectProperties

Attributes

enable_save_observation Boolean

take_observation_timestamp Boolean

max_allocation_blocking_time Time

data_processor_name String

allocated_observations_initial Integer

allocated_observations_max Integer

Application Instrumentation, Beta1 63

7.4.5.6.1 enable_save_observation

If this attribute is set to True, an ObservableObject will enable the generation of Observation instances as soon as it is

initialized using operation ObservableObject::enable_save_observation. If this attribute is False, applications must

enable generation of Observation instances explicitly.

The default value for this attribute is True.

7.4.5.6.2 take_observation_timestamp

If this attribute is set to True, an ObservableObject will take a time-stamp of the current time when generating a new

Observation and store in the new Observation instance as an UTCTime value.

The default value for this attribute is True.

7.4.5.6.3 allocated_observations_initial

This attribute controls how many Observation instances an ObservableObject should initially allocate. The default value

for this attribute is 1.

7.4.5.6.4 allocated_observations_max

This attribute controls how many Observation instances an ObservableObject can allocate at the most. This value must

be greater or equal than allocated_observations_initial. This attribute can be set to -1 to indicate that an unlimited

number of Observation instances can be allocated if required to store new values from the ObservableObject.

The default value for this attribute is -1.

7.4.5.6.5 max_allocation_blocking_time

This attribute defines the maximum period of time that an ObservableObject can block the execution of an application

thread during the execution of its save_observation operation, after the maximum number of Observation instances that

can be allocated as been reached and no Observation instance is available to store the new values. The value shall be

represented by type Time.

The default value for this attribute is a period of length 0.

7.4.5.6.6 data_processor_name

This attribute specifies the name of an optional DataProcessor that will be used by the ObservableScope managing the

ObservableObject to process all Observation instances it creates.

The default value for this attribute is ‘nil’.

7.4.5.7 DataProcessorProperties

This class is a placeholder for properties that each PSM may need to specify for the proper initialization of a

DataProcessor instance.

DataProcessorProperties

Attributes

init_args DataProcessorArgs

7.4.5.7.1 init_args

This attribute contains an optional instance of DataProcessorArgs that will be passed to the DataProcessor’s initialize

method when the new DataProcessor instance is initialized.

64 Application Instrumentation, Beta1

7.5 Instrumentation Domain

7.5.1 Distributed Architecture

An Instrumentation Domain is an abstract service layer that interconnects instrumented applications with remote

monitoring applications. It models a distributed instrumentation infrastructure and encapsulates its underlying

communication infrastructure, providing all functionalities required by remote applications to interact with the local

instrumentation of each monitored application.

An Instrumentation Domain allows applications to access Observations generated using ObservableObjects and

published by an ObservableScope. It also exposes a Remote Service Interface that can be used to perform dynamic

reconfiguration of the remote instrumentation entities.

An Instrumentation Domain must define a naming scheme to allow remote applications to identify specific

instrumentation entities in the distributed infrastructure. This scheme may leverage the names assigned by the API to

each entity and used within the local instrumentation to uniquely reference them. If this were the case, some additional

strategy, such as also considering host-specific information, should be considered to avoid potential name clashes

between multiple instrumented applications in the same Instrumentation Domain.

7.5.2 Data Distribution Model

Applications interact with the Instrumentation Domain to access observations of data generated by instrumented

applications.

An Instrumentation Domain receives processed Observation objects from ObservableScope instances and it implements

the communication logic required for their distribution. Once an Observation has been successfully handed to the

Instrumentation Domain, an ObservableScope can safely recycle it for new contents. If future external consumers must

access the Observation, it is the Instrumentation Domain’s responsibility to store its values and meta-data information.

Transformations may be applied to the data in order to map it to the technology selected for the implementation of the

distribution to remote consumers.

The interface offered to consumers for accessing the data depends on the selected communication technology.

7.5.3 Addressing of Instrumentation Entities

Since the Instrumentation Domain enables applications to re-configure remote instrumentation entities and access the

observations they generate, each implementation shall define how instrumentation entities residing on distributed

instrumented application may be uniquely identified by a remote application.

The Application Instrumentation API assigns each entity a name, which is constrained to be unique within the context of

the entity that created it. This naming support must be leveraged to correctly address entities in an Instrumentation

Domain.

The following table summarizes how each type of entity is uniquely identified in the Instrumentation Domain.

Implementations shall allow applications to identify entity using this information. How the information contained in each

identifying tuple is concretely expressed by the application is left unspecified. As an example, an ad-hoc URI scheme

may be defined to properly address entities in a concise manner.

The identifiers are presented in the form of tuples of strings.

Type of Entity Identifier

InstrumentationService (ID of host; name)

ObservableSchema (ID of InstrumentationService; name)

Application Instrumentation, Beta1 65

DataProcessor (ID of InstrumentationService; name)

ObservableScope (ID of InstrumentationService; name)

ObservableObject (ID of ObservableScope; name)

7.5.4 Remote Service Interface

An Instrumentation Domain lets applications interact with the instrumentation entities of instrumented applications

through a remote service interface.

The following sub-clauses provide a high-level description of the operations that shall be supported through this interface

by implementations of an Instrumentation Domain.

Each Platform Specific Model (PSM) must specify how this interface is exposed to applications and how the remote

interaction is implemented.

In particular, different platforms may support different invocation semantics for the operations. Depending on the naming

scheme adopted to reference remote entities and the support of the underlying communication architecture, a platform

[PSM] may support invocation of these operations on multiple instrumentation entities, from multiple

InstrumentationService instances at a time. Other implementations may adopt a 1 to 1 invocation semantic, more similar

to classic Remote Procedure Call or Remote Method Invocation architectures.

7.5.4.1 Description of operations

The description of each operation summarizes the actions performed by the local instrumentation of an instrumented

application when an operation is requested to the Instrumentation Domain.

The input and output parameters of each operation are described in a qualitative way, leaving their formal definition to

implementations. Similarly to the Application Instrumentation API, non-trivial operations are assumed to have a

ReturnCode output parameter that can be used to convey the outcome of the operation.

Most operations take an input parameter specifying a reference to an instrumentation entity. This instrumentation entity

will be the target of the operation and control the actual operations performed by the local instrumentation.

As mentioned in 7.5.3, a way to uniquely identify instrumentation entities created by each instrumented application is

assumed to be available. All operations shall fail and return RETCODE_BAD_PARAMETER if the target entity is not

found in the local instrumentation of an application.

Each implementation may map input and output data required by each operation in different ways and adopt different

strategies to perform the operations.

7.5.4.1.1 Check Save Observation Status

This operation shall allow a remote application to verify whether the generation of new Observation objects is enabled in

one or more ObservableObject instances. The remote application must specify the target ObservableObject instances on

which to perform the verification.

For each referenced ObservableObject instance found within the local instrumentation that is performing the operation,

the result shall include a tuple of the form:

(ID of ObservableObject, RETCODE_OK, status)

Status is the result of invoking operation is_save_observation_enabled on the ObservableObject.

If the remote application specifies the identifier of an InstrumentationService and/or an ObservableScope as the target for

this operation, the result shall include information as if the operation had been invoked on all ObservableObject instances

contained by the referenced entity (i.e. all ObservableObject instances created by an ObservableScope or all

ObservableObject instances created by every ObservableScope instance created by the InstrumentationService).

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

66 Application Instrumentation, Beta1

include a tuple of the form:

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableObject instances it contains or verifying

the status of an ObservableObject), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

type InstrumentationService, ObservableScope, ObservableObject.

