

Date: May 17December 3, 20210

Automated Source Code Data Protection Measure

Request for CommentBeta

OMG Document Number: ptcadmtf/20210-0512-012

Standard Document URL:
https://www.omg.org/spec/ASCDPM/

Normative Machine Consumable File(s):
https://www.omg.org/spec/ASCDPM/20201109/ascdpm.xmi

ii Automated Source Code Data Protection Measures, RFC

Copyright © 2020, Object Management Group, Inc.

USE OF SPECIFICATION – TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any company's products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that no
person shall be deemed to have infringed the copyright in the included material of any such copyright holder
by reason of having used the specification set forth herein or having conformed any computer software to
the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications that
are based upon this specification, and to use, copy, and distribute this specification as provided under the
Copyright Act; provided that: (1) both the copyright notice identified above and this permission notice
appear on any copies of this specification; (2) the use of the specifications is for informational purposes and
will not be copied or posted on any network computer or broadcast in any media and will not be otherwise
resold or transferred for commercial purposes; and (3) no modifications are made to this specification. This
limited permission automatically terminates without notice if you breach any of these terms or conditions.
Upon termination, you will destroy immediately any copies of the specifications in your possession or
control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications
regulations and statutes. This document contains information which is protected by copyright. All Rights
Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or by any
means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage
and retrieval systems--without permission of the copyright owner.

Automated Source Code Data Protection Measures, RFC iii

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED
HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN
CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by
you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph
(c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in
subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R.
52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement and its successors, or as
specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors, as applicable. The
specification copyright owners are as indicated above and may be contacted through the Object
Management Group, 109 Highland Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®, and
XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through
its designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers

iv Automated Source Code Data Protection Measures, RFC

of computer software to use certification marks, trademarks or other special designations to indicate
compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable compliance
points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object
Management Group, Inc., software developed using this specification may claim compliance or conformance
with the specification only if the software satisfactorily completes the testing suites.

OMG's Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing
the Issue Reporting Form listed on the main web page https://www.omg.org, under Documents, Report a
Bug/Issue.

Automated Source Code Data Protection Measures, RFC v

Table of Contents

0. Submission-Specific Material ... xx
0.1 Submission Preface ... xx
0.2 Copyright Waiver .. xx
0.3 Submitter Representative .. xx
0.4 Author Team ... xx
0.5 Proof of Concept ... xx

1 Scope .. 11
1.1 Purpose .. 11
1.2 Overview of Structural Quality Measurement in Software .. 11

2 Conformance .. 2

3 Normative References ... 2

4 Terms and Definitions ... 33

5 Symbols (and Abbreviated Terms) ... 44

6 Additional Information (Informative) ... 55
6.1 Software Product Inputs .. 55
6.2 Automated Source Code Data Protection Measure Elements .. 55
6.3 Specification of Data Protection Measure Elements .. 1010
6.4 Specification of Detection Patterns ... 1010
6.5 Knowledge Discovery Metamodel (KDM) .. 1111
6.6 Software Patterns Metamodel Standard (SPMS) ... 1515
6.7 Reading guide .. 1616

7 List of ASCDPM Weaknesses (Normative) .. 1717
7.1 CWE-22  Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal') 1717
7.2 CWE-23  Relative Path Traversal .. 1717
7.3 CWE-36  Absolute Path Traversal .. 1717
7.4 CWE-77  Improper Neutralization of Special Elements used in a Command ('Command

Injection') ... 1818
7.5 CWE-78  Improper Neutralization of Special Elements used in an OS Command ('OS Command

Injection') ... 1818
7.6 CWE-79  Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') .. 1919
7.7 CWE-88  Argument Injection or Modification ... 1919
7.8 CWE-89  Improper Neutralization of Special Elements used in an SQL Command ('SQL

Injection') ... 1919
7.9 CWE-90  Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') . 2020
7.10 CWE-91  XML Injection (aka Blind XPath Injection) .. 2020
7.11 CWE-99  Improper Control of Resource Identifiers ('Resource Injection') 2020
7.12 CWE-119  Improper Restriction of Operations within the Bounds of a Memory Buffer 2020
7.13 CWE-120  Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') 2121
7.14 CWE-123  Write-what-where Condition ... 2121
7.15 CWE-125  Out-of-bounds Read .. 2222
7.16 CWE-129  Improper Validation of Array Index.. 2222
7.17 CWE-130  Improper Handling of Length Parameter Inconsistency... 2222
7.18 CWE-131  Incorrect Calculation of Buffer Size .. 2323
7.19 CWE-134  Use of Externally-Controlled Format String .. 2323
7.20 CWE-170  Improper Null Termination .. 2323
7.21 CWE-194  Unexpected Sign Extension .. 2424
7.22 CWE-195  Signed to Unsigned Conversion Error ... 2424
7.23 CWE-196  Unsigned to Signed Conversion Error ... 2424
7.24 CWE-197  Numeric Truncation Error .. 2424

vi Automated Source Code Data Protection Measures, RFC

7.25 CWE-213  Exposure of Sensitive Information Due to Incompatible Policies 2525
7.26 CWE-248  Uncaught Exception .. 2525
7.27 CWE-259  Use of Hard-coded Password ... 2525
7.28 CWE-284  Improper Access Control ... 2626
7.29 CWE-285  Improper Authorization ... 2626
7.30 CWE-287  Improper Authentication ... 2727
7.31 CWE-288  Authentication Bypass Using an Alternate Path or Channel .. 2727
7.32 CWE-311  Missing Encryption of Sensitive Data ... 2727
7.33 CWE-321  Use of Hard-coded Cryptographic Key .. 2828
7.34 CWE-359  Exposure of Private Personal Information to an Unauthorized Actor 2828
7.35 CWE-366  Race Condition within a Thread ... 2828
7.36 CWE-369  Divide By Zero ... 2929
7.37 CWE-391  Unchecked Error Condition .. 2929
7.38 CWE-392  Missing Report of Error Condition .. 2929
7.39 CWE-404  Improper Resource Shutdown or Release... 3030
7.40 CWE-415  Double Free .. 3030
7.41 CWE-416  Use After Free ... 3030
7.42 CWE-424  Improper Protection of Alternate Path ... 3131
7.43 CWE-434  Unrestricted Upload of File with Dangerous Type ... 3131
7.44 CWE-456  Missing Initialization of a Variable ... 3131
7.45 CWE-457  Use of Uninitialized Variable .. 3232
7.46 CWE-502  Deserialization of Untrusted Data .. 3232
7.47 CWE-543  Use of Singleton Pattern Without Synchronization in a Multithreaded Context 3232
7.48 CWE-562  Return of Stack Variable Address ... 3333
7.49 CWE-567  Unsynchronized Access to Shared Data in a Multithreaded Context 3333
7.50 CWE-606  Unchecked Input for Loop Condition .. 3333
7.51 CWE-611  Improper Restriction of XML External Entity Reference ('XXE') 3434
7.52 CWE-624  Executable Regular Expression Error .. 3434
7.53 CWE-639  Authorization Bypass Through User-Controlled Key ... 3434
7.54 CWE-643  Improper Neutralization of Data within XPath Expressions ('XPath Injection') 3535
7.55 CWE-652  Improper Neutralization of Data within XQuery Expressions ('XQuery Injection') 3535
7.56 CWE-662  Improper Synchronization ... 3535
7.57 CWE-665  Improper Initialization ... 3636
7.58 CWE-667  Improper Locking .. 3636
7.59 CWE-672  Operation on a Resource after Expiration or Release .. 3737
7.60 CWE-681  Incorrect Conversion between Numeric Types ... 3737
7.61 CWE-682  Incorrect Calculation ... 3838
7.62 CWE-703  Improper Check or Handling of Exceptional Conditions .. 3838
7.63 CWE-704  Incorrect Type Conversion or Cast .. 3838
7.64 CWE-732  Incorrect Permission Assignment for Critical Resource ... 3939
7.65 CWE-761  Free of Pointer not at Start of Buffer .. 3939
7.66 CWE-762  Mismatched Memory Management Routines .. 3939
7.67 CWE-763  Release of Invalid Pointer or Reference .. 3939
7.68 CWE-764  Multiple Locks of a Critical Resource .. 4040
7.69 CWE-772  Missing Release of Resource after Effective Lifetime .. 4040
7.70 CWE-775  Missing Release of File Descriptor or Handle after Effective Lifetime 4141
7.71 CWE-786  Access of Memory Location Before Start of Buffer.. 4141
7.72 CWE-787  Out-of-bounds Write ... 4141
7.73 CWE-788  Access of Memory Location After End of Buffer .. 4242
7.74 CWE-798  Use of Hard-coded Credentials .. 4242
7.75 CWE-805  Buffer Access with Incorrect Length Value ... 4242
7.76 CWE-820  Missing Synchronization .. 4343
7.77 CWE-821  Incorrect Synchronization .. 4343

Automated Source Code Data Protection Measures, RFC vii

7.78 CWE-822  Untrusted Pointer Dereference .. 4343
7.79 CWE-823  Use of Out-of-range Pointer Offset .. 4444
7.80 CWE-824  Access of Uninitialized Pointer ... 4444
7.81 CWE-825  Expired Pointer Dereference .. 4444
7.82 CWE-862  Missing Authorization ... 4545
7.83 CWE-863  Incorrect Authorization ... 4545
7.84 CWE-908  Use of Uninitialized Resource .. 4545
7.85 CWE-915  Improperly Controlled Modification of Dynamically-Determined Object Attributes 4545
7.86 CWE-917  Improper Neutralization of Special Elements used in an Expression Language

Statement ('Expression Language Injection') .. 4646
7.87 CWE-1051  Storable and Member Data Element Initialization with Hard-Coded Network

Resource Configuration Data ... 4646
7.88 CWE-1058  Named Callable and Method Control Element in Multi-Thread Context with non-

Final Static Storable or Member Element ... 4646
7.89 CWE-1096 Singleton Class Instance Creation without Proper Lock Element Management 4747

8 ASCQM Weakness Detection Patterns (Normative) ... 4848
8.1 ASCQM Check Index of Array Access ... 4848
8.2 ASCQM Check Input of Memory Manipulation Primitives .. 4949
8.3 ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities 4949
8.4 ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities 5050
8.5 ASCQM Ban Use of Expired Pointer ... 5151
8.6 ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities 5252
8.7 ASCQM Check Offset used in Pointer Arithmetic ... 5252
8.8 ASCQM Sanitize User Input used as Pointer .. 5353
8.9 ASCQM Initialize Pointers before Use ... 5454
8.10 ASCQM Ban Use of Expired Resource .. 5555
8.11 ASCQM Ban Double Release of Resource .. 5656
8.12 ASCQM Implement Copy Constructor for Class with Pointer Resource ... 5656
8.13 ASCQM Ban Free Operation on Pointer Received as Parameter ... 5757
8.14 ASCQM Ban Useless Handling of Exceptions .. 5858
8.15 ASCQM Ban Comma Operator from Delete Statement .. 5858
8.16 ASCQM Release in Destructor Memory Allocated in Constructor ... 5959
8.17 ASCQM Release Memory after Use with Correct Operation ... 6060
8.18 ASCQM Implement Required Operations for Manual Resource Management 6161
8.19 ASCQM Release Platform Resource after Use .. 6262
8.20 ASCQM Release Memory After Use ... 6363
8.21 ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor 6464
8.22 ASCQM Implement Virtual Destructor for Parent Classes .. 6565
8.23 ASCQM Release File Resource after Use in Operation .. 6565
8.24 ASCQM Implement Virtual Destructor for Classes with Virtual Methods .. 6666
8.25 ASCQM Ban Non-Final Static Data in Multi-Threaded Context ... 6767
8.26 ASCQM Ban Hard-Coded Literals used to Connect to Resource .. 6767
8.27 ASCQM Ban Unintended Paths ... 6868
8.28 ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context 6969
8.29 ASCQM Ban Incorrect Numeric Implicit Conversion ... 7070
8.30 ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context 7171
8.31 ASCQM Ban Incorrect Synchronization Mechanisms .. 7272
8.32 ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context 7373
8.33 ASCQM Ban Incorrect Type Conversion ... 7474
8.34 ASCQM Ban Return of Local Variable Address ... 7575
8.35 ASCQM Ban Storage of Local Variable Address in Global Variable .. 7575
8.36 ASCQM Check and Handle ZERO Value before Use as Divisor ... 7676
8.37 ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data................ 7777
8.38 ASCQM Release Lock After Use ... 7878
8.39 ASCQM Ban Sleep Between Lock Acquisition and Release ... 7878

viii Automated Source Code Data Protection Measures, RFC

8.40 ASCQM Ban Creation of Lock On Non-Final Object .. 7979
8.41 ASCQM Ban Creation of Lock On Inappropriate Object Type .. 8080
8.42 ASCQM NULL Terminate Output of String Manipulation Primitives .. 8181
8.43 ASCQM Release File Resource after Use in Class .. 8282
8.44 ASCQM Catch Exceptions .. 8282
8.45 ASCQM Ban Empty Exception Block .. 8383
8.46 ASCQM Initialize Resource before Use .. 8484
8.47 ASCQM Ban Incompatible Lock Acquisition Sequences .. 8585
8.48 ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation 8686
8.49 ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size 8686
8.50 ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value 8787
8.51 ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock .. 8888
8.52 ASCQM Initialize Variables ... 8989
8.53 ASCQM Ban Allocation of Memory with Null Size .. 9090
8.54 ASCQM Ban Double Free On Pointers ... 9191
8.55 ASCQM Initialize Variables before Use .. 9292
8.56 ASCQM Ban Self Assignment .. 9292
8.57 ASCQM Secure XML Parsing with Secure Options .. 9393
8.58 ASCQM Secure Use of Unsafe XML Processing with Secure Parser ... 9494
8.59 ASCQM Sanitize User Input used in Path Manipulation .. 9595
8.60 ASCQM Sanitize User Input used in SQL Access ... 9696
8.61 ASCQM Sanitize User Input used in Document Manipulation Expression .. 9797
8.62 ASCQM Sanitize User Input used in Document Navigation Expression .. 9999
8.63 ASCQM Sanitize User Input used to access Directory Resources ... 100100
8.64 ASCQM Sanitize Stored Input used in User Output .. 101101
8.65 ASCQM Sanitize User Input used in User Output ... 102102
8.66 ASCQM Sanitize User Input used in System Command ... 103103
8.67 ASCQM Sanitize User Input used as Array Index .. 105105
8.68 ASCQM Sanitize User Input used as String Format ... 106106
8.69 ASCQM Sanitize User Input used in Loop Condition ... 107107
8.70 ASCQM Sanitize User Input used as Serialized Object .. 109109
8.71 ASCQM Ban File Creation with Default Permissions ... 110110
8.72 ASCQM Ban Unintended Paths Bypassing Authentication .. 111111
8.73 ASCQM Ban Unintended Paths Bypassing Authorization .. 112112
8.74 ASCQM Ban Unintented Paths To Sensitive Data ... 113113
8.75 ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues 115115
8.76 ASCQM Catch Authentication Exceptions .. 115115
8.77 ASCQM Catch Authorization Exceptions .. 116116
8.78 ASCQM Check Return Value of Authentication Operations Immediately 117117
8.79 ASCQM Check Return Value of Authorization Operations Immediately 118118
8.80 ASCQM Encrypt User Input used in SQL Access to Sensitive Data ... 118118
8.81 ASCQM Release Memory after Use with Correct Reference ... 120120
8.82 ASCQM Sanitize Deserialized Object used in Stored Data... 121121
8.83 ASCQM Sanitize User Input used in Expression Language Statement .. 122122
8.84 ASCQM Sanitize User Input used in SQL Access to primary keys ... 123123
8.85 ASCQM Sanitize User Input used in URI Building ... 124124

9 Calculation of Quality and Functional Density Measures (Normative) .. 126126
9.1 Calculation of the Base Measure ... 126126
9.2 Functional Density of Weaknesses .. 126126

10 References (Informative) .. 127127

Annex A: Consortium for IT Software Quality (CISQ) (Informative) ... 128128

Annex B: Common Weakness Enumeration (CWE) (Informative) .. 129129

Automated Source Code Data Protection Measures, RFC ix

Annex C: Comparison of Weaknesses Included in the CISQ Automated Source Code Security,
Reliability, and Data Protection Measures (Informative) .. 130130

Annex D: Relationship of the CISQ Automated Source Code Data Protection Measure to ISO 25000
Series Standards (SQuaRE) (Informative) ... 133133

x Automated Source Code Data Protection Measures, RFC

0. Submission-Specific Material

0.1 Submission Preface

This submission is of a measure represented in compliance with OMG’s Knowledge Discovery Metamodel
(KDM), Structured Patterns Metamodel for Software (SPMS), and Structured Metrics Meta-Model (SMM).
However, its submission is independent of KDM, SPMS, and SMM to establish it as a supported specification
in its own right. This specification for four Structural Quality Measures builds on elements already
developed in OMG’s Automated Source Code Measures for Reliability, Security, Performance Efficiency, and
Maintainability Measure standards. The measures described in this specification are an important
component for achieving the mission of the Architecture Driven Modernization Task Force by qualifying the
structural quality of modernized software and its architecture.

0.2 Copyright Waiver

CAST Software, Inc. (i) grants to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute
copies of the modified version, and (ii) grants to each member of the OMG a nonexclusive, royalty-free, paid
up, worldwide license to make up to fifty (50) copies of this document for internal review purposes only and
not for distribution, and (iii) has agreed that no person shall be deemed to have infringed the copyright in
the included material of any such copyright holder by reason of having used any OMG specification that may
be based hereon or having conformed any computer software to such specification.

IPR Mode: Non-Assertion Covenant

0.3 Submitter Representative

Bill Curtis
CAST Software, Inc.
b.curtis@castsoftware.com

0.4 Author Team

Joe Jarzombek Bill Curtis
Synopsys CAST Software, Inc.
Joe.Jarzombek@synopsys.com b.curtis@castsoftware.com

Robert Martin Philippe-Emmanuel Douziech
MITRE Corporation CAST Software, Inc
ramartin@mitre.org p.douziech@castsoftware.com

Paul Rainey Paul Seay
CGI Northrup Grumman
paul.rainey@cgi.com Paul.seay@ngc.com

Girish Seshagiri
ISHPI
girish.seshagiri@ishpi.net

0.5 Proof of Concept

Synopsis and CAST among other static analysis vendors have implemented detection mechanisms for most of
the weaknesses from which this measure is calculated.

Automated Source Code Quality Measures, v1.0 1

1 Scope

1.1 Purpose

This specification is derived from the Automated Source Code Security Measure specified in the Automated
Source Code Quality Measure (ASCQM) specification (https://www.omg.org/spec/ASCQM/1.0/) to cover
common weaknesses (CWEs) that affect the protection of confidential information. Specifying this measure
is important as a source of evidence for complying with regulations such as the General Data Protection
Regulation (GDPR) in Europe, and in the United States the Cybersecurity Maturity Model Certification
(CMMC), and California Consumer Privacy Act, the California Consumer Privacy Act enhanced by the
California Privacy Rights Act (CPRA), the Health Insurance Portability and Accountability Act (HIPAA)
enhanced with the Health Information Technology for Economic and Clinical Health (HITECH) Act, and the
Gramm-Leach-Bliley Act (GLBA) for financial services. both in the United States.

This measure is calculated from detecting and counting 89 violations of good architectural and coding
practices (weaknesses) in the source code that could result in unacceptable risks to the exposure or theft of
confidential information. This measure will supplement ISO/IEC 25023 that provides measures of software
product confidentiality (a subcharacteristic of Security) by providing a measure at the source code level for
protecting confidential data.

1.2 Overview of Structural Quality Measurement in Software

Many recent Governmental regulations are requiring evidence that software-intensive systems provide
protection of confidential information. Much of the evidence provided involves the process by which these
systems are developed and accessed. However, these regulations are often weak on the evidence required
to indicate the systems themselves are secure. This specification addresses one aspect of this problem by
providing measure of the extent to which a software system is free from weaknesses that would expose
confidential information to unauthorized parties. Thus, this specification provides a measure calculated from
detecting weaknesses affecting data protection in the source code.

Measurement of the structural quality characteristics of software such as data protection has a long history
in software engineering (Curtis, 1980). Recent advances in measuring the structural quality of software
involve detecting violations of good architectural and coding practice from statically analyzing source code.
Good architectural and coding practices can be stated as rules for engineering software products. Violations
of these rules will be called weaknesses in this specification to be consistent with terms used in the Common
Weakness Enumeration (Martin & Barnum, 2006) which includes weaknesses that affect data protection.

Recent research in analyzing structural quality weaknesses has identified common patterns of code
structures that can be used to detect weaknesses. Many of these ‘Detection Patterns’ are shared across
different weaknesses. Detection Patterns will be used in this specification to organize and simplify the
presentation of weaknesses underlying data protection. Each weakness will be described as a quality
measure element to remain consistent with ISO/IEC 25020. Each quality measure element will be
represented as one or more Detection Patterns. Many quality measure elements (weaknesses) will share
one or more Detection Patterns in common.

The normative portion of this specification represents each quality attribute (weakness) and quality measure
element (detection pattern) using the Structured Patterns Metamodel Standard (SPMS). The code-based
elements in these patterns are represented using the Knowledge Discovery Metamodel (KDM). The
calculation of the Automated Source Code Data Protection Measure from their quality measure elements is
then represented in the Structured Metrics Metamodel (SMM). This calculation is developed by counting
the number of detection patterns for each weakness, and then summing these numbers for all the
weaknesses included in the specific quality characteristic measure.

2 Automated Source Code Quality Measures, v1.0

2 Conformance

Implementations of this specification shall demonstrate the following attributes to claim conformance:
automated, objective, transparent, and verifiable.

 AutomatedThe analysis of the source code and counting of weaknesses must be fully automated.
The initial inputs required to prepare the source code for analysis include the source code of the
application, the artifacts and information needed to configure the application for operation, and any
available description of the architectural layers in the application.

 ObjectiveAfter the source code has been prepared for analysis using the information provided as
inputs, the analysis, calculation, and presentation of results must not require further human
intervention. The analysis and calculation must be able to repeatedly produce the same results and
outputs on the same body of software.

 TransparentImplementations that conform to this specification must clearly list all source code
(including versions), non-source code artifacts, and other information used to prepare the source
code for submission to the analysis.

 VerifiableCompliance with this specification requires that an implementation state the
assumptions/heuristics it uses with sufficient detail so that the calculations may be independently
verified by third parties. In addition, all inputs used are required to be clearly described and itemized
so that they can be audited by a third party.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. Dated references, subsequent amendments to, or revisions of any of these
publications do not apply.

 Structured Patterns Metamodel Standard, https://www.omg.org/spec/SPMS/1.2/
 Knowledge Discovery Metamodel, version 1.4 (KDM), https://www.omg.org/spec/KDM/1.4/
 Structured Metrics Metamodel, version 1.2 (SMM), formal/2012-01-05
 MOF/XMI Mapping, version 2.5.1 (XMI), https://www.omg.org/spec/XMI/2.5.1/
 ISO/IEC 25020:2007 Software engineering — Software product Quality Requirements and

Evaluation (SQuaRE) — Measurement reference model and guide
 International Organization for Standards (2019). ISO/IEC 19515:2019, Automated Function

Points. Information technology -- Object Management Group Automated Function Points (AFP),
1.0. Geneva, Switzerland. Also, Object Management Group (2014). Automated Function Points -
formal/2014-01-03 https://www.omg.org/spec/AFP/ . Needham, MA: Object Management Group.