Return: In case of success, this operation shall return a tuple of the form (ID of ObservableObject, RETCODE_OK,

status) for each ObservableObject instance referenced by target whose status was successfully verified in the local

instrumentation, where status is the Boolean value returned by invoking is_save_observation_enabled on the

ObservableObject. In case of failure, the operation shall return a tuple of the form (ID of entity,

RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local instrumentation,

and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which error occurred while performing the

operation. In case of failure, implementations may also return a status value, which shall be ignored by applications

receiving the result.

7.5.4.1.2 Enable Save Observation

This operation shall allow a remote application to enable the generation of Observation samples on one or more

ObservableObject instances. The remote application must specify the target ObservableObject instances on which to

perform the operation.

For each referenced ObservableObject instance found within the local instrumentation that is performing the operation,

the operation shall invoke the ObservableObject’s enable_save_observation operation and include a tuple of the

following form in the result:

(ID of ObservableObject, retcode)

Retcode is the result value returned by the invocation of enable_save_observation on the ObservableObject.

If the remote application specifies the identifier of an InstrumentationService and/or an ObservableScope as the target for

this operation, the operation shall target all ObservableObject instances contained by the referenced entity (i.e. all

ObservableObject instances created by an ObservableScope or all ObservableObject instances created by every

ObservableScope instance created by the InstrumentationService) and include a tuple for each ObservableObject in its

result.

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

include a tuple of the form:

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableObject instances it contains or enabling

generation of Observation samples on an ObservableObject), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

type InstrumentationService, ObservableScope, ObservableObject.

Return: In case of success, this operation shall return a tuple of the form (ID of ObservableObject, retcode) for each

ObservableObject instance referenced by target, where retcode is the value returned by invoking

enable_save_observation on the ObservableObject. In case of failure, the operation shall return a tuple of the form (ID of

entity, RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local

instrumentation, and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which an error occurred

while performing the operation.

7.5.4.1.3 Disable Save Observation

This operation shall allow a remote application to disable the generation of Observation samples on one or more

Application Instrumentation, Beta1 67

ObservableObject instances. The remote application must specify the target ObservableObject instances on which to

perform the operation.

For each referenced ObservableObject instance found within the local instrumentation that is performing the operation,

the operation shall invoke the ObservableObject’s disable_save_observation operation and include a tuple of the

following form in the result:

(ID of ObservableObject, retcode)

Retcode is the result value returned by the invocation of enable_save_observation on the ObservableObject.

If the remote application specifies the identifier of an InstrumentationService and/or an ObservableScope as the target for

this operation, the operation shall target all ObservableObject instances contained by the referenced entity (i.e. all

ObservableObject instances created by an ObservableScope or all ObservableObject instances created by every

ObservableScope instance created by the InstrumentationService) and include a tuple for each ObservableObject in its

result.

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

include a tuple of the form:

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableObject instances it contains or disabling

generation of Observation samples on an ObservableObject), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

type InstrumentationService, ObservableScope, ObservableObject.

Return: In case of success, this operation shall return a tuple of the form (ID of ObservableObject, retcode) for each

ObservableObject instance referenced by target, where retcode is the value returned by invoking

disable_save_observation on the ObservableObject. In case of failure, the operation shall return a tuple of the form (ID

of entity, RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local

instrumentation, and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which an error occurred

while performing the operation.

7.5.4.1.4 Check Data Collection Status

This operation shall allow a remote application to verify if data collection is currently enabled in one or more

ObservableScope instances. The remote application must specify the target ObservableScope instances on which to

perform the verification.

For each referenced ObservableScope instance found within the local instrumentation that is performing the operation,

the operation shall invoke the ObservableScope’s is_data_collection_enabeld operation and include a tuple of the

following form in the result:

(ID of ObservableScope, RETCODE_OK, status)

Status is the result value returned by the invocation of is_data_collection_enabled on the ObservableScope.

If the remote application includes the identifier of an InstrumentationService in the target of this operation, the operation

shall target all ObservableScope instances contained by the referenced entity (i.e. all ObservableScope instances created

by the InstrumentationService) and include a tuple for each ObservableScope in its result.

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

include a tuple of the form:

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableScope instances it contains or verifying

the status of data collection on an ObservableScope), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

68 Application Instrumentation, Beta1

type InstrumentationService, ObservableScope.

Return: In case of success, this operation shall return a tuple of the form (ID of ObservableScope, RETCODE_OK,

status) for each ObservableScope instance referenced by target, where status is the value returned by invoking

is_data_collection_enabled on the ObservableScope. In case of failure, the operation shall return a tuple of the form (ID

of entity, RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local

instrumentation, and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which an error occurred

while performing the operation.

7.5.4.1.5 Enable Data Collection

This operation shall allow a remote application to enable data collection on one or more ObservableScope instances. The

remote application must specify the target ObservableScope instances on which to perform the operation.

For each referenced ObservableScope instance found within the local instrumentation that is performing the operation,

the operation shall invoke the ObservableScope’s enable_data_collection operation and include a tuple of the following

form in the result:

(ID of ObservableScope, retcode)

Retcode is the result value returned by the invocation of enable_data_collection on the ObservableScope.

If the remote application includes the identifier of an InstrumentationService in the target of this operation, the operation

shall target all ObservableScope instances contained by the referenced entity (i.e. all ObservableScope instances created

by the InstrumentationService) and include a tuple for each ObservableScope in its result.

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

include a tuple of the form:

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableScope instances it contains or enabling

data collection on an ObservableScope), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

type InstrumentationService, ObservableScope.

Return: In case of success, this operation shall return a tuple of the form (ID of ObservableScope, retcode) for each

ObservableScope instance referenced by target, where retcode is the value returned by invoking enable_data_collection

on the ObservableScope. In case of failure, the operation shall return a tuple of the form (ID of entity,

RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local instrumentation,

and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which an error occurred while performing

the operation.

7.5.4.1.6 Disable Data Collection

This operation shall allow a remote application to disable data collection on one or more ObservableScope instances. The

remote application must specify the target ObservableScope instances on which to perform the operation.

For each referenced ObservableScope instance found within the local instrumentation that is performing the operation,

the operation shall invoke the ObservableScope’s disable_data_collection operation and include a tuple of the following

form in the result:

(ID of ObservableScope, retcode)

Retcode is the result value returned by the invocation of disable_data_collection on the ObservableScope.

If the remote application includes the identifier of an InstrumentationService in the target of this operation, the operation

shall target all ObservableScope instances contained by the referenced entity (i.e. all ObservableScope instances created

by the InstrumentationService) and include a tuple for each ObservableScope in its result.

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

include a tuple of the form:

Application Instrumentation, Beta1 69

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableScope instances it contains or disabling

data collection on an ObservableScope), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

type InstrumentationService, ObservableScope.

Return: In case of success, this operation shall return a tuple of the form (ID of ObservableScope, retcode) for each

ObservableScope instance referenced by target, where retcode is the value returned by invoking disable_data_collection

on the ObservableScope. In case of failure, the operation shall return a tuple of the form (ID of entity,

RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local instrumentation,

and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which an error occurred while performing

the operation.

7.5.4.1.7 Update DataProcessor

This operation shall allow a remote application to update the configuration of one or more DataProcessor instances. The

remote application must specify the identifiers of the DataProcessor instances on which to perform the operation.

For each referenced DataProcessor instance found within the local instrumentation that is performing the operation, the

operation shall invoke the DataProcessor’s update operation passing the DataProcessorArgs value specified by the

remote application. The result shall include a tuple of the following form:

(ID of DataProcessor, retcode)

Retcode is the result value returned by the invocation of update on the DataProcessor with the specified arguments.

If the remote application includes the identifier of an InstrumentationService in the target of this operation, the operation

shall target all DataProcessor instances contained by the referenced entity (i.e. all DataProcessor instances created by

the InstrumentationService) and include a tuple for each DataProcessor in its result.

For each entity included in the operation’s target that is not found within the local instrumentation, the result shall

include a tuple of the form:

(ID of entity, RETCODE_BAD_PARAMETER)

If an error occurred while analyzing an entity (e.g. determining the ObservableScope instances it contains or disabling

data collection on an ObservableScope), the result shall include a tuple of the form:

(ID of entity, RETCODE_ERROR)

Parameter target: A collection of identifiers of entities in the local instrumentation; the referenced entities may be of

type InstrumentationService, DataProcessor.

Parameter args: an instance of DataProcessorArgs that will be passed to each referenced DataProcessor’s update

operation.

Return: In case of success, this operation shall return a tuple of the form (ID of DataProcessor, retcode) for each

DataProcessor instance referenced by target, where retcode is the value returned by invoking update on the

DataProcessor with the specified argument. In case of failure, the operation shall return a tuple of the form (ID of entity,

RETCODE_BAD_PARAMETER) for each entity referenced by target that was not found in the local instrumentation,

and a tuple of the form (ID of entity, RETCODE_ERROR) for each entity for which an error occurred while performing

the operation.

70 Application Instrumentation, Beta1

8 Platform Specific Model (PSM)

8.1 Application Instrumentation API PSMs

8.1.1 C PSM

8.1.1.1 PIM to PSM Mapping Rules

8.1.1.1.1 Naming conventions

The name of all functions and data-types defined by the API shall start with the prefix “AppInst_”.

The name of classifier that only present data attributes (i.e. Value Types) shall be terminated with the suffix “_t”.

8.1.1.1.2 Interfaces Types

All classifiers of the PIM that only define methods in their description shall be mapped to opaque data-types.

The operations defined by each type shall be mapped to C functions that prepend the name of the entity to the operation’s

name. All non-static functions shall take as the first parameter a “self” parameter of the type of the entity, representing

the instance on which the operation is being invoked. Static operations shall not take a “self” parameter.

8.1.1.1.3 Value Types

Classifiers of the PIM that define only public data attributes in their description and no operation shall be mapped to C

struct data-types.

A macro shall be defined for each one of these data-types, which shall be used to by applications to properly initialize the

attributes to their default values.

When required, implementation may include support functions to properly handle initialization and finalization of any

type that requires dynamic allocation of memory to store its values (e.g. DataProcessorArgs).

8.1.1.1.4 Enumeration Types

All enumeration types shall be mapped to enum types. Values of the enumeration shall be prepended with the

“APPINST_” prefix.

8.1.1.1.5 Supported DataValue Types

Each concrete sub-class of DataValue defined by the Application Instrumentation API’s PIM shall be mapped to a native

C types. Abstract types of the DataValue hierarchy shall not be mapped to specific C types.

The following table illustrates how each supported type is mapped.

DataValue type C Type

BOOL unsigned char

OCTET unsigned char

INT16 short

INT32 long

INT64 long long

UINT6 unsigned short

Application Instrumentation, Beta1 71

UINT32 unsigned long

UINT64 unsigned long long

FLOAT32 float

FLOAT64 double

FLOAT128 long double

CHAR8 char

CHAR32 wchar_t

STRING8 char*

STRING32 wchar_t*

BOOLSeq unsigned char*

OCTETSeq unsigned char*

INT16Seq short*

INT32Seq long*

INT64Seq long long*

UINT6Seq unsigned short*

UINT32Seq unsigned long*

UINT64Seq unsigned long long*

FLOAT32Seq float*

FLOAT64Seq double*

FLOAT128Seq long double*

CHAR8Seq char*

CHAR32Seq wchar_t*

STRING8Seq char**

STRING32Seq wchar_t**

In order to correctly represent the BOOL type, two macros, APPINST_BOOL_TRUE and APPINST_BOOL_FALSE,

shall be defined to represent its two possible values.

8.1.1.1.6 Function Signatures

All output parameters will be mapped to inout parameters in C passed by reference to the function. The caller must

supply a pointer to an object of the appropriate type where the output value will be stored. The value NULL may be

passed in place of a pointer to indicate that the output parameter is not of interest to the caller. The operation shall thus

ignore the parameter.

For each collection returned by a function, the function’s signature shall include an inout parameter of type UINT32 that

will store the length of the retuned collection. For each collection accepted as input parameter, the function’s signature

shall include an in parameter of type UINT32 specifying the length of the supplied collection.

Parameters of type String shall be mapped to STRING8 values. Parameters of type Boolean shall be mapped to BOOL

values.

72 Application Instrumentation, Beta1

8.1.1.1.7 DataValueSource

The type DataValueSource that defines the source of a bound field in an ObservableObject shall be mapped to a C

pointer of type void. The get_value operation shall be implemented by casting the pointer to the expected type (the C

data-type that maps the DataValueSource’s type T) and the use of the indirection operator (*).

8.1.1.1.8 DataProcessor

Each operation defined by the DataProcessor interface shall be mapped to a function pointer type. When implementing

the interface, an application shall define a function with the appropriate signature for each of the operations.

The implementation of each operation that will be used by a new DataProcessor instance shall be specified in the

DataProcessorProperties value specified at the creation of the DataProcessor.

The DataProcessorProperties class shall be extended to include attributes of the appropriate function pointer type and

string attributes for each of the operations of the DataProcessor interface. The following attributes will be added to

DataProcessorProperties:

 initialize_fn: function pointer to the implementation of the initialize operation

 finalize_fn: function pointer to the implementation of the finalize operation.

 update_fn: function pointer to the implementation of the update operation.

 attach_to_observable_scope_fn: function pointer to the implementation of the attach_to_observable_scope

operation.

 detach_from_observable_scope_fn: function pointer to the implementation of the

detach_from_observable_scope operation.

 attach_to_observable_object_fn: function pointer to the implementation of the attach_to_observable_object

operation.

 detach_from_observable_object_fn: function pointer to the implementation of the

detach_from_observable_object operation.

 process_observations_fn: function pointer to the implementation of the process_observations operation.

The DataProcessorState class is mapped to a C pointer of type void. The instrumentation infrastructure shall treat values

of this type as opaque and delegate any management of memory associated with them to the application.

8.1.2 Java PSM

8.1.2.1 PIM to PSM Mapping Rules

8.1.2.1.1 Packages Organization

All modules in the PIM are mapped to package org.omg.appinst.

8.1.2.1.2 Naming Conventions

All names of operations replace the “underscore-based” naming convention used by the PIM in favor of the “Camel-

case” convention, which is more familiar to Java developers. For example, operation “my_class_operation” in the PIM

will be mapped to operation “myClassOperation” in the Java PSM.

8.1.2.1.3 Entity representation

All entities in the PIM are mapped to Java interfaces.

8.1.2.1.4 Data type support

The set of supported sub-types of PrimitiveValue is limited to those that can be mapped to data types natively supported

by the Java platform. This limitation also affects the supported sub-types of SequenceValue, which are similarly limited

Application Instrumentation, Beta1 73

to collections of native primitive types.

Each supported type is mapped to both a native primitive type and its corresponding primitive wrapper class.

Supported sub-types of SequenceValue are instead mapped to both an array of a primitive type and an array of its

primitive wrapper class. The API operations support the specification of value in any of these two forms and as a

java.util.list.Collection of the correct primitive wrapper class. Implementation are allowed to operate

internal conversions between these formats to a selected internal representation, although they should state when

conversions may take place and provide at least one optimized representation.