 ITU-T X.1524 – Series X: Data Networks, Open System Communications and Security –
Cybersecurity information exchange – Vulnerability/state exchange – Common weakness
enumeration

Automated Source Code Quality Measures, v1.0 3

4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Automated Function Pointsa specification for automating the counting of Function Points that mirrors as
closely as possible the counting guidelines of the International Function Point User Group. (OMG, formal
2014-01-03)

Common Weakness Enumerationa repository maintained by MITRE Corporation of known weaknesses in

software that can be exploited to gain unauthorized entry into a software system. (cwe.mitre.org)

Contributing Weaknessa weakness that is represented as a child of a parent weakness in the Common

Weakness Enumeration, that is, a variant instantiation of the parent weakness (cwe.mitre.org)

Data Protection—the ability of a software product to prevent unauthorized access to confidential

information contained within the product or within any software product it interacts with.

Detection Patterna collection of parsed program elements and their relations that constitute a weakness

in the software.

Parent Weaknessa weakness in the Common Weakness Enumeration that has numerous possible

instantiations in software that are represented by its relation to child CWEs (cwe.mitre.org)

Data Protection Measure Elementa measure defined in terms of a software quality attribute and the

measurement method for quantifying it, including optionally the transformation by a mathematical
function (adapted from ISO/IEC 25020)

Security capability of a product to protect information and data so that persons or other products or

systems have the degree of data access appropriate to their types and levels of authorization, and to
defend against attack patterns by malicious actors (ISO/IEC 25010)

Software Producta set of computer programs, procedures, and possibly associated documentation and
data. (ISO/IEC 25010)

Software Data Protection Attributean inherent property or characteristic of software that can be

distinguished quantitatively or qualitatively by human or automated means. (adapted from ISO/IEC
25020)

Software Data Protection Rulean architectural or coding practice or convention that represents good

software engineering practice and avoids problems in software development, maintenance, or
operations. Violations of these quality rules produces software anti-patterns.

Structural Elementa component of software code that can be uniquely identified and counted such as a

token, decision, variable, etc.

Weakness sometimes referred to as a software anti-pattern, is a pattern or structure in the code

(Detection Pattern) that is inconsistent with good architectural or coding practice, violates a software
quality rule, and can lead to operational or cost problems. (derived from cwe.mitre.com)

4 Automated Source Code Quality Measures, v1.0

5 Symbols (and Abbreviated Terms)

AFP  Automated Function Points

ASCSM  Automated Source Code Security Measure

CWE  Common Weakness Enumeration

CISQ  Consortium for Information and Software Quality

KDM  Knowledge Discovery Metamodel

SPMS  Structured Pattern Metamodel Standard

SMM  Structured Metrics Metamodel

Automated Source Code Quality Measures, v1.0 5

6 Additional Information (Informative)

6.1 Software Product Inputs

The following inputs are needed by static code analyzers to interpret violations of the software data
protection rules that would be included in individual software data protection measure elements.

 The entire source code for the application being analyzed.
 All materials and information required to prepare the application for production.
 A list of vetted libraries that are being used to sanitize data against potential attacks.
 What routines/API calls are being used for remote authentication, to any custom initialization and

clean up routines, to synchronize resources, or to neutralize accepted file types or the names of
resources.

Static code analyzers will also need a list of the violations that constitute each quality element in the
Automated Source Code Security Measure.

6.2 Automated Source Code Data Protection Measure Elements

The weaknesses violating software data protection rules that compose the CISQ Automated Source Code
Data Protection Measure are presented in clauses 6 and 7. All weaknesses included in this measure are
identified by their CWE number from the CWE repository. In most cases the description of CWEs is taken
from information in the online CWE repository (cwe.mitre.org).

Some weaknesses drawn from the CWE repository (parent weaknesses) have related weaknesses listed as
‘contributing weaknesses’ (‘children’ in the CWE). Contributing weaknesses represent variants of how the
parent weakness can be instantiated in software. In the following table the cells containing CWE IDs for
parents are presented in a darker blue than the cells containing contributing weaknesses. Based on their
severity, not all children were included. Compliance to the CISQ measures is assessed at the level of the
parent weakness. A technology must be able to detect at least one of the contributing weaknesses to be
assessed compliant on the parent weakness.

The data protection measure elements (weaknesses violating software data protection rules) that compose
the CISQ Automated Source Code Data Protection Measure are presented in Table 1. This measure contains
36 parent weaknesses and 53 contributing weaknesses (children in the CWE) that represent variants of these
weaknesses. The CWE numbers for contributing weaknesses are presented in light blue cells immediately
below the parent weakness whose CWE number is in a dark blue cell. The weaknesses included in this
measure are compared to those in the CISQ Automated Source Code Security and Reliability Measures in
Annex C.

Table 1. Data Protection Measure Elements for the Automated Source Code Data Protection Measure

CWE # Descriptor

CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-23 Relative Path Traversal

CWE-36 Absolute Path Traversal

CWE-77
Improper Neutralization of Special Elements used in a Command ('Command
Injection')

6 Automated Source Code Quality Measures, v1.0

CWE-78
Improper Neutralization of Special Elements used in an OS Command ('OS
Command Injection')

CWE-88 Argument Injection or Modification

CWE-624 Executable Regular Expression Error

CWE-917
Improper Neutralization of Special Elements used in an Expression Language
Statement ('Expression Language Injection')

CWE-79
Improper Neutralization of Input During Web Page Generation ('Cross Site
Scripting')

CWE-89
Improper Neutralization of Special Elements used in a SQL Command ('SQL
Injection')

CWE-90
Improper Neutralization of Special Elements used in an LDAP Query ('LDAP
Injection')

CWE-91 XML Injection (aka Blind XPath Injection)

CWE-99 Improper Control of Resource Identifiers ('Resource Injection')

CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE-123 write-what-where-condition

CWE-125 Out-of-bounds read

CWE-130 Improper Handling of Length Parameter Inconsistency

CWE-786 Access of Memory Location Before Start of Buffer

CWE-787 Out-of-bounds Write

CWE-788 Access of Memory Location After End of Buffer

CWE-805 Buffer Access with Incorrect Length Value

CWE-822 Untrusted Pointer Dereference

CWE-823 Use of Out-of-range Pointer Offset

Automated Source Code Quality Measures, v1.0 7

CWE-824 Access of Uninitialized Pointer

CWE-825 Expired Pointer Dereference

CWE-129 Improper Validation of Array Index

CWE-134 Use of Externally Controlled Format String

CWE-170 Improper Null Termination

CWE-213 Exposure of Sensitive Information Due to Incompatible Policies

CWE-284 Improper Access Control

CWE-285 Improper Authorization

CWE-287 Improper Authentication

CWE-288 Authentication Bypass Using an Alternate Path or Channel

CWE-639 Authorization Bypass Through User-Controlled Key

CWE-862 Missing Authorization

CWE-863 Incorrect Authorization

CWE-311 Missing Encryption of Sensitive Data

CWE-359 Exposure of Private Personal Information to an Unauthorized Actor

CWE-404 Improper Resource Shutdown or Release

CWE-761 Free of Pointer not at Start of Buffer

CWE-762 Mismatched Memory Management Routines

CWE-763 Release of Invalid Pointer or Reference

8 Automated Source Code Quality Measures, v1.0

CWE-772 Missing Release of Resource after Effective Lifetime

CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

CWE-424 Improper Protection of Alternate Path

CWE-434 Unrestricted Upload of File with Dangerous Type

CWE-502 Deserialization of Untrusted Data

CWE-562 Return of Stack Variable Address

CWE-606 Unchecked Input for Loop Condition

CWE-611 Improper Restriction of XML External Entity Reference ('XXE')

CWE-643 Improper Neutralization of Data within XPath Expressions ('XPath Injection')

CWE-652
Improper Neutralization of Data within XQuery Expressions ('XQuery
Injection')

CWE-662 Improper Synchronization

CWE-667 Improper Locking

CWE-764 Multiple Locks of a Critical Resource

CWE-820 Missing Synchronization

CWE-821 Incorrect Synchronization

CWE-1058
Invokable Control Element in Multi-Thread Context with non-Final Static
Storable or Member Element

CWE-1096 Singleton Class Instance Creation without Proper Locking or Synchronization

CWE-366 Race Condition within a Thread

CWE-543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context

Automated Source Code Quality Measures, v1.0 9

CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context

CWE-665 Improper Initialization

CWE-456 Missing Initialization of a Variable

CWE-457 Use of Uninitialized Variable

CWE-672 Operation on a Resource after Expiration or Release

CWE-415 Double Free

CWE-416 Use After Free

CWE-681 Incorrect Conversion between Numeric Types

CWE-194 Unexpected Sign Extension

CWE-195 Signed to Unsigned Conversion Error

CWE-196 Unsigned to Signed Conversion Error

CWE-197 Numeric Truncation Error

CWE-682 Incorrect Calculation

CWE-131 Incorrect Calculation of Buffer Size

CWE-369 Divide by Zero

CWE-703 Improper Check or Handling of Exceptional Conditions

CWE-248 Uncaught Exception

CWE-391 Unchecked Error Condition

CWE-392 Missing Report of Error Condition

10 Automated Source Code Quality Measures, v1.0

CWE-704 Incorrect Type Conversion or Cast

CWE-732 Incorrect Permission Assignment for Critical Resource

CWE-798 Use of Hard-coded Credentials

CWE-259 Use of Hard-coded Password

CWE-321 Use of Hard-coded Cryptographic Key

CWE-908 Use of Uninitialized Resource

CWE-915
Improperly Controlled Modification of Dynamically-Determined Object
Attributes

CWE-1051 Initialization with Hard-Coded Network Resource Configuration Data

6.3 Specification of Data Protection Measure Elements

Clauses 7, 8, and 9 display in human readable format the content of the machine readable XMI format file
attached to this specification. The content of the machine readable XMI format file represents the Data
Protection Measure Elements with the following conventions:

 Structural elements included in a weakness pattern are represented in the Knowledge Discovery
Metamodel (KDM).

 Relations among the structural elements constituting a weakness pattern are represented in the
Software Patterns Metamodel Standard (SPMS) to compute measures at the weakness level.

 Calculation of the Automated Source Code Data Protection Measure is represented in the Structured
Metrics Metamodel (SMM).

6.4 Specification of Detection Patterns

Detection patterns provide guidance for automated detection of the weaknesses enumerated in Clause 7.
Each weakness may have several different instantiations in the source code. Thus, a weakness may be
associated with several different detection patterns. Each detection pattern may be associated with
weaknesses in several different quality measures. There are 135 detection patterns associated with the
weaknesses in Automated Source Code Quality Measures. This number will grow as more detection patterns
are discovered and specified.

Detection Patterns use micro-KDM to provide greater granularity to their specification of weakness patterns.
Additional semantic constraints are required to coordinate producers and consumers of KDM models to use
the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the Abstraction Layer. Micro-KDM achieves this by constraining
the granularity of the leaf action elements and their meaning by providing the set of micro-actions with
predefined semantics. Micro-KDM treats the original macro-action as a container that owns certain micro-
actions with predefined semantics. Thus, precise semantics of the macro-action is defined. Micro-KDM
constrains the patterns of how to map the statements of the existing system as determined by the
programming language into KDM

Automated Source Code Quality Measures, v1.0 11

6.5 Knowledge Discovery Metamodel (KDM)

This specification uses the Knowledge Discovery Metamodel (KDM) to represent the parsed entities whose
relationships create a weakness pattern. The machine readable XMI format file attached to the current
specification uses KDM entities in the ‘KDM outline’ section of the pattern definitions to represent the code
elements whose presence or absence indicates an occurrence of the weakness. Descriptions try to remain
as generic, yet as accurate as possible, so that the pattern can be applied to as many situations as possible:
different technologies, different programming languages, etc. This means:

1. The descriptions include information such as (MethodUnit), (Reads), (ManagesResource), … to
identify the KDM entities included in the pattern definition.

2. The descriptions only describe the salient aspects of the pattern since the specifics can be
technology or language-dependent.

Detection Patterns presented in Clause 8 use micro-KDM to provide greater granularity to their specification
of weakness patterns. Additional semantic constraints are required to coordinate producers and consumers
of KDM models to use the KDM Program Element layer for control- and data-flow analysis applications, as
well as for providing more precision for the Resource Layer and the Abstraction Layer. Micro-KDM achieves
this by constraining the granularity of the leaf action elements and their meaning by providing the set of
micro-actions with predefined semantics. Micro-KDM treats the original macro-action as a container that
owns certain micro-actions with predefined semantics. Thus, precise semantics of the macro-action is
defined. Thus, micro-KDM constrains the patterns of how to map the statements of the existing system as
determined by the programming language into KDM.

KDM is helpful for reading this chapter. However, for readers not familiar with KDM, Table 2 presents a
primer which translates standard source code element terms into the KDM outline in this specification.

Table 2 Software elements translated into KDM wording

Software
element

KDM outline

function,
method,
procedure,
stored
procedure,
sub-routine
etc.

CallableUnit|MethodUnit id="ce1" ...

variable, field,
member, etc.

StorableUnit|MemberUnit id="de1" ...

class, interface
definition and
use as a type,
use as base
class

ClassUnit|InterfaceUnit id="cu1" ...

StorableUnit id="su1" type="cu1" ...

ClassUnit id="cu2" ...

 Extends "cu1" ...

method ClassUnit id="cu2" ...

 MethodUnit "mu1" ...

12 Automated Source Code Quality Measures, v1.0

field, member ClassUnit id="cu2" ...

 MemberUnit "mu1" ...

SQL stored
procedures

DataModel

 RelationalSchema ...

 CallableUnit id="cu1" kind="stored" ...

return code
value
definition and
use

CallableUnit|MethodUnit id="ce1" type="ce1_signature" ...

 Signature "ce1_signature"

 ParameterUnit id="pu1" kind="return" ...

Value|StorableUnit|MemberUnit id="de1" ...

ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall" ...

 Calls "ce1"

 Reads "de1"

exception CallableUnit|MethodUnit id="ce1" type="ce1_signature" ...

 Signature "ce1_signature"

 ParameterUnit id="pu1" kind="exception" ...

Automated Source Code Quality Measures, v1.0 13

user input data
flow

UIModel

 UIField id="uf1"

 UIAction id="ua1" implementation="ae1" kind="input"

 ReadsUI "uf1"

 ...

 CodeModel

 ...

 StorableUnit id="su1"

 StorableUnit id="su2"

 ActionElement id="ae1" kind="UI"

 Writes "su1"

 Flow "ae2"

 ActionElement id="ae2"

 Flow "ae3"

 Reads "su1"

 Writes "su2"

 ActionElement id="ae3"

 Flow "ae4"

 ...

execution path ActionElement id="ae1" kind="UI"

 Flow|Calls "ae2"

ActionElement id="ae2"

 Flow|Calls "ae3"

ActionElement id="ae3"

 Flow|Calls "ae4"

RDBMS DataModel

 RelationalSchema ...

14 Automated Source Code Quality Measures, v1.0

for loop ActionElement id="ae5" kind="Compound"

 StorableUnit id="su3"

 ActionElement id="ae6" kind="Assign"

 Reads ...

 Writes "su3"

 Flows "ae7"

 ActionElement id="ae7"
kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOrEqual"

 Reads "su3"

 Reads "su2"

 TrueFlow "ae8"

 FalseFlow "ff1"

 ActionElement id="ae8" kind=...

 ...

 ActionElement id="ae9" kind="Incr|Decr"

 Addresses "loopVariable"

 Flows "ae6"

 ActionElement id="ff1" kind="Nop"

Automated Source Code Quality Measures, v1.0 15

while loop ActionElement id="ae5" kind="Compound"

 BooleanType id="booleanType"

 DataElement id="de1" type="booleanType"

 EntryFlow "tf1"

 ActionElement id="tf1" ...

 ...

 ActionElement id ="ae6"
kind="GreaterThan|GreaterThanOrEqual|LessThan|LessThanOr
Equal"

 Reads "su2"

 ...

 Writes "de1"

 ActionElement id="ae7" kind="Condition"

 Reads "de1"

 TrueFlow "tf1"

 FalseFlow "ff1"

 ActionElement id="ff1"

checked Value|StorableUnit|MemberUnit id="de1" ...

ActionElement id="ae1"
kind="Equals|NotEqualTo|GreaterThan|GreaterThanOrEqual|LessThan|LessThanO
rEqual" ...

 Reads "de1"

6.6 Software Patterns Metamodel Standard (SPMS)

This specification uses the Software Patterns Metamodel Standard (SPMS) to represent weaknesses as
software patterns involving code elements and their relationships in source code. In the machine readable
XMI format file attached to the current specification each weakness pattern is represented in SPMS
Definitions Classes as follows:

 PatternDefinition (SPMS:PatternDefinition): the pattern specification describing a specific weakness
and a specific detection pattern. In the context of this document, each Quality Measure Element is
the count of occurrences of the SPMS detection patterns detected in the source code for a specific
weakness related to the Quality Characteristic being measured.

 Role (SPMS:Role): “A pattern is informally defined as a set of relationships between a set of entities.
Roles describe the set of entities within a pattern, between which relationships will be described. As
such the Role is a required association in a PatternDefinition…Semantically, a Role is a 'slot' that is
required to be fulfilled for an instance of its parent PatternDefinition to exist. Roles for weaknesses
are abstractions, while the roles for detection patterns can be linked back to the code elements.

 PatternSection (SPMS:PatternSection): “A PatternSection is a free-form prose textual description of
a portion of a PatternDefinition.” In the context of this document, there are 7 different
PatternSections in use:

16 Automated Source Code Quality Measures, v1.0

o “Descriptor” (“descriptor” in the XMI document) to provide pattern signature, a visible
interface of the pattern.

o “Description” (“description” in XMI document) to provide a human readable explanation of
the measure.

o “KDM Outline” (“kdm outline” in XMI document) to provide an illustration of the essential
elements related to KDM, in a human readable outline.

o “What to report” (“reporting” in XMI document) to provide the list of elements to report to
claim the finding of an occurrence of a detection pattern.

o “Reference” (“reference” in XMI document) to provide pointers to the weakness description
in the CWE repository.

o “Usage name” (“usage_name” in XMI document) to provide a more user-friendly name to
the weakness, generally the case when the weakness original name was too strongly KDM-
flavored for the general audience.

SPMS Relationships Classes:

 MemberOf (SPMS:MemberOf): “An InterpatternRelationship specialized to indicate inclusion in a
Category”.

 RelatedPattern (SPMS:RelatedPattern) with 4 different Natures (SPMS:Nature) (“DetectedBy”,
“Detecting”,” AggregatedBy”, and “Aggregating”): InterpatternRelationships used to model the
relations between weaknesses and detection patterns, and between parent and child weaknesses.

6.7 Reading guide

Each numbered sub-clause in clause 7 represents the SPMS modeling, SMM, and detection pattern(s)
associated with a specific data protection weakness. Weakness pattern sub-clauses are summarizing the
various aspects related to a weakness:

 (SPMS) usage name pattern section, if any
 (SPMS) reference pattern section
 (SPMS) roles
 (SPMS) contributing weaknesses and parent weakness, if any,

o useful for reporting of weakness pattern-level information, aggregated or detailed
 (SPMS and SMM) detection patterns,

o useful for reporting of detection pattern-level findings at the weakness level
o useful for counting the violations to the weakness, by summing the count of violations to its

detection patterns

Last sub-clauses are summarizing the computation of the quality measure scores:

 (SMM) detection patterns,
o useful for reporting of detection pattern-level findings at the quality characteristic level
o useful for computing the score of the quality measure, by summing the count of violations to

its detection patterns

For each numbered sub-clause in clause 8:

 Sub-clause 8.x represents the SPMS modeling associated with a detection pattern

Detection pattern sub-clauses are summarizing the various aspects related to a detection pattern:

 (SPMS) descriptor, description, KDM outline, reporting pattern sections,
o In description and reporting pattern sections, data between angle brackets (e.g.:

<ControlElement>) identify SPMS roles

Automated Source Code Quality Measures, v1.0 17

7 List of ASCDPM Weaknesses (Normative)

7.1 CWE-22  Improper Limitation of a Pathname to a Restricted
Directory ('Path Traversal')

Reference
https://cwe.mitre.org/data/definitions/22

Roles
- the <PathManipulationStatement>
- the <TaintedInput>

Contributing weaknesses
CWE-23 Relative Path Traversal
CWE-36 Absolute Path Traversal

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.2 CWE-23  Relative Path Traversal

Reference
https://cwe.mitre.org/data/definitions/23

Roles
- the <PathManipulation>
- the <TaintedInput>

Parent weaknesses
CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.3 CWE-36  Absolute Path Traversal

Reference
https://cwe.mitre.org/data/definitions/36

Roles
- the <PathManipulation>
- the <TaintedInput>

18 Automated Source Code Quality Measures, v1.0

Parent weaknesses
CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.4 CWE-77  Improper Neutralization of Special Elements used in a
Command ('Command Injection')

Reference
https://cwe.mitre.org/data/definitions/77

Roles
- the <Command>
- the <TaintedValue>

Contributing weaknesses
CWE-624 Executable Regular Expression Error
CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')
CWE-88 Argument Injection or Modification
CWE-917 Improper Neutralization of Special Elements used in an Expression Language Statement
('Expression Language Injection')

Detection Patterns
ASCQM Sanitize User Input used in Expression Language Statement
ASCQM Sanitize User Input used in System Command

7.5 CWE-78  Improper Neutralization of Special Elements used in an
OS Command ('OS Command Injection')

Reference
https://cwe.mitre.org/data/definitions/78

Roles
- the <OSCommand>
- the <TaintedValue>

Parent weaknesses
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

Detection Patterns
ASCQM Sanitize User Input used in System Command

Automated Source Code Quality Measures, v1.0 19

7.6 CWE-79  Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

Reference
https://cwe.mitre.org/data/definitions/79

Roles
- the <WebPageGenerationStatement>
- the <TaintedInput>

Detection Patterns
ASCQM Sanitize Stored Input used in User Output
ASCQM Sanitize User Input used in User Output

7.7 CWE-88  Argument Injection or Modification

Reference
https://cwe.mitre.org/data/definitions/88

Roles
- the <Command>
- the <TaintedInput>

Parent weaknesses
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

Detection Patterns
ASCQM Sanitize User Input used in System Command

7.8 CWE-89  Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

Reference
https://cwe.mitre.org/data/definitions/89

Roles
- the <SQLStatement>
- the <TaintedInput>

Detection Patterns
ASCQM Sanitize User Input used in SQL Access

20 Automated Source Code Quality Measures, v1.0

7.9 CWE-90  Improper Neutralization of Special Elements used in an
LDAP Query ('LDAP Injection')

Reference
https://cwe.mitre.org/data/definitions/90

Roles
- the <LDAPQuery>
- the <TaintedInput>

Detection Patterns
ASCQM Sanitize User Input used to access Directory Resources

7.10 CWE-91  XML Injection (aka Blind XPath Injection)

Reference
https://cwe.mitre.org/data/definitions/91

Roles
- the <XMLHandlingExpression>
- the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Document Manipulation Expression
ASCQM Sanitize User Input used in Document Navigation Expression

7.11 CWE-99  Improper Control of Resource Identifiers ('Resource
Injection')

Reference
https://cwe.mitre.org/data/definitions/99

Roles
- the <ResourceIdentifier>
- the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.12 CWE-119  Improper Restriction of Operations within the Bounds
of a Memory Buffer

Reference
https://cwe.mitre.org/data/definitions/119

Automated Source Code Quality Measures, v1.0 21

Roles
- the <BufferOperation>

Contributing weaknesses
CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')
CWE-123 Write-what-where Condition
CWE-125 Out-of-bounds Read
CWE-130 Improper Handling of Length Parameter Inconsistency
CWE-786 Access of Memory Location Before Start of Buffer
CWE-787 Out-of-bounds Write
CWE-788 Access of Memory Location After End of Buffer
CWE-805 Buffer Access with Incorrect Length Value
CWE-822 Untrusted Pointer Dereference
CWE-823 Use of Out-of-range Pointer Offset
CWE-824 Access of Uninitialized Pointer
CWE-825 Expired Pointer Dereference

Detection Patterns
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Ban Use of Expired Pointer
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities
ASCQM Check Offset used in Pointer Arithmetic
ASCQM Initialize Pointers before Use
ASCQM Sanitize User Input used as Pointer

7.13 CWE-120  Buffer Copy without Checking Size of Input ('Classic
Buffer Overflow')

Reference
https://cwe.mitre.org/data/definitions/120

Roles
- the <BufferCopy>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

7.14 CWE-123  Write-what-where Condition

Reference

22 Automated Source Code Quality Measures, v1.0

https://cwe.mitre.org/data/definitions/123

Roles
- the <BufferWrite>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities

7.15 CWE-125  Out-of-bounds Read

Reference
https://cwe.mitre.org/data/definitions/125

Roles
- the <BufferRead>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access

7.16 CWE-129  Improper Validation of Array Index

Reference
https://cwe.mitre.org/data/definitions/129

Roles
- the <ArrayAccess>
- the <TaintedIndex>

Detection Patterns
ASCQM Sanitize User Input used as Array Index

7.17 CWE-130  Improper Handling of Length Parameter Inconsistency

Reference
https://cwe.mitre.org/data/definitions/130

Roles
- the <DataHandling>
- the <LengthParameter>

Automated Source Code Quality Measures, v1.0 23

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access

7.18 CWE-131  Incorrect Calculation of Buffer Size

Reference
https://cwe.mitre.org/data/definitions/131

Roles
- the <BufferSizeCalculation>

Parent weaknesses
CWE-682 Incorrect Calculation

Detection Patterns
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value

7.19 CWE-134  Use of Externally-Controlled Format String

Reference
https://cwe.mitre.org/data/definitions/134

Roles
- the <Formatting>
- the <TaintedFormatString>

Detection Patterns
ASCQM Sanitize User Input used as String Format

7.20 CWE-170  Improper Null Termination

Reference
https://cwe.mitre.org/data/definitions/170

Roles
- the <BufferWithoutNULLTermination>

Detection Patterns
ASCQM NULL Terminate Output Of String Manipulation Primitives

24 Automated Source Code Quality Measures, v1.0

7.21 CWE-194  Unexpected Sign Extension

Reference
https://cwe.mitre.org/data/definitions/194

Roles
- the <NumberSignExtension>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.22 CWE-195  Signed to Unsigned Conversion Error

Reference
https://cwe.mitre.org/data/definitions/195

Roles
- the <NumberConversionToUnsigned>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.23 CWE-196  Unsigned to Signed Conversion Error

Reference
https://cwe.mitre.org/data/definitions/196

Roles
- the <NumberConversionToSigned>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.24 CWE-197  Numeric Truncation Error

Reference

Automated Source Code Quality Measures, v1.0 25

https://cwe.mitre.org/data/definitions/197

Roles
- the <NumberTruncation>

Parent weaknesses
CWE-681 Incorrect Conversion between Numeric Types

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

7.25 CWE-213  Exposure of Sensitive Information Due to Incompatible
Policies

Reference
https://cwe.mitre.org/data/definitions/213

Roles
- the <SensitiveInformation>
- the <IncompatiblePath>

Detection Patterns
ASCQM Ban Unintented Paths To Sensitive Data

7.26 CWE-248  Uncaught Exception

Reference
https://cwe.mitre.org/data/definitions/248

Roles
- the <ExceptionThrowDeclaration>
- the <ExceptionCatchSequence>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Catch Exceptions

7.27 CWE-259  Use of Hard-coded Password

Reference
https://cwe.mitre.org/data/definitions/259

Roles

26 Automated Source Code Quality Measures, v1.0

- the <Authentication>
- the <HardCodedValue>

Parent weaknesses
CWE-798 Use of Hard-coded Credentials

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.28 CWE-284  Improper Access Control

Reference
https://cwe.mitre.org/data/definitions/284

Roles
- the <AccessControlStatement>

Contributing weaknesses
CWE-285 Improper Authorization
CWE-287 Improper Authentication
CWE-288 Authentication Bypass Using an Alternate Path or Channel
CWE-639 Authorization Bypass Through User-Controlled Key
CWE-862 Missing Authorization
CWE-863 Incorrect Authorization

Detection Patterns
ASCQM Ban Unintended Paths Bypassing Authentication
ASCQM Ban Unintended Paths Bypassing Authorization
ASCQM Catch Authentication Exceptions
ASCQM Catch Authorization Exceptions
ASCQM Check Return Value of Authentication Operations Immediately
ASCQM Check Return Value of Authorization Operations Immediately
ASCQM Sanitize User Input used in SQL Access to primary keys
ASCQM Sanitize User Input used in URI Building

7.29 CWE-285  Improper Authorization

Reference
https://cwe.mitre.org/data/definitions/285

Roles
- the <AuthorizationStatement>

Parent weaknesses
CWE-284 Improper Access Control

Detection Patterns
ASCQM Ban Unintended Paths Bypassing Authorization

Automated Source Code Quality Measures, v1.0 27

ASCQM Catch Authorization Exceptions
ASCQM Check Return Value of Authorization Operations Immediately

7.30 CWE-287  Improper Authentication

Reference
Reference https://cwe.mitre.org/data/definitions/287 Improper Authentication

Roles
- the <AuthenticationStatement>

Parent weaknesses
CWE-284 Improper Access Control

Detection Patterns
ASCQM Ban Unintended Paths Bypassing Authentication
ASCQM Catch Authentication Exceptions
ASCQM Check Return Value of Authentication Operations Immediately

7.31 CWE-288  Authentication Bypass Using an Alternate Path or
Channel

Reference
https://cwe.mitre.org/data/definitions/288

Roles
- the <AlternatePath>

Parent weaknesses
CWE-284 Improper Access Control

Detection Patterns
ASCQM Ban Unintended Paths Bypassing Authentication

7.32 CWE-311  Missing Encryption of Sensitive Data

Reference
https://cwe.mitre.org/data/definitions/311

Roles
- the <SensitiveData>
- the <PathWithoutEncryption>

Detection Patterns
ASCQM Encrypt User Input used in SQL Access to Sensitive Data

28 Automated Source Code Quality Measures, v1.0

7.33 CWE-321  Use of Hard-coded Cryptographic Key

Reference
https://cwe.mitre.org/data/definitions/321

Roles
- the <Authentication>
- the <HardCodedCryptographicKey>

Parent weaknesses
CWE-798 Use of Hard-coded Credentials

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.34 CWE-359  Exposure of Private Personal Information to an
Unauthorized Actor

Reference
https://cwe.mitre.org/data/definitions/359

Roles
- the <PrivatePersonalInformation>
- the <UnahthorizedPath>

Detection Patterns
ASCQM Ban Unintented Paths To Sensitive Data

7.35 CWE-366  Race Condition within a Thread

Reference
https://cwe.mitre.org/data/definitions/366

Roles
- the <Thread1>
- the <Thread2>
- the <ConflictingResource>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

Automated Source Code Quality Measures, v1.0 29

7.36 CWE-369  Divide By Zero

Reference
https://cwe.mitre.org/data/definitions/369

Roles
- the <Division>

Parent weaknesses
CWE-682 Incorrect Calculation

Detection Patterns
ASCQM Check and Handle ZERO Value before Use as Divisor

7.37 CWE-391  Unchecked Error Condition

Reference
https://cwe.mitre.org/data/definitions/391

Roles
- the <ErrorConditionProcessing>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Ban Useless Handling of Exceptions

7.38 CWE-392  Missing Report of Error Condition

Reference
https://cwe.mitre.org/data/definitions/392

Roles
- the <ErrorConditionProcessing>

Parent weaknesses
CWE-703 Improper Check or Handling of Exceptional Conditions

Detection Patterns
ASCQM Ban Useless Handling of Exceptions

30 Automated Source Code Quality Measures, v1.0

7.39 CWE-404  Improper Resource Shutdown or Release

Reference
https://cwe.mitre.org/data/definitions/404

Roles
- the <ResourceAllocation>

Contributing weaknesses
CWE-761 Free of Pointer not at Start of Buffer
CWE-762 Mismatched Memory Management Routines
CWE-763 Release of Invalid Pointer or Reference
CWE-772 Missing Release of Resource after Effective Lifetime
CWE-775 Missing Release of File Descriptor or Handle after Effective Lifetime

Detection Patterns
ASCQM Ban Comma Operator from Delete Statement
ASCQM Implement Required Operations for Manual Resource Management
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods
ASCQM Implement Virtual Destructor for Parent Classes
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation
ASCQM Release Memory After Use
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Memory after Use with Correct Reference
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

7.40 CWE-415  Double Free

Reference
https://cwe.mitre.org/data/definitions/415

Roles
- the <FirstResourceRelease>
- the <SecondResourceRelease>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Double Free On Pointers

7.41 CWE-416  Use After Free

Reference

Automated Source Code Quality Measures, v1.0 31

https://cwe.mitre.org/data/definitions/416

Roles
- the <ResourceRelease>
- the <ResourceUse>

Parent weaknesses
CWE-672 Operation on a Resource after Expiration or Release

Detection Patterns
ASCQM Ban Free Operation on Pointer Received as Parameter
ASCQM Ban Use of Expired Pointer
ASCQM Implement Copy Constructor for Class With Pointer Resource

7.42 CWE-424  Improper Protection of Alternate Path

Reference
https://cwe.mitre.org/data/definitions/424

Roles
- the <AlternatePath>

Detection Patterns
ASCQM Ban Unintended Paths
ASCQM Ban Unintended Paths Bypassing Authentication
ASCQM Ban Unintended Paths Bypassing Authorization

7.43 CWE-434  Unrestricted Upload of File with Dangerous Type

Reference
https://cwe.mitre.org/data/definitions/434

Roles
- the <FileUpload>

Detection Patterns
ASCQM Sanitize User Input used in Path Manipulation

7.44 CWE-456  Missing Initialization of a Variable

Reference
https://cwe.mitre.org/data/definitions/456

Roles
- the <VariableDeclaration>

32 Automated Source Code Quality Measures, v1.0

Parent weaknesses
CWE-665 Improper Initialization

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Initialize Variables

7.45 CWE-457  Use of Uninitialized Variable

Reference
https://cwe.mitre.org/data/definitions/457

Roles
- the <VariableDeclaration>
- the <VariableUse>

Parent weaknesses
CWE-665 Improper Initialization

Detection Patterns
ASCQM Initialize Pointers before Use
ASCQM Initialize Variables before Use

7.46 CWE-502  Deserialization of Untrusted Data

Reference
https://cwe.mitre.org/data/definitions/502

Roles
- the <Deserialization>
- the <TaintedData>

Detection Patterns
ASCQM Sanitize User Input used as Serialized Object

7.47 CWE-543  Use of Singleton Pattern Without Synchronization in a
Multithreaded Context

Reference
https://cwe.mitre.org/data/definitions/543

Roles
- the <SingletonUse>

Parent weaknesses

Automated Source Code Quality Measures, v1.0 33

CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.48 CWE-562  Return of Stack Variable Address

Reference
https://cwe.mitre.org/data/definitions/562

Roles
- the <ReturnStatement>

Detection Patterns
ASCQM Ban Return of Local Variable Address
ASCQM Ban Storage of Local Variable Address in Global Variable

7.49 CWE-567  Unsynchronized Access to Shared Data in a
Multithreaded Context

Reference
https://cwe.mitre.org/data/definitions/567

Roles
- the <SharedDataAccess>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context

7.50 CWE-606  Unchecked Input for Loop Condition

Reference
https://cwe.mitre.org/data/definitions/606

Roles
- the <LoopCondition>
- the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Loop Condition

34 Automated Source Code Quality Measures, v1.0

7.51 CWE-611  Improper Restriction of XML External Entity Reference
('XXE')

Reference
https://cwe.mitre.org/data/definitions/611

Roles
- the <XMLHandlingOperation>

Detection Patterns
ASCQM Secure Use of Unsafe XML Processing with Secure Parser
ASCQM Secure XML Parsing with Secure Options

7.52 CWE-624  Executable Regular Expression Error

Reference
https://cwe.mitre.org/data/definitions/624

Roles
- the <RegularExpression>
- the <TaintedValue>

Parent weaknesses
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

Detection Patterns
ASCQM Sanitize User Input used in System Command

7.53 CWE-639  Authorization Bypass Through User-Controlled Key

Reference
https://cwe.mitre.org/data/definitions/639

Roles
- the <AuthorizationStatement>

Parent weaknesses
CWE-284 Improper Access Control

Detection Patterns
ASCQM Sanitize User Input used in SQL Access to primary keys
ASCQM Sanitize User Input used in URI Building

Automated Source Code Quality Measures, v1.0 35

7.54 CWE-643  Improper Neutralization of Data within XPath
Expressions ('XPath Injection')

Reference
https://cwe.mitre.org/data/definitions/643

Roles
- the <XPathExpression>
- the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Document Navigation Expression

7.55 CWE-652  Improper Neutralization of Data within XQuery
Expressions ('XQuery Injection')

Reference
https://cwe.mitre.org/data/definitions/652

Roles
- the <XQueryExpression>
- the <TaintedValue>

Detection Patterns
ASCQM Sanitize User Input used in Document Manipulation Expression

7.56 CWE-662  Improper Synchronization

Reference
https://cwe.mitre.org/data/definitions/662

Roles
- the <Thread1>
- the <Thread2>
- the <SharedResourceAccess>

Contributing weaknesses
CWE-1058 Named Callable and Method Control Element in Multi-Thread Context with non-Final Static
Storable or Member Element
CWE-1096 Singleton Class Instance Creation without Proper Lock Element Management
CWE-366 Race Condition within a Thread
CWE-543 Use of Singleton Pattern Without Synchronization in a Multithreaded Context
CWE-567 Unsynchronized Access to Shared Data in a Multithreaded Context
CWE-667 Improper Locking
CWE-764 Multiple Locks of a Critical Resource
CWE-820 Missing Synchronization
CWE-821 Incorrect Synchronization

36 Automated Source Code Quality Measures, v1.0

Detection Patterns
ASCQM Ban Creation of Lock On Inappropriate Object Type
ASCQM Ban Creation of Lock On Non-Final Object
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Ban Incompatible Lock Acquisition Sequences
ASCQM Ban Incorrect Synchronization Mechanisms
ASCQM Ban Non-Final Static Data in Multi-Threaded Context
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock
ASCQM Ban Sleep Between Lock Acquisition and Release
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Release Lock After Use
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

7.57 CWE-665  Improper Initialization

Reference
https://cwe.mitre.org/data/definitions/665

Roles
- the <Initialization>

Contributing weaknesses
CWE-456 Missing Initialization of a Variable
CWE-457 Use of Uninitialized Variable

Detection Patterns
ASCQM Ban Allocation of Memory with Null Size
ASCQM Ban Self Assignment
ASCQM Initialize Pointers before Use
ASCQM Initialize Variables
ASCQM Initialize Variables before Use

7.58 CWE-667  Improper Locking

Reference
https://cwe.mitre.org/data/definitions/667

Roles
- the <Thread1>
- the <Thread2>
- the <SharedResourceAccess>
- the <Lock>

Parent weaknesses
CWE-662 Improper Synchronization

Automated Source Code Quality Measures, v1.0 37

Detection Patterns
ASCQM Ban Creation of Lock On Inappropriate Object Type
ASCQM Ban Creation of Lock On Non-Final Object
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context
ASCQM Ban Sleep Between Lock Acquisition and Release
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context
ASCQM Release Lock After Use

7.59 CWE-672  Operation on a Resource after Expiration or Release

Reference
https://cwe.mitre.org/data/definitions/672

Roles
- the <ResourceRelease>
- the <ResourceAccess>

Contributing weaknesses
CWE-415 Double Free
CWE-416 Use After Free

Detection Patterns
ASCQM Ban Double Free On Pointers
ASCQM Ban Double Release of Resource
ASCQM Ban Free Operation on Pointer Received as Parameter
ASCQM Ban Use of Expired Pointer
ASCQM Ban Use of Expired Resource
ASCQM Implement Copy Constructor for Class With Pointer Resource

7.60 CWE-681  Incorrect Conversion between Numeric Types

Reference
https://cwe.mitre.org/data/definitions/681

Roles
- the <NumericConversion>

Contributing weaknesses
CWE-194 Unexpected Sign Extension
CWE-195 Signed to Unsigned Conversion Error
CWE-196 Unsigned to Signed Conversion Error
CWE-197 Numeric Truncation Error

Detection Patterns
ASCQM Ban Incorrect Numeric Implicit Conversion

38 Automated Source Code Quality Measures, v1.0

7.61 CWE-682  Incorrect Calculation

Reference
https://cwe.mitre.org/data/definitions/682

Roles
- the <Calculation>

Contributing weaknesses
CWE-131 Incorrect Calculation of Buffer Size
CWE-369 Divide By Zero

Detection Patterns
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value
ASCQM Check and Handle ZERO Value before Use as Divisor

7.62 CWE-703  Improper Check or Handling of Exceptional Conditions

Reference
https://cwe.mitre.org/data/definitions/703

Roles
- the <ErrorHandling>

Contributing weaknesses
CWE-248 Uncaught Exception
CWE-391 Unchecked Error Condition
CWE-392 Missing Report of Error Condition

Detection Patterns
ASCQM Ban Empty Exception Block
ASCQM Ban Useless Handling of Exceptions
ASCQM Catch Exceptions

7.63 CWE-704  Incorrect Type Conversion or Cast

Reference
https://cwe.mitre.org/data/definitions/704

Roles
- the <TypeConversion>

Detection Patterns
 ASCQM Ban Incorrect Type Conversion

Automated Source Code Quality Measures, v1.0 39

7.64 CWE-732  Incorrect Permission Assignment for Critical Resource

Reference
https://cwe.mitre.org/data/definitions/732

Roles
- the <PermissionAssignment>

Detection Patterns
ASCQM Ban File Creation with Default Permissions

7.65 CWE-761  Free of Pointer not at Start of Buffer

Reference
https://cwe.mitre.org/data/definitions/761

Roles
- the <ResourceRelease>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release Memory after Use with Correct Reference

7.66 CWE-762  Mismatched Memory Management Routines

Reference
https://cwe.mitre.org/data/definitions/762

Roles
- the <MemoryAllocation>
- the <MemoryRelease>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release Memory after Use with Correct Operation

7.67 CWE-763  Release of Invalid Pointer or Reference

Reference
https://cwe.mitre.org/data/definitions/763

40 Automated Source Code Quality Measures, v1.0

Roles
- the <ResourceRelease>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release Memory after Use with Correct Operation
ASCQM Release Memory after Use with Correct Reference

7.68 CWE-764  Multiple Locks of a Critical Resource

Reference
https://cwe.mitre.org/data/definitions/764

Roles
- the <Lock1>
- the <Lock2>
- the <Resource>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock

7.69 CWE-772  Missing Release of Resource after Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/772

Roles
- the <ResourceAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Operation
ASCQM Release Platform Resource after Use
ASCQM Release in Destructor Memory Allocated in Constructor

Automated Source Code Quality Measures, v1.0 41

7.70 CWE-775  Missing Release of File Descriptor or Handle after
Effective Lifetime

Reference
https://cwe.mitre.org/data/definitions/775

- the <FileDescriptorOrHandleAllocation>

Parent weaknesses
CWE-404 Improper Resource Shutdown or Release

Detection Patterns
ASCQM Release File Resource after Use in Class
ASCQM Release File Resource after Use in Operation

7.71 CWE-786  Access of Memory Location Before Start of Buffer

Reference
https://cwe.mitre.org/data/definitions/786

Roles
- the <MemoryAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities

7.72 CWE-787  Out-of-bounds Write

Reference
https://cwe.mitre.org/data/definitions/787

Roles
- the <BufferWrite>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives

42 Automated Source Code Quality Measures, v1.0

7.73 CWE-788  Access of Memory Location After End of Buffer

Reference
https://cwe.mitre.org/data/definitions/788

Roles
- the <MemoryAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Check Index of Array Access
ASCQM Check Input of Memory Manipulation Primitives

7.74 CWE-798  Use of Hard-coded Credentials

Reference
https://cwe.mitre.org/data/definitions/798

Roles
- the <HardCodedValue>
- the <Authentication>

Contributing weaknesses
CWE-259 Use of Hard-coded Password
CWE-321 Use of Hard-coded Cryptographic Key

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.75 CWE-805  Buffer Access with Incorrect Length Value

Reference
https://cwe.mitre.org/data/definitions/805

Roles
- the <BufferAccess>
- the <LengthParameter>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities
ASCQM Check Input of Memory Manipulation Primitives

Automated Source Code Quality Measures, v1.0 43

ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities

7.76 CWE-820  Missing Synchronization

Reference
https://cwe.mitre.org/data/definitions/820

Roles
- the <SharedResourceUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context

7.77 CWE-821  Incorrect Synchronization

Reference
https://cwe.mitre.org/data/definitions/821

Roles
- the <SharedResourceUse>
- the <IncorrectSynchronization>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Incorrect Synchronization Mechanisms

7.78 CWE-822  Untrusted Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/822

Roles
- the <PointerDereferencing>
- the <TaintedInput>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Sanitize User Input used as Pointer

44 Automated Source Code Quality Measures, v1.0

7.79 CWE-823  Use of Out-of-range Pointer Offset

Reference
https://cwe.mitre.org/data/definitions/823

Roles
- the <PointerOffset>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Check Offset used in Pointer Arithmetic

7.80 CWE-824  Access of Uninitialized Pointer

Reference
https://cwe.mitre.org/data/definitions/824

Roles
- the <PointerAccess>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Initialize Pointers before Use

7.81 CWE-825  Expired Pointer Dereference

Reference
https://cwe.mitre.org/data/definitions/825

Roles
- the <PointerAccess>
- the <PointerRelease>

Parent weaknesses
CWE-119 Improper Restriction of Operations within the Bounds of a Memory Buffer

Detection Patterns
ASCQM Ban Use of Expired Pointer

Automated Source Code Quality Measures, v1.0 45

7.82 CWE-862  Missing Authorization

Reference
https://cwe.mitre.org/data/definitions/862

Roles
- the <AlternatePath>

Parent weaknesses
CWE-284 Improper Access Control

Detection Patterns
ASCQM Ban Unintended Paths Bypassing Authorization

7.83 CWE-863  Incorrect Authorization

Reference
https://cwe.mitre.org/data/definitions/863

Roles
- the <AuthorizationStatement>

Parent weaknesses
CWE-284 Improper Access Control

Detection Patterns
ASCQM Catch Authorization Exceptions
ASCQM Check Return Value of Authorization Operations Immediately

7.84 CWE-908  Use of Uninitialized Resource

Reference
https://cwe.mitre.org/data/definitions/908

Roles
- the <ResourceUse>

Detection Patterns
ASCQM Initialize Resource before Use

7.85 CWE-915  Improperly Controlled Modification of Dynamically-
Determined Object Attributes

Reference
https://cwe.mitre.org/data/definitions/915

46 Automated Source Code Quality Measures, v1.0

Roles
- the <StoredData>
- the <UnsanitizedPath>

Detection Patterns
ASCQM Sanitize Deserialized Object used in Stored Data

7.86 CWE-917  Improper Neutralization of Special Elements used in an
Expression Language Statement ('Expression Language Injection')

Reference
https://cwe.mitre.org/data/definitions/917

Roles
- the <ExpressionLanguageStatement>
- the <TaintedValue>

Parent weaknesses
CWE-77 Improper Neutralization of Special Elements used in a Command ('Command Injection')

Detection Patterns
ASCQM Sanitize User Input used in Expression Language Statement

7.87 CWE-1051  Storable and Member Data Element Initialization with
Hard-Coded Network Resource Configuration Data

Usage name
Hard-coded network resource information

Reference
https://cwe.mitre.org/data/definitions/1051

Roles
- the <NetworkResourceAccess>
- the <HardCodedValue>

Detection Patterns
ASCQM Ban Hard-Coded Literals used to Connect to Resource

7.88 CWE-1058  Named Callable and Method Control Element in Multi-
Thread Context with non-Final Static Storable or Member Element

Usage name
Non-final static data in a multi-threaded environment

Automated Source Code Quality Measures, v1.0 47

Reference
https://cwe.mitre.org/data/definitions/1058

Roles
- the <Operation>
- the <NonFinalStaticData>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Ban Non-Final Static Data in Multi-Threaded Context

7.89 CWE-1096 Singleton Class Instance Creation without Proper Lock
Element Management

Usage name
Improper locking of singleton classes

Reference
https://cwe.mitre.org/data/definitions/1096

Roles
- the <SingletonUse>

Parent weaknesses
CWE-662 Improper Synchronization

Detection Patterns
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context

48 Automated Source Code Quality Measures, v1.0

8 ASCQM Weakness Detection Patterns (Normative)

8.1 ASCQM Check Index of Array Access

Descriptor
ASCQM Check Index of Array
Access(PathFromDeclarationStatementToUseAsAnIndexStatement,
VariableDeclarationStatement, ArrayAccessStatement)

Description
Identify occurrences in application model where
- the <PathFromDeclarationStatementToUseAsAnIndexStatement> path
- from the <VariableDeclarationStatement> variable declaration statement
- to the <ArrayAccessStatement> array access statement using the variable as an index,
- lacks a range check operation.