The following tables lists concrete sub-types of DataValue and their mapping to Java types:

DataValue type Java Type

BOOL boolean

OCTET byte

INT16 short

INT32 int

INT64 long

UINT6 NOT SUPPORTED

UINT32 NOT SUPPORTED

UINT64 NOT SUPPORTED

FLOAT32 float

FLOAT64 double

FLOAT128 NOT SUPPORTED

CHAR8 char

CHAR32 char

STRING8 String

STRING32 String

BOOLSeq boolean[], Boolean[], Collection<Boolean>

OCTETSeq byte[], Byte[], Collection<Byte>

INT16Seq Short[], Short[], Collection<Short>

INT32Seq Integer[], Integer[], Collection<Integer>

INT64Seq Long[], Long[], Collection<Long>

UINT6Seq NOT SUPPORTED

UINT32Seq NOT SUPPORTED

UINT64Seq NOT SUPPORTED

FLOAT32Seq float[], Float[], Collection<Float>

FLOAT64Seq double[], Double[], Collection<Double>

FLOAT128Seq NOT SUPPORTED

74 Application Instrumentation, Beta1

CHAR8Seq char[], Character[], Collection<Character>

CHAR32Seq char[], Character[], Collection<Character>

STRING8Seq String[], Collection<String>

STRING32Seq String[], Collection<String>

8.1.2.1.5 Return Codes

Type ReturnCode is mapped to an enum and an exception class.

Operations of the PIM declaring a ReturnCode output parameter throw a ReturnCodeException in case the ReturnCode is

not RETCODE_OK.

Operations that declare a ReturnCode return value present the same return value in the PSM too.

8.1.2.1.6 Collection return values

An array of the mapped type is returned by operations of the PIM that return a collection of elements. Implementations

may operate a transformation between their internal representations of the collections to the array form, for example by

using the toArray operation of one of the classes of the java.util.list package.

For performance reasons, an overloaded version of the operation is also provided, which accepts an input array where the

result returned by the operation will be stored. Only the elements that can fit in the length of the array will be returned.

8.1.2.1.7 Factory methods

Factory methods that create instrumentation entities and accept properties objects to configure them also present an

overloaded version of the method, which does not declare the properties parameter. These methods will use the default

properties and avoid the caller to have to specify a null argument in order to request the default values.

Application Instrumentation, Beta1 75

8.2 Instrumentation Domain PSMs

8.2.1 OGM Data Distribution Service

8.2.1.1 PIM to PSM Mapping Rules

8.2.1.1.1 Data type representation

The following table illustrates how sub-classes of DataValue are mapped to IDL data types:

Instrumentation Data Type IDL Data Type

BOOL boolean

OCTET octet

INT16 short

INT32 long

INT64 long long

UINT6 unsigned short

UINT32 unsigned long

UINT64 unsigned long long

FLOAT32 float

FLOAT64 double

FLOAT128 long double

CHAR8 char

CHAR32 wchar

STRING8 string

STRING32 wstring

BOOLSeq sequence<boolean>

OCTETSeq sequence<octet>

INT16Seq sequence<short>

INT32Seq sequence<long>

INT64Seq sequence<long long>

UINT6Seq sequence<unsigned short>

UINT32Seq sequence<unsigned long>

UINT64Seq sequence<unsigned long long>

FLOAT32Seq sequence<float>

76 Application Instrumentation, Beta1

FLOAT64Seq sequence<double>

FLOAT128Seq sequence<long double>

CHAR8Seq sequence<char>

CHAR32Seq sequence<wchar>

STRING8Seq sequence<string>

STRING32Seq sequence<wstring>

8.2.1.1.2 Instrumentation entities

 Instrumentation entities defined by the API are uniquely associated with entities in the DDS middleware.

API entity Middleware entity

InstrumentationService DDS_DomainParticipant

ObservableScope

DDS_Publisher and one DDS_DataWriter for each

ObservableSchema of contained ObservableObject

instances

ObservableSchema DDS data-type and a DDS_Topic

ObservableObject Instance on DDS_Topic

The instance associated with an ObservableObject is identified by the following attributes:

 Host Identifier

 Name of the InstrumentationService

 Name of the ObservableScope

 Name of the ObservableObject

It is up to the user to guarantee that ObservableObject from multiple application map to separate instances in the

DDS_Topic associated with their ObservableSchema.

8.2.1.1.3 Local instrumentation operations

This sub-clause defines the operations performed by the data-distribution middleware in response to operations requested

by an application using the Application Instrumentation API.

The mappings are presented in terms of “events” in the local instrumentation and corresponding operations carried out

by the middleware.

API action Middleware action

A new InstrumentationService is created
A DDS_DomainParticipant is created and uniquely

associated with the InstrumentationService/

An InstrumentationService is deleted

The DDS_DomainParticipant associated with the

InstrumentationService and all its contained entities

are deleted.

An ObservableSchema is activated in an

InstrumentationService

1. A DDS data-type is created by mapping the

ObservableSchema with the rules described in

8.2.1.1.4

Application Instrumentation, Beta1 77

2. The DDS data-type is registered on the

DDS_DomainParticipant associated with the

InstrumentationService, using the

ObservableSchema’s name

3. A new DDS_Topic is created using the registered

data-type and it is uniquely associated with the

ObservableSchema; the name of the topic is derived

by prefixing the ObservableSchema’s name with the

string “AppInst::”

An ObservableScope is created

A DDS_Publisher is created in the

DDS_DomainParticipant associated with the

InstrumentationService; the publisher is uniquely

associated with the ObservableScope.

An ObservableScope is deleted

The DDS_Publisher associated with the

ObservableScope is deleted, along with all its

contained DDS_DataWriter.

An ObservableObject is created

A DDS_DataWriter to the DDS_Topic associated

with the ObservableObject’s ObservableSchema is

created in the DDS_Publisher associated with the

ObservableScope containing the ObservableObject,

if it does not exist already;

A new instance, uniquely associated with the

ObservableObject, is registered in the

ObservableSchema’s DDS_DataWriter.

An ObservableObject is deleted

The instance associated with the ObservableObject

is disposed.

If no other ObservableObject of the same

ObservableSchema exists within the enclosing

ObservableScope, DDS_DataWriter for the

ObservableSchema is deleted.

An ObservableScope distributes an

Observation to the Instrumentation Domain

1. The Observation is converted to a sample of the

ObservableSchema’s DDS data-type.

2. The sample is written to the DDS Global Data

Space using the DDS_DataWriter associated with

the ObservableGroup containing the

ObservableObject that generated the Observation.

8.2.1.1.4 ObservableSchema

Each ObservableSchema is mapped to a complex DDS data-type. The Field entries contained in the ObservableSchema

are converted to single attributes. A key attribute identifying the ObservableObject that generated the Observation is

automatically added to the data-type.

The key attribute is added first to the generated type and it can be described in the following way, using IDL:

typedef string<MAX_STRING_LEN> SupportedString;

struct ObservationSource {
 SupportedString host_id; //@key
 SupportedString service; //@key
 SupportedString scope; //@key

78 Application Instrumentation, Beta1

 SupportedString object; //@key
}

struct ObservationHeader {
 ObservationSource source; //@key
 long sequence_number;
};

MAX_STRING_LEN is left unspecified.

The data-type resulting from the mapping of an example ObservationSchema named “Foo” can be generically

represented in IDL as:

struct Foo {
 ObservationHeader header; //@key
 //<field mappings >
};

Fields are added to the DDS data-type according to the creation order in their ObservableSchema.

Each field is mapped to a corresponding entry with the same name and type determined using the table in 8.2.1.1.1.