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

...
StorableUnit id="su1"
StorableUnit id="su2"
ArrayType id="at1"
StorableUnit id="su3" type="at1"
...
ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
ActionElement id="ae3"
 Flow "ae4"
ActionElement id="ae4"
 Flow "ae5"
ActionElement id="ae5" kind="ArraySelect|ArrayReplace"
 Addresses "su3"
 Reads "su2"
 Reads|Writes ...
 ...

KDM elements absent from the application model

KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su2"
 Reads ...
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su2"
 Reads ...
 ...

What to report
Roles to report are:
- the <PathFromDeclarationStatementToUseAsAnIndexStatement> path
- the <VariableDeclarationStatement> variable declaration statement

Automated Source Code Quality Measures, v1.0 49

- the <ArrayAccessStatement> array access statement

8.2 ASCQM Check Input of Memory Manipulation Primitives

Descriptor
ASCQM Check Input of Memory Manipulation Primitives(MemoryManipulationCall)

Description
Identify occurrences in application model where:
- the <MemoryManipulationCall> call to a memory manipulation function, procedure, method, ... with boundary
 checking capabilities
- uses the length parameter without range checking its value

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PointerType id="pt1"
IntegerType id="it1"
ControlElement id="ce1" name="memcpy|..." type="ce1_signature"
 Signature id="ce1_signature"
 ...
 ParameterUnit id="pu1" type="dt1" kind="byValue"
 ParameterUnit id="pu2" type="pt1" kind="return"
 ...
...
StorableUnit id="su1" type="it1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Reads "su1"
 Calls "ce1"

KDM elements absent from the application model

KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su1"
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su1"
 ...

What to report
Roles to report:
- the <MemoryManipulationCall> call to a memory manipulation function, procedure, method, ... with boundary
 checking capabilities

8.3 ASCQM Ban String Manipulation Primitives without Boundary
Checking Capabilities

Descriptor
ASCQM Ban String Manipulation Primitives without Boundary Checking Capabilities(StringManipulationCall)

Description

50 Automated Source Code Quality Measures, v1.0

Identify occurrences in application model where:
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ... without boundary checking
 capabilities

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" name="strcpy|strlen|..."
 ...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"

What to report
Roles to report:
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ... without boundary checking
 capabilities

8.4 ASCQM Check Input of String Manipulation Primitives with
Boundary Checking Capabilities

Descriptor
ASCQM Check Input of String Manipulation Primitives with Boundary Checking Capabilities(StringManipulationCall)

Description
Identify occurrences in application model where:
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ... with boundary checking
 capabilities
- uses the length parameter without range checking its value

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

StringType id="st1"
IntegerType id="it1"
ControlElement id="ce1" name="strncpy|strncat|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" type="st1"
 ParameterUnit id="pu2" type="it1" kind="byValue"
 ParamteterUnit id="pu3" type="st1" kind="return"
 ...
...
StorableUnit id="su1" type="it1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Reads "su1"
 Calls "ce1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su1"
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"

Automated Source Code Quality Measures, v1.0 51

 Reads "su1"
 ...

What to report
Roles to report:
- the <StringManipulationCall> call to a string manipulation function, procedure, method, ... with boundary checking
 capabilities

8.5 ASCQM Ban Use of Expired Pointer

Descriptor
ASCQM Ban Use of Expired Pointer(PathToPointerAccessFromPointerRelease, PointerReleaseStatement,
PointerAccessStatement)

Description
Identify occurrences in application model where:
- the <PathToPointerAccessFromPointerRelease> path
- from the <PointerReleaseStatement> resource release statement
- to the <PointerAccessStatement> resource access statement

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="pi1" type="dt1"
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" name="free|delete|..."
 Addresses "pt1"
 Flows "ae2"
ActionElement id="ae2"
 Flows "ae3"
ActionElement id="ae3"
kind=PtrSelect|PtrReplace|Call|PtrCall|MethodCall|VirtualCall"
 Reads|Addresses "pt1"
...

or

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
name="dt1"
PointerType id="pt1" name="pt1"
 ItemUnit id="iu1" type="dt1" ext="dt1 & pt1"
StorableUnit id="su1" type="dt1"
StorableUnit id="su2" type="pt1"
 HasType "pt1"
 HasValue "su1"
...
ActionElement id="ae1" name="free|delete|...|push_back|..."
 Addresses "su1"
 Flows "ae2"
ActionElement id="ae2"
 Flows "ae3"
ActionElement id="ae3"
kind=PtrSelect|PtrReplace|Call|PtrCall|MethodCall|VirtualCall"
 Reads|Addresses "su2"

What to report

52 Automated Source Code Quality Measures, v1.0

Roles to report:
- the <PathToPointerAccessFromPointerRelease> path
- the <PointerReleaseStatement> resource release statement
- the <PointerAccessStatement> resource access statement

8.6 ASCQM Ban Input Acquisition Primitives without Boundary
Checking Capabilities

Descriptor
ASCQM Ban Input Acquisition Primitives without Boundary Checking Capabilities(InputAcquisitionCall)

Description
Identify occurrences in application model where:
- the <InputAcquisitionCall> call to an input acquisition function, procedure, method, ... without boundary checking
 capabilities

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" name="gets|scanf|..."
 ...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"

What to report
Roles to report:
- the <InputAcquisitionCall> call to an input acquisition function, procedure, method, ... without boundary checking
 capabilities

8.7 ASCQM Check Offset used in Pointer Arithmetic

Descriptor
ASCQM Check Offset used in Pointer Arithmetic(ArithmeticExpression, EvaluationStatement)

Description
Identify occurrences in application model where:
- the result of the <ArithmeticExpression> arithmetic expression,
- with an offset value which is not range checked
- is used to dererence the pointer in the <EvaluationStatement> evaluation statement

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
StorableUnit id="su1" type="pt1"
...
IntegerType id="it1"
StorableUnit id="su2" type="it1"
StorableUnit id="su3" type="it1"
...
ActionElement id="ae1" kind="Add|Substract"

Automated Source Code Quality Measures, v1.0 53

 Reads "su1"
 Reads "su2"
 Writes "su3"
...
ActionElement id="ae2" kind="PtrSelect|PtrReplace"
 Addresses "su3"
 ..

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su2"
 Reads ...
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su2"
 Reads ...
 ...

What to report
Roles to report are:
- the <ArithmeticExpression> arithmetic expression
- the <EvaluationStatement> evaluation statement

8.8 ASCQM Sanitize User Input used as Pointer

Descriptor
ASCQM Sanitize User Input used as Pointer(PathFromUserInputToPointerDereferencing, UserInput,
PointerDereferencingStatement, PointerDereferencingSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToPointerDereferencing> path
- from the <UserInput> user interface input
- to the <PointerDereferencingStatement> pointer dereferencing statement,
- lacks a sanitization operation from the <PointerDereferencingSanitizationControlElementList> list of vetted
 sanitizations.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"

54 Automated Source Code Quality Measures, v1.0

 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="PtrSelect"
 Addresses "su2"
 Reads|Writes ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToPointerDereferencing> path
- the <UserInput> user interface input
- the <PointerDereferencingStatement> pointer dereferencing statement,
- the <PointerDereferencingSanitizationControlElementList> list of vetted sanitizations.

8.9 ASCQM Initialize Pointers before Use

Descriptor
ASCQM Initialize Pointers before Use(PathToPointerAccessFromPointerDeclaration, PointerDeclarationStatement,
PointerAccessStatement)

Description
Identify occurrences in application model where:
- the <PathToPointerAccessFromPointerDeclaration> path
- from the <PointerDeclarationStatement> pointer declaration statement
- to the <PointerAccessStatement> pointer access statement
- lacks a pointer initialization statement

excluding variable and platform resources

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae2" ...
 Flows "ae3"
ActionElement id="ae3" kind="PtrSelect"
 Reads "su1"
 ...
...

Automated Source Code Quality Measures, v1.0 55

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Assign|Ptr"
 Writes "su1"
 Flows "ae2"
...

What to report
Roles to report are:
- the <PathToPointerAccessFromPointerDeclaration> path
- the <PointerDeclarationStatement> pointer declaration statement
- the <PointerAccessStatement> pointer access statement

8.10 ASCQM Ban Use of Expired Resource

Descriptor
ASCQM Ban Use of Expired Resource(PathToResourceAccessFromResourceRelease, ResourceReleaseStatement,
ResourceAccessStatement)

Description
Identify occurrences in application model where:
- the <PathToResourceAccessFromResourceRelease> path
- from the <ResourceReleaseStatement> resource release statement
- to the <ResourceAccessStatement> resource access statement excluding pointers

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|FileResource id="pr1"
 ...
 PlatformResource id="pa1" kind="open" implementation="ae4"
 ManagesResource "pr1"
 PlatformResource id="pa2" kind="close" implementation="ae1"
 ManagesResource "pr1"

...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="PlatformAction"
 ...
...

What to report
Roles to report:
- the <PathToResourceAccessFromResourceRelease> path
- the <ResourceReleaseStatement> resource release statement
- the <ResourceAccessStatement> resource access statement

56 Automated Source Code Quality Measures, v1.0

8.11 ASCQM Ban Double Release of Resource

Descriptor
ASCQM Ban Double Release of Resource(PathToResourceReleaseFromResourceRelease,
FirstResourceReleaseStatement, SecondResourceReleaseStatement)

8.11.1.1.1

Description
Identify occurrences in application model where:
- the <PathToResourceReleaseFromResourceRelease> path
- from the <FirstResourceReleaseStatement> resource release statement
- to the <SecondResourceReleaseStatement> resource release statement

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource id="pr1"
 ...
 PlatformAction id="pa2" kind="close" implementation="ae1 ae4"
 ManagesResource "pr1"

...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="PlatformAction"
 ...
...

What to report
Roles to report:
- the <PathToResourceReleaseFromResourceRelease> path
- the <FirstResourceReleaseStatement> resource release statement
- the <SecondResourceReleaseStatement> resource release statement

8.12 ASCQM Implement Copy Constructor for Class with Pointer
Resource

Descriptor
ASCQM Implement Copy Constructor for Class With Pointer Resource(Class, Pointer)

Description
Identify occurrences in application model where:
- the <Class> Class
- owns the <Pointer> pointer resource
- but lacks a copy constructor

Automated Source Code Quality Measures, v1.0 57

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PointerType id="pointerType"
 ...
ClassUnit id="cu1"
 MemberUnit id="mu1" type="pointerType"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
 ...
 MethodUnit is="m1"
name="class|this|__construct|new|New|__new__|alloc|constructor|initialize|..."
methodKind="constructor" type="m1_signature"
 Signature id = "m1_signature"
 ParameterUnit id="p1" name="p1" type="class" kind="byReference"
 ParameterUnit id="r" name="r" type="class" kind="return"
 ...

What to report
Roles to report are:
- the <Class> Class
- the <Pointer> pointer resource

8.13 ASCQM Ban Free Operation on Pointer Received as Parameter

Descriptor
ASCQM Ban Free Operation on Pointer Received as Parameter(ReleaseStatement, Signature)

Description
Identify occurrences in application model where:
- the pointer is released by the <ReleaseStatement> release statement
- and was received as a parameter in the <Signature> signature

The list of release operations are technology, language dependent. For example, with C-type languages: free, delete.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
...
ControlElement id="ce1" name="free|delete|..."
...
CallableUnit kind="regular|external|stored" | MethodUnit id="ce2"
type="ce2_signature"
 Signature id="ce2_signature"
 ParameterUnit id="pu1" kind="byReference" type="pt1"
 ...
 ActionElement id="ae1" kind="Call|PtrCall[MethodCall|VirtualCall"
 Calls "ce1"
 Reads "pu1"
 ...

58 Automated Source Code Quality Measures, v1.0

What to report
Roles to report are:
- the <ReleaseStatement> release statement
- the <Signature> signature

8.14 ASCQM Ban Useless Handling of Exceptions

Descriptor
ASCQM Ban Useless Handling of Exceptions(CatchBlock)

Description
Identify occurrences in application model where:
- the <CatchBlock> catch block
- does not report on the error condition as a new throw or as a return value

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ...
 ActionElement id="ae1" kind="Throw"
 Throws ...
...

or

...
CatchUnit id="cu1"
 ...
 ActionElement id="ae1" kind="Return"
 Reads ...
...

What to report
Roles to report are:
- the <CatchBlock> catch block

8.15 ASCQM Ban Comma Operator from Delete Statement

Descriptor
ASCQM Ban Comma Operator from Delete Statement(DeleteStatement, CommaStatement)

Description

Automated Source Code Quality Measures, v1.0 59

Identify occurrences in application model where:
- the <DeleteStatement> delete statement
- compounded with the <CommaStatement> comma statement

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
CallableUnit id="cu1" name="delete" callableKind="operator"
CallableUnit id="cu2" name="comma" callableKind="operator"
...
ActionElement id="ae1" kind="Compound" ext="delete x, y"
 ActionElement id="ae2" kind="Call"
 Calls "cu1"
 ...
 ActionElement id="ae3" kind="Call"
 Calls "cu2"
 ...
...

What to report
Roles to report are:
- the <DeleteStatement> delete this statement
- the <CommaStatement> comma statement

8.16 ASCQM Release in Destructor Memory Allocated in Constructor

Descriptor
ASCQM Release in Destructor Memory Allocated in Constructor(MemoryAllocationStatement)

Description
Identify occurrences in application model where:
- the <MemoryAllocationStatement> memory allocation statement in the class constructor
- lacking a corresponding memory release statement in the class destructor

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
ClassUnit id="cu1"
 ...
 StorableUnit id="su1" type="pt1"
 ...
 MethodUnit id="mu1" MethodKind="constructor"
 ...
 ActionElement id="ae1" kind="New|NewArray"
 Creates "dt1"
 Writes "su1"
...

or

ControlElement id="ce1" name="malloc|calloc|..."
...

60 Automated Source Code Quality Measures, v1.0

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
ClassUnit id="cu1"
 ...
 StorableUnit id="su1" type="pt1"
 ...
 MethodUnit id="mu1" MethodKind="constructor"
 ...
 ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" name="delete|delete[]|free|..."
...
ClassUnit id="cu1"
 ...
 MethodUnit id="mu2" MethodKind="destructor"
 ...
 ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

What to report
Roles to report:
- the <MemoryAllocationStatement> memory allocation statement

8.17 ASCQM Release Memory after Use with Correct Operation

Descriptor
ASCQM Release Memory after Use with Correct Operation(MemoryAllocationStatement, MemoryReleaseStatement)

Description
Identify occurrences in the application model where:
- the memory is allocated via the <MemoryAllocationStatement> allocation statement
- then released via the mismatched <MemoryReleaseStatement> release statement

The pairs of matching allocation/deallocation primitives and operations are technology, framework, language dependant.
For example: malloc/free, calloc/free, realloc/free in C/C+, new/delete, new[]/delete[] in C+, new/Release() with COM
IUnknown interface.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="New"
 Creates "dt1"
 Writes "su1"
...

Automated Source Code Quality Measures, v1.0 61

ControlElement id="ce2" name="delete[]|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

or

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="NewArray"
 Creates "dt1"
 Writes "su1"
...
ControlElement id="ce2" name="delete|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

or

ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="Call"
 Calls "ce1"
 Writes "su1"
...
ControlElement id="ce2" name="delete|delete[]|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

What to report
Roles to report are:
- the <MemoryAllocationStatement> allocation statement
- the <MemoryReleaseStatement> release statement

8.18 ASCQM Implement Required Operations for Manual Resource
Management

Descriptor
ASCQM Implement Required Operations for Manual Resource Management(ObjectDeclaration)

Description
Identify occurrences in application model where:
- the <ObjectDeclaration> object declaration
- declares an object with manual resource management capabilities
- which lacks the required operation.

62 Automated Source Code Quality Measures, v1.0

The manual resource management capability is technology, framework, and language dependent. For example: class
inheritance from IDisposable in C#, and AutoClosable in Java, class with __enter__ in python.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

InterfaceUnit id="iu1" name="IDisposable|AutoClosable|..."
...
ClassUnit id="cu1"
 Extends "iu1"
 ...

of

...
ClassUnit id="cu1"
 MethodUnit "mu1" name="__enter__"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
 ...
 MethodUnit "mu1" name="dispose|close|__exit__|..."

What to report
Roles to report:
- the <ObjectDeclaration> object declaration

8.19 ASCQM Release Platform Resource after Use

Descriptor
ASCQM Release Platform Resource after Use(FunctionProcedureOrMethod, ResourceAllocationStatement,
PathToExitWithoutResourceRelease)

Description
Identify occurrences in application model where:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- uses the <ResourceAllocationStatement> resource allocation statement
- excluding memory and file resources
- while there exist the <PathToExitWithoutResourceRelease> path to exit the <FunctionProcedureOrMethod> function,
 procedure, method, ... without releasing the resource

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 DataManager|ExecutionResource id="pr1"
 ...
 PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
 PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"

Automated Source Code Quality Measures, v1.0 63

...
CodeModel
 ...
 CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="Return"
 ...
 ActionElement id="ae2" kind="PlatformAction"
 ...
...

What to report
Roles to report
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <ResourceAllocationStatement> file resource open statement
- the <PathToExitWithoutResourceRelease> path to exit

8.20 ASCQM Release Memory After Use

Descriptor
ASCQM Release Memory After Use(MemoryAllocationStatement)

Description
Identify occurrences in application model where :
- the <MemoryAllocationStatement> memory allocation statement
- lacking a corresponding memory release statement

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="New|NewArray"
 Creates "dt1"
 Writes "su1"
...

or

ControlElement id="ce1" name="malloc|calloc|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="Call"

64 Automated Source Code Quality Measures, v1.0

 Calls "ce1"
 Writes "su1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" name="delete|delete[]|free|..."
...
ActionElement id="ae2" kind="Call"
 Addresses "su1"
 Calls "ce2"

What to report
Roles to report :
- the <MemoryAllocationStatement> memory allocation statement

8.21 ASCQM Implement Virtual Destructor for Classes Derived from
Class with Virtual Destructor

Descriptor
ASCQM Implement Virtual Destructor for Classes Derived from Class with Virtual Destructor(Class, ParentClass,
ParentVirtualDestructor)

Description
Identify occurrences in application model where :
- the <Class> class
- inherits from the <ParentClass> parent class
- with the <ParentVirtualDestructor> virtual destructor
- but lacks a virtual destructor

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

 MethodUnit is="m1" methodKind="method" isVirtual="true"
 ...
ClassUnit id="c2" InheritsFrom="c1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c2"

 MethodUnit is="m2" methodKind="destructor" isVirtual="true"
 ...

What to report
Roles to report are :
- the <Class> class
- the <ParentClass> parent class
- the <ParentVirtualDestructor> virtual destructor

Automated Source Code Quality Measures, v1.0 65

8.22 ASCQM Implement Virtual Destructor for Parent Classes

Descriptor
ASCQM Implement Virtual Destructor for Parent Classes(Class, ParentClass)

Description
Identify occurrences in application model where:
- the <Class> class
- inherits from the <ParentClass> parent class
- which lacks a virtual destructor

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

ClassUnit id="c2" InheritsFrom="c1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

 MethodUnit is="m1" methodKind="method" isVirtual="true"
 ...

What to report
Roles to report are:
- the <Class> class
- the <ParentClass> parent class

8.23 ASCQM Release File Resource after Use in Operation

Descriptor
ASCQM Release File Resource after Use in Operation(FunctionProcedureOrMethod, FileResourceOpenStatement,
PathToExitWithoutFileResourceClose)

8.23.1.1.1

Description
Identify occurrences in application model where:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- uses the <FileResourceOpenStatement> file resource open statement
- while there exist the <PathToExitWithoutFileResourceClose> path to exit the <FunctionProcedureOrMethod> function,
 procedure, method, ... without releasing the file resource

The path to exit the function, procedure, method, includes calls to other functions, procedures, methods, ...

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

66 Automated Source Code Quality Measures, v1.0

PlatformModel
 ...
 FileResource id="pr1"
 ...
 PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
 PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"

...
CodeModel
 ...
 CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="Return"
 ...
 ActionElement id="ae2" kind="PlatformAction"
 ...
...

What to report
Roles to report:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <FileResourceOpenStatement> file resource open statement
- the <PathToExitWithoutFileResourceClose> path to exit

8.24 ASCQM Implement Virtual Destructor for Classes with Virtual
Methods

Descriptor
ASCQM Implement Virtual Destructor for Classes with Virtual Methods(Class, VirtualMethod)

Description
Identify occurrences in application model where:
- the <Class> class
- owns the <VirtualMethod> virtual method
- but lacks a virtual destructor

KDM outline illustration
KDM elements present in the application model

KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="c1"

 MethodUnit is="m1" methodKind="method" isVirtual="true"

 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

Automated Source Code Quality Measures, v1.0 67

ClassUnit id="c1"

 MethodUnit is="m2" methodKind="destructor" isVirtual="true"
 ...

What to report
Roles to report are:
- the <Class> class
- the <VirtualMethod> virtual method

8.25 ASCQM Ban Non-Final Static Data in Multi-Threaded Context

Descriptor
ASCQM Ban Non-Final Static Data in Multi-Threaded Context(Declaration)

Description
Identify occurrences in application model where:
- the <Declaration> declaration of non-final static data
- in multi-threaded environment

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

CodeModel
 StorableUnit id="su1" isFinal="false" isStatic="true"
...
PlatformModel
 DeployedResource id="dr1"
 ExecutionResource id="er1"
 Thread id="t1"
 Thread id="t2"
 …

What to report
Roles to report are:
- the <Declaration> declaration of non-final static data

8.26 ASCQM Ban Hard-Coded Literals used to Connect to Resource

Descriptor
ASCQM Ban Hard-Coded Literals used to Connect to Resource(InitializationStatement, ResourceAccessStatement)

Description
Identify occurrences in application model where:
- the <InitializationStatement> initialization statement
- initialize a variable used in the <ResourceAccessStatement> resource access statement as parameter to call a resource
 access primitive

It covers credentials, passwords, encryption keys, tokens, remember-me keys...

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

68 Automated Source Code Quality Measures, v1.0

Value id="hcv" name="hcv"
...
StorableUnit|ItemUnit|MemberUnit id="su1"
...
ActionElement id="ae1" kind="Assign
 Reads "hcv"
 Writes "su1"
...
MarshalledResource|MessagingResource|DataManager|ExecutionResource id="nwr"
...
ControlElement id="ce1"
 ...
 ActionELement id="ae2" kind="Platform"
 ManagesResource|ReadsResource|WritesResource "nwr"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "su1"
 ...
 Calls "ce1"

What to report
Roles to report are:
- the <InitializationStatement> initialization statement
- the <ResourceAccessStatement> resource access statement

8.27 ASCQM Ban Unintended Paths

Descriptor
ASCQM Ban Unintended Paths(ArchitectureModel, Relation, Caller, Callee, OriginModule, TargetModule)

Description
Identify occurrences in the application model where:
- the <Relation> call-type, data, use relations
- between the <Caller> caller
- grouped in the <OriginModule> origin layer, component, or subsystem
- and the <Callee> callee
- grouped into the <TargetModule> target layer, component, or subsystem
- as defined in the <ArchitectureModel> architectural blueprint defining layers, components, or subsystems
- where relations from the <OriginModule> layer, component, or subsystem to the <TargetModule> layer, component, or
 subsystem are not intended

The architectural blueprint defining layers, components, or subsystems is application dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
Layer|Component|Subsystem id="m1"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce1"
name="..."
 ...
 ActionElement id="ae1"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches "ce2"
...
Layer|Component|Subsystem id="m2"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce2"
name="..."

Automated Source Code Quality Measures, v1.0 69

...

With "m1" not intended to reference "m2"

What to report
Roles to report are:
- the <ArchitectureModel> architectural blueprint
- the <Relation> relation
- the <Caller> caller
- the <Callee> callee
- the <OriginModule> origin layer, component, or subsystem
- the <TargetModule> target layer, component, or subsystem

8.28 ASCQM Singleton Creation without Proper Locking in Multi-
Threaded Context

Descriptor
ASCQM Singleton Creation without Proper Locking in Multi-Threaded Context(SingletonClass, InitializationStatement)

Description
Identify occurrences in application model where:
- the <SingletonClass> singleton class
- with the <InitializationStatement> self-reference initialization statement
- not properly locked
- while it operates in a multi-threaded environment

The proper locking is technology, framework, and language dependent.
The detection of multi-threading capability is technology, framework, and language dependent.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ExecutionResource id="er1"
 Thread id="t1"
 ...
 PlatformAction id="pa1" implementation="ae1"
 ManagesResource "t1"
 ...
...
CodeModel
 ActionElement id="ae1"
 ...
 ClassUnit id="singleton" exportKind="public"
 MemberUnit id="reference" isStatic="true" exportKind="private"
type="singleton"
 MethodUnit id="c" kind="constructor" exportKind="private"
type="c_signature"
 Signature
 ParameterUnit id="r1" kind="return" type="singleton"
 ...
 MethodUnit id="refget" kind="method" storableKind="static"
exportKind="public" type="refget_signature"
 Signature id="refget_signature"
 ParameterUnit id="r2" kind="return" type="singleton"
 ActionElement id="a2" name="a2" kind="Return"
 Writes "r2"

70 Automated Source Code Quality Measures, v1.0

 Reads "reference"
 ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae3"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa3" kind="unlock" implementation="ae5"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ClassUnit id="singleton" exportKind="public"
 ...
 ActionElement id="ae2" kind="Compound"
 EntryFlow "ae3"
 ActionElement id="ae3" kind="PlatformAction"
 Flows "ae4"
 ActionElemeent id="ae4"
 Writes "reference"
 Flows "ae5"
 ActionElement id="ae5" kind="PlatformAction"
...

What to report
Roles to report are:
- the <SingletonClass> singleton class
- the <InitializationStatement> initialization statement

8.29 ASCQM Ban Incorrect Numeric Implicit Conversion

Descriptor
ASCQM Ban Incorrect Numeric Implicit Conversion(Variable, VariableDataType, VariableAssignmentStatement, Data,
TargetDataType)

Description
Identify occurrences in application model where:
- the <Variable> variable is declared with the <VariableDataType> numerical data type
- then updated is the <VariableAssignmentStatement> assignment statement
- with the <Data> data of the <TargetDataType> second numerical data type
- which is incompatible with the first one
- and without any range check or explicit casting

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

IntegerType|DecimalType|FloatType id="dt1"
StorableUnit|ItemUnit|MemberUnit id="de1" type="dt1"
IntegerType|DecimalType|FloatType id="dt2"
StorableUnit|ItemUnit|MemberUnit|Value id="de2" type="dt2"
ActionElement id="ae1" kind="Assign"
 Writes "de1"

Automated Source Code Quality Measures, v1.0 71

 Reads "de2"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="LessThan|LessThanOrEqual"
 Reads "de2"
ActionElement id="ae3" kind="GreaterThan|GreaterThanOrEqual"
 Reads "de2"

or

ActionElement id="ae1" kind="TypeCast"
 Reads "de2"
 UsesType "dt1"
 Writes "de1"

and the numeric datatypes are not compatible.
Compatibility comes from storage size and primary types. For example.: char and int8, wchar and int16, 64-bit pointers
and 64-bits long integers, ...

What to report
Roles to report are:
- the <Variable> variable
- the <VariableDataType> numerical data type
- the <VariableAssignmentStatement> assignment statement
- the <Data> data
- the <TargetDataType> second numerical data type

8.30 ASCQM Data Read and Write without Proper Locking in Multi-
Threaded Context

Descriptor
ASCQM Data Read and Write without Proper Locking in Multi-Threaded Context(InitializationStatement)

Description
Identify occurrences in application model where:
- the <WriteOrReadStatement> write or read statement
- of variable with the <NonAtomicDataType> non-atomic data type
- is not properly locked,
- while it operates in a multi-threaded environment

The proper locking is technology, framework, and language dependent.
The detection of multi-threading capability is technology, framework, and language dependent.
The list of non-atomic data types is technology, framework, and language dependent.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ExecutionResource id="er1"
 Thread id="t1"
 ...
 PlatformAction id="pa1" implementation="ae1"
 ManagesResource "t1"
 ...
...

72 Automated Source Code Quality Measures, v1.0

CodeModel
 ActionElement id="ae1"
 ...
 DataType id="dt1" isAtomic="false"
 StorableUnit id="su1" type="dt1"
 ...
 ActionElement id="ae4" kind="Assign|Select|..."
 Reads|Writes "su1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae3"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa3" kind="unlock" implementation="ae5"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ...
 ActionElement id="ae2" kind="Compound"
 EntryFlow "ae3"
 ActionElement id="ae3" kind="PlatformAction"
 Flows "ae4"
 ActionElement id="ae4" kind="Assign|Select|..."
 Reads|Writes "su1"
 Flows "ae5"
 ActionElement id="ae5" kind="PlatformAction"
...

What to report
Roles to report are:
- the <InitializationStatement> initialization statement

8.31 ASCQM Ban Incorrect Synchronization Mechanisms

Descriptor
ASCQM Ban Incorrect Synchronization Mechanisms(IncorrectSynchronizationPrimitiveCall)

Description
Identify occurrences in application model where:
- the <IncorrectSynchronizationPrimitiveCall> call to incorrect synchronization primitive
- while it operates in a multi-threaded environment

The list of incorrect synchronization primitives is technology, framework, language dependent. For example.:
java.lang.Thread.run() in Java; getlogin() in C; synchronization primitives with EJBs.
The detection of multi-threading capability is technology, framework, and language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

CodeModel
 ControlElement id="ce1" name="run|getlogin|..."
 ...
 ...

Automated Source Code Quality Measures, v1.0 73

 ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"
...
PlatformModel
 DeployedResource id="dr1"
 ExecutionResource id="er1"
 Thread id="t1"
 Thread id="t2"
 ...

What to report
Roles to report are:
- the <IncorrectSynchronizationPrimitiveCall> call to incorrect synchronization primitive

8.32 ASCQM Ban Resource Access without Proper Locking in Multi-
Threaded Context

Descriptor
ASCQM Ban Resource Access without Proper Locking in Multi-Threaded Context(ResourceAccessStatement)

Description
Identify occurrences in application model where:
- the <ResourceAccessStatement> access statement to a resource
- not properly locked
- while it operates in a multi-threaded environment

The proper locking is technology, framework, and language dependent.
The detection of multi-threading capability is technology, framework, and language dependent.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ExecutionResource id="er1"
 Thread id="t1"
 ...
 PlatformAction id="pa1" implementation="ae1"
 ManagesResource "t1"
 ...
 StreamResource|FileResource|... id="pr1"
 ...
 PlatformAction id="pa2" implementation="ae2"
 ManagesResource|ReadsResource|WritesResource "pr1"

 ...
...
CodeModel
 ActionElement id="ae1" kind="PlatformAction"
 ...
 ActionElement id="ae2" kind="PlatformAction"
 ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

74 Automated Source Code Quality Measures, v1.0

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae4"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa3" kind="unlock" implementation="ae5"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ClassUnit id="singleton" exportKind="public"
 ...
 ActionElement id="ae3" kind="Compound"
 EntryFlow "ae4"
 ActionElement id="ae4" kind="PlatformAction"
 Flows "ae2"
 ActionElement id="ae2"
 Flows "ae5"
 ActionElement id="ae5" kind="PlatformAction"
...

What to report
Roles to report are:
- the <ResourceAccessStatement> access statement to a resource

8.33 ASCQM Ban Incorrect Type Conversion

Descriptor
ASCQM Ban Incorrect Type Conversion(Variable, VariableDataType, VariableAssignmentStatement, Data,
TargetDataType)

Description
Identify occurrences in application model where:
- the <Variable> variable is declared with the <VariableDataType> non-numerical data type
- then updated is the <VariableAssignmentStatement> assignment statement
- with the <Data> data is of the <TargetDataType> second non-numerical data type
- which is incompatible with the first one

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

StringType|ClassUnit|... id="dt1"
StorableUnit|ItemUnit|MemberUnit id="de1" type="dt1"
StringType|ClassUnit|... id="dt2"
StorableUnit|ItemUnit|MemberUnit|Value id="de2" type="dt2"
ActionElement id="ae1" kind="Assign"
 Writes "de1"
 Reads "de2"

or

StringType|ClassUnit|... id="dt1"
PointerType id="pt1"
StorableUnit|ItemUnit|MemberUnit id="de1" type="pt1"
StringType|ClassUnit|... id="dt2"
PointerType id="pt2"
ActionElement id="ae1" kind="TypeCast"
 Reads "de1"

Automated Source Code Quality Measures, v1.0 75

 UsesType "pt2"

Where the non-numeric datatypes are not compatible.
Compatibility comes from inheritence links between objects, and, when numeric types are concerned, from storage size
and primary types. For example: char and int8, wchar and int16, 64-bit pointers and 64-bits long integers, ...

What to report
Roles to report are
- the <Variable> variable
- the <VariableDataType> data type
- the <VariableAssignmentStatement> assignment statement
- the <Data> data
- the <TargetDataType> second data type

8.34 ASCQM Ban Return of Local Variable Address

Descriptor
ASCQM Ban Return of Local Variable Address(LocalVariable, Operation)

Description
Identify occurrences in application model where:
- the address of the <LocalVariable> local variable
- is returned by the <Operation> operation

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
PointerType id="pt1"
CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce1"
name="..." type="ce1_signature"
 Signature id="ce1_signature"
 ...
 ParameterUnit id="pu1" kind="return" type="pt1"
 ...
 StorableUnit id="su1" kind="register"
 StorableUnit id="su2" kind="local"
 ActionElement id="ae1" kind="Ptr"
 Writes "su1"
 Addresses "su2"
 ActionElement id="ae2" kind="Return"
 Reads "su1"
...

What to report
Roles to report are:
- the <LocalVariable> local variable address
- the <Operation> operation

8.35 ASCQM Ban Storage of Local Variable Address in Global Variable

Descriptor
ASCQM Ban Storage of Local Variable Address in Global Variable(LocalVariable, StorageStatement, GlobalVariable)

76 Automated Source Code Quality Measures, v1.0

Description
Identify occurrences in application model where:
- the address of the <LocalVariable> local variable
- is stored by the <StorageStatement> statement
- into the <GlobalVariable> global variable

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1" kind="global"
...
CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce1"
 ...
 StorableUnit id="su2" kind="register"
 StorableUnit id="su3" kind="local"
 ActionElement id="ae1" kind="Ptr"
 Writes "su2"
 Addresses "su3"
 ActionElement id="ae2" kind="Assign"
 Reads "su2"
 Writes "su3"
...

What to report
Roles to report are:
- the <LocalVariable> local variable address
- the <StorageStatement> statement
- the <GlobalVariable> global variable

8.36 ASCQM Check and Handle ZERO Value before Use as Divisor

Descriptor
ASCQM Check and Handle ZERO Value before Use as Divisor(DivisionStatement)

Description
Identify occurrences in application model where:
- the <DivisionStatement> division statement
- uses a variable which is not checked and handled before use as divisor immediately before

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

StorableUnit id="su1"
StorableUnit id="su2"
ActionElement id="ae3" kind="Divide"
 Reads "su1"
 Reads "su2"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
Value id="v1" name="0"
StorableUnit id="su3"
ActionElement id="ae1" kind="NotEqual"
 Reads "v1"
 Reads "su2"

Automated Source Code Quality Measures, v1.0 77

 Writes "su3"
 Flows "ae2"
ActionElement id="ae2" kind="Condition"
 Reads "su3"
 TrueFlow "ae3"
 FalseFlow "ff1"
...

What to report
Roles to report are:
- the <DivisionStatement> division statement

8.37 ASCQM Ban Creation of Lock On Private Non-Static Object to
Access Private Static Data

Descriptor
ASCQM Ban Creation of Lock On Private Non-Static Object to Access Private Static Data(PrivateNonStaticLock,
DataAccess, PrivateStaticData)

Description
Identify occurrences in application model where:
- the <PrivateNonStaticLock> private non-static lock object
- is used to lock a block including the <DataAccess> data access
- to the <PrivateStaticData> private static data

The locking mechanism is technology, framework, language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ...
 StorableUnit id="su1" isStatic="false" exportKind="private"
 StorableUnit id="su2" isStatic="true" exportKind="private"
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Reads "su1"
 Flows "ae2"
 ActionElement id="ae2"
 Flows "ae3"
 ActionElement id="ae3"
kind="Assign|PtrReplace|ArrayReplace|PtrSelect|ArraySelect|..."
 Reads|Writes "su2"
 ...
 ...

What to report
Roles to report:
- the <PrivateNonStaticLock> private non-static lock object
- the <DataAccess> data access

78 Automated Source Code Quality Measures, v1.0

- the <PrivateStaticData> private static data

8.38 ASCQM Release Lock After Use

Descriptor
ASCQM Release Lock After Use(FunctionProcedureOrMethod, LockAcquisitionStatement,
PathToExitWithoutLockRelease)

Description
Identify occurrences in application model where:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- uses the <LockAcquisitionStatement> lock acquisition statement
- while there exist the <PathToExitWithoutLockRelease> path to exit the <FunctionProcedureOrMethod> function,
 procedure, method, ... without releasing the lock resource

The path to exit the function, procedure, method, includes calls to other functions, procedures, methods, ...
The locking mechanism is technology, framework, and language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa3" kind="unlock" implementation="ae2"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ...
 CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae3"
 ActionElement id="ae3"
 Flows "ae4"
 ActionElement id="ae4" kind="Return"
 ...
 ActionElement id="ae2" kind="PlatformAction"
 ...
...

What to report
Roles to report:
- the <FunctionProcedureOrMethod> function, procedure, method, ...
- the <LockAcquisitionStatement> lock acquisition statement
- the <PathToExitWithoutLockRelease> path to exit

8.39 ASCQM Ban Sleep Between Lock Acquisition and Release

Descriptor
ASCQM Ban Sleep Between Lock Acquisition and Release(PathFromLockAcquisitionToLockRelease,
LockAcquisitionStatement, LockReleaseStatement, SleepStatement)

Automated Source Code Quality Measures, v1.0 79

Description
Identify occurrences in application model where:
- the <PathFromLockAcquisitionToLockRelease> path
- from the <LockAcquisitionStatement> lock acquisition statement
- to the <LockReleaseStatement> lock release statement
- contains the <SleepStatement> sleep statement

The path includes calls to other functions, procedures, methods, ...
The locking mechanism is technology, framework, and language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa3" kind="unlock" implementation="ae5"
 ManagesResource|ReadsResource|WritesResource "lr1"
 ...
 ExecutionResource id="er1"
 ...
 Thread id="t1"
 ...
 PlatformAction id="pa3" kind="sleep" implementation="ae3"
 ManagesResource "t1"
...
CodeModel
 ...
 CallableUnit|MethodUnit id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae2"
 ActionElement id="ae2"
 Flows "ae3"
 ActionElement id="ae3" kind="PlatformAction"
 Flows "ae4"
 ActionElement id="ae4"
 Flows "ae5"
 ActionElement id="ae5" kind="PlatformAction"
 ...
...

What to report
Roles to report:
- the <PathFromLockAcquisitionToLockRelease> path
- the <LockAcquisitionStatement> lock acquisition statement
- the <LockReleaseStatement> lock release statement
- the <SleepStatement> sleep statement

8.40 ASCQM Ban Creation of Lock On Non-Final Object

Descriptor
ASCQM Ban Creation of Lock On Non-Final Object(NonFinalObjectDeclaration, LockingAcquisitionStatement)

80 Automated Source Code Quality Measures, v1.0

Description
Identify occurrences in application model where:
- the <NonFinalObjectDeclaration> non-final object declaration
- declares an object used as a lock in the <LockingAcquisitionStatement> locking acquisition statement

The locking mechanism is technology, framework, language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ...
 StorableUnit id="su1" isFinal="false"
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Reads "su1"
 ...

What to report
Roles to report:
- the <NonFinalObjectDeclaration> non-final object declaration
- the <LockingAcquisitionStatement> locking acquisition statement

8.41 ASCQM Ban Creation of Lock On Inappropriate Object Type

Descriptor
ASCQM Ban Creation of Lock On Inappropriate Object Type(ObjectDeclaration, LockingAcquisitionStatement)

Description
Identify occurrences in application model where:
- the <ObjectDeclaration> object declaration
- declares an object used as a lock in the <LockingAcquisitionStatement> locking acquisition statement
- while its type is not suitable for locking

The list of proper locking object types is technology, framework, language dependent. For example, in C# and Java:
Reference Types, excluding Boxed Types, Strings

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel

Automated Source Code Quality Measures, v1.0 81

 ...
 StorableUnit id="su1"
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Reads "su1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CodeModel
 ...
 ClassUnit|InterfaceUnit|... id="dt1"
 StorableUnit id="su1" type="dt1"
 ...

What to report
Roles to report:
- the <ObjectDeclaration> object declaration
- the <LockingAcquisitionStatement> locking acquisition statement

8.42 ASCQM NULL Terminate Output of String Manipulation Primitives

Descriptor
ASCQM NULL Terminate Output Of String Manipulation Primitives(StringManipulationCallStatement)

Description
Identify occurrences in application model where:
- the <StringManipulationCallStatement> string manipulation call statement
- is not immediately followed by adding a NULL termination to the resulting string

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

StringType id="string"
StorableUnit id="su1" type="string"
...
ControlElement id="ce1" type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" kind="Return|byReference" type="string"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Writes "su1"
‘
KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

Value id="null"
ActionElement id="ae2" kind="PtrReplace|ArrayReplace"
 Reads "null"
 Addresses "su1"

What to report
Roles to report:
- the <StringManipulationCallStatement> string manipulation call statement

82 Automated Source Code Quality Measures, v1.0

8.43 ASCQM Release File Resource after Use in Class

Descriptor
ASCQM Release File Resource after Use in Class(Class, FileResourceOpenStatement)

Description
Identify occurrences in application model where:
- the <Class> class, ...
- uses the <FileResourceOpenStatement> file resource open statement
- without releasing the file resource in any of its methods

The path to exit the function, procedure, method, includes calls to other functions, procedures, methods, ...

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 FileResource id="pr1"
 ...
 PlatformAction id="pa1" kind="open" implementation="ae1"
 ManagesResource "pr1"
 PlatformAction id="pa2" kind="close" implementation="ae2"
 ManagesResource "pr1"

...
CodeModel
 ...
 ClassUnit id="cu1"
 ...
 ActionElement id="ae1" kind="PlatformAction"
 ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu1"
 ...
 ActionElement id="ae2" kind="PlatformAction"
...

What to report
Roles to report:
- the <Class> class
- the <FileResourceOpenStatement> file resource open statement

8.44 ASCQM Catch Exceptions

Descriptor
ASCQM Catch Exceptions(Method, Exception, MethodCall)

Description
Identify occurrences in application model where:

Automated Source Code Quality Measures, v1.0 83

- the <Method> method
- declared as throwwing the <Exception> exception
- is called in the <MethodCall> method call
- which doesn't catch exceptions of type <Exception>

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ClassUnit id="cu1"
...
MethodUnit id="mu1" type="mu1_signature"
 Signature id="mu1_signature"
 ParameterUnit id="pu1" type="cu1" kind="throws"
 ...
...
ActionElement id="ae1" kind="MethodCall"
 Calls "mu1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
TryUnit id="t1"
 ...
 ActionElement id="ae1" kind="MethodCall"
 Calls "mu1"
 ...
 ExceptionFlow "c1"
...
CatchUnit id="c1"
 ParameterUnit id="pu2" type="cu1"
 ...
...