8.2.1.1.4.1 Quality of Service of associated DDS Topic

The DDS Topic created for an ObservableSchema shall be configured with the following default Quality of Service

(QoS) configuration

QoS Property Default Value

Durability TRANSIENT_LOCAL

Deadline Infinite

Latency Budget 0

Ownership EXCLUSIVE

Ownership Strength 0

Liveliness AUTOMATIC

Time-based Filter 0

Reliability RELIABLE

Transport Priority 0

Lifespan Infinite

Destination Order BY_SOURCE_TIMESTAMP

History KEEP_ALL

Resource Limits
(max_samples, max_instances,
max_samples_per_instance)

(LENTGH_UNLIMITED,
LENTGH_UNLIMITED,
LENTGH_UNLIMITED)

Application Instrumentation, Beta1 79

Writer Data Life-cycle
(autodispose_unregistered_instances)

(True)

Reader Data Life-cycle
(autopurge_nowriter_samples_delay,
autopurge_disposed_samples_delay)

(Infinite, Infinite)

User Data None

8.2.1.1.5 Extensions to ObservableSchemaProperties

The following attributes shall be added to ObservableSchemaProperties to allow configuration of the Quality of Service

properties of every DataWriter publishing Observation samples from ObservableObject instances of a certain

ObservableSchema.

ObservableSchemaProperties

Attributes

qos_reliability String

qos_history String

qos_history_depth Integer

qos_resource_limits_max_samples Integer

qos_resource_limits_max_instances Integer

qos_resource_limits_max_samples_

per_instance
Integer

8.2.1.1.5.1 qos_reliability

This attribute shall set the Reliability QoS policy of any DataWriter associated with the ObservableSchema. Values of

this attribute shall be interpreted according to the following table. The default value for this attribute shall be

“RELIABLE”.

Value QoS Policy Value

“RELIABLE” RELIABLE

“BEST_EFFORT” BEST_EFFORT

any other value error

8.2.1.1.5.2 qos_history

This attribute shall set the History QoS policy of any DataWriter associated with the ObservableSchema. Values of this

attribute shall be interpreted according to the following table. The default value for this attribute shall be “KEEP_ALL”.

Value QoS Policy Value

“KEEP_ALL” KEEP_ALL

80 Application Instrumentation, Beta1

“KEEP_LAST” KEEP_LAST

any other value error

8.2.1.1.5.3 qos_history_depth

This attribute shall specify the depth property of the History QoS policy for any DataWriter associated with an

ObservableSchema. The default value for this attribute is 0.

8.2.1.1.5.4 qos_resource_limits_max_samples

This attribute shall set the max_samples property of the ResourceLimits QoS policy of any DataWriter associated with

the ObservableSchema. The default value for this attribute shall be -1, to indicate “LENTGH_UNLIMITED”.

8.2.1.1.5.5 qos_resource_limits_max_instances

This attribute shall set the max_instances property of the ResourceLimits QoS policy of any DataWriter associated with

the ObservableSchema. The default value for this attribute shall be -1, to indicate “LENTGH_UNLIMITED”.

8.2.1.1.5.6 qos_resource_limits_max_samples_per_instance

This attribute shall set the max_samples_per_instance property of the ResourceLimits QoS policy of any DataWriter

associated with the ObservableSchema. The default value for this attribute shall be -1, to indicate

“LENTGH_UNLIMITED”.

8.2.1.2 Remote Service Interface

The Remote Service Interface provided by the Instrumentation Domain to remote application can be implemented using

two DDS topics to receive operation requests and output their outcome from each local instrumentation in the distributed

system.

These topics have a fixed name and corresponding data-types, one for operation requests and one for responses.

The data-type for requests and responses may be represented in IDL as:

const long MAX_STRING_LEN = 255;
const long MAX_SEQ_SIZE = 255;

typedef string<MAX_STRING_LEN> SupportedString;
typedef sequence<SupportedString, MAX_SEQ_SIZE> SupportedStringSeq;

typedef SupportedString InstrumentationId;

typedef SupportedString RequesterId;

typedef long RequestId;

enum RequestType {
 APPINST_OPERATION_CHECK_SAVE_OBSERVATION,
 APPINST_OPERATION_ENABLE_SAVE_OBSERVATION,
 APPINST_OPERATION_DISABLE_SAVE_OBSERVATION,
 APPINST_OPERATION_CHECK_DATA_COLLECTION,
 APPINST_OPERATION_ENABLE_DATA_COLLECTION,
 APPINST_OPERATION_DISABLE_DATA_COLLECTION,
 APPINST_OPERATION_UPDATE_DATA_PROCESSOR
};

typedef SupportedStringSeq RequestArgsKeys;

typedef SupportedStringSeq RequestArgsValues;

typedef SupportedStringSeq RequestOutcomeKeys;

Application Instrumentation, Beta1 81

typedef SupportedStringSeq RequestOutcomeValues;

struct RemoteServiceRequest {
 InstrumentationId instrumentation_id; //uniquely identifies the target instrumentation
 RequesterId requester_id; //uniquely identifies the application that request the operation
 RequestId request_id; //uniquely identifies the request with respect to its requester
 RequestType request_type; //indicates which operation should be performed by the service
 RequestArgsKeys request_args_keys; //names of the argument to be passed to the operation
 RequestArgsValues request_args_values; //arguments to be passed to the operation
};

struct RemoteServiceResponse {
 InstrumentationId instrumentation_id; //instrumentation where the request was handled
 RequesterId requester_id; //application that generated the request
 RequestId request_id; //id assigned to the request by the requester
 RequestOutcomeKeys request_outcome_keys; //name of output values of the operation
 RequestOutcomeValues request_outcome_values; //output values of the operation
};

The two Topics used to implement the Remote Service Interface shall have the following names and data types:

Type of topic Name Data Type

Requests AppInst_RemoteServiceRequests RemoteServiceRequest

Responses AppInst_RemoteServiceResponses RemoteServiceResponse

8.2.1.2.1.1 Quality of Service of associated DDS Topics

The DDS Topics created to implement the Remote Service Interface shall be configured with the following default

Quality of Service (QoS) configuration

QoS Property Default Value

Durability TRANSIENT_LOCAL

Deadline Infinite

Latency Budget 0

Ownership EXCLUSIVE

Ownership Strength 0

Liveliness AUTOMATIC

Time-based Filter 0

Reliability RELIABLE

Transport Priority 0

Lifespan Infinite

Destination Order BY_SOURCE_TIMESTAMP

82 Application Instrumentation, Beta1

History KEEP_ALL

Resource Limits
(max_samples, max_instances,
max_samples_per_instance)

(LENTGH_UNLIMITED,
LENTGH_UNLIMITED,
LENTGH_UNLIMITED)

Writer Data Life-cycle
(autodispose_unregistered_instances)

(True)

Reader Data Life-cycle
(autopurge_nowriter_samples_delay,
autopurge_disposed_samples_delay)

(Infinite, Infinite)

User Data None

Application Instrumentation, Beta1 83

9 Instrumentation Example (Non-normative)

9.1 Overview

This clause presents a complete example of a software system instrumented using the Application Instrumentation API.

The example is included specification to provide better understanding of the scope of this specification and how it may

be effectively used to instrument applications. It is not to be considered part of the normative specification.

The following sub-clauses are laid out as follows:

 Example Overview: presents the example distributed system and its instrumentation requirements.

 Instrumentation Configuration: describes how the instrumentation requirements of the system may be modeled

using the Application Instrumentation API.

9.2 Example Overview

The software system chosen for the example instrumentation is a radar track-management system. This kind of

application usually has near real-time or real-time requirements, with critical need for minimizing the instrumentation’s

intrusiveness into the system’s resources.

The instrumentation presented in the example includes a variety of information extracted from the application. These

different types of information will provide the opportunity to show how the API may be leveraged to easily expose

application data to remote consumers.

9.2.1 Instrumented System

The software system used in this example is a generic radar track-management system, described only in a qualitative

way that includes a general description of each software component.

No assumption is made on the implementation platform of the system. Behavior of each component is presented in a

programming language independent way, providing an abstract description of the module’s purpose.

Figure 12 shows a possible architecture for the example system.

The system comprises four types of components:

 Radar: hardware radar equipment and attached control software, which periodically produces data samples

containing the latest measurements.

 Track Manager: a software component responsible for monitoring data samples produced by the Radar; the

component detects new objects in the measurements and creates new tracks in its state; it correlates new data

Figure 12 Example Track-Management System

84 Application Instrumentation, Beta1

samples with existing objects and updates the associated track’s status; finally it marks tracks as disposed once

their objects are not detected by the Radar anymore; track data is produced in output so that it may consumed by

other components in the system.

 GUI: a display application used by end users of the system to monitor the state of the Track Manager and

observe track data in real-time.

 System Log: a logging component, which records radar and track data for off-line analysis and general auditing

of the system.

Each component is a software module that runs as an independent application on a physical system. An application

communicates with other applications through a network infrastructure.

Each application accepts a set of configuration parameters. Parameters are specified at start-up and possibly updated

during the execution of the system through some kind of remote configuration interface. The available configuration

parameters depend on the software component. They include resources allocated to each application, such as memory

storage, threads, and network bandwidth, and other parameters related to the specific role of each component.

Each application can consume and produce data, exchanging information through the network with other applications in

the system. Components that produce data include the Radar and the Track Manager, which will operate on a periodic

basis, with more or less stringent requirements on the maximum latency allowed between successive updates produced in

output. Components that consume information (Track Manager, GUI, System Log) can all be abstracted as some

processing logic that must be executed whenever the remote producers make new samples available.

9.2.2 Instrumentation Requirements

The components of the track-management system in the example are assumed to be operating under near real-time/real-

time requirements. The system is expected to be able to consume a certain amount of radar measurements and produce

track information in output with a guaranteed update rate.

These requirements make the monitoring of the performance of each component of critical importance. On-line

monitoring of the system’s performance is leveraged during the development and testing stages of the system. There it

can help with exposing bottlenecks in the processing pipeline, optimizing configuration parameters and debugging the

system.

The monitoring infrastructure is also useful once the system is deployed into production. Monitoring information may be

accessed when suspicious behavior is observed in the system. Data extracted by the instrumentation may provide helpful

hindsight on the operations of each application in the system and help identify unexpected problems.

The following table describes the information that will be extracted via instrumentation from the system.

Type of Information Description

Module Performance The timing and details of the operations
performed by each component of the system
must be monitored; the information should
include initial and final time when an operation
was carried out, the number of data samples
processed by the operation and their size

Track Processing Throughput The Track Manager represents the core
component of the system and its performance
in processing track information must be
monitored by computing the throughput of the
updates to each track and the total aggregated
throughput.

Application Configuration Since each component’s behavior depends on its
configuration parameters, it is useful to be able

Application Instrumentation, Beta1 85

to inspect the actual parameters used by an
application and to monitor any changes that
may occur to them over the application’s
execution.

All types of information shall be updated whenever they change in the instrumented applications. Aggregated values of

relevant statistics shall also be provided, offering monitoring applications with averages over different time spans and

tracking of min/max values for each stream.

9.3 Instrumentation Configuration

This sub-clause presents a possible configuration of the instrumentation used by the example track-management system,

described using the constructs and concepts of the Application Instrumentation API.

First, the ObservableSchemas that describe the information that will be produced by the instrumentation are presented.

Then ObservableScopes and ObservableObjects used to produce information from the instrumented applications are

described and finally the DataProcessors that will process collected Observations and control their distribution to remote

monitoring applications.

9.3.1 Instrumentation Service

A single InstrumentationService will be created for each instrumented application. The InstrumentationService will be

named after a unique, alphanumeric identifier assigned to the application.

9.3.2 Data Types

Each data-type used to describe monitored application data must be described by an ObservableSchema. This sub-clause

describes all ObservableSchemas required to model the instrumented information of the system.

The ObservableSchemas include both Fields meant to be filled by instrumented applications and Fields that will be used

by DataProcessors to store additional information computed from the one provided by the applications. Computed Fields

are marked with an italic font in the tables describing each ObservableSchema’s Fields.

9.3.2.1 Module Performance

Performances of the instrumented applications are abstractly modeled through the number and size of items processed by

each “operation” performed by the software modules contained in the applications. As introduced in 9.2.1, applications

operate in periodic loops, where they typically receive data from their inputs and process it, possibly generating output in

response. Nevertheless, data may be internally passed through several processing modules, each one performing some

operation whose performance should be tracked by the instrumentation.

The OperationLog ObservableSchema models the performance of each operation, providing fields to store the name of

the operation, its timing information, and data about the items it processed.

Observations of this ObservableSchema will be processed by the instrumentation to produce an aggregated performance

analysis of each software module. The ModulePerformance ObservableSchema contains only computed Fields, which

will provide the average, minimum and maximum values of the performance of single operations.

Observations of OperationLog can be kept local to instrumented application to avoid burdening monitoring applications,

and the interconnecting network infrastructure, with unnecessary data. Only aggregated performance will be distributed

outside of the application’s instrumentation.

ObservableSchema

OperationLog

86 Application Instrumentation, Beta1

Field Name Field Type Description

module_name STRING8 Name of the software module that

performed the operation.

operation_name STRING8 Name of the operation performed by the

software module.

time_in UINT64 Time when the operation started.

time_out UINT64 Time when the operation was completed.

processed_items UINT32 Number of items processed by the

operation.

processed_items_size UINT64 Total size of the items processed by the

operation.

ObservableSchema

ModulePerformance

Field Name Field Type Description

module_name STRING8 Name of the software module.

operations_total UINT64 Total number of operations performed by

the module.

time_total UINT64 Total time taken by operations performed

by the module.

operation_duration_avg FLOAT64 Average time required to perform a single

operation.

processed_items_total UINT64 Total number of items processed by the

module.

processed_items_avg FLOAT64 Running average of the number of items

processed by each operation performed by

the module.

processed_items_min UINT32 Minimum number of items processed by

the module in a single operation.

processed_items_max UINT32 Maximum number of items processed by

the module in a single operation.

processed_items_size_

total

UINT64 Total size of the items processed by the

module.

processed_items_size_ FLOAT64 Running average of the size of the items

Application Instrumentation, Beta1 87

avg processed by the module in a single

operation.

processed_items_size_

min

UINT64 Minimum size of items processed by the

module in a single operation.

processed_items_size_

max

UINT64 Maximum size of items processed by the

module in a single operation.

9.3.2.2 Track Update Throughput

This ObservableSchema is used to describe the current state maintained by the Track Manager of each single track

discovered from the radar measurements. Observations of this ObservableSchema will be generated whenever a track’s

status on the Track Manager is updated and they will be used to compute throughput of the track managing logic.

The information modeled by this ObservableSchema is only used by the local instrumentation installed in the Track

Manager to compute the application’s throughput. Observations will not be distributed to remote monitoring

applications, which will only consume the generated throughput information.

The track update throughput will be automatically computed from Observations of the TrackState ObservableSchema

produced by the instrumented applications.

Throughput will be calculated for each single track managed by the Track Manager as well as an aggregated statistic that

includes all tracks. The TrackThroughput ObservableSchema models the throughput information for a single track, while

ObservableSchema AggregatedTrackThroughput models the aggregated throughput of the processing of updates to all

tracks in the system. Both ObservableSchema contain computed Fields to store running average, minimum, and

maximum values of each type of throughput.