What to report
Roles to report are:
- the <Method> method
- the <Exception> exception
- the <MethodCall> method call

8.45 ASCQM Ban Empty Exception Block

Descriptor
ASCQM Ban Empty Exception Block(CatchBlock)

Description
Identify occurrences in application model where:
- the <CatchBlock> catch block
- is empty

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
CatchUnit id="cu1"
 ActionElement id="ae1" kind="Nop"

84 Automated Source Code Quality Measures, v1.0

...

What to report
Roles to report are:
- the <CatchBlock> catch block

8.46 ASCQM Initialize Resource before Use

Descriptor
ASCQM Initialize Resource before Use(PathToResourceAccessFromResourceDeclaration,
ResourceDeclarationStatement, ResourceAccessStatement)

Description
Identify occurrences in application model where:
- the <PathToResourceAccessFromResourceDeclaration> path
- from the <ResourceDeclarationStatement> resource declaration statement
- to the <ResourceAccessStatement> resource access statement
- lacks a resource initialization statement

excluding pointers and variables

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 PlatformResource id="pr1"
 ...
 PlatformResource id="pa1" kind="read|write" implementation="ae6"
 ReadsResource|WritesResource "pr1"
...
CodeModel
 ...
 StorableUnit id="su1"
 ActionElement id="ae1" kind="Assign"
 Writes "su1"
 Flows "ae3"
 ActionElement id="ae3" ...
 Flows "ae4"
 ActionElement id="ae4" ...
 Flows "ae5"
 ActionElement id="ae5" ...
 Flows "ae6"
 ActionElement id="ae6" kind="PlatformAction"
 Reads "su1"
 ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 ...
 PlatformResource id="pa2" kind="open" implementation="ae4"
 ReadsResource|WritesResource "pr1"
...
CodeModel

Automated Source Code Quality Measures, v1.0 85

 ...
 ActionElement id="ae4" kind="PlatformAction"
 Reads "su1"
 Flows "ae5"
 ...
...

What to report
Roles to report:
- the <PathToResourceAccessFromResourceDeclaration> path
- the <ResourceDeclarationStatement> resource declaration statement
- the <ResourceAccessStatement> resource access statement

8.47 ASCQM Ban Incompatible Lock Acquisition Sequences

Descriptor
ASCQM Ban Incompatible Lock Acquisition Sequences(LockAcquisitionSequence, ReverseLockAcquisitionSequence)

Description
Identify occurrences in application model where:
- the <LockAcquisitionSequence> sequence of lock acquisition
- is the reverse of the <ReverseLockAcquisitionSequence> sequence of lock acquisition

The locking mechanism is technology, framework, and language dependent.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 LockResource id="lr2"
 ...
 PlatformAction id="pa1" kind="lock" implementation="ae1 ae12"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa2" kind="lock" implementation="ae3 ae10"
 ManagesResource|ReadsResource|WritesResource "lr2"
...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae2"
 ActionElement id="ae2" ...
 Flows "ae3"
 ActionElement id="ae3" kind="PlatformAction"
 Flows "ae4"
 ActionElement id="ae4" ...
 ...
 ActionElement id="ae10" kind="PlatformAction"
 Flows "ae11"
 ActionElement id="ae11" ...
 Flows "ae12"
 ActionElement id="ae12" kind="PlatformAction"
 Flows "ae13"
 ActionElement id="ae13" ...

86 Automated Source Code Quality Measures, v1.0

What to report
Roles to report are:
- the <LockAcquisitionSequence> sequence of lock acquisition
- the <ReverseLockAcquisitionSequence> sequence of lock acquisition

8.48 ASCQM Ban Buffer Size Computation Based on Bitwise Logical
Operation

Descriptor
ASCQM Ban Buffer Size Computation Based on Bitwise Logical Operation(MemoryAllocationCall, BitwiseOperation)

Description
Identify occurrences in application model where:
- the <MemoryAllocationCall> call to a memory allocation primitive
- uses the length parameter based on the <BitwiseOperation> bitwise operation

The list of memory allocation primitives is technology, framework, language dependent. For example with C-type
languages: malloc, calloc, realloc.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

IntegerType id="it1"
...
ControlElement id="ce1" name="malloc|calloc|realloc|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" type="it1" kind="byValue"
 ParameterUnit id="pu1" type="pt1" kind="return"
 ...
...
StorableUnit id="su1" type="it1"
StorableUnit id="su2" type="it1"
StorableUnit id="su3" type="it1"
...
ActionElement id ="ae1" kind="BitAnd|BitOr|BitXor"
 Reads "su1"
 Reads "su2"
 Writes "su3"
ActionElement id="ae2" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "su3"
 Calls "ce1"

What to report
Roles to report:
- the <MemoryAllocationCall> call to a memory allocation primitive
- the <BitwiseOperation> bitwise operation

8.49 ASCQM Ban Buffer Size Computation Based on Array Element
Pointer Size

Descriptor
ASCQM Ban Buffer Size Computation Based on Array Element Pointer Size(MemoryAllocationCall)

Automated Source Code Quality Measures, v1.0 87

Description
Identify occurrences in application model where:
- the <MemoryAllocationCall> call to a memory allocation primitive
- uses the length parameter based on datatype pointer size

The list of memory allocation primitives is technology, framework, language dependent. For example with C-type
languages: malloc, calloc, realloc.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

DataType id="dt1"
PointerType id="pt1"
 ItemUnit id="iu1" type="dt1"
IntegerType id="it1"
ControlElement id="ce1" name="malloc|calloc|realloc|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" type="it1" kind="byValue"
 ParameterUnit id="pu1" type="pt1" kind="return"
 ...
...
StorableUnit id="su1" type="it1"
StorableUnit id="su2" type="pt1"
StorableUnit id="su3" type="it1"
...
ActionElement id="ae1" kind="Sizeof"
 Writes "su1"
 Reads "su2" | UsesType "pt1"
ActionElement id="ae2" kind="Multiply"
 Reads "su1"
 Reads ...
 Writes "su3"
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "su3"
 Calls "ce1"

What to report
Roles to report:
- the <MemoryAllocationCall> call to a memory allocation primitive

8.50 ASCQM Ban Buffer Size Computation Based on Incorrect String
Length Value

Descriptor
ASCQM Ban Buffer Size Computation Based on Incorrect String Length Value(MemoryAllocationCall,
LengthComputation)

Description
Identify occurrences in application model where:
- the <MemoryAllocationCall> call to a memory allocation primitive
- uses the length parameter based on the incorrect <LengthComputation> string length computation where 1 is added to
 the string address and not the result of the call

The list of memory allocation primitives is technology, framework, language dependent. For example with C-type
languages: malloc, calloc, realloc.
The list of string length computation primitives is technology, framework, language dependent. For example with C-type
languages: strlen.

e.g.: new_name = (char*)malloc(strlen(name+1));

88 Automated Source Code Quality Measures, v1.0

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

StringType id="st1"
PointerType id="pt1"
IntegerType id="it1"
...
ControlElement id="ce1" name="strlen|..." type="ce2_signature"
 Signature id="ce2_signature"
 ParameterUnit id="pu3" type="pt1"
 ParameterUnit id="pu4" type="it1" kind="return"
 ...
ControlElement id="ce2" name="malloc|calloc|realloc|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" type="it1" kind="byValue"
 ParameterUnit id="pu1" type="pt1" kind="return"
 ...
...
Value id="v1" name="1" type="it1"
StorableUnit id="su1" type="st1"
StorableUnit id="su2" type="pt1"
StorableUnit id="su3" type="it1"
...
ActionElement id ="ae1" kind="Add"
 Reads "su1"
 Reads "v1"
 Writes "su2"
ActionElement id="ae2" kind="PtrCall|Call|MethodCall|VirtualCall"
 Reads "su1"
 Writes "su3"
 Calls "ce1"
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "su3"
 Calls "ce2"

What to report
Roles to report:
- the <MemoryAllocationCall> call to a memory allocation primitive
- the <LengthComputation> string length computation

8.51 ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock

Descriptor
ASCQM Ban Sequential Acquisitions of Single Non-Reentrant Lock(FirstLockAcquisitionStatement,
SecondLockAcquisitionStatement)

Description
Identify occurrences in application model where:
- the <FirstLockAcquisitionStatement> lock acquisition statement
- is followed by the <SecondLockAcquisitionStatement> lock acquisition statement
- on a single lock
- without any lock release statement in between

The locking mechanism is technology, framework, and language dependent.
Reentrant locks are excluded.

KDM outline illustration
KDM elements present in the application model

Automated Source Code Quality Measures, v1.0 89

KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1 ae5"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae2"
 ActionElement id="ae2" ...
 Flows "ae3"
 ActionElement id="ae3" ...
 Flows "ae4"
 ActionElement id="ae4" ...
 Flows "ae5"
 ActionElement id="ae5" kind="PlatformAction"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 DeployedResource id="dr1"
 ...
 LockResource id="lr1"
 ...
 PlatformAction id="pa2" kind="lock" implementation="ae1 ae5"
 ManagesResource|ReadsResource|WritesResource "lr1"
 PlatformAction id="pa3" kind="unlock" implementation="ae3"
 ManagesResource|ReadsResource|WritesResource "lr1"
...
CodeModel
 ...
 ActionElement id="ae1" kind="PlatformAction"
 Flows "ae2"
 ActionElement id="ae2" ...
 Flows "ae3"
 ActionElement id="ae3" kind="PlatformAction"
 Flows "ae4"
 ActionElement id="ae4" ...
 Flows "ae5"
 ActionElement id="ae5" kind="PlatformAction"
...

What to report
Roles to report are:
- the <FirstLockAcquisitionStatement> lock acquisition statement
- the <SecondLockAcquisitionStatement> lock acquisition statement

8.52 ASCQM Initialize Variables

Descriptor
ASCQM Initialize Variables(PathFromVariableDeclaration, VariableDeclarationStatement)

Description

90 Automated Source Code Quality Measures, v1.0

Identify occurrences in application model where:
- the <PathFromVariableDeclaration> path
- from the <VariableDeclarationStatement> variable declaration statement
- lacks a variable initialization statement

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
StorableUnit id="su1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Assign"
 Writes "su1"
 Flows "ae2"
...

What to report
Roles to report are
- the <PathFromVariableDeclaration> path
- the <VariableDeclarationStatement> variable declaration statement

8.53 ASCQM Ban Allocation of Memory with Null Size

Descriptor
ASCQM Ban Allocation of Memory with Null Size(MemoryAllocationCall)

Description
Identify occurrences in application model where:
- the <MemoryAllocationCall> call to a memory allocation primitive
- uses a zero length parameter

The list of memory allocation primitives is technology, framework, language dependent. For example with C-type
languages: malloc, calloc, realloc.

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

PointerType id="pt1"
IntegerType id="it1"
Value id="v1" type="it1" name="0"
ControlElement id="ce1" name="malloc|calloc|realloc|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" type="it1" kind="byValue"
 ParameterUnit id="pu1" type="pt1" kind="return"
 ...
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Reads "v1"
 Calls "ce1"

What to report

Automated Source Code Quality Measures, v1.0 91

Roles to report
- the <MemoryAllocationCall> call to a memory allocation primitive

8.54 ASCQM Ban Double Free On Pointers

Descriptor
ASCQM Ban Double Free On Pointers(PathToPointerReleaseFromPointerRelease, FirstPointerReleaseStatement,
SecondPointerReleaseStatement)

Description
Identify occurrences in application model where:
- the <PathToPointerReleaseFromPointerRelease> path
- from the <FirstPointerReleaseStatement> pointer release statement
- to the <SecondPointerReleaseStatement> pointer release statement

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"
 ItemUnit id="pi1" type="dt1"
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" name="free|delete|..."
 Addresses "pt1"
 Flows "ae2"
ActionElement id="ae2"
 Flows "ae3"
ActionElement id="ae3" name="free|delete|..."
 Addresses "pt1"
...

or

ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
name="dt1"
PointerType id="pt1" name="pt1"
 ItemUnit id="iu1" type="dt1" ext="dt1 & pt1"
StorableUnit id="su1" type="dt1"
StorableUnit id="su2" type="pt1"
 HasType "pt1"
 HasValue "su1"
...
ActionElement id="ae1" name="free|delete|...|push_back|..."
 Addresses "su1"
 Flows "ae2"
ActionElement id="ae2"
 Flows "ae3"
ActionElement id="ae3" name="free|delete|...|push_back|..."
 Addresses "su1"

What to report
Roles to report:
- the <PathToPointerReleaseFromPointerRelease> path
- the <FirstPointerReleaseStatement> pointer release statement
- the <SecondPointerReleaseStatement> pointer release statement

92 Automated Source Code Quality Measures, v1.0

8.55 ASCQM Initialize Variables before Use

Descriptor
ASCQM Initialize Variables before Use(PathToVariableAccessFromVariableDeclaration, VariableDeclarationStatement,
VariableAccessStatement)

Description
Identify occurrences in application model where:
- the <PathToVariableAccessFromVariableDeclaration> path
- from the <VariableDeclarationStatement> variable declaration statement
- to the <VariableAccessStatement> variable access statement
- lacks a variable initialization statement

excluding pointers and platform resources

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
StorableUnit id="su1"
...
ActionElement id="ae2" ...
 Flows "ae3"
ActionElement id="ae3"
 Reads "su1"
 ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Assign"
 Writes "su1"
 Flows "ae2"
...

What to report
Roles to report are:
- the <PathToVariableAccessFromVariableDeclaration> path
- the <VariableDeclarationStatement> variable declaration statement
- the <VariableAccessStatement> variable access statement

8.56 ASCQM Ban Self Assignment

Descriptor
ASCQM Ban Self Assignment(SelfAssignmentStatement)

Description
Identify occurrences in application model where:
- the <SelfAssignmentStatement> assignment statement
- assign one's variable to itself

Automated Source Code Quality Measures, v1.0 93

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:

...
StorableUnit id="su1"
...
ActionElement id="ae1" kind="Assign"
 Reads "su1"
 Writes "su1"...

What to report
Roles to report:
- the <SelfAssignmentStatement> assignment statement

8.57 ASCQM Secure XML Parsing with Secure Options

Descriptor
ASCQM Secure XML Parsing with Secure Options(XMLParsingCall, DTDProcessingDisablingOption)

Description
Identify occurrences in application model where:

- the <XMLParsingCall> call to an XML parsing method, function, procedure, ...
- doesn't use its <DTDProcessingDisablingOption> DTD processing disabling capability

The list of XML parsing primitives is technology, framework, language dependent. For example, in Java:
SchemaFactory, JAXP DocumentBuilderFactory, SAXParserFactory, XMLReader.
The list of option(s) to disable DTD processing is primitive dependent. E.g. with XMLReader: set disallow-doctype-decl
feature to true and external-general-entities and external-parameter-entities features to false.
Cf. https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1"
name="xmlCtxtReadDoc|xmlCtxtReadFd|xmlCtxtReadFile|xmlCtxtReadIO|xmlCtxtReadMemor
y|xmlCtxtUseOptions|xmlParseInNodeContext|xmlReadDoc|xmlReadFd|xmlReadFile|xmlRea
dIO|xmlReadMemory|..." type="ce1_signature"
 Signature id="ce1_signature"
 ...
 ParameterUnit id="pu1" name="options|..."
 ...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"

or

ClassUnit id="cu1"
name="SchemaFactory|DocumentBuilderFactory|SAXParserFactory|XMLReader|...
 MethodUnit id="mu1" name="newSchema|..."
 ...
 MethodUnit id="mu2" name="setProperty|setAttribute|setFeature|..."
type="mu2_signature"
 Signature id="mu2_signature"

94 Automated Source Code Quality Measures, v1.0

 ParameterUnit id="pu1" name="name|property|attribute|feature|..."
 ParameterUnit id="pu2" name="value|..."
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "mu1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
StorableUnit id="su1" attribute="DTD_disable"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "ce1"
 ...
 Reads "su1"

or

...
StorableUnit id="su1" attribute="DTD_processing"
StorableUnit id="su2" attribute="disable"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 ...
 Calls "mu2"
 Reads "su1"
 Reads "su2"
...

What to report
Roles to report:
- the <XMLParsingCall> call to an XML parsing function, procedure, method, ...
- the <DTDProcessingDisablingOption> DTD processing disabling option(s)

8.58 ASCQM Secure Use of Unsafe XML Processing with Secure Parser

Descriptor
ASCQM Secure Use of Unsafe XML Processing with Secure Parser(XMLProcessingCall)

Description
Identify occurrences in application model where:
- the <XMLProcessingCall> call to an XML processing method, function, procedure, ... without DTD processing
 disabling capabilities
- is not preceded by a call to a secure XML parser

The list of XML processing primitives without DTD processing disabling capabilities is technology, framework,
language dependent. For example in Java: JAXB Unmarshaller, XPathExpression.
The list of XML parsing primitives with DTD processing disabling capabilities is technology, framework, language
dependent. For example in Java: DocumentBuilder.
The list of option(s) to disable DTD processing is primitive dependent. For example with SAXParserFactory: set
external-general-entities, external-parameter-entities, and load-external-dtd features to false.
Cf. https://www.owasp.org/index.php/XML_External_Entity_(XXE)_Prevention_Cheat_Sheet

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

Automated Source Code Quality Measures, v1.0 95

ClassUnit id="cu1" name="Unmarshaller|XPathExpression|...
 MethodUnit id="mu1" name="unmarshall|evaluate|..."
 ...
...
StorableUnit id="su1"
...
ActionElement id="ae2" kind="MethodCall"
 Reads "su1"
 Calls "mu1"

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ClassUnit id="cu2" name="DocumentBuilder|...
 MethodUnit id="mu2" name="parse|..."

...
ActionElement id="ae1" kind="MethodCall"
 ...
 Calls "mu2"
 Writes "su1"
 Flows "ae2"
...

What to report
Roles to report:
- the <XMLProcessingCall> call to an XML processing method, function, procedure, ... without DTD processing
 disabling capabilities

8.59 ASCQM Sanitize User Input used in Path Manipulation

Descriptor
ASCQM Sanitize User Input used in Path Manipulation(PathFromUserInputToPathManipulation, UserInput,
PathManipulationStatement, PathManipulationStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToPathManipulation> path
- from the <UserInput> user interface input
- to the <PathManipulationStatement> file path manipulation statement,
- lacks a sanitization operation from the <PathManipulationStatementSanitizationControlElementList> list of vetted
 sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.
The list of file manipulation primitives is technology, framework, language dependent. For example with C-type
languages: File, FileInputStream, open.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 FileResource id="fr1"
...
UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...

96 Automated Source Code Quality Measures, v1.0

CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Data"
 ManagesResource|ReadsResource|WritesResource "fr1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToPathManipulation> path
- the <UserInput> user interface input
- the <PathManipulationStatement> file path manipulation statement,
- the <PathManipulationStatementSanitizationControlElementList> list of vetted sanitization.

8.60 ASCQM Sanitize User Input used in SQL Access

Descriptor
ASCQM Sanitize User Input used in SQL Access(PathFromUserInputToSQLStatement, UserInput, SQLStatement,
SQLStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToSQLStatement> path
- from the <UserInput> user interface input
- to the <SQLStatement> SQL statement,
- lacks a sanitization operation from the <SQLStatementSanitizationControlElementList> list of vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.
SQL is not limited to traditional RDBMS SQL, it covers all data management capabilities. For example: NoSQL
databases.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

Automated Source Code Quality Measures, v1.0 97

PlatformModel
 DataManager id="dm1"
 HasContent "rs1"
...
DataModel
 RelationalSchema id="rs1"
 RelationTable|RelationalView id="rtv1"
 PlatformAction id="pa1" implementation="ae5"
 ReadsColumnSet|WritesColumnSet "rtv1"
 ReadsResource|WritesResource "dm1"
...
UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Data"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToSQLStatement> path
- the <UserInput> user interface input
- the <SQLStatement> SQL statement,
- the <SQLStatementSanitizationControlElementList> list of vetted sanitization.

8.61 ASCQM Sanitize User Input used in Document Manipulation
Expression

Descriptor
ASCQM Sanitize User Input used in Document Manipulation Expression(PathFromUserInputToDocumentManipulation,
UserInput, DocumentManipulationExpression, DocumentManipulationSanitizationControlElementList)

98 Automated Source Code Quality Measures, v1.0

Description
Identify occurrences in application model where:
- the <PathFromUserInputToDocumentManipulation> path
- from the <UserInput> user interface input
- to the <DocumentManipulationExpression> document manipulation expression,
- lacks a sanitization operation from the <DocumentManipulationSanitizationControlElementList> list of vetted
 sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.
The list of document manipulation primitives is technology, framework, and language dependent. For example: XQuery

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 StringType id="st1"
 StorableUnit id="su3"
 ControlElement id="ce1" name="..."
 ...
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Reads "su3"
 Reads "su2"
 ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce2"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToDocumentManipulation> path
- the <UserInput> user interface input
- the <DocumentManipulationExpression> document manipulation expression,

Automated Source Code Quality Measures, v1.0 99

- the <DocumentManipulationSanitizationControlElementList> list of vetted sanitization.

8.62 ASCQM Sanitize User Input used in Document Navigation
Expression

Descriptor
ASCQM Sanitize User Input used in Document Navigation
Expression(PathFromUserInputToDocumentNavigationEvaluation, UserInput,
DocumentNavigationEvaluationExpression, DocumentNavigationSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToDocumentNavigationEvaluation> path
- from the <UserInput> user interface input
- to the <DocumentNavigationEvaluationExpression> document navigation evaluation expression,
- lacks a sanitization operation from the <DocumentNavigationSanitizationControlElementList> list of vetted
 sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.
The list of document navigation expression evaluation primitives is technology, framework, language dependent. For
example with Java language: javax.xml.xpath.evaluate, javax.xml.xpath.XPath.evaluateExpression.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 StringType id="st1"
 StorableUnit id="su3"
 ControlElement id="ce1" name="evaluate|evaluateExpression|..."
 ...
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Reads "su3"
 Reads "su2"
 ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

100 Automated Source Code Quality Measures, v1.0

ControlElement id="ce2" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce2"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToDocumentNavigationEvaluation> path
- the <UserInput> user interface input
- the <DocumentNavigationEvaluationExpression> document navigation evaluation expression,
- the <DocumentNavigationSanitizationControlElementList> list of vetted sanitization.

8.63 ASCQM Sanitize User Input used to access Directory Resources

Descriptor
ASCQM Sanitize User Input used to access Directory Resources(PathFromUserInputToExecuteRunTimeCommand,
UserInput, DirectoryAccessStatement, DirectoryAccessStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToExecuteRunTimeCommand> path
- from the <UserInput> user interface input
- to the <DirectoryAccessStatement> directory access statement,
- lacks a sanitization operation from the <DirectoryAccessStatementSanitizationControlElementList> list of vetted
 sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 NamingResource id="nr1"
...
UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"

Automated Source Code Quality Measures, v1.0 101

 ActionElement id="ae5" kind="Data"
 ManagesResource|ReadsResource|WritesResource "nr1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToExecuteRunTimeCommand> path
- the <UserInput> user interface input
- the <DirectoryAccessStatement> directory access statement,
- the <DirectoryAccessStatementSanitizationControlElementList> list of vetted sanitization.

8.64 ASCQM Sanitize Stored Input used in User Output

Descriptor
ASCQM Sanitize Stored Input used in User Output(PathFromUserInputToStorageStatement, UserInput,
StorageStatement, PathFromRetrievalStatementToUserDisplay, RetrievalStatement, UserDisplay,
CrossSiteScriptingSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToStorageStatement> path
- from the <UserInput> user interface input
- to the <StorageStatement> data storage statement,
- and the <PathFromRetrievalStatementToUserDisplay> path
- from the <RetrievalStatement> data retrieval statement
- to the <UserDisplay> user interface display,
- lacks a sanitization operation from the <CrossSiteScriptingSanitizationControlElementList> list of vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 FileResource|DataManager id="pr1"
 HasContent "rr1"
...
DataModel
 RecordFile|RelationalSchema id="rr1"
 DataAction id="da1" implementation="ae3"
 WritessColumnSet ...
 WritesResource "pr1"
 DataAction id="da2" implementation="ae4"
 ReadsColumnSet ...
 ReadsResource "pr1"
...

102 Automated Source Code Quality Measures, v1.0

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
 UIAction id="ua1" implementation="ae5" kind="output"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 StorableUnit id="su3"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3" kind="Data"
 Reads "su2"
 Flow "ae4"
 ...
 ActionElement id="ae4" kind="Data"
 Writes "su3"
 Flow "ae5"
 ActionElement id="ae5"
 Flow "ae6"
 ActionElement id="ae6" kind="UI"
 Reads "su3"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae5" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae6"
 Calls "ce1"
 Reads "su3"
 Writes "su3"
...

What to report
Roles to report are:
- the <PathFromUserInputToStorageStatement> path
- the <UserInput> user interface input
- the <StorageStatement> data storage statement,
- the <PathFromRetrievalStatementToUserDisplay> path
- the <RetrievalStatement> data retrieval statement
- the <UserDisplay> user interface display,
- the <CrossSiteScriptingSanitizationControlElementList> list of vetted sanitization.

8.65 ASCQM Sanitize User Input used in User Output

Descriptor
ASCQM Sanitize User Input used in User Output(PathFromUserInputToUserDisplay, UserInput, UserDisplay,
CrossSiteScriptingSanitizationControlElementList)

Description

Automated Source Code Quality Measures, v1.0 103

Identify occurrences in application model where:
- the <PathFromUserInputToUserDisplay> path
- from the <UserInput> user interface input
- to the <UserDisplay> user interface display,
- lacks a sanitization operation from the <CrossSiteScriptingSanitizationControlElementList> list of vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
 UIField id="uf2"
 UIAction id="ua1" implementation="ae5" kind="output"
 WritesUI "uf2"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="UI"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToUserDisplay> path
- the <UserInput> user interface input
- the <UserDisplay> user interface display,
- the <CrossSiteScriptingSanitizationControlElementList> list of vetted sanitization operations

8.66 ASCQM Sanitize User Input used in System Command

Descriptor

104 Automated Source Code Quality Measures, v1.0

ASCQM Sanitize User Input used in System Command(PathFromUserInputToExecuteRunTimeCommand, UserInput,
ExecuteRunTimeCommandStatement, ExecuteRunTimeCommandStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToExecuteRunTimeCommand> path
- from the <UserInput> user interface input
- to the <ExecuteRunTimeCommandStatement> system command,
- lacks a sanitization operation from the <ExecuteRunTimeCommandStatementSanitizationControlElementList> list of
 vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

PlatformModel
 RunTimeResource id="rtr1"
...
UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Data"
 ManagesResource|ReadsResource|WritesResource "rtr1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToExecuteRunTimeCommand> path
- the <UserInput> user interface input
- the <ExecuteRunTimeCommandStatement> system command,
- the <ExecuteRunTimeCommandStatementSanitizationControlElementList> list of vetted sanitization.

Automated Source Code Quality Measures, v1.0 105

8.67 ASCQM Sanitize User Input used as Array Index

Descriptor
ASCQM Sanitize User Input used as Array Index(PathFromUserInputToArrayAccess, UserInput,
ArrayAccessStatement)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToArrayAccess> path
- from the <UserInput> user interface input
- to the <ArrayAccessStatement> array access statement,
- lacks a range check operation

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ArrayType id="at1"
 StorableUnit id="su3" type="at1"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="ArraySelect|ArrayReplace"
 Addresses "su3"
 Reads "su2"
 Reads|Writes ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su2"
 Reads ...
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su2"
 Reads ...
 ...

What to report
Roles to report are:

106 Automated Source Code Quality Measures, v1.0

- the <PathFromUserInputToArrayAccess> path
- the <UserInput> user interface input
- the <ArrayAccessStatement> array access statement,

8.68 ASCQM Sanitize User Input used as String Format

Descriptor
ASCQM Sanitize User Input used as String Format(PathFromUserInputToFormatStatement, UserInput,
FormatStatement, FormatStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToFormatStatement> path
- from the <UserInput> user interface input
- to the <FormatStatement> formatting statement,
- lacks a sanitization operation from the <FormatStatementSanitizationControlElementList> list of vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.
The list of string format primitives is technology, framework, language dependent. For example with C-type languages:
printf, snprintf.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 StringType id="st1"
 StorableUnit id="su3"
 ControlElement id="ce1" name="printf|snprintf|..."
 ...
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Reads "su3"
 Reads "su2"
 ...
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce2" kind="sanitization"

Automated Source Code Quality Measures, v1.0 107

...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce2"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToFormatStatement> path
- the <UserInput> user interface input
- the <FormatStatement> formatting statement,
- the <FormatStatementSanitizationControlElementList> list of vetted sanitization.

8.69 ASCQM Sanitize User Input used in Loop Condition

Descriptor
ASCQM Sanitize User Input used in Loop Condition(PathFromUserInputToLoopCondition, UserInput,
LoopConditionStatement)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToLoopCondition> path
- from the <UserInput> user interface input
- to the <LoopConditionStatement> loop condition,
- lacks a range check operation

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ...
 ActionElement id="ae5" kind="Compound"
 StorableUnit id="su3"
 ActionElement id="ae6" kind="Assign"
 Reads ...
 Writes "su3"
 Flows "ae7"

108 Automated Source Code Quality Measures, v1.0

 ActionElement id="ae7"
kind="LessThan|LessThanOrEqual|GreaterThan|GreaterThanOrEqual"
 Reads "su3"
 Reads "su2"
 TrueFlow "ae8"
 FalseFlow "ae10"
 ActionElement id="ae8" kind=...
 ...
 ActionElement id="ae9" kind="Incr|Decr"
 Addresses "loopVariable"
 Flows "ae6"
 ActionElement id="ae10" kind="Nop"

or

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ...
 ActionElement id="ae5" kind="Compound"
 BooleanType id="booleanType"
 DataElement id="de1" type="booleanType"
 EntryFlow "tf1"
 ActionElement id="tf1" ...
 ...
 ActionElement id ="ae6"
kind="GreaterThan|GreaterThanOrEqual|LessThan|LessThanOrEqual"
 Reads "su2"
 ...
 Writes "de1"
 ActionElement id="ae7" kind="Condition"
 Reads "de1"
 TrueFlow "tf1"
 FalseFlow "ff1"
 ActionElement id="ff1" ...
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ActionElement id="ae2" kind="GreaterThan|GreaterThanOrEqual"
 Reads "su2"
 Reads ...
 ...
ActionElement id="ae3" kind="LessThan|LessThanOrEqual"
 Reads "su2"
 Reads ...
 ...

Automated Source Code Quality Measures, v1.0 109

What to report
Roles to report are:
- the <PathFromUserInputToLoopCondition> path
- the <UserInput> user interface input
- the <LoopConditionStatement> loop condition,

8.70 ASCQM Sanitize User Input used as Serialized Object

Descriptor
ASCQM Sanitize User Input used as Serialized Object(PathFromUserInputToDeserialization, UserInput,
DeserializationStatement, DeserializationStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToDeserialization> path
- from the <UserInput> user interface input
- to the <DeserializationStatement> deserialization statement,
- lacks a sanitization operation from the <DeserializationStatementSanitizationControlElementList> list of vetted
 sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.
The list of deserialization primitives is technology, framework, language dependent. For example in Java: XMLdecoder,
readObject, readExternal.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Data"
 ManagesResource|ReadsResource|WritesResource "fr1"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"

110 Automated Source Code Quality Measures, v1.0

 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
Roles to report are:
- the <PathFromUserInputToDeserialization> path
- the <UserInput> user interface input
- the <DeserializationStatement> deserialization statement,
- the <DeserializationStatementSanitizationControlElementList> list of vetted sanitization.

8.71 ASCQM Ban File Creation with Default Permissions

Descriptor
ASCQM Ban File Creation with Default Permissions(FileCreationStatement, Permission)

Description
Identify occurrences in application model where:
- the <FileCreationStatement> file creation statement with permission setting capabilities
- doesn't use its <Permission> permission option

The list of file creation primitives with permission setting capabilities is technology, framework, language dependent. For
example: open from fcntl.h in C, os.open in python.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

ControlElement id="ce1" name="open|..." type="ce1_signature"
 Signature id="ce1_signature"
 ParameterUnit id="pu1" name="file|..."
 ParameterUnit id="pu2" name="flags|..."
 ParameterUnit id="pu3" name="mode|..."
 ...
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Reads ...
 Reads ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
 Calls "ce1"
 Reads ...
 Reads ...
 Reads ...

What to report
Roles to report:
- the <FileCreationStatement> file creation statement with permission setting capabilities
- the <Permission> permission option

Automated Source Code Quality Measures, v1.0 111

8.72 ASCQM Ban Unintended Paths Bypassing Authentication

Descriptor
ASCQM Ban Unintended Paths Bypassing Authentication(ArchitectureModel, Relation, Caller, Callee, OriginModule,
TargetModule, AuthenticationModule)

Description
Identify occurrences in the application model where:
- the <Relation> call-type, data, use relations
- between the <Caller> caller
- grouped in the <OriginModule> origin layer, component, or subsystem
- and the <Callee> callee
- grouped into the <TargetModule> target layer, component, or subsystem
- bypasses the <AuthenticationModule> authentication layer, component, or subsystem
- as defined in the <ArchitectureModel> architectural blueprint defining layers, components, or subsystems

The architectural blueprint defining layers, components, or subsystems is application dependent, including the
identification of the authentication layer, component, or subsystem.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
Layer|Component|Subsystem id="m1"
 ...

CallableUnit callableKind="regular|external|stored" | MethodUnit
id="ce1" name="..."

 ...
 ActionElement id="ae1"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches

"ce2"
...
Layer|Component|Subsystem id="m2"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit
 id="ce2" name="..."
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
Layer|Component|Subsystem id="m1"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit
 id="ce1" name="..."
 ...
 ActionElement id="ae1"

UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches
"ce3"

...
Layer|Component|Subsystem id="m3" kind="authentication"
 ...

CallableUnit callableKind="regular|external|stored" | MethodUni
id="ce3" name="..."

 ...

112 Automated Source Code Quality Measures, v1.0

 ActionElement id="ae3"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches "ce2"

...
Layer|Component|Subsystem id="m2"
 ...

CallableUnit callableKind="regular|external|stored" | MethodUnit
id="ce2" name="..."

...

What to report
 Roles to report are:
- the <ArchitectureModel> architectural blueprint
- the <Relation> relation
- the <Caller> caller
- the <Callee> callee
- the <OriginModule> origin layer, component, or subsystem
- the <TargetModule> target layer, component, or subsystem
- the <AuthenticationModule> authentication layer, component, or subsystem

8.73 ASCQM Ban Unintended Paths Bypassing Authorization

Descriptor
ASCQM Ban Unintended Paths Bypassing Authorization (ArchitectureModel, Relation, Caller, Callee, OriginModule,
TargetModule, AuthorizationModule)

Description
Identify occurrences in the application model where:
- the <Relation> call-type, data, use relations
- between the <Caller> caller
- grouped in the <OriginModule> origin layer, component, or subsystem
- and the <Callee> callee
 - grouped into the <TargetModule> target layer, component, or subsystem
- bypasses the <AuthorizationModule> authentication layer, component, or subsystem
- as defined in the <ArchitectureModel> architectural blueprint defining layers, components, or subsystems

The architectural blueprint defining layers, components, or subsystems is application dependent, including the
identifaction of the authorization layer, component, or subsystem.

KDM outline illustration
KDM elements present in the application model KDM outline illustrating only the essential elements related to
micro KDM:
...
Layer|Component|Subsystem id="m1"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce1"
 name="..."
 ...
 ActionElement id="ae1"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches "ce2"
...
Layer|Component|Subsystem id="m2"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce2"
 name="..."
...

Automated Source Code Quality Measures, v1.0 113

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
Layer|Component|Subsystem id="m1"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce1"
 name="..."
 ...
 ActionElement id="ae1"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches "ce3"
...
Layer|Component|Subsystem id="m3" kind="authorization"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce3"
 name="..."
 ...
 ActionElement id="ae3"
 UsesType|Reads|Writes|Creates|Addresses|Calls|Dispatches "ce2"
...
Layer|Component|Subsystem id="m2"
 ...
 CallableUnit callableKind="regular|external|stored" | MethodUnit id="ce2"
 name="..."
...

What to report
 Roles to report are:
- the <ArchitectureModel> architectural blueprint
- the <Relation> relation
- the <Caller> caller
- the <Callee> callee
- the <OriginModule> origin layer, component, or subsystem
- the <TargetModule> target layer, component, or subsystem
- the <AuthorizationModule> authorization layer, component, or subsystem

8.74 ASCQM Ban Unintented Paths To Sensitive Data

Descriptor
ASCQM Ban Unintented Paths To Sensitive Data(PathFromUserInputToSQLStatement, UserInput, SQLStatement,
PriviledgedInterfaceList, SensitveDataList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToSQLStatement> path
- from the <UserInput> user interface input,
- not identified as part of the <PriviledgedInterfaceList> list of priviledged interfaces,
- to the <SQLStatement> SQL statement,
- accessing data from the <SensitveDataList> list of sensitive data.

The list of list of sensitive data is an input to provide to the measurement process. It typically comes from data census
required by data protection regulations. The list of list of priviledged interfaces is an input to provide to the measurement
process. It typically comes from interface census required by data protection regulations. SQL is not limited to traditional
RDBMS SQL, it covers all data management capabilities. E.g.: NoSQL databases.

114 Automated Source Code Quality Measures, v1.0

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
PlatformModel
 DataManager id="dm1"
 HasContent "rs1"
...
DataModel
 RelationalSchema id="rs1"
 RelationTable|RelationalView id="rtv1"
 PlatformAction id="pa1" implementation="ae5"
 ReadsColumnSet|WritesColumnSet "rtv1"
 ReadsResource|WritesResource "dm1"
...
UIModel
 UIField id="uf1"
 UIAction id="ua1" implementation="ae1" kind="input"
 ReadsUI "uf1"
...
CodeModel
 ...
 StorableUnit id="su1"
 StorableUnit id="su2"
 ActionElement id="ae1" kind="UI"
 Writes "su1"
 Flow "ae2"
 ActionElement id="ae2"
 Flow "ae3"
 Reads "su1"
 Writes "su2"
 ActionElement id="ae3"
 Flow "ae4"
 ActionElement id="ae4"
 Flow "ae5"
 ActionElement id="ae5" kind="Data"
 ...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
 Flow "ae4"
 Calls "ce1"
 Reads "su2"
 Writes "su2"
...

What to report
 Roles to report are:
- the <PathFromUserInputToSQLStatement> path,
- the <UserInput> user interface input,
- the <SQLStatement> SQL statement,
- the <PriviledgedInterfaceList> list of priviledged interfaces
 - the <SensitveDataList> list of sensitive data.

Automated Source Code Quality Measures, v1.0 115

8.75 ASCQM Ban Use of Thread Control Primitives with Known
Deadlock Issues

Descriptor
ASCQM Ban Use of Thread Control Primitives with Known Deadlock Issues(ThreadControlPrimitiveCall)

Description
Identify occurrences in application model where:
- the <ThreadControlPrimitiveCall> call to a thread control function, procedure, method, ... with known deadlock issues.
The list of primitives is technology, framework, language dependant. E.g. in Java: java.lang.Thread.suspend(),
java.lang.Thread.resume(), java.lang.ThreadGroup.suspend(), java.lang.ThreadGroup.resume() and dependent methods
java.lang.ThreadGroup.allowThreadSuspension().

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:
ControlElement id="ce1"
name="java.lang.Thread.suspend|java.lang.Thread.resume|..."

...
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"

...
Calls "ce1"

What to report
Roles to report:
- the <ThreadControlPrimitiveCall> call to a thread control function, procedure, method, ... with known deadlock issues.

8.76 ASCQM Catch Authentication Exceptions

Descriptor
ASCQM Catch Authentication Exceptions(AuthenticationMethod, Exception, MethodCall)

Description
Identify occurrences in application model where
- the <AuthenticationMethod> authentication method
- declared as throwwing the <Exception> exception
- is called in the <MethodCall> method call
- which does not catch exceptions of type <Exception> The list of authentication management function, procedure,
method, ... is technology dependant.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
ClassUnit id="cu1"
...
MethodUnit id="mu1" type="mu1_signature" kind="authentication"

Signature id="mu1_signature"
ParameterUnit id="pu1" type="cu1" kind="throws"

...
...
ActionElement id="ae1" kind="MethodCall"

Calls "mu1"
...

116 Automated Source Code Quality Measures, v1.0

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
TryUnit id="t1"

...
ActionElement id="ae1" kind="MethodCall"

Calls "mu1"
...
ExceptionFlow "c1"

...
CatchUnit id="c1"

ParameterUnit id="pu2" type="cu1"
...

...

What to report
Roles to report are
- the <AuthenticationMethod> authentication method
- the <Exception> exception

- the <MethodCall> method call

8.77 ASCQM Catch Authorization Exceptions

Descriptor
ASCQM Catch Authorization Exceptions(AuthorizationMethod, Exception, MethodCall)

Description
Identify occurrences in application model where:
- the <AuthorizationMethod> authorization method
- declared as throwwing the <Exception> exception
- is called in the <MethodCall> method call
- which does not catch exceptions of type <Exception>

The list of authorization management function, procedure, method, ... is technology dependant.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
ClassUnit id="cu1"
...
MethodUnit id="mu1" type="mu1_signature" kind="authorization"

Signature id="mu1_signature"
ParameterUnit id="pu1" type="cu1" kind="throws"

...
...
ActionElement id="ae1" kind="MethodCall"

Calls "mu1"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
TryUnit id="t1"

...

Automated Source Code Quality Measures, v1.0 117

ActionElement id="ae1" kind="MethodCall"
Calls "mu1"

...
ExceptionFlow "c1"

...
CatchUnit id="c1"

ParameterUnit id="pu2" type="cu1"
...

...

What to report
Roles to report are:
- the <AuthorizationMethod> authorization method
- the <Exception> exception
- the <MethodCall> method call

8.78 ASCQM Check Return Value of Authentication Operations
Immediately

Descriptor
ASCQM Check Return Value of Authentication Operations Immediately(CallToTheOperation)

Description
Identify occurrences in application model where:
- an authentication management function, procedure, method, ... is called in the <CallToTheOperation> call statement
- with no operation performed immediately after on the return value

The list of authentication management function, procedure, method, ... is technology dependent.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
CodeModel

CallableUnit|MethodUnit id="ce1" type="ce1_signature" kind="authentication"
Signature id="ce1_signature"

ParameterUnit id="pu1" kind="return"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...

KDM elements absent from the application model KDM outline illustrating only the essential elements related to
micro KDM:
StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"

Writes "su1"
Flows "ae2"

ActionElement id="ae2"
Reads "su1"

What to report
Roles to report are:
- the <CallToTheOperation> call statement

118 Automated Source Code Quality Measures, v1.0

8.79 ASCQM Check Return Value of Authorization Operations
Immediately

Descriptor
ASCQM Check Return Value of Authorization Operations Immediately(CallToTheOperation)

Description
Identify occurrences in application model where:
- an authorization management function, procedure, method, ... is called in the <CallToTheOperation> call statement
- with no operation performed immediately after on the return value

The list of authorization management function, procedure, method, ... is technology dependant.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:

...
CodeModel

CallableUnit|MethodUnit id="ce1" type="ce1_signature" kind="authorization"
Signature id="ce1_signature"

ParameterUnit id="pu1" kind="return"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
StorableUnit id="su1"
...
ActionElement id="ae1" kind="Call|PtrCall|MethodCall|VirtualCall"

Writes "su1"
Flows "ae2"

ActionElement id="ae2"
Reads "su1"

What to report
 Roles to report are:
- the <CallToTheOperation> call statement

8.80 ASCQM Encrypt User Input used in SQL Access to Sensitive Data

Descriptor
ASCQM Encrypt User Input used in SQL Access to Sensitive Data(PathFromUserInputToSQLStatement, UserInput,
SQLStatement, EncryptionControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToSQLStatement> path
- from the <UserInput> user interface input
- to the <SQLStatement> SQL statement,
- lacks an encryption operation from the <EncryptionControlElementList> list of vetted encryption.

The list of list of sensitive data is an input to provide to the measurement process. It typically comes from data census
required by data protection regulations. The list of vetted encryption primitives is an input to provide to the measurement

Automated Source Code Quality Measures, v1.0 119

process. SQL is not limited to traditional RDBMS SQL, it covers all data management capabilities. E.g.: NoSQL
databases.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
PlatformModel

DataManager id="dm1"
HasContent "rs1"

...
DataModel

RelationalSchema id="rs1"
RelationTable|RelationalView id="rtv1"

PlatformAction id="pa1" implementation="ae5"
ReadsColumnSet|WritesColumnSet "rtv1"
ReadsResource|WritesResource "dm1"

...
UIModel

UIField id="uf1"
UIAction id="ua1" implementation="ae1" kind="input"

ReadsUI "uf1"
...
CodeModel

...
StorableUnit id="su1"
StorableUnit id="su2"
ActionElement id="ae1" kind="UI"

Writes "su1"
Flow "ae2"

ActionElement id="ae2"
Flow "ae3"
Reads "su1"
Writes "su2"

ActionElement id="ae3"
Flow "ae4"

ActionElement id="ae4"
Flow "ae5"

ActionElement id="ae5" kind="Data"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
ControlElement id="ce1" kind="encryption"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"

Flow "ae4"
Calls "ce1"
Reads "su2"
Writes "su2"

...

What to report
 Roles to report are:
- the <PathFromUserInputToSQLStatement> path
- the <UserInput> user interface input
- the <SQLStatement> SQL statement,
- the <EncryptionControlElementList> list of vetted encryption.