ObservableSchema

TrackState

Field Name Field Type Description

track_number INT32 A unique identifier assigned by the system

to each track.

update_time UINT64 Time when the track’s state was last

updated.

track_discovered BOOL A boolean value signaling that a track has

just been discovered and updated for the

first time.

track_deleted BOOL A boolean value signaling that the track

has been deleted and updated for the last

time.

ObservableSchema

TrackThroughput

88 Application Instrumentation, Beta1

Field Name Field Type Description

tracks_count UINT64 Total number of tracks currently managed

by the system.

track_number INT32 The unique identifier of the last track to be

updated.

update_time UINT64 Time of the last update made to the state of

one of the tracks.

throughput FLOAT64 The total update throughput currently

measured for all tracks managed by the

system.

throughput_avg FLOAT64 Running average of the total update

throughput.

throughput_min FLOAT64 Minimum total update throughput.

throughput_max FLOAT64 Maximum total update throughput.

9.3.2.3 Application Configuration

The configuration of applications in the track-management system is contained in a text file, which is loaded by the

application at start-up. No assumption is made on the format of the configuration file’s contents.

ObservableSchema

ApplicationConfiguration

Field Name Field Type Description

config_file_src STRING8 A string, possibly following an URI

scheme, identifying the source where the

application read its configuration

parameters (file, database, network

location, etc.).

config_file_contents STRING8 Contents of the configuration file read by

the application.

system_name STRING8 Name of the host where the application is

deployed.

cpu_count UINT16 Total number of CPU allocated to the

application.

run_mode INT16 How the application should operate (test,

training, live, etc.).

thread_pool_mode INT16 How the thread pool allocated to the

Application Instrumentation, Beta1 89

application should be managed (dynamic,

fixed-size, etc.).

thread_pool_initial UINT16 The initial size of the application’s thread

pool.

thread_pool_max UINT16 The maximum number of threads that can

be allocated to the application’s thread

pool.

memory_alloc_mode INT16 How memory allocation should be

managed by the application (pre-allocate,

dynamic, etc.).

memory_alloc_initial UINT64 The initial memory allocated to the

application.

memory_alloc_max UINT64 The maximum amount of memory that can

be allocated to the application.

9.3.3 Data Collection

In order to generate data that may be accessed by remote consumers, instrumented applications must create

ObservableScope and ObservableObject instances. ObservableObjects will be used to store data and generate

Observations, while their enclosing ObservableScopes will collect these Observations, pass them through a

DataProcessor, and possibly distribute them to the remote monitoring applications.

Since an ObservableScope defines an independent, single-threaded, data processing context for the Observations of all

ObserableObjects it contains, it is a good usage pattern to map only instrumented information that should be correlated

together to the same ObservableScope. This will avoid tying uncorrelated Observations, which may be processed

independently, to the same execution context, thus serializing their processing unnecessarily. ObservableObjects that

represent unrelated information should be placed into separate ObservableScope, so that their Observations may be

processed in separate threads if the implementation supports it. Even if processing is implemented using a single thread,

the resulting serialization will be equal to the one that would have resulted from placing all ObservableObjects into the

same ObservableScope.

For this reason, this example instrumentation adopts three separate ObservableScope, one for each category of

instrumented information that will be collected from the system:

 Module Performance: this ObservableScope will contain ObservableObjects that generate Observations related

to the application’s operative performance.

 Track Update Throughput: this ObservableScope will contain ObservableObjects that generate Observations on

the state of track processing and its throughput.

 Application Configuration: this ObservableScope will contain ObservableObjects that generate Observations of

the configuration parameters of the application.

The following sub-clauses will describe the purpose of each ObservableScope, the ObservableObjects that will be

created, and how they will be used by the application and the instrumentation.

9.3.3.1 Module Performance

A single ObservableScope is dedicated to the monitoring of the performance of the instrumented applications modules.

Within this ObservableScope, two ObservableObjects, of ObservableSchemas OperationLog and ModulePerformance

respectively, are created for each module registered with the instrumented application. This choice is made to allow

90 Application Instrumentation, Beta1

separate modules to access their dedicated ObservableObjects independently of other modules, possibly from within a

concurrent execution context. Sharing ObservableObject instances between concurrent application threads could lead to

unexpected behavior, since the ObservableObject interface offers only safe multi-thread access from a single application

thread and the execution context of its ObservableScope.

If the number, and names, of modules used by the application are known at start-up, ObservableObject instances may be

created immediately during the initialization of the instrumentation. If the application is allowed to load new modules

dynamically, new ObservableObjects can also be created dynamically, provided data collection is first disabled on the

ObservableScope. While the ObservableScope’s processing context is disabled, Observations will accumulated in the

internal queues of ObservableObjects associated with other modules. If the Observation allocation is properly

configured, the loss of data should me minimal once the ObservableObject has been created and data collection is

enabled again in the ObservableScope.

Note that the code of the software modules will only access the ObservableObjects to generate OperationLog

Observations. ObservableObjects of the ModulePerformance ObservableSchema will be used by a DataProcessor to

automatically compute the aggregated statistics from the single operation ones.

ObservableScope

ModulePerformanceMonitor

ObservableObject

Name

ObservableSchema Description

<module_name>_

operations_log

OperationLog Produces logs of every (high level)

operation performed by the software

module with name <module_name>.

<module_name>_

module_performance

ModulePerformance Produces aggregated statistics for the

software module with name

<module_name>, computed by a

DataProcessor from the Observations

of ObservableObject

<module_name>_operations_log

9.3.3.2 Track Update Throughput

An ObservableScope is dedicated to the collection of Observations of track updates and the computation of the resulting

update throughput.

Two ObservableObjects are created within this ObservableScope, each one producing data about multiple tracks.

An ObservableObject of type TrackState will be used to produce Observations whenever a track is updated. A

DataProcessor will pick up these Observations to compute the total resulting throughput. The results will be produced

via the other ObservableObject, of types TrackThroughput.

The choice of not creating an ObservableObject per track to generate the track update logs and the single track

throughput statistics is motivated by the typically great number of tracks managed by a system of this type during its life-

cycle. Dedicating an ObservableObject to a single track would cause the number of ObservableObjects to explode. The

associated overhead caused by the creations, and possibly deletion, of the ObservableObject would require an

unacceptable cost from the application’s performance.

Similarly to 9.3.3.1, it is best to consider the creation of multiple ObservableObjects only if they must be accessed from

different application contexts. It is assumed in this case that the track management will occur in a single-threaded

software module. If that were not to be the case, than multiple TrackState ObservableObjects should be created, to safely

collect information from multiple sources.

Application Instrumentation, Beta1 91

ObservableScope

TrackThrougputMonitor

ObservableObject

Name

ObservableSchema Description

track_state_log TrackState Produces logs of every updated

made to a track.

track_throughput TrackThroughput Produces throughput information,

computed by a DataProcessor from

the Observations of

ObservableObject track_state_log.

9.3.3.3 Application Configuration

An ObservableScope is dedicated to the collection of Observations of the configuration parameters of each instrumented

application.

The ObservableScope contains a single ObservableObject of type ApplicationConfiguration, which will be used by the

application to produce snapshots of its configuration parameters, when it is first loaded and whenever they are modified

during its execution.

ObservableScope

AppConfigMonitor

ObservableObject

Name

ObservableSchema Description

app_config Application

Configuration

Produces logs of the configuration

parameters loaded by the

instrumented applications, at start-

up and whenever they are modified.