120 Automated Source Code Quality Measures, v1.0

8.81 ASCQM Release Memory after Use with Correct Reference

Descriptor
ASCQM Release Memory after Use with Correct Reference(MemoryAllocationStatement, AllocationReference,
MemoryReleaseStatement, ReleaseReference)

Description
Identify occurrences in the application model where;
- the memory is allocated via the <MemoryAllocationStatement> allocation statement
- using the <AllocationReference> reference
- then released via <MemoryReleaseStatement> release statement

- using the mismatched <ReleaseReference> reference

KDM outline illustration
KDM outline illustrating only the essential elements related to micro KDM:
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"

ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="New"

Creates "dt1"
Writes "su1"

...
ControlElement id="ce2" name="delete[]|free|..."
...
ActionElement id="ae2" kind="Call"

Addresses "su1"
Calls "ce2"

 or

ControlElement id="ce1" name="malloc|calloc|...|New|NewArray|..."
...
ClassUnit|IntegerType|DecimalType|FloatType|StringType|VoidType|... id="dt1"
PointerType id="pt1"

ItemUnit id="iu1" type="dt1"
...
StorableUnit id="su1" type="pt1"
...
ActionElement id="ae1" kind="Call"

Calls "ce1"
Writes "su1"

...
StorableUnit id="su2" type="pt1"
...
ActionElement id="ae2" type="add"

Reads "su1"
...
Writes "su2"

...
ControlElement id="ce2" name="free|...|delete|delete[]|..."
...
ActionElement id="ae3" kind="Call"

Addresses "su2"
Calls "ce2"

Automated Source Code Quality Measures, v1.0 121

What to report
Roles to report are:
- the <MemoryAllocationStatement> allocation statement
- the <AllocationReference> reference
- the <MemoryReleaseStatement> release statement

- the <ReleaseReference> reference

8.82 ASCQM Sanitize Deserialized Object used in Stored Data

Descriptor
ASCQM Sanitize Deserialized Object used in Stored Data(PathFromObjectDeserializationToStorage, StorageStatement,
DeserializationStatement, DeserializationStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromObjectDeserializationToStorage> path
- from the <DeserializationStatement> deserialization statement,
- to the <StorageStatement> storage statement,
- lacks a sanitization operation from the <DeserializationStatementSanitizationControlElementList> list of vetted
sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process. The list of deserialization
primitives is technology, framework, language dependent. E.g. in Java: XMLdecoder, readObject, readExternal.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
PlatformModel

FileResource|DataManager id="pr1"
HasContent "rr1"

...
DataModel

RecordFile|RelationalSchema id="rr1"
DataAction id="da1" implementation="ae4"

WritessColumnSet ...
WritesResource "pr1"

...
CodeModel

...
StorableUnit id="su1"
StorableUnit id="su2"
ActionElement id="ae1" kind="deserialization"

Writes "su1"
Flow "ae2"

ActionElement id="ae2"
Flow "ae3"
Reads "su1"
Writes "su2"

ActionElement id="ae3"
Flow "ae4"

ActionElement id="ae4" kind="Data"
ManagesResource|WritesResource "fr1"

...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
ControlElement id="ce1" kind="sanitization"
...

122 Automated Source Code Quality Measures, v1.0

ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"
Flow "ae4"
Calls "ce1"
Reads "su2"
Writes "su2"

...

What to report
 Roles to report are:
- the <PathFromObjectDeserializationToStorage> path
- the <StorageStatement> storage statement,
- the <DeserializationStatement> deserialization statement,
- the <DeserializationStatementSanitizationControlElementList> list of vetted sanitization.

8.83 ASCQM Sanitize User Input used in Expression Language
Statement

Descriptor
ASCQM Sanitize User Input used in Expression Language Statement(UserInput, TransformationSequence,
ExpressionLanguageExpression, ExpressionLanguageSanitizationControlElementList)

Description
Identify occurrences in application model where:
- an external value is entered into the application through the <UserInput> user interface input,
- transformed throughout the application along the <TransformationSequence> sequence,
- and ultimately used in <ExpressionLanguageExpression> EL expression,
- none of the callable or method control element of the transformation sequence being a vetted sanitization operation
from the <ExpressionLanguageSanitizationControlElementList> list of vetted sanitization operations.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
UIModel

UIField id="uf1"
UIAction id="ua1" implementation="ae1" kind="input"

ReadsUI "uf1"
...
CodeModel

...
StorableUnit id="su1"
StorableUnit id="su2"
StringType id="st1"
StorableUnit id="su3"
ControlElement id="ce1" name="..."
...
ActionElement id="ae1" kind="UI"

Writes "su1"
Flow "ae2"

ActionElement id="ae2"
Flow "ae3"
Reads "su1"
Writes "su2"

ActionElement id="ae3"

Automated Source Code Quality Measures, v1.0 123

Flow "ae4"
ActionElement id="ae4"

Flow "ae5"
ActionElement id="ae5" kind="Call|PtrCall|MethodCall|VirtualCall"

Calls "ce1"
Reads "su3"
Reads "su2"
...

...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
ControlElement id="ce2" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"

Flow "ae4"
Calls "ce2"
Reads "su2"
Writes "su2" ...

What to report
Roles to report are:
- the <UserInput> user interface input action
- the <TransformationSequence> sequence
- the <ExpressionLanguageExpression> EL expression
- the <ExpressionLanguageSanitizationControlElementList> list of vetted sanitization operations

8.84 ASCQM Sanitize User Input used in SQL Access to primary keys

Descriptor
ASCQM Sanitize User Input used in SQL Access to primary keys(PathFromUserInputToSQLStatement, UserInput,
SQLStatement, PrimaryKey, SQLStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToSQLStatement> path
- from the <UserInput> user interface input
- to the <SQLStatement> SQL statement,
- which accesses the <PrimaryKey> primary key,
- lacks a sanitization operation from the <SQLStatementSanitizationControlElementList> list of vetted sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
PlatformModel

DataManager id="dm1"
HasContent "rs1"

...
DataModel

RelationalSchema id="rs1"
RelationTable|RelationalView id="rtv1"

UniqueKey id="uk1" implementation="iu1"
ItemUnit id="iu1"

PlatformAction id="pa1" implementation="ae5"
ReadsColumnSet|WritesColumnSet "rtv1"

124 Automated Source Code Quality Measures, v1.0

ReadsResource|WritesResource "dm1"
...
UIModel

UIField id="uf1"
UIAction id="ua1" implementation="ae1" kind="input"

ReadsUI "uf1"
...
CodeModel

...
StorableUnit id="su1"
StorableUnit id="su2"
ActionElement id="ae1" kind="UI"

Writes "su1"
Flow "ae2"

ActionElement id="ae2"
Flow "ae3"
Reads "su1"
Writes "su2"

ActionElement id="ae3"
Flow "ae4"

ActionElement id="ae4"
Flow "ae5"

ActionElement id="ae5" kind="Data"
Reads|Writes to="iu1"

...

KDM elements absent from the application model KDM outline illustrating only the essential elements related to
micro KDM:
ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"

Flow "ae4"
Calls "ce1"
Reads "su2"
Writes "su2"

...

What to report
Roles to report are:
- the <PathFromUserInputToSQLStatement> path,
- the <UserInput> user interface input,
- the <SQLStatement> SQL statement,
- the <PrimaryKey> primary key,
- the <SQLStatementSanitizationControlElementList> list of vetted sanitization.

8.85 ASCQM Sanitize User Input used in URI Building

Descriptor
ASCQM Sanitize User Input used in URI Building(PathFromUserInputToURIBuildingStatement, UserInput,
URIBuildingStatement, URIBuildingStatementSanitizationControlElementList)

Description
Identify occurrences in application model where:
- the <PathFromUserInputToURIBuildingStatement> path
- from the <UserInput> user interface input
- to the <URIBuildingStatement> SQL statement,

Automated Source Code Quality Measures, v1.0 125

- lacks a sanitization operation from the <URIBuildingStatementSanitizationControlElementList> list of vetted
sanitization.

The list of vetted sanitization primitives is an input to provide to the measurement process. The list of URI building
function, method, ... is technology dependent.

KDM outline illustration
KDM elements present in the application model
KDM outline illustrating only the essential elements related to micro KDM:
...
UIModel

UIField id="uf1"
UIAction id="ua1" implementation="ae1" kind="input"

ReadsUI "uf1"
...
CodeModel

...
StorableUnit id="su1"
StorableUnit id="su2"
ActionElement id="ae1" kind="UI"

Writes "su1"
Flow "ae2"

ActionElement id="ae2"
Flow "ae3"
Reads "su1"
Writes "su2"

ActionElement id="ae3"
Flow "ae4"

ActionElement id="ae4"
Flow "ae5"

ActionElement id="ae5" kind="URI"
...

KDM elements absent from the application model
KDM outline illustrating only the essential elements related to micro KDM:
ControlElement id="ce1" kind="sanitization"
...
ActionElement id="ae3" kind="Call|PtrCall|MethodCall|VirtualCall"

Flow "ae4"
Calls "ce1"
Reads "su2"
Writes "su2"

...

What to report
Roles to report are:
- the <PathFromUserInputToURIBuildingStatement> path
- the <UserInput> user interface input
- the <URIBuildingStatement> SQL statement,
- the <URIBuildingStatementSanitizationControlElementList> list of vetted sanitization.

126 Automated Source Code Quality Measures, v1.0

9 Calculation of Quality and Functional Density
Measures (Normative)

9.1 Calculation of the Base Measure

After reviewing several alternatives, a count of total weaknesses in an application was selected as the best
option for a base measure for the Automated Source Code Data Protection Measure. Software quality
measures have frequently been scored at the component level and then aggregated to develop an overall
score for the application. However, scoring at the component level was rejected because many weaknesses
cannot be isolated to a single component, but rather involve interactions among several components.
Therefore, the Automated Source Code Data Protection Measure score is computed as the sum of its quality
measure elements (weaknesses) counted across an entire application.

The Automated Source Code Data Protection Measure score is calculated as follows:

 The score for each weakness is the count of its detection patterns, and
 The Automated Source Code Data Protection Measure score is the sum of its weakness scores.

That is,

Score for Weakness xi = Σ (Occurrences of ASCQM-xij)
Where x = an Automated Source Code Data Protection Measure weakness
 i = 1 to 85
 ASCQM-xij = the jth detection pattern associated with weakness xi

and

Automated Source Code Data Protection Measure score = Σ (Weakness Xi scores) for weaknesses 1 to 85.

9.2 Functional Density of Weaknesses

To compare quality results among different applications, the Automated Source Code Data Protection
Measure can be normalized by size to create a density measure. There are several size measures with which
the density of quality violations can be normalized, such as lines of code and Function Points. These size
measures, if properly standardized, can be used for creating a density measure for use in benchmarking the
quality of applications. OMG’s Automated Function Points (AFP) measure (ISO, 2019) offers an automatable
size measure that, as an OMG Supported Specification, is standardized. AFP was adapted from the
International Function Point User Group’s (IFPUG) counting guidelines, and is commercially supported.
Although other size measures can be used to evaluate the density of security violations, the following
density measure for weaknesses is derived from the OMG supported specification for Automated Function
Points. Thus, the functional density of Data Protection weaknesses is a simple division expressed as follows.

ASCDPM-density = ASCDPM / AFP

Where ASPCM-density = the density of ASCDPM weaknesses per Automated Function Point,
 ASCDPM = Automated Source Code Data Protection Measure score, and
 AFP = Automated Function Points

Automated Source Code Quality Measures, v1.0 127

10 References (Informative)

Common Weakness Enumeration. http://cwe.mitre.org . Bedford, MA: MITRE Corporation.

Consortium for IT Software Quality (2010). http://www.it-cisq.org . Needham, MA: Object Management Group,

Consortium for IT Software Quality (CISQ).

Curtis, B. (1980). Measurement and experimentation in software engineering. Proceedings of the IEEE, 68 (9), 1103-

1119.

International Organization for Standards (2007). ISO/IEC 25020 Systems and software engineering: Systems and

software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and software product quality –
Measurement reference model and guide. Geneva, Switzerland.

International Organization for Standards (2011). ISO/IEC 25010:2011 Systems and software engineering – System and
software product Quality Requirements and Evaluation (SQuaRE) – System and software quality models. Geneva,
Switzerland.

International Organization for Standards (2012). ISO/IEC 25023 Systems and software engineering: Systems and

software Quality Requirements and Evaluation (SQuaRE) – Measurement of system and software product quality.
Geneva, Switzerland.

International Organization for Standards (2019). ISO/IEC 19515:2019, Automated Function Points. Information
technology -- Object Management Group Automated Function Points (AFP), 1.0. Geneva, Switzerland. Also,
Object Management Group (2014). Automated Function Points. formal 2014-01-03
http://www.omg.org/spec/AFP/ . Needham, MA: Object Management Group.

International Telecommunications Union (2012). ITU-T X.1524 – Series X: Data Networks, Open System

Communications and Security – Cybersecurity information exchange – Vulnerability/state exchange – Common
weakness enumeration. Geneva:, Switzerland.

Martin, R.A. & Barnum, S. (2006). Status update: The Common Weakness Enumeration. NIST Static Analysis Summit,
Gaithersburg, MD Jun 29, 2006.

128 Automated Source Code Quality Measures, v1.0

Annex A: Consortium for IT Software Quality (CISQ)
(Informative)

The Consortium for IT Software Quality (CISQ), a consortium managed by OMG, was formed in 2010 to
create international standards for automating measures of size and structural quality characteristics from
source code. These measures were designed to provide international standards for measuring software
structural quality that can be used by IT organizations, IT service providers, and software vendors in
contracting, developing, testing, accepting, and deploying IT software applications. Executives from the
member companies that joined CISQ prioritized the quality characteristics of Reliability, Security,
Performance Efficiency, and Maintainability to be developed as measurement specifications.

CISQ strives to maintain consistency with ISO/IEC standards to the extent possible, and in particular with the
ISO/IEC 25000 series that replaces ISO/IEC 9126 and defines quality measures for software systems. In order
to maintain consistency with the quality model presented in ISO/IEC 25010, software quality characteristics
are defined for the purpose of this specification as attributes that can be measured from the static
properties of software, and can be related to the dynamic properties of a computer system as affected by its
software. However, the 25000 series, and in particular ISO/IEC 25023 which elaborates quality characteristic
measures, define very few of these measures at the source code level. Thus, this and other CISQ quality
characteristic specifications supplement ISO/IEC 25023 by providing a deeper level of software
measurement, one that is rooted in measuring software attributes in the source code.

An international team of experts drawn from CISQ’s 24 original companies formed into working groups to
define CISQ measures. Weaknesses that had a high probability of causing reliability, security, performance
efficiency, or maintainability problems were selected for inclusion in the four measures. The original CISQ
members included IT departments in Fortune 200 companies, system integrators/ outsourcers, and vendors
that provide quality-related products and services to the IT market. The experts met several times per year
for two years in the US, France, and India to develop a broad list of candidate weaknesses. This list was
pared down to a set of weaknesses they believed had to be remediated to avoid serious operational or cost
problems. These 86 weaknesses became the foundation of the original specifications of the automated
source code measures for Reliability, Security, Performance Efficiency, and Maintainability. In 2018 these
measures were extended to include weaknesses related to embedded software. There are now 133
weaknesses in the 4 CISQ measures that are collectively referred to as CISQ’s Automated Source Code
Quality Measures (ASCQM).

This specification of weaknesses related to data protection extends the CISQ Security measure to the specific
domain of and the protection of confidential data. It is directly related to the ISO 25010 subcharacteristic of
Confidentiality, which is categorized under Security.

Automated Source Code Quality Measures, v1.0 129

Annex B: Common Weakness Enumeration (CWE)
(Informative)

The Common Weakness Enumeration (CWE) repository (http://cwe.mitre.org/) maintained by MITRE
Corporation is a collection of over 800 weaknesses in software architecture and source code that malicious
actors have used to gain unauthorized entry into systems or to cause malicious actions. The CWE is a widely
used industry source (http://cwe.mitre.org/community/citations.html) that provides a foundation for the
ITU-T X.1524 and ISO/IEC standard, in addition to 2 ISO/IEC technical reports:

 SERIES X: DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY Cybersecurity
information exchange – Vulnerability/state exchange - Common weakness enumeration (CWE)

 ISO/IEC 29147:2014 Information Technology -- Security Techniques -- Vulnerability Disclosure"
 ISO/IEC TR 24772:2013 Information technology -- Programming languages -- Guidance to avoiding

vulnerabilities in programming languages through language selection and use
 ISO/IEC Technical Report is ISO/IEC TR 20004:2012 Information Technology -- Security Techniques --

Refining Software Vulnerability Analysis under ISO/IEC 15408 and ISO/IEC 18045

The CWE/SANS Institute Top 25 Most Dangerous Software Errors is a list of the 25 most widespread and
frequently exploited security weaknesses in the CWE repository. The previous version of the CISQ
Automated Source Code Security Measure (ASCSM) was based on 22 of the CWE/SANS Top 25 that could be
detected and counted in source code. In this revision, the number of security weaknesses is being expanded
beyond the CWE/SANS Top 25 since there are other weaknesses severe enough to be incorporated in the
CISQ measure. In addition, many CWEs also cause reliability problems and are therefore included in the
CISQ reliability measure. Wherever a CWE is included in any of the 4 CISQ structural quality measures, its
CWE identifier will be noted.

Since the CWE is recognized as the primary industry repository of security weaknesses, it is supported by the
majority of vendors providing tools and technology in the software security domain
(http://cwe.mitre.org/compatible/compatible.html), such as Coverity, HP Fortify, Klockwork, IBM, CAST,
Veracode, and others. These vendors already have capabilities for detecting many of the CWEs. Industry
experts who developed the CWE purposely worded the CWEs to be language and application agnostic in
order to allow vendors to develop detectors specific to a wide range of languages and application types
beyond the scope that could be covered in the CWE. Since some of the CWEs may not be relevant in some
languages, the reduced opportunity for anti-patterns in those cases will be reflected in the scores.

130 Automated Source Code Quality Measures, v1.0

Annex C: Comparison of Weaknesses Included in the
CISQ Automated Source Code Security, Reliability,
and Data Protection Measures (Informative)

This annex displays a comparison of the weaknesses in CISQ’s Automated Source Code Security, Reliability,
and Data Protection Measures. There are 26 weaknesses in the CISQ Data Protection measure that are not
in the CISQ Security measure. However, of these 26 weaknesses, 11 weaknesses are included in the CISQ
Reliability measure. There are 11 weaknesses included in the CISQ Security measure that are not included in
the CISQ Data Protection measure.

Table C1: Comparison of Weaknesses in CISQ Security, Reliability, and Data Protection Measures

CWE Security Reliability
Data

Protection

22 X X

23 X X

36 X X

77 X X

78 X X

79 X X

88 X X

89 X X

90 X X

91 X X

99 X X

119 X X X

120 X X X

123 X X X

125 X X X

129 X X

130 X X X

131 X X X

134 X X

170 X X

194 X X X

195 X X X

196 X X X

197 X X X

213 X

248 X X

252 X X

259 X X

284 X

285 X

287 X

288 X

311 X

Automated Source Code Quality Measures, v1.0 131

321 X X

359 X

366 X X X

369 X X X

390 X

391 X X

392 X X

394 X

401 X X

404 X X X

415 X X X

416 X X X

424 X X X

434 X X

456 X X X

457 X X X

459 X

476 X

477 X

480 X X

484 X

502 X X

543 X X X

562 X X

564 X

567 X X X

570 X

571 X

595 X

597 X

606 X X

611 X X

624 X

639 X

643 X X

652 X X

662 X X X

665 X X X

667 X X X

672 X X X

681 X X X

682 X X X

703 X X

704 X X

732 X X

758 X

132 Automated Source Code Quality Measures, v1.0

761 X

762 X

763 X

764 X X

772 X X X

775 X X X

778 X

783 X

786 X X X

787 X X X

788 X X X

789 X

798 X X

805 X X X

820 X X X

821 X X X

822 X X X

823 X X X

824 X X X

825 X X X

833 X

835 X X

862 X

863 X

908 X X

915 X

917 X X

1045 X

1051 X X

1057 X

1058 X X

1066 X

1070 X

1077 X

1079 X

1082 X

1083 X

1087 X

1088 X

1096 X X

1097 X

1098 X

Automated Source Code Quality Measures, v1.0 133

Annex D: Relationship of the CISQ Automated Source
Code Data Protection Measure to ISO 25000 Series
Standards (SQuaRE) (Informative)

ISO/IEC 25010 defines the product quality model for software-intensive systems (Figure 1). This model is
composed of 8 quality characteristics, four of which are the subject of CISQ structural quality measures
(indicated in blue). Each of ISO/IEC 25010’s eight quality characteristics consists of several quality sub-
characteristics that define the domain of issues covered by their parent quality characteristic. CISQ
structural quality measures conform to the definitions in ISO/IEC 25010. The sub-characteristics of each
quality characteristic were used to ensure the CISQ measures covered the domain of issues in each of the
four areas. The CISQ Automated Source Code Data Protection Measure is conformant to the
subcharacteristic measure of Confidentiality under the quality characteristic of Security. ISO/IEC 25010 is
currently undergoing revision with CISQ participation.

Figure 1 Software Quality Characteristics from ISO/IEC 25010 with CISQ measure areas highlighted.

ISO/IEC 25023 establishes a framework of software quality characteristic measures wherein each quality
sub-characteristic consists of a collection of quality attributes that can be quantified as quality measure
elements. A quality measure element quantifies a unitary measurable attribute of software, such as the
violation of a quality rule. Figure 2 presents an example of the ISO/IEC 25023 quality measurement
framework using a partial decomposition for the Automated Source Code Security Measure.

Figure 2 displays the hierarchical relationships indicating how CISQ conforms to the reference measurement
structure established in ISO/IEC 25020 that governs software quality measures in ISO/IEC 25023. This
structure is presented using the CISQ Security measure as an example. The CISQ measures only use ISO’s
quality subcharacteristics for ensuring that the CISQ weaknesses covered the measurable domain of an ISO
quality characteristic as defined in ISO/IEC 25010. CISQ’s weaknesses (CWEs) correspond to ISO’s quality
attributes. CISQ weaknesses are represented as one or more detection patterns among structural code
elements in the software. Variations in how a weakness may be instantiated are represented by its
association with several different detection patterns. Each occurrence of a detection pattern represents an
occurrence of a weakness in the software. Occurrences of these detection patterns in the software
correspond to ISO’s quality measure elements and are the elements calculated in the CISQ measures.

Software
Product
Quality

Functional
Suitability

Reliability Performance
Efficiency

Operability Security Compatibility Maintain-
ability

Portability

Functional
appropriate-

ness
Accuracy

Compliance

Maturity
Availability

Fault tolerance
Recoverability

Compliance

Time behavior
Resource
utilization

Compliance

Appropriate-
ness

Recognizability
Learnability
Ease of use

Attractiveness
Technical

accessability
Compliance

Confidentiality
Integrity

Non-
repudiation

Accountability
Authenticity
Compliance

Co-existence
Inter-

operability
Compliance

Modularity
Reusability

Analyzability
Changeability
Modification

stability
Testability

Compliance

Adaptability
Installability

Replaceability
Compliance

134 Automated Source Code Quality Measures, v1.0

Figure 2 ISO/IEC 25020 Framework for Software Quality Characteristics Measurement

Clause 6 of this specification lists weaknesses that correspond to ISO/IEC 25020’s quality attributes. A
weakness is detected by identifying patterns of code elements in the software (called detection patterns)
that instantiate the weakness. Each detection pattern equates to a quality measure element used in
calculating the CISQ quality measures. In Clause 7, quality attributes (weaknesses) are transformed into the
KDM and SPMS-based detection patterns that represent them. The CISQ quality measures are then
calculated by detecting and counting occurrences of detection patterns, each of which indicates the
existence of a weakness in the software. These calculations are represented in the Structured Metrics
Metamodel (SMM).