9.3.4 Data Processing

One of the advantages offered by the Application Instrumentation API over manual instrumentation of an application is

the support offered for easy manipulation and control of collected data by means of the DataProcessor interface.

This example makes use of DataProcessors to automatically compute interesting information from the Observations

generated by the code of instrumented applications. While the implementation of the custom processing function may be

considered an additional cost of the instrumentation, it is a one-time cost that may greatly reduce the intrusiveness of the

instrumentation into the application code (by limiting the additional logic that must be added to the application to

generated the required information, which is instead encapsulated by the DataProcessor), and it may also be typically

reused in instrumenting multiple applications (as long as the same ObservableSchema are used and ObservableObjects

are accessed with the same semantics by the applications).

Moreover, several processing functions can be sufficiently generalized so that they might be implemented independently

of the ObservableSchema of the Observation. These operations are presented in 9.3.4.1.

92 Application Instrumentation, Beta1

The following sub-clauses present processing operation specific to each type of instrumented information.

9.3.4.1 General Processing

Some processing operations are sufficiently general that they can be made independent of the ObservableSchema of an

Observation and only depend on specific Fields to be available to provide input to the operation and store its output.

In this example, these operation include:

 Computation of the cumulative running average of a Field.

 Tracking of the minimum and maximum value of a Field.

 Computation of the throughput of track update events.

The description of each operation presents a general algorithm for its computation, characterizes its inputs and outputs in

terms of Fields, and defines that necessary state that must be stored to correctly carry out the processing.

9.3.4.1.1 Running Average

Input Fields

 latest_val: the latest value that must be used to update the average.

Output Fields

 current_avg: the cumulative running average of all values.

Processing State:

 last_avg: a floating point value, initialized to 0, containing the last average value computed.

 total_items: an integer value, initialized to 0, counting the number of values averaged so far.

Algorithm:

 Compute the current average using the formula:

o current_avg = (latest_value + total_items * latest_avg) / (total_items + 1)

 Increment total_items by one unit.

o total_items += 1

 Store the latest average value.

o last_avg = current_avg

9.3.4.1.2 Min/Max

Input Fields

 latest_val: the latest value that must be used to update the average.

Output Fields

 min: the minimum value observed so far.

 max: the maximum value observed so far.

Processing State:

 current_min: a floating point or integer value (depending on the type of latest_val), initialized to its type’s

maximum value, containing the minimum value observed so far.

Application Instrumentation, Beta1 93

 current_max: a floating point or integer value (depending on the type of latest_val), initialized to its type’s

minimum value, containing the maximum value observed so far.

Algorithm:

 Check and update minimum:

o if (latest_val < current_min) min = latest_val

 Check and update minimum:

o if (latest_val > current_max) max = latest_val

 Store the latest state for the next value.

o current_min = min

o current_max = max

9.3.4.1.3 Throughput

Input Fields

 update_time: time-stamp of the latest event

Output Fields

 current_troughput: the current throughput of the monitored events.

Processing State:

 last_update_time: the time-stamp of the last event processed.

Algorithm:

 Calculate the period of time elapsed between this event and the previous:

o elapsed_time = update_time – last_update_time

 Compute the instant throughput in number of events per unit of time:

o current_throughput = 1 / elapsed_time

 Store the event’s time for following processing:

o last_update_time = update_time

9.3.4.2 Module Performance

An implementation of the DataProcessor interface will be created to properly handle the computation of performance

information about a module.

An instance of this type of DataProcessor will be attached to all ObservableObjects of type OperationLog contained in

ObservableScope ModulePerformanceMonitor.

When processing an Observation produced by one of these ObservableObjects, the DataProcessor will be responsible

for computing the following values:

 Duration of the operation logged by the Observation, computed as the difference between fields time_out and

time_in

 The average duration of all operations logged so far.

 The total sum of items processed by all operations logged so far.

94 Application Instrumentation, Beta1

 The average number of items processed by a single logged operation.

 The minimum and maximum number of items processed by a single logged operation so far.

 The total sum of the size of the items processed by all operation logged so far.

 The average size of items processed by a single logged operation.

 The minimum and maximum number of items processed by a single logged operation so far.

All values can be computed by using the generic processing functions presented in 9.3.4.1 on Fields contained in the

Observations.

The DataProcessor will attach a data structure of type OperationLogProcessingState (described in the table at the end of

the sub-clause) to every ObservableObject of type OperationLog to maintain the necessary processing state between

successive invocations of its process_observations operation on the same ObservableObject.

The results computed at each iteration will be stored in the ObservableObject of type ModulePerformance associated

with the same module. After storing the results in the ObservableObject, the DataProcessor will generate an Observation

of it that will be distributed to remote applications without further processing. No DataProcessor is attached to

ObservableObjects of type ModulePerformance.

All Observations of type OperationLog are marked with flag LOCAL and they are not distributed to remote applications.

OperationLogProcessingState

Field Name Field Type Description

total_operations UINT64 A counter of the total number of

operations logged, used when

computing all running averages.

last_duration_avg FLOAT64 The last value computed for the

average duration of a single

operation.

processed_items_total UINT64 The total sum of items processed by

logged operations.

processed_items_avg FLOAT64 The last value computed for the

average number of items processed

by a single operation.

processed_items_min UINT64 The current minimum number of

processed items observed so far in a

single operation.

processed_items_max UINT64 The current maximum number of

processed items observed so far in a

single operation.

processed_items_size_total UINT64 The total sum of the size of items

processed by logged operations.

processed_items_size_avg FLOAT64 The last value computed for the

average size of items processed by a

Application Instrumentation, Beta1 95

single operation.

processed_items_size_min UINT64 The current minimum size of items

processed observed so far in a single

operation.

processed_items_size_max UINT64 The current maximum size of items

processed observed so far in a single

operation.

9.3.4.3 Track Update Throughput

An implementation of the DataProcessor interface will be created to compute the throughput of track updates carried out

by the system.

An instance of this type of DataProcessor will be attached to all ObservableObjects of type TrackState contained in

ObservableScope TrackThroughputMonitor.

When processing an Observation produced by one of these ObservableObjects, the DataProcessor will be responsible

for computing the following values:

 Total number of tracks currently managed by the system; this number is increased whenever an Observation

with track_discovered set to True is processed, and decreased whenever an Observation with track_deleted set

to True is received instead.

 The current throughput of track state updates carried out by the systems.

 The average value for the computed throughput.

 The minimum/maximum throughput values observed so far.

Similarly to module performance, all values can be computed by using the generic processing functions presented in

9.3.4.1 on Fields contained in the Observations.

The DataProcessor will attach a data structure of type TrackThroughputProcessingState (described in the table at the end

of the sub-clause) to the ObservableObject of type TrackState to maintain the necessary processing state between

successive invocations of its process_observations operation on the ObservableObject.

The results computed at each iteration will be stored in the ObservableObject of type TrackThroughput. After storing the

results in the ObservableObject, the DataProcessor will generate an Observation of it that will be distributed to remote

applications without further processing. No DataProcessor is attached to ObservableObjects of type TrackThroughput.

All Observations of type TrackState are marked with flag LOCAL and they are not distributed to remote applications.

TrackThroughputProcessingState

Field Name Field Type Description

tracks_count UINT64 Total number of tracks currently

managed by the system.

total_updates UINT64 Total number of track state updates

received so far.

last_update_time UINT64 Time of the last update.

96 Application Instrumentation, Beta1

throughput_avg FLOAT64 The last value computed for the

average throughput of update events.

throughput_min FLOAT64 The current minimum throughput

value observed so far.

throughput_max FLOAT64 The current maximum throughput

value observed so far.

